WO2022039051A1 - High-frequency circuit - Google Patents

High-frequency circuit Download PDF

Info

Publication number
WO2022039051A1
WO2022039051A1 PCT/JP2021/029286 JP2021029286W WO2022039051A1 WO 2022039051 A1 WO2022039051 A1 WO 2022039051A1 JP 2021029286 W JP2021029286 W JP 2021029286W WO 2022039051 A1 WO2022039051 A1 WO 2022039051A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication band
high frequency
communication
low noise
noise amplifier
Prior art date
Application number
PCT/JP2021/029286
Other languages
French (fr)
Japanese (ja)
Inventor
弘嗣 森
秀典 帯屋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022039051A1 publication Critical patent/WO2022039051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a high frequency circuit.
  • Patent Document 1 discloses a front-end module in which a plurality of low-noise amplifiers and the like are packaged.
  • the present invention provides a high frequency circuit capable of reducing the number of high frequency output terminals.
  • the high frequency circuit includes a first output terminal and a second output terminal for supplying a high frequency signal to the outside, a switch circuit connected to the first output terminal and the second output terminal, and a switch circuit.
  • the first low noise amplifier connected to the first output terminal, the second low noise amplifier connected to the first output terminal and the second output terminal via the switch circuit, and the second output terminal. It comprises a third low noise amplifier to be connected.
  • the number of high frequency output terminals can be reduced.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit and a communication device according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a first connection state of the high frequency circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a second connection state of the high frequency circuit according to the first embodiment.
  • FIG. 4 is a circuit diagram showing a third connection state of the high frequency circuit according to the first embodiment.
  • FIG. 5 is a diagram showing a communication band group and a first specific example of the communication band used in the high frequency circuit according to the first embodiment.
  • FIG. 6 is a diagram showing a second specific example of the communication band group and the communication band used in the high frequency circuit according to the first embodiment.
  • FIG. 7 is a diagram showing a switch circuit in the first modification of the first embodiment.
  • FIG. 8 is a diagram showing a switch circuit in the second modification of the first embodiment.
  • FIG. 9 is a circuit configuration diagram of the high frequency circuit and the communication device according to the second embodiment.
  • FIG. 10 is a diagram showing a specific example of a communication band group and a communication band used in the high frequency circuit according to the second embodiment.
  • FIG. 11 is a circuit configuration diagram of a high frequency circuit and a communication device according to another embodiment.
  • each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
  • connection includes not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element.
  • directly connected is meant being directly connected by a connection terminal and / or a wiring conductor without the intervention of other circuit elements.
  • Connected between A and B means connected to both A and B between A and B.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit 1 and a communication device 5 according to the first embodiment.
  • the communication device 5 includes a high frequency circuit 1, an antenna 2, an RFIC 3, a BBIC (Baseband Integrated Circuit) 4, and a multiplexer 6.
  • the high frequency circuit 1 transmits a high frequency signal between the antenna 2 and the RFIC 3.
  • the internal configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminals 101 to 103 of the high frequency circuit 1 via the multiplexer 6, receives a high frequency signal from the outside, and outputs the high frequency signal to the high frequency circuit 1.
  • RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency circuit 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency circuit 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency circuit 1.
  • the BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency circuit 1.
  • the signal processed by the BBIC 4 for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
  • the multiplexer 6 is connected between the antenna 2 and the high frequency circuit 1.
  • the multiplexer 6 includes filters 6a to 6c.
  • the filter 6a is connected to the antenna connection terminal 101 and has a pass band including the communication band group X.
  • the filter 6b is connected to the antenna connection terminal 102 and has a pass band including the communication band group Y.
  • the filter 6c is connected to the antenna connection terminal 103 and has a pass band including the communication band group Z.
  • the multiplexer 6 may be included in the high frequency circuit 1.
  • Communication band groups X, Y and Z are communication band groups different from each other.
  • the communication band group means a frequency range including a plurality of communication bands.
  • the communication band means a frequency band defined in advance by a standardization body or the like (for example, 3GPP (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers)) for a communication system.
  • the communication system means a communication system constructed by using radio access technology (RAT: RadioAccess Technology).
  • RAT RadioAccess Technology
  • the communication system for example, a 5GNR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, a WLAN (Wireless Local Area Network) system, or the like can be used, but the communication system is not limited thereto.
  • the antenna 2, the BBIC 4 and the multiplexer 6 are not essential components.
  • the high frequency circuit 1 includes low noise amplifiers 21 to 23, switches 51 to 56, switch circuits 57, filters 61 to 63, antenna connection terminals 101 to 103, high frequency output terminals 121, and the like. 122 and.
  • the antenna connection terminals 101 to 103 are connected to the antenna 2 via the multiplexer 6.
  • the reception signal of the communication band group X received by the antenna 2 is input to the antenna connection terminal 101 via the filter 6a.
  • the reception signal of the communication band group Y received by the antenna 2 is input to the antenna connection terminal 102 via the filter 6b.
  • the reception signal of the communication band group Z received by the antenna 2 is input to the antenna connection terminal 103 via the filter 6c.
  • the switch 51 is connected between the antenna connection terminal 101 and the filter 61, and switches between connection and non-connection between the antenna connection terminal 101 and the filter 61.
  • the filter 61 has a pass band including at least a part of the communication band A included in the communication band group X. If the communication band A is a communication band for frequency division duplex (FDD), the pass band of the filter 61 includes the downlink operating band of the communication band A. The downlink operation band means a part of the communication band designated for the downlink. If the communication band A is a communication band for time division duplex (TDD: Time Division Duplex), the pass band of the filter 61 includes the entire communication band A. One end of the filter 61 is connected to the antenna connection terminal 101 via the switch 51. The other end of the filter 61 is connected to the input of the low noise amplifier 21 via the switch 52.
  • FDD frequency division duplex
  • TDD Time Division duplex
  • the switch 52 is connected between the filter 61 and the low noise amplifier 21, and switches between connection and non-connection between the filter 61 and the low noise amplifier 21.
  • each pass band of one or more other filters may include other communication bands included in the communication band group X.
  • the switch 53 is connected between the antenna connection terminal 102 and the filter 62, and switches between connection and non-connection between the antenna connection terminal 102 and the filter 62.
  • the filter 62 (B-Rx) has a pass band including at least a part of the communication band B included in the communication band group Y. If the communication band B is a communication band for FDD, the pass band of the filter 62 includes the downlink operation band of the communication band B. If the communication band B is a communication band for TDD, the pass band of the filter 62 includes the entire communication band B. One end of the filter 62 is connected to the antenna connection terminal 102 via the switch 53. The other end of the filter 62 is connected to the input of the low noise amplifier 22 via the switch 54.
  • the switch 54 is connected between the filter 62 and the low noise amplifier 22, and switches between connection and non-connection between the filter 62 and the low noise amplifier 22.
  • each pass band of one or more other filters may include other communication bands included in the communication band group Y.
  • the switch 55 is connected between the antenna connection terminal 103 and the filter 63, and switches between connection and non-connection between the antenna connection terminal 103 and the filter 63.
  • the filter 63 (C-Rx) has a pass band including at least a part of the communication band C included in the communication band group Z. If the communication band C is a communication band for FDD, the pass band of the filter 63 includes the downlink operation band of the communication band C. If the communication band C is a communication band for TDD, the pass band of the filter 63 includes the entire communication band C. One end of the filter 63 is connected to the antenna connection terminal 103 via the switch 55. The other end of the filter 63 is connected to the input of the low noise amplifier 23 via the switch 56.
  • the switch 56 is connected between the filter 63 and the low noise amplifier 23, and switches between connection and non-connection between the filter 63 and the low noise amplifier 23.
  • each pass band of one or more other filters may include other communication bands included in the communication band group Z.
  • the low noise amplifier 21 is an example of the first low noise amplifier, and can amplify the received signal of the communication band A input via the antenna connection terminal 101, the switch 51, the filter 61 and the switch 52. Further, when one or more other filters are connected between the switches 51 and 52, the low noise amplifier 21 can also amplify the received signals of the other communication bands included in the communication band group X. .. The received signal of the communication band A amplified by the low noise amplifier 21 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
  • the low noise amplifier 22 is an example of the second low noise amplifier, and can amplify the received signal of the communication band B input via the antenna connection terminal 102, the switch 53, the filter 62, and the switch 54. Further, when one or more other filters are connected between the switches 53 and 54, the low noise amplifier 22 can also amplify the received signals of the other communication bands included in the communication band group Y. .. The received signal of the communication band B amplified by the low noise amplifier 22 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
  • the low noise amplifier 23 is an example of the third low noise amplifier, and can amplify the received signal of the communication band C input via the antenna connection terminal 103, the switch 55, the filter 63 and the switch 56. Further, when one or more other filters are connected between the switches 55 and 56, the low noise amplifier 23 can also amplify the received signals of the other communication bands included in the communication band group Z. .. The received signal of the communication band C amplified by the low noise amplifier 23 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
  • each of the low noise amplifiers 21 to 23 is not particularly limited.
  • the low noise amplifiers 21 to 23 may have either a single-stage configuration or a multi-stage configuration, or may be a differential amplifier.
  • the switch circuit 57 is connected to the high frequency output terminals 121 and 122.
  • the switch circuit 57 includes a switch 570 having terminals 571 to 575.
  • the terminals 571 and 572 are connected to the high frequency output terminals 121 and 122, respectively.
  • Terminals 573 to 575 are connected to the outputs of the low noise amplifiers 21 to 23, respectively.
  • the switch 570 can connect at least one of terminals 573 to 575 to at least one of terminals 571 and 572, for example, based on a control signal from RFIC3. That is, the switch 570 can individually switch between the connection and the disconnection between the low noise amplifiers 21 to 23 and the high frequency output terminals 121 and 122.
  • the switch 570 is composed of, for example, a multi-connection type switch circuit.
  • the high frequency output terminals 121 and 122 are examples of the first output terminal and the second output terminal, respectively, and are terminals for providing a high frequency reception signal to the outside of the high frequency circuit 1.
  • the high frequency output terminal 121 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group X or Y.
  • the high frequency output terminal 122 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group Y or Z.
  • the number of high frequency output terminals is smaller than the number of low noise amplifiers. More specifically, when the number N of the low noise amplifier is a natural number of 3 or more, the number M of the high frequency output terminals is a natural number satisfying 1 ⁇ M ⁇ N.
  • the high frequency circuit 1 may include at least low noise amplifiers 21 to 23, a switch circuit 57, and high frequency output terminals 121 and 122, and may not include other circuit elements.
  • FIGS. 2 to 4 are circuit diagrams showing the first to third connection states of the high frequency circuit 1 according to the first embodiment.
  • the flow of the high frequency signal in the first to third connection states is represented by a broken line arrow.
  • the received signal of the communication band A is transmitted from the antenna 2 via the filter 6a, the antenna connection terminal 101, the switch 51, the filter 61, the switch 52, the low noise amplifier 21, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
  • the RFIC 3 controls the switch 53 to connect the antenna connection terminal 102 and the filter 62, and controls the switch 54 to connect the inputs of the filter 62 and the low noise amplifier 22. Further, the RFIC 3 connects the output of the low noise amplifier 22 and the high frequency output terminal 122 by connecting the terminals 572 and 574 of the switch 570.
  • the received signal of the communication band B is transmitted from the antenna 2 via the filter 6b, the antenna connection terminal 102, the switch 53, the filter 62, the switch 54, the low noise amplifier 22, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
  • the RFIC 3 controls the switch 53 to connect the antenna connection terminal 102 and the filter 62, and controls the switch 54 to connect the inputs of the filter 62 and the low noise amplifier 22. Further, the RFIC 3 connects the output of the low noise amplifier 22 and the high frequency output terminal 121 by connecting the terminals 571 and 574 of the switch 570.
  • the received signal of the communication band B is transmitted from the antenna 2 via the filter 6b, the antenna connection terminal 102, the switch 53, the filter 62, the switch 54, the low noise amplifier 22, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
  • the RFIC 3 controls the switch 55 to connect the antenna connection terminal 103 and the filter 63, and controls the switch 56 to connect the input of the filter 63 and the low noise amplifier 23. Further, the RFIC 3 connects the output of the low noise amplifier 23 and the high frequency output terminal 122 by connecting the terminals 572 and 575 of the switch 570.
  • the received signal of the communication band C is transmitted from the antenna 2 via the filter 6c, the antenna connection terminal 103, the switch 55, the filter 63, the switch 56, the low noise amplifier 23, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
  • the RFIC 3 controls the switch 51 to connect the antenna connection terminal 101 and the filter 61, and controls the switch 52 to connect the inputs of the filter 61 and the low noise amplifier 21. Further, the RFIC 3 connects the output of the low noise amplifier 21 and the high frequency output terminal 121 by connecting the terminals 571 and 573 of the switch 570.
  • the received signal of the communication band A is transmitted from the antenna 2 via the filter 6a, the antenna connection terminal 101, the switch 51, the filter 61, the switch 52, the low noise amplifier 21, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
  • the RFIC 3 controls the switch 55 to connect the antenna connection terminal 103 and the filter 63, and controls the switch 56 to connect the input of the filter 63 and the low noise amplifier 23. Further, the RFIC 3 connects the output of the low noise amplifier 23 and the high frequency output terminal 122 by connecting the terminals 572 and 575 of the switch 570.
  • the received signal of the communication band C is transmitted from the antenna 2 via the filter 6c, the antenna connection terminal 103, the switch 55, the filter 63, the switch 56, the low noise amplifier 23, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
  • FIG. 5 is a diagram showing a communication band group and a first specific example of the communication band used in the high frequency circuit 1 according to the first embodiment.
  • FIG. 6 is a diagram showing a second specific example of the communication band group and the communication band used in the high frequency circuit 1 according to the first embodiment.
  • the horizontal axis indicates frequency
  • the horizontal line and the numbers next to it indicate the frequency band used in LTE and / or 5G NR and the number that identifies it.
  • the communication band group X a frequency range of 1400 MHz or more and 1700 MHz or less is used.
  • the communication band group X is sometimes called a mid-low band (MLB) group.
  • MMB mid-low band
  • As the communication band A included in the communication band group X bands 11, 21, 32 for LTE and / or 5G NR, or any combination thereof can be used.
  • the communication band group Y a frequency range of 1700 MHz or more and 2200 MHz or less is used.
  • the communication band group Y may also be referred to as a midband (MB) group.
  • the communication band B included in the communication band group Y bands 2, 3, 25, 34, 39, 70 for LTE and / or 5GNR, or any combination thereof can be used.
  • the communication band B a plurality of communication bands (co-bands) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-bands. good.
  • the co-band for example, at least two of bands 2, 25 and 70 can be used.
  • the overlapping portion includes only the communication band end. That is, in order for at least a part of the two communication bands to overlap each other, it is included that the maximum frequency of the communication band on the low frequency side and the minimum frequency of the communication band on the high frequency side match.
  • the communication band group Z a frequency range of 2300 MHz or more and 2700 MHz or less is used.
  • the communication band group Z is sometimes called a high band (HB) group.
  • As the communication band C included in the communication band group Z bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
  • the communication band group X a frequency range of 1700 MHz or more and 2025 MHz or less is used.
  • the communication band group X is sometimes called an MB group.
  • bands 2, 3, 25, 34, 39, 70 for LTE and / or 5G NR, or any combination thereof can be used.
  • the communication band A a plurality of communication bands (co-band1) at least partially overlapping each other can be used, and in this case, even if the filter 61 has a pass band including the co-band1. good.
  • co-band1 for example, at least two of bands 2, 25 and 70 can be used.
  • the communication band group Y a frequency range of 1880 MHz or more and 2200 MHz or less is used.
  • the communication band group Y is sometimes called an MB group.
  • bands 1, 4, 34, 39, 66 for LTE and / or 5 GNR, or any combination thereof can be used.
  • the communication band B a plurality of communication bands (co-band2) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-band2. good.
  • co-band2 for example, at least two of bands 1, 4 and 66 can be used.
  • the communication band group Z a frequency range of 2300 MHz or more and 2700 MHz or less is used.
  • the communication band group Z may be referred to as an HB group.
  • the communication band C included in the communication band group Z bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
  • the communication band group and the communication band described with reference to FIGS. 5 and 6 are merely examples and are not limited thereto.
  • a communication band group including an unlicensed band of 5 GHz or more or a communication band group of a millimeter wave band may be used.
  • the high-frequency circuit 1 includes high-frequency output terminals 121 and 122 for supplying high-frequency signals to the outside, switch circuits 57 connected to the high-frequency output terminals 121 and 122, and high-frequency output. It includes a low noise amplifier 21 connected to the terminal 121, a low noise amplifier 22 connected to the high frequency output terminals 121 and 122 via a switch circuit 57, and a low noise amplifier 23 connected to the high frequency output terminal 122. ..
  • the low noise amplifier 22 is connected to the high frequency output terminals 121 and 122 via the switch circuit 57. Therefore, the high frequency circuit 1 can supply the received signal amplified by the low noise amplifiers 21 to 23 from the high frequency output terminals 121 and 122, which are smaller than the number of the low noise amplifiers 21 to 23. That is, the high frequency circuit 1 can reduce the number of high frequency output terminals as compared with the case where each low noise amplifier has high frequency output terminals, and can contribute to the miniaturization of the communication device 5. Further, since the high frequency circuit 1 includes two high frequency output terminals 121 and 122, the two received signals can be simultaneously supplied from different high frequency output terminals. Therefore, the high frequency circuit 1 can realize simultaneous reception of two received signals.
  • the switch circuit 57 has terminals 571 and 572 connected to the high frequency output terminals 121 and 122, respectively, the output of the low noise amplifier 21, the output of the low noise amplifier 22, and the output of the low noise amplifier 22.
  • a switch 570 may be provided with terminals 573 to 575, respectively, connected to the output of the low noise amplifier 23.
  • the two high frequency output terminals 121 and 122 and the three low noise amplifiers 21 to 23 can be connected to the switch circuit 57. Therefore, the switch circuit 57 can also switch the high frequency output terminals 121 and 122 connected to each of the low noise amplifiers 21 to 23. That is, the high frequency circuit 1 can supply the received signals amplified by the low noise amplifiers 21 to 23 from arbitrary high frequency output terminals, respectively, and can improve the versatility of the high frequency circuit 1.
  • the low noise amplifier 21 can amplify the received signal of the communication band A
  • the low noise amplifier 22 can amplify the received signal of the communication band B different from the communication band A
  • the low noise amplifier 23 can amplify the received signals of the communication band A and the communication band C different from the communication band B
  • the high frequency output terminal 121 externally outputs the received signals of the communication band A and the communication band B.
  • the high frequency output terminal 122 may be a terminal for supplying the reception signals of the communication band B and the communication band C to the outside.
  • the received signal can be distributed to either of the two high frequency output terminals 121 and 122 according to the communication band.
  • the switch circuit 57 outputs the output of the low noise amplifier 22 to the high frequency output terminal when the reception signal of the communication band A and the reception signal of the communication band B are simultaneously received.
  • the output of the low noise amplifier 22 is connected to the high frequency output terminal 121, and the received signal of the communication band A and the communication band
  • two low noise amplifiers for amplifying the two received signals can be connected to different high frequency output terminals. Therefore, the two received signals can be supplied from different high frequency output terminals, the interference between the two received signals can be suppressed, and the reception sensitivity can be improved.
  • the communication band A is included in the communication band group X of 1400 MHz or more and 1700 MHz or less
  • the communication band B is included in the communication band group Y of 1700 MHz or more and 2200 MHz or less.
  • the communication band C may be included in the communication band group Z of 2300 MHz or more and 2700 MHz or less.
  • the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band included in each of the MLB group, the MB group and the HB group.
  • the communication band A includes at least one of the bands 11, 21 and 32 for LTE and 5G NR
  • the communication band B is the LTE and 5G NR
  • communication band C comprises at least one of bands 7, 30, 40 and 41 for LTE and 5G NR. But it may be.
  • the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band for LTE and / or 5G NR.
  • the communication band B may include a plurality of communication bands B at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 22.
  • a filter 62 which is connected and has a pass band including a plurality of communication bands B may be provided.
  • the high frequency circuit 1 can include a filter 62 having a pass band including a plurality of communication bands B at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands B. In particular, in a situation where band combinations are diversified in EN-DC (E-UTRAN New Radio-Dual Connectivity), the effect of being able to support a plurality of communication bands B without increasing the number of filters is great.
  • EN-DC E-UTRAN New Radio-Dual Connectivity
  • the plurality of communication bands B may include at least two of bands 2, 25 and 70 for LTE and 5G NR.
  • any combination of bands 2, 25 and 70 for LTE and 5G NR can be used as the plurality of communication bands B.
  • the communication band A is included in the communication band group X of 1700 MHz or more and 2025 MHz or less
  • the communication band B is included in the communication band group Y of 1880 MHz or more and 2200 MHz or less.
  • the communication band C may be included in the communication band group Z of 2300 MHz or more and 2700 MHz or less.
  • the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band included in each of the two MB group and the HB group.
  • the communication band A includes at least one of the bands 2, 3, 25, 34, 39 and 70 for LTE and 5G NR
  • the communication band B is included.
  • One may be included.
  • the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band for LTE and / or 5G NR.
  • the communication band A may include a plurality of communication bands A at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 21.
  • a filter 61 which is connected and has a pass band including a plurality of communication bands A may be provided.
  • the high frequency circuit 1 can include a filter 61 having a pass band including a plurality of communication bands A at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands A. In particular, in a situation where band combinations are diversified in EN-DC, the effect of being able to handle a plurality of communication bands A without increasing the number of filters is great.
  • the plurality of communication bands A may include at least two of bands 2, 25 and 70 for LTE and 5G NR. More specifically, the plurality of communication bands A may include bands 25 and 70 for LTE.
  • any combination of bands 2, 25 and 70 for LTE and 5G NR can be used, and in particular, bands 25 and 70 for LTE can be used. can.
  • the communication band B may include a plurality of communication bands B at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 22.
  • a filter 62 which is connected and has a pass band including a plurality of communication bands B may be provided.
  • the high frequency circuit 1 can include a filter 62 having a pass band including a plurality of communication bands B at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands B. In particular, in a situation where band combinations are diversified in EN-DC, the effect of being able to handle a plurality of communication bands B without increasing the number of filters is great.
  • the plurality of communication bands B may include at least two of bands 1, 4 and 66 for LTE and 5G NR.
  • any combination of bands 1, 4 and 66 for LTE and 5G NR can be used as the plurality of communication bands B.
  • Modification 1 of Embodiment 1 Next, a modification 1 of the first embodiment will be described.
  • the configuration of the switch circuit connected between the plurality of low noise amplifiers and the plurality of high frequency output terminals is mainly different from that of the first embodiment.
  • this modification will be described with reference to FIG. 7, focusing on the differences from the first embodiment.
  • FIG. 7 is a diagram showing a switch circuit 57A in the first modification of the first embodiment.
  • the switch circuit 57A is connected to the high frequency output terminals 121 and 122.
  • the switch circuit 57A comprises a switch 570A having terminals 571A-573A.
  • the terminals 571A and 572A are connected to the high frequency output terminals 121 and 122, respectively.
  • Terminal 573A is connected to the output of the low noise amplifier 22.
  • the switch 570A can connect the terminal 573A to the terminal 571A or 572A based on, for example, a control signal from RFIC3. That is, the switch 570A can switch between the connection of the low noise amplifier 22 and the high frequency output terminal 121 and the connection of the low noise amplifier 22 and the high frequency output terminal 122.
  • the switch 570A is composed of, for example, a SPDT (Single Pole Double Throw) type switch circuit.
  • the low noise amplifier 21 is directly connected to the high frequency output terminal 121, and the low noise amplifier 23 is directly connected to the high frequency output terminal 122.
  • the terminal 572A and the terminal 573A of the switch 570A are connected, and the operation of the low noise amplifier 23 is stopped. May be done. Further, for example, when the reception signal of the communication band B and the reception signal of the communication band C are simultaneously received, the terminal 571A and the terminal 573A of the switch 570A may be connected and the operation of the low noise amplifier 21 may be stopped. ..
  • the terminal 573A of the switch 570A is not connected to either the terminals 571A and 572A, and the operation of the low noise amplifier 22 is performed. It may be stopped.
  • the operation of the low noise amplifier is stopped means that the low noise amplifier is set to a state in which the signal is not amplified (that is, an off state). In the off state, for example, the supply of the bias signal and the power supply voltage to at least one of the low noise amplifiers is stopped.
  • the switch circuit 57A has terminals 571A and 572A connected to the high frequency output terminals 121 and 122, respectively, and terminals 573A connected to the output of the low noise amplifier 22.
  • the two high frequency output terminals 121 and 122 and the low noise amplifier 22 can be connected to the switch circuit 57A. Therefore, the configuration of the switch circuit 57A can be made relatively simple.
  • FIG. 8 is a diagram showing a switch circuit 57B in the second modification of the first embodiment.
  • the switch circuit 57B is connected to the high frequency output terminals 121 and 122.
  • the switch circuit 57B includes switches 571B to 575B.
  • the switch 571B is an example of the first switch and is connected to the output of the low noise amplifier 21.
  • the switch 571B can switch between connecting and disconnecting the output of the low noise amplifier 21 and the switch 574B.
  • the switch 572B is an example of the second switch and is connected to the output of the low noise amplifier 22.
  • the switch 572B can switch between the output of the low noise amplifier 22 and the connection of the switch 574B and the output of the low noise amplifier 22 and the connection of the switch 575B.
  • the switch 573B is an example of the third switch and is connected to the output of the low noise amplifier 23.
  • the switch 573B can switch between connecting and disconnecting the output of the low noise amplifier 23 and the switch 575B.
  • the switch 574B is an example of the fourth switch, and is connected between the high frequency output terminal 121 and the switches 571B and 572B.
  • the switch 574B can switch between the connection of the high frequency output terminal 121 and the switch 571B and the connection of the high frequency output terminal 121 and the switch 572B.
  • the switch 575B is an example of the fifth switch, and is connected between the high frequency output terminal 122 and the switches 572B and 573B.
  • the switch 575B can switch between the connection of the high frequency output terminal 122 and the switch 572B and the connection of the high frequency output terminal 122 and the switch 573B.
  • Each of the switches 571B and 573B is composed of, for example, an SPST (Single Pole Single Throw) type switch circuit.
  • Each of the switches 572B, 574B and 575B is composed of, for example, a SPDT type switch circuit.
  • the output of the low noise amplifier 22 and the high frequency output terminal 121 are connected by the switches 572B and 574B, and the switches 573B and 575B are connected.
  • the output of the low noise amplifier 23 and the high frequency output terminal 122 are connected to each other.
  • the switch 571B can disconnect the output of the low noise amplifier 21 and the switch 574B.
  • the output of the low noise amplifier 21 and the high frequency output terminal 121 are connected by the switches 571B and 574B, and the switches 573B and 575B are connected.
  • the output of the low noise amplifier 23 and the high frequency output terminal 122 are connected to each other.
  • the switch 572B does not have to connect the output of the low noise amplifier 22 to any of the switches 574B and 575B.
  • the switch circuit 57B has a switch 571B connected to the output of the low noise amplifier 21, a switch 572B connected to the output of the low noise amplifier 22, and low noise.
  • a switch 573B connected to the output of the amplifier 23, a switch 574B connected between the high frequency output terminal 121 and the switches 571B and 572B, and a switch 575B connected between the high frequency output terminal 122 and the switches 571B and 573B.
  • two switches can be interposed in each of the paths connecting the low noise amplifiers 21 to 23 and the high frequency output terminals 121 and 122. Therefore, by controlling the switches 571B to 575B, isolation between the low noise amplifiers can be ensured without stopping the operation of the low noise amplifier corresponding to the communication band not used for communication, and the low noise amplifier can be used. Control can be simplified.
  • FIG. 9 is a circuit configuration diagram of the high frequency circuit 1C and the communication device 5C according to the second embodiment.
  • the communication device 5C includes a high frequency circuit 1C, an antenna 2, an RFIC 3, a BBIC 4, and a multiplexer 6C.
  • the multiplexer 6C is connected between the antenna 2 and the high frequency circuit 1C.
  • the multiplexer 6C includes filters 6a to 6d.
  • the filter 6a is connected to the antenna connection terminal 101 and has a pass band including the communication band group X.
  • the filter 6b is connected to the antenna connection terminal 102 and has a pass band including a communication band group Y different from the communication band group X.
  • the filter 6c is connected to the antenna connection terminal 103 and has a pass band including a communication band group Y different from the communication band groups X and Y.
  • the filter 6d is connected to the antenna connection terminal 104 and has a pass band including a communication band group W different from the communication band groups X to Z.
  • the multiplexer 6C may be included in the high frequency circuit 1C. Specific examples of the communication band group will be described later with reference to FIG.
  • the antenna 2, the BBIC 4 and the multiplexer 6C are not essential components.
  • the high frequency circuit 1C includes low noise amplifiers 21 to 24, switches 51 to 56, 58 and 59, switch circuits 57C, filters 61 to 64, antenna connection terminals 101 to 104, and high frequencies.
  • the output terminals 121 to 123 are provided.
  • the antenna connection terminal 104 is connected to the antenna 2 via the multiplexer 6C.
  • the reception signal of the communication band group W received by the antenna 2 is input to the antenna connection terminal 104 via the filter 6d.
  • the switch 58 is connected between the antenna connection terminal 104 and the filter 64, and switches between connection and non-connection between the antenna connection terminal 104 and the filter 64.
  • the filter 64 (D-Rx) has a pass band including at least a part of the communication band D included in the communication band group W. If the communication band D is a communication band for FDD, the pass band of the filter 64 includes the downlink operation band of the communication band D. If the communication band D is a communication band for TDD, the pass band of the filter 64 includes the entire communication band D. One end of the filter 64 is connected to the antenna connection terminal 104 via the switch 58. The other end of the filter 64 is connected to the input of the low noise amplifier 24 via the switch 59.
  • the switch 59 is connected between the filter 64 and the low noise amplifier 24, and switches between connection and non-connection between the filter 64 and the low noise amplifier 24.
  • another filter (not shown) having a pass band including another communication band in the communication band group W may be connected between the switches 58 and 59.
  • the low noise amplifier 24 is an example of the fourth low noise amplifier, and amplifies the received signal of the communication band D included in the communication band group W input via the antenna connection terminal 104, the switch 58, the filter 64, and the switch 59. can do.
  • the low noise amplifier 24 can also amplify the received signals of other communication bands included in the communication band group W.
  • the received signal of the communication band D amplified by the low noise amplifier 24 is transmitted to the high frequency output terminal 123 via the switch circuit 57C.
  • the switch circuit 57C is connected to the high frequency output terminals 121 to 123.
  • the switch circuit 57C comprises a switch 570C having terminals 571C-577C.
  • the terminals 571C to 573C are connected to the high frequency output terminals 121 to 123, respectively.
  • the terminals 574C to 577C are connected to the outputs of the low noise amplifiers 21 to 24, respectively.
  • the switch 570C can connect at least one of terminals 574C to 577C to at least one of terminals 571C to 573C, for example, based on a control signal from RFIC3. That is, the switch 570C can individually switch between the connection and the non-connection between the low noise amplifiers 21 to 24 and the high frequency output terminals 121 to 123.
  • the switch 570C is composed of, for example, a multi-connection type switch circuit.
  • the high frequency output terminal 123 is an example of the third output terminal, and is a terminal for providing a high frequency reception signal to the outside of the high frequency circuit 1C. Specifically, the high frequency output terminal 123 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group Z or W.
  • the number of high frequency output terminals is smaller than the number of low noise amplifiers. Similar to the first embodiment, when the number N of the low noise amplifiers is a natural number of 3 or more, the number M of the high frequency output terminals is a natural number satisfying 1 ⁇ M ⁇ N.
  • FIG. 10 is a diagram showing a specific example of a communication band group and a communication band used in the high frequency circuit 1C according to the second embodiment.
  • the horizontal axis indicates frequency
  • the horizontal line and the number next to it indicate the frequency band used in LTE and / or 5G NR and the number for identifying the frequency band.
  • the communication band group X a frequency range of 1400 MHz or more and 1700 MHz or less is used.
  • the communication band group X is sometimes called a mid-low band (MLB) group.
  • MMB mid-low band
  • As the communication band A included in the communication band group X bands 11, 21, 32 for LTE and / or 5G NR, or any combination thereof can be used.
  • the communication band group Y a frequency range of 1700 MHz or more and 2025 MHz or less is used.
  • the communication band group Y is sometimes called an MB group.
  • bands 2, 3, 25, 34, 39, 70 for LTE and / or 5GNR, or any combination thereof can be used.
  • the communication band B a plurality of communication bands (co-band1) at least partially overlapping each other can be used, and in this case, even if the filter 61 has a pass band including the co-band1. good.
  • co-band1 for example, at least two of bands 2, 25 and 70 can be used.
  • the communication band group Z a frequency range of 1880 MHz or more and 2200 MHz or less is used.
  • the communication band group Z is sometimes called an MB group.
  • bands 1, 4, 34, 39, 66 for LTE and / or 5 GNR, or any combination thereof can be used.
  • the communication band C a plurality of communication bands (co-band2) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-band2. good.
  • co-band2 for example, at least two of bands 1, 4 and 66 can be used.
  • the communication band group W a frequency range of 2300 MHz or more and 2700 MHz or less is used.
  • the communication band group W is sometimes called a high band (HB) group.
  • As the communication band D included in the communication band group W bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
  • the communication band group and the communication band described with reference to FIG. 10 are merely examples and are not limited thereto.
  • a communication band group including an unlicensed band of 5 GHz or more or a communication band group of a millimeter wave band may be used.
  • the high frequency circuit 1C includes high frequency output terminals 121 and 122 for supplying high frequency signals to the outside, switch circuits 57C connected to high frequency output terminals 121 and 122, and high frequency output.
  • the low noise amplifier 21 connected to the terminal 121, the low noise amplifier 22 connected to the high frequency output terminals 121 and 122 via the switch circuit 57C, and the low noise amplifier 23 connected to the high frequency output terminal 122 are provided. ..
  • the high frequency circuit 1C includes a high frequency output terminal 123 for supplying a high frequency signal to the outside and a low noise amplifier 24 connected to the high frequency output terminal 123
  • the switch circuit 57C further includes a high frequency output terminal 123.
  • the low noise amplifier 23 is connected to the high frequency output terminals 122 and 123 via the switch circuit 57C.
  • the high frequency circuit 1C can supply the received signal amplified by the low noise amplifiers 21 to 24 from the high frequency output terminals 121 to 123, which is smaller than the number of the low noise amplifiers 21 to 24. That is, the high frequency circuit 1C can reduce the number of high frequency output terminals as compared with the case where each low noise amplifier has a high frequency output terminal, and can contribute to the miniaturization of the communication device 5C. Further, since the high frequency circuit 1C includes three high frequency output terminals 121 to 123, the three received signals can be simultaneously supplied from different high frequency output terminals. Therefore, the high frequency circuit 1C can realize simultaneous reception of three received signals.
  • the low noise amplifier 21 can amplify the received signal of the communication band A
  • the low noise amplifier 22 can amplify the received signal of the communication band B different from the communication band A
  • the low noise amplifier 23 can amplify the reception signal of the communication band C different from the communication bands A and B
  • the low noise amplifier 24 receives the communication band D different from the communication bands A, B and C.
  • the signal can be amplified
  • the high frequency output terminal 121 is a terminal for supplying the received signals of the communication bands A and B to the outside
  • the high frequency output terminal 122 supplies the received signals of the communication bands B and C to the outside.
  • the high frequency output terminal 123 may be a terminal for supplying the received signals of the communication bands C and D to the outside.
  • the high frequency circuit 1C can correspond to four communication bands.
  • the communication band A is included in the communication band group X of 1400 MHz or more and 1700 MHz or less
  • the communication band B is included in the communication band group Y of 1700 MHz or more and 2025 MHz or less.
  • the communication band C may be included in the communication band group Z of 1880 MHz or more and 2200 MHz or less
  • the communication band D may be included in the communication band group W of 2300 MHz or more and 2700 MHz or less.
  • the high frequency circuit 1C can correspond to the reception of the high frequency signal of the communication band included in each of the MLB group, the two MB groups and the HB group.
  • the high frequency circuit and the communication device according to the present invention have been described above based on the embodiment, the high frequency circuit and the communication device according to the present invention are not limited to the above embodiment. Another embodiment realized by combining arbitrary components in the above embodiment, or modifications obtained by applying various modifications to the above embodiments that can be conceived by those skilled in the art within the range not deviating from the gist of the present invention. Examples and various devices incorporating the high frequency circuit and the communication device are also included in the present invention.
  • an impedance matching circuit may be inserted between the filter 61 and the switch 51. Further, the impedance matching circuit may be inserted between the switch 52 and the low noise amplifier 21, for example.
  • the impedance matching circuit can be configured, for example, with an inductor and / or a capacitor.
  • the plurality of high frequency output terminals are used properly depending on the communication band group, but the present invention is not limited to this.
  • a plurality of high frequency output terminals may be used properly depending on the communication system.
  • the low noise amplifier 22 can amplify the received signal of the first communication system and the second communication system different from the first communication system, and is a high frequency output terminal.
  • Reference numeral 121 denotes a terminal for supplying the received signal of one of the first communication system and the second communication system to the outside, and the high frequency output terminal 122 externally supplies the received signal of the other of the first communication system and the second communication system. It may be a terminal for supplying to.
  • the received signal can be distributed to any of the plurality of high frequency output terminals according to the communication system.
  • a 5GNR system and an LTE system can be used, but the combination is not limited thereto.
  • a WLAN system may be used as the second communication system.
  • the high frequency circuit is a receiving circuit for receiving a high frequency signal, but the present invention is not limited to this.
  • the high frequency circuit may be a transmission / reception circuit for transmitting and receiving high frequency signals.
  • the filter 62 may further have a pass band including a transmission band. That is, as a co-band included in the pass band of the filter 62, in addition to at least two of the downlink operation bands of bands 2, 25 and 70, the uplink operation of band 1 for LTE and / or 5G NR. Bands may be used.
  • the high frequency circuit 1D may include a power amplifier 11 connected to the filter 62 via the switch 54D.
  • the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit arranged in the front end portion.

Abstract

A high-frequency circuit (1) comprises: high-frequency output terminals (121, 122) for supplying a high-frequency signal to an external unit; a switch circuit (57) connected to the high-frequency output terminals (121, 122); a low-noise amplifier (21) connected to the high-frequency output terminal (121); a low-noise amplifier (22) connected to the high-frequency output terminals (121, 122) via the switch circuit (57); and a low-noise amplifier (23) connected to the high-frequency output terminal (122).

Description

高周波回路High frequency circuit
 本発明は、高周波回路に関する。 The present invention relates to a high frequency circuit.
 携帯電話などの移動体通信機器では、特に、マルチバンド化の進展に伴い、高周波フロントエンドモジュールを構成する回路部品の数が増大している。例えば、特許文献1には、複数の低雑音増幅器などがパッケージ化されたフロントエンドモジュールが開示されている。 In mobile communication devices such as mobile phones, the number of circuit components that make up high-frequency front-end modules is increasing, especially with the progress of multi-banding. For example, Patent Document 1 discloses a front-end module in which a plurality of low-noise amplifiers and the like are packaged.
米国特許出願公開第2015/0133067号明細書U.S. Patent Application Publication No. 2015/0133067
 このような従来のフロントエンドモジュールでは、受信信号を外部に供給するための高周波出力端子の数が増加し、フロントエンドモジュールの高周波出力端子と接続されるRFIC(Radio Frequency Integrated Circuit)の入力端子の数も増加する。その結果、RFICのサイズが増大し、通信装置の小型化が難しくなる。 In such a conventional front-end module, the number of high-frequency output terminals for supplying the received signal to the outside increases, and the input terminal of the RFIC (Radio Frequency Integrated Circuit) connected to the high-frequency output terminal of the front-end module The number will also increase. As a result, the size of the RFIC increases, making it difficult to miniaturize the communication device.
 そこで、本発明は、高周波出力端子の数を削減することができる高周波回路を提供する。 Therefore, the present invention provides a high frequency circuit capable of reducing the number of high frequency output terminals.
 本発明の一態様に係る高周波回路は、高周波信号を外部に供給するための第1出力端子及び第2出力端子と、前記第1出力端子及び前記第2出力端子に接続されるスイッチ回路と、前記第1出力端子に接続される第1低雑音増幅器と、前記第1出力端子及び前記第2出力端子に前記スイッチ回路を介して接続される第2低雑音増幅器と、前記第2出力端子に接続される第3低雑音増幅器と、を備える。 The high frequency circuit according to one aspect of the present invention includes a first output terminal and a second output terminal for supplying a high frequency signal to the outside, a switch circuit connected to the first output terminal and the second output terminal, and a switch circuit. The first low noise amplifier connected to the first output terminal, the second low noise amplifier connected to the first output terminal and the second output terminal via the switch circuit, and the second output terminal. It comprises a third low noise amplifier to be connected.
 本発明の一態様に係る高周波回路によれば、高周波出力端子の数を削減することができる。 According to the high frequency circuit according to one aspect of the present invention, the number of high frequency output terminals can be reduced.
図1は、実施の形態1に係る高周波回路及び通信装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a high frequency circuit and a communication device according to the first embodiment. 図2は、実施の形態1に係る高周波回路の第1接続状態を示す回路図である。FIG. 2 is a circuit diagram showing a first connection state of the high frequency circuit according to the first embodiment. 図3は、実施の形態1に係る高周波回路の第2接続状態を示す回路図である。FIG. 3 is a circuit diagram showing a second connection state of the high frequency circuit according to the first embodiment. 図4は、実施の形態1に係る高周波回路の第3接続状態を示す回路図である。FIG. 4 is a circuit diagram showing a third connection state of the high frequency circuit according to the first embodiment. 図5は、実施の形態1に係る高周波回路で用いられる通信バンド群及び通信バンドの第1具体例を示す図である。FIG. 5 is a diagram showing a communication band group and a first specific example of the communication band used in the high frequency circuit according to the first embodiment. 図6は、実施の形態1に係る高周波回路で用いられる通信バンド群及び通信バンドの第2具体例を示す図である。FIG. 6 is a diagram showing a second specific example of the communication band group and the communication band used in the high frequency circuit according to the first embodiment. 図7は、実施の形態1の変形例1におけるスイッチ回路を示す図である。FIG. 7 is a diagram showing a switch circuit in the first modification of the first embodiment. 図8は、実施の形態1の変形例2におけるスイッチ回路を示す図である。FIG. 8 is a diagram showing a switch circuit in the second modification of the first embodiment. 図9は、実施の形態2に係る高周波回路及び通信装置の回路構成図である。FIG. 9 is a circuit configuration diagram of the high frequency circuit and the communication device according to the second embodiment. 図10は、実施の形態2に係る高周波回路で用いられる通信バンド群及び通信バンドの具体例を示す図である。FIG. 10 is a diagram showing a specific example of a communication band group and a communication band used in the high frequency circuit according to the second embodiment. 図11は、他の実施の形態に係る高周波回路及び通信装置の回路構成図である。FIG. 11 is a circuit configuration diagram of a high frequency circuit and a communication device according to another embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that all of the embodiments described below show comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement of components, connection modes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention.
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。 It should be noted that each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「直接接続される」とは、他の回路素子を介さずに接続端子及び/又は配線導体で直接接続されることを意味する。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味する。 In the circuit configuration of the present invention, "connected" includes not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element. By "directly connected" is meant being directly connected by a connection terminal and / or a wiring conductor without the intervention of other circuit elements. "Connected between A and B" means connected to both A and B between A and B.
 (実施の形態1)
 [1.1 高周波回路1及び通信装置5の回路構成]
 本実施の形態に係る高周波回路1及び通信装置5の回路構成について、図1を参照しながら説明する。図1は、実施の形態1に係る高周波回路1及び通信装置5の回路構成図である。
(Embodiment 1)
[1.1 Circuit configuration of high frequency circuit 1 and communication device 5]
The circuit configuration of the high frequency circuit 1 and the communication device 5 according to the present embodiment will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of a high frequency circuit 1 and a communication device 5 according to the first embodiment.
 [1.1.1 通信装置5の回路構成]
 まず、通信装置5の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置5は、高周波回路1と、アンテナ2と、RFIC3と、BBIC(Baseband Integrated Circuit)4と、マルチプレクサ6と、を備える。
[1.1.1 Circuit configuration of communication device 5]
First, the circuit configuration of the communication device 5 will be described. As shown in FIG. 1, the communication device 5 according to the present embodiment includes a high frequency circuit 1, an antenna 2, an RFIC 3, a BBIC (Baseband Integrated Circuit) 4, and a multiplexer 6.
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の内部構成については後述する。 The high frequency circuit 1 transmits a high frequency signal between the antenna 2 and the RFIC 3. The internal configuration of the high frequency circuit 1 will be described later.
 アンテナ2は、マルチプレクサ6を介して高周波回路1のアンテナ接続端子101~103に接続され、外部から高周波信号を受信して高周波回路1へ出力する。 The antenna 2 is connected to the antenna connection terminals 101 to 103 of the high frequency circuit 1 via the multiplexer 6, receives a high frequency signal from the outside, and outputs the high frequency signal to the high frequency circuit 1.
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波回路1の受信経路を介して入力された高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、高周波回路1が有するスイッチ及び増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4又は高周波回路1に実装されてもよい。 RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency circuit 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency circuit 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency circuit 1.
 BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。 The BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency circuit 1. As the signal processed by the BBIC 4, for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
 マルチプレクサ6は、アンテナ2と高周波回路1との間に接続される。マルチプレクサ6は、フィルタ6a~6cを備える。フィルタ6aは、アンテナ接続端子101に接続され、通信バンド群Xを含む通過帯域を有する。フィルタ6bは、アンテナ接続端子102に接続され、通信バンド群Yを含む通過帯域を有する。フィルタ6cは、アンテナ接続端子103に接続され、通信バンド群Zを含む通過帯域を有する。なお、マルチプレクサ6は、高周波回路1に含まれてもよい。 The multiplexer 6 is connected between the antenna 2 and the high frequency circuit 1. The multiplexer 6 includes filters 6a to 6c. The filter 6a is connected to the antenna connection terminal 101 and has a pass band including the communication band group X. The filter 6b is connected to the antenna connection terminal 102 and has a pass band including the communication band group Y. The filter 6c is connected to the antenna connection terminal 103 and has a pass band including the communication band group Z. The multiplexer 6 may be included in the high frequency circuit 1.
 通信バンド群X、Y及びZは、互いに異なる通信バンド群である。通信バンド群とは、複数の通信バンドを含む周波数範囲を意味する。通信バンドとは、通信システムのために標準化団体など(例えば3GPP(3rd Generation Partnership Project)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。 Communication band groups X, Y and Z are communication band groups different from each other. The communication band group means a frequency range including a plurality of communication bands. The communication band means a frequency band defined in advance by a standardization body or the like (for example, 3GPP (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers)) for a communication system.
 ここでは、通信システムとは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムを意味する。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。 Here, the communication system means a communication system constructed by using radio access technology (RAT: RadioAccess Technology). As the communication system, for example, a 5GNR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, a WLAN (Wireless Local Area Network) system, or the like can be used, but the communication system is not limited thereto.
 なお、本実施の形態に係る通信装置5において、アンテナ2、BBIC4及びマルチプレクサ6は、必須の構成要素ではない。 In the communication device 5 according to the present embodiment, the antenna 2, the BBIC 4 and the multiplexer 6 are not essential components.
 [1.1.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図1に示すように、高周波回路1は、低雑音増幅器21~23と、スイッチ51~56と、スイッチ回路57と、フィルタ61~63と、アンテナ接続端子101~103と、高周波出力端子121及び122と、を備える。
[1.1.2 Circuit configuration of high frequency circuit 1]
Next, the circuit configuration of the high frequency circuit 1 will be described. As shown in FIG. 1, the high frequency circuit 1 includes low noise amplifiers 21 to 23, switches 51 to 56, switch circuits 57, filters 61 to 63, antenna connection terminals 101 to 103, high frequency output terminals 121, and the like. 122 and.
 アンテナ接続端子101~103は、マルチプレクサ6を介してアンテナ2に接続される。アンテナ接続端子101には、アンテナ2で受信された通信バンド群Xの受信信号がフィルタ6aを介して入力される。アンテナ接続端子102には、アンテナ2で受信された通信バンド群Yの受信信号がフィルタ6bを介して入力される。アンテナ接続端子103には、アンテナ2で受信された通信バンド群Zの受信信号がフィルタ6cを介して入力される。 The antenna connection terminals 101 to 103 are connected to the antenna 2 via the multiplexer 6. The reception signal of the communication band group X received by the antenna 2 is input to the antenna connection terminal 101 via the filter 6a. The reception signal of the communication band group Y received by the antenna 2 is input to the antenna connection terminal 102 via the filter 6b. The reception signal of the communication band group Z received by the antenna 2 is input to the antenna connection terminal 103 via the filter 6c.
 スイッチ51は、アンテナ接続端子101とフィルタ61との間に接続され、アンテナ接続端子101とフィルタ61との接続及び非接続を切り替える。 The switch 51 is connected between the antenna connection terminal 101 and the filter 61, and switches between connection and non-connection between the antenna connection terminal 101 and the filter 61.
 フィルタ61(A-Rx)は、通信バンド群Xに含まれる通信バンドAの少なくとも一部を含む通過帯域を有する。通信バンドAが周波数分割複信(FDD:Frequency Division Duplex)用の通信バンドであれば、フィルタ61の通過帯域は、通信バンドAのダウンリンク動作バンド(downlink operating band)を含む。ダウンリンク動作バンドとは、通信バンドのうちのダウンリンク用に指定された一部分を意味する。通信バンドAが時分割複信(TDD:Time Division Duplex)用の通信バンドであれば、フィルタ61の通過帯域は、通信バンドA全体を含む。フィルタ61の一端は、スイッチ51を介してアンテナ接続端子101に接続される。フィルタ61の他端は、スイッチ52を介して低雑音増幅器21の入力に接続される。 The filter 61 (A-Rx) has a pass band including at least a part of the communication band A included in the communication band group X. If the communication band A is a communication band for frequency division duplex (FDD), the pass band of the filter 61 includes the downlink operating band of the communication band A. The downlink operation band means a part of the communication band designated for the downlink. If the communication band A is a communication band for time division duplex (TDD: Time Division Duplex), the pass band of the filter 61 includes the entire communication band A. One end of the filter 61 is connected to the antenna connection terminal 101 via the switch 51. The other end of the filter 61 is connected to the input of the low noise amplifier 21 via the switch 52.
 スイッチ52は、フィルタ61と低雑音増幅器21との間に接続され、フィルタ61と低雑音増幅器21との接続及び非接続を切り替える。 The switch 52 is connected between the filter 61 and the low noise amplifier 21, and switches between connection and non-connection between the filter 61 and the low noise amplifier 21.
 なお、スイッチ51及び52の間には、フィルタ61に加えて、1以上の他のフィルタ(図示せず)が接続されてもよい。この場合、1以上の他のフィルタの各々の通過帯域は、通信バンド群Xに含まれる他の通信バンドを含めばよい。 In addition to the filter 61, one or more other filters (not shown) may be connected between the switches 51 and 52. In this case, each pass band of one or more other filters may include other communication bands included in the communication band group X.
 スイッチ53は、アンテナ接続端子102とフィルタ62との間に接続され、アンテナ接続端子102とフィルタ62との接続及び非接続を切り替える。 The switch 53 is connected between the antenna connection terminal 102 and the filter 62, and switches between connection and non-connection between the antenna connection terminal 102 and the filter 62.
 フィルタ62(B-Rx)は、通信バンド群Yに含まれる通信バンドBの少なくとも一部を含む通過帯域を有する。通信バンドBがFDD用の通信バンドであれば、フィルタ62の通過帯域は、通信バンドBのダウンリンク動作バンドを含む。通信バンドBがTDD用の通信バンドであれば、フィルタ62の通過帯域は、通信バンドB全体を含む。フィルタ62の一端は、スイッチ53を介してアンテナ接続端子102に接続される。フィルタ62の他端は、スイッチ54を介して低雑音増幅器22の入力に接続される。 The filter 62 (B-Rx) has a pass band including at least a part of the communication band B included in the communication band group Y. If the communication band B is a communication band for FDD, the pass band of the filter 62 includes the downlink operation band of the communication band B. If the communication band B is a communication band for TDD, the pass band of the filter 62 includes the entire communication band B. One end of the filter 62 is connected to the antenna connection terminal 102 via the switch 53. The other end of the filter 62 is connected to the input of the low noise amplifier 22 via the switch 54.
 スイッチ54は、フィルタ62と低雑音増幅器22との間に接続され、フィルタ62と低雑音増幅器22との接続及び非接続を切り替える。 The switch 54 is connected between the filter 62 and the low noise amplifier 22, and switches between connection and non-connection between the filter 62 and the low noise amplifier 22.
 なお、スイッチ53及び54の間には、フィルタ62に加えて、1以上の他のフィルタ(図示せず)が接続されてもよい。この場合、1以上の他のフィルタの各々の通過帯域は、通信バンド群Yに含まれる他の通信バンドを含めばよい。 In addition to the filter 62, one or more other filters (not shown) may be connected between the switches 53 and 54. In this case, each pass band of one or more other filters may include other communication bands included in the communication band group Y.
 スイッチ55は、アンテナ接続端子103とフィルタ63との間に接続され、アンテナ接続端子103とフィルタ63との接続及び非接続を切り替える。 The switch 55 is connected between the antenna connection terminal 103 and the filter 63, and switches between connection and non-connection between the antenna connection terminal 103 and the filter 63.
 フィルタ63(C-Rx)は、通信バンド群Zに含まれる通信バンドCの少なくとも一部を含む通過帯域を有する。通信バンドCがFDD用の通信バンドであれば、フィルタ63の通過帯域は、通信バンドCのダウンリンク動作バンドを含む。通信バンドCがTDD用の通信バンドであれば、フィルタ63の通過帯域は、通信バンドC全体を含む。フィルタ63の一端は、スイッチ55を介してアンテナ接続端子103に接続される。フィルタ63の他端は、スイッチ56を介して低雑音増幅器23の入力に接続される。 The filter 63 (C-Rx) has a pass band including at least a part of the communication band C included in the communication band group Z. If the communication band C is a communication band for FDD, the pass band of the filter 63 includes the downlink operation band of the communication band C. If the communication band C is a communication band for TDD, the pass band of the filter 63 includes the entire communication band C. One end of the filter 63 is connected to the antenna connection terminal 103 via the switch 55. The other end of the filter 63 is connected to the input of the low noise amplifier 23 via the switch 56.
 スイッチ56は、フィルタ63と低雑音増幅器23との間に接続され、フィルタ63と低雑音増幅器23との接続及び非接続を切り替える。 The switch 56 is connected between the filter 63 and the low noise amplifier 23, and switches between connection and non-connection between the filter 63 and the low noise amplifier 23.
 なお、スイッチ55及び56の間には、フィルタ63に加えて、1以上の他のフィルタ(図示せず)が接続されてもよい。この場合、1以上の他のフィルタの各々の通過帯域は、通信バンド群Zに含まれる他の通信バンドを含めばよい。 In addition to the filter 63, one or more other filters (not shown) may be connected between the switches 55 and 56. In this case, each pass band of one or more other filters may include other communication bands included in the communication band group Z.
 低雑音増幅器21は、第1低雑音増幅器の一例であり、アンテナ接続端子101、スイッチ51、フィルタ61及びスイッチ52を介して入力された通信バンドAの受信信号を増幅することができる。また、スイッチ51及び52の間に1以上の他のフィルタが接続されている場合には、低雑音増幅器21は、通信バンド群Xに含まれる他の通信バンドの受信信号も増幅することができる。低雑音増幅器21で増幅された通信バンドAの受信信号は、スイッチ回路57を介して高周波出力端子121又は122に伝送される。 The low noise amplifier 21 is an example of the first low noise amplifier, and can amplify the received signal of the communication band A input via the antenna connection terminal 101, the switch 51, the filter 61 and the switch 52. Further, when one or more other filters are connected between the switches 51 and 52, the low noise amplifier 21 can also amplify the received signals of the other communication bands included in the communication band group X. .. The received signal of the communication band A amplified by the low noise amplifier 21 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
 低雑音増幅器22は、第2低雑音増幅器の一例であり、アンテナ接続端子102、スイッチ53、フィルタ62及びスイッチ54を介して入力された通信バンドBの受信信号を増幅することができる。また、スイッチ53及び54の間に1以上の他のフィルタが接続されている場合には、低雑音増幅器22は、通信バンド群Yに含まれる他の通信バンドの受信信号も増幅することができる。低雑音増幅器22で増幅された通信バンドBの受信信号は、スイッチ回路57を介して高周波出力端子121又は122に伝送される。 The low noise amplifier 22 is an example of the second low noise amplifier, and can amplify the received signal of the communication band B input via the antenna connection terminal 102, the switch 53, the filter 62, and the switch 54. Further, when one or more other filters are connected between the switches 53 and 54, the low noise amplifier 22 can also amplify the received signals of the other communication bands included in the communication band group Y. .. The received signal of the communication band B amplified by the low noise amplifier 22 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
 低雑音増幅器23は、第3低雑音増幅器の一例であり、アンテナ接続端子103、スイッチ55、フィルタ63及びスイッチ56を介して入力された通信バンドCの受信信号を増幅することができる。また、スイッチ55及び56の間に1以上の他のフィルタが接続されている場合には、低雑音増幅器23は、通信バンド群Zに含まれる他の通信バンドの受信信号も増幅することができる。低雑音増幅器23で増幅された通信バンドCの受信信号は、スイッチ回路57を介して高周波出力端子121又は122に伝送される。 The low noise amplifier 23 is an example of the third low noise amplifier, and can amplify the received signal of the communication band C input via the antenna connection terminal 103, the switch 55, the filter 63 and the switch 56. Further, when one or more other filters are connected between the switches 55 and 56, the low noise amplifier 23 can also amplify the received signals of the other communication bands included in the communication band group Z. .. The received signal of the communication band C amplified by the low noise amplifier 23 is transmitted to the high frequency output terminal 121 or 122 via the switch circuit 57.
 低雑音増幅器21~23の各々の具体的な構成は特に限定されない。例えば、低雑音増幅器21~23は、単段構成及び多段構成のどちらであってもよく、差動増幅器であってもよい。 The specific configuration of each of the low noise amplifiers 21 to 23 is not particularly limited. For example, the low noise amplifiers 21 to 23 may have either a single-stage configuration or a multi-stage configuration, or may be a differential amplifier.
 スイッチ回路57は、高周波出力端子121及び122に接続されている。スイッチ回路57は、端子571~575を有するスイッチ570を備える。端子571及び572は、高周波出力端子121及び122にそれぞれ接続されている。端子573~575は、低雑音増幅器21~23の出力にそれぞれ接続されている。 The switch circuit 57 is connected to the high frequency output terminals 121 and 122. The switch circuit 57 includes a switch 570 having terminals 571 to 575. The terminals 571 and 572 are connected to the high frequency output terminals 121 and 122, respectively. Terminals 573 to 575 are connected to the outputs of the low noise amplifiers 21 to 23, respectively.
 この接続構成において、スイッチ570は、例えばRFIC3からの制御信号に基づいて、端子573~575の少なくとも1つを端子571及び572の少なくとも1つに接続することができる。つまり、スイッチ570は、低雑音増幅器21~23と高周波出力端子121及び122との間の接続及び非接続を個別に切り替えることができる。スイッチ570は、例えばマルチ接続型のスイッチ回路で構成される。 In this connection configuration, the switch 570 can connect at least one of terminals 573 to 575 to at least one of terminals 571 and 572, for example, based on a control signal from RFIC3. That is, the switch 570 can individually switch between the connection and the disconnection between the low noise amplifiers 21 to 23 and the high frequency output terminals 121 and 122. The switch 570 is composed of, for example, a multi-connection type switch circuit.
 高周波出力端子121及び122は、それぞれ第1出力端子及び第2出力端子の一例であり、高周波回路1の外部に高周波受信信号を提供するための端子である。本実施の形態では、高周波出力端子121は、RFIC3に、通信バンド群X又はYに含まれる通信バンドの受信信号を提供するための端子である。高周波出力端子122は、RFIC3に、通信バンド群Y又はZに含まれる通信バンドの受信信号を提供するための端子である。 The high frequency output terminals 121 and 122 are examples of the first output terminal and the second output terminal, respectively, and are terminals for providing a high frequency reception signal to the outside of the high frequency circuit 1. In the present embodiment, the high frequency output terminal 121 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group X or Y. The high frequency output terminal 122 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group Y or Z.
 高周波回路1において、高周波出力端子の数は、低雑音増幅器の数よりも少ない。より具体的には、低雑音増幅器の数Nが3以上の自然数である場合に、高周波出力端子の数Mは、1<M<Nを満たす自然数である。 In the high frequency circuit 1, the number of high frequency output terminals is smaller than the number of low noise amplifiers. More specifically, when the number N of the low noise amplifier is a natural number of 3 or more, the number M of the high frequency output terminals is a natural number satisfying 1 <M <N.
 なお、図1に表された回路素子のいくつかは、高周波回路1に含まれなくてもよい。例えば、高周波回路1は、少なくとも、低雑音増幅器21~23と、スイッチ回路57と、高周波出力端子121及び122と、を備えればよく、他の回路素子を備えなくてもよい。 Note that some of the circuit elements shown in FIG. 1 do not have to be included in the high frequency circuit 1. For example, the high frequency circuit 1 may include at least low noise amplifiers 21 to 23, a switch circuit 57, and high frequency output terminals 121 and 122, and may not include other circuit elements.
 [1.2 高周波回路1における高周波信号の流れ]
 次に、以上のように構成された高周波回路1における高周波信号の流れについて、図2~図4を参照しながら説明する。図2~図4は、実施の形態1に係る高周波回路1の第1~第3接続状態を示す回路図である。図2~図4では、第1~第3接続状態における高周波信号の流れが破線矢印で表されている。
[1.2 Flow of high frequency signal in high frequency circuit 1]
Next, the flow of the high frequency signal in the high frequency circuit 1 configured as described above will be described with reference to FIGS. 2 to 4. 2 to 4 are circuit diagrams showing the first to third connection states of the high frequency circuit 1 according to the first embodiment. In FIGS. 2 to 4, the flow of the high frequency signal in the first to third connection states is represented by a broken line arrow.
 [1.2.1 第1接続状態]
 図2に示すように、第1接続状態では、通信バンドAの受信信号と通信バンドBの受信信号との同時受信が行われる。このとき、RFIC3は、スイッチ51を制御してアンテナ接続端子101及びフィルタ61を接続し、スイッチ52を制御してフィルタ61及び低雑音増幅器21の入力を接続する。さらに、RFIC3は、スイッチ570の端子571及び573を接続することで、低雑音増幅器21の出力及び高周波出力端子121を接続する。これにより、通信バンドAの受信信号は、アンテナ2から、フィルタ6a、アンテナ接続端子101、スイッチ51、フィルタ61、スイッチ52、低雑音増幅器21、スイッチ回路57及び高周波出力端子121を経由して、RFIC3に伝送される。
[1.2.1 First connection status]
As shown in FIG. 2, in the first connection state, the reception signal of the communication band A and the reception signal of the communication band B are simultaneously received. At this time, the RFIC 3 controls the switch 51 to connect the antenna connection terminal 101 and the filter 61, and controls the switch 52 to connect the inputs of the filter 61 and the low noise amplifier 21. Further, the RFIC 3 connects the output of the low noise amplifier 21 and the high frequency output terminal 121 by connecting the terminals 571 and 573 of the switch 570. As a result, the received signal of the communication band A is transmitted from the antenna 2 via the filter 6a, the antenna connection terminal 101, the switch 51, the filter 61, the switch 52, the low noise amplifier 21, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
 さらに、第1接続状態では、RFIC3は、スイッチ53を制御してアンテナ接続端子102及びフィルタ62を接続し、スイッチ54を制御してフィルタ62及び低雑音増幅器22の入力を接続する。さらに、RFIC3は、スイッチ570の端子572及び574を接続することで、低雑音増幅器22の出力及び高周波出力端子122を接続する。これにより、通信バンドBの受信信号は、アンテナ2から、フィルタ6b、アンテナ接続端子102、スイッチ53、フィルタ62、スイッチ54、低雑音増幅器22、スイッチ回路57及び高周波出力端子122を経由して、RFIC3に伝送される。 Further, in the first connection state, the RFIC 3 controls the switch 53 to connect the antenna connection terminal 102 and the filter 62, and controls the switch 54 to connect the inputs of the filter 62 and the low noise amplifier 22. Further, the RFIC 3 connects the output of the low noise amplifier 22 and the high frequency output terminal 122 by connecting the terminals 572 and 574 of the switch 570. As a result, the received signal of the communication band B is transmitted from the antenna 2 via the filter 6b, the antenna connection terminal 102, the switch 53, the filter 62, the switch 54, the low noise amplifier 22, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
 [1.2.2 第2接続状態]
 図3に示すように、第2接続状態では、通信バンドBの受信信号と通信バンドCの受信信号との同時受信が行われる。このとき、RFIC3は、スイッチ53を制御してアンテナ接続端子102及びフィルタ62を接続し、スイッチ54を制御してフィルタ62及び低雑音増幅器22の入力を接続する。さらに、RFIC3は、スイッチ570の端子571及び574を接続することで、低雑音増幅器22の出力及び高周波出力端子121を接続する。これにより、通信バンドBの受信信号は、アンテナ2から、フィルタ6b、アンテナ接続端子102、スイッチ53、フィルタ62、スイッチ54、低雑音増幅器22、スイッチ回路57及び高周波出力端子121を経由して、RFIC3に伝送される。
[1.2.2 Second connection status]
As shown in FIG. 3, in the second connection state, the reception signal of the communication band B and the reception signal of the communication band C are simultaneously received. At this time, the RFIC 3 controls the switch 53 to connect the antenna connection terminal 102 and the filter 62, and controls the switch 54 to connect the inputs of the filter 62 and the low noise amplifier 22. Further, the RFIC 3 connects the output of the low noise amplifier 22 and the high frequency output terminal 121 by connecting the terminals 571 and 574 of the switch 570. As a result, the received signal of the communication band B is transmitted from the antenna 2 via the filter 6b, the antenna connection terminal 102, the switch 53, the filter 62, the switch 54, the low noise amplifier 22, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
 さらに、第2接続状態では、RFIC3は、スイッチ55を制御してアンテナ接続端子103及びフィルタ63を接続し、スイッチ56を制御してフィルタ63及び低雑音増幅器23の入力を接続する。さらに、RFIC3は、スイッチ570の端子572及び575を接続することで、低雑音増幅器23の出力及び高周波出力端子122を接続する。これにより、通信バンドCの受信信号は、アンテナ2から、フィルタ6c、アンテナ接続端子103、スイッチ55、フィルタ63、スイッチ56、低雑音増幅器23、スイッチ回路57及び高周波出力端子122を経由して、RFIC3に伝送される。 Further, in the second connection state, the RFIC 3 controls the switch 55 to connect the antenna connection terminal 103 and the filter 63, and controls the switch 56 to connect the input of the filter 63 and the low noise amplifier 23. Further, the RFIC 3 connects the output of the low noise amplifier 23 and the high frequency output terminal 122 by connecting the terminals 572 and 575 of the switch 570. As a result, the received signal of the communication band C is transmitted from the antenna 2 via the filter 6c, the antenna connection terminal 103, the switch 55, the filter 63, the switch 56, the low noise amplifier 23, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
 [1.2.3 第3接続状態]
 図4に示すように、第3接続状態では、通信バンドAの受信信号と通信バンドCの受信信号との同時受信が行われる。このとき、RFIC3は、スイッチ51を制御してアンテナ接続端子101及びフィルタ61を接続し、スイッチ52を制御してフィルタ61及び低雑音増幅器21の入力を接続する。さらに、RFIC3は、スイッチ570の端子571及び573を接続することで、低雑音増幅器21の出力及び高周波出力端子121を接続する。これにより、通信バンドAの受信信号は、アンテナ2から、フィルタ6a、アンテナ接続端子101、スイッチ51、フィルタ61、スイッチ52、低雑音増幅器21、スイッチ回路57及び高周波出力端子121を経由して、RFIC3に伝送される。
[12.3 Third connection status]
As shown in FIG. 4, in the third connection state, the reception signal of the communication band A and the reception signal of the communication band C are simultaneously received. At this time, the RFIC 3 controls the switch 51 to connect the antenna connection terminal 101 and the filter 61, and controls the switch 52 to connect the inputs of the filter 61 and the low noise amplifier 21. Further, the RFIC 3 connects the output of the low noise amplifier 21 and the high frequency output terminal 121 by connecting the terminals 571 and 573 of the switch 570. As a result, the received signal of the communication band A is transmitted from the antenna 2 via the filter 6a, the antenna connection terminal 101, the switch 51, the filter 61, the switch 52, the low noise amplifier 21, the switch circuit 57, and the high frequency output terminal 121. It is transmitted to RFIC3.
 さらに、第3接続状態では、RFIC3は、スイッチ55を制御してアンテナ接続端子103及びフィルタ63を接続し、スイッチ56を制御してフィルタ63及び低雑音増幅器23の入力を接続する。さらに、RFIC3は、スイッチ570の端子572及び575を接続することで、低雑音増幅器23の出力及び高周波出力端子122を接続する。これにより、通信バンドCの受信信号は、アンテナ2から、フィルタ6c、アンテナ接続端子103、スイッチ55、フィルタ63、スイッチ56、低雑音増幅器23、スイッチ回路57及び高周波出力端子122を経由して、RFIC3に伝送される。 Further, in the third connection state, the RFIC 3 controls the switch 55 to connect the antenna connection terminal 103 and the filter 63, and controls the switch 56 to connect the input of the filter 63 and the low noise amplifier 23. Further, the RFIC 3 connects the output of the low noise amplifier 23 and the high frequency output terminal 122 by connecting the terminals 572 and 575 of the switch 570. As a result, the received signal of the communication band C is transmitted from the antenna 2 via the filter 6c, the antenna connection terminal 103, the switch 55, the filter 63, the switch 56, the low noise amplifier 23, the switch circuit 57, and the high frequency output terminal 122. It is transmitted to RFIC3.
 [1.3 通信バンド群及び通信バンド]
 次に、通信バンド群X、Y及びZと通信バンドA、B及びCの具体例について、図5及び図6を参照しながら説明する。図5は、実施の形態1に係る高周波回路1で用いられる通信バンド群及び通信バンドの第1具体例を示す図である。図6は、実施の形態1に係る高周波回路1で用いられる通信バンド群及び通信バンドの第2具体例を示す図である。図5及び図6において、横軸は、周波数を示し、横線及びその横の数字は、LTE及び/又は5GNRで用いられる周波数バンド及びそれを識別する番号を示す。
[1.3 Communication band group and communication band]
Next, specific examples of the communication band groups X, Y and Z and the communication bands A, B and C will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram showing a communication band group and a first specific example of the communication band used in the high frequency circuit 1 according to the first embodiment. FIG. 6 is a diagram showing a second specific example of the communication band group and the communication band used in the high frequency circuit 1 according to the first embodiment. In FIGS. 5 and 6, the horizontal axis indicates frequency, and the horizontal line and the numbers next to it indicate the frequency band used in LTE and / or 5G NR and the number that identifies it.
 [1.3.1 第1具体例]
 まず、通信バンド群及び通信バンドの第1具体例について、図5を参照しながら説明する。
[1.3.1 First Specific Example]
First, a communication band group and a first specific example of the communication band will be described with reference to FIG.
 通信バンド群Xとしては、1400MHz以上1700MHz以下の周波数範囲が用いられている。通信バンド群Xは、ミッドローバンド(MLB)群と呼ばれることもある。通信バンド群Xに含まれる通信バンドAとしては、LTE及び/又は5GNRのためのバンド11、21、32、又は、これらの任意の組み合わせを用いることができる。 As the communication band group X, a frequency range of 1400 MHz or more and 1700 MHz or less is used. The communication band group X is sometimes called a mid-low band (MLB) group. As the communication band A included in the communication band group X, bands 11, 21, 32 for LTE and / or 5G NR, or any combination thereof can be used.
 通信バンド群Yとしては、1700MHz以上2200MHz以下の周波数範囲が用いられている。通信バンド群Yは、ミッドバンド(MB)群と呼ばれることもある。通信バンド群Yに含まれる通信バンドBとしては、LTE及び/又は5GNRのためのバンド2、3、25、34、39、70、又は、これらの任意の組み合わせを用いることができる。このとき、通信バンドBとして、少なくとも一部が互いに重複する複数の通信バンド(co-band)を用いることができ、この場合に、フィルタ62は、co-bandを含む通過帯域を有してもよい。co-bandとしては、例えば、バンド2、25及び70のうちの少なくとも2つを用いることができる。 As the communication band group Y, a frequency range of 1700 MHz or more and 2200 MHz or less is used. The communication band group Y may also be referred to as a midband (MB) group. As the communication band B included in the communication band group Y, bands 2, 3, 25, 34, 39, 70 for LTE and / or 5GNR, or any combination thereof can be used. At this time, as the communication band B, a plurality of communication bands (co-bands) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-bands. good. As the co-band, for example, at least two of bands 2, 25 and 70 can be used.
 なお、複数の通信バンドの少なくとも一部が互いに重複するとは、複数の通信バンドのうちの任意の1つの通信バンドと残りの少なくとも1つの通信バンドとの間で重複部分を有することを意味する。このとき、重複部分には、通信バンド端のみも含まれる。つまり、2つの通信バンドの少なくとも一部が互いに重複するには、低域側の通信バンドの最大周波数と高域側の通信バンドの最小周波数とが一致することも含まれる。 Note that at least a part of the plurality of communication bands overlaps with each other means that there is an overlapping portion between any one communication band among the plurality of communication bands and the remaining at least one communication band. At this time, the overlapping portion includes only the communication band end. That is, in order for at least a part of the two communication bands to overlap each other, it is included that the maximum frequency of the communication band on the low frequency side and the minimum frequency of the communication band on the high frequency side match.
 通信バンド群Zとしては、2300MHz以上2700MHz以下の周波数範囲が用いられている。通信バンド群Zは、ハイバンド(HB)群と呼ばれることもある。通信バンド群Zに含まれる通信バンドCとしては、LTE及び/又は5GNRのためのバンド7、30、40、41、又は、これらの任意の組み合わせを用いることができる。 As the communication band group Z, a frequency range of 2300 MHz or more and 2700 MHz or less is used. The communication band group Z is sometimes called a high band (HB) group. As the communication band C included in the communication band group Z, bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
 [1.3.2 第2具体例]
 次に、通信バンド群及び通信バンドの第2具体例について、図6を参照しながら説明する。
[1.3.2 Second Specific Example]
Next, the communication band group and the second specific example of the communication band will be described with reference to FIG.
 通信バンド群Xとしては、1700MHz以上2025MHz以下の周波数範囲が用いられている。通信バンド群Xは、MB群と呼ばれることもある。通信バンド群Xに含まれる通信バンドAとしては、LTE及び/又は5GNRのためのバンド2、3、25、34、39、70、又は、これらの任意の組み合わせを用いることができる。このとき、通信バンドAとして、少なくとも一部が互いに重複する複数の通信バンド(co-band1)を用いることができ、この場合に、フィルタ61は、co-band1を含む通過帯域を有してもよい。co-band1としては、例えば、バンド2、25及び70のうちの少なくとも2つを用いることができる。 As the communication band group X, a frequency range of 1700 MHz or more and 2025 MHz or less is used. The communication band group X is sometimes called an MB group. As the communication band A included in the communication band group X, bands 2, 3, 25, 34, 39, 70 for LTE and / or 5G NR, or any combination thereof can be used. At this time, as the communication band A, a plurality of communication bands (co-band1) at least partially overlapping each other can be used, and in this case, even if the filter 61 has a pass band including the co-band1. good. As co-band1, for example, at least two of bands 2, 25 and 70 can be used.
 通信バンド群Yとしては、1880MHz以上2200MHz以下の周波数範囲が用いられている。通信バンド群Yは、MB群と呼ばれることもある。通信バンド群Yに含まれる通信バンドBとしては、LTE及び/又は5GNRのためのバンド1、4、34、39、66、又は、これらの任意の組み合わせを用いることができる。このとき、通信バンドBとして、少なくとも一部が互いに重複する複数の通信バンド(co-band2)を用いることができ、この場合に、フィルタ62は、co-band2を含む通過帯域を有してもよい。co-band2としては、例えば、バンド1、4及び66のうちの少なくとも2つを用いることができる。 As the communication band group Y, a frequency range of 1880 MHz or more and 2200 MHz or less is used. The communication band group Y is sometimes called an MB group. As the communication band B included in the communication band group Y, bands 1, 4, 34, 39, 66 for LTE and / or 5 GNR, or any combination thereof can be used. At this time, as the communication band B, a plurality of communication bands (co-band2) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-band2. good. As co-band2, for example, at least two of bands 1, 4 and 66 can be used.
 通信バンド群Zとしては、2300MHz以上2700MHz以下の周波数範囲が用いられている。この場合、通信バンド群Zは、HB群と呼ばれることもある。通信バンド群Zに含まれる通信バンドCとしては、LTE及び/又は5GNRのためのバンド7、30、40、41、又は、これらの任意の組み合わせを用いることができる。 As the communication band group Z, a frequency range of 2300 MHz or more and 2700 MHz or less is used. In this case, the communication band group Z may be referred to as an HB group. As the communication band C included in the communication band group Z, bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
 なお、図5及び図6を用いて説明した通信バンド群及び通信バンドは、あくまでも例示であり、これらに限定されない。例えば、通信バンド群として、5ギガヘルツ以上のアンライセンスバンドを含む通信バンド群又はミリ波帯域の通信バンド群が用いられてもよい。 The communication band group and the communication band described with reference to FIGS. 5 and 6 are merely examples and are not limited thereto. For example, as the communication band group, a communication band group including an unlicensed band of 5 GHz or more or a communication band group of a millimeter wave band may be used.
 [1.4 効果など]
 以上のように、本実施の形態に係る高周波回路1は、高周波信号を外部に供給するための高周波出力端子121及び122と、高周波出力端子121及び122に接続されるスイッチ回路57と、高周波出力端子121に接続される低雑音増幅器21と、高周波出力端子121及び122にスイッチ回路57を介して接続される低雑音増幅器22と、高周波出力端子122に接続される低雑音増幅器23と、を備える。
[1.4 Effect, etc.]
As described above, the high-frequency circuit 1 according to the present embodiment includes high- frequency output terminals 121 and 122 for supplying high-frequency signals to the outside, switch circuits 57 connected to the high- frequency output terminals 121 and 122, and high-frequency output. It includes a low noise amplifier 21 connected to the terminal 121, a low noise amplifier 22 connected to the high frequency output terminals 121 and 122 via a switch circuit 57, and a low noise amplifier 23 connected to the high frequency output terminal 122. ..
 これによれば、低雑音増幅器22がスイッチ回路57を介して高周波出力端子121及び122に接続される。したがって、高周波回路1は、低雑音増幅器21~23の数よりも少ない数の高周波出力端子121及び122から、低雑音増幅器21~23で増幅された受信信号を供給することができる。つまり、高周波回路1は、低雑音増幅器毎に高周波出力端子を有する場合よりも高周波出力端子の数を削減することができ、通信装置5の小型化に貢献することができる。また、高周波回路1は、2つの高周波出力端子121及び122を備えるので、2つの受信信号を同時に別々の高周波出力端子から供給することができる。したがって、高周波回路1は、2つの受信信号の同時受信を実現することができる。 According to this, the low noise amplifier 22 is connected to the high frequency output terminals 121 and 122 via the switch circuit 57. Therefore, the high frequency circuit 1 can supply the received signal amplified by the low noise amplifiers 21 to 23 from the high frequency output terminals 121 and 122, which are smaller than the number of the low noise amplifiers 21 to 23. That is, the high frequency circuit 1 can reduce the number of high frequency output terminals as compared with the case where each low noise amplifier has high frequency output terminals, and can contribute to the miniaturization of the communication device 5. Further, since the high frequency circuit 1 includes two high frequency output terminals 121 and 122, the two received signals can be simultaneously supplied from different high frequency output terminals. Therefore, the high frequency circuit 1 can realize simultaneous reception of two received signals.
 また例えば、本実施の形態に係る高周波回路1において、スイッチ回路57は、高周波出力端子121及び122にそれぞれ接続される端子571及び572と、低雑音増幅器21の出力、低雑音増幅器22の出力及び低雑音増幅器23の出力にそれぞれ接続される端子573~575と、を有するスイッチ570を備えてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the switch circuit 57 has terminals 571 and 572 connected to the high frequency output terminals 121 and 122, respectively, the output of the low noise amplifier 21, the output of the low noise amplifier 22, and the output of the low noise amplifier 22. A switch 570 may be provided with terminals 573 to 575, respectively, connected to the output of the low noise amplifier 23.
 これによれば、2つの高周波出力端子121及び122と3つの低雑音増幅器21~23とをスイッチ回路57に接続することができる。したがって、スイッチ回路57により、低雑音増幅器21~23の各々について接続される高周波出力端子121及び122を切り替えることも可能となる。つまり、高周波回路1は、低雑音増幅器21~23で増幅された受信信号をそれぞれ任意の高周波出力端子から供給することが可能となり、高周波回路1の汎用性を向上させることができる。 According to this, the two high frequency output terminals 121 and 122 and the three low noise amplifiers 21 to 23 can be connected to the switch circuit 57. Therefore, the switch circuit 57 can also switch the high frequency output terminals 121 and 122 connected to each of the low noise amplifiers 21 to 23. That is, the high frequency circuit 1 can supply the received signals amplified by the low noise amplifiers 21 to 23 from arbitrary high frequency output terminals, respectively, and can improve the versatility of the high frequency circuit 1.
 また例えば、本実施の形態に係る高周波回路1において、低雑音増幅器21は、通信バンドAの受信信号を増幅可能であり、低雑音増幅器22は、通信バンドAと異なる通信バンドBの受信信号を増幅可能であり、低雑音増幅器23は、通信バンドA及び通信バンドBと異なる通信バンドCの受信信号を増幅可能であり、高周波出力端子121は、通信バンドA及び通信バンドBの受信信号を外部に供給するための端子であり、高周波出力端子122は、通信バンドB及び通信バンドCの受信信号を外部に供給するための端子であってもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the low noise amplifier 21 can amplify the received signal of the communication band A, and the low noise amplifier 22 can amplify the received signal of the communication band B different from the communication band A. The low noise amplifier 23 can amplify the received signals of the communication band A and the communication band C different from the communication band B, and the high frequency output terminal 121 externally outputs the received signals of the communication band A and the communication band B. The high frequency output terminal 122 may be a terminal for supplying the reception signals of the communication band B and the communication band C to the outside.
 これによれば、通信バンドに応じて受信信号を2つの高周波出力端子121及び122のいずれかに振り分けることができる。 According to this, the received signal can be distributed to either of the two high frequency output terminals 121 and 122 according to the communication band.
 また例えば、本実施の形態に係る高周波回路1において、スイッチ回路57は、通信バンドAの受信信号と通信バンドBの受信信号とを同時受信する場合に、低雑音増幅器22の出力を高周波出力端子122に接続し、通信バンドBの受信信号と通信バンドCの受信信号とを同時受信する場合に、低雑音増幅器22の出力を高周波出力端子121に接続し、通信バンドAの受信信号と通信バンドCの受信信号とを同時受信する場合に、低雑音増幅器22の出力を高周波出力端子121及び122のいずれにも接続しなくてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the switch circuit 57 outputs the output of the low noise amplifier 22 to the high frequency output terminal when the reception signal of the communication band A and the reception signal of the communication band B are simultaneously received. When connected to 122 and simultaneously receiving the received signal of the communication band B and the received signal of the communication band C, the output of the low noise amplifier 22 is connected to the high frequency output terminal 121, and the received signal of the communication band A and the communication band When simultaneously receiving the received signal of C, it is not necessary to connect the output of the low noise amplifier 22 to any of the high frequency output terminals 121 and 122.
 これによれば、2つの通信バンドの受信信号を同時受信する場合に、2つの受信信号を増幅するための2つの低雑音増幅器を異なる高周波出力端子に接続することができる。したがって、2つの受信信号を異なる高周波出力端子から供給することができ、2つの受信信号の干渉を抑制し、受信感度を向上させることができる。 According to this, when receiving signals of two communication bands at the same time, two low noise amplifiers for amplifying the two received signals can be connected to different high frequency output terminals. Therefore, the two received signals can be supplied from different high frequency output terminals, the interference between the two received signals can be suppressed, and the reception sensitivity can be improved.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドAは、1400MHz以上1700MHz以下の通信バンド群Xに含まれ、通信バンドBは、1700MHz以上2200MHz以下の通信バンド群Yに含まれ、通信バンドCは、2300MHz以上2700MHz以下の通信バンド群Zに含まれてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band A is included in the communication band group X of 1400 MHz or more and 1700 MHz or less, and the communication band B is included in the communication band group Y of 1700 MHz or more and 2200 MHz or less. The communication band C may be included in the communication band group Z of 2300 MHz or more and 2700 MHz or less.
 これによれば、高周波回路1は、MLB群、MB群及びHB群の各々に含まれる通信バンドの高周波信号の受信に対応することができる。 According to this, the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band included in each of the MLB group, the MB group and the HB group.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドAは、LTE及び5GNRのためのバンド11、21及び32のうちの少なくも1つを含み、通信バンドBは、LTE及び5GNRのためのバンド2、3、25、34、39及び70のうちの少なくとも1つを含み、通信バンドCは、LTE及び5GNRのためのバンド7、30、40及び41のうちの少なくとも1つを含んでもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band A includes at least one of the bands 11, 21 and 32 for LTE and 5G NR, and the communication band B is the LTE and 5G NR. Includes at least one of bands 2, 3, 25, 34, 39 and 70 for, and communication band C comprises at least one of bands 7, 30, 40 and 41 for LTE and 5G NR. But it may be.
 これによれば、高周波回路1は、LTE及び/又は5GNRのための通信バンドの高周波信号の受信に対応することができる。 According to this, the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band for LTE and / or 5G NR.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドBは、少なくとも一部が互いに重複する複数の通信バンドBを含んでもよく、高周波回路1は、さらに、低雑音増幅器22の入力に接続され、複数の通信バンドBを含む通過帯域を有するフィルタ62を備えてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band B may include a plurality of communication bands B at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 22. A filter 62 which is connected and has a pass band including a plurality of communication bands B may be provided.
 これによれば、高周波回路1は、少なくとも一部が互いに重複する複数の通信バンドBを含む通過帯域を有するフィルタ62を備えることができる。したがって、高周波回路1は、複数の通信バンドBのために個別に複数のフィルタを備える場合よりもフィルタの数を削減することができる。特に、EN-DC(E-UTRAN New Radio - Dual Connectivity)においてバンドコンビネーションが多様化している状況において、フィルタの数を増やすことなく、複数の通信バンドBに対応できる効果は大きい。 According to this, the high frequency circuit 1 can include a filter 62 having a pass band including a plurality of communication bands B at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands B. In particular, in a situation where band combinations are diversified in EN-DC (E-UTRAN New Radio-Dual Connectivity), the effect of being able to support a plurality of communication bands B without increasing the number of filters is great.
 また例えば、本実施の形態に係る高周波回路1において、複数の通信バンドBは、LTE及び5GNRのためのバンド2、25及び70のうちの少なくとも2つを含んでもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the plurality of communication bands B may include at least two of bands 2, 25 and 70 for LTE and 5G NR.
 これによれば、複数の通信バンドBとして、LTE及び5GNRのためのバンド2、25及び70のうちの任意の組み合わせを用いることができる。 According to this, any combination of bands 2, 25 and 70 for LTE and 5G NR can be used as the plurality of communication bands B.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドAは、1700MHz以上2025MHz以下の通信バンド群Xに含まれ、通信バンドBは、1880MHz以上2200MHz以下の通信バンド群Yに含まれ、通信バンドCは、2300MHz以上2700MHz以下の通信バンド群Zに含まれてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band A is included in the communication band group X of 1700 MHz or more and 2025 MHz or less, and the communication band B is included in the communication band group Y of 1880 MHz or more and 2200 MHz or less. The communication band C may be included in the communication band group Z of 2300 MHz or more and 2700 MHz or less.
 これによれば、高周波回路1は、2つのMB群及びHB群の各々に含まれる通信バンドの高周波信号の受信に対応することができる。 According to this, the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band included in each of the two MB group and the HB group.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドAは、LTE及び5GNRのためのバンド2、3、25、34、39及び70のうちの少なくも1つを含み、通信バンドBは、LTE及び5GNRのためのバンド1、4、34、39及び66のうちの少なくとも1つを含み、通信バンドCは、LTE及び5GNRのためのバンド7、30、40及び41のうちの少なくとも1つを含んでもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band A includes at least one of the bands 2, 3, 25, 34, 39 and 70 for LTE and 5G NR, and the communication band B is included. Includes at least one of bands 1, 4, 34, 39 and 66 for LTE and 5G NR, and communication band C includes at least one of bands 7, 30, 40 and 41 for LTE and 5G NR. One may be included.
 これによれば、高周波回路1は、LTE及び/又は5GNRのための通信バンドの高周波信号の受信に対応することができる。 According to this, the high frequency circuit 1 can correspond to the reception of the high frequency signal of the communication band for LTE and / or 5G NR.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドAは、少なくとも一部が互いに重複する複数の通信バンドAを含んでもよく、高周波回路1は、さらに、低雑音増幅器21の入力に接続され、複数の通信バンドAを含む通過帯域を有するフィルタ61を備えてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band A may include a plurality of communication bands A at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 21. A filter 61 which is connected and has a pass band including a plurality of communication bands A may be provided.
 これによれば、高周波回路1は、少なくとも一部が互いに重複する複数の通信バンドAを含む通過帯域を有するフィルタ61を備えることができる。したがって、高周波回路1は、複数の通信バンドAのために個別に複数のフィルタを備える場合よりもフィルタの数を削減することができる。特に、EN-DCにおいてバンドコンビネーションが多様化している状況において、フィルタの数を増やすことなく、複数の通信バンドAに対応できる効果は大きい。 According to this, the high frequency circuit 1 can include a filter 61 having a pass band including a plurality of communication bands A at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands A. In particular, in a situation where band combinations are diversified in EN-DC, the effect of being able to handle a plurality of communication bands A without increasing the number of filters is great.
 また例えば、本実施の形態に係る高周波回路1において、複数の通信バンドAは、LTE及び5GNRのためのバンド2、25及び70のうちの少なくとも2つを含んでもよい。より具体的には、複数の通信バンドAは、LTEのためのバンド25及び70を含んでもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the plurality of communication bands A may include at least two of bands 2, 25 and 70 for LTE and 5G NR. More specifically, the plurality of communication bands A may include bands 25 and 70 for LTE.
 これによれば、複数の通信バンドAとして、LTE及び5GNRのためのバンド2、25及び70のうちの任意の組み合わせを用いることができ、特に、LTEのためのバンド25及び70を用いることができる。 According to this, as the plurality of communication bands A, any combination of bands 2, 25 and 70 for LTE and 5G NR can be used, and in particular, bands 25 and 70 for LTE can be used. can.
 また例えば、本実施の形態に係る高周波回路1において、通信バンドBは、少なくとも一部が互いに重複する複数の通信バンドBを含んでもよく、高周波回路1は、さらに、低雑音増幅器22の入力に接続され、複数の通信バンドBを含む通過帯域を有するフィルタ62を備えてもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the communication band B may include a plurality of communication bands B at least partially overlapping each other, and the high frequency circuit 1 further receives the input of the low noise amplifier 22. A filter 62 which is connected and has a pass band including a plurality of communication bands B may be provided.
 これによれば、高周波回路1は、少なくとも一部が互いに重複する複数の通信バンドBを含む通過帯域を有するフィルタ62を備えることができる。したがって、高周波回路1は、複数の通信バンドBのために個別に複数のフィルタを備える場合よりもフィルタの数を削減することができる。特に、EN-DCにおいてバンドコンビネーションが多様化している状況において、フィルタの数を増やすことなく、複数の通信バンドBに対応できる効果は大きい。 According to this, the high frequency circuit 1 can include a filter 62 having a pass band including a plurality of communication bands B at least partially overlapping each other. Therefore, the high frequency circuit 1 can reduce the number of filters as compared with the case where a plurality of filters are individually provided for the plurality of communication bands B. In particular, in a situation where band combinations are diversified in EN-DC, the effect of being able to handle a plurality of communication bands B without increasing the number of filters is great.
 また例えば、本実施の形態に係る高周波回路1において、複数の通信バンドBは、LTE及び5GNRのためのバンド1、4及び66のうちの少なくとも2つを含んでもよい。 Further, for example, in the high frequency circuit 1 according to the present embodiment, the plurality of communication bands B may include at least two of bands 1, 4 and 66 for LTE and 5G NR.
 これによれば、複数の通信バンドBとして、LTE及び5GNRのためのバンド1、4及び66のうちの任意の組み合わせを用いることができる。 According to this, any combination of bands 1, 4 and 66 for LTE and 5G NR can be used as the plurality of communication bands B.
 (実施の形態1の変形例1)
 次に、実施の形態1の変形例1について説明する。本変形例では、複数の低雑音増幅器と複数の高周波出力端子との間に接続されるスイッチ回路の構成が上記実施の形態1と主として異なる。以下に、本変形例について、上記実施の形態1と異なる点を中心に図7を参照しながら説明する。
(Modification 1 of Embodiment 1)
Next, a modification 1 of the first embodiment will be described. In this modification, the configuration of the switch circuit connected between the plurality of low noise amplifiers and the plurality of high frequency output terminals is mainly different from that of the first embodiment. Hereinafter, this modification will be described with reference to FIG. 7, focusing on the differences from the first embodiment.
 図7は、実施の形態1の変形例1におけるスイッチ回路57Aを示す図である。スイッチ回路57Aは、高周波出力端子121及び122に接続されている。スイッチ回路57Aは、端子571A~573Aを有するスイッチ570Aを備える。端子571A及び572Aは、高周波出力端子121及び122にそれぞれ接続されている。端子573Aは、低雑音増幅器22の出力に接続されている。 FIG. 7 is a diagram showing a switch circuit 57A in the first modification of the first embodiment. The switch circuit 57A is connected to the high frequency output terminals 121 and 122. The switch circuit 57A comprises a switch 570A having terminals 571A-573A. The terminals 571A and 572A are connected to the high frequency output terminals 121 and 122, respectively. Terminal 573A is connected to the output of the low noise amplifier 22.
 この接続構成において、スイッチ570Aは、例えばRFIC3からの制御信号に基づいて、端子573Aを端子571A又は572Aに接続することができる。つまり、スイッチ570Aは、低雑音増幅器22及び高周波出力端子121の接続と、低雑音増幅器22及び高周波出力端子122の接続と、を切り替えることができる。スイッチ570Aは、例えばSPDT(Single Pole Double Throw)型のスイッチ回路で構成される。 In this connection configuration, the switch 570A can connect the terminal 573A to the terminal 571A or 572A based on, for example, a control signal from RFIC3. That is, the switch 570A can switch between the connection of the low noise amplifier 22 and the high frequency output terminal 121 and the connection of the low noise amplifier 22 and the high frequency output terminal 122. The switch 570A is composed of, for example, a SPDT (Single Pole Double Throw) type switch circuit.
 なお、本変形例では、低雑音増幅器21は、高周波出力端子121に直接接続され、低雑音増幅器23は、高周波出力端子122に直接接続されている。 In this modification, the low noise amplifier 21 is directly connected to the high frequency output terminal 121, and the low noise amplifier 23 is directly connected to the high frequency output terminal 122.
 このような回路構成において、通信バンドAの受信信号及び通信バンドBの受信信号が同時受信される場合には、スイッチ570Aの端子572Aと端子573Aとが接続され、低雑音増幅器23の動作が停止されてもよい。また例えば、通信バンドBの受信信号及び通信バンドCの受信信号が同時受信される場合には、スイッチ570Aの端子571Aと端子573Aとが接続され、低雑音増幅器21の動作が停止されてもよい。また例えば、通信バンドAの受信信号及び通信バンドCの受信信号が同時受信される場合には、スイッチ570Aの端子573Aが端子571A及び572Aのいずれにも接続されず、低雑音増幅器22の動作が停止されてもよい。 In such a circuit configuration, when the reception signal of the communication band A and the reception signal of the communication band B are simultaneously received, the terminal 572A and the terminal 573A of the switch 570A are connected, and the operation of the low noise amplifier 23 is stopped. May be done. Further, for example, when the reception signal of the communication band B and the reception signal of the communication band C are simultaneously received, the terminal 571A and the terminal 573A of the switch 570A may be connected and the operation of the low noise amplifier 21 may be stopped. .. Further, for example, when the reception signal of the communication band A and the reception signal of the communication band C are simultaneously received, the terminal 573A of the switch 570A is not connected to either the terminals 571A and 572A, and the operation of the low noise amplifier 22 is performed. It may be stopped.
 なお、低雑音増幅器の動作が停止されるとは、低雑音増幅器が信号を増幅しない状態(つまりオフ状態)に設定されることを意味する。オフ状態では、例えばバイアス信号及び電源電圧の少なくとも一方の低雑音増幅器への供給が停止される。 Note that the operation of the low noise amplifier is stopped means that the low noise amplifier is set to a state in which the signal is not amplified (that is, an off state). In the off state, for example, the supply of the bias signal and the power supply voltage to at least one of the low noise amplifiers is stopped.
 以上のように、本変形例に係る高周波回路1では、スイッチ回路57Aは、高周波出力端子121及び122にそれぞれ接続される端子571A及び572Aと、低雑音増幅器22の出力に接続される端子573Aと、を有するスイッチ570Aを備える。 As described above, in the high frequency circuit 1 according to the present modification, the switch circuit 57A has terminals 571A and 572A connected to the high frequency output terminals 121 and 122, respectively, and terminals 573A connected to the output of the low noise amplifier 22. A switch 570A having the
 これによれば、2つの高周波出力端子121及び122と低雑音増幅器22とをスイッチ回路57Aに接続することができる。したがって、スイッチ回路57Aの構成を比較的簡単にすることができる。 According to this, the two high frequency output terminals 121 and 122 and the low noise amplifier 22 can be connected to the switch circuit 57A. Therefore, the configuration of the switch circuit 57A can be made relatively simple.
 (実施の形態1の変形例2)
 次に、実施の形態1の変形例2について説明する。本変形例では、複数の低雑音増幅器と複数の高周波出力端子との間に接続されたスイッチ回路の構成が上記実施の形態1と主として異なる。以下に、本変形例について、上記実施の形態1と異なる点を中心に図8を参照しながら説明する。
(Modification 2 of Embodiment 1)
Next, a modification 2 of the first embodiment will be described. In this modification, the configuration of the switch circuit connected between the plurality of low noise amplifiers and the plurality of high frequency output terminals is mainly different from that of the first embodiment. Hereinafter, this modification will be described with reference to FIG. 8, focusing on the differences from the first embodiment.
 図8は、実施の形態1の変形例2におけるスイッチ回路57Bを示す図である。スイッチ回路57Bは、高周波出力端子121及び122に接続されている。スイッチ回路57Bは、スイッチ571B~575Bを備える。 FIG. 8 is a diagram showing a switch circuit 57B in the second modification of the first embodiment. The switch circuit 57B is connected to the high frequency output terminals 121 and 122. The switch circuit 57B includes switches 571B to 575B.
 スイッチ571Bは、第1スイッチの一例であり、低雑音増幅器21の出力に接続される。スイッチ571Bは、低雑音増幅器21の出力とスイッチ574Bとの接続及び非接続を切り替えることができる。 The switch 571B is an example of the first switch and is connected to the output of the low noise amplifier 21. The switch 571B can switch between connecting and disconnecting the output of the low noise amplifier 21 and the switch 574B.
 スイッチ572Bは、第2スイッチの一例であり、低雑音増幅器22の出力に接続される。スイッチ572Bは、低雑音増幅器22の出力及びスイッチ574Bの接続と、低雑音増幅器22の出力及びスイッチ575Bの接続と、を切り替えることができる。 The switch 572B is an example of the second switch and is connected to the output of the low noise amplifier 22. The switch 572B can switch between the output of the low noise amplifier 22 and the connection of the switch 574B and the output of the low noise amplifier 22 and the connection of the switch 575B.
 スイッチ573Bは、第3スイッチの一例であり、低雑音増幅器23の出力に接続される。スイッチ573Bは、低雑音増幅器23の出力とスイッチ575Bとの接続及び非接続を切り替えることができる。 The switch 573B is an example of the third switch and is connected to the output of the low noise amplifier 23. The switch 573B can switch between connecting and disconnecting the output of the low noise amplifier 23 and the switch 575B.
 スイッチ574Bは、第4スイッチの一例であり、高周波出力端子121とスイッチ571B及び572Bとの間に接続される。スイッチ574Bは、高周波出力端子121及びスイッチ571Bの接続と、高周波出力端子121及びスイッチ572Bの接続と、を切り替えることができる。 The switch 574B is an example of the fourth switch, and is connected between the high frequency output terminal 121 and the switches 571B and 572B. The switch 574B can switch between the connection of the high frequency output terminal 121 and the switch 571B and the connection of the high frequency output terminal 121 and the switch 572B.
 スイッチ575Bは、第5スイッチの一例であり、高周波出力端子122とスイッチ572B及び573Bとの間に接続される。スイッチ575Bは、高周波出力端子122及びスイッチ572Bの接続と、高周波出力端子122及びスイッチ573Bの接続と、を切り替えることができる。 The switch 575B is an example of the fifth switch, and is connected between the high frequency output terminal 122 and the switches 572B and 573B. The switch 575B can switch between the connection of the high frequency output terminal 122 and the switch 572B and the connection of the high frequency output terminal 122 and the switch 573B.
 スイッチ571B及び573Bの各々は、例えば、SPST(Single Pole Single Throw)型のスイッチ回路で構成される。スイッチ572B、574B及び575Bの各々は、例えば、SPDT型のスイッチ回路で構成される。 Each of the switches 571B and 573B is composed of, for example, an SPST (Single Pole Single Throw) type switch circuit. Each of the switches 572B, 574B and 575B is composed of, for example, a SPDT type switch circuit.
 このような回路構成において、通信バンドAの受信信号及び通信バンドBの受信信号が同時受信される場合には、スイッチ571B及び574Bにより低雑音増幅器21の出力と高周波出力端子121とが接続され、スイッチ572B及び575Bにより低雑音増幅器22の出力と高周波出力端子122とが接続される。このとき、スイッチ573Bは、低雑音増幅器23の出力とスイッチ575Bとを非接続にすることができる。 In such a circuit configuration, when the reception signal of the communication band A and the reception signal of the communication band B are simultaneously received, the output of the low noise amplifier 21 and the high frequency output terminal 121 are connected by switches 571B and 574B. The output of the low noise amplifier 22 and the high frequency output terminal 122 are connected by switches 572B and 575B. At this time, the switch 573B can disconnect the output of the low noise amplifier 23 and the switch 575B.
 また例えば、通信バンドBの受信信号及び通信バンドCの受信信号が同時受信される場合には、スイッチ572B及び574Bにより低雑音増幅器22の出力と高周波出力端子121とが接続され、スイッチ573B及び575Bにより低雑音増幅器23の出力と高周波出力端子122とが接続される。このとき、スイッチ571Bは、低雑音増幅器21の出力とスイッチ574Bとを非接続にすることができる。 Further, for example, when the reception signal of the communication band B and the reception signal of the communication band C are simultaneously received, the output of the low noise amplifier 22 and the high frequency output terminal 121 are connected by the switches 572B and 574B, and the switches 573B and 575B are connected. The output of the low noise amplifier 23 and the high frequency output terminal 122 are connected to each other. At this time, the switch 571B can disconnect the output of the low noise amplifier 21 and the switch 574B.
 また例えば、通信バンドAの受信信号及び通信バンドCの受信信号が同時受信される場合には、スイッチ571B及び574Bにより低雑音増幅器21の出力と高周波出力端子121とが接続され、スイッチ573B及び575Bにより低雑音増幅器23の出力と高周波出力端子122とが接続される。このとき、スイッチ572Bは、低雑音増幅器22の出力をスイッチ574B及び575Bのいずれにも接続しなくてもよい。 Further, for example, when the reception signal of the communication band A and the reception signal of the communication band C are simultaneously received, the output of the low noise amplifier 21 and the high frequency output terminal 121 are connected by the switches 571B and 574B, and the switches 573B and 575B are connected. The output of the low noise amplifier 23 and the high frequency output terminal 122 are connected to each other. At this time, the switch 572B does not have to connect the output of the low noise amplifier 22 to any of the switches 574B and 575B.
 以上のように、本変形例に係る高周波回路1では、スイッチ回路57Bは、低雑音増幅器21の出力に接続されるスイッチ571Bと、低雑音増幅器22の出力に接続されるスイッチ572Bと、低雑音増幅器23の出力に接続されるスイッチ573Bと、高周波出力端子121とスイッチ571B及び572Bとの間に接続されるスイッチ574Bと、高周波出力端子122とスイッチ572B及び573Bとの間に接続されるスイッチ575Bと、を備える。 As described above, in the high frequency circuit 1 according to the present modification, the switch circuit 57B has a switch 571B connected to the output of the low noise amplifier 21, a switch 572B connected to the output of the low noise amplifier 22, and low noise. A switch 573B connected to the output of the amplifier 23, a switch 574B connected between the high frequency output terminal 121 and the switches 571B and 572B, and a switch 575B connected between the high frequency output terminal 122 and the switches 571B and 573B. And.
 これによれば、低雑音増幅器21~23と高周波出力端子121及び122とを結ぶ経路の各々に2つのスイッチを介在させることができる。したがって、スイッチ571B~575Bを制御することで、通信に使用されない通信バンドに対応する低雑音増幅器の動作を停止させなくても低雑音増幅器間のアイソレーションを確保することができ、低雑音増幅器の制御を簡単にすることができる。 According to this, two switches can be interposed in each of the paths connecting the low noise amplifiers 21 to 23 and the high frequency output terminals 121 and 122. Therefore, by controlling the switches 571B to 575B, isolation between the low noise amplifiers can be ensured without stopping the operation of the low noise amplifier corresponding to the communication band not used for communication, and the low noise amplifier can be used. Control can be simplified.
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、高周波回路が4つの通信バンド群に対応している点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図面を参照しながら説明する。
(Embodiment 2)
Next, the second embodiment will be described. The present embodiment is mainly different from the first embodiment in that the high frequency circuit corresponds to four communication band groups. Hereinafter, the present embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment.
 [2.1 高周波回路1C及び通信装置5Cの回路構成]
 本実施の形態に係る高周波回路1C及び通信装置5Cの回路構成について、図9を参照しながら説明する。図9は、実施の形態2に係る高周波回路1C及び通信装置5Cの回路構成図である。
[2.1 Circuit configuration of high frequency circuit 1C and communication device 5C]
The circuit configuration of the high frequency circuit 1C and the communication device 5C according to the present embodiment will be described with reference to FIG. FIG. 9 is a circuit configuration diagram of the high frequency circuit 1C and the communication device 5C according to the second embodiment.
 [2.1.1 通信装置5Cの回路構成]
 まず、通信装置5Cの回路構成について説明する。図9に示すように、本実施の形態に係る通信装置5Cは、高周波回路1Cと、アンテナ2と、RFIC3と、BBIC4と、マルチプレクサ6Cと、を備える。
[2.1. Circuit configuration of communication device 5C]
First, the circuit configuration of the communication device 5C will be described. As shown in FIG. 9, the communication device 5C according to the present embodiment includes a high frequency circuit 1C, an antenna 2, an RFIC 3, a BBIC 4, and a multiplexer 6C.
 マルチプレクサ6Cは、アンテナ2と高周波回路1Cとの間に接続される。マルチプレクサ6Cは、フィルタ6a~6dを備える。フィルタ6aは、アンテナ接続端子101に接続され、通信バンド群Xを含む通過帯域を有する。フィルタ6bは、アンテナ接続端子102に接続され、通信バンド群Xと異なる通信バンド群Yを含む通過帯域を有する。フィルタ6cは、アンテナ接続端子103に接続され、通信バンド群X及びYと異なる通信バンド群Yを含む通過帯域を有する。フィルタ6dは、アンテナ接続端子104に接続され、通信バンド群X~Zと異なる通信バンド群Wを含む通過帯域を有する。なお、マルチプレクサ6Cは、高周波回路1Cに含まれてもよい。通信バンド群の具体例については、図10を用いて後述する。 The multiplexer 6C is connected between the antenna 2 and the high frequency circuit 1C. The multiplexer 6C includes filters 6a to 6d. The filter 6a is connected to the antenna connection terminal 101 and has a pass band including the communication band group X. The filter 6b is connected to the antenna connection terminal 102 and has a pass band including a communication band group Y different from the communication band group X. The filter 6c is connected to the antenna connection terminal 103 and has a pass band including a communication band group Y different from the communication band groups X and Y. The filter 6d is connected to the antenna connection terminal 104 and has a pass band including a communication band group W different from the communication band groups X to Z. The multiplexer 6C may be included in the high frequency circuit 1C. Specific examples of the communication band group will be described later with reference to FIG.
 なお、本実施の形態に係る通信装置5Cにおいて、アンテナ2、BBIC4及びマルチプレクサ6Cは、必須の構成要素ではない。 In the communication device 5C according to the present embodiment, the antenna 2, the BBIC 4 and the multiplexer 6C are not essential components.
 [2.1.2 高周波回路1Cの回路構成]
 次に、高周波回路1Cの回路構成について説明する。図9に示すように、高周波回路1Cは、低雑音増幅器21~24と、スイッチ51~56、58及び59と、スイッチ回路57Cと、フィルタ61~64と、アンテナ接続端子101~104と、高周波出力端子121~123と、を備える。
[2.1.2 High-frequency circuit 1C circuit configuration]
Next, the circuit configuration of the high frequency circuit 1C will be described. As shown in FIG. 9, the high frequency circuit 1C includes low noise amplifiers 21 to 24, switches 51 to 56, 58 and 59, switch circuits 57C, filters 61 to 64, antenna connection terminals 101 to 104, and high frequencies. The output terminals 121 to 123 are provided.
 アンテナ接続端子104は、マルチプレクサ6Cを介してアンテナ2に接続される。アンテナ接続端子104には、アンテナ2で受信された通信バンド群Wの受信信号がフィルタ6dを介して入力される。 The antenna connection terminal 104 is connected to the antenna 2 via the multiplexer 6C. The reception signal of the communication band group W received by the antenna 2 is input to the antenna connection terminal 104 via the filter 6d.
 スイッチ58は、アンテナ接続端子104とフィルタ64との間に接続され、アンテナ接続端子104とフィルタ64との接続及び非接続を切り替える。 The switch 58 is connected between the antenna connection terminal 104 and the filter 64, and switches between connection and non-connection between the antenna connection terminal 104 and the filter 64.
 フィルタ64(D-Rx)は、通信バンド群Wに含まれる通信バンドDの少なくとも一部を含む通過帯域を有する。通信バンドDがFDD用の通信バンドであれば、フィルタ64の通過帯域は、通信バンドDのダウンリンク動作バンドを含む。通信バンドDがTDD用の通信バンドであれば、フィルタ64の通過帯域は、通信バンドD全体を含む。フィルタ64の一端は、スイッチ58を介してアンテナ接続端子104に接続される。フィルタ64の他端は、スイッチ59を介して低雑音増幅器24の入力に接続される。 The filter 64 (D-Rx) has a pass band including at least a part of the communication band D included in the communication band group W. If the communication band D is a communication band for FDD, the pass band of the filter 64 includes the downlink operation band of the communication band D. If the communication band D is a communication band for TDD, the pass band of the filter 64 includes the entire communication band D. One end of the filter 64 is connected to the antenna connection terminal 104 via the switch 58. The other end of the filter 64 is connected to the input of the low noise amplifier 24 via the switch 59.
 スイッチ59は、フィルタ64と低雑音増幅器24との間に接続され、フィルタ64と低雑音増幅器24との接続及び非接続を切り替える。 The switch 59 is connected between the filter 64 and the low noise amplifier 24, and switches between connection and non-connection between the filter 64 and the low noise amplifier 24.
 なお、スイッチ58及び59の間には、フィルタ64に加えて、通信バンド群W内の他の通信バンドを含む通過帯域を有する他のフィルタ(図示せず)が接続されてもよい。 In addition to the filter 64, another filter (not shown) having a pass band including another communication band in the communication band group W may be connected between the switches 58 and 59.
 低雑音増幅器24は、第4低雑音増幅器の一例であり、アンテナ接続端子104、スイッチ58、フィルタ64及びスイッチ59を介して入力された通信バンド群Wに含まれる通信バンドDの受信信号を増幅することができる。低雑音増幅器24は、通信バンド群Wに含まれる他の通信バンドの受信信号を増幅することもできる。低雑音増幅器24で増幅された通信バンドDの受信信号は、スイッチ回路57Cを介して高周波出力端子123に伝送される。 The low noise amplifier 24 is an example of the fourth low noise amplifier, and amplifies the received signal of the communication band D included in the communication band group W input via the antenna connection terminal 104, the switch 58, the filter 64, and the switch 59. can do. The low noise amplifier 24 can also amplify the received signals of other communication bands included in the communication band group W. The received signal of the communication band D amplified by the low noise amplifier 24 is transmitted to the high frequency output terminal 123 via the switch circuit 57C.
 スイッチ回路57Cは、高周波出力端子121~123に接続されている。スイッチ回路57Cは、端子571C~577Cを有するスイッチ570Cを備える。端子571C~573Cは、高周波出力端子121~123にそれぞれ接続されている。端子574C~577Cは、それぞれ低雑音増幅器21~24の出力に接続されている。 The switch circuit 57C is connected to the high frequency output terminals 121 to 123. The switch circuit 57C comprises a switch 570C having terminals 571C-577C. The terminals 571C to 573C are connected to the high frequency output terminals 121 to 123, respectively. The terminals 574C to 577C are connected to the outputs of the low noise amplifiers 21 to 24, respectively.
 この接続構成において、スイッチ570Cは、例えばRFIC3からの制御信号に基づいて、端子574C~577Cの少なくとも1つを端子571C~573Cの少なくとも1つに接続することができる。つまり、スイッチ570Cは、低雑音増幅器21~24と高周波出力端子121~123との間の接続及び非接続を個別に切り替えることができる。スイッチ570Cは、例えばマルチ接続型のスイッチ回路で構成される。 In this connection configuration, the switch 570C can connect at least one of terminals 574C to 577C to at least one of terminals 571C to 573C, for example, based on a control signal from RFIC3. That is, the switch 570C can individually switch between the connection and the non-connection between the low noise amplifiers 21 to 24 and the high frequency output terminals 121 to 123. The switch 570C is composed of, for example, a multi-connection type switch circuit.
 高周波出力端子123は、第3出力端子の一例であり、高周波回路1Cの外部に高周波受信信号を提供するための端子である。具体的には、高周波出力端子123は、RFIC3に、通信バンド群Z又はWに含まれる通信バンドの受信信号を提供するための端子である。 The high frequency output terminal 123 is an example of the third output terminal, and is a terminal for providing a high frequency reception signal to the outside of the high frequency circuit 1C. Specifically, the high frequency output terminal 123 is a terminal for providing the RFIC 3 with a reception signal of a communication band included in the communication band group Z or W.
 高周波回路1Cにおいて、高周波出力端子の数は、低雑音増幅器の数よりも少ない。実施の形態1と同様に、低雑音増幅器の数Nが3以上の自然数である場合に、高周波出力端子の数Mは、1<M<Nを満たす自然数である。 In the high frequency circuit 1C, the number of high frequency output terminals is smaller than the number of low noise amplifiers. Similar to the first embodiment, when the number N of the low noise amplifiers is a natural number of 3 or more, the number M of the high frequency output terminals is a natural number satisfying 1 <M <N.
 [2.2 通信バンド群及び通信バンド]
 ここで、高周波回路1Cで用いられる通信バンド群及び通信バンドの具体例について、図10を参照しながら説明する。図10は、実施の形態2に係る高周波回路1Cで用いられる通信バンド群及び通信バンドの具体例を示す図である。図10において、横軸は、周波数を示し、横線及びその横の数字は、LTE及び/又は5GNRで用いられる周波数バンド及びそれを識別する番号を示す。
[2.2 Communication band group and communication band]
Here, a specific example of the communication band group and the communication band used in the high frequency circuit 1C will be described with reference to FIG. FIG. 10 is a diagram showing a specific example of a communication band group and a communication band used in the high frequency circuit 1C according to the second embodiment. In FIG. 10, the horizontal axis indicates frequency, and the horizontal line and the number next to it indicate the frequency band used in LTE and / or 5G NR and the number for identifying the frequency band.
 通信バンド群Xとしては、1400MHz以上1700MHz以下の周波数範囲が用いられている。通信バンド群Xは、ミッドローバンド(MLB)群と呼ばれることもある。通信バンド群Xに含まれる通信バンドAとしては、LTE及び/又は5GNRのためのバンド11、21、32、又は、これらの任意の組み合わせを用いることができる。 As the communication band group X, a frequency range of 1400 MHz or more and 1700 MHz or less is used. The communication band group X is sometimes called a mid-low band (MLB) group. As the communication band A included in the communication band group X, bands 11, 21, 32 for LTE and / or 5G NR, or any combination thereof can be used.
 通信バンド群Yとしては、1700MHz以上2025MHz以下の周波数範囲が用いられている。通信バンド群Yは、MB群と呼ばれることもある。通信バンド群Yに含まれる通信バンドBとしては、LTE及び/又は5GNRのためのバンド2、3、25、34、39、70、又は、これらの任意の組み合わせを用いることができる。このとき、通信バンドBとして、少なくとも一部が互いに重複する複数の通信バンド(co-band1)を用いることができ、この場合に、フィルタ61は、co-band1を含む通過帯域を有してもよい。co-band1としては、例えば、バンド2、25及び70のうちの少なくとも2つを用いることができる。 As the communication band group Y, a frequency range of 1700 MHz or more and 2025 MHz or less is used. The communication band group Y is sometimes called an MB group. As the communication band B included in the communication band group Y, bands 2, 3, 25, 34, 39, 70 for LTE and / or 5GNR, or any combination thereof can be used. At this time, as the communication band B, a plurality of communication bands (co-band1) at least partially overlapping each other can be used, and in this case, even if the filter 61 has a pass band including the co-band1. good. As co-band1, for example, at least two of bands 2, 25 and 70 can be used.
 通信バンド群Zとしては、1880MHz以上2200MHz以下の周波数範囲が用いられている。通信バンド群Zは、MB群と呼ばれることもある。通信バンド群Zに含まれる通信バンドCとしては、LTE及び/又は5GNRのためのバンド1、4、34、39、66、又は、これらの任意の組み合わせを用いることができる。このとき、通信バンドCとして、少なくとも一部が互いに重複する複数の通信バンド(co-band2)を用いることができ、この場合に、フィルタ62は、co-band2を含む通過帯域を有してもよい。co-band2としては、例えば、バンド1、4及び66のうちの少なくとも2つを用いることができる。 As the communication band group Z, a frequency range of 1880 MHz or more and 2200 MHz or less is used. The communication band group Z is sometimes called an MB group. As the communication band C included in the communication band group Z, bands 1, 4, 34, 39, 66 for LTE and / or 5 GNR, or any combination thereof can be used. At this time, as the communication band C, a plurality of communication bands (co-band2) at least partially overlapping each other can be used, and in this case, even if the filter 62 has a pass band including the co-band2. good. As co-band2, for example, at least two of bands 1, 4 and 66 can be used.
 通信バンド群Wとしては、2300MHz以上2700MHz以下の周波数範囲が用いられている。通信バンド群Wは、ハイバンド(HB)群と呼ばれることもある。通信バンド群Wに含まれる通信バンドDとしては、LTE及び/又は5GNRのためのバンド7、30、40、41、又は、これらの任意の組み合わせを用いることができる。 As the communication band group W, a frequency range of 2300 MHz or more and 2700 MHz or less is used. The communication band group W is sometimes called a high band (HB) group. As the communication band D included in the communication band group W, bands 7, 30, 40, 41 for LTE and / or 5 GNR, or any combination thereof can be used.
 なお、図10を用いて説明した通信バンド群及び通信バンドは、あくまでも例示であり、これらに限定されない。例えば、通信バンド群として、5ギガヘルツ以上のアンライセンスバンドを含む通信バンド群又はミリ波帯域の通信バンド群が用いられてもよい。 The communication band group and the communication band described with reference to FIG. 10 are merely examples and are not limited thereto. For example, as the communication band group, a communication band group including an unlicensed band of 5 GHz or more or a communication band group of a millimeter wave band may be used.
 [2.3 効果など]
 以上のように、本実施の形態に係る高周波回路1Cは、高周波信号を外部に供給するための高周波出力端子121及び122と、高周波出力端子121及び122に接続されるスイッチ回路57Cと、高周波出力端子121に接続される低雑音増幅器21と、高周波出力端子121及び122にスイッチ回路57Cを介して接続される低雑音増幅器22と、高周波出力端子122に接続される低雑音増幅器23と、を備える。さらに、高周波回路1Cは、高周波信号を外部に供給するための高周波出力端子123と、高周波出力端子123に接続される低雑音増幅器24と、を備え、スイッチ回路57Cは、さらに、高周波出力端子123に接続され、低雑音増幅器23は、スイッチ回路57Cを介して、高周波出力端子122及び123に接続される。
[2.3 effects, etc.]
As described above, the high frequency circuit 1C according to the present embodiment includes high frequency output terminals 121 and 122 for supplying high frequency signals to the outside, switch circuits 57C connected to high frequency output terminals 121 and 122, and high frequency output. The low noise amplifier 21 connected to the terminal 121, the low noise amplifier 22 connected to the high frequency output terminals 121 and 122 via the switch circuit 57C, and the low noise amplifier 23 connected to the high frequency output terminal 122 are provided. .. Further, the high frequency circuit 1C includes a high frequency output terminal 123 for supplying a high frequency signal to the outside and a low noise amplifier 24 connected to the high frequency output terminal 123, and the switch circuit 57C further includes a high frequency output terminal 123. The low noise amplifier 23 is connected to the high frequency output terminals 122 and 123 via the switch circuit 57C.
 これによれば、高周波回路1Cは、低雑音増幅器21~24の数よりも少ない数の高周波出力端子121~123から、低雑音増幅器21~24で増幅された受信信号を供給することができる。つまり、高周波回路1Cは、低雑音増幅器毎に高周波出力端子を有する場合よりも高周波出力端子の数を削減することができ、通信装置5Cの小型化に貢献することができる。また、高周波回路1Cは、3つの高周波出力端子121~123を備えるので、3つの受信信号を同時に別々の高周波出力端子から供給することができる。したがって、高周波回路1Cは、3つの受信信号の同時受信を実現することができる。 According to this, the high frequency circuit 1C can supply the received signal amplified by the low noise amplifiers 21 to 24 from the high frequency output terminals 121 to 123, which is smaller than the number of the low noise amplifiers 21 to 24. That is, the high frequency circuit 1C can reduce the number of high frequency output terminals as compared with the case where each low noise amplifier has a high frequency output terminal, and can contribute to the miniaturization of the communication device 5C. Further, since the high frequency circuit 1C includes three high frequency output terminals 121 to 123, the three received signals can be simultaneously supplied from different high frequency output terminals. Therefore, the high frequency circuit 1C can realize simultaneous reception of three received signals.
 また例えば、本実施の形態に係る高周波回路1Cにおいて、低雑音増幅器21は、通信バンドAの受信信号を増幅可能であり、低雑音増幅器22は、通信バンドAと異なる通信バンドBの受信信号を増幅可能であり、低雑音増幅器23は、通信バンドA及びBと異なる通信バンドCの受信信号を増幅可能であり、低雑音増幅器24は、通信バンドA、B及びCと異なる通信バンドDの受信信号を増幅可能であり、高周波出力端子121は、通信バンドA及びBの受信信号を外部に供給するための端子であり、高周波出力端子122は、通信バンドB及びCの受信信号を外部に供給するための端子であり、高周波出力端子123は、通信バンドC及びDの受信信号を外部に供給するための端子であってもよい。 Further, for example, in the high frequency circuit 1C according to the present embodiment, the low noise amplifier 21 can amplify the received signal of the communication band A, and the low noise amplifier 22 can amplify the received signal of the communication band B different from the communication band A. It is possible to amplify, the low noise amplifier 23 can amplify the reception signal of the communication band C different from the communication bands A and B, and the low noise amplifier 24 receives the communication band D different from the communication bands A, B and C. The signal can be amplified, the high frequency output terminal 121 is a terminal for supplying the received signals of the communication bands A and B to the outside, and the high frequency output terminal 122 supplies the received signals of the communication bands B and C to the outside. The high frequency output terminal 123 may be a terminal for supplying the received signals of the communication bands C and D to the outside.
 これによれば、高周波回路1Cは、4つの通信バンドに対応することができる。 According to this, the high frequency circuit 1C can correspond to four communication bands.
 また例えば、本実施の形態に係る高周波回路1Cにおいて、通信バンドAは、1400MHz以上1700MHz以下の通信バンド群Xに含まれ、通信バンドBは、1700MHz以上2025MHz以下の通信バンド群Yに含まれ、通信バンドCは、1880MHz以上2200MHz以下の通信バンド群Zに含まれ、通信バンドDは、2300MHz以上2700MHz以下の通信バンド群Wに含まれてもよい。 Further, for example, in the high frequency circuit 1C according to the present embodiment, the communication band A is included in the communication band group X of 1400 MHz or more and 1700 MHz or less, and the communication band B is included in the communication band group Y of 1700 MHz or more and 2025 MHz or less. The communication band C may be included in the communication band group Z of 1880 MHz or more and 2200 MHz or less, and the communication band D may be included in the communication band group W of 2300 MHz or more and 2700 MHz or less.
 これによれば、高周波回路1Cは、MLB群、2つのMB群及びHB群の各々に含まれる通信バンドの高周波信号の受信に対応することができる。 According to this, the high frequency circuit 1C can correspond to the reception of the high frequency signal of the communication band included in each of the MLB group, the two MB groups and the HB group.
 (他の実施の形態)
 以上、本発明に係る高周波回路及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波回路及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路及び通信装置を内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high frequency circuit and the communication device according to the present invention have been described above based on the embodiment, the high frequency circuit and the communication device according to the present invention are not limited to the above embodiment. Another embodiment realized by combining arbitrary components in the above embodiment, or modifications obtained by applying various modifications to the above embodiments that can be conceived by those skilled in the art within the range not deviating from the gist of the present invention. Examples and various devices incorporating the high frequency circuit and the communication device are also included in the present invention.
 例えば、上記各実施の形態に係る高周波回路及び通信装置の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、フィルタ61及びスイッチ51の間にインピーダンス整合回路が挿入されてもよい。また、インピーダンス整合回路は、例えば、スイッチ52及び低雑音増幅器21の間に挿入されてもよい。インピーダンス整合回路は、例えばインダクタ及び/又はキャパシタにより構成することができる。 For example, in the circuit configuration of the high frequency circuit and the communication device according to each of the above embodiments, even if another circuit element, wiring, or the like is inserted between the paths connecting the circuit elements and the signal paths disclosed in the drawings. good. For example, an impedance matching circuit may be inserted between the filter 61 and the switch 51. Further, the impedance matching circuit may be inserted between the switch 52 and the low noise amplifier 21, for example. The impedance matching circuit can be configured, for example, with an inductor and / or a capacitor.
 なお、上記各実施の形態では、複数の高周波出力端子は、通信バンド群によって使い分けられていたが、これに限定されない。例えば、複数の高周波出力端子は、通信システムによって使い分けられてもよい。具体的には、例えば実施の形態1に係る高周波回路1において、低雑音増幅器22は、第1通信システム及び第1通信システムと異なる第2通信システムの受信信号を増幅可能であり、高周波出力端子121は、第1通信システム及び第2通信システムの一方の受信信号を外部に供給するための端子であり、高周波出力端子122は、第1通信システム及び第2通信システムの他方の受信信号を外部に供給するための端子であってもよい。これにより、通信システムに応じて受信信号を複数の高周波出力端子のいずれかに振り分けることができる。なお、第1通信システム及び第2通信システムの組み合わせとしては、例えば、5GNRシステム及びLTEシステムを用いることができるが、これに限定されない。例えば、第2通信システムとして、WLANシステムが用いられてもよい。 In each of the above embodiments, the plurality of high frequency output terminals are used properly depending on the communication band group, but the present invention is not limited to this. For example, a plurality of high frequency output terminals may be used properly depending on the communication system. Specifically, for example, in the high frequency circuit 1 according to the first embodiment, the low noise amplifier 22 can amplify the received signal of the first communication system and the second communication system different from the first communication system, and is a high frequency output terminal. Reference numeral 121 denotes a terminal for supplying the received signal of one of the first communication system and the second communication system to the outside, and the high frequency output terminal 122 externally supplies the received signal of the other of the first communication system and the second communication system. It may be a terminal for supplying to. As a result, the received signal can be distributed to any of the plurality of high frequency output terminals according to the communication system. As the combination of the first communication system and the second communication system, for example, a 5GNR system and an LTE system can be used, but the combination is not limited thereto. For example, a WLAN system may be used as the second communication system.
 なお、上記各実施の形態では、高周波回路は、高周波信号を受信するための受信回路であったが、これに限定されない。例えば、高周波回路は、高周波信号を送信及び受信するための送受信回路であってもよい。この場合、フィルタ62は、さらに、送信帯域を含む通過帯域を有してもよい。つまり、フィルタ62の通過帯域に含まれるco-bandとして、バンド2、25及び70のダウンリンク動作バンドのうちの少なくとも2つに加えて、LTE及び/又は5GNRのためのバンド1のアップリンク動作バンドが用いられてもよい。この場合、図11に示すように、高周波回路1Dは、スイッチ54Dを介してフィルタ62に接続される電力増幅器11を備えてもよい。 In each of the above embodiments, the high frequency circuit is a receiving circuit for receiving a high frequency signal, but the present invention is not limited to this. For example, the high frequency circuit may be a transmission / reception circuit for transmitting and receiving high frequency signals. In this case, the filter 62 may further have a pass band including a transmission band. That is, as a co-band included in the pass band of the filter 62, in addition to at least two of the downlink operation bands of bands 2, 25 and 70, the uplink operation of band 1 for LTE and / or 5G NR. Bands may be used. In this case, as shown in FIG. 11, the high frequency circuit 1D may include a power amplifier 11 connected to the filter 62 via the switch 54D.
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication devices such as mobile phones as a high frequency circuit arranged in the front end portion.
 1、1C、1D 高周波回路
 2 アンテナ
 3 RFIC
 4 BBIC
 5、5C 通信装置
 6、6C マルチプレクサ
 11 電力増幅器
 21、22、23、24 低雑音増幅器
 51、52、53、54、54D、55、56、58、59、570、570A、570C、571B、572B、573B、574B、575B スイッチ
 57、57A、57B、57C スイッチ回路
 61、62、63、64、6a、6b、6c、6d フィルタ
 101、102、103、104 アンテナ接続端子
 121、122、123 高周波出力端子
 571、572、573、574、575、571A、572A、573A、571C、572C、573C、574C、575C、576C、577C 端子
1,1C, 1D high frequency circuit 2 antenna 3 RFIC
4 BBIC
5, 5C communication device 6,6C multiplexer 11 power amplifier 21, 22, 23, 24 low noise amplifier 51, 52, 53, 54, 54D, 55, 56, 58, 59, 570, 570A, 570C, 571B, 572B, 573B, 574B, 575B Switch 57, 57A, 57B, 57C Switch circuit 61, 62, 63, 64, 6a, 6b, 6c, 6d filter 101, 102, 103, 104 Antenna connection terminal 121, 122, 123 High frequency output terminal 571 , 572, 573, 574, 575, 571A, 572A, 573A, 571C, 572C, 573C, 574C, 575C, 576C, 757C terminals

Claims (20)

  1.  高周波信号を外部に供給するための第1出力端子及び第2出力端子と、
     前記第1出力端子及び前記第2出力端子に接続されるスイッチ回路と、
     前記第1出力端子に接続される第1低雑音増幅器と、
     前記第1出力端子及び前記第2出力端子に前記スイッチ回路を介して接続される第2低雑音増幅器と、
     前記第2出力端子に接続される第3低雑音増幅器と、を備える、
     高周波回路。
    The first output terminal and the second output terminal for supplying a high frequency signal to the outside,
    A switch circuit connected to the first output terminal and the second output terminal,
    The first low noise amplifier connected to the first output terminal and
    A second low noise amplifier connected to the first output terminal and the second output terminal via the switch circuit, and
    A third low noise amplifier connected to the second output terminal.
    High frequency circuit.
  2.  前記スイッチ回路は、
     前記第1出力端子及び前記第2出力端子にそれぞれ接続される第1端子及び第2端子と、
     前記第1低雑音増幅器の出力、第2低雑音増幅器の出力及び第3低雑音増幅器の出力にそれぞれ接続される第3端子、第4端子及び第5端子と、を有する、
     請求項1に記載の高周波回路。
    The switch circuit is
    The first terminal and the second terminal connected to the first output terminal and the second output terminal, respectively,
    It has a third terminal, a fourth terminal, and a fifth terminal connected to the output of the first low noise amplifier, the output of the second low noise amplifier, and the output of the third low noise amplifier, respectively.
    The high frequency circuit according to claim 1.
  3.  前記スイッチ回路は、
     前記第1出力端子及び前記第2出力端子にそれぞれ接続される第1端子及び第2端子と、
     前記第2低雑音増幅器の出力に接続される第3端子と、を有する、
     請求項1に記載の高周波回路。
    The switch circuit is
    The first terminal and the second terminal connected to the first output terminal and the second output terminal, respectively,
    It has a third terminal, which is connected to the output of the second low noise amplifier.
    The high frequency circuit according to claim 1.
  4.  前記第1低雑音増幅器は、第1通信バンドの受信信号を増幅可能であり、
     前記第2低雑音増幅器は、前記第1通信バンドと異なる第2通信バンドの受信信号を増幅可能であり、
     前記第3低雑音増幅器は、前記第1通信バンド及び前記第2通信バンドと異なる第3通信バンドの受信信号を増幅可能であり、
     前記第1出力端子は、前記第1通信バンド及び前記第2通信バンドの受信信号を外部に供給するための端子であり、
     前記第2出力端子は、前記第2通信バンド及び前記第3通信バンドの受信信号を外部に供給するための端子である、
     請求項1~3のいずれか1項に記載の高周波回路。
    The first low noise amplifier can amplify the received signal of the first communication band.
    The second low noise amplifier can amplify a received signal in a second communication band different from the first communication band.
    The third low noise amplifier can amplify the received signal of the first communication band and the third communication band different from the second communication band.
    The first output terminal is a terminal for supplying the reception signals of the first communication band and the second communication band to the outside.
    The second output terminal is a terminal for supplying the reception signals of the second communication band and the third communication band to the outside.
    The high frequency circuit according to any one of claims 1 to 3.
  5.  前記スイッチ回路は、
     前記第1通信バンドの受信信号と前記第2通信バンドの受信信号とを同時受信する場合に、前記第2低雑音増幅器の出力を前記第2出力端子に接続し、
     前記第2通信バンドの受信信号と前記第3通信バンドの受信信号とを同時受信する場合に、前記第2低雑音増幅器の出力を前記第1出力端子に接続し、
     前記第1通信バンドの受信信号と前記第3通信バンドの受信信号とを同時受信する場合に、前記第2低雑音増幅器の出力を前記第1出力端子及び前記第2出力端子のいずれにも接続しない、
     請求項4に記載の高周波回路。
    The switch circuit is
    When the reception signal of the first communication band and the reception signal of the second communication band are simultaneously received, the output of the second low noise amplifier is connected to the second output terminal.
    When the reception signal of the second communication band and the reception signal of the third communication band are simultaneously received, the output of the second low noise amplifier is connected to the first output terminal.
    When the reception signal of the first communication band and the reception signal of the third communication band are simultaneously received, the output of the second low noise amplifier is connected to both the first output terminal and the second output terminal. do not do,
    The high frequency circuit according to claim 4.
  6.  前記第1通信バンドは、1400MHz以上1700MHz以下の通信バンド群に含まれ、
     前記第2通信バンドは、1700MHz以上2200MHz以下の通信バンド群に含まれ、
     前記第3通信バンドは、2300MHz以上2700MHz以下の通信バンド群に含まれる、
     請求項4又は5に記載の高周波回路。
    The first communication band is included in the communication band group of 1400 MHz or more and 1700 MHz or less.
    The second communication band is included in the communication band group of 1700 MHz or more and 2200 MHz or less.
    The third communication band is included in the communication band group of 2300 MHz or more and 2700 MHz or less.
    The high frequency circuit according to claim 4 or 5.
  7.  前記第1通信バンドは、LTE(Long Term Evolution)又は5GNR(5th Generation New Radio)のためのバンド11、21及び32のうちの少なくも1つを含み、
     前記第2通信バンドは、LTE及び5GNRのためのバンド2、3、25、34、39及び70のうちの少なくとも1つを含み、
     前記第3通信バンドは、LTE及び5GNRのためのバンド7、30、40及び41のうちの少なくとも1つを含む、
     請求項6に記載の高周波回路。
    The first communication band includes at least one of bands 11, 21 and 32 for LTE (Long Term Evolution) or 5G NR (5th Generation New Radio).
    The second communication band comprises at least one of bands 2, 3, 25, 34, 39 and 70 for LTE and 5G NR.
    The third communication band comprises at least one of bands 7, 30, 40 and 41 for LTE and 5G NR.
    The high frequency circuit according to claim 6.
  8.  前記第2通信バンドは、少なくとも一部が互いに重複する複数の第2通信バンドを含み、
     前記高周波回路は、さらに、前記第2低雑音増幅器の入力に接続され、前記複数の第2通信バンドを含む通過帯域を有するフィルタを備える、
     請求項6又は7に記載の高周波回路。
    The second communication band includes a plurality of second communication bands at least partially overlapping each other.
    The high frequency circuit further comprises a filter connected to the input of the second low noise amplifier and having a pass band including the plurality of second communication bands.
    The high frequency circuit according to claim 6 or 7.
  9.  前記複数の第2通信バンドは、LTE及び5GNRのためのバンド2、25及び70のうちの少なくとも2つを含む、
     請求項8に記載の高周波回路。
    The plurality of second communication bands include at least two of bands 2, 25 and 70 for LTE and 5G NR.
    The high frequency circuit according to claim 8.
  10.  前記第1通信バンドは、1700MHz以上2025MHz以下の通信バンド群に含まれ、
     前記第2通信バンドは、1880MHz以上2200MHz以下の通信バンド群に含まれ、
     前記第3通信バンドは、2300MHz以上2700MHz以下の通信バンド群に含まれる、
     請求項4又は5に記載の高周波回路。
    The first communication band is included in the communication band group of 1700 MHz or more and 2025 MHz or less.
    The second communication band is included in the communication band group of 1880 MHz or more and 2200 MHz or less.
    The third communication band is included in the communication band group of 2300 MHz or more and 2700 MHz or less.
    The high frequency circuit according to claim 4 or 5.
  11.  前記第1通信バンドは、LTE及び5GNRのためのバンド2、3、25、34、39及び70のうちの少なくも1つを含み、
     前記第2通信バンドは、LTE及び5GNRのためのバンド1、4、34、39及び66のうちの少なくとも1つを含み、
     前記第3通信バンドは、LTE及び5GNRのためのバンド7、30、40及び41のうちの少なくとも1つを含む、
     請求項10に記載の高周波回路。
    The first communication band comprises at least one of bands 2, 3, 25, 34, 39 and 70 for LTE and 5G NR.
    The second communication band comprises at least one of bands 1, 4, 34, 39 and 66 for LTE and 5G NR.
    The third communication band comprises at least one of bands 7, 30, 40 and 41 for LTE and 5G NR.
    The high frequency circuit according to claim 10.
  12.  前記第1通信バンドは、少なくとも一部が互いに重複する複数の第1通信バンドを含み、
     前記高周波回路は、さらに、前記第1低雑音増幅器の入力に接続され、前記複数の第1通信バンドを含む通過帯域を有するフィルタを備える、
     請求項10又は11に記載の高周波回路。
    The first communication band includes a plurality of first communication bands at least partially overlapping each other.
    The high frequency circuit further comprises a filter connected to the input of the first low noise amplifier and having a pass band including the plurality of first communication bands.
    The high frequency circuit according to claim 10 or 11.
  13.  前記複数の第1通信バンドは、LTE及び5GNRのためのバンド2、25及び70のうちの少なくとも2つを含む、
     請求項12に記載の高周波回路。
    The plurality of first communication bands include at least two of bands 2, 25 and 70 for LTE and 5G NR.
    The high frequency circuit according to claim 12.
  14.  前記複数の第1通信バンドは、LTEのためのバンド25及び70を含む、
     請求項13に記載の高周波回路。
    The plurality of first communication bands include bands 25 and 70 for LTE.
    The high frequency circuit according to claim 13.
  15.  前記第2通信バンドは、少なくとも一部が互いに重複する複数の第2通信バンドを含み、
     前記高周波回路は、さらに、前記第2低雑音増幅器の入力に接続され、前記複数の第2通信バンドを含む通過帯域を有するフィルタを備える、
     請求項10~14のいずれか1項に記載の高周波回路。
    The second communication band includes a plurality of second communication bands at least partially overlapping each other.
    The high frequency circuit further comprises a filter connected to the input of the second low noise amplifier and having a pass band including the plurality of second communication bands.
    The high frequency circuit according to any one of claims 10 to 14.
  16.  前記複数の第2通信バンドは、LTE及び5GNRのためのバンド1、4及び66のうちの少なくとも2つを含む、
     請求項15に記載の高周波回路。
    The plurality of second communication bands include at least two of bands 1, 4 and 66 for LTE and 5G NR.
    The high frequency circuit according to claim 15.
  17.  前記高周波回路は、さらに、
     高周波信号を外部に供給するための第3出力端子と、
     前記第3出力端子に接続される第4低雑音増幅器と、を備え、
     前記スイッチ回路は、さらに、前記第3出力端子に接続され、
     前記第3低雑音増幅器は、前記スイッチ回路を介して、前記第2出力端子及び前記第3出力端子に接続される、
     請求項1~16のいずれか1項に記載の高周波回路。
    The high frequency circuit further
    A third output terminal for supplying high frequency signals to the outside,
    A fourth low noise amplifier connected to the third output terminal is provided.
    The switch circuit is further connected to the third output terminal.
    The third low noise amplifier is connected to the second output terminal and the third output terminal via the switch circuit.
    The high frequency circuit according to any one of claims 1 to 16.
  18.  前記第1低雑音増幅器は、第1通信バンドの受信信号を増幅可能であり、
     前記第2低雑音増幅器は、前記第1通信バンドと異なる第2通信バンドの受信信号を増幅可能であり、
     前記第3低雑音増幅器は、前記第1通信バンド及び前記第2通信バンドと異なる第3通信バンドの受信信号を増幅可能であり、
     前記第4低雑音増幅器は、前記第1通信バンド、前記第2通信バンド及び前記第3通信バンドと異なる第4通信バンドの受信信号を増幅可能であり、
     前記第1出力端子は、前記第1通信バンド及び前記第2通信バンドの受信信号を外部に供給するための端子であり、
     前記第2出力端子は、前記第2通信バンド及び前記第3通信バンドの受信信号を外部に供給するための端子であり、
     前記第3出力端子は、前記第3通信バンド及び前記第4通信バンドの受信信号を外部に供給するための端子である、
     請求項17に記載の高周波回路。
    The first low noise amplifier can amplify the received signal of the first communication band.
    The second low noise amplifier can amplify a received signal in a second communication band different from the first communication band.
    The third low noise amplifier can amplify the received signal of the first communication band and the third communication band different from the second communication band.
    The fourth low noise amplifier can amplify a reception signal of a fourth communication band different from the first communication band, the second communication band, and the third communication band.
    The first output terminal is a terminal for supplying the reception signals of the first communication band and the second communication band to the outside.
    The second output terminal is a terminal for supplying the reception signals of the second communication band and the third communication band to the outside.
    The third output terminal is a terminal for supplying the reception signals of the third communication band and the fourth communication band to the outside.
    The high frequency circuit according to claim 17.
  19.  前記第1通信バンドは、1400MHz以上1700MHz以下の通信バンド群に含まれ、
     前記第2通信バンドは、1700MHz以上2025MHz以下の通信バンド群に含まれ、
     前記第3通信バンドは、1880MHz以上2200MHz以下の通信バンド群に含まれ、
     前記第4通信バンドは、2300MHz以上2700MHz以下の通信バンド群に含まれる、
     請求項18に記載の高周波回路。
    The first communication band is included in the communication band group of 1400 MHz or more and 1700 MHz or less.
    The second communication band is included in the communication band group of 1700 MHz or more and 2025 MHz or less.
    The third communication band is included in the communication band group of 1880 MHz or more and 2200 MHz or less.
    The fourth communication band is included in the communication band group of 2300 MHz or more and 2700 MHz or less.
    The high frequency circuit according to claim 18.
  20.  前記第2低雑音増幅器は、第1通信システム及び前記第1通信システムと異なる第2通信システムの受信信号を増幅可能であり、
     前記第1出力端子は、前記第1通信システム及び前記第2通信システムの一方の受信信号を外部に供給するための端子であり、
     前記第2出力端子は、前記第1通信システム及び前記第2通信システムの他方の受信信号を外部に供給するための端子である、
     請求項1~3のいずれか1項に記載の高周波回路。
    The second low noise amplifier can amplify the received signal of the first communication system and the second communication system different from the first communication system.
    The first output terminal is a terminal for supplying a received signal of one of the first communication system and the second communication system to the outside.
    The second output terminal is a terminal for supplying the other received signal of the first communication system and the second communication system to the outside.
    The high frequency circuit according to any one of claims 1 to 3.
PCT/JP2021/029286 2020-08-21 2021-08-06 High-frequency circuit WO2022039051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-140429 2020-08-21
JP2020140429 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022039051A1 true WO2022039051A1 (en) 2022-02-24

Family

ID=80322725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029286 WO2022039051A1 (en) 2020-08-21 2021-08-06 High-frequency circuit

Country Status (1)

Country Link
WO (1) WO2022039051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009651A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 High-frequency circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200183A (en) * 2016-04-29 2017-11-02 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Shielded diversity receiving module
JP2018523947A (en) * 2015-08-07 2018-08-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Cascaded switch between multiple LNAs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523947A (en) * 2015-08-07 2018-08-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Cascaded switch between multiple LNAs
JP2017200183A (en) * 2016-04-29 2017-11-02 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Shielded diversity receiving module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009651A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 High-frequency circuit

Similar Documents

Publication Publication Date Title
CN212935883U (en) High-frequency circuit and communication device
US11336310B2 (en) Radio frequency circuit and communication device
US11349510B2 (en) Radio frequency front end module and communication device
JP2021150908A (en) High frequency circuit and communication device
CN111756386B (en) Front-end circuit and communication device
WO2022039051A1 (en) High-frequency circuit
WO2020129882A1 (en) Front end module and communication device
US11362626B2 (en) High frequency amplifier circuit and communication device
US20230163796A1 (en) High-frequency circuit and communication device
CN111756403A (en) Front-end circuit and communication device
WO2022075253A1 (en) High frequency circuit and communication device
JP2014090222A (en) Radio communication device
WO2022034817A1 (en) High-frequency module and communication device
WO2024024226A1 (en) High frequency circuit
WO2023195263A1 (en) High frequency circuit and communication device
WO2022209665A1 (en) High frequency circuit and communication device
WO2022014317A1 (en) High-frequency circuit and communication device
WO2022202048A1 (en) High-frequency circuit
US20230163791A1 (en) Radio-frequency circuit
WO2022264862A1 (en) High-frequency circuit and communication device
WO2023058414A1 (en) High-frequency circuit and communication device
WO2024042910A1 (en) High-frequency module and communication device
WO2022074942A1 (en) High frequency circuit
WO2022259987A1 (en) High-frequency module and communication device
WO2023243188A1 (en) High-frequency circuit and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP