WO2022038851A1 - Knocking signal processing device and method - Google Patents

Knocking signal processing device and method Download PDF

Info

Publication number
WO2022038851A1
WO2022038851A1 PCT/JP2021/019269 JP2021019269W WO2022038851A1 WO 2022038851 A1 WO2022038851 A1 WO 2022038851A1 JP 2021019269 W JP2021019269 W JP 2021019269W WO 2022038851 A1 WO2022038851 A1 WO 2022038851A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
knocking
digital filter
correction
signal processing
Prior art date
Application number
PCT/JP2021/019269
Other languages
French (fr)
Japanese (ja)
Inventor
諭史 小島
好彦 赤城
伸也 眞戸原
宏典 高橋
淳史 小此木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022543284A priority Critical patent/JP7314420B2/en
Publication of WO2022038851A1 publication Critical patent/WO2022038851A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to a knocking signal processing device and a method, for example, to a function of correcting an input signal on engine control. Further, for example, the present invention relates to processing of a knocking signal for determining the occurrence of knocking from vibration generated by abnormal combustion of an engine.
  • the function of filtering signals on engine control is used for the input of various sensors.
  • the knocking signal filter is required to have advanced functions. The reason is that the gas in the combustion chamber vibrates due to the self-ignition of the unburned gas in the terminal part of the combustion chamber, and the phenomenon that this vibration is transmitted to the main body of the engine affects not only the combustion but also the vibration characteristics of the main body of the engine. Because. Knocking causes loss of energy generated by the engine (decrease in output), impact on each part of the engine, decrease in fuel consumption, etc., so it is desirable to avoid it as much as possible. For that purpose, it is desirable to accurately detect the occurrence of knocking.
  • this filter function is realized by a digital filter by software implemented in a microcomputer. Further, a method of configuring a digital filter as a function of a microcomputer is also known.
  • Patent Document 1 discloses a method for solving a response delay caused by a delay filter used for detecting BGL (background level).
  • the operating state of the engine is detected by the change of the engine speed, and the knocking determination threshold value is corrected based on the operating state.
  • a knocking frequency band which is a frequency band peculiar to knocking
  • a disturbance which is a frequency band peculiar to disturbance noise
  • the vibration signal is affected by factors such as the circuit configuration of the knocking detection control device, the connector, the harness, the circuit of the engine control device, the unique input impedance (internal impedance of the delta-sigma AD converter, etc.), the output impedance, and the like. Therefore, the measurement accuracy of the knocking signal varies from individual to individual.
  • the conventional technique has a problem that an additional circuit (for example, the voltage follower circuit described above) is required to improve the measurement accuracy of the knocking signal.
  • an additional circuit for example, the voltage follower circuit described above
  • An object of the present invention is to provide a knocking signal processing device and a method for suppressing variation among individuals and improving the measurement accuracy of a knocking signal without using an additional circuit.
  • An example of the knocking signal processing device is A knocking signal processing device that can be mounted on a vehicle.
  • AD converter A plurality of digital filters arranged after the AD converter and having different frequency characteristics,
  • the correction signal output unit that outputs the correction signal and Equipped with The knocking signal processing device is configured so that the outputs of the plurality of digital filters are changed according to the correction signal.
  • the knocking signal processing method according to the present invention is: It is a knocking signal processing method for vehicles.
  • AD converter A plurality of digital filters arranged after the AD converter and having different frequency characteristics, The output of the plurality of digital filters is modified according to the correction signal in the method performed using.
  • This specification includes the disclosure of Japanese Patent Application No. 2020-137428, which is the basis of the priority of the present application.
  • the knocking signal processing device and method according to the present invention since the output of the digital filter is changed according to the correction signal, the measurement accuracy of the knocking signal is suppressed by suppressing the variation among individuals without using an additional circuit. Can be improved.
  • the control configuration of the knocking signal processing apparatus according to the first embodiment.
  • the flowchart of correction control in 1st Embodiment. The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG.
  • the flowchart of the correction control in the 2nd Embodiment. The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG.
  • a control configuration of the knocking signal processing device according to the third embodiment.
  • the flowchart of the correction control in the 3rd Embodiment The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG.
  • FIG. 1 is a diagram showing a control configuration of a knocking signal processing device according to a first embodiment of the present invention.
  • the knocking signal processing device can be mounted on a vehicle and measures the knocking signal of an internal combustion engine.
  • the knocking signal processing device is configured to execute a vehicle knocking signal processing method as described below.
  • the knocking signal processing device includes an ECU 100 and a correction signal output unit 10.
  • the correction signal output unit 10 is provided outside the ECU 100.
  • the ECU 100 is, for example, a computer having a known configuration. It may include a CPU and a memory. The program may be stored in the memory. By executing this program by the CPU, the computer may function as the ECU 100.
  • the correction signal functions as a reference signal used to correct the coefficient of the digital filter or its output.
  • the correction signal is a signal with a known frequency and signal strength.
  • a sine wave signal having a constant frequency and a constant amplitude can be used.
  • the ECU 100 includes a delta sigma AD converter 20 (AD converter) that converts an analog signal into a digital signal, and a digital filter processing unit 30 that is set as a BPF (bandpass filter) for passing a specific frequency band from the digital signal. ,
  • the arithmetic unit 50 is provided.
  • a correction signal is input to the delta-sigma AD converter 20.
  • a vehicle vibration signal (including a knocking signal) is input instead of the correction signal.
  • an analog signal can be directly used as an input to the ECU 100.
  • the digital filter processing unit 30 is arranged after the delta sigma AD converter 20.
  • the digital filter processing unit 30 includes a plurality of digital filters having different frequency characteristics.
  • the frequency characteristic is represented by, for example, the cutoff frequency, the pass band, and the like.
  • Each digital filter of the digital filter processing unit 30 extracts and outputs a signal strength 40 having a different frequency (or a frequency band including that frequency; the same applies hereinafter) from the output of the delta-sigma AD converter 20.
  • the arithmetic unit 50 acquires the signal strength difference 42 of each frequency based on the signal strength 40 of each frequency and the reference signal strength 41 of each frequency, and based on this, the coefficient of the digital filter of the digital filter processing unit 30 ( BPF coefficient) is changed. The processing at this time will be described below.
  • FIG. 2 is a flowchart of the correction control in the first embodiment
  • FIG. 3 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the first embodiment.
  • a correction signal is input to the delta-sigma AD converter 20 (S110).
  • the delta-sigma AD converter 20 takes in the correction signal, converts it into a digital signal, and outputs the digital signal (S120).
  • As the correction signal a frequency different from that of each digital filter is used as described later.
  • Subsequent processing is executed independently for each digital filter (that is, for each frequency).
  • the processing of each frequency may be executed in parallel or sequentially.
  • a digital filter having a center frequency of 7 kHz in the pass band will be described as an example, but the same applies to digital filters having other frequencies.
  • the arithmetic unit 50 selects the frequency to be processed (S131, 7 kHz in this example). Next, the arithmetic unit 50 selects a digital filter having that frequency, and as shown in FIG. 3A, the coefficient (gain) of the digital filter is set so that the passing characteristic (gain) of the digital filter with respect to the correction signal is 0 dB. BPF coefficient) is changed (S132).
  • the correction signal is a sine wave signal of 7 kHz in this example, and the coefficient of the digital filter is changed so that the gain at the output when this correction signal is input is 0 dB.
  • the coefficient expression method, coefficient calculation method, and coefficient setting method for the digital filter at this time can be designed based on known techniques. For example, it can be determined based on the specifications of the software constituting the digital filter processing unit 30.
  • the corresponding frequency is analyzed (S140).
  • a knocking signal having a corresponding frequency (7 kHz in this example) is input to the digital filter via the delta-sigma AD converter 20, and the signal strength of the output of the digital filter is detected.
  • the gain of the detected signal strength with respect to the knocking signal is -1 dB at 7 kHz.
  • the knocking signal As this knocking signal, the one measured in the actual environment in which the knocking signal processing device is installed can be used. That is, a knocking signal including variations due to factors such as the circuit configuration of the knocking signal processing device, the connector, the harness, the circuit of the engine control device, the unique input impedance (internal impedance of the delta sigma AD converter, etc.), the output impedance, etc. should be used. Can be done.
  • the actual vibration signal measured by the vibration sensor or the like may be input to the digital filter processing unit 30 via the delta-sigma AD converter 20. Further, the actual vibration signal may be recorded in advance and reproduced in S140.
  • the arithmetic unit 50 acquires the reference signal strength for that frequency (S141).
  • the reference signal strength represents, for example, a gain, and can be 0 dB for all frequencies, for example, as shown in FIG. 3 (b).
  • the arithmetic unit 50 acquires the difference between the gain (-1 dB) of the signal strength detected for the knocking signal and the gain (0 dB) of the reference signal strength (S142). Then, based on this difference, the coefficient of the digital filter is calculated so that the signal strength with respect to the knocking signal used in S140 matches the reference signal strength (S151). For example, it is calculated so that this difference is added or subtracted to the passing characteristics of the knocking signal at that frequency. As a result, as shown in FIG. 3D, the pass characteristic (gain) of the digital filter with respect to the correction signal is + 1 dB, and the pass characteristic (gain) of the digital filter with respect to the knocking signal is 0 dB.
  • the arithmetic unit 50 updates the calculated coefficient as the coefficient of the digital filter (S152). In this way, the correction control of FIG. 2 is completed.
  • the knocking signal is measured after the correction control
  • the actual vibration signal measured by the vibration sensor or the like is processed by the delta-sigma AD converter 20 and the digital filter processing unit 30 instead of the correction signal.
  • the arithmetic unit 50 detects knocking based on the output.
  • the specific processing content of the measurement of the knocking signal can be appropriately designed by a person skilled in the art based on a known knocking signal processing technique.
  • the knocking signal processing device is a knocking signal processing device that can be mounted on a vehicle and is arranged after the delta sigma AD converter 20 and the delta sigma AD converter 20.
  • a plurality of digital filters digital filter processing unit 30 having different frequency characteristics and a correction signal output unit 10 for outputting a correction signal are provided, and the outputs of the plurality of digital filters are configured to be changed according to the correction signal.
  • the output of each digital filter is configured to be changed according to the difference between the correction signal (ideal amplitude) and the actual knocking signal (measured amplitude).
  • each digital filter digital filter processing unit 30
  • the coefficient of each digital filter is changed based on the difference between the gain for the correction signal in each digital filter (digital filter processing unit 30) and the gain for the actually measured signal. It is not necessary to perform a correction calculation again for the output result of each digital filter (digital filter processing unit 30), and the actual measurement processing of the knocking signal is simplified.
  • the knocking signal processing device includes the ECU 100 and the correction signal output unit 10 is provided outside the ECU 100, it is not necessary to change the internal structure of the ECU 100, and the design or mounting is easy.
  • the correction signal is a sine wave signal having a constant frequency and a constant amplitude, it is easy to generate the correction signal.
  • the knocking signal processing device does not require an additional circuit such as a voltage follower circuit. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
  • the second embodiment of the present invention is the first embodiment in which the configuration for changing the output of the digital filter is changed.
  • the description of the parts common to the first embodiment may be omitted.
  • FIG. 4 is a flowchart of the correction control in the second embodiment
  • FIG. 5 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the second embodiment.
  • the processing of S110 to S131 can be the same as that of the first embodiment (FIG. 2).
  • the coefficient (BPF coefficient) of the digital filter is changed so that the pass characteristic (gain) of the digital filter with respect to the correction signal becomes 0 dB, and the output of the digital filter is obtained.
  • the correction coefficient is set to 0 dB (S133).
  • the "correction coefficient” means a coefficient used when the arithmetic unit 50 corrects the amplitude of the signal output from the digital filter.
  • the processing of S140 to S142 can be the same as that of the first embodiment (FIG. 2).
  • the gain of the detected signal strength as shown in FIG. 5 (c) is -1 dB at 7 kHz.
  • the reference signal strength (gain) can be set to 0 dB for all frequencies, for example, as shown in FIG. 5 (b).
  • the arithmetic unit 50 determines the correction coefficient for the output of the digital filter based on this difference (S153).
  • the correction coefficient is + 1 dB for 7 kHz.
  • the correction coefficient determined here is used to correct the output of the digital filter when actually measuring the knocking signal.
  • the arithmetic unit 50 further amplifies the output of the 7 kHz digital filter with respect to the actually input vibration signal by 1 dB, and measures the knocking signal based on the amplified signal. In this way, it is possible to obtain the same result as when the passing characteristics (gain) of the digital filter are substantially changed.
  • the knocking signal processing device is a knocking signal processing device that can be mounted on a vehicle as in the first embodiment, and is a delta sigma AD converter 20 and a delta sigma.
  • a plurality of digital filters (digital filter processing unit 30) arranged after the AD converter 20 and having different frequency characteristics, and a correction signal output unit 10 for outputting a correction signal are provided, and the output of each digital filter is used as a correction signal. It is configured to change accordingly. More specifically, the output of each digital filter is configured to be changed according to the difference between the correction signal (ideal amplitude) and the actual knocking signal (measured amplitude).
  • each digital filter is corrected based on the difference between the gain for the correction signal in each digital filter (digital filter processing unit 30) and the gain for the actually measured signal. Since the output of the digital filter (digital filter processing unit 30) is changed by executing the calculation, it is not necessary to set the coefficient itself of the digital filter (digital filter processing unit 30), and the digital filter (digital filter processing unit 30) does not need to be set. ) Can be omitted.
  • the knocking signal processing device includes the ECU 100 and the correction signal output unit 10 is provided outside the ECU 100, it is not necessary to change the internal structure of the ECU 100, and the design or mounting is easy.
  • the correction signal is a sine wave signal having a constant frequency and a constant amplitude, it is easy to generate the correction signal.
  • no additional circuit such as a voltage follower circuit is required. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
  • the correction signal is a constant frequency and constant amplitude sinusoidal signal.
  • the correction signal may be a signal having another shape.
  • the frequency of the correction signal may be configured to change with time.
  • the correction signal may be a frequency-variable signal that sweeps a predetermined frequency range (for example, a frequency range that covers the corresponding frequencies of all the digital filters of the digital filter processing unit 30). By doing so, the processing for each digital filter can be performed in order, and the design of the correction control is simplified.
  • the “sweep” is not limited to a continuous sweep, but includes a discrete sweep that outputs signals of each frequency in order for a plurality of discretized frequencies.
  • the third embodiment uses a BGL (background level) signal as a correction signal in the first embodiment or a modification thereof.
  • BGL background level
  • the BGL signal output unit 11 outputs a BGL signal.
  • the BGL signal is a vibration signal in a state where the vehicle is actually operating. Further, the BGL signal is a signal indicating a state in which knocking has not occurred.
  • Such a BGL signal can be prepared by actually measuring the vibration for each vehicle.
  • the BGL signal output unit 11 may include a vibration sensor 12, which measures vibration corresponding to the background level of vibration of the internal combustion engine and corrects a signal representing the measured vibration (BGL). It may be output as a signal).
  • the delta-sigma AD converter 20 and the digital filter processing unit 30 extract signal intensities 40 having different frequencies.
  • the arithmetic unit 50 acquires the BGL intensity difference 44 of each frequency based on the signal intensity 40 of each frequency and the reference BGL intensity 43 of each frequency, and based on this, the coefficient of the digital filter of the digital filter processing unit 30 ( BPF coefficient) is changed. The processing at this time will be described below.
  • FIG. 7 is a flowchart of the correction control in the third embodiment
  • FIG. 8 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the third embodiment.
  • the coefficient (BPF coefficient) of the digital filter is changed so that the passing characteristic (gain) of the digital filter becomes 0 dB (S132).
  • the coefficient is set so that the gain when a sine wave of that frequency is input is 0 dB without using the above-mentioned BGL signal.
  • the BGL signal from the delta-sigma AD converter 20 is input to the digital filter, and the signal strength (BGL strength) of the output of the digital filter with respect to this is detected (S143).
  • the gain of the detected BGL intensity is -9 dB at 7 kHz.
  • the arithmetic unit 50 acquires the reference BGL intensity for the frequency (S144).
  • the reference signal strength represents, for example, a gain, for example, -10 dB for 7 kHz, as shown in FIG. 8 (b).
  • the arithmetic unit 50 acquires the difference between the detected BGL intensity gain (-9 dB) and the reference BGL intensity gain (-10 dB) (S145). Then, based on this difference, the coefficient of the digital filter is calculated so that the detected BGL intensity matches the reference BGL intensity (S154). For example, it is calculated so that this difference is added or subtracted to the passing characteristics of the frequency. As a result, as shown in FIG. 8D, the passing characteristic (gain) of the digital filter for the 7 kHz sine wave signal is -1 dB. Although not shown, the pass characteristic (gain) of the digital filter with respect to the BGL signal is -10 dB.
  • the arithmetic unit 50 updates the calculated coefficient as the coefficient of the digital filter (S155). In this way, the correction control of FIG. 7 ends.
  • the knocking signal processing device is a knocking signal processing device that can be mounted on the vehicle as in the first and second embodiments, and is the delta sigma AD converter 20.
  • a plurality of digital filters (digital filter processing unit 30) arranged after the delta sigma AD converter 20 and having different frequency characteristics, and a correction signal output unit 10 for outputting a correction signal, and the output of each digital filter is It is configured to be changed according to the correction signal (that is, the BGL signal). More specifically, the output of each digital filter is configured to be changed according to the difference between the BGL signal (ideal amplitude) and the actual knocking signal (measured amplitude).
  • the correction signal output unit (BGL signal output unit 11) includes a vibration sensor 12, which measures vibration representing the background level of vibration of the internal combustion engine and outputs a signal representing vibration as a correction signal. Therefore, the coefficient of the digital filter can be optimized for the actual operating environment.
  • no additional circuit such as a voltage follower circuit is required. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
  • the third embodiment has been described as a modification to the first embodiment, it can also be implemented as a second embodiment or a modification thereof.

Abstract

Provided are a device and a method for processing a knocking signal, which enable improvement in the accuracy of knocking signal measurement by minimizing variations among individual units without using an additional circuit. The knocking signal processing device can be mounted on a vehicle. The knocking signal processing device is provided with: a delta-sigma AD converter 20; a plurality of digital filters (digital filter processing unit 30) that have different frequency properties and that are each disposed at a stage subsequent to the delta-sigma AD converter 20; and a BGL signal output unit 11 or a correction signal output unit 10 for outputting a correction signal. The knocking signal processing device is configured so as to cause the output of the digital filter processing unit 30 to be varied depending on the correction signal.

Description

ノッキング信号処理装置および方法Knocking signal processing device and method
 本発明はノッキング信号処理装置および方法に関し、たとえば、エンジン制御上の入力信号を補正する機能に関する。また、たとえば、エンジンの異常燃焼によって発生する振動からノッキングの発生を判定するノッキング信号の処理に関する。 The present invention relates to a knocking signal processing device and a method, for example, to a function of correcting an input signal on engine control. Further, for example, the present invention relates to processing of a knocking signal for determining the occurrence of knocking from vibration generated by abnormal combustion of an engine.
 エンジンの制御上の信号をフィルタする機能は、各種センサの入力に使われている。その中でも、ノッキング信号のフィルタには高度な機能が要求される。その理由は、燃焼室内の端末部の未燃ガスの自己発火により燃焼室内のガスが振動を起こし、この振動が機関本体に伝わる現象が、燃焼だけでなく、機関本体の振動特性にも影響するからである。ノッキングは、機関の発生エネルギの損失(出力低下)、機関各部への衝撃、燃費の低下、等を招くため、可能な限り回避することが望ましい。そのためには、ノッキングの発生を正確に検出することが望ましい。 The function of filtering signals on engine control is used for the input of various sensors. Among them, the knocking signal filter is required to have advanced functions. The reason is that the gas in the combustion chamber vibrates due to the self-ignition of the unburned gas in the terminal part of the combustion chamber, and the phenomenon that this vibration is transmitted to the main body of the engine affects not only the combustion but also the vibration characteristics of the main body of the engine. Because. Knocking causes loss of energy generated by the engine (decrease in output), impact on each part of the engine, decrease in fuel consumption, etc., so it is desirable to avoid it as much as possible. For that purpose, it is desirable to accurately detect the occurrence of knocking.
 近年、このフィルタ機能は、マイクロコンピュータに実装されるソフトウェアによるデジタルフィルタで実現することも知られている。さらには、マイクロコンピュータの機能としてデジタルフィルタを構成する方法も知られている。 In recent years, it is also known that this filter function is realized by a digital filter by software implemented in a microcomputer. Further, a method of configuring a digital filter as a function of a microcomputer is also known.
 例えば、特許文献1には、BGL(バックグラウンドレベル)を検出するために用いる遅れフィルタに起因する応答遅れを解決する手法が開示されている。この特許文献1においては、エンジン回転数の変化によりエンジンの運転状態を検出し、その運転状態に基づきノッキング判定閾値を補正している。 For example, Patent Document 1 discloses a method for solving a response delay caused by a delay filter used for detecting BGL (background level). In Patent Document 1, the operating state of the engine is detected by the change of the engine speed, and the knocking determination threshold value is corrected based on the operating state.
 また、下記特許文献2では、ノッキング判定の精度を向上するため、ノッキング検出制御装置が検出したノッキング信号からノッキングに特有の周波数帯であるノッキング周波数帯と、外乱ノイズに特有の周波数帯である外乱ノイズ周波数帯とを抽出するためにフィルタ処理を用いた制御を行っている。 Further, in Patent Document 2 below, in order to improve the accuracy of knocking determination, a knocking frequency band, which is a frequency band peculiar to knocking, and a disturbance, which is a frequency band peculiar to disturbance noise, are used from the knocking signal detected by the knocking detection control device. Control using filter processing is performed to extract the noise frequency band.
 ノッキング信号を含む振動信号を、デルタシグマADコンバータおよびデジタルフィルタ機能を用いて測定する場合を考える。振動信号は、ノッキング検出制御装置の回路構成、コネクタ、ハーネス、エンジン制御装置の回路、固有の入力インピーダンス(デルタシグマADコンバータの内部インピーダンス等)、出力インピーダンス、等の要因によって影響を受ける。このため、ノッキング信号の測定精度に、個体毎のばらつきが発生する。 Consider the case of measuring a vibration signal including a knocking signal using a delta-sigma AD converter and a digital filter function. The vibration signal is affected by factors such as the circuit configuration of the knocking detection control device, the connector, the harness, the circuit of the engine control device, the unique input impedance (internal impedance of the delta-sigma AD converter, etc.), the output impedance, and the like. Therefore, the measurement accuracy of the knocking signal varies from individual to individual.
 従来では、このような様々な要因による個体毎のばらつきを抑制してノッキング信号の測定精度を向上させるために、例えば入力回路にオペアンプを用いたボルテージフォロア回路を追加していた。 Conventionally, in order to suppress the variation among individuals due to such various factors and improve the measurement accuracy of the knocking signal, for example, a voltage follower circuit using an operational amplifier has been added to the input circuit.
特開昭63-295864号公報Japanese Unexamined Patent Publication No. 63-295864 特開2018-3631号公報Japanese Unexamined Patent Publication No. 2018-3631
 しかしながら、従来の技術では、ノッキング信号の測定精度を向上させるために追加の回路(たとえば上述のボルテージフォロア回路)が必要になるという課題があった。 However, the conventional technique has a problem that an additional circuit (for example, the voltage follower circuit described above) is required to improve the measurement accuracy of the knocking signal.
 本発明の目的は、追加の回路を用いずに、個体毎のばらつきを抑制してノッキング信号の測定精度を向上させる、ノッキング信号処理装置および方法を提供する事にある。 An object of the present invention is to provide a knocking signal processing device and a method for suppressing variation among individuals and improving the measurement accuracy of a knocking signal without using an additional circuit.
 本発明に係るノッキング信号処理装置の一例は、
 車両に搭載可能なノッキング信号処理装置であって、
 ADコンバータと、
 前記ADコンバータの後段に配置され、周波数特性が異なる複数のデジタルフィルタと、
 補正信号を出力する補正信号出力部と、
を備え、
 前記ノッキング信号処理装置は、前記複数のデジタルフィルタの出力が、前記補正信号に応じて変更されるように構成される。
An example of the knocking signal processing device according to the present invention is
A knocking signal processing device that can be mounted on a vehicle.
With AD converter
A plurality of digital filters arranged after the AD converter and having different frequency characteristics,
The correction signal output unit that outputs the correction signal and
Equipped with
The knocking signal processing device is configured so that the outputs of the plurality of digital filters are changed according to the correction signal.
 また、本発明に係るノッキング信号処理方法は、
 車両のノッキング信号処理方法であって、
 ADコンバータと、
 前記ADコンバータの後段に配置され、周波数特性が異なる複数のデジタルフィルタと、
を用いて実行される、方法において
 前記複数のデジタルフィルタの出力が、補正信号に応じて変更される。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-137428号の開示内容を包含する。
Further, the knocking signal processing method according to the present invention is:
It is a knocking signal processing method for vehicles.
With AD converter
A plurality of digital filters arranged after the AD converter and having different frequency characteristics,
The output of the plurality of digital filters is modified according to the correction signal in the method performed using.
This specification includes the disclosure of Japanese Patent Application No. 2020-137428, which is the basis of the priority of the present application.
 本発明に係るノッキング信号処理装置および方法によれば、デジタルフィルタの出力が補正信号に応じて変更されるので、追加の回路を用いずに、個体毎のばらつきを抑制してノッキング信号の測定精度を向上することができる。 According to the knocking signal processing device and method according to the present invention, since the output of the digital filter is changed according to the correction signal, the measurement accuracy of the knocking signal is suppressed by suppressing the variation among individuals without using an additional circuit. Can be improved.
第1の実施形態に係るノッキング信号処理装置の制御構成。The control configuration of the knocking signal processing apparatus according to the first embodiment. 第1の実施形態における補正制御のフローチャート。The flowchart of correction control in 1st Embodiment. 図2の補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフ。The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG. 第2の実施形態における補正制御のフローチャート。The flowchart of the correction control in the 2nd Embodiment. 図4の補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフ。The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG. 第3の実施形態に係るノッキング信号処理装置の制御構成。A control configuration of the knocking signal processing device according to the third embodiment. 第3の実施形態における補正制御のフローチャート。The flowchart of the correction control in the 3rd Embodiment. 図7の補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフ。The graph which shows the passing characteristic and the signal strength of the digital filter explaining the correction control of FIG.
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 The embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following embodiments, and various modifications and applications thereof are also included in the technical concept of the present invention. It is included in the range.
 以下、本発明にかかる第1、第2、および第3の実施形態を図面に基づいて説明する。なお、各図において、同一符号は同一部分を示す場合がある。 Hereinafter, the first, second, and third embodiments according to the present invention will be described with reference to the drawings. In each figure, the same reference numerals may indicate the same parts.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るノッキング信号処理装置の制御構成を示した図である。ノッキング信号処理装置は、車両に搭載可能なものであり、内燃機関のノッキング信号を測定する。ノッキング信号処理装置は、以下に説明するように、車両のノッキング信号処理方法を実行するよう構成される。
(First Embodiment)
FIG. 1 is a diagram showing a control configuration of a knocking signal processing device according to a first embodiment of the present invention. The knocking signal processing device can be mounted on a vehicle and measures the knocking signal of an internal combustion engine. The knocking signal processing device is configured to execute a vehicle knocking signal processing method as described below.
 ノッキング信号処理装置は、ECU100と、補正信号出力部10とを備える。補正信号出力部10は、ECU100の外部に設けられる。 The knocking signal processing device includes an ECU 100 and a correction signal output unit 10. The correction signal output unit 10 is provided outside the ECU 100.
 ECU100は、たとえば公知の構成を有するコンピュータである。CPUおよびメモリを備えてもよい。メモリにはプログラムが格納されてもよい。CPUがこのプログラムを実行することにより、コンピュータがECU100として機能してもよい。 The ECU 100 is, for example, a computer having a known configuration. It may include a CPU and a memory. The program may be stored in the memory. By executing this program by the CPU, the computer may function as the ECU 100.
 補正信号は、デジタルフィルタの係数またはその出力を補正するために用いられる基準信号として機能する。補正信号は、既知の周波数および信号強度を持つ信号である。補正信号の例として、定周波数かつ定振幅の正弦波信号を用いることができる。 The correction signal functions as a reference signal used to correct the coefficient of the digital filter or its output. The correction signal is a signal with a known frequency and signal strength. As an example of the correction signal, a sine wave signal having a constant frequency and a constant amplitude can be used.
 ECU100は、アナログ信号をデジタル信号に変換するデルタシグマADコンバータ20(ADコンバータ)と、デジタル信号から特定の周波数帯を通過させるためのBPF(バンドパスフィルタ)として設定されたデジタルフィルタ処理部30と、演算装置50とを備える。 The ECU 100 includes a delta sigma AD converter 20 (AD converter) that converts an analog signal into a digital signal, and a digital filter processing unit 30 that is set as a BPF (bandpass filter) for passing a specific frequency band from the digital signal. , The arithmetic unit 50 is provided.
 デルタシグマADコンバータ20には、補正信号が入力される。なお、ノッキング信号処理装置が実際のノッキング信号を測定する場合には、補正信号に代えて車両の振動信号(ノッキング信号を含む)が入力される。いずれの場合にも、デルタシグマADコンバータ20を用いることにより、ECU100への入力としてアナログ信号を直接用いることができる。 A correction signal is input to the delta-sigma AD converter 20. When the knocking signal processing device measures an actual knocking signal, a vehicle vibration signal (including a knocking signal) is input instead of the correction signal. In either case, by using the delta-sigma AD converter 20, an analog signal can be directly used as an input to the ECU 100.
 デジタルフィルタ処理部30は、デルタシグマADコンバータ20の後段に配置される。デジタルフィルタ処理部30は、周波数特性が異なる複数のデジタルフィルタを備える。周波数特性は、たとえばカットオフ周波数、通過帯域、等によって表される。 The digital filter processing unit 30 is arranged after the delta sigma AD converter 20. The digital filter processing unit 30 includes a plurality of digital filters having different frequency characteristics. The frequency characteristic is represented by, for example, the cutoff frequency, the pass band, and the like.
 デジタルフィルタ処理部30の各デジタルフィルタは、デルタシグマADコンバータ20の出力から、それぞれ異なる周波数(または、その周波数を含む周波数帯域。以下同様)の信号強度40を抽出して出力する。 Each digital filter of the digital filter processing unit 30 extracts and outputs a signal strength 40 having a different frequency (or a frequency band including that frequency; the same applies hereinafter) from the output of the delta-sigma AD converter 20.
 演算装置50は、各周波数の信号強度40と、各周波数の基準信号強度41とに基づき、各周波数の信号強度差分42を取得し、これに基づいてデジタルフィルタ処理部30のデジタルフィルタの係数(BPF係数)を変更する。この際の処理を、以下に説明する。 The arithmetic unit 50 acquires the signal strength difference 42 of each frequency based on the signal strength 40 of each frequency and the reference signal strength 41 of each frequency, and based on this, the coefficient of the digital filter of the digital filter processing unit 30 ( BPF coefficient) is changed. The processing at this time will be described below.
 図2は、第1の実施形態における補正制御のフローチャートであり、図3は、第1の実施形態における補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフである。 FIG. 2 is a flowchart of the correction control in the first embodiment, and FIG. 3 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the first embodiment.
 まず、デルタシグマADコンバータ20に補正信号が入力される(S110)。デルタシグマADコンバータ20は補正信号を取り込み、デジタル信号に変換し、デジタル信号を出力する(S120)。なお、この補正信号は、後述するようにデジタルフィルタごとに異なった周波数のものが用いられる。 First, a correction signal is input to the delta-sigma AD converter 20 (S110). The delta-sigma AD converter 20 takes in the correction signal, converts it into a digital signal, and outputs the digital signal (S120). As the correction signal, a frequency different from that of each digital filter is used as described later.
 その後の処理は、デジタルフィルタごとに(すなわち周波数ごとに)独立して実行される。各周波数の処理は、並列的に実行されてもよいし、逐次実行されてもよい。以下では、通過帯域の中心周波数が7kHzであるデジタルフィルタを例として説明するが、他の周波数のデジタルフィルタについても同様である。 Subsequent processing is executed independently for each digital filter (that is, for each frequency). The processing of each frequency may be executed in parallel or sequentially. In the following, a digital filter having a center frequency of 7 kHz in the pass band will be described as an example, but the same applies to digital filters having other frequencies.
 演算装置50は、処理対象とする周波数を選択する(S131、この例では7kHz)。次に、演算装置50は、その周波数のデジタルフィルタを選択し、図3(a)に示すように補正信号に対するそのデジタルフィルタの通過特性(利得)が0dBとなるように、デジタルフィルタの係数(BPF係数)を変更する(S132)。補正信号は、この例では7kHzの正弦波信号であり、デジタルフィルタの係数は、この補正信号を入力した場合の出力における利得が0dBとなるように変更される。 The arithmetic unit 50 selects the frequency to be processed (S131, 7 kHz in this example). Next, the arithmetic unit 50 selects a digital filter having that frequency, and as shown in FIG. 3A, the coefficient (gain) of the digital filter is set so that the passing characteristic (gain) of the digital filter with respect to the correction signal is 0 dB. BPF coefficient) is changed (S132). The correction signal is a sine wave signal of 7 kHz in this example, and the coefficient of the digital filter is changed so that the gain at the output when this correction signal is input is 0 dB.
 この際の係数の表現方法、係数の計算方法およびデジタルフィルタに対する係数の設定方法は、公知技術に基づいて設計可能である。たとえば、デジタルフィルタ処理部30を構成するソフトウェアの仕様に基づいて決定することができる。 The coefficient expression method, coefficient calculation method, and coefficient setting method for the digital filter at this time can be designed based on known techniques. For example, it can be determined based on the specifications of the software constituting the digital filter processing unit 30.
 この状態で、対応する周波数に関する分析が行われる(S140)。たとえば、デジタルフィルタに、デルタシグマADコンバータ20を介して、対応する周波数(この例では7kHz)のノッキング信号が入力され、これに対するデジタルフィルタの出力の信号強度が検出される。ここでは、図3(c)に示すように、ノッキング信号に対して検出された信号強度の利得は、7kHzについて-1dBであったとする。 In this state, the corresponding frequency is analyzed (S140). For example, a knocking signal having a corresponding frequency (7 kHz in this example) is input to the digital filter via the delta-sigma AD converter 20, and the signal strength of the output of the digital filter is detected. Here, as shown in FIG. 3C, it is assumed that the gain of the detected signal strength with respect to the knocking signal is -1 dB at 7 kHz.
 このノッキング信号は、そのノッキング信号処理装置が搭載された実際の環境で測定されたものを用いることができる。すなわち、ノッキング信号処理装置の回路構成、コネクタ、ハーネス、エンジン制御装置の回路、固有の入力インピーダンス(デルタシグマADコンバータの内部インピーダンス等)、出力インピーダンス、等の要因によるばらつきを含むノッキング信号を用いることができる。 As this knocking signal, the one measured in the actual environment in which the knocking signal processing device is installed can be used. That is, a knocking signal including variations due to factors such as the circuit configuration of the knocking signal processing device, the connector, the harness, the circuit of the engine control device, the unique input impedance (internal impedance of the delta sigma AD converter, etc.), the output impedance, etc. should be used. Can be done.
 このために、振動センサ等により測定された実際の振動信号が、デルタシグマADコンバータ20を介してデジタルフィルタ処理部30に入力できるようになっていてもよい。また、実際の振動信号が予め記録され、S140において再生されてもよい。 For this purpose, the actual vibration signal measured by the vibration sensor or the like may be input to the digital filter processing unit 30 via the delta-sigma AD converter 20. Further, the actual vibration signal may be recorded in advance and reproduced in S140.
 次に、演算装置50は、その周波数についての基準信号強度を取得する(S141)。基準信号強度は、たとえば利得を表すものであり、たとえば図3(b)に示すように、すべての周波数について0dBとすることができる。 Next, the arithmetic unit 50 acquires the reference signal strength for that frequency (S141). The reference signal strength represents, for example, a gain, and can be 0 dB for all frequencies, for example, as shown in FIG. 3 (b).
 次に、演算装置50は、ノッキング信号に対して検出された信号強度の利得(-1dB)と基準信号強度の利得(0dB)の差分を取得する(S142)。そして、この差分に基づき、S140で用いたノッキング信号に対する信号強度が基準信号強度と一致するように、デジタルフィルタの係数を計算する(S151)。たとえば、その周波数のノッキング信号の通過特性に、この差分が加算または減算されるように計算する。この結果、図3(d)に示すように、補正信号に対するデジタルフィルタの通過特性(利得)は+1dBとなり、ノッキング信号に対するデジタルフィルタの通過特性(利得)は0dBとなる。 Next, the arithmetic unit 50 acquires the difference between the gain (-1 dB) of the signal strength detected for the knocking signal and the gain (0 dB) of the reference signal strength (S142). Then, based on this difference, the coefficient of the digital filter is calculated so that the signal strength with respect to the knocking signal used in S140 matches the reference signal strength (S151). For example, it is calculated so that this difference is added or subtracted to the passing characteristics of the knocking signal at that frequency. As a result, as shown in FIG. 3D, the pass characteristic (gain) of the digital filter with respect to the correction signal is + 1 dB, and the pass characteristic (gain) of the digital filter with respect to the knocking signal is 0 dB.
 次に、演算装置50は、計算された係数を、デジタルフィルタの係数として更新する(S152)。このようにして図2の補正制御が終了する。 Next, the arithmetic unit 50 updates the calculated coefficient as the coefficient of the digital filter (S152). In this way, the correction control of FIG. 2 is completed.
 なお、補正制御の後、ノッキング信号を測定する際には、補正信号に代えて、振動センサ等により測定された実際の振動信号がデルタシグマADコンバータ20およびデジタルフィルタ処理部30によって処理され、その出力に基づいて演算装置50がノッキングを検出する。このノッキング信号の測定の具体的な処理内容は、公知のノッキング信号処理技術に基づき、当業者が適宜設計可能である。 When the knocking signal is measured after the correction control, the actual vibration signal measured by the vibration sensor or the like is processed by the delta-sigma AD converter 20 and the digital filter processing unit 30 instead of the correction signal. The arithmetic unit 50 detects knocking based on the output. The specific processing content of the measurement of the knocking signal can be appropriately designed by a person skilled in the art based on a known knocking signal processing technique.
 以上説明するように、第1の実施形態に係るノッキング信号処理装置は、車両に搭載可能なノッキング信号処理装置であって、デルタシグマADコンバータ20と、デルタシグマADコンバータ20の後段に配置され、周波数特性が異なる複数のデジタルフィルタ(デジタルフィルタ処理部30)と、補正信号を出力する補正信号出力部10とを備え、複数のデジタルフィルタの出力が、補正信号に応じて変更されるように構成されている。より具体的には、各デジタルフィルタの出力が、補正信号(理想振幅)と実際のノッキング信号(実測振幅)との差に応じて変更されるように構成されている。このため、車両の実際の振動信号が、ハーネス、エンジン制御装置の回路、固有の入力インピーダンス、出力インピーダンス、等の要因によって、車両ごとにばらつく場合であっても、そのばらつきを補正することができる。このようにしてノッキング信号の測定精度が向上する。 As described above, the knocking signal processing device according to the first embodiment is a knocking signal processing device that can be mounted on a vehicle and is arranged after the delta sigma AD converter 20 and the delta sigma AD converter 20. A plurality of digital filters (digital filter processing unit 30) having different frequency characteristics and a correction signal output unit 10 for outputting a correction signal are provided, and the outputs of the plurality of digital filters are configured to be changed according to the correction signal. Has been done. More specifically, the output of each digital filter is configured to be changed according to the difference between the correction signal (ideal amplitude) and the actual knocking signal (measured amplitude). Therefore, even if the actual vibration signal of the vehicle varies from vehicle to vehicle due to factors such as the harness, the circuit of the engine control device, the unique input impedance, and the output impedance, the variation can be corrected. .. In this way, the measurement accuracy of the knocking signal is improved.
 また、各デジタルフィルタ(デジタルフィルタ処理部30)における補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各デジタルフィルタ(デジタルフィルタ処理部30)の係数を変更するので、各デジタルフィルタ(デジタルフィルタ処理部30)の出力結果に対して改めて補正演算をする必要がなく、実際のノッキング信号の測定処理が簡素になる。 Further, since the coefficient of each digital filter (digital filter processing unit 30) is changed based on the difference between the gain for the correction signal in each digital filter (digital filter processing unit 30) and the gain for the actually measured signal, the coefficient of each digital filter (digital filter processing unit 30) is changed. It is not necessary to perform a correction calculation again for the output result of each digital filter (digital filter processing unit 30), and the actual measurement processing of the knocking signal is simplified.
 また、ノッキング信号処理装置はECU100を備え、補正信号出力部10はECU100の外部に設けられるので、ECU100の内部構造を変更する必要がなく、設計または実装が容易である。 Further, since the knocking signal processing device includes the ECU 100 and the correction signal output unit 10 is provided outside the ECU 100, it is not necessary to change the internal structure of the ECU 100, and the design or mounting is easy.
 また、補正信号は、定周波数かつ定振幅の正弦波信号であるため、補正信号の生成が容易である。 Further, since the correction signal is a sine wave signal having a constant frequency and a constant amplitude, it is easy to generate the correction signal.
 また、第1の実施形態に係るノッキング信号処理装置は、ボルテージフォロア回路等の追加の回路を必要としない。このため、たとえば安価にすることができ、またはより回路専有面積をより小さくすることができる。 Further, the knocking signal processing device according to the first embodiment does not require an additional circuit such as a voltage follower circuit. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
(第2の実施形態)
 本発明の第2の実施形態は、第1の実施形態において、デジタルフィルタの出力を変更するための構成を変更したものである。以下、第1の実施形態と共通する部分については説明を省略する場合がある。
(Second embodiment)
The second embodiment of the present invention is the first embodiment in which the configuration for changing the output of the digital filter is changed. Hereinafter, the description of the parts common to the first embodiment may be omitted.
 図4は、第2の実施形態における補正制御のフローチャートであり、図5は、第2の実施形態における補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフである。図4においてS110~S131の処理は、第1の実施形態(図2)と同様とすることができる。 FIG. 4 is a flowchart of the correction control in the second embodiment, and FIG. 5 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the second embodiment. In FIG. 4, the processing of S110 to S131 can be the same as that of the first embodiment (FIG. 2).
 S131の後、図5(a)に示すように、補正信号に対するデジタルフィルタの通過特性(利得)が0dBとなるように、デジタルフィルタの係数(BPF係数)を変更するとともに、デジタルフィルタの出力に対する補正係数を0dBに設定する(S133)。ここで、「補正係数」とは、デジタルフィルタから出力された信号の振幅を演算装置50が補正する際に用いる係数を意味する。 After S131, as shown in FIG. 5A, the coefficient (BPF coefficient) of the digital filter is changed so that the pass characteristic (gain) of the digital filter with respect to the correction signal becomes 0 dB, and the output of the digital filter is obtained. The correction coefficient is set to 0 dB (S133). Here, the "correction coefficient" means a coefficient used when the arithmetic unit 50 corrects the amplitude of the signal output from the digital filter.
 S140~S142の処理は、第1の実施形態(図2)と同様とすることができる。ここでは、図5(c)に示すように検出された信号強度の利得は7kHzについて-1dBであったとする。また、基準信号強度(利得)は、たとえば図5(b)に示すように、すべての周波数について0dBとすることができる。 The processing of S140 to S142 can be the same as that of the first embodiment (FIG. 2). Here, it is assumed that the gain of the detected signal strength as shown in FIG. 5 (c) is -1 dB at 7 kHz. Further, the reference signal strength (gain) can be set to 0 dB for all frequencies, for example, as shown in FIG. 5 (b).
 S142の後、演算装置50は、この差分に基づき、デジタルフィルタの出力に対する補正係数を決定する(S153)。この例では、図5(d)に示すように7kHzについて補正係数は+1dBとなる。 After S142, the arithmetic unit 50 determines the correction coefficient for the output of the digital filter based on this difference (S153). In this example, as shown in FIG. 5D, the correction coefficient is + 1 dB for 7 kHz.
 ここで決定された補正係数は、実際のノッキング信号の測定時に、デジタルフィルタの出力を補正するために用いられる。たとえば、上の例では、実際に入力された振動信号に対する7kHzのデジタルフィルタの出力を、演算装置50がさらに1dBだけ増幅させ、増幅後の信号に基づいてノッキング信号の測定を行う。このようにして、デジタルフィルタの通過特性(利得)を実質的に変更した場合と同様の結果を得ることができる。 The correction coefficient determined here is used to correct the output of the digital filter when actually measuring the knocking signal. For example, in the above example, the arithmetic unit 50 further amplifies the output of the 7 kHz digital filter with respect to the actually input vibration signal by 1 dB, and measures the knocking signal based on the amplified signal. In this way, it is possible to obtain the same result as when the passing characteristics (gain) of the digital filter are substantially changed.
 以上説明するように、第2の実施形態に係るノッキング信号処理装置は、第1の実施形態と同様に、車両に搭載可能なノッキング信号処理装置であって、デルタシグマADコンバータ20と、デルタシグマADコンバータ20の後段に配置され、周波数特性が異なる複数のデジタルフィルタ(デジタルフィルタ処理部30)と、補正信号を出力する補正信号出力部10とを備え、各デジタルフィルタの出力が、補正信号に応じて変更されるように構成されている。より具体的には、各デジタルフィルタの出力が、補正信号(理想振幅)と実際のノッキング信号(実測振幅)との差に応じて変更されるように構成されている。このため、車両の実際の振動信号が、ハーネス、エンジン制御装置の回路、固有の入力インピーダンス、出力インピーダンス、等の要因によって、車両ごとにばらつく場合であっても、そのばらつきを補正することができる。このようにしてノッキング信号の測定精度が向上する。 As described above, the knocking signal processing device according to the second embodiment is a knocking signal processing device that can be mounted on a vehicle as in the first embodiment, and is a delta sigma AD converter 20 and a delta sigma. A plurality of digital filters (digital filter processing unit 30) arranged after the AD converter 20 and having different frequency characteristics, and a correction signal output unit 10 for outputting a correction signal are provided, and the output of each digital filter is used as a correction signal. It is configured to change accordingly. More specifically, the output of each digital filter is configured to be changed according to the difference between the correction signal (ideal amplitude) and the actual knocking signal (measured amplitude). Therefore, even if the actual vibration signal of the vehicle varies from vehicle to vehicle due to factors such as the harness, the circuit of the engine control device, the unique input impedance, and the output impedance, the variation can be corrected. .. In this way, the measurement accuracy of the knocking signal is improved.
 また、各デジタルフィルタ(デジタルフィルタ処理部30)における補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各デジタルフィルタ(デジタルフィルタ処理部30)の出力結果に対して補正演算を実行することによって、デジタルフィルタ(デジタルフィルタ処理部30)の出力を変更するので、デジタルフィルタ(デジタルフィルタ処理部30)の係数そのものを設定する必要がなく、デジタルフィルタ(デジタルフィルタ処理部30)の係数に関する演算を省略することができる。 Further, the output result of each digital filter (digital filter processing unit 30) is corrected based on the difference between the gain for the correction signal in each digital filter (digital filter processing unit 30) and the gain for the actually measured signal. Since the output of the digital filter (digital filter processing unit 30) is changed by executing the calculation, it is not necessary to set the coefficient itself of the digital filter (digital filter processing unit 30), and the digital filter (digital filter processing unit 30) does not need to be set. ) Can be omitted.
 また、ノッキング信号処理装置はECU100を備え、補正信号出力部10はECU100の外部に設けられるので、ECU100の内部構造を変更する必要がなく、設計または実装が容易である。 Further, since the knocking signal processing device includes the ECU 100 and the correction signal output unit 10 is provided outside the ECU 100, it is not necessary to change the internal structure of the ECU 100, and the design or mounting is easy.
 また、補正信号は、定周波数かつ定振幅の正弦波信号であるため、補正信号の生成が容易である。 Further, since the correction signal is a sine wave signal having a constant frequency and a constant amplitude, it is easy to generate the correction signal.
 また、第1の実施形態と同様に、ボルテージフォロア回路等の追加の回路を必要としない。このため、たとえば安価にすることができ、またはより回路専有面積をより小さくすることができる。 Further, as in the first embodiment, no additional circuit such as a voltage follower circuit is required. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
(第1および第2の実施形態の変形例)
 第1の実施形態または第2の実施形態において、補正信号は、定周波数かつ定振幅の正弦波信号である。しかしながら、補正信号は他の形状の信号としてもよい。
(Variations of the First and Second Embodiments)
In the first embodiment or the second embodiment, the correction signal is a constant frequency and constant amplitude sinusoidal signal. However, the correction signal may be a signal having another shape.
 たとえば、変形例として、補正信号の周波数が時間とともに変化するよう構成してもよい。より具体的な例として、補正信号は、所定の周波数範囲(たとえばデジタルフィルタ処理部30の全デジタルフィルタの対応周波数をカバーする周波数範囲)をスイープする周波数可変の信号であってもよい。このようにすると、各デジタルフィルタについての処理を順に行うことができ、補正制御の設計が簡素になる。ここで、「スイープ」とは、連続的なスイープに限らず、離散化された複数の周波数について、各周波数の信号を順に出力する離散的なスイープを含む。 For example, as a modification, the frequency of the correction signal may be configured to change with time. As a more specific example, the correction signal may be a frequency-variable signal that sweeps a predetermined frequency range (for example, a frequency range that covers the corresponding frequencies of all the digital filters of the digital filter processing unit 30). By doing so, the processing for each digital filter can be performed in order, and the design of the correction control is simplified. Here, the “sweep” is not limited to a continuous sweep, but includes a discrete sweep that outputs signals of each frequency in order for a plurality of discretized frequencies.
(第3の実施形態)
 第3の実施形態は、第1の実施形態またはその変形例において、補正信号としてBGL(バックグラウンドレベル)信号を用いる。以下、第1の実施形態と共通する部分については説明を省略する場合がある。
(Third embodiment)
The third embodiment uses a BGL (background level) signal as a correction signal in the first embodiment or a modification thereof. Hereinafter, the description of the parts common to the first embodiment may be omitted.
 図6は、本発明の第3の実施形態に係るノッキング信号処理装置の制御構成を示した図である。本実施形態のノッキング信号処理装置は、補正信号出力部としてBGL信号出力部11を備える。 FIG. 6 is a diagram showing a control configuration of the knocking signal processing device according to the third embodiment of the present invention. The knocking signal processing device of the present embodiment includes a BGL signal output unit 11 as a correction signal output unit.
 BGL信号出力部11はBGL信号を出力する。BGL信号は、車両が実際に動作している状態での振動信号である。また、BGL信号は、ノッキングが発生していない状態を表す信号である。このようなBGL信号は、各車両について実際に振動を測定することにより準備することができる。たとえば、BGL信号出力部11は振動センサ12を備えてもよく、振動センサ12は、内燃機関の振動のバックグラウンドレベルに対応する振動を測定し、測定された振動を表す信号を補正信号(BGL信号)として出力してもよい。 The BGL signal output unit 11 outputs a BGL signal. The BGL signal is a vibration signal in a state where the vehicle is actually operating. Further, the BGL signal is a signal indicating a state in which knocking has not occurred. Such a BGL signal can be prepared by actually measuring the vibration for each vehicle. For example, the BGL signal output unit 11 may include a vibration sensor 12, which measures vibration corresponding to the background level of vibration of the internal combustion engine and corrects a signal representing the measured vibration (BGL). It may be output as a signal).
 デルタシグマADコンバータ20およびデジタルフィルタ処理部30によって、それぞれ異なる周波数の信号強度40が抽出される。演算装置50は、各周波数の信号強度40と、各周波数の基準BGL強度43とに基づき、各周波数のBGL強度差分44を取得し、これに基づいてデジタルフィルタ処理部30のデジタルフィルタの係数(BPF係数)を変更する。この際の処理を、以下に説明する。 The delta-sigma AD converter 20 and the digital filter processing unit 30 extract signal intensities 40 having different frequencies. The arithmetic unit 50 acquires the BGL intensity difference 44 of each frequency based on the signal intensity 40 of each frequency and the reference BGL intensity 43 of each frequency, and based on this, the coefficient of the digital filter of the digital filter processing unit 30 ( BPF coefficient) is changed. The processing at this time will be described below.
 図7は、第3の実施形態における補正制御のフローチャートであり、図8は、第3の実施形態における補正制御を説明するデジタルフィルタの通過特性および信号強度を示すグラフである。 FIG. 7 is a flowchart of the correction control in the third embodiment, and FIG. 8 is a graph showing the passing characteristics and signal strength of the digital filter for explaining the correction control in the third embodiment.
 まず、デルタシグマADコンバータ20にBGL信号が入力される(S111)。デルタシグマADコンバータ20はBGL信号を変換し、デジタル信号として出力する(S120)。演算装置50が周波数を選択する(S131)。 First, a BGL signal is input to the delta sigma AD converter 20 (S111). The delta-sigma AD converter 20 converts a BGL signal and outputs it as a digital signal (S120). The arithmetic unit 50 selects a frequency (S131).
 図8(a)に示すようにそのデジタルフィルタの通過特性(利得)が0dBとなるように、デジタルフィルタの係数(BPF係数)を変更する(S132)。なお、ここでは、上述のBGL信号を用いず、その周波数の正弦波を入力した場合の利得が0dBとなるように係数が設定される。 As shown in FIG. 8A, the coefficient (BPF coefficient) of the digital filter is changed so that the passing characteristic (gain) of the digital filter becomes 0 dB (S132). Here, the coefficient is set so that the gain when a sine wave of that frequency is input is 0 dB without using the above-mentioned BGL signal.
 この状態で、デジタルフィルタにデルタシグマADコンバータ20からのBGL信号が入力され、これに対するデジタルフィルタの出力の信号強度(BGL強度)が検出される(S143)。ここでは、図8(c)に示すように、検出されたBGL強度の利得は7kHzについて-9dBであったとする。 In this state, the BGL signal from the delta-sigma AD converter 20 is input to the digital filter, and the signal strength (BGL strength) of the output of the digital filter with respect to this is detected (S143). Here, as shown in FIG. 8 (c), it is assumed that the gain of the detected BGL intensity is -9 dB at 7 kHz.
 次に、演算装置50は、その周波数についての基準BGL強度を取得する(S144)。基準信号強度は、たとえば利得を表すものであり、たとえば図8(b)に示すように、7kHzについては-10dBである。 Next, the arithmetic unit 50 acquires the reference BGL intensity for the frequency (S144). The reference signal strength represents, for example, a gain, for example, -10 dB for 7 kHz, as shown in FIG. 8 (b).
 次に、演算装置50は、検出されたBGL強度の利得(-9dB)と基準BGL強度の利得(-10dB)の差分を取得する(S145)。そして、この差分に基づき、検出されるBGL強度が基準BGL強度と一致するように、デジタルフィルタの係数を計算する(S154)。たとえば、その周波数の通過特性に、この差分が加算または減算されるように計算する。この結果、図8(d)に示すように、7kHzの正弦波信号に対するデジタルフィルタの通過特性(利得)は-1dBとなる。なお図示しないが、BGL信号に対するデジタルフィルタの通過特性(利得)は-10dBとなる。 Next, the arithmetic unit 50 acquires the difference between the detected BGL intensity gain (-9 dB) and the reference BGL intensity gain (-10 dB) (S145). Then, based on this difference, the coefficient of the digital filter is calculated so that the detected BGL intensity matches the reference BGL intensity (S154). For example, it is calculated so that this difference is added or subtracted to the passing characteristics of the frequency. As a result, as shown in FIG. 8D, the passing characteristic (gain) of the digital filter for the 7 kHz sine wave signal is -1 dB. Although not shown, the pass characteristic (gain) of the digital filter with respect to the BGL signal is -10 dB.
 次に、演算装置50は、計算された係数を、デジタルフィルタの係数として更新する(S155)。このようにして図7の補正制御が終了する。 Next, the arithmetic unit 50 updates the calculated coefficient as the coefficient of the digital filter (S155). In this way, the correction control of FIG. 7 ends.
 以上説明するように、第3の実施形態に係るノッキング信号処理装置は、第1および第2の実施形態と同様に、車両に搭載可能なノッキング信号処理装置であって、デルタシグマADコンバータ20と、デルタシグマADコンバータ20の後段に配置され、周波数特性が異なる複数のデジタルフィルタ(デジタルフィルタ処理部30)と、補正信号を出力する補正信号出力部10とを備え、各デジタルフィルタの出力が、補正信号(すなわちBGL信号)に応じて変更されるように構成されている。より具体的には、各デジタルフィルタの出力が、BGL信号(理想振幅)と実際のノッキング信号(実測振幅)との差に応じて変更されるように構成されている。このため、車両の実際の振動信号が、ハーネス、エンジン制御装置の回路、固有の入力インピーダンス、出力インピーダンス、等の要因によって、車両ごとにばらつく場合であっても、そのばらつきを補正することができる。このようにしてノッキング信号の測定精度が向上する。 As described above, the knocking signal processing device according to the third embodiment is a knocking signal processing device that can be mounted on the vehicle as in the first and second embodiments, and is the delta sigma AD converter 20. , A plurality of digital filters (digital filter processing unit 30) arranged after the delta sigma AD converter 20 and having different frequency characteristics, and a correction signal output unit 10 for outputting a correction signal, and the output of each digital filter is It is configured to be changed according to the correction signal (that is, the BGL signal). More specifically, the output of each digital filter is configured to be changed according to the difference between the BGL signal (ideal amplitude) and the actual knocking signal (measured amplitude). Therefore, even if the actual vibration signal of the vehicle varies from vehicle to vehicle due to factors such as the harness, the circuit of the engine control device, the unique input impedance, and the output impedance, the variation can be corrected. .. In this way, the measurement accuracy of the knocking signal is improved.
 また、補正信号出力部(BGL信号出力部11)は振動センサ12を備え、振動センサ12は、内燃機関の振動のバックグラウンドレベルを表す振動を測定し、振動を表す信号を補正信号として出力するので、デジタルフィルタの係数を実際の動作環境に対して最適化することができる。 Further, the correction signal output unit (BGL signal output unit 11) includes a vibration sensor 12, which measures vibration representing the background level of vibration of the internal combustion engine and outputs a signal representing vibration as a correction signal. Therefore, the coefficient of the digital filter can be optimized for the actual operating environment.
 また、ノッキング信号処理装置はECU100を備え、補正信号出力部10はECU100の外部に設けられるので、ECU100の内部構造を変更する必要がなく、設計または実装が容易である。 Further, since the knocking signal processing device includes the ECU 100 and the correction signal output unit 10 is provided outside the ECU 100, it is not necessary to change the internal structure of the ECU 100, and the design or mounting is easy.
 また、第1および第2の実施形態と同様に、ボルテージフォロア回路等の追加の回路を必要としない。このため、たとえば安価にすることができ、またはより回路専有面積をより小さくすることができる。 Also, as in the first and second embodiments, no additional circuit such as a voltage follower circuit is required. Therefore, for example, the cost can be reduced, or the area occupied by the circuit can be made smaller.
 第3の実施形態は、第1の実施形態に対する変形例として説明したが、第2の実施形態またはその変形例として実施することも可能である。 Although the third embodiment has been described as a modification to the first embodiment, it can also be implemented as a second embodiment or a modification thereof.
 10…補正信号出力部
 11…BGL信号出力部(補正信号出力部)
 12…振動センサ
 20…デルタシグマADコンバータ(ADコンバータ)
 30…デジタルフィルタ処理部(デジタルフィルタ)
 40…各周波数の信号強度
 41…各周波数の基準信号強度
 42…各周波数の信号強度差分
 43…各周波数の基準BGL強度
 44…各周波数のBGL強度差分
 50…演算装置
 100…ECU
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
10 ... Correction signal output unit 11 ... BGL signal output unit (correction signal output unit)
12 ... Vibration sensor 20 ... Delta-sigma AD converter (AD converter)
30 ... Digital filter processing unit (digital filter)
40 ... Signal strength of each frequency 41 ... Reference signal strength of each frequency 42 ... Signal strength difference of each frequency 43 ... Reference BGL strength of each frequency 44 ... BGL strength difference of each frequency 50 ... Computing device 100 ... ECU
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (13)

  1.  車両に搭載可能なノッキング信号処理装置であって、
     ADコンバータと、
     前記ADコンバータの後段に配置され、周波数特性が異なる複数のデジタルフィルタと、
     補正信号を出力する補正信号出力部と、
    を備え、
     前記ノッキング信号処理装置は、前記複数のデジタルフィルタの出力が、前記補正信号に応じて変更されるように構成される、
    ノッキング信号処理装置。
    A knocking signal processing device that can be mounted on a vehicle.
    With AD converter
    A plurality of digital filters arranged after the AD converter and having different frequency characteristics,
    The correction signal output unit that outputs the correction signal and
    Equipped with
    The knocking signal processing device is configured such that the outputs of the plurality of digital filters are changed according to the correction signal.
    Knocking signal processing device.
  2.  請求項1において、前記ノッキング信号処理装置は、各前記デジタルフィルタにおける前記補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各前記デジタルフィルタの係数を変更することによって、各前記デジタルフィルタの出力を変更する、ノッキング信号処理装置。 In claim 1, the knocking signal processor changes the coefficient of each digital filter based on the difference between the gain for the correction signal in each digital filter and the gain for the actually measured signal. A knocking signal processing device that changes the output of each of the digital filters.
  3.  請求項1において、前記ノッキング信号処理装置は、各前記デジタルフィルタにおける前記補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各前記デジタルフィルタの出力結果に対して補正演算を実行することによって、各前記デジタルフィルタの出力を変更する、ノッキング信号処理装置。 In claim 1, the knocking signal processing device performs a correction calculation on the output result of each digital filter based on the difference between the gain for the correction signal in each digital filter and the gain for the actually measured signal. A knocking signal processor that modifies the output of each of the digital filters by performing.
  4.  請求項1において、前記補正信号は、定周波数かつ定振幅の正弦波信号である、ノッキング信号処理装置。 The knocking signal processing device according to claim 1, wherein the correction signal is a sine wave signal having a constant frequency and a constant amplitude.
  5.  請求項1において、前記補正信号は、所定の周波数範囲をスイープする周波数可変の信号である、ノッキング信号処理装置。 In claim 1, the correction signal is a knocking signal processing device which is a frequency-variable signal that sweeps a predetermined frequency range.
  6.  請求項1において、
     前記補正信号出力部は振動センサを備え、
     前記振動センサは、内燃機関の振動のバックグラウンドレベルに対応する振動を測定し、測定された前記振動を表す信号を前記補正信号として出力する、
    ノッキング信号処理装置。
    In claim 1,
    The correction signal output unit is provided with a vibration sensor.
    The vibration sensor measures the vibration corresponding to the background level of the vibration of the internal combustion engine, and outputs the measured signal representing the vibration as the correction signal.
    Knocking signal processing device.
  7.  請求項1において、
     前記ノッキング信号処理装置はECUを備え、
     前記ECUは、前記ADコンバータおよび前記複数のデジタルフィルタを備え、
     前記補正信号出力部は、前記ECUの外部に設けられる、
    ノッキング信号処理装置。
    In claim 1,
    The knocking signal processing device includes an ECU and has an ECU.
    The ECU includes the AD converter and the plurality of digital filters.
    The correction signal output unit is provided outside the ECU.
    Knocking signal processing device.
  8.  車両のノッキング信号処理方法であって、
     ADコンバータと、
     前記ADコンバータの後段に配置され、周波数特性が異なる複数のデジタルフィルタと、
    を用いて実行される、方法において
     前記複数のデジタルフィルタの出力が、補正信号に応じて変更される、
    ノッキング信号処理方法。
    It is a knocking signal processing method for vehicles.
    With AD converter
    A plurality of digital filters arranged after the AD converter and having different frequency characteristics,
    The output of the plurality of digital filters is modified according to the correction signal in the method performed using.
    Knocking signal processing method.
  9.  請求項8において、各前記デジタルフィルタにおける前記補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各前記デジタルフィルタの係数が変更されることによって、各前記デジタルフィルタの出力が変更される、ノッキング信号処理方法。 In claim 8, the output of each digital filter is output by changing the coefficient of each digital filter based on the difference between the gain for the correction signal in each digital filter and the gain for the actually measured signal. The knocking signal processing method is changed.
  10.  請求項8において、各前記デジタルフィルタにおける前記補正信号に対する利得と、実際に測定された信号に対する利得との差に基づき、各前記デジタルフィルタの出力結果に対して補正演算が実行されることによって、各前記デジタルフィルタの出力が変更される、ノッキング信号処理方法。 In claim 8, the correction calculation is executed for the output result of each digital filter based on the difference between the gain for the correction signal in each digital filter and the gain for the actually measured signal. A knocking signal processing method in which the output of each of the digital filters is changed.
  11.  請求項8において、前記補正信号は、定周波数かつ定振幅の正弦波信号である、ノッキング信号処理方法。 The knocking signal processing method according to claim 8, wherein the correction signal is a sine wave signal having a constant frequency and a constant amplitude.
  12.  請求項8において、前記補正信号は、所定の周波数範囲をスイープする周波数可変の信号である、ノッキング信号処理方法。 The knocking signal processing method according to claim 8, wherein the correction signal is a frequency-variable signal that sweeps a predetermined frequency range.
  13.  請求項8において、内燃機関の振動のバックグラウンドレベルに対応する振動が測定され、測定された前記振動を表す信号が前記補正信号となる、ノッキング信号処理方法。 The knocking signal processing method according to claim 8, wherein the vibration corresponding to the background level of the vibration of the internal combustion engine is measured, and the measured signal representing the vibration becomes the correction signal.
PCT/JP2021/019269 2020-08-17 2021-05-20 Knocking signal processing device and method WO2022038851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022543284A JP7314420B2 (en) 2020-08-17 2021-05-20 Knocking signal processing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137428 2020-08-17
JP2020-137428 2020-08-17

Publications (1)

Publication Number Publication Date
WO2022038851A1 true WO2022038851A1 (en) 2022-02-24

Family

ID=80322926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019269 WO2022038851A1 (en) 2020-08-17 2021-05-20 Knocking signal processing device and method

Country Status (2)

Country Link
JP (1) JP7314420B2 (en)
WO (1) WO2022038851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299579A (en) * 2004-04-15 2005-10-27 Denso Corp Knock detection device of internal combustion engine
WO2017141582A1 (en) * 2016-02-16 2017-08-24 日立オートモティブシステムズ株式会社 Knocking detection device, internal combustion engine control device
JP2018096255A (en) * 2016-12-12 2018-06-21 日立オートモティブシステムズ株式会社 Internal combustion engine knocking state detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635943B2 (en) * 1990-08-01 1994-05-11 株式会社ユニシアジェックス Knocking detection device for internal combustion engine
JP4532348B2 (en) 2005-06-06 2010-08-25 株式会社日本自動車部品総合研究所 Knocking control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299579A (en) * 2004-04-15 2005-10-27 Denso Corp Knock detection device of internal combustion engine
WO2017141582A1 (en) * 2016-02-16 2017-08-24 日立オートモティブシステムズ株式会社 Knocking detection device, internal combustion engine control device
JP2018096255A (en) * 2016-12-12 2018-06-21 日立オートモティブシステムズ株式会社 Internal combustion engine knocking state detection device

Also Published As

Publication number Publication date
JP7314420B2 (en) 2023-07-25
JPWO2022038851A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
EP1862670B1 (en) Ignition timing control apparatus and method for internal combustion engine
KR100782871B1 (en) Method for detecting knocking
US5743233A (en) Method for detecting knocking
CN111344478B (en) Method and device for knock control of an internal combustion engine
WO2022038851A1 (en) Knocking signal processing device and method
JPH0476249A (en) Knocking detecting device and ignition timing correcting device for internal combustion engine
JP2016510889A (en) Digital correction process transmitter with reduced dead time
JPS5979827A (en) Knocking detection system for engine
JP6424718B2 (en) Knocking detection device
JP3598266B2 (en) Device abnormality diagnosis method and device
JPS6035238A (en) Knocking detecting device
JP6769211B2 (en) Knocking detector
US10508963B2 (en) Method and device for knock recognition of an internal combustion engine
WO1998031928A1 (en) Method of knocking control of internal combustion engine
JP5115507B2 (en) In-cylinder pressure sensor failure diagnosis device
JP2692436B2 (en) Knock detection device for internal combustion engine
JP4799530B2 (en) Internal combustion engine knock determination device and knock determination method
JP5476599B2 (en) Measuring method of operating state of positive displacement machine
CN111044758B (en) Acceleration sensor output value correction method and acceleration sensor
JPH11324785A (en) Knock control system for internal combustion engine
CN117906645A (en) Temperature compensation method for vehicle-gauge Hall element
JP5467526B2 (en) Communication system using signal processing apparatus and field device
US10386268B2 (en) Method for processing a voltage signal relating to the pressure prevailing in a combustion chamber of a cylinder of an internal combustion engine
JPH0526506Y2 (en)
JP3546438B2 (en) Knock detection device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858002

Country of ref document: EP

Kind code of ref document: A1