WO2022038804A1 - Diagnostic device and parameter adjustment method - Google Patents

Diagnostic device and parameter adjustment method Download PDF

Info

Publication number
WO2022038804A1
WO2022038804A1 PCT/JP2021/004723 JP2021004723W WO2022038804A1 WO 2022038804 A1 WO2022038804 A1 WO 2022038804A1 JP 2021004723 W JP2021004723 W JP 2021004723W WO 2022038804 A1 WO2022038804 A1 WO 2022038804A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic
data
model
evaluation index
unit
Prior art date
Application number
PCT/JP2021/004723
Other languages
French (fr)
Japanese (ja)
Inventor
惟 杉田
智昭 蛭田
嘉成 堀
孝朗 関合
拓実 太田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022038804A1 publication Critical patent/WO2022038804A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a diagnostic device and a parameter adjustment method.
  • measuring instruments that measure temperature, pressure, flow rate, etc. are installed in each part in order to monitor the operating status of these equipment.
  • diagnostic equipment continuously acquires and monitors the measured values measured by these measuring instruments, and issues an alarm when the measured values exceed a certain threshold value. Has dealt with.
  • the diagnostic device collects the measured values acquired by each measuring instrument and performs large-scale processing by an algorithm such as machine learning to identify the operating state of equipment that is different from normal, resulting in an abnormality. It is expected to catch the signs of.
  • ART Adaptive Resonance Theory
  • ART is a theory based on a clustering method that classifies multidimensional time-series data into categories (clusters) according to their similarity.
  • ART it is necessary to set a resolution parameter or the like that determines the resolution of the data according to the data to be diagnosed. If this parameter is not set properly, there is a possibility that an abnormality in the equipment cannot be found and an erroneous detection that the equipment is in a normal state but is detected as an abnormality may occur.
  • the technique disclosed in Patent Document 1 is known as a technique for setting such a parameter.
  • Patent Document 1 states that "a diagnostic device has a preprocessing means for generating preprocessed data by executing preprocessing for classifying time-series data based on setting parameters, and the preprocessed data is similar to the data.
  • a classification means that generates classification results classified according to the classification results
  • a classification result evaluation means that evaluates the classification results according to the time-dependent change pattern of the feature amount of the classification results
  • a classification result evaluation means so that the evaluation results are desired values. It is provided with a setting value adjusting means for adjusting a setting parameter used in the preprocessing means.
  • Patent Document 1 describes that "parameters suitable for diagnosis can be automatically adjusted according to the conditions of the acquired time series data”.
  • the present invention has been made in view of such a situation, and an object thereof is to be able to easily adjust parameters necessary for constructing a diagnostic model and to be able to construct an appropriate diagnostic model.
  • the diagnostic apparatus has a condition input unit for inputting a diagnostic purpose of a diagnostic model for diagnosing the state of a diagnosis target and a condition input unit for inputting data conditions of time-series data used for constructing the diagnostic model, and an input diagnostic purpose. And includes at least one of a parameter item in which parameters for adjusting the diagnostic model are defined based on data conditions, an item in the range of use of time-series data, and an evaluation index item for evaluating the diagnostic model. It is equipped with a parameter adjustment unit that automatically adjusts the parameters of the diagnostic model that is constructed according to the modeling method and evaluated by the evaluation index.
  • a diagnostic device that monitors and diagnoses the operating state of process equipment and equipment (an example of a diagnosis target) used in an industrial plant and the like, and detects signs of abnormalities occurring in the equipment and equipment.
  • the diagnostic device generates time-series data of the object to be measured by the measuring instrument by acquiring the measured values continuously output for each measuring instrument.
  • the time-series data generated for each measurement target is generally called process data, and is stored in the database in time-series via, for example, a programmable logic controller (PLC: Programmable Logic Controller) or a distributed control system (DCS: Distributed Control System). Stored.
  • PLC Programmable logic controller
  • DCS Distributed Control System
  • the name of the data acquired by each measuring instrument is referred to as "signal".
  • the content of the signal may be analog data such as temperature, pressure, flow rate, and current value, but is not limited to this, and includes digital data indicating an ON / OFF signal on the control sequence of the equipment.
  • Abnormality is defined as a state in which the equipment is not operating stably.
  • the state in which stable operation is not possible is a case where the operating performance of the equipment and the quality of the product do not fall within the initially specified range.
  • the situation where the index indicating performance and quality gradually changes toward the outside of the specified range is also regarded as abnormal.
  • a diagnostic model is defined as diagnosing an abnormality or normality with respect to given process data.
  • diagnostic models are divided into physical models and machine learning models.
  • a physical model is a mathematical expression of a physical phenomenon. Since the physical relationship of each variable is clear, the physical model is characterized by high reliability and explanation. Also, if there is a physical model to explain the phenomenon that occurred in a certain diagnosis target, and if a phenomenon similar to this phenomenon also occurs in the diagnosis target of other similar projects, it will be the diagnosis target of other similar projects. Has the advantage that the same physical model can be deployed. However, there is a drawback that the creation of a diagnostic model is complicated and it is necessary to acquire basic data for various operating conditions in advance.
  • the machine learning model has the disadvantage that it is necessary to acquire a large amount of data, but it has the advantage that it is possible to construct a diagnostic model relatively easily without examining complicated physical phenomena.
  • a diagnostic model an abnormality detection model for plants and equipment
  • FIG. 1 is a block diagram showing a configuration example of the diagnostic apparatus 100.
  • the diagnostic device 100 includes a condition input unit 1, a condition determination unit 2, an evaluation index determination unit 3, a data acquisition unit 4, a measurement value database 5, a model construction unit 6, an abnormality determination unit 7, an evaluation index calculation unit 8, and a parameter adjustment unit. 9 and a result output unit 10 are provided.
  • the diagnostic device 100 inputs the measured values of the measuring instruments installed in the equipment or the equipment, and the plurality of measured values are stored in the measured value database 5 as time-series measured value data (so-called raw data).
  • the measured values include not only the data acquired from the measuring instruments directly installed in the equipment or equipment, but also the data estimated and processed by the secondary processing, the set values set by the operator on the control panel, PLC, and DCS, and A digital signal such as an ON / OFF signal may be included.
  • these secondary processing data (estimated values), set values, and digital signal data are also referred to as measured values.
  • the measured value database 5 stores not only the measured values of the measuring instruments installed in the relevant equipment or equipment, but also data such as the outside air temperature and the composition of each fluid and raw material. These data may be measured values by a measuring instrument, but may be data related to set values, coefficients, or conditions predetermined by the process. For example, in the case of a heat exchanger, the set value is the outlet temperature, outlet pressure, or control target value of the process fluid, the coefficient is the heat transfer coefficient, and the condition is the heat exchange between gas and liquid. , Fluid composition or load, etc.
  • the condition input unit 1 used as a component of the diagnostic device 100 has a function for the user to input at least a diagnostic purpose and data conditions to the diagnostic device 100. Therefore, the diagnostic purpose of the diagnostic model for diagnosing the state of the diagnosis target and the data condition of the time series data used for constructing the diagnostic model are input to the condition input unit 1.
  • the time-series data is the measurement value data measured by the measurement unit 2 stored in the measurement value database 5 in time series.
  • the content input through the condition input unit 1 is output to the condition determination unit 2, the evaluation index determination unit 3, and the data acquisition unit 4.
  • the diagnostic purpose is an abnormal phenomenon that the diagnostic model wants to capture.
  • an appropriate diagnostic model differs depending on a specific phenomenon of abnormality, even if it is generally called an abnormality of equipment.
  • the user can select these diagnostic purposes depending on whether he / she wants to catch a failure of a device or equipment or whether he / she wants to catch a deteriorated state.
  • a failure is defined as a condition in which the functional unit's ability to perform the requested function is lost.
  • the deteriorated state is defined as a state in which the state is unsteadily changing toward a failure.
  • the data condition is whether or not the time-series data acquired by the diagnostic apparatus 100 from the measured value database 5 includes abnormal data (abnormal data), and whether the abnormal data is time-series continuous data or discrete. It is to distinguish between data and so on. However, since it is rare that abnormal data can be acquired for plants and equipment, a diagnostic model may be constructed without using the abnormal data. Further, the abnormal data does not necessarily have to be continuous time-series data, and may be measured values at the time of periodic inspection as recorded in the maintenance management ledger. In such a case, the abnormal data becomes discrete data. Further, the visual judgment result at the time of inspection may be used, and in this case, it is referred to as qualitative data as to whether it is normal or abnormal.
  • FIG. 2 is a diagram showing the relationship between the precondition input and the modeling method determination.
  • the prerequisite input shown in the upper part of FIG. 2 indicates the items of the diagnostic purpose and the data condition input from the condition input unit 1.
  • the purpose of diagnosis includes an item for selecting the purpose
  • the data condition includes an item for the presence or absence of abnormal data.
  • the items of purpose selection and presence / absence of abnormal data are set by the user through the screen shown in FIG. 3 to be described later.
  • the condition determination unit 2 automatically determines the modeling method based on the diagnostic purpose and data conditions input by the condition input unit 1.
  • the modeling method includes adjustment parameter items, usage data range, and model evaluation index.
  • the adjustment parameter item defines the parameters that adjust the diagnostic model.
  • the usage range (acquisition period, etc.) of the time series data that can be acquired from the measured value database 5 is defined in the usage data range.
  • an evaluation index for evaluating a diagnostic model is defined in the evaluation index item.
  • the condition determination unit 2 determines the contents of the parameter items and the items of the usage range of the time series data based on the diagnostic purpose and the data conditions input from the condition input unit 1. For example, the condition determination unit 2 determines the conditions to be presented to the user based on the rules registered in advance in the condition determination unit 2 itself for each item of the modeling method to be set by the user. In this rule, for example, the condition determination unit 2 categorizes the diagnostic purpose and the data condition to some extent, determines the parameter to be changed in the case of a certain data condition for a certain diagnostic purpose, or sets a data set to be input to machine learning. It is stipulated to decide and to decide the necessary information as an evaluation index. The items determined by the condition determination unit 2 affect the operation of each subsequent functional unit. Here, each item included in the modeling method determination shown in the lower part of FIG. 2 will be described.
  • the item priority determines the priority of the parameter item searched by the parameter adjusting unit 9.
  • Patterning is to aggregate the search range in a certain parameter item into several patterns, and the search range is reduced by the patterning. For example, as a patterning of the search condition, there is a process of patterning the normalization range. In this process, when converting the input data from 0 to 1 for normalization, it is determined in advance whether the conditions for giving the maximum value and the minimum value are taken from the data of the learning period or the data of the entire acquisition period. Since it is determined, the data acquisition unit 4 does not have to acquire data in an extra range.
  • the items of the usage data range include a learning period required for constructing a diagnostic model, an evaluation period in which a normal period and an abnormal period are separately set, and an abnormal period in which an abnormality or deterioration occurs in the diagnosis target.
  • the learning period is a period in which the user is instructed to set a period for giving the measured value data to the model building unit 6 as learning input data in order to build the diagnostic model.
  • the evaluation period is the same as the learning period defined earlier, but depending on the data conditions, whether or not to set the normal period, and change the instruction to the user to set the normal period and the abnormal period separately. It is a period to determine.
  • the item described as the evaluation period (normal) defines the content instructing the user to set the normal period.
  • the evaluation period (abnormality / deterioration) defines the content of instructing the user to set an abnormal period (described as an evaluation period in the figure) in which an abnormality or deterioration occurs in the diagnosis target.
  • the items of the evaluation index include the detection performance indicating the performance of the diagnostic model to detect the abnormality of the diagnosis target.
  • the detection performance defines the content of instructing the user to set the detection performance as an evaluation index for the diagnostic device 100 to automatically select the most promising diagnostic model.
  • This detection performance is an index showing the performance of the diagnostic model to detect an abnormality to be diagnosed.
  • condition input unit 1 the user may directly specify some elements of the modeling method.
  • the contents of the condition input unit 1 affect the evaluation index determination unit 3 and the data acquisition unit 4.
  • the evaluation index determination unit 3 determines a specific evaluation index defined by the item of the evaluation index according to the input contents from the condition input unit 1 including the diagnostic purpose and the data condition to the condition determination unit 2.
  • a specific evaluation index is referred to as an evaluation index of a diagnostic model (referred to as a “model evaluation index”).
  • the evaluation index is an index for judging the quality of the constructed diagnostic model, and is indispensable for optimizing the diagnostic model.
  • a good diagnostic model can be such that the abnormality of the equipment to be diagnosed is accurately grasped, the sign of the abnormality can be detected at an early stage, and there are few false alarms. Therefore, as the evaluation index of the diagnostic model, the correct answer rate, the precision rate, the recall rate, the false alarm rate, etc. for the abnormality determination result of the diagnostic model can be mentioned.
  • the elements of the confusion matrix created to calculate the values such as the correct answer rate may be combined and used as an evaluation index.
  • an index of how quickly the diagnostic model was able to detect an abnormality by inserting a time axis may be used. These indicators may be in a trade-off relationship. For example, a diagnostic model that detects an abnormality early tends to have a large false positive rate, and a diagnostic model that detects an abnormality over a long period of time tends to have a poor detection rate.
  • the diagnostic model may be regarded as a multi-objective optimization problem, and each index may be combined.
  • the evaluation index determination unit 3 determines the evaluation index of the diagnostic model in advance according to the diagnostic purpose and the data condition included in the condition input unit 1, and stores it in the evaluation index database (not shown). Unlike the measured value database 5 shown in FIG. 1, the evaluation index database stores a setting file in which the determined evaluation index is written. When the diagnostic purpose and the data condition are input from the condition input unit 1, the evaluation index determination unit 3 can read the evaluation index from the evaluation index database and present the evaluation index to the user.
  • FIG. 3 is a diagram showing a configuration example of the condition setting screen 20.
  • the condition setting screen 20 shows each item of the diagnostic purpose, the data condition, and the model evaluation index that can be selected by the user.
  • a check box is displayed in which the user can select at least one of failure detection and deterioration detection.
  • a pull-down menu is displayed in which the user can select either with abnormal data or without abnormal data.
  • the data condition item may be provided with a submenu that allows the user to select whether the abnormality data includes only time information or numerical information indicating the degree of abnormality for each time.
  • a pull-down menu is displayed in which the user can select any of the recall rate, the precision rate, the F value, and the AUC.
  • condition setting screen 20 has a function of storing the diagnostic model constructed in the past in a database (not shown) and recommending the evaluation index applied to the diagnostic model to the user for the same diagnostic purpose and data condition. May be added to.
  • the item selected by the user through the condition setting screen 20 is output from the evaluation index determination unit 3 to the data acquisition unit 4.
  • the operation of the data acquisition unit 4 will be described.
  • the data acquisition unit 4 acquires time-series data representing the state of the diagnosis target according to the usage range of the time-series data.
  • the data acquisition unit 4 has data item information (referred to as “Tag information”) selected by the user or determined by the condition determination unit 2, and a period for acquiring time-series data (usage data range shown in FIG. 2). ),
  • the time-series data 11 of the target Tag is acquired from the measured value database 5 in which the time-series data of each signal is accumulated.
  • the signal data acquired by the data acquisition unit 4 is later used as input data when constructing a diagnostic model. This input data is used as training data for machine learning and evaluation data for evaluating the performance of the machine learning model.
  • the same Tag information as the Tag information attached at the time of constructing the diagnostic model is selected.
  • the Tag information may be directly specified by the user to the condition input unit 1, or may be regarded as one of the predetermined parameter items.
  • the model building unit 6 builds a diagnostic model from the time series data according to the modeling method determined in the processing in the previous stage. At this time, the model building unit 6 executes two processes, a learning mode and a diagnostic mode, to build a diagnostic model.
  • the machine learning algorithm used for model construction is not limited to ART, and can be applied to clustering, classification, regression, and the like. Further, among the clustering algorithms, ART, Mahalanobis Taguchi method (MT method), vector quantization, Kmeans, spectral clustering and the like can be applied.
  • the model building unit 6 When executing the learning mode processing, the model building unit 6 constructs a machine learning model by inputting the time-series data of the learning target period acquired by the data acquisition unit 4. Further, when the model building unit 6 executes the processing of the diagnosis mode, the model building unit 6 inputs the time series data of the diagnosis target period into the diagnosis model built in the learning mode and outputs the result.
  • the result can be output as an abnormality degree, for example, a predicted value or a distance on the vector space with respect to the learning data, depending on the type of machine learning algorithm. This degree of abnormality is used in the data determination method of the diagnostic model as described later.
  • FIG. 4 is a diagram illustrating the operation of ART.
  • the time variation of the two types of measured values A and B is shown on the upper side of FIG. 4, and the cluster No. is shown on the lower side of FIG.
  • ART is an algorithm that creates a cluster from the correlation between data.
  • the cluster in which the model building unit 6 shows the states of the measured values A and B in the learning mode is referred to as the cluster No. It is assumed that they are classified by 1 to 3.
  • Cluster No. 1 is a state in which the measured value A is higher than the measured value B
  • the cluster No. No. 2 is a state in which both the measured values A and B are low
  • the cluster No. 3 represents a state in which the measured value B is higher than the measured value A.
  • the model building unit 6 After the cluster is generated, the model building unit 6 starts the diagnosis of the measured values A and B in the diagnosis mode from the start of the diagnosis. Then, it is assumed that a state has occurred in which both the measured values A and B show high values. This state is the cluster No. at the time of learning. It does not correspond to any of 1 to 3. Therefore, the model building unit 6 generates a cluster showing a state in which both the measured values A and B show high values, and the cluster No. 1 is generated in this cluster. Add 4. Then, when a new cluster is generated, the diagnostic device 100 will notify the user of the occurrence of an abnormality.
  • the model building unit 6 generates a new cluster when data that is considered not to belong to the cluster generated during the learning period appears in the diagnostic mode. Therefore, the model building unit 6 may output the presence / absence of the appearance of a new cluster as a flag. This flag is used when the presence or absence of a new cluster is used as the data judgment method of the diagnostic model.
  • FIG. 5 is a diagram in which measured values 1 and 2 are clustered.
  • FIG. 5 shows a graph in which the value of the measured value 1 is taken on the horizontal axis, the value of the measured value 2 is taken on the vertical axis, and the points where the measured values 1 and 2 measured at the same time intersect are plotted.
  • the white circles in the figure represent learning data, and the black circles represent diagnostic data.
  • the diagnostic model is evaluated using the input data as the evaluation data as described above, the diagnostic data shown in FIG. 5 is replaced with the evaluation data.
  • intersections of the measured values 1 and 2 are clustered with circles of a predetermined size.
  • This circle represents the cluster generated by the training data.
  • the x mark in the center of the circle represents the center of gravity of the cluster generated by the training data, and is called the representative point of the cluster.
  • FIG. 5 shows an example of three clusters of clusters 1 to 3.
  • the model building unit 6 calculates the degree of abnormality based on the points of each training data and diagnostic data and the distance on the vector space with respect to the representative points of the cluster. For example, for each learning data and diagnostic data, the distance from the center of gravity of the nearest cluster is defined as the degree of anomaly.
  • the measured values 1 and 2 plotted farther than the circle of each cluster are outliers that do not belong to any of the clusters. As shown in this outlier, the greater the difference between the points of the diagnostic data and the data pattern formed by the training data, the longer the distance in the vector space and the higher the degree of anomaly. Therefore, the degree of abnormality is used as an index for measuring the degree of abnormality in the diagnostic data.
  • model building unit 6 is supposed to build a diagnostic model by using a method based on a machine learning model
  • a diagnostic model may be built by using a method based on a physical model.
  • the abnormality determination unit 7 determines whether or not there is an abnormality in the time-series data input to the diagnostic model constructed by the model construction unit 6 and acquired by the data acquisition unit 4 during the evaluation period. At this time, the abnormality determination unit 7 determines whether or not the diagnostic data is regarded as an abnormality based on the determined rule.
  • the operation of the abnormality determination unit 7 will be described with reference to FIG.
  • FIG. 6 is a graph showing changes in the degree of abnormality.
  • the horizontal axis is time and the vertical axis is the degree of abnormality, and the time change of the degree of abnormality is shown.
  • the abnormality determination unit 7 determines the presence or absence of an abnormality by comparing the degree of abnormality calculated by the model construction unit 6 in the diagnostic mode with a threshold value set in advance by the user.
  • the threshold value to be compared with the degree of abnormality is an example of the parameter adjusted by the parameter adjusting unit 9.
  • the abnormality determination unit 7 determines that an abnormality has occurred.
  • the evaluation index calculation unit 8 calculates a specific evaluation index based on the determination result of the presence or absence of abnormality in the time series data. For example, the evaluation index calculation unit 8 calculates the evaluation index (for example, the correct answer rate) of the diagnostic model determined by the evaluation index determination unit 3 based on the abnormality determination result executed by the abnormality determination unit 7. In order for the evaluation index calculation unit 8 to calculate the evaluation index, a correct label corresponding to the abnormality determination result output by the diagnostic model is required.
  • This correct answer label gives a label that all the abnormality determination results are normal when the measurement value data acquired from the measurement value database 5 by the data acquisition unit 4 does not include the data at the time of abnormality. May be good.
  • the evaluation index calculation unit 8 gives a label that all are normal
  • the evaluation index calculation unit 8 divides the normal data into k sets by using, for example, a cross-validation method. Then, the evaluation index calculation unit 8 constructs a diagnostic model using the data of the (k-1) set of the k sets as training data, and performs a process of diagnosing using the remaining one set of data as diagnostic data. conduct.
  • the abnormality determination unit 7 makes an abnormality determination, and the evaluation index calculation unit 8 can calculate the evaluation index.
  • the evaluation index calculation unit 8 simulates the abnormal data including the abnormal value artificially created by the user. It is also possible to create it as a target.
  • the reason why the user artificially creates an abnormal value in this way is that, in general, the model building unit 6 can create a highly accurate diagnostic model if there is abnormal data.
  • the evaluation index calculation unit 8 adds ⁇ n ⁇ to the measurement values of one or more signals for the time-series data of the signals acquired by the data acquisition unit 4 from the measurement value database 5 during normal operation.
  • is a standard deviation
  • n is an arbitrary real number. Then, the evaluation index calculation unit 8 gives an abnormality label to the artificially created abnormality data.
  • the method of artificially creating anomalous data is not limited to this method, and in addition, a method of using a simulation, a mathematical model, or a physical model may be used. Also by using these methods, the model building unit 6 can build a more accurate diagnostic model.
  • the parameter adjustment unit 9 is a model including at least one of parameter items, time-series data usage range items, and evaluation index items based on the diagnostic purpose and data conditions input to the condition input unit 1. It is constructed according to the method and automatically adjusts the parameters of the diagnostic model evaluated by the evaluation index. The parameters adjusted by the parameter adjusting unit 9 are output to the data acquisition unit 4 and the abnormality determination unit 7.
  • the parameter adjustment unit 9 updates the parameters to be adjusted selected in the parameter items shown in FIG. 2 in order to optimize the diagnostic model with respect to the evaluation index of the diagnostic model calculated by the evaluation index calculation unit 8. do.
  • the parameters to be adjusted include, for example, Tag information, learning period, diagnosis period, normalization range of data, and the like.
  • Tag information is an example of data item parameters.
  • the learning period and the diagnosis period are both examples of the model input period.
  • the data normalization range is an example of a data item normalization range parameter.
  • the parameter adjustment unit 9 includes hyperparameters peculiar to the machine learning model as parameters for determining the parameters peculiar to the diagnostic model. For example, in the case of ART, resolution parameters and learning rates correspond to hyperparameters.
  • the threshold value used by the abnormality determination unit 7 to execute the abnormality determination is also one of the parameters.
  • the parameter update condition is not limited to one. For example, any optimization method such as grid search, steepest descent, stochastic gradient descent, conjugate gradient descent, Newton's method, quasi-Newton's method, genetic algorithm, Bayesian optimization, reinforcement learning, etc. can be applied.
  • the setting parameters set for constructing the diagnostic model in this way include at least one of the data item parameters, the model input period, the normalization range parameters of the data items, and the parameters that determine the model-specific parameters.
  • the parameter adjusting unit 9 can aggregate the parameter search conditions into several patterns in advance. By this pattern aggregation, the processing amount required for the parameter adjustment unit 9 to search for parameters can be significantly reduced. Further, the parameter adjusting unit 9 may give priority to the parameter items. Since each parameter has a different role, it is possible to efficiently optimize the diagnostic model by setting the order of the parameter items to be searched preferentially according to the diagnostic purpose in advance. Then, the model construction unit 6, the abnormality determination unit 7, the evaluation index calculation unit 8, and the parameter adjustment unit 9 repeat a series of processes a predetermined number of times.
  • the result output unit 10 is a part that displays a diagnostic model optimized based on the evaluation index of the model. At this time, the result output unit 10 outputs a specific evaluation index calculated by the evaluation index calculation unit 8. Here, the result output unit 10 can output a specific evaluation index calculated repeatedly by the evaluation index calculation unit 8 a predetermined number of times. Therefore, a display example of the diagnostic model will be described with reference to FIG. 7.
  • FIG. 7 is a diagram showing a first display example of the diagnostic model.
  • the diagnostic model is displayed as a diagnostic model display screen 21 having the form shown in FIG. 7.
  • the diagnostic model display screen 21 displays elements that characterize the diagnostic model in a table format.
  • the diagnostic model display screen 21 is composed of record No., parameter 1, parameter 2, number of data, learning abnormality degree average, diagnosis time abnormality degree average, precision rate, recall rate, F value, and file link items.
  • Parameter 1 and parameter 2 represent parameter conditions searched during machine learning. Further, parameter 1, parameter 2, and the number of data are setting information required for machine learning.
  • the average degree of abnormality at the time of learning, the average degree of abnormality at the time of diagnosis, the precision rate, the recall rate, and the F value are values calculated as learning results of machine learning and are related to the evaluation index.
  • the graph No. shown in the item of the file link. 1, No. 2, No. 3 is used, for example, to link to the trend diagram file shown in FIG. 6 and display the trend diagram. The user can see the graph No. of the item of the file link.
  • the record No. 1 is displayed from the diagnostic model display screen 21. It is displayed by switching to the trend diagram of 1.
  • Each of the records (No. 1, No. 2, ...) Displayed on the diagnostic model display screen 21 represents the "diagnostic model" displayed on the result output unit 10.
  • the display method of the diagnostic model is not limited to one, but the calculation result including the parameter conditions (values of parameter 1 and parameter 2) searched by the parameter adjustment unit 9 and information and evaluation indexes related to the construction model ( It is possible to output a list of the number of data to the F value).
  • the result output unit 10 selects the highest-level diagnostic model based on the evaluation index, and displays a trend diagram (see FIG. 6) in which the degree of abnormality and the threshold value are described in the time-series direction related to this diagnostic model. It is also possible to display. At this time, the result output unit 10 may display only the trend diagram having the best evaluation index, which is related to the diagnostic model obtained by the parameter adjustment unit 9 searching for the parameters. Further, the result output unit 10 may sort from the top of the evaluation index and display several top trend charts side by side so that the user can visually check the trend chart and select an arbitrary model. .. Whether the evaluation index is good (including the best) or bad is judged by the maximum value or the minimum value of the evaluation index.
  • FIG. 8 is a diagram showing a second display example of the diagnostic model.
  • the items constituting the diagnostic model display screen 22 shown in FIG. 8 are the same as those of the diagnostic model display screen 21 shown in FIG. 7, but the RANK item is added instead of the record No. on the left end of the screen, and the item on the right end of the screen is added. The difference is that instead of file links, graph items have been added.
  • RANK represents the evaluation order of the diagnostic model, and the diagnostic model with the best specific evaluation index is represented by "1".
  • the user sets the graph No. of the graph item. When the cursor is placed on the character 2, the record No. 2 is superimposed on the diagnostic model display screen 22. It shows how the trend diagram of 2 is automatically displayed.
  • the result output unit 10 applies additional conditions to the higher evaluation index and displays the diagnostic model display screen 22.
  • the result output unit 10 can support the user to select a model through the diagnostic model display screen 22.
  • the result output unit 10 can sort and present the index included in the above list as the second evaluation index from the top.
  • the result output unit 10 has an abnormality represented by the ratio of the characteristic amount of the diagnostic model (average degree of abnormality) in the normality determination period and the characteristic amount of the diagnostic model (average degree of abnormality) in the abnormality determination period.
  • the average ratio can be used as the second evaluation index.
  • the graph No. 8 in FIG. As shown in 2, the period in which the degree of abnormality is less than the threshold value is called the normality determination period, and the period in which the degree of abnormality is greater than or equal to the threshold value is called the abnormality determination period.
  • the result output unit 10 has a method of extracting the condition in which the first evaluation index is higher and selecting the median value of the parameter.
  • the first evaluation index is assumed to be an F value
  • the second evaluation index is assumed to be an average degree of abnormality during learning. Then, on the diagnostic model display screen 22 shown in FIG. 8, a table in which the records are sorted in descending order by the F value of the first evaluation index is shown.
  • the diagnostic model display screen 22 displays a list of model candidates sorted by an arbitrary evaluation index (for example, F value) in a list format.
  • the result output unit 10 sorts the diagnostic models in descending order of evaluation index. Therefore, it is possible to display the diagnostic model in a time-series trend according to various conditions.
  • the median value or the average value of the parameters can be presented as a recommendation by the result output unit 10. That is, when the numerical values of the evaluation indexes are the same in the two candidate models selected based on the evaluation indexes, the result output unit 10 calculates, for example, the median value or the average value for the parameter values in each model. Can be presented.
  • the model candidates are further sorted by the second evaluation index.
  • KPIs Key Performance Indicators
  • the user can select an appropriate diagnostic model by displaying two or more evaluation indexes of the diagnostic model together.
  • the user can appropriately select an evaluation index for sorting model candidates. Therefore, when a certain evaluation index is emphasized, the user can select an appropriate model candidate while confirming how the other evaluation indexes change.
  • the result output unit 10 can display the evaluation index on the screen in another form.
  • an example shown by an equivalence diagram of the evaluation index with each parameter as an axis will be described with reference to FIG. 9.
  • FIG. 9 is a contour diagram of the evaluation index.
  • FIG. 9 On the left side of FIG. 9, a diagram is shown in which parameter 1 is taken on the horizontal axis and parameter 2 is taken on the vertical axis, and the search points searched by the parameter adjusting unit 9 are plotted.
  • an equivalence diagram in which equivalence search points are connected by a line is shown. Since the evaluation index of the diagnostic model created at each search point is given, the result output unit 10 can draw an equivalence diagram.
  • This contour diagram has an advantage that the distribution status of the evaluation index is visually easy for the user to understand. Further, the distribution 23 in which the evaluation index is closest to the center and the evaluation index is high indicates that the combination of the parameters 1 and 2 is appropriate.
  • parameter 1 may be read as a first evaluation index and parameter 2 may be read as a second evaluation index, and when a plurality of high-ranking KPIs occur, the first and second evaluation indexes may be displayed in an equivalence diagram.
  • the result output unit 10 can display not only the two-dimensional diagram but also the three-dimensional diagram with another parameter as the axis as the contour diagram. Further, the result output unit 10 may aggregate conditions with similar trends by pattern recognition and display only representative figures as candidates. In this case, among the many search points shown on the left side of FIG. 9, the search points having similar values are aggregated, and the number of search points is reduced and displayed.
  • the result output unit 10 it is also possible to collectively display a representative trend diagram from the high-ranking candidate model group obtained as the search result. This is because, for example, a diagnostic model in which the parameter search points are close to each other is expected to have almost the same appearance of the trend diagram. Since it is difficult for a person to visually discriminate these similar trend charts, it is effective for the result output unit 10 to aggregate a plurality of trend charts into patterns. As a specific pattern aggregation method, a pattern recognition method based on machine learning can be mentioned, but there is no particular limitation.
  • the diagnostic apparatus 100 As described above, in the diagnostic apparatus 100 according to the present embodiment, at least the diagnostic purpose and the data condition are input, and the information is used to determine the evaluation index and the search condition of the diagnostic model. Therefore, in the diagnostic apparatus 100, the evaluation index determination unit 3 determines the evaluation index according to not only the conditions of the time-series data acquired by the data acquisition unit 4 but also the diagnostic purpose of the diagnostic model constructed by the model construction unit 6. Therefore, the parameter adjusting unit 9 can quickly and automatically adjust the parameters related to the construction of the diagnostic model. At this time, the adjustment parameters related to the evaluation index and the search condition are automatically searched, so that the user can be shown the information for constructing the optimum diagnostic model. Therefore, it is possible to reduce the man-hours for designing a diagnostic model and support the development of a highly accurate model.
  • the diagnostic device 100 automatically extracts candidates for diagnostic purposes based on the past maintenance history of the device and the like, and supports the construction of a diagnostic model capable of assuming a failure that may occur for each device. Can be done. Therefore, the diagnostic apparatus 100 can create a diagnostic model related to the failure diagnosis of the device by setting the minimum necessary items such as the setting for the purpose of diagnosis by the user.
  • FIG. 10 is a flowchart showing an example of processing of the diagnostic apparatus 100 according to the first embodiment. Here, a method of adjusting parameters of a diagnostic model performed in cooperation with each part of the diagnostic apparatus 100 will be described.
  • the diagnostic device 100 operates the condition input unit 1 (S1).
  • the user selects a diagnostic purpose and data conditions through the condition setting screen 20 (see FIG. 3) displayed on the display device.
  • the candidate of the model evaluation index registered in advance is presented according to the information of the selected diagnostic purpose and the data condition, the user determines one evaluation index from the presented candidates.
  • FIG. 3 it is assumed that the user selects "failure detection” as the diagnostic purpose and "abnormal data exists" as the data condition.
  • the diagnostic apparatus 100 determines the diagnostic purpose and the data condition selected by the condition input unit 1 by operating the condition determination unit 2.
  • the diagnostic device 100 operates the evaluation index determination unit 3 (S2).
  • the evaluation index determination unit 3 selects the F value from the candidates of the model evaluation index registered in advance based on the conditions determined by the condition determination unit 2. Then, the F value selected by the evaluation index determination unit 3 is displayed on the condition setting screen 20 shown in FIG.
  • the diagnostic device 100 operates the data acquisition unit 4 (S3).
  • the learning data and the diagnostic data to be used by the user for constructing the diagnostic model are selected. In that case, signal information and data period are required.
  • the signal information may be specified in advance by the user in a list or a text file, or may be selected by the user through a screen (not shown). Alternatively, a method may be used in which signal information candidates are presented on the condition setting screen 20 and the user checks and selects the signal information.
  • the measured value data of the type specified as the signal information is acquired from the measured value database 5 by the data acquisition unit 4.
  • the user specifies the period in advance using a list or a text file, and a method in which the user inputs and specifies the period from the screen (not shown).
  • the trend of the measured value data also referred to as “target data”
  • the period may be specified by a method of dragging and dropping by the user.
  • FIG. 11 is a diagram showing a display example of a screen on which the user specifies a data period.
  • the time is taken on the horizontal axis and the measured value is taken on the vertical axis, and the state of the time change of the measured values A and B is shown in a graph (trend diagram).
  • the data acquisition unit 4 attaches information indicating that the time series data acquired during the period when the correct answer is known is normal. For example, as shown in the graph of FIG. 11, the data acquisition unit 4 attaches a correct answer label to a region known to be the correct answer in advance, and designates the data in this region as normal data. The measured value data acquired by the data acquisition unit 4 during the period designated as normal data is labeled with "normal" on the correct answer label. Further, the data acquisition unit 4 attaches information indicating that the time series data acquired during the period in which the abnormality is known is abnormal.
  • the data acquisition unit 4 attaches a correct answer label to an area that is clearly known to be abnormal, and designates the data in this area as abnormal time data.
  • the measured value data acquired by the data acquisition unit 4 during the period designated as the abnormal time data is labeled with "abnormal" on the correct answer label.
  • the data acquisition unit 4 excludes unknown points from the modeled data when selecting the range to be labeled as normal or abnormal. Therefore, the area (period) other than the area designated as normal data and the area (period) designated as abnormal data by the data acquisition unit 4 is excluded from the evaluation target. It is often difficult to determine whether the measured values A and B included in the period not subject to evaluation are normal or abnormal. Therefore, the measured value data of the measured values A and B included in the period not subject to evaluation is not used when calculating the evaluation index of the model.
  • the data acquisition unit 4 acquires the target data from the measured value database 5 in which the time series data is stored, based on the signal information and the data period specified through the screen (not shown).
  • the diagnostic device 100 operates the model building unit 6 (S4).
  • the model building unit 6 constructs a diagnostic model using time-series data with information indicating that it is normal and time-series data with information indicating that it is abnormal. do.
  • the model building unit 6 operates the learning mode of ART by combining the learning data, the normalization range, and the resolution parameters of the data prepared by the data acquisition unit 4.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-117034.
  • the outline of ART processing is as follows. Process 1: The model building unit 6 normalizes the input vector.
  • Process 2 The model building unit 6 selects a suitable cluster candidate by comparing the input data with the weighting coefficient.
  • Process 3 The model building unit 6 evaluates the validity of the selected cluster by comparison with the resolution parameter.
  • model building unit 6 determines that the selected cluster is appropriate, it classifies the input data into that cluster and proceeds to the next process 4. If the model building unit 6 does not determine that the selected cluster is valid, it resets the cluster and selects a suitable cluster candidate from other clusters (that is, repeats process 2). If the value of the resolution parameter is increased, the classification of clusters becomes finer and the number of clusters generated increases. On the other hand, if the value of the resolution parameter is made small, the classification of clusters becomes coarse and the number of clusters generated decreases.
  • Process 4 When the model building unit 6 resets all the existing clusters in the process 2, it determines that the input data belongs to the new cluster and generates a new weighting coefficient representing the new cluster.
  • Process 5 When the input data is classified into clusters, the model building unit 6 updates the weighting factors corresponding to the clusters using the past weighting factors and the input data.
  • the model building unit 6 executes the learning mode, the input data is classified into clusters by ART, and each weighting factor is updated, so that the model building unit 6 can obtain model information. Therefore, when new input data is obtained in the trained ART, the model building unit 6 can determine which cluster generated in the past can be classified by the above algorithm. Further, the model building unit 6 can generate a new cluster if it cannot be classified into any cluster. Further, as shown in FIG. 5, the model building unit 6 generates an abnormality degree for the learning data and the diagnostic data based on the distance from the representative point of the cluster. Then, the model building unit 6 can measure the degree of abnormality in the diagnostic data by using the degree of abnormality.
  • the diagnostic device 100 operates the abnormality determination unit 7 (S5).
  • the abnormality determination unit 7 performs abnormality determination by comparing the abnormality degree output by the model construction unit 6 with the threshold value which is one of the parameters.
  • the diagnostic device 100 operates the evaluation index calculation unit 8 (S6). Since the correct answer label is given to the diagnostic data in advance, the evaluation index calculation unit 8 can calculate the F value by comparing with the determination result output from the abnormality determination unit 7.
  • the diagnostic apparatus 100 stores each parameter condition and a series of calculation results in a temporary memory or a database (not shown) (S7).
  • the diagnostic device 100 determines the number of parameter searches (S8).
  • the diagnostic apparatus 100 specifies the number of searches according to the initially set start value, end value, and step width of each parameter based on the grid search method. This number of searches is called a "specified number of times". Then, the diagnostic apparatus 100 branches the subsequent processing depending on whether or not the number of parameter searches indicated by the value of the search count counter satisfies the specified number of times.
  • the diagnostic device 100 When the number of parameter searches is less than the specified number of times (NO in S8), the diagnostic device 100 operates the parameter adjustment unit 9 (S9).
  • the parameter adjusting unit 9 updates the parameters one by one to the next search area according to the step size of each parameter set in advance. After that, the processes after step S4 are repeated. Therefore, the series of processes of steps S4 to S9 is repeated a designated number of times.
  • the diagnostic device 100 When the number of parameter searches satisfies the specified number of times (YES in S8), the diagnostic device 100 operates the result output unit 10 (S10).
  • the result output unit 10 presents on the screen the conditions in which the model evaluation index is the best from the stored results.
  • the diagnostic device 100 was able to construct a failure detection model (an example of a diagnostic model) assuming that a failure phenomenon to be diagnosed can be detected.
  • ART used as the classification means
  • the classification means is not limited to ART.
  • various classification means such as k-means clustering and vector quantization can be adopted.
  • the purpose of diagnosis includes detecting an abnormality in equipment or equipment, or detecting deterioration in the performance of equipment or equipment. Further, as the data condition, the user can select the presence / absence of abnormal data or the type of deterioration data (maintenance information or numerical data). Therefore, the diagnostic device 100 can realize CBM (Condition Based Maintenance) that predicts the state of the equipment and performs maintenance in response to not only abnormality detection of the equipment but also deterioration detection. ..
  • CBM Condition Based Maintenance
  • the diagnostic device 100 Similar to the first embodiment, the diagnostic device 100 according to the second embodiment operates the condition determination unit 2 in step S1 shown in FIG. At this time, the user selects the diagnostic purpose as "failure detection” and the data condition as "no abnormal data” through the condition setting screen 20. However, at this point, abnormal data cannot be given to the data acquisition unit 4 as a correct answer label. Therefore, in step S2, as shown in the first embodiment, the user cannot select the F value as the evaluation index of the diagnostic model.
  • the condition setting screen 20 outputs a false alarm rate that can be evaluated only with normal data as a candidate.
  • "F value” is grayed out and "false alarm rate” is displayed instead.
  • the erroneous report rate represents the ratio of the number of data erroneously determined by the abnormality determination unit 7 to all the data given the normal correct answer label.
  • the threshold value may be increased. Therefore, when the case where there is no abnormal data in the time series data is selected as the data condition, the data acquisition unit 4 provides information indicating that the time series data acquired in the period when the correct answer is known is normal. Attach.
  • the parameter adjustment unit 9 adjusts the parameters for the time-series data to which the information indicating that it is normal is attached, based on the false alarm rate that the abnormality determination unit 7 erroneously determines as an abnormality.
  • a certain tolerance margin of error
  • the abnormality determination unit 7 does not determine that the abnormality is abnormal at the same time as the abnormality exceeds the threshold value, but when the abnormality degree exceeds the threshold value continuously for 10 unit hours. Examples include a method of counting abnormalities.
  • a method in which the user sets an allowable range of the false alarm rate and a method in which the diagnostic apparatus 100 statistically sets the allowable range based on the learning data can be mentioned.
  • the diagnostic apparatus 100 executes the processes of steps S3 to S10 as the same processes as those of the first embodiment. By this process, the diagnostic apparatus 100 can construct an optimum failure diagnosis model even under the condition that there is no abnormality data.
  • the construction of the diagnostic model may be carried out using a machine learning algorithm other than clustering.
  • a diagnostic model can be introduced by estimating the false alarm rate assumed during operation using cross validation and introducing it into the model evaluation index together with the margin of error. Can be optimized. The processing when the cross-validation method is used will be described later (see FIG. 13).
  • parameter search algorithms include, for example, grid search, Bayesian optimization, and genetic algorithms.
  • the diagnostic apparatus 100 can improve the speed of constructing a diagnostic model.
  • the diagnostic device 100 according to the first embodiment is used.
  • the operation of the diagnostic device 100 according to the third embodiment to automatically adjust the parameters when deterioration detection is selected for the purpose of diagnosis will be described.
  • the diagnostic device 100 Similar to the first embodiment, the diagnostic device 100 according to the third embodiment operates the condition determination unit 2 in step S1 shown in FIG. At this time, the user checks the "deterioration detection" of the diagnostic object through the condition setting screen 20. As described above, the data condition is displayed on the condition setting screen 20 so that the user can select either qualitative data or quantitative data. That is, in the item of "data condition" on the condition setting screen 20, “qualitative data” and “quantitative data” are selectively displayed instead of "with abnormal data” and "without abnormal data” shown in FIG. To. Here, it is assumed that the user selects "qualitative data" from the "data condition” item.
  • the diagnostic device 100 operates the evaluation index determination unit 3 in step S2.
  • the evaluation index determination unit 3 can select the recall rate as the evaluation index in order to reliably detect the deterioration state of the device based on the diagnostic purpose and the data conditions set through the condition setting screen 20.
  • the diagnostic apparatus 100 executes the processes of steps S3 to S10 as the same processes as those of the first embodiment. Then, the parameter adjusting unit 9 adjusts the parameters based on the reproducibility selected as the evaluation index when the diagnostic purpose is to detect deterioration of the diagnosis target. By this process, the diagnostic apparatus 100 can construct an optimum diagnostic model even when the diagnostic purpose is deterioration detection.
  • the diagnostic apparatus 100 according to the first embodiment is used.
  • the diagnostic apparatus 100 according to the fourth embodiment operates in consideration of operability in addition to the first embodiment.
  • the difference between the fourth embodiment and the first embodiment is that the number of clusters is taken into consideration on the input screen.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-117034
  • the cluster No. and the event are registered in association with each other in the cluster of the classification result. Therefore, at the stage of operating the diagnostic apparatus 100, it is possible to monitor the operating state of the equipment according to the appearance of the cluster.
  • the frequency of new cluster generation during diagnosis and operation differs depending on the adjustment of each parameter including the resolution parameter. Therefore, when the operator monitors the operating status of the equipment, when a large number of new clusters appear in a day, it is necessary to register the event in the cluster each time, which increases the load on the operator.
  • FIG. 12 is a diagram showing the relationship between the precondition input and the modeling method determination.
  • the precondition input shown in the upper part of FIG. 12 has an operability item added in addition to the diagnostic purpose and the data condition included in the condition input unit 1.
  • the items included in the diagnostic purpose and the data conditions are the same as the items shown in FIG.
  • the item of operability includes at least one item of the target number of clusters and the margin of error.
  • the target number of clusters is the target value of the number of clusters generated at the time of learning or diagnosis of the model building unit 6. By giving the target number of clusters in advance by the user, the number of clusters generated at the time of learning or diagnosis is within the target number of clusters. This simplifies the registration of events in the cluster and facilitates the selection of diagnostic models.
  • the number of clusters generated is the number of clusters generated at the time of learning or diagnosis of the model building unit 6. Items of purpose selection, presence / absence of abnormal data, target number of clusters, and tolerance are set by the user through the condition setting screen 20 shown in FIG.
  • the condition determination unit 2 includes an adjustment parameter item, a usage data range, and a model evaluation index based on the diagnostic purpose, data condition, and operability items input by the condition input unit 1.
  • the modeling method is automatically determined.
  • the condition determination unit 2 sets the conditions to be presented to the user based on the pre-registered rules for each item of the modeling method to be set by the user according to the diagnostic purpose, the data condition and the operability. decide.
  • the adjustment parameter items and the items included in the usage data range are the same as the items shown in FIG.
  • the model evaluation index shown in FIG. 12 includes an item of cluster classification number error in addition to the detection performance shown in FIG.
  • a database (not shown) is a file or list that defines the diagnostic model evaluation index including the usage data range and detection performance by patterning the item priority and search condition of the adjustment parameters in advance based on the diagnostic purpose, data conditions, and operability. ) Can be saved.
  • the item of the cluster classification number error included in the model evaluation index is given from the target number of clusters included in the operability shown in the upper part of FIG. 12 and the number of clusters generated described above.
  • the cluster number classification error is a value obtained by converting the number of clusters generated with respect to the target number of clusters as an error.
  • the user can also select the F value as an index for evaluating the model accuracy.
  • the diagnostic device 100 Similar to the first embodiment, the diagnostic device 100 according to the fourth embodiment operates the condition determination unit 2 in step S1 shown in FIG. Next, the diagnostic device 100 operates the evaluation index determination unit 3 in step S2 shown in FIG. At this time, the F value is valid only within the margin of error from the target number of clusters shown in the upper part of FIG. For example, the evaluation index outside the permissible range is 0, and the evaluation index within the range is the F value.
  • the specific formula can be applied arbitrarily.
  • the diagnostic apparatus 100 executes the processes of steps S3 to S10 as the same processes as those of the first embodiment.
  • the diagnostic apparatus 100 can construct a diagnostic model with the highest accuracy within the range of the target number of clusters and the tolerance.
  • the preconditions including the diagnostic purpose, data conditions, target cluster number / cluster number tolerance are input from the condition input unit 1. Then, based on this precondition, the item priority / search condition of the adjustment parameter is patterned, and the diagnostic modeling method including the usage data range, the model evaluation index including the detection performance and the cluster classification number error is determined. Therefore, the diagnostic device 100 can construct an appropriate diagnostic model based on the diagnostic purpose, data conditions, and operability.
  • the diagnostic apparatus 100 uses information regarding at least one of the diagnostic purpose, data conditions, and operability. That is, unlike the above-described embodiment, it is possible to construct a diagnostic model using only operability, diagnostic purpose and operability, or data conditions and operability information.
  • the diagnostic apparatus according to the fifth embodiment represents another embodiment of the diagnostic apparatus according to the fourth embodiment. Also in the diagnostic apparatus according to the fifth embodiment, the user inputs the number of clusters and the allowance for the number of clusters through the condition setting screen 20.
  • the difference between the diagnostic device according to the fifth embodiment and the diagnostic device according to the fourth embodiment is that the model is modeled before the model building unit 6 operates in the process of step S4 shown in FIG. The construction unit 6 performs cross-validation to estimate the number of clusters generated during normal operation.
  • FIG. 13 is a block diagram showing a configuration example of the diagnostic apparatus 100A according to the fifth embodiment.
  • the diagnostic device 100A has the same configuration as the diagnostic device 100 shown in FIG. 1, except that a data division unit 12 is provided between the data acquisition unit 4 and the model construction unit 6.
  • the data division unit 12 divides the time-series data acquired by the data acquisition unit 4 into predetermined numbers. For example, the data division unit 12 divides the data acquired by the data acquisition unit 4 into k sets. Of the k sets of data, the (k-1) set of data is used as learning data, and the remaining one set of data is used as diagnostic data.
  • the data division unit 12 can prepare a combination of such learning data and diagnostic data in advance for k types of learning and diagnosis.
  • the model building unit 6 performs cross-validation before building the diagnostic model based on the divided time-series data for each predetermined number, and the number of clusters generated during normal operation of the diagnosis target. To estimate. Then, the model building unit 6 constructs k different diagnostic models by using the prepared learning data and diagnostic data. Then, in the process of step S6, the evaluation index calculation unit 8 calculates the average value of the evaluation indexes obtained from k different diagnostic models. By such processing, the model building unit 6 of the diagnostic apparatus 100A can pseudo-predict how many clusters will be generated per unit time at the start of operation of the diagnostic model.
  • the parameter adjusting unit 9 compares the estimated number of clusters with the target cluster number input from the condition input unit 1, and the difference between the estimated number of clusters and the target cluster number is the margin of error. If it is within the range, select the parameter of the condition for which the evaluation index is optimal. At this time, the parameter adjustment unit 9 compares the number of clusters input in advance from the condition input unit 1 with the permissible error with the estimated cluster generation number estimated by the evaluation index calculation unit 8, and sets the conditions within the permissible range. The optimum parameter conditions for the model evaluation index can be selected. The user confirms the predicted number output to the user interface by the result output unit 10, and the user selects the parameter condition or sets the optimum allowable range of the parameter condition for selecting the highly accurate diagnostic model. can do.
  • FIG. 14 is a diagram showing the evaluation index of the diagnostic model and the number of clusters for each search point.
  • FIG. 14 shows a diagram in which parameter 1 is taken on the horizontal axis and parameter 2 is taken on the vertical axis, and the evaluation index of the diagnostic model and the predicted value of cluster generation are written together for each search point of the parameter.
  • the predicted value of cluster generation can be, for example, the predicted number of cluster generations per day.
  • the evaluation index is 0.92, which is closer to 1.00 than the other search points. Therefore, it can be determined that the parameters 1 and 2 indicated by the search points surrounded by the broken line are useful for constructing the diagnostic model.
  • the user can select a diagnostic model based on arbitrary parameter conditions by checking the screen on which the figure shown in FIG. 14 is displayed.
  • the diagnostic model can be selected under the condition that the evaluation index is the maximum within the range where the amount of work for registering the event is judged to be operationally acceptable for the number of newly generated clusters per day.
  • the number of clusters generated by the diagnostic model can be used as one of the evaluation indexes.
  • the number of generated clusters is evaluated as good as long as it is equal to or less than the upper limit of the number of clusters generated by the user. Therefore, it is possible to use the number of clusters generated as a diagnostic model at the time of diagnosis as one of the evaluation indexes.
  • the evaluation index calculation unit 8 may calculate the number of generated clusters predicted at the time of operation by using the cross validation method. By this process, the number of generated clusters can be predicted accurately.
  • FIG. 15 is a block diagram showing a configuration example of the diagnostic apparatus 100B according to the sixth embodiment.
  • the diagnostic device 100B has the same configuration as the diagnostic device 100 shown in FIG. 1, except that the evaluation index determination unit 3 provides an evaluation index storage database 13 capable of reading the evaluation index.
  • the evaluation index storage database 13 for example, model evaluation indexes recommended according to diagnostic purposes and data conditions, item priorities and patterns of parameters are organized and stored in the form of a list shown in FIGS. 7 and 8. To.
  • the evaluation index determination unit 3 reads the evaluation index from the evaluation index storage database 13 based on the diagnostic purpose and data conditions determined by the condition determination unit 2, and displays any item from the evaluation index in a selectable manner. Therefore, when the diagnostic purpose and the data condition are input from the condition determination unit 2 to the evaluation index determination unit 3, the evaluation index determination unit 3 selects the diagnostic purpose and the diagnostic purpose from the evaluation indexes stored in the evaluation index storage database 13. The evaluation index information 14 corresponding to the combination of data conditions is read out. The evaluation index extracted from the evaluation index information 14 is presented to the user on the condition setting screen 20 shown in FIG.
  • the information registered in the evaluation index storage database 13 includes not only the evaluation index but also other parameter items that should be set by the user according to a certain diagnostic purpose and data condition. For example, it is assumed that "failure detection" is selected for the diagnostic purpose and "abnormal data is present” is selected for the data condition through the condition setting screen 20. At this time, the condition setting screen 20 is displayed so that the user can select the "F value” as the evaluation index based on the rules registered in the evaluation index storage database 13. At the same time, the condition setting screen 20 is displayed so that the user can select the input data range of "learning data” and the input data range of "correct answer label: normal” and "correct answer label: abnormal”.
  • condition setting screen 20 is displayed so that the user can select the "false alarm rate” as the evaluation index based on the rules registered in the evaluation index storage database 13, and the input data range of the "learning data”. Is displayed so that the user can select.
  • the operation of the evaluation index determination unit 3 may be selected according to similar condition input results by referring to past model construction examples. Therefore, when similar diagnostic objectives, data conditions and operating conditions are input from past diagnostic models based on utilization rates and evaluations, recommended item priorities and search conditions are patterned, used data range, and detection performance.
  • the result output unit 10 may be able to present a diagnostic model evaluation index including. For example, for each diagnostic model constructed by the model construction unit 6 in the past, the condition determination method is scored based on the number of applications, model accuracy, and artificial evaluation. Then, when the user gives a similar condition input, a screen showing a candidate condition determination method from the top of the scoring is displayed, so that the user can be prompted to select the condition determination method. be.
  • FIG. 16 is a block diagram showing a hardware configuration example of the computer 30.
  • the computer 30 is an example of hardware used as a computer that can operate as a diagnostic device according to the present embodiment.
  • the computer 30 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, and a RAM (Random Access Memory) 33, which are connected to the bus 34, respectively. Further, the computer 30 includes a display device 35, an input device 36, a non-volatile storage 37, and a network interface 38.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 31 reads the program code of the software that realizes each function according to the present embodiment from the ROM 32, loads it into the RAM 33, and executes it. Variables and parameters generated during the arithmetic processing of the CPU 31 are temporarily written in the RAM 33, and these variables and parameters are appropriately read out by the CPU 31.
  • an MPU Micro Processing Unit
  • the functions of the functional units in the diagnostic devices 100, 100A, and 100B are realized by a program executed by the CPU 31.
  • the display device 35 is, for example, a liquid crystal display monitor, and displays the result of processing performed by the computer 30 to the user.
  • the result output unit 10 can output the result to the display device 35. Therefore, the condition setting screen 20 and the like shown in FIG. 3 are displayed on the display device 35.
  • a keyboard, a mouse, or the like is used as the input device 36, and the user can perform predetermined operation inputs and instructions.
  • the condition input unit 1 can take in the information input through the input device 36.
  • non-volatile storage 37 for example, an HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, optical magnetic disk, CD-ROM, CD-R, magnetic tape, non-volatile memory, or the like is used. Be done.
  • the non-volatile storage 37 in addition to the OS (Operating System) and various parameters, a program for operating the computer 30 is recorded.
  • the ROM 32 and the non-volatile storage 37 record programs, data, and the like necessary for the CPU 31 to operate, and as an example of a computer-readable non-transient storage medium that stores a program executed by the computer 30. Used.
  • the measured value database 5 shown in FIGS. 1, 13, and 15 and the evaluation index storage database 13 shown in FIG. 15 are configured in the non-volatile storage 37.
  • a NIC Network Interface Card
  • various data can be transmitted and received between the devices via a LAN (Local Area Network) connected to the terminal of the NIC, a dedicated line, or the like. It is possible.
  • the measured value data (time series data) output from the measuring instrument 2 is taken into the measured value database 5 through the network interface 38.
  • each embodiment of the present invention includes, for example, a power generation plant (boiler, condenser, turbine), a chemical plant (reaction tank, heat exchanger), an industrial plant (filtration filter), and a water treatment facility (aggregator). It can be used to diagnose the operation of industrial equipment such as injection tanks) and small boilers.
  • each of the above-described embodiments is a detailed and specific description of the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations.
  • the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

Abstract

This diagnostic device comprises a condition input unit for receiving input of a diagnostic purpose of a diagnostic model for diagnosing the state of a subject to be diagnosed, and data conditions for time series data to be used for creating the diagnostic model, and a parameter adjustment unit for automatically adjusting a parameter of the diagnostic model that is created, on the basis of the diagnostic purpose and the data conditions input to the condition input unit, in accordance with a modeling method including at least one of a parameter item defining a parameter for adjusting the diagnostic model, an item of the range of use of the time series data, and an item of evaluation index for evaluating the diagnostic model, and that is evaluated by the evaluation index.

Description

診断装置及びパラメータ調整方法Diagnostic device and parameter adjustment method
 本発明は、診断装置及びパラメータ調整方法に関する。 The present invention relates to a diagnostic device and a parameter adjustment method.
 産業用プラントなどで使用されるプロセス機器や設備には、これら機器の稼働状態を監視するために、温度、圧力、流量などを計測する計測器が各部に設置されている。従来、設備の安定稼働のためには、診断装置が、これら計測器が計測した計測値を連続的に取得及び監視し、計測値がある閾値を超えた場合にアラームを発報することで異常に対処してきた。 In the process equipment and equipment used in industrial plants, measuring instruments that measure temperature, pressure, flow rate, etc. are installed in each part in order to monitor the operating status of these equipment. Conventionally, for stable operation of equipment, diagnostic equipment continuously acquires and monitors the measured values measured by these measuring instruments, and issues an alarm when the measured values exceed a certain threshold value. Has dealt with.
 近年では、設備に異常が起きる前に、異常の予兆を捉えることで、設備が故障する前に対処するような取り組み例が増加している。この場合、診断装置は、各計測器で取得された計測値を収集し、機械学習などのアルゴリズムにより大規模な処理をすることで、通常とは異なる設備の運転状態を識別することにより、異常の予兆を捉えることが期待されている。 In recent years, there have been an increasing number of examples of efforts to deal with equipment before it breaks down by catching signs of abnormality before equipment malfunctions. In this case, the diagnostic device collects the measured values acquired by each measuring instrument and performs large-scale processing by an algorithm such as machine learning to identify the operating state of equipment that is different from normal, resulting in an abnormality. It is expected to catch the signs of.
 例えば、適応共鳴理論(以下、ART:Adaptive Resonance Theory)を用いて設備の異常を予兆する診断装置が知られていた。ARTは、多次元の時系列データをその類似度に応じてカテゴリ(クラスタ)に分類する、クラスタリング手法に基づく理論である。ARTなどの手法を用いて異常予兆が可能な診断モデルを構築する際には、データの分解能を決める分解能パラメータなどを診断対象のデータに合わせて設定する必要がある。このパラメータを適切に設定しないと、設備の異常を発見できない見逃しや、設備が正常状態であるにも関わらず異常と検知する誤検知が発生する可能性がある。このようなパラメータを設定するための技術として特許文献1に開示された技術が知られている。 For example, a diagnostic device that predicts an abnormality in equipment using Adaptive Resonance Theory (hereinafter referred to as ART) has been known. ART is a theory based on a clustering method that classifies multidimensional time-series data into categories (clusters) according to their similarity. When constructing a diagnostic model capable of predicting an abnormality by using a method such as ART, it is necessary to set a resolution parameter or the like that determines the resolution of the data according to the data to be diagnosed. If this parameter is not set properly, there is a possibility that an abnormality in the equipment cannot be found and an erroneous detection that the equipment is in a normal state but is detected as an abnormality may occur. The technique disclosed in Patent Document 1 is known as a technique for setting such a parameter.
 特許文献1には、「診断装置は、設定パラメータに基づいて時系列データを分類するための前処理を実行して前処理データを生成する前処理手段と、前処理データをデータの類似性に応じて分類した分類結果を生成する分類手段と、分類結果を分類結果の特徴量の経時変化パターンに応じて評価した評価結果を生成する分類結果評価手段と、評価結果が所望の値となるように前処理手段で用いる設定パラメータを調整する設定値調整手段と、を備える」と記載されている。また、特許文献1には、「取得した時系列データの条件に応じて、診断に適するパラメータを自動的に調整することができる」と記載されている。 Patent Document 1 states that "a diagnostic device has a preprocessing means for generating preprocessed data by executing preprocessing for classifying time-series data based on setting parameters, and the preprocessed data is similar to the data. A classification means that generates classification results classified according to the classification results, a classification result evaluation means that evaluates the classification results according to the time-dependent change pattern of the feature amount of the classification results, and a classification result evaluation means so that the evaluation results are desired values. It is provided with a setting value adjusting means for adjusting a setting parameter used in the preprocessing means. " Further, Patent Document 1 describes that "parameters suitable for diagnosis can be automatically adjusted according to the conditions of the acquired time series data".
特開2017-117034号公報JP-A-2017-117834
 従来のようにARTなどの手法を用いて時系列データを分類する際には、分解能パラメータや診断に用いられるデータのデータ項目、データの正規化範囲などの多数のパラメータを調整する必要があった。しかし、ユーザは、どのパラメータを調整すれば、所望する結果を得られるのか判断が難しかった。 When classifying time-series data using methods such as ART as in the past, it was necessary to adjust a large number of parameters such as resolution parameters, data items of data used for diagnosis, and data normalization range. .. However, it has been difficult for the user to determine which parameter should be adjusted to obtain the desired result.
 特許文献1に開示された技術では、入手した時系列データに異常時のデータが含まれているか否かによって分類結果の評価値を定義し、関連パラメータを最適化することが可能であった。しかし、診断装置が診断モデルを構築する際には、与えられたデータに異常データが含まれているか否かといったデータ条件の他、取得するデータ期間はどれくらいかといった様々なデータ条件も考慮しなければならない。このようなデータ条件に応じて、診断装置が一括でパラメータ調整をしようとすると、診断モデルの構築に際して、膨大な計算時間を要したり、そもそも自動化に必須となるモデルの評価指標を決定することができなかったりすることがあった。 In the technique disclosed in Patent Document 1, it was possible to define the evaluation value of the classification result according to whether or not the obtained time series data includes the data at the time of abnormality, and to optimize the related parameters. However, when the diagnostic device builds a diagnostic model, it must consider various data conditions such as whether or not the given data contains abnormal data, as well as various data conditions such as how long the data period to be acquired. Must be. If the diagnostic equipment tries to adjust the parameters in a batch according to such data conditions, it takes a huge amount of calculation time to construct the diagnostic model, and it is necessary to determine the evaluation index of the model that is indispensable for automation in the first place. Sometimes I couldn't.
 本発明はこのような状況に鑑みて成されたものであり、診断モデルの構築に必要なパラメータの調整を容易に行え、適切な診断モデルを構築できるようにすることを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to be able to easily adjust parameters necessary for constructing a diagnostic model and to be able to construct an appropriate diagnostic model.
 本発明に係る診断装置は、診断対象の状態を診断する診断モデルの診断目的、及び診断モデルの構築に利用される時系列データのデータ条件が入力される条件入力部と、入力された診断目的及びデータ条件に基づいて、診断モデルを調整するパラメータが定義されたパラメータ項目、時系列データの利用範囲の項目、及び診断モデルを評価するための評価指標の項目のうち、少なくとも一つ以上を含むモデル化方法に従って構築され、評価指標で評価される診断モデルのパラメータを自動的に調整するパラメータ調整部と、を備える。 The diagnostic apparatus according to the present invention has a condition input unit for inputting a diagnostic purpose of a diagnostic model for diagnosing the state of a diagnosis target and a condition input unit for inputting data conditions of time-series data used for constructing the diagnostic model, and an input diagnostic purpose. And includes at least one of a parameter item in which parameters for adjusting the diagnostic model are defined based on data conditions, an item in the range of use of time-series data, and an evaluation index item for evaluating the diagnostic model. It is equipped with a parameter adjustment unit that automatically adjusts the parameters of the diagnostic model that is constructed according to the modeling method and evaluated by the evaluation index.
 本発明によれば、診断目的とデータ条件に応じて診断モデルの構築に必要なパラメータの調整を容易に行うことができるので、適切な診断モデルを構築することが可能となる。
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, it is possible to easily adjust the parameters necessary for constructing the diagnostic model according to the diagnostic purpose and the data conditions, so that it is possible to construct an appropriate diagnostic model.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施の形態に係る診断装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the diagnostic apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る前提条件入力と、モデル化方法決定の関係を示す図である。It is a figure which shows the relationship between the precondition input which concerns on embodiment of this invention, and the modeling method determination. 本発明の実施の形態に係る条件設定画面の構成例を示す図である。It is a figure which shows the structural example of the condition setting screen which concerns on embodiment of this invention. 本発明の実施の形態に係るARTの動作を説明する図である。It is a figure explaining the operation of ART which concerns on embodiment of this invention. 本発明の実施の形態に係る2種類の計測値をクラスタリングした図である。It is a figure which clustered two kinds of measured values which concerns on embodiment of this invention. 本発明の実施の形態に係る異常度の変化を表すグラフである。It is a graph which shows the change of the degree of abnormality which concerns on embodiment of this invention. 本発明の実施の形態に係る診断モデルの第1の表示例を示す図である。It is a figure which shows the 1st display example of the diagnostic model which concerns on embodiment of this invention. 本発明の実施の形態に係る診断モデルの第2の表示例を示す図である。It is a figure which shows the 2nd display example of the diagnostic model which concerns on embodiment of this invention. 本発明の実施の形態に係る評価指標の等値線図である。It is a contour figure of the evaluation index which concerns on embodiment of this invention. 本発明の第1の実施の形態に係る診断装置の処理例を示すフローチャートである。It is a flowchart which shows the processing example of the diagnostic apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るユーザがデータ期間を指定する画面の表示例を示す図である。It is a figure which shows the display example of the screen which the user which concerns on 1st Embodiment of this invention specifies a data period. 本発明の第4の実施の形態に係る前提条件入力と、モデル化方法決定の関係を示す図である。It is a figure which shows the relationship between the precondition input which concerns on 4th Embodiment of this invention, and the modeling method determination. 本発明の第5の実施の形態に係る診断装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the diagnostic apparatus which concerns on 5th Embodiment of this invention. 本発明の第5の実施の形態に係る探索点ごとに診断モデルの評価指標とクラスタ数とを併記した図である。It is a figure which shows the evaluation index of the diagnostic model and the number of clusters for each search point which concerns on 5th Embodiment of this invention. 本発明の第6の実施の形態に係る診断装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the diagnostic apparatus which concerns on 6th Embodiment of this invention. 本発明の実施の形態に係る計算機のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware configuration example of the computer which concerns on embodiment of this invention.
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。なお、本発明は一般的な産業用プラントを構成する機器を想定して記載するが、それに限定されるものではなく、産業機械や他分野の設備にも利用可能である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the attached drawings. In the present specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and duplicate description will be omitted. Although the present invention is described assuming equipment constituting a general industrial plant, the present invention is not limited thereto, and can be used for industrial machinery and equipment in other fields.
[各実施の形態で共通する構成及び動作の説明]
 始めに、各実施の形態で共通する構成及び動作を説明する。ここでは、実施の形態を特定しない場合に、「本実施の形態」とも言う。本実施形態で取り扱う機器は、例えば熱交換器やタービン、エンジン、ポンプ、ファン、攪拌槽、回転機器などを想定している。一般的な産業用プラントは、これら複数の機器が配管で接続されており、原料や中間生産物が移送されて連続的に処理されることで、最終製品を製造する。また、各機器が一つの設備に組み合わさった状態で機能する場合もある。
[Explanation of configuration and operation common to each embodiment]
First, the configuration and operation common to each embodiment will be described. Here, when the embodiment is not specified, it is also referred to as "the present embodiment". The equipment handled in this embodiment is assumed to be, for example, a heat exchanger, a turbine, an engine, a pump, a fan, a stirring tank, a rotating equipment, or the like. In a general industrial plant, these multiple devices are connected by piping, and raw materials and intermediate products are transferred and continuously processed to manufacture final products. In addition, each device may function in a state of being combined into one facility.
 これらの機器には多数の計測器が設置されている。そこで、産業用プラントなどで使用されるプロセス機器や設備(診断対象の一例)の稼働状態を監視・診断し、機器や設備に生じる異常の予兆を検知する診断装置が用いられる。診断装置は、計測器ごとに連続して出力される計測値を取得することで、計測器が計測する対象の時系列データを生成する。計測対象ごとに生成された時系列データは一般的にプロセスデータと呼ばれ、例えばプログラマブルロジックコントローラ(PLC:Programmable Logic Controller)や分散制御システム(DCS:Distributed Control System)を介して時系列でデータベースに格納される。 A large number of measuring instruments are installed in these devices. Therefore, a diagnostic device is used that monitors and diagnoses the operating state of process equipment and equipment (an example of a diagnosis target) used in an industrial plant and the like, and detects signs of abnormalities occurring in the equipment and equipment. The diagnostic device generates time-series data of the object to be measured by the measuring instrument by acquiring the measured values continuously output for each measuring instrument. The time-series data generated for each measurement target is generally called process data, and is stored in the database in time-series via, for example, a programmable logic controller (PLC: Programmable Logic Controller) or a distributed control system (DCS: Distributed Control System). Stored.
 また、本実施形態では、各計測器で取得されるデータの名称を「信号」と呼ぶ。信号の内容は、例えば温度、圧力、流量、電流値などのアナログデータの場合もあるが、それに限らず、設備の制御シーケンス上のON/OFF信号などを示すデジタルデータも含まれる。 Further, in the present embodiment, the name of the data acquired by each measuring instrument is referred to as "signal". The content of the signal may be analog data such as temperature, pressure, flow rate, and current value, but is not limited to this, and includes digital data indicating an ON / OFF signal on the control sequence of the equipment.
 本実施形態の説明に先立って、各用語についての定義を述べる。
 異常とは、設備が安定して稼働できていない状態と定義する。ここで安定して稼働できていない状態とは、設備の稼働性能や生産物の品質が、当初規定されている範囲に収まらない場合である。また、規定の範囲内にある場合でも、性能や品質を示す指標が規定範囲外に向かって次第に変化していく状況についても異常と見なすことにする。
Prior to the description of the present embodiment, the definitions of each term will be described.
Abnormality is defined as a state in which the equipment is not operating stably. Here, the state in which stable operation is not possible is a case where the operating performance of the equipment and the quality of the product do not fall within the initially specified range. In addition, even if it is within the specified range, the situation where the index indicating performance and quality gradually changes toward the outside of the specified range is also regarded as abnormal.
 診断モデルとは、与えられたプロセスデータに対して、異常又は正常を診断するものと定義する。一般的には、診断モデルは物理モデルと機械学習モデルに分けられる。
 物理モデルは、物理現象を数式で表したものである。物理モデルは各変数の物理的な関係性が明らかであるため、信頼性や説明性が高い点が特徴である。また、ある診断対象で発生した現象を説明するための物理モデルがある場合、この現象と同様の現象が他の類似案件の診断対象にも発生するのであれば、他の類似案件の診断対象にも同じ物理モデルを展開可能という利点がある。ただし、診断モデルの作りこみが複雑であり、各種の運転状態に対する基礎データを予め取得する必要があるという欠点がある。
A diagnostic model is defined as diagnosing an abnormality or normality with respect to given process data. Generally, diagnostic models are divided into physical models and machine learning models.
A physical model is a mathematical expression of a physical phenomenon. Since the physical relationship of each variable is clear, the physical model is characterized by high reliability and explanation. Also, if there is a physical model to explain the phenomenon that occurred in a certain diagnosis target, and if a phenomenon similar to this phenomenon also occurs in the diagnosis target of other similar projects, it will be the diagnosis target of other similar projects. Has the advantage that the same physical model can be deployed. However, there is a drawback that the creation of a diagnostic model is complicated and it is necessary to acquire basic data for various operating conditions in advance.
 一方で、機械学習モデルは、大量のデータを取得する必要があるという欠点はあるが、複雑な物理現象を検討することなく、比較的簡便に診断モデルを構築することができるという利点がある。以上の理由により、近年、プラントや設備の異常検知モデル(以下、診断モデルと呼ぶ)として、機械学習モデルを基盤とした診断装置の導入が増加している。本発明は、機械学習モデルを想定して以下の実施形態について述べるが、必ずしもそれに限定されず、物理モデルを利用してもよい。 On the other hand, the machine learning model has the disadvantage that it is necessary to acquire a large amount of data, but it has the advantage that it is possible to construct a diagnostic model relatively easily without examining complicated physical phenomena. For the above reasons, in recent years, the introduction of diagnostic devices based on machine learning models has been increasing as an abnormality detection model for plants and equipment (hereinafter referred to as a diagnostic model). The present invention describes the following embodiments assuming a machine learning model, but the present invention is not necessarily limited to this, and a physical model may be used.
<診断装置の構成例>
 ここで、本実施形態に係る診断装置の構成例について説明する。
 図1は、診断装置100の構成例を示すブロック図である。
 診断装置100は、条件入力部1、条件決定部2、評価指標決定部3、データ取得部4、計測値データベース5、モデル構築部6、異常判定部7、評価指標計算部8、パラメータ調整部9及び結果出力部10を備える。
<Configuration example of diagnostic device>
Here, a configuration example of the diagnostic device according to the present embodiment will be described.
FIG. 1 is a block diagram showing a configuration example of the diagnostic apparatus 100.
The diagnostic device 100 includes a condition input unit 1, a condition determination unit 2, an evaluation index determination unit 3, a data acquisition unit 4, a measurement value database 5, a model construction unit 6, an abnormality determination unit 7, an evaluation index calculation unit 8, and a parameter adjustment unit. 9 and a result output unit 10 are provided.
 診断装置100は、設備や機器に設置された計測器の計測値を入力としており、複数の計測値は、時系列の計測値データ(いわゆる生データ)として計測値データベース5に蓄積される。計測値としては、設備や機器に直接設置された計測器から取得されたデータだけでなく、二次的加工によって推定処理されたデータやオペレータが制御盤、PLC、DCSで設定した設定値、及びON/OFF信号などのデジタル信号が含まれてもよい。ここでは、これら二次的加工データ(推定値)や設定値、及びデジタル信号データについても計測値と称するものとする。 The diagnostic device 100 inputs the measured values of the measuring instruments installed in the equipment or the equipment, and the plurality of measured values are stored in the measured value database 5 as time-series measured value data (so-called raw data). The measured values include not only the data acquired from the measuring instruments directly installed in the equipment or equipment, but also the data estimated and processed by the secondary processing, the set values set by the operator on the control panel, PLC, and DCS, and A digital signal such as an ON / OFF signal may be included. Here, these secondary processing data (estimated values), set values, and digital signal data are also referred to as measured values.
 また、計測値データベース5には、当該の設備や機器に設置される計測器の計測値だけでなく、外気温や各流体及び原料の組成などのデータも格納される。これらのデータは、計測器による計測値である場合もあるが、プロセスにより予め定められた設定値や係数、条件に関わるデータでもよい。例えば熱交換器の場合、設定値とは、プロセス流体の出口温度、出口圧力、又は制御目標値であり、係数とは、熱伝達係数であり、条件とはガスと液体の熱交換の場合に、流体の組成あるいは負荷などである。 In addition, the measured value database 5 stores not only the measured values of the measuring instruments installed in the relevant equipment or equipment, but also data such as the outside air temperature and the composition of each fluid and raw material. These data may be measured values by a measuring instrument, but may be data related to set values, coefficients, or conditions predetermined by the process. For example, in the case of a heat exchanger, the set value is the outlet temperature, outlet pressure, or control target value of the process fluid, the coefficient is the heat transfer coefficient, and the condition is the heat exchange between gas and liquid. , Fluid composition or load, etc.
(条件入力部1の内容)
 次に、条件入力部1の内容を説明する。
 診断装置100の構成要素として用いられる条件入力部1は、ユーザが、少なくとも診断目的及びデータ条件を診断装置100に入力する機能を有する。このため、条件入力部1には、診断対象の状態を診断する診断モデルの診断目的、及び診断モデルの構築に利用される時系列データのデータ条件が入力される。時系列データは、計測部2が計測した計測値データが時系列で計測値データベース5に格納されたものである。条件入力部1を通じて入力された内容は、条件決定部2、評価指標決定部3及びデータ取得部4に出力される。
(Contents of condition input unit 1)
Next, the contents of the condition input unit 1 will be described.
The condition input unit 1 used as a component of the diagnostic device 100 has a function for the user to input at least a diagnostic purpose and data conditions to the diagnostic device 100. Therefore, the diagnostic purpose of the diagnostic model for diagnosing the state of the diagnosis target and the data condition of the time series data used for constructing the diagnostic model are input to the condition input unit 1. The time-series data is the measurement value data measured by the measurement unit 2 stored in the measurement value database 5 in time series. The content input through the condition input unit 1 is output to the condition determination unit 2, the evaluation index determination unit 3, and the data acquisition unit 4.
 診断目的とは、診断モデルが捉えたい異常の現象である。本発明者らは、異常診断モデルの開発を通して、一般的に設備の異常と称しても、具体的な異常の現象によって、適切な診断モデルが異なることを見出している。例えば、機器や設備の故障を捉えたいのか、又は劣化状態を捉えたいのかといった場合分けにより、ユーザが、これらの診断目的を選択できるようにする。故障とは、要求された機能を遂行する機能単位の能力がなくなる状態と定義する。一方、劣化状態とは、故障へ向けて状態が非定常的に変化している状態と定義する。 The diagnostic purpose is an abnormal phenomenon that the diagnostic model wants to capture. Through the development of an abnormality diagnostic model, the present inventors have found that an appropriate diagnostic model differs depending on a specific phenomenon of abnormality, even if it is generally called an abnormality of equipment. For example, the user can select these diagnostic purposes depending on whether he / she wants to catch a failure of a device or equipment or whether he / she wants to catch a deteriorated state. A failure is defined as a condition in which the functional unit's ability to perform the requested function is lost. On the other hand, the deteriorated state is defined as a state in which the state is unsteadily changing toward a failure.
 データ条件とは、診断装置100が、計測値データベース5から取得する時系列データに異常時のデータ(異常データ)が含まれているかどうか、また異常時のデータが時系列の連続データか、離散データか、などを区別することである。ただし、プラントや設備について、異常データを取得できることは少ないため、異常データを使わずに診断モデルを構築する場合がある。また、異常データは必ずしも連続した時系列データである必要はなく、保全管理台帳に記録されるような、定期点検時の計測値でもよい。このような場合は、異常データは離散的なデータになる。また、点検時の目視判定結果を用いてもよく、この場合は、正常か異常か、という定性的なデータと呼ぶことにする。 The data condition is whether or not the time-series data acquired by the diagnostic apparatus 100 from the measured value database 5 includes abnormal data (abnormal data), and whether the abnormal data is time-series continuous data or discrete. It is to distinguish between data and so on. However, since it is rare that abnormal data can be acquired for plants and equipment, a diagnostic model may be constructed without using the abnormal data. Further, the abnormal data does not necessarily have to be continuous time-series data, and may be measured values at the time of periodic inspection as recorded in the maintenance management ledger. In such a case, the abnormal data becomes discrete data. Further, the visual judgment result at the time of inspection may be used, and in this case, it is referred to as qualitative data as to whether it is normal or abnormal.
(条件決定部2の動作)
 条件入力部1の内容は、条件決定部2の動作に影響する。ここで、条件入力部1の内容と、条件決定部2の動作の例について、図2を参照して説明する。
 図2は、前提条件入力と、モデル化方法決定の関係を示す図である。
(Operation of condition determination unit 2)
The content of the condition input unit 1 affects the operation of the condition determination unit 2. Here, the contents of the condition input unit 1 and an example of the operation of the condition determination unit 2 will be described with reference to FIG.
FIG. 2 is a diagram showing the relationship between the precondition input and the modeling method determination.
 図2の上部に示される前提条件入力には、条件入力部1から入力される診断目的及びデータ条件の項目が示される。診断目的には目的選択の項目が含まれ、データ条件には、異常データ有無の項目が含まれる。目的選択及び異常データ有無の項目は、後述する図3に示す画面を通じてユーザにより設定される。 The prerequisite input shown in the upper part of FIG. 2 indicates the items of the diagnostic purpose and the data condition input from the condition input unit 1. The purpose of diagnosis includes an item for selecting the purpose, and the data condition includes an item for the presence or absence of abnormal data. The items of purpose selection and presence / absence of abnormal data are set by the user through the screen shown in FIG. 3 to be described later.
 図2の下部に示されるように、条件決定部2は、条件入力部1で入力された診断目的及びデータ条件に基づき、モデル化方法を自動的に決定する。ここで、モデル化方法には、調整パラメータ項目、利用データ範囲、及びモデル評価指標が含まれる。調整パラメータ項目には、診断モデルを調整するパラメータが定義される。また、利用データ範囲には、計測値データベース5から取得可能な時系列データの利用範囲(取得期間等)が定義される。また、評価指標の項目には、診断モデルを評価するための評価指標が定義される。 As shown in the lower part of FIG. 2, the condition determination unit 2 automatically determines the modeling method based on the diagnostic purpose and data conditions input by the condition input unit 1. Here, the modeling method includes adjustment parameter items, usage data range, and model evaluation index. The adjustment parameter item defines the parameters that adjust the diagnostic model. Further, the usage range (acquisition period, etc.) of the time series data that can be acquired from the measured value database 5 is defined in the usage data range. In addition, an evaluation index for evaluating a diagnostic model is defined in the evaluation index item.
 条件決定部2は、条件入力部1から入力された診断目的及びデータ条件に基づいて、パラメータ項目、時系列データの利用範囲の項目の内容を決定する。例えば、条件決定部2は、ユーザが設定すべきモデル化方法の各項目について、条件決定部2自体に予め登録されているルールに基づきユーザに提示する条件を決定する。このルールでは、例えば、条件決定部2が、診断目的及びデータ条件をある程度カテゴライズしておき、ある診断目的で、あるデータ条件の場合に変更するパラメータを決めたり、機械学習に入力するデータセットを決めたり、評価指標として必要な情報を決めたりすることを定めている。条件決定部2が決定した項目は、後続の各機能部の動作に影響する。ここで、図2の下部に示すモデル化方法決定に含まれる各項目について説明する。 The condition determination unit 2 determines the contents of the parameter items and the items of the usage range of the time series data based on the diagnostic purpose and the data conditions input from the condition input unit 1. For example, the condition determination unit 2 determines the conditions to be presented to the user based on the rules registered in advance in the condition determination unit 2 itself for each item of the modeling method to be set by the user. In this rule, for example, the condition determination unit 2 categorizes the diagnostic purpose and the data condition to some extent, determines the parameter to be changed in the case of a certain data condition for a certain diagnostic purpose, or sets a data set to be input to machine learning. It is stipulated to decide and to decide the necessary information as an evaluation index. The items determined by the condition determination unit 2 affect the operation of each subsequent functional unit. Here, each item included in the modeling method determination shown in the lower part of FIG. 2 will be described.
(調整パラメータ項目)
 項目優先度とは、パラメータ調整部9が探索するパラメータ項目の優先順位を決定するものである。
 パターン化とは、あるパラメータ項目における探索範囲をいくつかのパターンに集約することであり、パターン化により探索範囲が削減される。例えば、探索条件のパターン化として、正規化範囲をパターン化する処理が挙げられる。この処理では、正規化するため入力データを0~1に変換する際に、最大値及び最小値を与える条件を、学習期間のデータからとるか、全取得期間のデータからとるか、などが予め決定されるので、データ取得部4が余計な範囲でデータを取得しなくてすむ。
(Adjustment parameter item)
The item priority determines the priority of the parameter item searched by the parameter adjusting unit 9.
Patterning is to aggregate the search range in a certain parameter item into several patterns, and the search range is reduced by the patterning. For example, as a patterning of the search condition, there is a process of patterning the normalization range. In this process, when converting the input data from 0 to 1 for normalization, it is determined in advance whether the conditions for giving the maximum value and the minimum value are taken from the data of the learning period or the data of the entire acquisition period. Since it is determined, the data acquisition unit 4 does not have to acquire data in an extra range.
(利用データ範囲)
 利用データ範囲の項目には、診断モデルの構築に要する学習期間、正常期間及び異常期間が区別して設定される評価期間、診断対象に異常又は劣化が生じる異常期間が含まれる。
 学習期間は、診断モデルの構築のために、計測値データを学習用入力データとしてモデル構築部6に与える期間をユーザへ設定するように指示される期間である。
 評価期間は、先ほど定義した学習期間と同様であるが、データ条件に応じて、正常期間の設定の有無、さらには正常期間と異常期間を区別して設定するようにユーザへの指示を変更することを定める期間である。図中に、評価期間(正常)と書かれた項目は、正常期間を設定するようにユーザに指示する内容を定めている。
 評価期間(異常/劣化)は、診断対象に異常又は劣化が生じる異常期間(図中では評価期間と記載する)を設定するようにユーザに指示する内容を定めている。
(Usage data range)
The items of the usage data range include a learning period required for constructing a diagnostic model, an evaluation period in which a normal period and an abnormal period are separately set, and an abnormal period in which an abnormality or deterioration occurs in the diagnosis target.
The learning period is a period in which the user is instructed to set a period for giving the measured value data to the model building unit 6 as learning input data in order to build the diagnostic model.
The evaluation period is the same as the learning period defined earlier, but depending on the data conditions, whether or not to set the normal period, and change the instruction to the user to set the normal period and the abnormal period separately. It is a period to determine. In the figure, the item described as the evaluation period (normal) defines the content instructing the user to set the normal period.
The evaluation period (abnormality / deterioration) defines the content of instructing the user to set an abnormal period (described as an evaluation period in the figure) in which an abnormality or deterioration occurs in the diagnosis target.
(モデル評価指標)
 評価指標の項目には、診断モデルが診断対象の異常を検知する性能を表す検知性能が含まれる。
 検知性能は、診断装置100が最も有力な診断モデルを自動選択するための評価指標として、ユーザへ設定するように指示する内容を定めている。この検知性能は、診断モデルが診断対象の異常を検知する性能を表す指標である。
(Model evaluation index)
The items of the evaluation index include the detection performance indicating the performance of the diagnostic model to detect the abnormality of the diagnosis target.
The detection performance defines the content of instructing the user to set the detection performance as an evaluation index for the diagnostic device 100 to automatically select the most promising diagnostic model. This detection performance is an index showing the performance of the diagnostic model to detect an abnormality to be diagnosed.
 一方で、条件入力部1では、ユーザがモデル化方法のうちの一部の要素を直接指定してもよい。モデル化方法のうちの一部の要素が指定された場合、条件入力部1の内容が評価指標決定部3、データ取得部4に影響する。 On the other hand, in the condition input unit 1, the user may directly specify some elements of the modeling method. When some elements of the modeling method are specified, the contents of the condition input unit 1 affect the evaluation index determination unit 3 and the data acquisition unit 4.
(評価指標決定部3の動作)
 次に図1を参照して、評価指標決定部3の動作を説明する。
 評価指標決定部3は、診断目的及びデータ条件を含む条件入力部1から条件決定部2への入力内容に応じて、評価指標の項目で規定される特定の評価指標を決定する。本実施の形態では、特定の評価指標を、診断モデルの評価指標(「モデル評価指標」と呼ぶ)とする。ここで評価指標とは、構築される診断モデルの良し悪しを判断するための指標であり、診断モデルの最適化には必須となる。良い診断モデルとは、診断対象である設備の異常を的確に捉えていること、異常の兆候を早期に検知できること、誤報が少ないこと、などを挙げることができる。従って、診断モデルの評価指標とは、診断モデルの異常判定結果に対する正解率や適合率、再現率、誤報率などを挙げることができる。
(Operation of evaluation index determination unit 3)
Next, the operation of the evaluation index determination unit 3 will be described with reference to FIG.
The evaluation index determination unit 3 determines a specific evaluation index defined by the item of the evaluation index according to the input contents from the condition input unit 1 including the diagnostic purpose and the data condition to the condition determination unit 2. In the present embodiment, a specific evaluation index is referred to as an evaluation index of a diagnostic model (referred to as a “model evaluation index”). Here, the evaluation index is an index for judging the quality of the constructed diagnostic model, and is indispensable for optimizing the diagnostic model. A good diagnostic model can be such that the abnormality of the equipment to be diagnosed is accurately grasped, the sign of the abnormality can be detected at an early stage, and there are few false alarms. Therefore, as the evaluation index of the diagnostic model, the correct answer rate, the precision rate, the recall rate, the false alarm rate, etc. for the abnormality determination result of the diagnostic model can be mentioned.
 また、これら正解率等の値を算出するために作成する混同行列の要素を組み合わせて評価指標としてもよい。また、評価指標としては、時間軸を入れて、診断モデルがいかに早く異常を検知できたか、という指標を用いてもよい。これらの指標は、トレードオフの関係となることがある。例えば、早く異常を検知する診断モデルは、誤検知率が大きくなりやすく、逆に時間がかかって異常を検知する診断モデルは、検知率が悪くなりやすい。そこで、指標としては、例えば適合率と再現率の調和平均で定義されるF値を採用することや、ROC曲線(Receiver Operating Characteristic curve)からAUC(Area Under the Curve)を求めた値を用いてもよい。また、診断モデルを多目的最適化問題と捉えて、各指標を組み合わせたものでもよい。 Further, the elements of the confusion matrix created to calculate the values such as the correct answer rate may be combined and used as an evaluation index. Further, as the evaluation index, an index of how quickly the diagnostic model was able to detect an abnormality by inserting a time axis may be used. These indicators may be in a trade-off relationship. For example, a diagnostic model that detects an abnormality early tends to have a large false positive rate, and a diagnostic model that detects an abnormality over a long period of time tends to have a poor detection rate. Therefore, as an index, for example, the F value defined by the harmonic mean of the precision rate and the recall rate is adopted, or the value obtained by obtaining the AUC (Area Under the Curve) from the ROC curve (Receiver Operating Characteristic curve) is used. May be good. In addition, the diagnostic model may be regarded as a multi-objective optimization problem, and each index may be combined.
 さらに、評価指標決定部3は、条件入力部1に含まれる診断目的及びデータ条件に応じて、予め診断モデルの評価指標を決めて評価指標データベース(不図示)に格納しておく。評価指標データベースは、図1に示した計測値データベース5とは異なり、決定された評価指標が書き込まれた設定ファイルを保存しておくものである。条件入力部1から診断目的及びデータ条件が入力されると、評価指標決定部3は、評価指標データベースから評価指標を読み出して、評価指標をユーザに提示することができる。 Further, the evaluation index determination unit 3 determines the evaluation index of the diagnostic model in advance according to the diagnostic purpose and the data condition included in the condition input unit 1, and stores it in the evaluation index database (not shown). Unlike the measured value database 5 shown in FIG. 1, the evaluation index database stores a setting file in which the determined evaluation index is written. When the diagnostic purpose and the data condition are input from the condition input unit 1, the evaluation index determination unit 3 can read the evaluation index from the evaluation index database and present the evaluation index to the user.
<診断モデルの評価指標の条件設定画面>
 評価指標の決定方法として、その都度ユーザが評価指標の候補から選択して決定する方法がある。このため、評価指標決定部3は、候補となる評価指標の一覧を表示装置等のユーザインターフェイスに出力して、ユーザが評価指標を選択可能な画面を提示する。ここで、条件入力部1に各種の条件を設定するための条件設定画面の詳細な構成例について、図3を参照して説明する。
 図3は、条件設定画面20の構成例を示す図である。
<Condition setting screen for evaluation index of diagnostic model>
As a method of determining the evaluation index, there is a method in which the user selects and determines from the candidates of the evaluation index each time. Therefore, the evaluation index determination unit 3 outputs a list of candidate evaluation indexes to a user interface such as a display device, and presents a screen on which the user can select the evaluation index. Here, a detailed configuration example of the condition setting screen for setting various conditions in the condition input unit 1 will be described with reference to FIG.
FIG. 3 is a diagram showing a configuration example of the condition setting screen 20.
 条件設定画面20には、ユーザが選択可能な、診断目的、データ条件及びモデル評価指標の各項目が示される。
 診断目的の項目には、故障検知及び劣化検知のうち、少なくともいずれか一つをユーザが選択可能なチェックボックスが表示される。
The condition setting screen 20 shows each item of the diagnostic purpose, the data condition, and the model evaluation index that can be selected by the user.
In the item for diagnostic purposes, a check box is displayed in which the user can select at least one of failure detection and deterioration detection.
 データ条件の項目には、異常データあり、又は異常データなしのいずれかをユーザが選択可能なプルダウンメニューが表示される。データ条件の項目には、異常データとして、時間情報のみか、時間ごとの異常の度合を表す数値情報を含むかをユーザが選択できるようなサブメニューが設けられてもよい。
 モデル評価指標の項目には、再現率、適合率、F値、又はAUCのいずれかをユーザが選択可能なプルダウンメニューが表示される。
In the data condition item, a pull-down menu is displayed in which the user can select either with abnormal data or without abnormal data. The data condition item may be provided with a submenu that allows the user to select whether the abnormality data includes only time information or numerical information indicating the degree of abnormality for each time.
In the item of the model evaluation index, a pull-down menu is displayed in which the user can select any of the recall rate, the precision rate, the F value, and the AUC.
 なお、条件設定画面20に示される項目には、診断目的又はデータ条件に応じて適用できない評価指標もある。このため、適用できない評価指標の項目については、条件設定画面20においてグレーアウトするなどしてユーザが選択できないようにしてもよい。また、過去に構築された診断モデルをデータベース(不図示)に格納しておき、同じ診断目的及びデータ条件に対して診断モデルに適用した評価指標をユーザに推奨するような機能を条件設定画面20に加えてもよい。 Note that some of the items shown on the condition setting screen 20 cannot be applied depending on the diagnostic purpose or data conditions. Therefore, the items of the evaluation index that cannot be applied may be grayed out on the condition setting screen 20 so that the user cannot select them. In addition, the condition setting screen 20 has a function of storing the diagnostic model constructed in the past in a database (not shown) and recommending the evaluation index applied to the diagnostic model to the user for the same diagnostic purpose and data condition. May be added to.
 そして、ユーザが条件設定画面20を通じて選択した項目が、評価指標決定部3からデータ取得部4に出力される。再び、図1に戻って、データ取得部4の動作を説明する。 Then, the item selected by the user through the condition setting screen 20 is output from the evaluation index determination unit 3 to the data acquisition unit 4. Returning to FIG. 1, the operation of the data acquisition unit 4 will be described.
(データ取得部4の動作)
 データ取得部4は、時系列データの利用範囲に従って、診断対象の状態を表す時系列データを取得する。例えば、データ取得部4は、ユーザが選定した、又は条件決定部2が決定したデータ項目情報(「Tag情報」と呼ぶ)、及び時系列データの取得対象期間(図2に示した利用データ範囲)に基づき、各信号の時系列データが蓄積されている計測値データベース5から、対象Tagの時系列データ11を取得する。データ取得部4が取得した信号データは、後に診断モデルの構築時に入力データとして用いられる。この入力データは、機械学習のための学習データ、機械学習モデルの性能を評価するための評価データとして用いられる。また、診断装置100の運用時に異常診断が行われる入力信号についても、診断モデルの構築時に付されたTag情報と同一のTag情報が選定される。Tag情報は、条件入力部1に対してユーザが直接指定してもよいし、予め規定されたパラメータ項目の一つと見なしてもよい。
(Operation of data acquisition unit 4)
The data acquisition unit 4 acquires time-series data representing the state of the diagnosis target according to the usage range of the time-series data. For example, the data acquisition unit 4 has data item information (referred to as “Tag information”) selected by the user or determined by the condition determination unit 2, and a period for acquiring time-series data (usage data range shown in FIG. 2). ), The time-series data 11 of the target Tag is acquired from the measured value database 5 in which the time-series data of each signal is accumulated. The signal data acquired by the data acquisition unit 4 is later used as input data when constructing a diagnostic model. This input data is used as training data for machine learning and evaluation data for evaluating the performance of the machine learning model. Further, as for the input signal for which the abnormality diagnosis is performed during the operation of the diagnostic apparatus 100, the same Tag information as the Tag information attached at the time of constructing the diagnostic model is selected. The Tag information may be directly specified by the user to the condition input unit 1, or may be regarded as one of the predetermined parameter items.
(モデル構築部6の動作)
 モデル構築部6は、前段の処理で決定されたモデル化方法に従って、時系列データから診断モデルを構築する。この際、モデル構築部6は、学習モードと診断モードの2つの処理を実行し、診断モデルを構築する。モデル構築に利用される機械学習アルゴリズムはARTに限定されるものではなく、クラスタリング、分類、回帰など適用可能である。さらに、クラスタリングアルゴリズムの中でも、ART、マハラノビス・タグチ法(MT法)、ベクトル量子化、KMeans、スペクトラルクラスタリングなどを適用可能である。
(Operation of model building unit 6)
The model building unit 6 builds a diagnostic model from the time series data according to the modeling method determined in the processing in the previous stage. At this time, the model building unit 6 executes two processes, a learning mode and a diagnostic mode, to build a diagnostic model. The machine learning algorithm used for model construction is not limited to ART, and can be applied to clustering, classification, regression, and the like. Further, among the clustering algorithms, ART, Mahalanobis Taguchi method (MT method), vector quantization, Kmeans, spectral clustering and the like can be applied.
 モデル構築部6は、学習モードの処理を実行する際、データ取得部4で取得した学習対象期間の時系列データを入力として、機械学習モデルを構築する。また、モデル構築部6は、診断モードの処理を実行する際、学習モードで構築した診断モデルに、診断対象期間の時系列データを入力して、結果を出力する。ここで結果とは、機械学習アルゴリズムの種別による、例えば予測値や、学習データに対するベクトル空間上の距離を異常度として出力することができる。この異常度は、後述するように診断モデルのデータ判定手法に用いられる。 When executing the learning mode processing, the model building unit 6 constructs a machine learning model by inputting the time-series data of the learning target period acquired by the data acquisition unit 4. Further, when the model building unit 6 executes the processing of the diagnosis mode, the model building unit 6 inputs the time series data of the diagnosis target period into the diagnosis model built in the learning mode and outputs the result. Here, the result can be output as an abnormality degree, for example, a predicted value or a distance on the vector space with respect to the learning data, depending on the type of machine learning algorithm. This degree of abnormality is used in the data determination method of the diagnostic model as described later.
 ここで、モデル構築部6が学習モードと診断モードで使用するARTについて説明する。
 図4は、ARTの動作を説明する図である。図4の上側に2種類の計測値A,Bの時間変化が示され、図4の下側に、クラスタNoが示される。
Here, the ART used by the model building unit 6 in the learning mode and the diagnostic mode will be described.
FIG. 4 is a diagram illustrating the operation of ART. The time variation of the two types of measured values A and B is shown on the upper side of FIG. 4, and the cluster No. is shown on the lower side of FIG.
 ARTは、データ間の相関性からクラスタを生成するアルゴリズムである。モデル構築部6が学習モードで計測値A,Bの状態を示すクラスタを、クラスタNo.1~3で分類したとする。クラスタNo.1は、計測値Aが計測値Bより高い状態、クラスタNo.2は、計測値A,Bが共に低い状態、クラスタNo.3は、計測値Bが計測値Aより高い状態を表す。 ART is an algorithm that creates a cluster from the correlation between data. The cluster in which the model building unit 6 shows the states of the measured values A and B in the learning mode is referred to as the cluster No. It is assumed that they are classified by 1 to 3. Cluster No. 1 is a state in which the measured value A is higher than the measured value B, and the cluster No. No. 2 is a state in which both the measured values A and B are low, and the cluster No. 3 represents a state in which the measured value B is higher than the measured value A.
 クラスタが生成された後、モデル構築部6が診断開始時点から診断モードで計測値A,Bの診断を開始する。すると、計測値A,Bのいずれもが高い値を示す状態が発生したとする。この状態は、学習時のクラスタNo.1~3のいずれにも該当しない。そこで、モデル構築部6は、計測値A,Bのいずれもが高い値を示す状態を示すクラスタを生成し、このクラスタにクラスタNo.4をつける。そして、新たなクラスタが生成された時点で、診断装置100は、ユーザに異常の発生を発報することになる。 After the cluster is generated, the model building unit 6 starts the diagnosis of the measured values A and B in the diagnosis mode from the start of the diagnosis. Then, it is assumed that a state has occurred in which both the measured values A and B show high values. This state is the cluster No. at the time of learning. It does not correspond to any of 1 to 3. Therefore, the model building unit 6 generates a cluster showing a state in which both the measured values A and B show high values, and the cluster No. 1 is generated in this cluster. Add 4. Then, when a new cluster is generated, the diagnostic device 100 will notify the user of the occurrence of an abnormality.
 このようにモデル構築部6は、診断モードにおいて、学習期間に生成されたクラスタに属さないと見なされたデータが現れた場合に、新規のクラスタを生成する。そこで、モデル構築部6は、新規クラスタの出現有無をフラグとして出力してもよい。診断モデルのデータ判定手法として新規クラスタの発生有無が使われる場合に、このフラグが用いられる。 In this way, the model building unit 6 generates a new cluster when data that is considered not to belong to the cluster generated during the learning period appears in the diagnostic mode. Therefore, the model building unit 6 may output the presence / absence of the appearance of a new cluster as a flag. This flag is used when the presence or absence of a new cluster is used as the data judgment method of the diagnostic model.
 また、モデル構築部6は、クラスタリングの情報に基づき、異常度を出力してもよい。
 図5は、計測値1,2をクラスタリングした図である。
 図5には、横軸に計測値1の値をとり、縦軸に計測値2の値をとり、同じ時刻に計測された計測値1,2の交わる点がプロットされたグラフが示される。図中の白抜きされた丸印は学習データを表し、黒塗りされた丸印は診断データを表す。上述したように入力データを評価データとして用いて診断モデルの評価が行われる場合、図5に示す診断データは、評価データに置き換えられる。
Further, the model building unit 6 may output the degree of abnormality based on the clustering information.
FIG. 5 is a diagram in which measured values 1 and 2 are clustered.
FIG. 5 shows a graph in which the value of the measured value 1 is taken on the horizontal axis, the value of the measured value 2 is taken on the vertical axis, and the points where the measured values 1 and 2 measured at the same time intersect are plotted. The white circles in the figure represent learning data, and the black circles represent diagnostic data. When the diagnostic model is evaluated using the input data as the evaluation data as described above, the diagnostic data shown in FIG. 5 is replaced with the evaluation data.
 計測値1,2の交わる点は、所定の大きさの円でクラスタリングされている。この円は、学習データによって生成されたクラスタを表す。円の中心の×印は、学習データによって生成されたクラスタの重心を表し、クラスタの代表点と呼ぶ。 The intersections of the measured values 1 and 2 are clustered with circles of a predetermined size. This circle represents the cluster generated by the training data. The x mark in the center of the circle represents the center of gravity of the cluster generated by the training data, and is called the representative point of the cluster.
 図5では、クラスタ1~3の3つのクラスタの例が示される。モデル構築部6は、各学習データ及び診断データの点と、クラスタの代表点に関するベクトル空間上の距離とに基づいて異常度を算出する。例えば、各学習データ及び診断データに対して、最も近いクラスタの重心からの距離を異常度と定義する。そして、各クラスタの円よりも遠くにプロットされた計測値1,2は、いずれのクラスタにも属していない外れ値である。この外れ値に示すように、診断データの点が、学習データで形成されたデータパターンと大きく異なるほど、ベクトル空間上の距離が長くなり、異常度が高くなる。このため、異常度は、診断データの異常の度合を測る指標として使用される。 FIG. 5 shows an example of three clusters of clusters 1 to 3. The model building unit 6 calculates the degree of abnormality based on the points of each training data and diagnostic data and the distance on the vector space with respect to the representative points of the cluster. For example, for each learning data and diagnostic data, the distance from the center of gravity of the nearest cluster is defined as the degree of anomaly. The measured values 1 and 2 plotted farther than the circle of each cluster are outliers that do not belong to any of the clusters. As shown in this outlier, the greater the difference between the points of the diagnostic data and the data pattern formed by the training data, the longer the distance in the vector space and the higher the degree of anomaly. Therefore, the degree of abnormality is used as an index for measuring the degree of abnormality in the diagnostic data.
 なお、モデル構築部6は、機械学習モデルに基づく手法を利用して、診断モデルを構築するものとしたが、物理モデルに基づく手法を利用して、診断モデルを構築してよい。 Although the model building unit 6 is supposed to build a diagnostic model by using a method based on a machine learning model, a diagnostic model may be built by using a method based on a physical model.
(異常判定部7の動作)
 次に図1を参照して、異常判定部7の動作を説明する。
 異常判定部7は、モデル構築部6により構築された診断モデルに入力される、データ取得部4が評価期間で取得した時系列データの異常有無を判定する。この際、異常判定部7は、決められたルールに基づいて、診断データを異常と見なすかどうかを判定している。ここで、異常判定部7の動作について、図6を参照して説明する。
(Operation of abnormality determination unit 7)
Next, the operation of the abnormality determination unit 7 will be described with reference to FIG.
The abnormality determination unit 7 determines whether or not there is an abnormality in the time-series data input to the diagnostic model constructed by the model construction unit 6 and acquired by the data acquisition unit 4 during the evaluation period. At this time, the abnormality determination unit 7 determines whether or not the diagnostic data is regarded as an abnormality based on the determined rule. Here, the operation of the abnormality determination unit 7 will be described with reference to FIG.
 図6は、異常度の変化を表すグラフである。このグラフでは、横軸を時間、縦軸を異常度として、異常度の時間変化が表されている。異常判定部7は、モデル構築部6が診断モードで計算した異常度を、予めユーザが設定した閾値と比較することにより、異常の有無を判定する。ここで、異常度と比較される閾値は、パラメータ調整部9により調整されるパラメータの一例である。 FIG. 6 is a graph showing changes in the degree of abnormality. In this graph, the horizontal axis is time and the vertical axis is the degree of abnormality, and the time change of the degree of abnormality is shown. The abnormality determination unit 7 determines the presence or absence of an abnormality by comparing the degree of abnormality calculated by the model construction unit 6 in the diagnostic mode with a threshold value set in advance by the user. Here, the threshold value to be compared with the degree of abnormality is an example of the parameter adjusted by the parameter adjusting unit 9.
 例えば、図6に示すように、異常度が、図中に一点鎖線で示す閾値未満の値であれば、異常判定部7は、異常度を異常と見なさない。しかし、異常度が閾値を超えると、異常判定部7は、異常度を異常と見なし、異常の発生を発報する。なお、異常判定部7は、新規クラスタの出現有無をそのまま異常判定に使用してもよい。例えば、モデル構築部6により「新規クラスタ」の出現が有ったことが判明した場合、異常判定部7は、異常発生と判定する。 For example, as shown in FIG. 6, if the degree of abnormality is a value less than the threshold value indicated by the alternate long and short dash line in the figure, the abnormality determination unit 7 does not consider the degree of abnormality to be abnormal. However, when the degree of abnormality exceeds the threshold value, the abnormality determination unit 7 considers the degree of abnormality as an abnormality and notifies the occurrence of the abnormality. The abnormality determination unit 7 may use the presence / absence of the appearance of a new cluster as it is for the abnormality determination. For example, when the model construction unit 6 finds that a "new cluster" has appeared, the abnormality determination unit 7 determines that an abnormality has occurred.
(評価指標計算部8の動作)
 次に図1を参照して、評価指標計算部8の動作を説明する。
 評価指標計算部8は、時系列データの異常有無の判定結果に基づいて、特定の評価指標を計算する。例えば、評価指標計算部8は、評価指標決定部3が決定した診断モデルの評価指標(例えば、正答率)を、異常判定部7が実行した異常判定結果に基づいて計算する。評価指標計算部8が評価指標を計算するためには、診断モデルが出力する異常判定結果に対応する正解ラベルが必要となる。
(Operation of evaluation index calculation unit 8)
Next, the operation of the evaluation index calculation unit 8 will be described with reference to FIG.
The evaluation index calculation unit 8 calculates a specific evaluation index based on the determination result of the presence or absence of abnormality in the time series data. For example, the evaluation index calculation unit 8 calculates the evaluation index (for example, the correct answer rate) of the diagnostic model determined by the evaluation index determination unit 3 based on the abnormality determination result executed by the abnormality determination unit 7. In order for the evaluation index calculation unit 8 to calculate the evaluation index, a correct label corresponding to the abnormality determination result output by the diagnostic model is required.
 この正解ラベルは、データ取得部4が計測値データベース5から取得する計測値データに異常時のデータが含まれていない場合に、異常判定結果に対して全て正常というラベルを与えたものであってもよい。ただし、評価指標計算部8は、全て正常というラベルを与えた場合は、例えば、交差検証の手法を利用して、正常データをkセットに分割する。そして、評価指標計算部8は、kセットのうち、(k-1)セットのデータを学習データとして用いて診断モデルを構築し、残りの1セットのデータを診断データとして用いて診断する処理を行う。この処理により、異常判定部7が異常判定を行い、評価指標計算部8が評価指標を計算することが可能となる。 This correct answer label gives a label that all the abnormality determination results are normal when the measurement value data acquired from the measurement value database 5 by the data acquisition unit 4 does not include the data at the time of abnormality. May be good. However, when the evaluation index calculation unit 8 gives a label that all are normal, the evaluation index calculation unit 8 divides the normal data into k sets by using, for example, a cross-validation method. Then, the evaluation index calculation unit 8 constructs a diagnostic model using the data of the (k-1) set of the k sets as training data, and performs a process of diagnosing using the remaining one set of data as diagnostic data. conduct. By this processing, the abnormality determination unit 7 makes an abnormality determination, and the evaluation index calculation unit 8 can calculate the evaluation index.
 また、データ取得部4が計測値データベース5から取得する計測値データのうち、異常データを取得できない場合は、評価指標計算部8は、ユーザが人為的に作成した異常値を含む異常データを疑似的に作成することも可能である。このようにユーザが人為的に異常値を作成するのは、一般的に異常データがあったほうが、モデル構築部6が精度の高い診断モデルを作ることができるためである。具体的には、正常運転時にデータ取得部4が計測値データベース5から取得する信号の時系列データについて、評価指標計算部8は、一つ又は複数の信号の計測値に±nσを加算する。ここで、σは標準偏差とし、nは任意の実数とする。そして、評価指標計算部8は、人為的に作成した異常データに対して異常のラベルを与える。 Further, when the abnormal data cannot be acquired among the measured value data acquired by the data acquisition unit 4 from the measured value database 5, the evaluation index calculation unit 8 simulates the abnormal data including the abnormal value artificially created by the user. It is also possible to create it as a target. The reason why the user artificially creates an abnormal value in this way is that, in general, the model building unit 6 can create a highly accurate diagnostic model if there is abnormal data. Specifically, the evaluation index calculation unit 8 adds ± nσ to the measurement values of one or more signals for the time-series data of the signals acquired by the data acquisition unit 4 from the measurement value database 5 during normal operation. Here, σ is a standard deviation and n is an arbitrary real number. Then, the evaluation index calculation unit 8 gives an abnormality label to the artificially created abnormality data.
 人為的に異常データを作成する方法はこの手法に限定されるものではなく、その他に、シミュレーションを利用したり、数理モデルや物理モデルを利用したりする方法が用いられてもよい。これらの方法を使用することでも、モデル構築部6が、より精度の高い診断モデルを構築することが可能となる。 The method of artificially creating anomalous data is not limited to this method, and in addition, a method of using a simulation, a mathematical model, or a physical model may be used. Also by using these methods, the model building unit 6 can build a more accurate diagnostic model.
(パラメータ調整部9の動作)
 次に、パラメータ調整部9の動作を説明する。
 パラメータ調整部9は、条件入力部1に入力された診断目的及びデータ条件に基づいて、パラメータ項目、時系列データの利用範囲の項目、及び評価指標の項目のうち、少なくとも一つ以上を含むモデル化方法に従って構築され、評価指標で評価される診断モデルのパラメータを自動的に調整する。パラメータ調整部9により調整されたパラメータは、データ取得部4及び異常判定部7に出力される。
(Operation of parameter adjustment unit 9)
Next, the operation of the parameter adjusting unit 9 will be described.
The parameter adjustment unit 9 is a model including at least one of parameter items, time-series data usage range items, and evaluation index items based on the diagnostic purpose and data conditions input to the condition input unit 1. It is constructed according to the method and automatically adjusts the parameters of the diagnostic model evaluated by the evaluation index. The parameters adjusted by the parameter adjusting unit 9 are output to the data acquisition unit 4 and the abnormality determination unit 7.
 例えば、パラメータ調整部9は、評価指標計算部8にて計算した診断モデルの評価指標に関して、診断モデルを最適化するために、図2に示したパラメータ項目で選定される調整対象のパラメータを更新する。調整対象のパラメータには、例えば、Tag情報、学習期間、診断期間、データの正規化範囲などが含まれる。本実施の形態でTag情報は、データ項目パラメータの一例である。また、学習期間及び診断期間は、いずれもモデル入力期間の一例である。データの正規化範囲は、データ項目の正規化範囲パラメータの一例である。 For example, the parameter adjustment unit 9 updates the parameters to be adjusted selected in the parameter items shown in FIG. 2 in order to optimize the diagnostic model with respect to the evaluation index of the diagnostic model calculated by the evaluation index calculation unit 8. do. The parameters to be adjusted include, for example, Tag information, learning period, diagnosis period, normalization range of data, and the like. In this embodiment, Tag information is an example of data item parameters. The learning period and the diagnosis period are both examples of the model input period. The data normalization range is an example of a data item normalization range parameter.
 パラメータ調整部9が、診断モデルに特有のパラメータを決定するパラメータとしては、機械学習モデルに特有のハイパーパラメータを含む。例えば、ARTの場合は分解能パラメータや学習率がハイパーパラメータに該当する。なお、異常判定部7が異常判定を実行するために用いる閾値もパラメータの一つである。パラメータの更新条件としては、一つに限定されるものではない。例えば、グリッドサーチや最急降下法、確率的勾配降下法、共役勾配法、ニュートン法、準ニュートン法、遺伝的アルゴリズム、ベイズ最適化、強化学習などの任意の最適化手法を適用することができる。 The parameter adjustment unit 9 includes hyperparameters peculiar to the machine learning model as parameters for determining the parameters peculiar to the diagnostic model. For example, in the case of ART, resolution parameters and learning rates correspond to hyperparameters. The threshold value used by the abnormality determination unit 7 to execute the abnormality determination is also one of the parameters. The parameter update condition is not limited to one. For example, any optimization method such as grid search, steepest descent, stochastic gradient descent, conjugate gradient descent, Newton's method, quasi-Newton's method, genetic algorithm, Bayesian optimization, reinforcement learning, etc. can be applied.
 このように診断モデルを構築するために設定される設定パラメータは、データ項目パラメータ、モデル入力期間、データ項目の正規化範囲パラメータ、モデル特有のパラメータを決定するパラメータのうち少なくとも一つが含まれる。 The setting parameters set for constructing the diagnostic model in this way include at least one of the data item parameters, the model input period, the normalization range parameters of the data items, and the parameters that determine the model-specific parameters.
 さらに、パラメータ調整部9は、予めパラメータの探索条件をいくつかのパターンに集約することが可能である。このパターン集約により、パラメータ調整部9がパラメータ探索に要する処理量を大幅に削減できる。また、パラメータ調整部9は、パラメータ項目に優先度をつけてもよい。各パラメータは役割が異なるため、予め診断目的に応じて優先的に探索するパラメータ項目の順番を設定することで、効率的に診断モデルの最適化処理を行うことが可能となる。
 そして、モデル構築部6、異常判定部7、評価指標計算部8、及びパラメータ調整部9は、一連の処理を所定回数だけ繰り返す。
Further, the parameter adjusting unit 9 can aggregate the parameter search conditions into several patterns in advance. By this pattern aggregation, the processing amount required for the parameter adjustment unit 9 to search for parameters can be significantly reduced. Further, the parameter adjusting unit 9 may give priority to the parameter items. Since each parameter has a different role, it is possible to efficiently optimize the diagnostic model by setting the order of the parameter items to be searched preferentially according to the diagnostic purpose in advance.
Then, the model construction unit 6, the abnormality determination unit 7, the evaluation index calculation unit 8, and the parameter adjustment unit 9 repeat a series of processes a predetermined number of times.
(結果出力部10の動作)
 次に、結果出力部10の動作を説明する。
 結果出力部10は、モデルの評価指標に基づき最適化した診断モデルを表示する部位である。この際、結果出力部10は、評価指標計算部8により計算された特定の評価指標を出力する。ここで、結果出力部10は、評価指標計算部8により所定回数だけ繰り返し計算された特定の評価指標を出力することが可能である。そこで、診断モデルの表示例について、図7を参照して説明する。
(Operation of result output unit 10)
Next, the operation of the result output unit 10 will be described.
The result output unit 10 is a part that displays a diagnostic model optimized based on the evaluation index of the model. At this time, the result output unit 10 outputs a specific evaluation index calculated by the evaluation index calculation unit 8. Here, the result output unit 10 can output a specific evaluation index calculated repeatedly by the evaluation index calculation unit 8 a predetermined number of times. Therefore, a display example of the diagnostic model will be described with reference to FIG. 7.
 図7は、診断モデルの第1の表示例を示す図である。診断モデルは、図7に示す形態の診断モデル表示画面21として表示される。この診断モデル表示画面21は、診断モデルを特徴づける要素を表形式で構成して表示される。診断モデル表示画面21は、レコードNo、パラメータ1、パラメータ2、データ数、学習時異常度平均、診断時異常度平均、適合率、再現率、F値、及びファイルリンクの項目で構成される。パラメータ1、パラメータ2は、機械学習時に探索されるパラメータ条件を表す。また、パラメータ1、パラメータ2、データ数は、機械学習時に必要となる設定情報である。 FIG. 7 is a diagram showing a first display example of the diagnostic model. The diagnostic model is displayed as a diagnostic model display screen 21 having the form shown in FIG. 7. The diagnostic model display screen 21 displays elements that characterize the diagnostic model in a table format. The diagnostic model display screen 21 is composed of record No., parameter 1, parameter 2, number of data, learning abnormality degree average, diagnosis time abnormality degree average, precision rate, recall rate, F value, and file link items. Parameter 1 and parameter 2 represent parameter conditions searched during machine learning. Further, parameter 1, parameter 2, and the number of data are setting information required for machine learning.
 学習時異常度平均、診断時異常度平均、適合率、再現率、F値は、機械学習の学習結果として計算された値であり、評価指標に関係する。ここで、ファイルリンクの項目に示されるグラフNo.1,No.2,No.3は、例えば、図6に示したトレンド図のファイルにリンクしてトレンド図を表示するために用いられる。ユーザが、ファイルリンクの項目のグラフNo.1の文字をクリックすると、診断モデル表示画面21から、レコードNo.1のトレンド図に切り替わって表示される。 The average degree of abnormality at the time of learning, the average degree of abnormality at the time of diagnosis, the precision rate, the recall rate, and the F value are values calculated as learning results of machine learning and are related to the evaluation index. Here, the graph No. shown in the item of the file link. 1, No. 2, No. 3 is used, for example, to link to the trend diagram file shown in FIG. 6 and display the trend diagram. The user can see the graph No. of the item of the file link. When the character 1 is clicked, the record No. 1 is displayed from the diagnostic model display screen 21. It is displayed by switching to the trend diagram of 1.
 診断モデル表示画面21に示されるレコードのそれぞれ(No.1,No.2,…)が、結果出力部10に表示される「診断モデル」を表す。診断モデルの表示方法は一つに限定されるものではないが、パラメータ調整部9が探索したパラメータ条件(パラメータ1とパラメータ2の値)と、構築モデルに関する情報及び評価指標を含めた算出結果(データ数~F値)とをリスト化して出力することが可能である。 Each of the records (No. 1, No. 2, ...) Displayed on the diagnostic model display screen 21 represents the "diagnostic model" displayed on the result output unit 10. The display method of the diagnostic model is not limited to one, but the calculation result including the parameter conditions (values of parameter 1 and parameter 2) searched by the parameter adjustment unit 9 and information and evaluation indexes related to the construction model ( It is possible to output a list of the number of data to the F value).
 なお、結果出力部10は、評価指標に基づいて、最上位の診断モデルを選択し、この診断モデルに関連する、時系列方向に異常度や閾値を記載したトレンド図(図6を参照)を表示することも可能である。この際、結果出力部10は、パラメータ調整部9がパラメータを探索して得られた診断モデルに関連する、評価指標が最良のトレンド図だけを表示してもよい。また、結果出力部10は、評価指標の上位からソートして、上位数個のトレンド図を並べて表示させることで、ユーザがトレンド図を目視確認し、任意のモデルを選択できるようにしてもよい。なお、評価指標の良(最良を含む)又は不良は、評価指標の最大値又は最小値で判断される。 The result output unit 10 selects the highest-level diagnostic model based on the evaluation index, and displays a trend diagram (see FIG. 6) in which the degree of abnormality and the threshold value are described in the time-series direction related to this diagnostic model. It is also possible to display. At this time, the result output unit 10 may display only the trend diagram having the best evaluation index, which is related to the diagnostic model obtained by the parameter adjustment unit 9 searching for the parameters. Further, the result output unit 10 may sort from the top of the evaluation index and display several top trend charts side by side so that the user can visually check the trend chart and select an arbitrary model. .. Whether the evaluation index is good (including the best) or bad is judged by the maximum value or the minimum value of the evaluation index.
 図8は、診断モデルの第2の表示例を示す図である。
 図8に示す診断モデル表示画面22を構成する項目は、図7に示した診断モデル表示画面21と同様であるが、画面左端のレコードNoの代わりに、RANKの項目が追加され、画面右端のファイルリンクの代わりに、グラフの項目が追加された点が異なる。RANKは、診断モデルの評価順位を表しており、特定の評価指標が最良の診断モデルを「1」で表す。また、図8では、ユーザが、グラフの項目のグラフNo.2の文字にカーソルを合わせると、診断モデル表示画面22に重ねて、レコードNo.2のトレンド図が自動で表示される様子が表されている。
FIG. 8 is a diagram showing a second display example of the diagnostic model.
The items constituting the diagnostic model display screen 22 shown in FIG. 8 are the same as those of the diagnostic model display screen 21 shown in FIG. 7, but the RANK item is added instead of the record No. on the left end of the screen, and the item on the right end of the screen is added. The difference is that instead of file links, graph items have been added. RANK represents the evaluation order of the diagnostic model, and the diagnostic model with the best specific evaluation index is represented by "1". Further, in FIG. 8, the user sets the graph No. of the graph item. When the cursor is placed on the character 2, the record No. 2 is superimposed on the diagnostic model display screen 22. It shows how the trend diagram of 2 is automatically displayed.
 なお、図8に示す診断モデル表示画面22には、評価指標の最適値が複数出現する可能性もある。その際は、結果出力部10が、上位の評価指標に追加条件を適用して、診断モデル表示画面22を表示する。このような処理により、結果出力部10は、ユーザによる診断モデル表示画面22を通じたモデル選択を支援することができる。 Note that there is a possibility that a plurality of optimum values of the evaluation index will appear on the diagnostic model display screen 22 shown in FIG. In that case, the result output unit 10 applies additional conditions to the higher evaluation index and displays the diagnostic model display screen 22. By such processing, the result output unit 10 can support the user to select a model through the diagnostic model display screen 22.
 例えば、結果出力部10は、上記リストに含まれる指標を第2評価指標として、上位からソートして提示することが可能である。具体的には、結果出力部10は、正常判定期間における診断モデルの特徴量(異常度の平均)と、異常判定期間における診断モデルの特徴量(異常度の平均)の比で表される異常度平均比を第2評価指標とすることができる。例えば、図8のグラフNo.2に示すように、異常度が閾値未満である期間を正常判定期間と呼び、異常度が閾値以上である期間を異常判定期間と呼ぶ。 For example, the result output unit 10 can sort and present the index included in the above list as the second evaluation index from the top. Specifically, the result output unit 10 has an abnormality represented by the ratio of the characteristic amount of the diagnostic model (average degree of abnormality) in the normality determination period and the characteristic amount of the diagnostic model (average degree of abnormality) in the abnormality determination period. The average ratio can be used as the second evaluation index. For example, the graph No. 8 in FIG. As shown in 2, the period in which the degree of abnormality is less than the threshold value is called the normality determination period, and the period in which the degree of abnormality is greater than or equal to the threshold value is called the abnormality determination period.
 なお、ロバスト性を考慮する場合は、結果出力部10は、第1評価指標が上位の条件を抽出し、パラメータの中央値を選ぶ方法がある。例えば、図8に示した診断モデル表示画面22では、第1評価指標をF値とし、第2評価指標を学習時異常度平均として想定する。そして、図8に示した診断モデル表示画面22では、第1評価指標のF値でレコードが降順にソートされた表が示される。 When considering robustness, the result output unit 10 has a method of extracting the condition in which the first evaluation index is higher and selecting the median value of the parameter. For example, in the diagnostic model display screen 22 shown in FIG. 8, the first evaluation index is assumed to be an F value, and the second evaluation index is assumed to be an average degree of abnormality during learning. Then, on the diagnostic model display screen 22 shown in FIG. 8, a table in which the records are sorted in descending order by the F value of the first evaluation index is shown.
 このように診断モデル表示画面22には、任意の評価指標(例えば、F値)でソートされたモデル候補がリスト形式で一覧表示される。結果出力部10は、パラメータの探索結果をリスト上に一覧表示する際、評価指標の高い順又は低い順に診断モデルをソートする。このため、様々な条件に合わせて診断モデルを時系列にトレンド状に表示することが可能となる。 In this way, the diagnostic model display screen 22 displays a list of model candidates sorted by an arbitrary evaluation index (for example, F value) in a list format. When displaying the parameter search results on the list, the result output unit 10 sorts the diagnostic models in descending order of evaluation index. Therefore, it is possible to display the diagnostic model in a time-series trend according to various conditions.
 ここで、複数のモデル候補の評価指標が同率となった場合は、結果出力部10により、パラメータの中央値又は平均値を推奨として提示することができる。つまり、結果出力部10は、評価指標に基づいて選ばれた2つの候補モデルで評価指標の数値が同じであった場合、各モデルにおけるパラメータの値に対して、例えば、中央値又は平均値を提示することができる。 Here, when the evaluation indexes of a plurality of model candidates have the same ratio, the median value or the average value of the parameters can be presented as a recommendation by the result output unit 10. That is, when the numerical values of the evaluation indexes are the same in the two candidate models selected based on the evaluation indexes, the result output unit 10 calculates, for example, the median value or the average value for the parameter values in each model. Can be presented.
 また、診断モデル表示画面22に表示されるモデル候補のうち、第1評価指標が同じモデル候補が複数存在していれば、さらに第2評価指標でモデル候補がソートされる。このように上位のKPI(Key Performance Indicator)が複数出た場合は、第2評価指標でソートできる。 Further, if there are a plurality of model candidates having the same first evaluation index among the model candidates displayed on the diagnostic model display screen 22, the model candidates are further sorted by the second evaluation index. When a plurality of high-ranking KPIs (Key Performance Indicators) appear in this way, they can be sorted by the second evaluation index.
 診断モデル表示画面21,22に示したように診断モデルの評価指標が2つ以上併記して表示されることで、ユーザは、適切な診断モデルを選択することができる。また、ユーザは、モデル候補をソートする評価指標を適宜選択することが可能である。このため、ユーザは、ある評価指標を重視した場合に、他の評価指標が変わる様子を確認しながら、適切なモデル候補を選択することが可能となる。 As shown on the diagnostic model display screens 21 and 22, the user can select an appropriate diagnostic model by displaying two or more evaluation indexes of the diagnostic model together. In addition, the user can appropriately select an evaluation index for sorting model candidates. Therefore, when a certain evaluation index is emphasized, the user can select an appropriate model candidate while confirming how the other evaluation indexes change.
 また、結果出力部10は、他の形態で評価指標を画面に表示することが可能である。例えば、各パラメータを軸に評価指標の等値線図で示す例について、図9を参照して説明する。
 図9は、評価指標の等値線図である。
Further, the result output unit 10 can display the evaluation index on the screen in another form. For example, an example shown by an equivalence diagram of the evaluation index with each parameter as an axis will be described with reference to FIG. 9.
FIG. 9 is a contour diagram of the evaluation index.
 図9の左側には、横軸にパラメータ1をとり、縦軸にパラメータ2をとって、パラメータ調整部9がパラメータを探索した探索点をプロットした図が示される。図9の右側には、プロットされた探索点のうち、等値である探索点を線でつないだ等値線図が示される。各探索点において作成された診断モデルの評価指標が与えられているので、結果出力部10は、等値線図を描くことが可能である。この等値線図は、ユーザにとって、評価指標の分布状況が視覚的に分かりやすいという利点がある。また、評価指標が最も中央に寄っており、評価指標が高い分布23は、パラメータ1,2の組み合わせが妥当であることを表している。 On the left side of FIG. 9, a diagram is shown in which parameter 1 is taken on the horizontal axis and parameter 2 is taken on the vertical axis, and the search points searched by the parameter adjusting unit 9 are plotted. On the right side of FIG. 9, among the plotted search points, an equivalence diagram in which equivalence search points are connected by a line is shown. Since the evaluation index of the diagnostic model created at each search point is given, the result output unit 10 can draw an equivalence diagram. This contour diagram has an advantage that the distribution status of the evaluation index is visually easy for the user to understand. Further, the distribution 23 in which the evaluation index is closest to the center and the evaluation index is high indicates that the combination of the parameters 1 and 2 is appropriate.
 なお、パラメータ1を第1評価指標、パラメータ2を第2評価指標と読み替え、上位のKPIが複数発生した場合は、第1及び第2評価指標を等値線図で表示してもよい。また、結果出力部10は、等値線図として、二次元図だけでなく、もう一つパラメータを軸にとって三次元図で表示することも可能である。また、結果出力部10は、トレンドが似ている条件はパターン認識により集約し、候補となる代表図のみを表示してもよい。この場合、図9の左側に示される多数の探索点のうち、似た値を有する探索点が集約され、探索点の数が減って表示される。 Note that parameter 1 may be read as a first evaluation index and parameter 2 may be read as a second evaluation index, and when a plurality of high-ranking KPIs occur, the first and second evaluation indexes may be displayed in an equivalence diagram. Further, the result output unit 10 can display not only the two-dimensional diagram but also the three-dimensional diagram with another parameter as the axis as the contour diagram. Further, the result output unit 10 may aggregate conditions with similar trends by pattern recognition and display only representative figures as candidates. In this case, among the many search points shown on the left side of FIG. 9, the search points having similar values are aggregated, and the number of search points is reduced and displayed.
 また、結果出力部10が表示する画面の別の形態として、探索結果として得られた上位の候補モデル群から、代表的なトレンド図にまとめて表示するも可能である。これは、例えばパラメータ探索地点が近い診断モデルは、そのトレンド図の見た目がほとんど変わらないことが予想されるためである。これらの似通ったトレンド図を人が目視にて判別することは困難であるため、結果出力部10が、複数のトレンド図をパターン集約することが効果的となる。具体的なパターン集約の方法は、機械学習に基づくパターン認識方法を挙げることができるが特別な限定はない。 Further, as another form of the screen displayed by the result output unit 10, it is also possible to collectively display a representative trend diagram from the high-ranking candidate model group obtained as the search result. This is because, for example, a diagnostic model in which the parameter search points are close to each other is expected to have almost the same appearance of the trend diagram. Since it is difficult for a person to visually discriminate these similar trend charts, it is effective for the result output unit 10 to aggregate a plurality of trend charts into patterns. As a specific pattern aggregation method, a pattern recognition method based on machine learning can be mentioned, but there is no particular limitation.
 このように、本実施の形態に係る診断装置100では、少なくとも診断目的及びデータ条件が入力されることで、その情報を使用して、診断モデルの評価指標や探索条件が決定される。このため、診断装置100では、データ取得部4が取得する時系列データの条件だけでなく、モデル構築部6が構築する診断モデルの診断目的に応じて、評価指標決定部3が評価指標を決めて、パラメータ調整部9が診断モデルの構築に関連するパラメータを迅速かつ自動的に調整することが可能となる。この際、評価指標や探索条件に関係する調整パラメータが自動で探索されることで最適な診断モデルを構築するための情報をユーザに示すことが可能となる。このため、診断モデルの設計工数を削減すると共に、精度の高いモデル開発を支援可能となる。 As described above, in the diagnostic apparatus 100 according to the present embodiment, at least the diagnostic purpose and the data condition are input, and the information is used to determine the evaluation index and the search condition of the diagnostic model. Therefore, in the diagnostic apparatus 100, the evaluation index determination unit 3 determines the evaluation index according to not only the conditions of the time-series data acquired by the data acquisition unit 4 but also the diagnostic purpose of the diagnostic model constructed by the model construction unit 6. Therefore, the parameter adjusting unit 9 can quickly and automatically adjust the parameters related to the construction of the diagnostic model. At this time, the adjustment parameters related to the evaluation index and the search condition are automatically searched, so that the user can be shown the information for constructing the optimum diagnostic model. Therefore, it is possible to reduce the man-hours for designing a diagnostic model and support the development of a highly accurate model.
 また、診断装置100は、機器等の過去の保守履歴に基づいて、診断目的の候補を自動的に抽出し、機器ごとに生じる可能性のある故障を想定可能な診断モデルの構築を支援することができる。このため、ユーザが診断目的の設定等の必要最小限の項目の設定により、診断装置100が、機器の故障診断に関わる診断モデルの作成を行うことができる。 Further, the diagnostic device 100 automatically extracts candidates for diagnostic purposes based on the past maintenance history of the device and the like, and supports the construction of a diagnostic model capable of assuming a failure that may occur for each device. Can be done. Therefore, the diagnostic apparatus 100 can create a diagnostic model related to the failure diagnosis of the device by setting the minimum necessary items such as the setting for the purpose of diagnosis by the user.
 次に、本実施の形態に係る診断装置を、以下の各実施の形態に適用した例について、順に説明する。 Next, an example in which the diagnostic apparatus according to this embodiment is applied to each of the following embodiments will be described in order.
[第1の実施の形態]
 第1の実施の形態では、機械学習アルゴリズムの一つであるARTの例を取り上げる。そして、図3に示すように、診断目的を故障検知、データ条件を時系列データに異常時のデータが含まれていると設定された状態で、正確な異常発生時刻が特定できていない場合に、パラメータを自動調整する診断装置100の動作について説明する。
[First Embodiment]
In the first embodiment, an example of ART, which is one of the machine learning algorithms, is taken up. Then, as shown in FIG. 3, when the diagnostic purpose is set to detect a failure and the data condition is set to include data at the time of abnormality in the time series data, and the exact time of occurrence of the abnormality cannot be specified. , The operation of the diagnostic apparatus 100 that automatically adjusts the parameters will be described.
<診断装置100の処理の例>
 図10は、第1の実施の形態に係る診断装置100の処理の例を示すフローチャートである。ここでは、診断装置100の各部が連携して行う診断モデルのパラメータ調整方法について説明する。
<Example of processing of diagnostic device 100>
FIG. 10 is a flowchart showing an example of processing of the diagnostic apparatus 100 according to the first embodiment. Here, a method of adjusting parameters of a diagnostic model performed in cooperation with each part of the diagnostic apparatus 100 will be described.
 始めに、診断装置100は、条件入力部1を動作する(S1)。ユーザは、表示装置に表示された条件設定画面20(図3を参照)を通じて、診断目的及びデータ条件を選択する。選択された診断目的及びデータ条件の情報に応じて、予め登録されているモデル評価指標の候補が提示されると、ユーザは、提示された候補の中から一つの評価指標を決定する。本実施の形態では、図3で示すように、ユーザが診断目的を「故障検知」と選択し、データ条件を「異常データあり」と選択したとする。その後、診断装置100は、条件決定部2を動作することにより、条件入力部1で選択された診断目的及びデータ条件を決定する。 First, the diagnostic device 100 operates the condition input unit 1 (S1). The user selects a diagnostic purpose and data conditions through the condition setting screen 20 (see FIG. 3) displayed on the display device. When the candidate of the model evaluation index registered in advance is presented according to the information of the selected diagnostic purpose and the data condition, the user determines one evaluation index from the presented candidates. In the present embodiment, as shown in FIG. 3, it is assumed that the user selects "failure detection" as the diagnostic purpose and "abnormal data exists" as the data condition. After that, the diagnostic apparatus 100 determines the diagnostic purpose and the data condition selected by the condition input unit 1 by operating the condition determination unit 2.
 次に、診断装置100は、評価指標決定部3を動作する(S2)。ここでは、評価指標決定部3が、条件決定部2で決定された条件に基づき、予め登録しておいたモデル評価指標の候補の中からF値を選択したものとする。そして、評価指標決定部3が選択したF値は、図3に示した条件設定画面20に表示される。 Next, the diagnostic device 100 operates the evaluation index determination unit 3 (S2). Here, it is assumed that the evaluation index determination unit 3 selects the F value from the candidates of the model evaluation index registered in advance based on the conditions determined by the condition determination unit 2. Then, the F value selected by the evaluation index determination unit 3 is displayed on the condition setting screen 20 shown in FIG.
 次に、診断装置100は、データ取得部4を動作する(S3)。ここで、ユーザが診断モデルの構築のために利用する学習用データと診断用データを選択する。その際には、信号情報とデータ期間が必要である。 Next, the diagnostic device 100 operates the data acquisition unit 4 (S3). Here, the learning data and the diagnostic data to be used by the user for constructing the diagnostic model are selected. In that case, signal information and data period are required.
 信号情報は、ユーザが予めリストやテキストファイルで指定する方法でもよいし、ユーザが画面(不図示)を通じて選択する方法を用いてもよい。又は、条件設定画面20に信号情報の候補を提示しておき、ユーザがチェックを入れて選択する方法を用いてもよい。信号情報として指定された種類の計測値データが、データ取得部4により計測値データベース5から取得される。 The signal information may be specified in advance by the user in a list or a text file, or may be selected by the user through a screen (not shown). Alternatively, a method may be used in which signal information candidates are presented on the condition setting screen 20 and the user checks and selects the signal information. The measured value data of the type specified as the signal information is acquired from the measured value database 5 by the data acquisition unit 4.
 データ期間についても同様に、ユーザが予めリストやテキストファイルで期間を指定する方法、ユーザが画面(不図示)から期間を入力して指定する方法を適用可能である。又は、モデル構築に必要な計測値データ(「対象データ」とも呼ぶ)のトレンドを表示しておき、ユーザがドラッグアンドドロップする方法で期間を指定してもよい。 Similarly, for the data period, it is possible to apply a method in which the user specifies the period in advance using a list or a text file, and a method in which the user inputs and specifies the period from the screen (not shown). Alternatively, the trend of the measured value data (also referred to as “target data”) required for model construction may be displayed, and the period may be specified by a method of dragging and dropping by the user.
 ここで、ユーザがデータ期間を指定する画面の表示例について、図11を参照して説明する。
 図11は、ユーザがデータ期間を指定する画面の表示例を示す図である。図11では、横軸に時間をとり、縦軸に計測値をとって、計測値A,Bの時間変化の様子がグラフ(トレンド図)で示されている。
Here, a display example of a screen on which the user specifies a data period will be described with reference to FIG.
FIG. 11 is a diagram showing a display example of a screen on which the user specifies a data period. In FIG. 11, the time is taken on the horizontal axis and the measured value is taken on the vertical axis, and the state of the time change of the measured values A and B is shown in a graph (trend diagram).
 データ取得部4は、データ条件として、計測値データに異常データがある場合が選択されると、正解が分かっている期間で取得した時系列データに正常であることを示す情報を付す。例えば、図11のグラフに示すように、データ取得部4は、予め正解であることが分かっている領域に、正解ラベルを付し、この領域のデータを正常時データとして指定する。データ取得部4が、正常時データとして指定した期間に取得した計測値データには、正解ラベルに「正常」と付される。また、データ取得部4は、異常が分かっている期間で取得した時系列データに異常であることを示す情報を付す。例えば、データ取得部4は、明らかに異常と分かっている領域にも正解ラベルを付し、この領域のデータを異常時データとして指定する。データ取得部4が、異常時データとして指定した期間に取得した計測値データには、正解ラベルに「異常」と付される。 When the case where there is abnormal data in the measured value data is selected as the data condition, the data acquisition unit 4 attaches information indicating that the time series data acquired during the period when the correct answer is known is normal. For example, as shown in the graph of FIG. 11, the data acquisition unit 4 attaches a correct answer label to a region known to be the correct answer in advance, and designates the data in this region as normal data. The measured value data acquired by the data acquisition unit 4 during the period designated as normal data is labeled with "normal" on the correct answer label. Further, the data acquisition unit 4 attaches information indicating that the time series data acquired during the period in which the abnormality is known is abnormal. For example, the data acquisition unit 4 attaches a correct answer label to an area that is clearly known to be abnormal, and designates the data in this area as abnormal time data. The measured value data acquired by the data acquisition unit 4 during the period designated as the abnormal time data is labeled with "abnormal" on the correct answer label.
 そして、データ取得部4は、正常及び異常として正解ラベルを付ける範囲を選択する際に、モデル化対象データから不明点を除外する。このため、データ取得部4が正常時データとして指定した領域、及び異常時データとして指定した領域以外の領域(期間)については、評価対象外とする。評価対象外の期間に含まれる計測値A,Bは、正常又は異常のいずれであるかを判断することが難しいことが多い。そこで、評価対象外の期間に含まれる計測値A,Bの計測値データは、モデルの評価指標を計算する時には使用されない。 Then, the data acquisition unit 4 excludes unknown points from the modeled data when selecting the range to be labeled as normal or abnormal. Therefore, the area (period) other than the area designated as normal data and the area (period) designated as abnormal data by the data acquisition unit 4 is excluded from the evaluation target. It is often difficult to determine whether the measured values A and B included in the period not subject to evaluation are normal or abnormal. Therefore, the measured value data of the measured values A and B included in the period not subject to evaluation is not used when calculating the evaluation index of the model.
 このようにデータ取得部4は、画面(不図示)を通じて指定された信号情報とデータ期間に基づき、時系列データが格納された計測値データベース5から対象データを取得する。 In this way, the data acquisition unit 4 acquires the target data from the measured value database 5 in which the time series data is stored, based on the signal information and the data period specified through the screen (not shown).
 次に、診断装置100は、モデル構築部6を動作する(S4)。モデル構築部6は、モデル構築部6は、正常であることを示す情報が付された時系列データと、異常であることを示す情報が付された時系列データとを用いて診断モデルを構築する。この際、モデル構築部6は、データ取得部4で用意された学習用データ、正規化範囲、データの分解能パラメータを合わせてARTの学習モードを動作する。ARTのクラスタリングアルゴリズムについての詳細は特許文献1(特開2017-117034号公報)の記載を参照されたい。ARTの処理の概要は以下の通りである。
 処理1:モデル構築部6は、入力ベクトルを正規化する。
 処理2:モデル構築部6は、入力データと重み係数との比較により、ふさわしいクラスタの候補を選択する。
 処理3:モデル構築部6は、選択したクラスタの妥当性を分解能パラメータとの比較により評価する。
Next, the diagnostic device 100 operates the model building unit 6 (S4). The model building unit 6 constructs a diagnostic model using time-series data with information indicating that it is normal and time-series data with information indicating that it is abnormal. do. At this time, the model building unit 6 operates the learning mode of ART by combining the learning data, the normalization range, and the resolution parameters of the data prepared by the data acquisition unit 4. For details on the ART clustering algorithm, refer to the description in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-117034). The outline of ART processing is as follows.
Process 1: The model building unit 6 normalizes the input vector.
Process 2: The model building unit 6 selects a suitable cluster candidate by comparing the input data with the weighting coefficient.
Process 3: The model building unit 6 evaluates the validity of the selected cluster by comparison with the resolution parameter.
 モデル構築部6が、選択したクラスタを妥当と判断すれば、入力データをそのクラスタに分類し、次の処理4に進む。モデル構築部6が、選択したクラスタを妥当と判断しなければ、そのクラスタをリセットし、他のクラスタからふさわしいクラスタ候補を選択する(つまり、処理2を繰り返す)。なお、分解能パラメータの値を大きくすると、クラスタの分類が細かくなり、クラスタの生成数が増加する。一方、分解能パラメータの値を小さくすると、クラスタの分類が粗くなり、クラスタの生成数が減少する。 If the model building unit 6 determines that the selected cluster is appropriate, it classifies the input data into that cluster and proceeds to the next process 4. If the model building unit 6 does not determine that the selected cluster is valid, it resets the cluster and selects a suitable cluster candidate from other clusters (that is, repeats process 2). If the value of the resolution parameter is increased, the classification of clusters becomes finer and the number of clusters generated increases. On the other hand, if the value of the resolution parameter is made small, the classification of clusters becomes coarse and the number of clusters generated decreases.
 処理4:モデル構築部6は、処理2において全ての既存のクラスタをリセットすると、入力データが新規のクラスタに属すると判断し、新規クラスタを表す新しい重み係数を生成する。
 処理5:モデル構築部6は、入力データをクラスタに分類すると、そのクラスタに対応する重み係数を、過去の重み係数及び入力データを用いて更新する。
Process 4: When the model building unit 6 resets all the existing clusters in the process 2, it determines that the input data belongs to the new cluster and generates a new weighting coefficient representing the new cluster.
Process 5: When the input data is classified into clusters, the model building unit 6 updates the weighting factors corresponding to the clusters using the past weighting factors and the input data.
 このように、モデル構築部6が学習モードを実行することで、入力したデータはARTによってクラスタに分類され、各重み係数が更新されるので、モデル構築部6がモデル情報を得ることができる。従って、モデル構築部6は、学習済みのARTに新たな入力データが得られると、上記アルゴリズムにより、過去に生成したどのクラスタに分類できるかを判定することができる。また、モデル構築部6は、どのクラスタにも分類することができない場合は、新規のクラスタを生成することができる。また、モデル構築部6は、図5に示したように学習データ及び診断データに対して、クラスタの代表点からの距離に基づき異常度を生成する。そして、モデル構築部6は、異常度を用いて、診断データの異常の度合を測ることができる。 In this way, when the model building unit 6 executes the learning mode, the input data is classified into clusters by ART, and each weighting factor is updated, so that the model building unit 6 can obtain model information. Therefore, when new input data is obtained in the trained ART, the model building unit 6 can determine which cluster generated in the past can be classified by the above algorithm. Further, the model building unit 6 can generate a new cluster if it cannot be classified into any cluster. Further, as shown in FIG. 5, the model building unit 6 generates an abnormality degree for the learning data and the diagnostic data based on the distance from the representative point of the cluster. Then, the model building unit 6 can measure the degree of abnormality in the diagnostic data by using the degree of abnormality.
 次に、診断装置100は、異常判定部7を動作する(S5)。異常判定部7は、モデル構築部6で出力される異常度と、パラメータの一つである閾値とを比較することにより、異常判定を実施する。 Next, the diagnostic device 100 operates the abnormality determination unit 7 (S5). The abnormality determination unit 7 performs abnormality determination by comparing the abnormality degree output by the model construction unit 6 with the threshold value which is one of the parameters.
 次に、診断装置100は、評価指標計算部8を動作する(S6)。診断データには正解ラベルが予め与えられているため、評価指標計算部8は、異常判定部7から出力される判定結果と比較することにより、F値を計算することができる。 Next, the diagnostic device 100 operates the evaluation index calculation unit 8 (S6). Since the correct answer label is given to the diagnostic data in advance, the evaluation index calculation unit 8 can calculate the F value by comparing with the determination result output from the abnormality determination unit 7.
 次に、診断装置100は、各パラメータ条件と、一連の計算結果を一時的なメモリ又はデータベース(不図示)に格納しておく(S7)。 Next, the diagnostic apparatus 100 stores each parameter condition and a series of calculation results in a temporary memory or a database (not shown) (S7).
 次に、診断装置100は、パラメータの探索回数判定を行う(S8)。本実施の形態に係る診断装置100は、グリッドサーチの方法に基づき、初期設定した各パラメータの開始値、終了値及び刻み幅に従い、探索回数を指定する。この探索回数を「指定の回数」と呼ぶ。そして、診断装置100は、探索回数カウンタの値で示されるパラメータ探索回数が、指定の回数を満たすか否かによって、以降の処理を分岐する。 Next, the diagnostic device 100 determines the number of parameter searches (S8). The diagnostic apparatus 100 according to the present embodiment specifies the number of searches according to the initially set start value, end value, and step width of each parameter based on the grid search method. This number of searches is called a "specified number of times". Then, the diagnostic apparatus 100 branches the subsequent processing depending on whether or not the number of parameter searches indicated by the value of the search count counter satisfies the specified number of times.
 パラメータ探索回数が、指定の回数に満たない場合(S8のNO)、診断装置100は、パラメータ調整部9を動作する(S9)。本実施の形態に係るパラメータ調整部9は、予め設定している各パラメータの刻み幅に従い、次の探索領域へパラメータを一つずつ更新する。その後、ステップS4以降の処理を繰り返す。このため、ステップS4~S9の一連の処理は、指定の回数だけ繰り返される。 When the number of parameter searches is less than the specified number of times (NO in S8), the diagnostic device 100 operates the parameter adjustment unit 9 (S9). The parameter adjusting unit 9 according to the present embodiment updates the parameters one by one to the next search area according to the step size of each parameter set in advance. After that, the processes after step S4 are repeated. Therefore, the series of processes of steps S4 to S9 is repeated a designated number of times.
 パラメータ探索回数が指定の回数を満たした場合(S8のYES)、診断装置100は、結果出力部10を動作する(S10)。結果出力部10は、格納された結果の中から、モデル評価指標が最良の条件を画面に提示する。 When the number of parameter searches satisfies the specified number of times (YES in S8), the diagnostic device 100 operates the result output unit 10 (S10). The result output unit 10 presents on the screen the conditions in which the model evaluation index is the best from the stored results.
 このようにして、診断装置100は、診断対象の故障現象を検知可能となることを想定した故障検知モデル(診断モデルの一例)を構築することができた。なお、本実施の形態では分類手段としてARTを利用した場合について述べたが、分類手段はARTに限定されるものではない。例えば、k平均法(k-means clustering)、ベクトル量子化等の様々な分類手段を採用することができる。 In this way, the diagnostic device 100 was able to construct a failure detection model (an example of a diagnostic model) assuming that a failure phenomenon to be diagnosed can be detected. In the present embodiment, the case where ART is used as the classification means has been described, but the classification means is not limited to ART. For example, various classification means such as k-means clustering and vector quantization can be adopted.
 また、診断目的としては、機器や設備の異常を検知すること、又は機器や設備の性能の劣化を検知することが含まれる。また、データ条件として、異常データの有無、又は劣化データの種類(保守情報か数値データ)をユーザが選択可能である。このため、診断装置100は、設備等の異常検知だけでなく、劣化検知にも対応して、設備の状態を予知してメンテナンスを行う、CBM(Condition Based Maintenance)を実現することが可能となる。 In addition, the purpose of diagnosis includes detecting an abnormality in equipment or equipment, or detecting deterioration in the performance of equipment or equipment. Further, as the data condition, the user can select the presence / absence of abnormal data or the type of deterioration data (maintenance information or numerical data). Therefore, the diagnostic device 100 can realize CBM (Condition Based Maintenance) that predicts the state of the equipment and performs maintenance in response to not only abnormality detection of the equipment but also deterioration detection. ..
[第2の実施の形態]
 次に、本発明の第2の実施の形態に係る診断装置の動作例について説明する。第2の実施の形態に係る診断装置として、第1の実施の形態に係る診断装置100を用いる。ここでは、第2の実施の形態に係る診断装置100が、異常データが無い場合にパラメータを自動調整することを可能とする動作を説明する。
[Second Embodiment]
Next, an operation example of the diagnostic apparatus according to the second embodiment of the present invention will be described. As the diagnostic device according to the second embodiment, the diagnostic device 100 according to the first embodiment is used. Here, the operation that enables the diagnostic device 100 according to the second embodiment to automatically adjust the parameters when there is no abnormality data will be described.
 第1の実施の形態と同様にして、第2の実施の形態に係る診断装置100は、図10に示すステップS1にて条件決定部2を動作する。この時、ユーザは、条件設定画面20を通じて、診断目的を「故障検知」と選択し、データ条件を「異常データなし」と選択する。ただし、この時点では、データ取得部4に、正解ラベルとして異常データを与えることはできない。このため、ステップS2では、第1の実施の形態に示したように、ユーザが診断モデルの評価指標として、F値を選択することはできない。 Similar to the first embodiment, the diagnostic device 100 according to the second embodiment operates the condition determination unit 2 in step S1 shown in FIG. At this time, the user selects the diagnostic purpose as "failure detection" and the data condition as "no abnormal data" through the condition setting screen 20. However, at this point, abnormal data cannot be given to the data acquisition unit 4 as a correct answer label. Therefore, in step S2, as shown in the first embodiment, the user cannot select the F value as the evaluation index of the diagnostic model.
 従って、条件設定画面20は、正常データだけで評価できる誤報率が候補として出力される。例えば、図3の条件設定画面20の「モデル評価指標」の項目では、「F値」がグレーアウトされ、代わりに「誤報率」が表示される。誤報率は、正常の正解ラベルが与えられた全データに対して、異常判定部7が異常と誤判定したデータ数の割合を表す。この定義では、第1の実施の形態で説明したように、異常判定部7が閾値をパラメータの一つとして、閾値を異常度と比較することにより、あるデータを異常と誤判定した場合、このデータが異常と判定されないようにするには、閾値を高くすればよい。このため、データ取得部4は、データ条件として、時系列データに異常データがない場合が選択されると、正解が分かっている期間で取得された時系列データに正常であることを示す情報を付す。 Therefore, the condition setting screen 20 outputs a false alarm rate that can be evaluated only with normal data as a candidate. For example, in the item of "model evaluation index" on the condition setting screen 20 of FIG. 3, "F value" is grayed out and "false alarm rate" is displayed instead. The erroneous report rate represents the ratio of the number of data erroneously determined by the abnormality determination unit 7 to all the data given the normal correct answer label. In this definition, as described in the first embodiment, when the abnormality determination unit 7 erroneously determines certain data as an abnormality by using the threshold value as one of the parameters and comparing the threshold value with the degree of abnormality, this definition is used. To prevent the data from being judged as abnormal, the threshold value may be increased. Therefore, when the case where there is no abnormal data in the time series data is selected as the data condition, the data acquisition unit 4 provides information indicating that the time series data acquired in the period when the correct answer is known is normal. Attach.
 パラメータ調整部9は、正常であることを示す情報が付された時系列データに対して、異常判定部7が異常と誤判定した誤報率に基づいて、パラメータを調整する。ただし、パラメータ調整部9がパラメータ探索を行う過程で上位のモデル候補がいくつも出現したり、局所最適解に陥る問題が発生したりすることが予想される。そこで、誤報率にはある程度の許容範囲(許容誤差)を入れることで、これらの問題を回避可能である。このような問題を回避する方法として、例えば、異常判定部7は、異常度が閾値を超えたと同時に異常と判定するのではなく、10単位時間分連続して異常度が閾値を超えた場合に異常をカウントする方法等が挙げられる。また、ユーザが誤報率の許容範囲を設定する方法や、診断装置100が学習データに基づいて統計的に許容範囲を設定する方法が挙げられる。 The parameter adjustment unit 9 adjusts the parameters for the time-series data to which the information indicating that it is normal is attached, based on the false alarm rate that the abnormality determination unit 7 erroneously determines as an abnormality. However, it is expected that a number of high-ranking model candidates will appear in the process of the parameter adjustment unit 9 performing the parameter search, or a problem of falling into a local optimum solution will occur. Therefore, these problems can be avoided by including a certain tolerance (margin of error) in the false alarm rate. As a method of avoiding such a problem, for example, the abnormality determination unit 7 does not determine that the abnormality is abnormal at the same time as the abnormality exceeds the threshold value, but when the abnormality degree exceeds the threshold value continuously for 10 unit hours. Examples include a method of counting abnormalities. Further, a method in which the user sets an allowable range of the false alarm rate and a method in which the diagnostic apparatus 100 statistically sets the allowable range based on the learning data can be mentioned.
 そして、第2の実施の形態に係る診断装置100は、ステップS3からステップS10の処理を、第1の実施の形態と同様の処理として実行する。この処理により、異常データがない条件であっても、診断装置100は、最適な故障診断モデルを構築することができる。 Then, the diagnostic apparatus 100 according to the second embodiment executes the processes of steps S3 to S10 as the same processes as those of the first embodiment. By this process, the diagnostic apparatus 100 can construct an optimum failure diagnosis model even under the condition that there is no abnormality data.
 また、診断モデルの構築は、クラスタリング以外の機械学習アルゴリズムを用いて実施されてもよい。例えば、機械学習アルゴリズムの種類によらず、交差検証法(クロスバリデーション)を利用して運用時に想定される誤報率を推定し、許容誤差と合わせてモデル評価指標に導入することで、診断モデルを最適化できる。なお、交差検証法を用いる場合の処理については、後述する(図13を参照)。 Further, the construction of the diagnostic model may be carried out using a machine learning algorithm other than clustering. For example, regardless of the type of machine learning algorithm, a diagnostic model can be introduced by estimating the false alarm rate assumed during operation using cross validation and introducing it into the model evaluation index together with the margin of error. Can be optimized. The processing when the cross-validation method is used will be described later (see FIG. 13).
 なお、パラメータ探索アルゴリズムの種類として、例えば、グリッドサーチ、ベイズ最適化、又は遺伝的アルゴリズムがある。診断装置100は、このようなパラメータ探索アルゴリズムを用いることで、診断モデルを構築する速度を向上することが可能となる。 Note that the types of parameter search algorithms include, for example, grid search, Bayesian optimization, and genetic algorithms. By using such a parameter search algorithm, the diagnostic apparatus 100 can improve the speed of constructing a diagnostic model.
[第3の実施の形態]
 次に、本発明の第3の実施の形態に係る診断装置の動作例について説明する。第3の実施の形態に係る診断装置として、第1の実施の形態に係る診断装置100を用いる。ここでは、第3の実施の形態に係る診断装置100が、診断目的として劣化検知が選択された場合にパラメータを自動調整する動作を説明する。
[Third Embodiment]
Next, an operation example of the diagnostic apparatus according to the third embodiment of the present invention will be described. As the diagnostic device according to the third embodiment, the diagnostic device 100 according to the first embodiment is used. Here, the operation of the diagnostic device 100 according to the third embodiment to automatically adjust the parameters when deterioration detection is selected for the purpose of diagnosis will be described.
 第1の実施の形態と同様にして、第3の実施の形態に係る診断装置100は、図10に示すステップS1にて条件決定部2を動作する。この時、ユーザは、条件設定画面20を通じて、診断目的の項目の「劣化検知」にチェックを入れる。上述したようにデータ条件は、定性データ又は定量データのいずれかをユーザが選択できるように条件設定画面20に表示される。つまり、条件設定画面20の「データ条件」の項目では、図3に示した「異常データあり」及び「異常データなし」の代わりに、「定性データ」及び「定量データ」が選択可能に表示される。ここでは、ユーザが、「データ条件」の項目から「定性データ」を選択したと想定する。 Similar to the first embodiment, the diagnostic device 100 according to the third embodiment operates the condition determination unit 2 in step S1 shown in FIG. At this time, the user checks the "deterioration detection" of the diagnostic object through the condition setting screen 20. As described above, the data condition is displayed on the condition setting screen 20 so that the user can select either qualitative data or quantitative data. That is, in the item of "data condition" on the condition setting screen 20, "qualitative data" and "quantitative data" are selectively displayed instead of "with abnormal data" and "without abnormal data" shown in FIG. To. Here, it is assumed that the user selects "qualitative data" from the "data condition" item.
 その後、診断装置100は、ステップS2にて評価指標決定部3を動作する。評価指標決定部3は、条件設定画面20を通じて設定された診断目的及びデータ条件に基づき、機器の劣化状態を確実に検知するために、評価指標として再現率を選択可能である。 After that, the diagnostic device 100 operates the evaluation index determination unit 3 in step S2. The evaluation index determination unit 3 can select the recall rate as the evaluation index in order to reliably detect the deterioration state of the device based on the diagnostic purpose and the data conditions set through the condition setting screen 20.
 そして、第3の実施の形態に係る診断装置100は、ステップS3からステップS10の処理を、第1の実施の形態と同様の処理として実行する。そして、パラメータ調整部9は、診断目的が、診断対象の劣化検知である場合に、評価指標として選択された再現率に基づいて、パラメータを調整する。この処理により、診断目的が劣化検知の場合でも、診断装置100は、最適な診断モデルを構築することができる。 Then, the diagnostic apparatus 100 according to the third embodiment executes the processes of steps S3 to S10 as the same processes as those of the first embodiment. Then, the parameter adjusting unit 9 adjusts the parameters based on the reproducibility selected as the evaluation index when the diagnostic purpose is to detect deterioration of the diagnosis target. By this process, the diagnostic apparatus 100 can construct an optimum diagnostic model even when the diagnostic purpose is deterioration detection.
[第4の実施の形態]
 次に、本発明の第4の実施の形態に係る診断装置の動作例について説明する。第4の実施の形態に係る診断装置として、第1の実施の形態に係る診断装置100を用いる。第4の実施の形態に係る診断装置100は、第1の実施の形態に加えて運用性を考慮した動作を行う。
[Fourth Embodiment]
Next, an operation example of the diagnostic apparatus according to the fourth embodiment of the present invention will be described. As the diagnostic device according to the fourth embodiment, the diagnostic device 100 according to the first embodiment is used. The diagnostic apparatus 100 according to the fourth embodiment operates in consideration of operability in addition to the first embodiment.
 第4の実施の形態と、第1の実施の形態との違いは、入力画面にてクラスタ数を考慮する点である。特許文献1(特開2017-117034号公報)に記載されたように、分類結果のクラスタには、クラスタNoと事象とが関連付けて登録される。従って、診断装置100を運用する段階では、クラスタの出現に応じて設備の運転状態を監視することが可能である。 The difference between the fourth embodiment and the first embodiment is that the number of clusters is taken into consideration on the input screen. As described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-117034), the cluster No. and the event are registered in association with each other in the cluster of the classification result. Therefore, at the stage of operating the diagnostic apparatus 100, it is possible to monitor the operating state of the equipment according to the appearance of the cluster.
 先に述べた通り、分解能パラメータを始めとする各パラメータの調整次第で、診断時及び運用時における新規クラスタの生成頻度が異なる。そのため、オペレータが、設備の稼働状態を監視する場合、一日に多数の新規クラスタが出現すると、その都度クラスタに事象を登録する必要が生じるため、オペレータへの負荷が増大する。 As mentioned earlier, the frequency of new cluster generation during diagnosis and operation differs depending on the adjustment of each parameter including the resolution parameter. Therefore, when the operator monitors the operating status of the equipment, when a large number of new clusters appear in a day, it is necessary to register the event in the cluster each time, which increases the load on the operator.
 ここで、第4の実施の形態に係る条件入力部1の内容と、条件決定部2の動作の例について、図12を参照して説明する。
 図12は、前提条件入力と、モデル化方法決定の関係を示す図である。
Here, the contents of the condition input unit 1 and an example of the operation of the condition determination unit 2 according to the fourth embodiment will be described with reference to FIG.
FIG. 12 is a diagram showing the relationship between the precondition input and the modeling method determination.
 図12の上部に示される前提条件入力には、条件入力部1に含まれる診断目的、データ条件の他に、運用性の項目が追加されたことが示される。診断目的及びデータ条件に含まれる項目は、図2に示した項目と同様である。一方、運用性の項目には、目標クラスタ数及び許容誤差のうち少なくとも一つ以上の項目が含まれる。 It is shown that the precondition input shown in the upper part of FIG. 12 has an operability item added in addition to the diagnostic purpose and the data condition included in the condition input unit 1. The items included in the diagnostic purpose and the data conditions are the same as the items shown in FIG. On the other hand, the item of operability includes at least one item of the target number of clusters and the margin of error.
 目標クラスタ数とは、モデル構築部6の学習時又は診断時におけるクラスタ発生数の目標値とする。ユーザが事前に目標クラスタ数を与えることで、学習時又は診断時に発生するクラスタ数が目標クラスタ数以内となる。このため、クラスタへの事象の登録が簡易化され、診断モデルの選定も容易となる。 The target number of clusters is the target value of the number of clusters generated at the time of learning or diagnosis of the model building unit 6. By giving the target number of clusters in advance by the user, the number of clusters generated at the time of learning or diagnosis is within the target number of clusters. This simplifies the registration of events in the cluster and facilitates the selection of diagnostic models.
 クラスタ生成数は、モデル構築部6の学習時又は診断時において生成されたクラスタ数である。
 目的選択、異常データ有無、目標クラスタ数及び許容誤差の項目は、図3に示す条件設定画面20を通じてユーザにより設定される。
The number of clusters generated is the number of clusters generated at the time of learning or diagnosis of the model building unit 6.
Items of purpose selection, presence / absence of abnormal data, target number of clusters, and tolerance are set by the user through the condition setting screen 20 shown in FIG.
 図12の下部に示されるように、条件決定部2は、条件入力部1で入力された診断目的、データ条件及び運用性の項目に基づき、調整パラメータ項目、利用データ範囲、モデル評価指標を含むモデル化方法を自動で決定する。 As shown in the lower part of FIG. 12, the condition determination unit 2 includes an adjustment parameter item, a usage data range, and a model evaluation index based on the diagnostic purpose, data condition, and operability items input by the condition input unit 1. The modeling method is automatically determined.
 具体的には、診断目的、データ条件及び運用性に応じて、ユーザが設定すべきモデル化方法の各項目について、条件決定部2は、予め登録されているルールに基づきユーザに提示する条件を決定する。調整パラメータ項目及び利用データ範囲に含まれる項目は、図2に示した項目と同様である。一方、図12に示すモデル評価指標には、図2に示した検知性能に加えて、クラスタ分類数誤差の項目が含まれる。なお、診断目的、データ条件及び運用性に基づき、予め調整パラメータの項目優先度及び探索条件をパターン化し、利用データ範囲、検知性能を含む診断モデル評価指標を定義するファイル又はリストをデータベース(不図示)に保存可能である。 Specifically, the condition determination unit 2 sets the conditions to be presented to the user based on the pre-registered rules for each item of the modeling method to be set by the user according to the diagnostic purpose, the data condition and the operability. decide. The adjustment parameter items and the items included in the usage data range are the same as the items shown in FIG. On the other hand, the model evaluation index shown in FIG. 12 includes an item of cluster classification number error in addition to the detection performance shown in FIG. A database (not shown) is a file or list that defines the diagnostic model evaluation index including the usage data range and detection performance by patterning the item priority and search condition of the adjustment parameters in advance based on the diagnostic purpose, data conditions, and operability. ) Can be saved.
 モデル評価指標に含まれるクラスタ分類数誤差の項目は、図12の上部に示した運用性に含まれる目標クラスタ数と、上述したクラスタ生成数から与えられる。
 クラスタ数分類誤差は、目標クラスタ数に対するクラスタ生成数を誤差として換算した値とする。同時に、第1の実施の形態と同様にして、ユーザは、モデル精度を評価するための指標として、F値も選択可能である
The item of the cluster classification number error included in the model evaluation index is given from the target number of clusters included in the operability shown in the upper part of FIG. 12 and the number of clusters generated described above.
The cluster number classification error is a value obtained by converting the number of clusters generated with respect to the target number of clusters as an error. At the same time, as in the first embodiment, the user can also select the F value as an index for evaluating the model accuracy.
 第1の実施の形態と同様にして、第4の実施の形態に係る診断装置100は、図10に示すステップS1にて条件決定部2を動作する。次に、診断装置100は、図10に示すステップS2で評価指標決定部3を動作させる。この時、図12の上部に示した目標クラスタ数から、許容誤差の範囲内でのみ、F値を有効とする。例えば、許容誤差の範囲外の評価指標は0、範囲内の評価指標はF値とする。具体的な式は任意に適用可能である。 Similar to the first embodiment, the diagnostic device 100 according to the fourth embodiment operates the condition determination unit 2 in step S1 shown in FIG. Next, the diagnostic device 100 operates the evaluation index determination unit 3 in step S2 shown in FIG. At this time, the F value is valid only within the margin of error from the target number of clusters shown in the upper part of FIG. For example, the evaluation index outside the permissible range is 0, and the evaluation index within the range is the F value. The specific formula can be applied arbitrarily.
 そして、第4の実施の形態に係る診断装置100は、ステップS3からステップS10の処理を、第1の実施の形態と同様の処理として実行する。この処理により、診断装置100は、目標とするクラスタ数と許容誤差の範囲内で、精度が最も高い診断モデルを構築することができる。 Then, the diagnostic apparatus 100 according to the fourth embodiment executes the processes of steps S3 to S10 as the same processes as those of the first embodiment. By this process, the diagnostic apparatus 100 can construct a diagnostic model with the highest accuracy within the range of the target number of clusters and the tolerance.
 以上説明した第4の実施の形態に係る診断装置100では、条件入力部1から診断目的、データ条件、目標クラスタ数・クラスタ数許容誤差を含む前提条件が入力される。そして、この前提条件に基づき、調整パラメータの項目優先度・探索条件をパターン化し、利用データ範囲と、検知性能及びクラスタ分類数誤差を含むモデル評価指標と、を含む診断モデル化方法を決定する。このため、診断装置100は、診断目的やデータ条件、運用性に基づき適切な診断モデルを構築することができる。 In the diagnostic apparatus 100 according to the fourth embodiment described above, the preconditions including the diagnostic purpose, data conditions, target cluster number / cluster number tolerance are input from the condition input unit 1. Then, based on this precondition, the item priority / search condition of the adjustment parameter is patterned, and the diagnostic modeling method including the usage data range, the model evaluation index including the detection performance and the cluster classification number error is determined. Therefore, the diagnostic device 100 can construct an appropriate diagnostic model based on the diagnostic purpose, data conditions, and operability.
 また、第4の実施の形態に係る診断装置100は、診断目的、データ条件、運用性のうち少なくとも一つ以上に関する情報を使う。つまり、上述した実施の形態とは異なり、運用性のみ、又は診断目的及び運用性、若しくはデータ条件及び運用性の情報を使って診断モデルを構築することも可能である。 Further, the diagnostic apparatus 100 according to the fourth embodiment uses information regarding at least one of the diagnostic purpose, data conditions, and operability. That is, unlike the above-described embodiment, it is possible to construct a diagnostic model using only operability, diagnostic purpose and operability, or data conditions and operability information.
[第5の実施の形態]
 次に、本発明の第5の実施の形態に係る診断装置の動作例について説明する。第5の実施の形態に係る診断装置は、第4の実施の形態に係る診断装置の別の形態を表す。第5の実施の形態に係る診断装置においても、ユーザが条件設定画面20を通じて、クラスタ数とクラスタ数許容誤差を入力する。ただし、第5実施の形態に係る診断装置と、第4の実施の形態に係る診断装置との相違点は、図10に示すステップS4の処理にてモデル構築部6が動作する前に、モデル構築部6が交差検証を実施することにより、正常運転時におけるクラスタの生成数を見積もることである。
[Fifth Embodiment]
Next, an operation example of the diagnostic apparatus according to the fifth embodiment of the present invention will be described. The diagnostic apparatus according to the fifth embodiment represents another embodiment of the diagnostic apparatus according to the fourth embodiment. Also in the diagnostic apparatus according to the fifth embodiment, the user inputs the number of clusters and the allowance for the number of clusters through the condition setting screen 20. However, the difference between the diagnostic device according to the fifth embodiment and the diagnostic device according to the fourth embodiment is that the model is modeled before the model building unit 6 operates in the process of step S4 shown in FIG. The construction unit 6 performs cross-validation to estimate the number of clusters generated during normal operation.
 ここで、第5の実施の形態に係る診断装置の構成例について、図13を参照して説明する。
 図13は、第5の実施の形態に係る診断装置100Aの構成例を示すブロック図である。
Here, a configuration example of the diagnostic apparatus according to the fifth embodiment will be described with reference to FIG.
FIG. 13 is a block diagram showing a configuration example of the diagnostic apparatus 100A according to the fifth embodiment.
 診断装置100Aは、図1に示した診断装置100と同様の構成としているが、データ取得部4とモデル構築部6の間に、データ分割部12を設けた点が異なる。
 データ分割部12は、データ取得部4が取得した時系列データを所定数ごとに分割する。例えば、データ分割部12は、データ取得部4が取得したデータをkセットに分割する。kセットのデータのうち、(k-1)セットのデータが学習用データとして利用され、残りの1セットのデータが診断用データとして利用される。データ分割部12は、このような学習用データと診断用データとの組み合わせを、予めk通りの学習用及び診断用として準備することができる。
The diagnostic device 100A has the same configuration as the diagnostic device 100 shown in FIG. 1, except that a data division unit 12 is provided between the data acquisition unit 4 and the model construction unit 6.
The data division unit 12 divides the time-series data acquired by the data acquisition unit 4 into predetermined numbers. For example, the data division unit 12 divides the data acquired by the data acquisition unit 4 into k sets. Of the k sets of data, the (k-1) set of data is used as learning data, and the remaining one set of data is used as diagnostic data. The data division unit 12 can prepare a combination of such learning data and diagnostic data in advance for k types of learning and diagnosis.
 ステップS4の処理では、モデル構築部6は、分割された所定数ごとの時系列データに基づいて、診断モデルの構築前に交差検証を行って、診断対象の正常運転時に生成されるクラスタの数を推定する。そして、モデル構築部6は、準備した学習用データと診断用データを利用して、k通りの診断モデルを構築する。そして、ステップS6の処理では、評価指標計算部8が、k通りの診断モデルから得られた評価指標の平均値を算出する。このような処理により、診断装置100Aのモデル構築部6は、診断モデルの運用開始時に、単位時間あたりにどのくらいのクラスタ数が生成するのかを疑似的に予測することができる。 In the process of step S4, the model building unit 6 performs cross-validation before building the diagnostic model based on the divided time-series data for each predetermined number, and the number of clusters generated during normal operation of the diagnosis target. To estimate. Then, the model building unit 6 constructs k different diagnostic models by using the prepared learning data and diagnostic data. Then, in the process of step S6, the evaluation index calculation unit 8 calculates the average value of the evaluation indexes obtained from k different diagnostic models. By such processing, the model building unit 6 of the diagnostic apparatus 100A can pseudo-predict how many clusters will be generated per unit time at the start of operation of the diagnostic model.
 その後、パラメータ調整部9は、推定されたクラスタの数と、条件入力部1から入力された目標クラスタ数とを比較して、推定されたクラスタの数と目標クラスタ数との差が許容誤差の範囲内である場合に、評価指標が最適となる条件のパラメータを選択する。この際、パラメータ調整部9は、条件入力部1から予め入力されたクラスタ数と許容誤差を、評価指標計算部8により推定されたクラスタ生成数推定値とを比較し、許容範囲内の条件におけるモデル評価指標の最適なパラメータ条件を選択することができる。ユーザは、結果出力部10がユーザインターフェイスに出力した予測数を確認して、ユーザがパラメータ条件を選択したり、精度が高い診断モデルを選択するために最適なパラメータ条件の許容範囲を設定したりすることができる。 After that, the parameter adjusting unit 9 compares the estimated number of clusters with the target cluster number input from the condition input unit 1, and the difference between the estimated number of clusters and the target cluster number is the margin of error. If it is within the range, select the parameter of the condition for which the evaluation index is optimal. At this time, the parameter adjustment unit 9 compares the number of clusters input in advance from the condition input unit 1 with the permissible error with the estimated cluster generation number estimated by the evaluation index calculation unit 8, and sets the conditions within the permissible range. The optimum parameter conditions for the model evaluation index can be selected. The user confirms the predicted number output to the user interface by the result output unit 10, and the user selects the parameter condition or sets the optimum allowable range of the parameter condition for selecting the highly accurate diagnostic model. can do.
 結果出力部10に表示される結果の表示方法としては、最適な条件のみを提示することでもよい。しかし、他の表示形態も考えられる。ここで、結果出力部10に表示される結果の表示方法の他の形態について、図14を参照して説明する。
 図14は、探索点ごとに診断モデルの評価指標とクラスタ数とを併記した図である。
As a method of displaying the result displayed on the result output unit 10, only the optimum conditions may be presented. However, other display forms are also conceivable. Here, another form of the result display method displayed on the result output unit 10 will be described with reference to FIG.
FIG. 14 is a diagram showing the evaluation index of the diagnostic model and the number of clusters for each search point.
 図14には、横軸にパラメータ1をとり、縦軸にパラメータ2をとって、パラメータの探索点ごとに、診断モデルの評価指標とクラスタ生成の予測値とが併記された図が示される。クラスタ生成の予測値は、例えば一日あたりの予想クラスタ生成数とすることが可能である。例えば、図中に破線で囲った探索点では、評価指標がいずれも0.92であり、他の探索点よりも1.00に近い。このため、破線で囲った探索点で示されるパラメータ1,2は、診断モデルの構築に有用であると判断できる。 FIG. 14 shows a diagram in which parameter 1 is taken on the horizontal axis and parameter 2 is taken on the vertical axis, and the evaluation index of the diagnostic model and the predicted value of cluster generation are written together for each search point of the parameter. The predicted value of cluster generation can be, for example, the predicted number of cluster generations per day. For example, at the search points surrounded by the broken line in the figure, the evaluation index is 0.92, which is closer to 1.00 than the other search points. Therefore, it can be determined that the parameters 1 and 2 indicated by the search points surrounded by the broken line are useful for constructing the diagnostic model.
 ユーザは、図14に示す図が表示された画面を確認することで、任意のパラメータ条件に基づく診断モデルを選択することができる。例えば、一日あたりに新規で生成するクラスタ数に対して、事象を登録する作業量が運用上許容できると判断される範囲の中で、評価指標が最大となる条件で診断モデルを選択できる。 The user can select a diagnostic model based on arbitrary parameter conditions by checking the screen on which the figure shown in FIG. 14 is displayed. For example, the diagnostic model can be selected under the condition that the evaluation index is the maximum within the range where the amount of work for registering the event is judged to be operationally acceptable for the number of newly generated clusters per day.
 また、第5の実施の形態に係る診断装置100Aでは、診断モデルの生成クラスタ数を評価指標の一つとすることができる。この場合、生成クラスタ数は、ユーザが予め設定したクラスタ生成数の上限以下であれば良、のように評価される。そこで、診断時における診断モデルの生成クラスタ数を評価指標の一つとすることが可能である。また、診断モデルの運用時には、運用時に診断モデルにより予測される生成クラスタ数を評価指標の一つとすることができる。そこで、評価指標計算部8は、運用時に予測される生成クラスタ数を、交差検証法(クロスバリデーション)を利用して算出するとよい。この処理により、生成クラスタ数が精度よく予測されることとなる。 Further, in the diagnostic apparatus 100A according to the fifth embodiment, the number of clusters generated by the diagnostic model can be used as one of the evaluation indexes. In this case, the number of generated clusters is evaluated as good as long as it is equal to or less than the upper limit of the number of clusters generated by the user. Therefore, it is possible to use the number of clusters generated as a diagnostic model at the time of diagnosis as one of the evaluation indexes. In addition, when operating the diagnostic model, the number of generated clusters predicted by the diagnostic model during operation can be used as one of the evaluation indexes. Therefore, the evaluation index calculation unit 8 may calculate the number of generated clusters predicted at the time of operation by using the cross validation method. By this process, the number of generated clusters can be predicted accurately.
[第6の実施の形態]
 次に、本発明の第6の実施の形態に係る診断装置の動作例について説明する。ここでは、第6の実施の形態に係る診断装置の構成例及び動作例と共に、モデルの評価指標の登録方法について、図15を参照して説明する。
 図15は、第6の実施の形態に係る診断装置100Bの構成例を示すブロック図である。
[Sixth Embodiment]
Next, an operation example of the diagnostic apparatus according to the sixth embodiment of the present invention will be described. Here, a method of registering an evaluation index of a model will be described with reference to FIG. 15, together with a configuration example and an operation example of the diagnostic apparatus according to the sixth embodiment.
FIG. 15 is a block diagram showing a configuration example of the diagnostic apparatus 100B according to the sixth embodiment.
 診断装置100Bは、図1に示した診断装置100と同様の構成としているが、評価指標決定部3が評価指標を読み出し可能な評価指標格納データベース13を設けた点が異なる。評価指標格納データベース13には、例えば、診断目的、データ条件に応じて推奨するモデル評価指標、パラメータの項目優先度やパターンが、図7と図8に示したリストの形式で整理して格納される。 The diagnostic device 100B has the same configuration as the diagnostic device 100 shown in FIG. 1, except that the evaluation index determination unit 3 provides an evaluation index storage database 13 capable of reading the evaluation index. In the evaluation index storage database 13, for example, model evaluation indexes recommended according to diagnostic purposes and data conditions, item priorities and patterns of parameters are organized and stored in the form of a list shown in FIGS. 7 and 8. To.
 評価指標決定部3は、条件決定部2により決定された診断目的及びデータ条件に基づいて、評価指標格納データベース13から評価指標を読み出し、評価指標から任意の項目を選択可能に表示する。このため、条件決定部2から評価指標決定部3に診断目的及びデータ条件が入力されると、評価指標決定部3は、評価指標格納データベース13に格納された評価指標の中から、診断目的及びデータ条件の組み合わせに応じた評価指標情報14を読み出す。この評価指標情報14から抽出される評価指標は、図3に示した条件設定画面20にてユーザに提示される。 The evaluation index determination unit 3 reads the evaluation index from the evaluation index storage database 13 based on the diagnostic purpose and data conditions determined by the condition determination unit 2, and displays any item from the evaluation index in a selectable manner. Therefore, when the diagnostic purpose and the data condition are input from the condition determination unit 2 to the evaluation index determination unit 3, the evaluation index determination unit 3 selects the diagnostic purpose and the diagnostic purpose from the evaluation indexes stored in the evaluation index storage database 13. The evaluation index information 14 corresponding to the combination of data conditions is read out. The evaluation index extracted from the evaluation index information 14 is presented to the user on the condition setting screen 20 shown in FIG.
 上述したように評価指標格納データベース13に登録される情報は、評価指標だけでなく、ある診断目的及びデータ条件に応じてユーザが設定すべきその他のパラメータ項目も含まれる。例えば、条件設定画面20を通じて診断目的に「故障検知」が選択され、データ条件に「異常データあり」が選択された場合を想定する。このとき、条件設定画面20には、評価指標格納データベース13に登録されたルールに基づき、評価指標として「F値」をユーザが選択できるように表示される。併せて、条件設定画面20には、「学習データ」の入力データ範囲と、「正解ラベル:正常」及び「正解ラベル:異常」の入力データ範囲をユーザが選択できるように表示される。 As described above, the information registered in the evaluation index storage database 13 includes not only the evaluation index but also other parameter items that should be set by the user according to a certain diagnostic purpose and data condition. For example, it is assumed that "failure detection" is selected for the diagnostic purpose and "abnormal data is present" is selected for the data condition through the condition setting screen 20. At this time, the condition setting screen 20 is displayed so that the user can select the "F value" as the evaluation index based on the rules registered in the evaluation index storage database 13. At the same time, the condition setting screen 20 is displayed so that the user can select the input data range of "learning data" and the input data range of "correct answer label: normal" and "correct answer label: abnormal".
 次に、診断目的に「故障検知」が選択され、データ条件に「異常データなし」が選択された場合を想定する。このとき、条件設定画面20には、評価指標格納データベース13に登録されたルールに基づき、評価指標として「誤報率」をユーザが選択できるように表示されると共に、「学習データ」の入力データ範囲をユーザが選択できるように表示される。 Next, assume that "Failure detection" is selected for the diagnostic purpose and "No abnormal data" is selected for the data condition. At this time, the condition setting screen 20 is displayed so that the user can select the "false alarm rate" as the evaluation index based on the rules registered in the evaluation index storage database 13, and the input data range of the "learning data". Is displayed so that the user can select.
 なお、評価指標決定部3の動作は、過去のモデル構築例を参照することで、類似の条件入力結果に応じて選定されてもよい。このため、過去の診断モデルから利用率や評価に基づき、類似の診断目的、データ条件及び運転条件を入力したときに、推奨される項目優先度、探索条件をパターン化、利用データ範囲、検知性能を含む診断モデル評価指標を結果出力部10が提示可能としてよい。例えば、過去にモデル構築部6が構築した各診断モデルについて、適用回数、モデル精度、人為的な評価に基づき、条件決定方法をスコアリングしておく。そして、ユーザが類似の条件入力を与えた場合には、スコアリングの上位から候補となる条件決定方法を提示する画面が表示されることで、ユーザに条件決定方法の選択を促すことが可能である。 The operation of the evaluation index determination unit 3 may be selected according to similar condition input results by referring to past model construction examples. Therefore, when similar diagnostic objectives, data conditions and operating conditions are input from past diagnostic models based on utilization rates and evaluations, recommended item priorities and search conditions are patterned, used data range, and detection performance. The result output unit 10 may be able to present a diagnostic model evaluation index including. For example, for each diagnostic model constructed by the model construction unit 6 in the past, the condition determination method is scored based on the number of applications, model accuracy, and artificial evaluation. Then, when the user gives a similar condition input, a screen showing a candidate condition determination method from the top of the scoring is displayed, so that the user can be prompted to select the condition determination method. be.
<計算機のハードウェア構成>
 次に、各実施の形態に係る診断装置の構成する計算機30のハードウェア構成を説明する。
 図16は、計算機30のハードウェア構成例を示すブロック図である。計算機30は、本実施の形態に係る診断装置として動作可能なコンピューターとして用いられるハードウェアの一例である。
<Hardware configuration of computer>
Next, the hardware configuration of the computer 30 constituting the diagnostic apparatus according to each embodiment will be described.
FIG. 16 is a block diagram showing a hardware configuration example of the computer 30. The computer 30 is an example of hardware used as a computer that can operate as a diagnostic device according to the present embodiment.
 計算機30は、バス34にそれぞれ接続されたCPU(Central Processing Unit)31、ROM(Read Only Memory)32、及びRAM(Random Access Memory)33を備える。さらに、計算機30は、表示装置35、入力装置36、不揮発性ストレージ37及びネットワークインターフェイス38を備える。 The computer 30 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, and a RAM (Random Access Memory) 33, which are connected to the bus 34, respectively. Further, the computer 30 includes a display device 35, an input device 36, a non-volatile storage 37, and a network interface 38.
 CPU31は、本実施の形態に係る各機能を実現するソフトウェアのプログラムコードをROM32から読み出してRAM33にロードし、実行する。RAM33には、CPU31の演算処理の途中で発生した変数やパラメータ等が一時的に書き込まれ、これらの変数やパラメータ等がCPU31によって適宜読み出される。ただし、CPU31に代えてMPU(Micro Processing Unit)を用いてもよい。診断装置100,100A,100B内の各機能部は、CPU31が実行するプログラムによりその機能が実現される。 The CPU 31 reads the program code of the software that realizes each function according to the present embodiment from the ROM 32, loads it into the RAM 33, and executes it. Variables and parameters generated during the arithmetic processing of the CPU 31 are temporarily written in the RAM 33, and these variables and parameters are appropriately read out by the CPU 31. However, an MPU (Micro Processing Unit) may be used instead of the CPU 31. The functions of the functional units in the diagnostic devices 100, 100A, and 100B are realized by a program executed by the CPU 31.
 表示装置35は、例えば、液晶ディスプレイモニターであり、計算機30で行われる処理の結果等をユーザに表示する。結果出力部10は、表示装置35に結果を出力することが可能である。このため、表示装置35には、図3に示した条件設定画面20等が表示される。入力装置36には、例えば、キーボード、マウス等が用いられ、ユーザが所定の操作入力、指示を行うことが可能である。条件入力部1は、入力装置36を通じて入力された情報を取り込むことができる。 The display device 35 is, for example, a liquid crystal display monitor, and displays the result of processing performed by the computer 30 to the user. The result output unit 10 can output the result to the display device 35. Therefore, the condition setting screen 20 and the like shown in FIG. 3 are displayed on the display device 35. For example, a keyboard, a mouse, or the like is used as the input device 36, and the user can perform predetermined operation inputs and instructions. The condition input unit 1 can take in the information input through the input device 36.
 不揮発性ストレージ37としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ又は不揮発性のメモリ等が用いられる。この不揮発性ストレージ37には、OS(Operating System)、各種のパラメータの他に、計算機30を機能させるためのプログラムが記録されている。ROM32及び不揮発性ストレージ37は、CPU31が動作するために必要なプログラムやデータ等を記録しており、計算機30によって実行されるプログラムを格納したコンピューター読取可能な非一過性の記憶媒体の一例として用いられる。図1、図13、図15に示した計測値データベース5、図15に示した評価指標格納データベース13は、不揮発性ストレージ37に構成される。 As the non-volatile storage 37, for example, an HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, optical magnetic disk, CD-ROM, CD-R, magnetic tape, non-volatile memory, or the like is used. Be done. In the non-volatile storage 37, in addition to the OS (Operating System) and various parameters, a program for operating the computer 30 is recorded. The ROM 32 and the non-volatile storage 37 record programs, data, and the like necessary for the CPU 31 to operate, and as an example of a computer-readable non-transient storage medium that stores a program executed by the computer 30. Used. The measured value database 5 shown in FIGS. 1, 13, and 15 and the evaluation index storage database 13 shown in FIG. 15 are configured in the non-volatile storage 37.
 ネットワークインターフェイス38には、例えば、NIC(Network Interface Card)等が用いられ、NICの端子に接続されたLAN(Local Area Network)、専用線等を介して各種のデータを装置間で送受信することが可能である。例えば、計測器2から出力される計測値データ(時系列データ)は、ネットワークインターフェイス38を通じて計測値データベース5に取り込まれる。 For the network interface 38, for example, a NIC (Network Interface Card) or the like is used, and various data can be transmitted and received between the devices via a LAN (Local Area Network) connected to the terminal of the NIC, a dedicated line, or the like. It is possible. For example, the measured value data (time series data) output from the measuring instrument 2 is taken into the measured value database 5 through the network interface 38.
[変形例]
 本発明は上記各実施形態そのままに限定されるものではなく、その発明の範囲内において、各実施の形態を変形、省略することができる。
[Modification example]
The present invention is not limited to each of the above embodiments as it is, and each embodiment can be modified or omitted within the scope of the invention.
 例えば、本発明に係る各実施の形態は、例えば、発電プラント(ボイラ、復水器、タービン)、化学プラント(反応槽、熱交換器)、産業プラント(ろ過フィルタ)、水処理設備(凝集剤注入槽)、小型ボイラなどの産業機器の動作を診断するために用いることが可能である。 For example, each embodiment of the present invention includes, for example, a power generation plant (boiler, condenser, turbine), a chemical plant (reaction tank, heat exchanger), an industrial plant (filtration filter), and a water treatment facility (aggregator). It can be used to diagnose the operation of industrial equipment such as injection tanks) and small boilers.
 また、上述した各実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
In addition, each of the above-described embodiments is a detailed and specific description of the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment described here with the configuration of another embodiment, and further, it is possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible. Further, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
 1…条件入力部、2…条件決定部、3…評価指標決定部、4…データ取得部、5…計測値データベース、6…モデル構築部、7…異常判定部、8…評価指標計算部、9…パラメータ調整部、10…結果出力部、11…時系列データ、100…診断装置 1 ... Condition input unit, 2 ... Condition determination unit, 3 ... Evaluation index determination unit, 4 ... Data acquisition unit, 5 ... Measurement value database, 6 ... Model construction unit, 7 ... Abnormality judgment unit, 8 ... Evaluation index calculation unit, 9 ... Parameter adjustment unit, 10 ... Result output unit, 11 ... Time series data, 100 ... Diagnostic device

Claims (10)

  1.  診断対象の状態を診断する診断モデルの診断目的、及び前記診断モデルの構築に利用され、前記診断対象の状態を表す時系列データのデータ条件が入力される条件入力部と、
     入力された前記診断目的及び前記データ条件に基づいて、前記診断モデルを調整するパラメータが定義されたパラメータ項目、前記時系列データの利用範囲の項目、及び前記診断モデルを評価するための評価指標の項目のうち、少なくとも一つ以上を含むモデル化方法に従って構築され、前記評価指標で評価される前記診断モデルの前記パラメータを自動的に調整するパラメータ調整部と、を備える
     診断装置。
    A condition input unit for inputting data conditions of time-series data representing the state of the diagnosis target, which is used for the diagnostic purpose of the diagnosis model for diagnosing the state of the diagnosis target and for constructing the diagnosis model.
    Parameter items in which parameters for adjusting the diagnostic model are defined based on the input diagnostic purpose and data conditions, items in the range of use of the time-series data, and evaluation indexes for evaluating the diagnostic model. A diagnostic apparatus comprising: a parameter adjusting unit constructed according to a modeling method including at least one of the items and automatically adjusting the parameters of the diagnostic model evaluated by the evaluation index.
  2.  前記パラメータ項目には、前記パラメータ調整部が探索するパラメータ項目の優先順位を決定する項目優先度、前記パラメータ項目における探索範囲を所定数のパターンに集約するためのパターン化の項目が含まれ、
     前記時系列データの利用範囲の項目には、前記診断モデルの構築に要する学習期間、正常期間及び異常期間が区別して設定される評価期間、診断対象に異常又は劣化が生じる異常期間が含まれ、
     前記評価指標の項目には、前記診断モデルが前記診断対象の異常を検知する性能を表す検知性能が含まれる
     請求項1に記載の診断装置。
    The parameter item includes an item priority for determining the priority of the parameter item searched by the parameter adjustment unit, and a patterning item for aggregating the search range in the parameter item into a predetermined number of patterns.
    The items of the usage range of the time-series data include a learning period required for constructing the diagnostic model, an evaluation period in which a normal period and an abnormal period are separately set, and an abnormal period in which an abnormality or deterioration occurs in the diagnosis target.
    The diagnostic device according to claim 1, wherein the item of the evaluation index includes a detection performance indicating the performance of the diagnostic model to detect an abnormality of the diagnosis target.
  3.  前記条件入力部から入力された前記診断目的及び前記データ条件に基づいて、前記パラメータ項目、前記時系列データの利用範囲の項目の内容を決定する条件決定部と、
     前記条件入力部から入力された前記診断目的及び前記データ条件に基づいて、前記評価指標の項目で規定される特定の評価指標を決定する評価指標決定部と、
     前記時系列データの利用範囲に従って、前記時系列データを取得するデータ取得部と、
     前記モデル化方法に従って、前記時系列データから前記診断モデルを構築するモデル構築部と、
     前記モデル構築部により構築された前記診断モデルに入力される、前記評価期間に取得された前記時系列データの異常有無を判定する異常判定部と、
     前記時系列データの異常有無の判定結果に基づいて、前記特定の評価指標を計算する評価指標計算部と、
     計算された前記特定の評価指標を出力する結果出力部と、を備える
     請求項2に記載の診断装置。
    A condition determination unit that determines the contents of the parameter item and the item of the usage range of the time series data based on the diagnostic purpose and the data condition input from the condition input unit.
    An evaluation index determination unit that determines a specific evaluation index defined by the item of the evaluation index based on the diagnostic purpose and the data condition input from the condition input unit.
    A data acquisition unit that acquires the time-series data according to the usage range of the time-series data,
    A model building unit that builds the diagnostic model from the time series data according to the modeling method.
    An abnormality determination unit for determining the presence or absence of an abnormality in the time-series data acquired during the evaluation period, which is input to the diagnostic model constructed by the model construction unit, and
    An evaluation index calculation unit that calculates the specific evaluation index based on the determination result of the presence or absence of abnormality in the time series data.
    The diagnostic apparatus according to claim 2, further comprising a result output unit that outputs the calculated evaluation index.
  4.  前記データ取得部は、前記データ条件として前記時系列データに異常データがある場合が選択されると、正解が分かっている期間で取得された前記時系列データに正常であることを示す情報を付し、異常が分かっている期間で取得された前記時系列データに異常であることを示す情報を付し、
     前記モデル構築部は、正常であることを示す情報が付された前記時系列データと、異常であることを示す情報が付された前記時系列データとを用いて前記診断モデルを構築する
     請求項3に記載の診断装置。
    When the case where the time-series data has abnormal data is selected as the data condition, the data acquisition unit attaches information indicating that the time-series data acquired during the period when the correct answer is known is normal. However, information indicating that the abnormality is added to the time-series data acquired during the period when the abnormality is known is added.
    A claim that the model building unit builds the diagnostic model using the time-series data with information indicating that it is normal and the time-series data with information indicating that it is abnormal. 3. The diagnostic device according to 3.
  5.  前記データ取得部は、前記データ条件として前記時系列データに異常データがない場合が選択されると、正解が分かっている期間で取得された前記時系列データに正常であることを示す情報を付し、
     前記パラメータ調整部は、正常であることを示す情報が付された前記時系列データに対して、前記異常判定部が異常と誤判定した誤報率に基づいて、前記パラメータを調整する
     請求項4に記載の診断装置。
    When the case where there is no abnormal data in the time-series data is selected as the data condition, the data acquisition unit attaches information indicating that the time-series data acquired during the period when the correct answer is known is normal. death,
    According to claim 4, the parameter adjusting unit adjusts the parameter based on the false alarm rate that the abnormality determining unit erroneously determines as abnormal with respect to the time-series data to which the information indicating that the condition is normal is attached. The diagnostic device described.
  6.  前記パラメータ調整部は、前記診断目的が、前記診断対象の劣化検知である場合に、前記評価指標として選択された再現率に基づいて、前記パラメータを調整する
     請求項4に記載の診断装置。
    The diagnostic device according to claim 4, wherein the parameter adjusting unit adjusts the parameters based on the reproducibility selected as the evaluation index when the diagnostic purpose is to detect deterioration of the diagnostic object.
  7.  前記条件入力部には、目標クラスタ数及び許容誤差のうち少なくとも一つ以上の項目を含む運用性の項目が追加され、
     前記条件決定部は、前記診断目的、前記データ条件及び前記運用性の項目に基づいて、前記モデル化方法を決定する
     請求項4に記載の診断装置。
    An operability item including at least one item among the target number of clusters and the tolerance is added to the condition input unit.
    The diagnostic device according to claim 4, wherein the condition determination unit determines the modeling method based on the diagnostic purpose, the data condition, and the operability item.
  8.  前記データ取得部が取得した前記時系列データを所定数ごとに分割するデータ分割部を備え、
     前記モデル構築部は、分割された所定数ごとの前記時系列データに基づいて、前記診断モデルの構築前に交差検証を行って、前記診断対象の正常運転時に生成されるクラスタの数を推定し、
     前記パラメータ調整部は、推定された前記クラスタの数と、前記条件入力部から入力された前記目標クラスタ数とを比較して、推定された前記クラスタの数と前記目標クラスタ数との差が前記許容誤差の範囲内である場合に、前記評価指標が最適となる条件の前記パラメータを選択する
     請求項7に記載の診断装置。
    A data division unit that divides the time-series data acquired by the data acquisition unit into predetermined numbers is provided.
    The model building unit performs cross-validation before building the diagnostic model based on the time-series data for each divided predetermined number, and estimates the number of clusters generated during normal operation of the diagnostic target. ,
    The parameter adjusting unit compares the estimated number of clusters with the target cluster number input from the condition input unit, and the difference between the estimated number of clusters and the target cluster number is the difference. The diagnostic device according to claim 7, wherein the parameter is selected under the condition that the evaluation index is optimal when the tolerance is within the range.
  9.  評価指標を格納する評価指標格納データベースを備え、
     前記評価指標決定部は、前記条件決定部により決定された前記診断目的及び前記データ条件に基づいて、前記評価指標格納データベースから前記評価指標を読み出し、前記評価指標から任意の項目を選択可能に表示する
     請求項4に記載の診断装置。
    Equipped with an evaluation index storage database that stores evaluation indexes
    The evaluation index determination unit reads the evaluation index from the evaluation index storage database based on the diagnostic purpose and the data condition determined by the condition determination unit, and displays an arbitrary item selectable from the evaluation index. The diagnostic device according to claim 4.
  10.  診断対象の状態を診断する診断モデルの診断目的、及び前記診断モデルの構築に利用される時系列データのデータ条件が入力される処理と、
     入力された前記診断目的及び前記データ条件に基づいて、前記診断モデルを調整するパラメータが定義されたパラメータ項目、前記時系列データの利用範囲の項目、及び前記診断モデルを評価するための評価指標の項目のうち、少なくとも一つ以上を含むモデル化方法に従って構築され、前記評価指標で評価される前記診断モデルの前記パラメータを自動的に調整する処理と、を含む
     パラメータ調整方法。
    The purpose of diagnosing the diagnostic model for diagnosing the state of the diagnostic target, and the process of inputting the data conditions of the time-series data used to construct the diagnostic model.
    Parameter items in which parameters for adjusting the diagnostic model are defined based on the input diagnostic purpose and data conditions, items in the range of use of the time-series data, and evaluation indexes for evaluating the diagnostic model. A parameter adjustment method including a process of automatically adjusting the parameters of the diagnostic model constructed according to a modeling method including at least one of the items and evaluated by the evaluation index.
PCT/JP2021/004723 2020-08-21 2021-02-09 Diagnostic device and parameter adjustment method WO2022038804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-140179 2020-08-21
JP2020140179A JP7469991B2 (en) 2020-08-21 2020-08-21 Diagnosis device and parameter adjustment method

Publications (1)

Publication Number Publication Date
WO2022038804A1 true WO2022038804A1 (en) 2022-02-24

Family

ID=80322630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004723 WO2022038804A1 (en) 2020-08-21 2021-02-09 Diagnostic device and parameter adjustment method

Country Status (2)

Country Link
JP (1) JP7469991B2 (en)
WO (1) WO2022038804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175921A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Model analysis device, model analysis method, and recording medium
WO2023175922A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Model analysis device, model analysis method, and recording medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023165310A (en) * 2022-05-02 2023-11-15 三菱重工業株式会社 Learning device, learning method, and learning program
WO2024028979A1 (en) * 2022-08-02 2024-02-08 株式会社アダコテック Hyperparameter search system and program therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024195A (en) * 2004-06-03 2006-01-26 National Cheng Kung Univ System and method for predicting product quality during manufacturing processes
JP2009003517A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Maintenance management support device and display method thereof
JP2012137934A (en) * 2010-12-27 2012-07-19 Hitachi Ltd Abnormality detection/diagnostic method, abnormality detection/diagnostic system, abnormality detection/diagnostic program and company asset management/facility asset management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024195A (en) * 2004-06-03 2006-01-26 National Cheng Kung Univ System and method for predicting product quality during manufacturing processes
JP2009003517A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Maintenance management support device and display method thereof
JP2012137934A (en) * 2010-12-27 2012-07-19 Hitachi Ltd Abnormality detection/diagnostic method, abnormality detection/diagnostic system, abnormality detection/diagnostic program and company asset management/facility asset management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175921A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Model analysis device, model analysis method, and recording medium
WO2023175922A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Model analysis device, model analysis method, and recording medium

Also Published As

Publication number Publication date
JP7469991B2 (en) 2024-04-17
JP2022035686A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2022038804A1 (en) Diagnostic device and parameter adjustment method
JP5179086B2 (en) Industrial process monitoring method and monitoring system
JP4832609B1 (en) Abnormal sign diagnosis device and abnormality sign diagnosis method
KR102355777B1 (en) Process anomalous state diagnostic device and process anomalous state diagnosis method
US20190227504A1 (en) Computer System And Method For Monitoring Key Performance Indicators (KPIs) Online Using Time Series Pattern Model
JP6708203B2 (en) Information processing apparatus, information processing method, and program
JP2015148867A (en) Information processing device, diagnosis method and program
EP2062106A2 (en) On-line monitoring and diagnostics of a process using multivariate statistical analysis
US20110178963A1 (en) system for the detection of rare data situations in processes
JP7239354B2 (en) data classifier
US8046318B2 (en) Automated system for checking proposed human adjustments to operational or planning parameters at a plant
CN102576227A (en) Plant diagnostic equipment
JP4430384B2 (en) Equipment diagnostic apparatus and diagnostic method
JP2021092970A (en) Control method, control unit, machine plant, control program, and recording medium
JP6922983B2 (en) Analytical systems, analytical methods and programs
JPWO2018051568A1 (en) Plant abnormality diagnosis device and plant abnormality diagnosis system
US11393143B2 (en) Process state analysis device and process state display method
WO2019073512A1 (en) System analysis method, system analysis device, and program
WO2008042739A2 (en) On-line monitoring and diagnostics of a process using multivariate statistical analysis
WO2022091639A1 (en) Abnormality diagnosing model construction method, abnormality diagnosing method, abnormality diagnosing model construction device, and abnormality diagnosing device
JP2022191680A (en) Data selection support device, and data selection support method
JP5447831B2 (en) Diagnostic device and diagnostic method
CN110597729B (en) Pressure testing method, device and system based on dimension
JP7052914B1 (en) Abnormality diagnosis system, abnormality diagnosis device, abnormality diagnosis method, and program
JP6579163B2 (en) Process condition diagnosis method and condition diagnosis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857956

Country of ref document: EP

Kind code of ref document: A1