WO2022038721A1 - Air treatment device - Google Patents

Air treatment device Download PDF

Info

Publication number
WO2022038721A1
WO2022038721A1 PCT/JP2020/031330 JP2020031330W WO2022038721A1 WO 2022038721 A1 WO2022038721 A1 WO 2022038721A1 JP 2020031330 W JP2020031330 W JP 2020031330W WO 2022038721 A1 WO2022038721 A1 WO 2022038721A1
Authority
WO
WIPO (PCT)
Prior art keywords
static
damper
heating
control
air
Prior art date
Application number
PCT/JP2020/031330
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 堀江
守 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022543880A priority Critical patent/JP7361936B2/en
Priority to PCT/JP2020/031330 priority patent/WO2022038721A1/en
Publication of WO2022038721A1 publication Critical patent/WO2022038721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present disclosure relates to an air treatment apparatus equipped with a static desiccant.
  • the switching time for switching the air passage is fixed.
  • the desiccant that has adsorbed the moisture by switching the air passage, and the desiccant that has adsorbed the moisture (hereinafter referred to as “decicant”).
  • the playback side desiccant) is played.
  • the regeneration side desiccant is set to have a heating capacity for the desiccant so that the time when the regeneration is completed arrives before the time when the next air passage in which the air to adsorb the moisture is switched is switched.
  • the control is such that the regeneration side desiccant is completed before the switching time when the air to be adsorbed with water flows into the regeneration side desiccant.
  • the temperature of the regeneration side desiccant itself becomes high due to overheating.
  • the moisture is not adsorbed to the regeneration side desiccant until the regeneration side desiccant starts adsorbing water, and the temperature of the regeneration side desiccant drops. Occurs. Therefore, the dehumidification efficiency due to the regeneration side desiccant is lowered.
  • Patent Document 1 discloses disclosure of a technique for controlling the interval of switching time for switching air passages.
  • Patent Document 1 is a technique for reducing the delay in air temperature, and is not a technique for improving the decrease in dehumidification efficiency due to the desiccant on the regeneration side.
  • the purpose of this disclosure is to provide a technique for improving the dehumidification efficiency of the regenerating desiccant.
  • the air treatment device is A heat supply device having a heater and a cooler, With the damper, A composite dehumidifying device having a first static dehumidifying device and a second static dehumidifying device, Equipped with The heat supply device, the damper and the composite dehumidifying device are The heat supply device, the damper, and the composite dehumidifying device are arranged in this order.
  • the heater, the damper and the composite dehumidifying device From the upstream to the downstream of the return air flow path through which the return air flows, the heaters are arranged in the return air flow path in order from the heater.
  • the cooler, the damper and the composite dehumidifying device From the upstream to the downstream of the outside air flow path through which the outside air flows, they are arranged in the outside air flow path in order from the cooler.
  • the damper is Of the first static dehumidifying device and the second static dehumidifying device, the return air is made to flow into one of the static dehumidifying devices, and the outside air is made to flow into the other static dehumidifying device. and, The return air flow path and the outside air flow path so that the return air and the outside air pass through the static dehumidification device which is different from the first static dehumidification device and the second static dehumidification device.
  • the first static dehumidifying device and the second static dehumidifying device are It is heated by the return air based on the amount of dehumidification to be dehumidified from the outside air.
  • the first static dehumidifying device and the second static dehumidifying device are heated by returning air based on the dehumidifying amount to be dehumidified from the outside air. Therefore, it is possible to provide a technique for improving the dehumidification efficiency of the dehumidification device on the regeneration side.
  • FIG. 1 is a schematic view of the first embodiment through the air treatment device in the first damper state.
  • FIG. 1 is a schematic view of the first embodiment through a second damper state air treatment device.
  • FIG. 1 is a schematic left side view of the first embodiment through the air treatment device in the first damper state.
  • FIG. 1 is a schematic left side view of the first embodiment through the air treatment device in the second damper state.
  • FIG. 1 is a diagram showing a hardware configuration of a control device in the first embodiment.
  • FIG. 1 is a schematic front view of an air treatment device according to a first embodiment.
  • FIG. 1 is a schematic rear view of the air treatment device according to the first embodiment.
  • FIG. 6 is a simplified diagram of FIGS. 4 and 6 in the figure of the first embodiment.
  • the figure of Embodiment 1 the figure which shows the operation of the control of the comparative example of the air treatment apparatus 500.
  • FIG. 1 is a schematic front view of an air treatment device according to a first embodiment.
  • FIG. 1 is a schematic rear view of the air treatment device according to the first embodiment.
  • FIG. 6 is a simplified diagram of FIGS. 4 and 6 in the figure of the first embodiment.
  • the figure which shows the operation of the control of the comparative example of the air treatment apparatus 500
  • FIG. 6 is a schematic transmission diagram showing a first damper state in the first modification in the figure of the first embodiment.
  • FIG. 6 is a schematic transmission diagram showing a second damper state in the first modification in the figure of the first embodiment.
  • FIG. 6 is a schematic top view showing a second damper state in the first modification in the figure of the first embodiment.
  • FIG. 6 is a schematic bottom view showing a second damper state in the first modification in the figure of the first embodiment.
  • FIG. 6 is a schematic side view showing a bypass path in the first modification in the figure of the first embodiment.
  • FIG. 6 is a schematic perspective view showing a bypass path in the first modification in the figure of the first embodiment. In the figure of Embodiment 1, the figure which shows the bypass determination table in the modification 1.
  • FIG. FIG. 1 the figure which shows the bypass determination table in the modification 1.
  • FIG. 1 is a diagram showing an air diagram of the outside air in the bypass.
  • FIG. FIG. 1 is a diagram showing a hardware configuration of a modified example of the control device in the figure of the first embodiment.
  • the return air flow path in the first damper state is referred to as a return air flow path RA (1)
  • the return air flow path in the second damper state is referred to as a return air flow path RA (2)
  • the outside air flow path in the damper state is referred to as an outside air flow path OA (1)
  • the return air flow path in the second damper state is referred to as an outside air flow path OA (2).
  • the sub dampers 20a and 20d of the four sub dampers of the upstream damper 20 are in the open state
  • the sub dampers 21b and 21c of the four sub dampers of the downstream damper 21 are in the open state.
  • the sub dampers 20b and 20c of the four sub dampers of the upstream damper 20 are in the open state, and the sub dampers 21a and 21d of the four sub dampers of the downstream damper 21 are in the open state. Say the case.
  • FIG. 1 shows an air treatment device 500 in a first damper state.
  • FIG. 2 shows an air treatment device 500 in a second damper state.
  • the features of the air treatment device 500 of the first embodiment are the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C, which will be described later.
  • the configuration of the air treatment device 500 will be described before each control.
  • the air treatment apparatus 500 will be described in detail.
  • FIG. 3 schematically shows the left side surface in the first damper state.
  • FIG. 4 schematically shows the air processing device 500 through the upper surface in the first damper state.
  • FIG. 5 is schematically shown through the left side surface in the second damper state.
  • FIG. 6 schematically shows the air processing device 500 through the upper surface in the second damper state.
  • the air treatment device 500 is (1) Inflow device 210, (2) Heater 10, (3) Cooler 11, (4) Upstream damper 20, (5) First static desiccant 30, (6) Second static desiccant 31, It includes (7) a downstream damper 21, (8) an outflow device 220, (9) an outside air detection sensor 80, (10) a return air detection sensor 81, and (11) a setting information storage unit 82. As shown in FIG. 1, from the heater 10 and the cooler 11, the downstream damper 21 is arranged inside the housing 400.
  • the inflow device 210 is transparently shown.
  • the inflow device 210 will be described with reference to FIG.
  • the inflow device 210 has a rectangular parallelepiped shape with a hollow inside.
  • the inflow device 210 is divided into two rectangular parallelepiped spaces having the same shape by a partition plate 216.
  • the point P5 is the midpoint of the line segments P1 and P4, and the point P6 is the midpoint of the line segments P2 and P3.
  • the inflow device 210 has a return airflow inlet 211 into which the return air flows in, and an outside airflow inlet 213 in which the outside air flows.
  • the inflow device 210 has an outlet 212 which is an opening and an outlet 214 which is an opening.
  • the lower side of the outlet 212 is closed by the partition plate 217, and the upper side of the outlet 214 is closed by the partition plate 218.
  • the partition plate 217 and the partition plate 218 have the same shape and are located point-symmetrically with respect to the point P7.
  • the return airflow inlet 211 is circular, and the (Y, Z) coordinates of the center of the circle are as follows.
  • the Y coordinate is the midpoint of the line segments P3 and P6, and the Z coordinate is the midpoint of the line segments P3 and P4.
  • the outside airflow inlet 213 is circular, and the (Y, Z) coordinates of the center of the circle are as follows.
  • the Y coordinate is the midpoint of the line segments P2 and P6, and the Z coordinate is the midpoint of the line segments P2 and P1.
  • the return air that has flowed into the return airflow inlet 211 flows out in the X direction from the outlet 212 formed in the upper left.
  • the outside air flowing into the outside airflow inlet 213 flows out in the X direction from the outflow port 214 formed in the lower right.
  • the left direction is the Y direction
  • the upward direction is the Z direction.
  • the heater 10 heats the return air into high-temperature and low-humidity air that regenerates the desiccant.
  • the cooler 11 cools the outside air into low-temperature and high-humidity air that is dehumidified (adsorbed) by the desiccant.
  • the upstream damper 20 switches between the return air and the desiccant in which the outside air flows.
  • the upstream damper 20 is the first damper.
  • the first stationary desiccant 30 dehumidifies the outside air when the outside air passes through.
  • the second stationary desiccant 31 dehumidifies the outside air when the outside air passes through.
  • the downstream damper 21 is switched according to the switching of the upstream damper 20, and the return air and the outside air pass through.
  • the downstream damper 21 is a second damper.
  • the outflow device 220 is transparently shown.
  • the outflow device 220 is divided into two upper and lower spaces by a third partition plate 803.
  • the outflow device 220 is connected to the downstream damper 21, corresponds to the sub dampers 21a, 21b, 21c, 21d, and has four openings having the same size as the sub dampers 21a, 21b, 21c, 21d. ..
  • the opening of the sub-damper 21c and the opening of the outflow device 220 corresponding to the sub-damper 21c overlap.
  • the outside airflow outlet 222 is formed on the left side of the upper space, and the return airflow outlet 221 is formed on the right side of the lower space.
  • the outside air detection sensor 80 detects the temperature and humidity of the outside air.
  • the return air detection sensor 81 detects the temperature and humidity of the return air.
  • the setting information storage unit 82 stores the set temperature and the set humidity, which are the setting information.
  • the heater 10 and the cooler 11 constitute a heat supply device 12.
  • the heater 10 is the first heat exchanger and the cooler 11 is the second heat exchanger.
  • the first static desiccant 30 is a first static dehumidifying device.
  • the second static desiccant 31 is a second static dehumidifying device.
  • the first static desiccant 30 and the second static desiccant 31 constitute a composite dehumidifying device 32.
  • the first static dehumidifying device, the first static desiccant 30, and the second static dehumidifying device, the second static desiccant 31 are horizontally adjacent to each other in a horizontally installed state. As shown in FIG.
  • the first stationary desiccant 30 and the second stationary desiccant 31 are in the outflow direction in which the return air and the outside air flow out from the first stationary desiccant 30 and the second stationary desiccant 31. On the other hand, they are arranged on the left and right.
  • the upstream damper 20 causes the return air to flow into one of the static dehumidifying devices of the first static dehumidifying device and the second static dehumidifying device, and the outside air to flow into the other static dehumidifying device. Further, the upstream damper 20 has a return air flow path and an outside air flow path so that the return air and the outside air pass through different static dehumidification devices of the first static dehumidification device and the second static dehumidification device. To switch.
  • the inflow device 210, the heat supply device 12, the upstream damper 20, the composite dehumidifying device 32, the downstream damper 21 and the outflow device 220 are the inflow device 210, the heat supply device 12, the upstream damper 20, and the composite dehumidifying device. 32, the downstream damper 21, and the outflow device 220 are arranged in this order.
  • the inflow device 210, the first heat exchanger heater 10, the upstream damper 20, the composite dehumidifying device 32, the downstream damper 21, and the outflow device 220 are upstream of the return air flow path through which the return air flows. From the inflow device 210 to the downstream, they are arranged in the return air flow path in order.
  • the inflow device 210, the second heat exchanger cooler 11, the upstream damper 20, the composite dehumidifying device 32, the downstream dampers 21 and 0220 flow in from the upstream to the downstream of the outside air flow path through which the outside air flows. They are arranged in the outside air flow path in order from the device 210.
  • the first partition plate 801 divides the inside of the housing 400 between the inflow device 210 and the upstream damper 20 into upper and lower parts.
  • the heater 10 is located above the first partition plate 801 and the cooler 11 is located below the first partition plate 801.
  • the first partition plate 801 is a quadrangle represented by A, B, C, and D.
  • the second partition plate 802 divides the inside of the housing 400 from the upstream damper 20 to the downstream damper 21 into left and right.
  • the first stationary desiccant 30 is located on the left side of the second partition plate 802, and the second stationary desiccant 31 is located on the right side of the second partition plate 802.
  • the second partition plate 802 is a quadrangle represented by E, F, G, and H.
  • the third partition plate 803 divides the inside of the outflow device 220 into upper and lower parts starting from the downstream damper 21.
  • the supply air flows out from the upper side of the third partition plate 803, and the exhaust gas flows out from the lower side of the third partition plate 803.
  • the third partition plate 803 is a quadrangle represented by I, J, K, and L.
  • the air treatment device 500 further includes an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition plate opening / closing device 350.
  • the upstream damper opening / closing device 320 and the downstream damper opening / closing device 321 are opening / closing mechanisms for opening / closing each sub-damper of the upstream damper 20 and the downstream damper 21.
  • the upstream damper opening / closing device 320 opens / closes the sub dampers 20a, 20b, 20c, and 20d of the upstream damper 20.
  • the downstream damper opening / closing device 321 opens / closes the sub dampers 21a, 21b, 21c, 21d of the downstream damper 21.
  • the partition plate opening / closing device 350 is an opening / closing mechanism for opening / closing the bypass path partition plate 804 described later. By opening the bypass path partition plate 804, the return air bypass path 50, which will be described later, is formed.
  • the air treatment device 500 further includes a control device 100 that controls an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition plate opening / closing device 350.
  • the control device 100 includes an outside air detection sensor 80, a return air detection sensor 81, a setting information storage unit 82, an air supply detection sensor 83, an exhaust detection sensor 84, an upstream damper opening / closing device 320, and the like.
  • the downstream damper opening / closing device 321, the partition plate opening / closing device 350, and the refrigeration cycle device 450 are connected.
  • FIG. 7 shows the hardware configuration of the control device 100.
  • the control device 100 is a computer.
  • the control device 100 is a bypass control device, a refrigerant control device, and a damper control device.
  • the control device 100 includes a processor 110 and other hardware such as a main storage device 120, an auxiliary storage device 130, an input interface 140, an output interface 150, and a communication interface 160. In the following, the interface is referred to as IF.
  • the processor 110 is connected to other hardware via the signal line 170 and controls these other hardware.
  • the control device 100 switches between the open / closed state of the plurality of sub dampers of the upstream damper 20 and the open / closed state of the plurality of sub dampers of the downstream damper 21 in conjunction with each other.
  • the control device 100 includes a damper control unit 111, a partition plate control unit 112, a refrigerant control unit 113, a heater control unit 114, and a dehumidification amount determination unit 118 as functional elements.
  • the refrigerant control unit 113 may also serve as the heater control unit 114.
  • the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118 are realized by the control program 101.
  • the control program 101 is stored in the auxiliary storage device 130.
  • the processor 110 is a device that executes the control program 101.
  • the control program 101 is a program that realizes the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118.
  • the processor 110 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 110 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the main storage device 120 is a storage device for storing data. Specific examples of the main storage device 120 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory). The main storage device 120 holds the calculation result of the processor 110.
  • the auxiliary storage device 130 is a storage device that stores data non-volatilely. A specific example of the auxiliary storage device 130 is an HDD (Hard Disk Drive). Further, the auxiliary storage device 130 is a portable recording medium such as an SD (registered trademark) (Secure Digital) memory card, a NAND flash, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disk, and a DVD (Digital Versaille Disk). There may be.
  • the auxiliary storage device 130 stores the characteristics of the first stationary desiccant 30 and the second static desiccant 31.
  • the damper control unit 111, the heater control unit 114, and the dehumidification amount determination unit 118 can refer to this characteristic.
  • the input IF 140 is a port to which various devices are connected and data of various devices are input.
  • the output IF 150 is a port to which various devices are connected and a control signal is output to the various devices by the processor 110.
  • the communication IF 160 is a communication port through which various devices and the processor 110 communicate with each other.
  • the communication IF 160 includes an outside air detection sensor 80, a return air detection sensor 81, a setting information storage unit 82, an air supply detection sensor 83, an exhaust detection sensor 84, an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition.
  • the plate switchgear 350 and the refrigeration cycle device 450 are connected.
  • An indoor humidity sensor 85 that detects the humidity in the room ventilated by the air treatment device 500 is connected to the communication IF 160.
  • the processor 110 loads the control program 101 from the auxiliary storage device 130 into the main storage device 120, and reads and executes the control program 101 from the main storage device 120. Not only the control program 101 but also the OS (Operating System) is stored in the main storage device 120. The processor 110 executes the control program 101 while executing the OS.
  • OS Operating System
  • the control device 100 may include a plurality of processors that replace the processor 110.
  • the plurality of processors share the execution of the control program 101.
  • Each processor like the processor 110, is a device that executes the control program 101.
  • the data, information, signal values and variable values used, processed or output by the control program 101 are stored in the main storage device 120, the auxiliary storage device 130, or the register or cache memory in the processor 110.
  • the control program 101 "processes”, “procedures” or “processes” the “units” of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114 and the dehumidification amount determination unit 118. It is a program that causes a computer to execute each process, each procedure, or each process.
  • the control method is a method performed by the control device 100, which is a computer, executing the control program 101.
  • the control program 101 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
  • the operation of the control device 100 corresponds to the control method.
  • the operation of the control device 100 corresponds to the processing of the control program.
  • the upstream damper 20 switches between the return air flow path and the outside air flow path so that the return air and the outside air pass through different static dehumidifying desiccants between the first static desiccant 30 and the second static desiccant 31.
  • the return air flow path RA (1) flows into the second stationary desiccant 31
  • the outside air flow path OA (1) flows into the first stationary desiccant 30.
  • the heater 10 is installed above the cooler 11. Specifically, the heater 10 is arranged above the cooler 11 with respect to the direction of gravity. On the contrary, the cooler 11 may be arranged above the heater 10 with respect to the direction of gravity.
  • the return air passes through the second stationary desiccant 31.
  • the outside air and the return air are returned from the outside airflow outlet 222 and the return airflow outlet 221 which are on a straight line as they are, and the outside air is supplied and returned. Outflows as exhaust.
  • the course of return air in the first damper state is as follows. (1) The return air flows in from the return airflow inlet 211 of the inflow device 210, flows out from the outflow port 212 of the inflow device 210, and flows on the first partition plate 801. (2) The return air flows into the heater 10 and then into the upstream damper 20. (3) In the upstream damper 20, as shown in FIG. 1, of the four sub dampers 20a, 20b, 20c, 20d, the sub dampers 20a, 20c are on the upper side of the first partition plate 801.
  • the return air passes through the sub-damper 20a, heads for the second stationary desiccant 31, and flows into the second static desiccant 31.
  • the sub damper 21b is open among the sub dampers 21a and 21b on the right side. Therefore, the return air flowing into the second stationary desiccant 31 passes through the sub-damper 21b, flows into the outflow device 220, and flows out from the return airflow outlet 221 of the outflow device 220.
  • the course of the outside air in the first damper state is as follows. (1) The outside air flows in from the outside airflow inlet 213 of the inflow device 210, flows out from the outflow port 214 of the inflow device 210, and flows under the first partition plate 801. (2) The outside air flows into the cooler 11 and then into the upstream damper 20. (3) In the upstream damper 20, since the sub damper 20d of the sub dampers 20b and 20d is open, the outside air passes through the sub damper 20d, heads for the first static desiccant 30, and goes to the first static desiccant 30. Inflow. (4) In the downstream damper 21, the sub damper 21c is open among the sub dampers 21c and 21d on the left side. Therefore, the outside air that has flowed into the first stationary desiccant 30 passes through the sub-damper 21c, flows into the outflow device 220, and flows out from the outside airflow outlet 222 of the outflow device 220.
  • the course of return air in the second damper state is as follows. (1) The return air flows in from the return airflow inlet 211 of the inflow device 210, flows out from the outflow port 212 of the inflow device 210, and flows on the first partition plate 801. (2) The return air flows into the heater 10 and then into the upstream damper 20. (3) In the upstream damper 20, as shown in FIG. 2, since the sub-damper 20c is open, the return air passes through the sub-damper 20c and heads for the first stationary desiccant 30, and the first stationary desiccant 30. Inflow to. (4) In the downstream damper 21, the sub damper 21d is open. Therefore, the return air that has flowed into the first stationary desiccant 30 passes through the sub-damper 21d, flows into the outflow device 220, and flows out from the return airflow outlet 221 of the outflow device 220.
  • the course of the outside air in the second damper state is as follows. (1) The outside air flows in from the outside airflow inlet 213 of the inflow device 210, flows out from the outflow port 214 of the inflow device 210, and flows under the first partition plate 801. (2) The outside air flows into the cooler 11 and then into the upstream damper 20. (3) In the upstream damper 20, since the sub damper 20b out of the sub dampers 20b and 20d is open, the outside air passes through the sub damper 20b, heads for the second static desiccant 31, and goes to the second static desiccant 31. Inflow. (4) In the downstream damper 21, the sub damper 21a is open among the sub dampers 21a and 21b on the left side. Therefore, the outside air flowing into the second stationary desiccant 31 passes through the sub-damper 21a, flows into the outflow device 220, and flows out from the outside airflow outlet 222 of the outflow device 220.
  • the upstream damper 20 which is the first damper and the downstream damper 21 which is the second damper are interlocked to switch between the return air flow path and the outside air flow path.
  • the return air flow path alternately passes through the first static dehumidifying device, the first static desiccant 30, and the second static dehumidifying device, the second static desiccant 31, according to the switching, and returns. It has a part corresponding to the change in the direction of air flow before and after switching.
  • the outside air flow path alternately passes through the first static desiccant 30 and the second static desiccant 31 so as to pass through a static dehumidifying device different from the static dehumidifying device through which the return air flow path passes according to the switching. At the same time, it has a portion corresponding to the change in the flow direction of the outside air before and after the switching.
  • FIG. 8 is a schematic front view of the air treatment device 500.
  • FIG. 9 is a schematic rear view of the air treatment device 500.
  • FIG. 8 shows a state in which the heater 10 into which the return air flows is arranged on the cooler 11 into which the outside air flows.
  • the sub dampers 21a and 21d are open, and the sub dampers 21b and 21c are closed.
  • the upstream damper 20 and the downstream damper 21 are a set of four sub-dampers. That is, the upstream damper 20 includes the sub dampers 20a, 20b, 20c, and 20d, and the downstream damper 21 includes the sub dampers 21a, 21b, 21c, and 21d.
  • the heater 10 may be a water / air heat exchanger through which hot water flows, or a direct expansion type refrigerant / air heat exchanger through which a high temperature refrigerant flows.
  • the cooler 11 may be a water / air heat exchanger through which cold water flows, or may be a direct expansion type refrigerant / air heat exchanger through which a low temperature refrigerant flows.
  • the first static desiccant 30 and the second static desiccant 31 are heated by returning air based on the amount of dehumidified outside air indicating the amount of dehumidified to be dehumidified from the outside air.
  • the amount of dehumidified outside air that should be dehumidified from the outside air is It can be calculated from the difference between the humidity in the room where the air treatment device 500 is installed and the set humidity in the room, or the difference between the humidity of the outside air and the set humidity.
  • the damper control unit 111 and the heater control unit 114 calculate the amount of dehumidification of the outside air based on these differences.
  • the second stationary desiccant 31 is the same as the first stationary desiccant 30.
  • the control device 100 changes the heating amount of the desiccant by returning air according to the amount of dehumidified outside air.
  • the control device 100 executes the following three controls of switching timing control 100A, heating start control 100B, and heating capacity control 100C in order to change the heating amount of the desiccant.
  • the control device 100 returns air to the first stationary desiccant 30 and the second static desiccant 31 by controlling at least one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. Controls the amount of heating by.
  • the switching timing control 100A controls the switching timing at which the upstream damper 20 switches between the return air flow path and the outside air flow path based on the outside air dehumidification amount.
  • the heating start control 100B controls the heating start time of the return air by the heater 10 based on the amount of dehumidification of the outside air.
  • the heating capacity control 100C controls the heating capacity of the return air by the heater 10 based on the amount of dehumidified outside air. As described above, the control device 100 adjusts the heating amount for the desiccant by any one or a combination of the three control methods of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C.
  • the control device 100 increases the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of dehumidification of the outside air increases. Further, the control device 100 reduces the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of dehumidification of the outside air decreases.
  • FIG. 10 is a simplified view of FIGS. 4 and 6 which are top views.
  • the reproduction state 1 and the reproduction state 2 of FIG. 10 correspond to FIG. 6, and the adsorption state corresponds to FIG.
  • the adsorption state corresponds to FIG.
  • the first stationary desiccant 30 paying attention to the first stationary desiccant 30, the case where the return air flows into the first stationary desiccant 30 is called the regeneration state 1 and the regeneration state 2, and the outside air flows into the first stationary desiccant 30. This case is called the adsorption state 1. Focusing on the first stationary desiccant 30, it is as follows. (1) In the regeneration state 1, the high-temperature and low-humidity return air heated by the heater 10 dries and regenerates the first static desiccant 30 after dehumidifying the outside air.
  • the reproduction state 1 shifts to the suction state 1.
  • the adsorption state 1 the low-temperature and high-humidity outside air cooled by the cooler 11 is dehumidified by adsorbing moisture to the first static desiccant 30.
  • the suction state 1 shifts to the reproduction state 2.
  • the regeneration state 2 the high-temperature and low-humidity return air heated by the heater 10 dries and regenerates the first static desiccant 30 from which the outside air has been dehumidified in the adsorption state 1.
  • the adsorption state and the regeneration state of the first stationary desiccant 30 are repeated.
  • FIG. 11 is a diagram showing a control operation of a comparative example of the air treatment device 500 according to the first embodiment.
  • FIG. 11 shows the temperature change of the first stationary desiccant 30 when the first stationary desiccant 30 is focused on.
  • the horizontal axis is time, and the vertical axis is the temperature of the first stationary desiccant 30.
  • the regeneration states 1 and 2 and the adsorption state 1 are the respective states shown in FIG.
  • the temperature T1 is the temperature at which the first stationary desiccant 30 releases moisture from the return air and the first stationary desiccant 30 absorbs moisture from the outside air.
  • the desiccant switching time tsw is set according to the adsorption time of the desiccant.
  • the heat of the return air heated by the heater 10 is used to raise the temperature of the first stationary desiccant 30.
  • the continuously heated return air is sent to the first stationary desiccant 30.
  • the first static desiccant 30 becomes overheated and the temperature rises, and the temperature of the first static desiccant 30 reaches the temperature T2 in the switching time t sw1 .
  • the time for lowering the temperature of the desiccant until the first stationary desiccant 30 dehumidifies the outside air ⁇ t dw .
  • FIG. 12 shows the control by the air treatment device 500 and the control by the comparative example.
  • the broken line shows a part of the graph of the comparative example of FIG.
  • the control device 100 realizes a horizontal straight line of the temperature T1 shown in FIG.
  • the switching timing control 100A is executed by the damper control unit 111 of the control device 100.
  • the heater control unit 114 executes the heating start control 100B and the heating capacity control 100C.
  • the heating capacity for the desiccant is set so that when the regeneration of the regeneration side desiccant is completed, the heating capacity for the desiccant reaches before the switching time tsw of the next air passage in which the air to adsorb the moisture flows. Has been done.
  • the completion of adsorption of the adsorption side desiccant is not guaranteed.
  • time required for adsorption time required to complete desorption
  • the control device 100 executes any one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C, or a combination of two or more of these three.
  • the control device 100 desorbs and desorbs the regeneration side desiccant without "overheating" during ⁇ tsw , and is the desiccant immediately after the completion of desorption that has been desorbed without “overheating”, and the regeneration period of the other desiccant is ⁇ tsw .
  • the outline of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C is as follows. As assumed in FIG.
  • the control device 100 switches the damper when the attachment / detachment is completed, that is, after 3 minutes have elapsed.
  • the desiccant on the adsorption side is not adsorbed to the saturated state, but the control device 100 switches the damper.
  • the control device 100 starts desorption 2 minutes after the start of adsorption, and delays the desorption start time so that the desorption is completed at the adsorption completion time.
  • the desorption start time is the heating disclosure time of the return air by the heater 10.
  • the control device 100 reduces the heating amount of the return air by the heater 10 so that the heat amount given to the regeneration side desiccant in 3 minutes is given in 5 minutes.
  • the control device 100 changes the heating amount of the regeneration side desiccant according to the outside air dehumidification amount which is a necessary dehumidification amount to be dehumidified from the outside air. As described above, the control device 100 changes the heating amount for the regeneration side desiccant by any one or a combination of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. (1) In the switching timing control 100A, the control device 100 changes the damper switching time t sw . (2) In the heating start control 100B, the control device 100 changes the heating start time for heating the return air with the heater 10. (3) In the heating capacity control 100C, the control device 100 changes the heating capacity of the heater 10 for heating the return air.
  • the dehumidifying amount determining unit 118 of the control device 100 obtains the required heating amount of the regeneration side desiccant from the outside air dehumidifying amount as follows. (1) First, the dehumidification amount determination unit 118 obtains the outside air dehumidification amount. The dehumidification amount determination unit 118 obtains the outside air dehumidification amount from the difference between the indoor humidity in which the air treatment device 500 detected by the indoor humidity sensor 85 is installed and the set humidity in the room of the setting information storage unit 82. Alternatively, the dehumidifying amount determining unit 118 obtains the outside air dehumidifying amount from the difference between the humidity of the outside air detected by the outside air detection sensor 80 and the set humidity of the setting information storage unit 82.
  • the dehumidification amount determination unit 118 obtains the heating amount of the regeneration side desiccant from the obtained outside air dehumidification amount as follows.
  • the outside air dehumidification amount obtained by the dehumidification amount determination unit 118 is expressed as ⁇ x.
  • the dehumidifying amount determining unit 118 of the control device 100 can obtain the heating amount J required for regeneration.
  • the dehumidification amount determination unit 118 may have the correspondence information indicating the correspondence relationship between the outside air dehumidification amount ⁇ x and the heating amount J required for regeneration as the formula 1 or as a table.
  • the damper control unit 111 can execute the switching timing control 100A by using the required heating amount J [kJ] obtained by the dehumidification amount determination unit 118. Using the required heating amount J [kJ] obtained by the dehumidifying amount determining unit 118, the heater control unit 115 can execute the heating start control 100B and the heating capacity control 100C.
  • the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C are executed as follows.
  • the damper control unit 111 executes the damper switching timing control 100A.
  • the damper control unit 111 is based on the required heating amount J and the heating capacity Q [kW] of the heater 10.
  • Calculate ⁇ t sw J ⁇ Q.
  • the heater control unit 114 executes the heating start control 100B.
  • the heater control unit 114 heats the return air by the heater 10 from 2 minutes after t sw0 in FIG. 11, for example. Delay the heating start time so that it starts. (3) The heater control unit 114 executes the heating capacity control 100C. Since the required heating amount J is constant, if the heating capacity Q of the heater 10 is reduced, the ⁇ t sw shown in FIG. 11 becomes longer. In this example, if the heater control unit 114 controls the heating capacity of the heater 10 to be 0.6 times, the desorption time is 3 to 5 minutes.
  • the control in which the control device 100 increases the heating amount of the regeneration side desiccant based on the outside air dehumidification amount ⁇ x is as follows.
  • the damper control unit 111 and the heater control unit 114 execute control to increase the heat amount of the regeneration side desiccant.
  • the damper control unit 111 increases the heating amount of the reproduction side desiccant by the switching timing control 100A, the return air continues to the first static desiccant 30 and the second static desiccant 31.
  • the switching timing control 100A for increasing the inflow duration ⁇ tsw is executed. That is, referring to FIG. 11, ⁇ t sw is increased during the switching time, such as between t sw0 and t sw1 , between t sw1 and t sw2 , and between t sw2 and t sw3 .
  • the heater control unit 114 sets the heating start control 100B by the heater 10 after the inflow starts.
  • FIG. 13 shows a control in which the heater control unit 114 reduces the time from the start of inflow of return air to the start of heating by the heater 10 when the heating amount is increased by the heating start control 100B.
  • the horizontal axis is time, and the vertical axis is the amount of heat supplied to the first stationary desiccant 30.
  • the heater control unit 114 executes a control for reducing the time between the damper switching time t sw1 and the start time t so of heating the return air by the heater 10.
  • the heating amount increases toward Q1 under the control of the heater control unit 114.
  • the amount of heating is constant with the passage of time.
  • the control in which the control device 100 reduces the heating amount of the regeneration side desiccant based on the outside air dehumidification amount is as follows.
  • the damper control unit 111 and the heater control unit 114 execute control to reduce the heat amount of the regeneration side desiccant.
  • the damper control unit 111 continuously returns air to the first static desiccant 30 and the second static desiccant 31.
  • the switching timing control 100A for reducing the inflow duration ⁇ tsw is executed. That is, with reference to FIG.
  • ⁇ t sw is reduced during the switching time, such as between t sw0 and t sw1 , between t sw1 and t sw2 , and between t sw2 and t sw3 .
  • the heater control unit 114 sets the heating start control 100B by the heater 10 after the inflow starts.
  • the heating start control 100B for increasing the time from the start of the inflow of the return air to the start of heating by the heater 10 is executed. In FIG.
  • the heater control unit 114 when the heater control unit 114 reduces the heating amount by the heating start control 100B, it increases between the damper switching time t sw1 and the heating start time t so of the return air by the heater 10. Perform control. (3) When the heating amount is reduced by the heating capacity control 100C, the heater control unit 114 executes the heating capacity control 100C for reducing the heating capacity of the heater 10.
  • the heating amount of the desiccant is controlled based on the outside air dehumidifying amount.
  • the heating amount for heating the desiccant may be controlled according to the water adsorption amount ⁇ x obtained from the measured values such as the outside air temperature / humidity, the air volume, and the damper switching time.
  • This control is similar to the case of the outside air dehumidification amount, but in the case of the outside air dehumidification amount, the heater control unit 114 heats the heater 10 from the moisture adsorption amount ⁇ X actually dehumidified from the outside air.
  • the difference is that the amount is controlled. Specifically, the control is as follows.
  • the control device 100 returns air to the first stationary desiccant 30 and the second static desiccant 31 by controlling at least one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. Controls the amount of heating by.
  • the switching timing control 100A controls the switching timing at which the upstream damper 20 switches between the return air flow path and the outside air flow path based on the amount of water adsorbed.
  • the heating start control 100B controls the heating start time of the return air by the heater 10 based on the amount of water adsorbed.
  • the heating capacity control 100C controls the heating capacity of the return air by the heater 10 based on the amount of water adsorbed.
  • the control device 100 increases the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of water adsorbed increases. Further, the control device 100 reduces the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of water adsorbed decreases.
  • the amount of water adsorbed by the desiccant from the outside air when the amount of water adsorbed by the desiccant from the outside air is large, the amount of heating when heating the desiccant by the return air is increased, and when the amount of water adsorbed by the desiccant from the outside air is small, the desiccant is heated by the return air. Reduce the amount of heating.
  • the control of the heating amount when the amount of water adsorption is large is the same as the control of the heating amount when the amount of outside air dehumidification is large
  • the control of the heating amount when the amount of water adsorption is small is the same as the control of the heating amount when the amount of water adsorption is small. Since it is the same as the control of the heating amount when the amount is small, the description thereof will be omitted.
  • Embodiment 1 *** Effect of Embodiment 1 ***
  • the desiccant regenerated by the return air is not overheated, and the temperature rise of the desiccant can be suppressed. Therefore, the upstream damper 20 allows the desiccant immediately after switching the air passage to immediately after regeneration to start adsorbing moisture from the outside air, so that the amount of dehumidification per unit time is improved.
  • unnecessary heating is not performed on the desiccant, the energy required for heating can be reduced.
  • Modification 1 is a total heat exchanger in the air treatment device 500 so as to straddle the supply air flow path and the return air flow path between the heat supply device 12 including the heater 10 and the cooler 11 and the inflow device 210. It is a configuration in which 40 is arranged. In the total heat exchanger 40, the return air flowing out of the inflow device 210 flows in, the return air flows into the heater 10, the outside air flowing out of the inflow device 210 flows in, and the outside air flows into the cooler 11.
  • FIG. 14 shows the air treatment device 500 of the modification 1 in the first damper state.
  • FIG. 15 shows the air treatment device 500 of the modification 1 in the second damper state.
  • the configuration of the inflow device 210 is different.
  • the outflow port 212 from which the 2 return air flows out is formed in the lower left, and the outflow port 214 from which the 2 outside air flows out is formed in the upper right. This is because the return air needs to flow under the first partition plate 801 and the outside air needs to flow over the first partition plate 801.
  • the heat exchange mode means that the return air and the outside air perform total heat exchange in the total heat exchanger 40.
  • the outside air and the return air having a lower temperature and humidity than the outside air flow into the total heat exchanger 40.
  • the outside air and the outside air exchange heat with each other for temperature and humidity.
  • the bypass path partition plate 804 forming the bypass path 50 is closed, and the return air does not bypass the total heat exchanger 40. That is, when the bypass path partition plate 804 is closed, the return air flows into the total heat exchanger 40 and flows from the total heat exchanger 40 into the heater 10.
  • the return air flowing into the heater 10 has a high temperature and a low relative humidity.
  • the four sub-dampers 20a, 20b, 20c, 20d of the upstream damper 20 can be controlled to open and close, and the four sub-dampers 21a, 21b, 21c, 21d of the downstream damper 21 can also be controlled to open and close. It is possible.
  • the sub dampers 21a, 21b, 21c, 21d of the downstream damper 21 are in an open / closed state opposite to the open / closed state of the sub dampers 20a, 20b, 20c, 20d of the upstream damper 20.
  • An upstream damper opening / closing device 320 is connected to the sub dampers 20a, 20b, 20c, 20d, and a downstream damper opening / closing device 321 is connected to the sub dampers 21a, 21b, 21c, 21d.
  • the upstream damper opening / closing device 320 opens / closes the sub dampers 20a, 20b, 20c, 20d.
  • the downstream damper opening / closing device 321 opens / closes the sub dampers 21a, 21b, 21c, 21d.
  • the damper control unit 111 of the control device 100 controls the opening and closing of the sub dampers 20a, 20b, 20c, 20d by controlling the upstream damper opening / closing device 320, and controls the downstream damper opening / closing device 321 to control the sub dampers 21a, 21b. , 21c, 21d are controlled to open and close.
  • the sub damper 20b and the sub damper 20c of the upstream damper 20 are open, and the sub damper 20a and the sub damper 20d are closed.
  • the sub damper 21a and the sub damper 21d are open, and the sub damper 21b and the sub damper 21c are closed.
  • the return air flows into either the first stationary desiccant 30 or the second stationary desiccant 31.
  • the adsorbed water evaporates and dries.
  • the return air flowing into the first stationary desiccant 30 has a lower temperature and an increased relative humidity.
  • the return air flowing into the first stationary desiccant 30 is exhausted through the downstream damper 21. As shown in FIG. 15, when the sub-damper 21d is open, the return air is exhausted from the sub-damper 21d as exhaust gas.
  • the outside air flows into the total heat exchanger 40 and then into the cooler 11, resulting in a low temperature and a high relative humidity.
  • the outside air After passing through the upstream damper 20, the outside air flows into the first stationary desiccant 30 or the second static desiccant 31 according to the open / closed state of the sub dampers 20b and 20d.
  • the sub damper 20b since the sub damper 20b is open, the outside air flows into the second stationary desiccant 31.
  • the second static desiccant 31 into which the outside air flows, the second static desiccant 31 adsorbs the moisture of the outside air and dehumidifies the outside air.
  • the temperature of the outside air flowing into and passing through the second stationary desiccant 31 rises, and the relative humidity decreases.
  • the outside air that has passed through the second stationary desiccant 31 is exhausted through the downstream damper 21. Since the sub-damper 21a is open in FIG. 15, the outside air is supplied from the sub-damper 21a as supply air.
  • the sub dampers 20b and 20c are in the open state.
  • the sub dampers 21a and 20d are in the open state and the sub dampers 21b, 21c is in the closed state.
  • the state of the upstream damper 20 and the downstream damper 21 is referred to as a second damper state (FIG. 15).
  • the sub dampers 20a and 20d are in the open state
  • the sub dampers 20b and 20c are in the closed state.
  • the sub dampers 21a and 20d are in the closed state and the sub dampers 21b and 21c are open. It is in a state.
  • the state of the upstream damper 20 and the downstream damper 21 is referred to as a first damper state (FIG. 14).
  • the first damper state is a state in which the return air flows into the second stationary desiccant 31 and the outside air flows into the first stationary desiccant 30 (FIG. 14).
  • the second damper state is a state in which the return air flows into the first stationary desiccant 30 and the outside air flows into the second stationary desiccant 31 (FIG. 15).
  • Such a first damper state and a second damper state may be switched after a predetermined time has elapsed. After a predetermined time has elapsed, the damper control unit 111 of the control device 100 passes through the upstream damper opening / closing device 320 and the downstream damper opening / closing device 321 to open / close the sub-damper in the first damper state and the second damper.
  • the damper control unit 111 opens and closes the upstream damper opening / closing device 320 and the downstream damper according to the air temperature / humidity detected by the air supply detection sensor 83 (FIG. 7) or the exhaust temperature / humidity detected by the exhaust detection sensor 84 (FIG. 7).
  • a method of switching between the first damper state and the second damper state may be used via the device 321.
  • the damper control unit 111 switches between the first damper state and the second damper state, so that the desiccant that adsorbs water and the desiccant that is regenerated are switched.
  • the desiccant that adsorbs moisture is a desiccant that allows the outside air to pass through, and the desiccant that is regenerated is a desiccant that allows the return air heated by the heater 10 to pass through. Therefore, in the air treatment device 500, the dehumidifying operation can be continuously performed.
  • FIG. 16 is a schematic top view showing the second damper state in the first modification.
  • FIG. 17 is a schematic bottom view showing the second damper state in the first modification.
  • FIG. 18 is a schematic side view of the air treatment device 500 when the bypass path 50 is formed.
  • FIG. 19 is a schematic perspective view of the air treatment device 500 when the bypass path 50 is formed.
  • the bypass mode is a mode in which the return air flows into the heater 10 without flowing into the total heat exchanger 40, and the return air does not exchange total heat with the outside air in the total heat exchanger 40.
  • the air treatment device 500 has a bypass path 50 in which the return air bypasses the total heat exchanger 40 and heads for the heater 10.
  • the bypass path 50 switches between an on state in which the return air is bypassed and an off state in which the return air is not bypassed.
  • the state in which the bypass path partition plate 804 is open is the on state of the bypass path 50.
  • the state in which the bypass path partition plate 804 is closed is the off state of the bypass path 50.
  • the partition plate opening / closing device 350 opens / closes the bypass path partition plate 804
  • the return air bypass path 50 is turned on / off.
  • the partition plate control unit 112 of the control device 100 controls the partition plate opening / closing device 350 to open / close the bypass path partition plate 804.
  • the control device 100 is a bypass control device.
  • the partition plate control unit 112 of the control device 100 switches the bypass path 50 between an on state and an off state based on the temperature and humidity of the outside air and the temperature and humidity of the return air.
  • the bypass path partition plate 804, the plate 805, and the opening 806 will be described below.
  • FIGS. 14 and 15 these are shown by solid lines.
  • an opening 806 represented by a quadrangle of m, n, o, and p is formed in a part of the first partition plate 801.
  • a plate 805 represented by n, o, r, and q is arranged in the direction of the Y axis with respect to the total heat exchanger 40.
  • the plate 805 is fixed at a position in the Y-axis direction of the total heat exchanger 40 and does not rotate.
  • the plate 805 prevents outside air from flowing into the side where the heater 10 is arranged without passing through the total heat exchanger 40.
  • a bypass path partition plate 804 represented by n, o, t, and s is arranged below the first partition plate 801.
  • the bypass path partition plate 804 of FIGS. 14 and 15 is in a closed state.
  • the bypass path partition plate 804 is arranged symmetrically with respect to the first partition plate 801 in a closed state, that is, in a state where the bypass path 50 is not formed, and the return air does not pass through the total heat exchanger 40. It prevents the cooler 11 from flowing into the side where the cooler 11 is arranged.
  • FIG. 19 shows a state in which the bypass path partition plate 804 is in an open state and a bypass path 50 is formed.
  • the bypass path partition plate 804 is rotated by the partition plate opening / closing device 350 with n and o as the axis of rotation. Due to the rotation, t and s of the bypass path partition plate 804 approach r and q of the plate 805, and finally overlap with r and q.
  • the bypass path partition plate 804 is open, the return air flowing from the lower part of the total heat exchanger 40 does not flow into the total heat exchanger 40, and the opening 806 (opening 806) that appears due to the open state of the bypass path partition plate 804 ( It passes through m, n, o, p) and flows into the heater 10. This return air flow path is the bypass path 50.
  • the partition plate control unit 112 determines whether or not to bypass the return air as follows.
  • the partition plate control unit 112 determines whether to bypass the return air according to the values detected by the outside air detection sensor 80 and the return air detection sensor 81, and the values set in the setting information storage unit 82.
  • FIG. 20 is a bypass determination table showing the bypass determination information possessed by the partition plate control unit 112.
  • the bypass determination table is stored in the auxiliary storage device 130.
  • V1 to v12 shown in the bypass determination table indicate a range of values.
  • the partition plate control unit 112 acquires values from the outside air detection sensor 80, the return air detection sensor 81, and the setting information storage unit 82, and the acquired values are the first row v1, v2, v3, and the third row in the bypass determination table. If it corresponds to v7, v8, v9 of, the return air is bypassed. In this case, the partition plate control unit 112 controls the partition plate opening / closing device 350 to open the bypass path partition plate 804.
  • FIG. 21 shows the movement of the outside air on the psychrometric chart.
  • Lo_OA Outlet outside air of total heat exchanger 40
  • Lo_RA Outlet return air of total heat exchanger 40
  • HEXo Outlet air of cooler 11
  • I Air enthalpy
  • ⁇ I_Lo Change in enthalpy required by the cooler 11 when passing through the total heat exchanger 40
  • ⁇ I_bypass The enthalpy change required by the cooler 11 when bypassing the total heat exchanger 40.
  • the specific enthalpy change ⁇ I_bypass required by the cooler 11 is reduced to ⁇ I_Lo. That is, the cooling capacity required for the cooler 11 is reduced.
  • the return air that has passed through the total heat exchanger 40 becomes indoor air (air that is hotter and more humid than the return air) (Lo_RA) and flows into the heater 10.
  • the heating capacity is controlled so that the inflow air becomes lower than a constant relative humidity in order to regenerate the static desiccant. Therefore, the higher the humidity of the air, the larger the heating capacity required by the heater 10. Therefore, by flowing the return air into the total heat exchanger 40, the heating capacity required in the heater 10 is increased.
  • the required heating capacity and cooling capacity that is, the required energy, change depending on the state of the outside air and whether the return air flows into the total heat exchanger 40. Therefore, there is a situation where the bypass mode requires less energy than the heat exchange mode.
  • the partition plate control is performed.
  • the portion 112 opens the bypass path partition plate 804 to form the bypass path 50.
  • the condensed water generated by the cooler 11 does not cover the heater 10, so that the condensed water can be easily recovered.
  • FIG. 22 shows the configuration of the modified example 2.
  • the air treatment device 500 further includes a compressor, a condenser which is a first heat exchanger, an expansion valve, and an evaporator which is a second heat exchanger, and may include a refrigeration cycle device in which a refrigerant circulates. good.
  • the air treatment device 500 connects the compressor 71, the first heat exchanger, the expansion valve 70, and the second heat exchanger with pipes to circulate the refrigerant.
  • a refrigeration cycle device 450 is provided.
  • the air treatment device 500 uses the first heat exchanger as the heater 10 and the second heat exchanger as the cooler 11.
  • the control device 100 is a refrigerant control device.
  • the refrigerant control unit 113 of the control device 100 controls the flow rate and temperature of the refrigerant flowing into the first heat exchanger, which is a condenser, and the evaporator, which is a second heat exchanger.
  • the refrigerant control unit 113 of the control device 100 adjusts the rotation speed of the compressor 71 and the opening degree of the expansion valve 70 to increase the heating capacity of the condenser, which is the heater 10, and the evaporator, which is the cooler 11. Control cooling capacity.
  • the heating capacity and the cooling capacity are detected by the outside air detection sensor 80, the return air detection sensor 81, and the setting information storage unit 82, or are set by the setting information storage unit 82, and the refrigerant control unit 113 shown in FIG. 7 determines the heating capacity and the cooling capacity. decide.
  • heating and cooling can be performed by a single refrigerant circuit, so that the air treatment device 500 can be compactly configured. Further, since the waste heat generated when the cold heat is generated is used for the heater 10, the energy efficiency can be improved.
  • an outdoor unit equipped with a heat exchanger and a blower fan may be installed between the heater 10 and the compressor 71 so that the heating capacity can be adjusted.
  • FIG. 23 shows a modification 3.
  • the inflow device 210 is omitted.
  • the refrigeration cycle apparatus 450 includes a four-way valve that causes the condenser, which is the first heat exchanger, to function as an evaporator, and the evaporator, which is the second heat exchanger, to function as a condenser.
  • the air treatment device 500 is further arranged downstream of the composite dehumidifying device 32 in the outside air flow path, and includes a humidifying device 90 through which the outside air passes and humidifies the passing outside air when the condenser functions as an evaporator.
  • a four-way valve 72 is added to the refrigeration cycle device 450 of the second modification, and a humidifying device 90 for humidifying the outside air is further installed downstream of the downstream damper 21.
  • the operation during dehumidification is the same as in the modified example 2.
  • the second heat exchanger is used as a condenser (heater).
  • the outside air is heated by the second heat exchanger and then flowed into the humidifying device 90 to perform humidification.
  • the desiccant When the desiccant is used, it is humidified by the moisture released from the desiccant by the outside air, which is opposite to the dehumidification, and further humidified by the humidifying device 90.
  • FIG. 24 shows a hardware configuration of a modified example of the control device 100.
  • the electronic circuit 600 of FIG. 24 includes a damper control unit 111, a partition plate control unit 112, a refrigerant control unit 113, a heater control unit 114 and a dehumidification amount determination unit 118, a main storage device 120, an auxiliary storage device 130, an input IF 140, and an output. It is a dedicated electronic circuit that realizes the functions of IF150 and communication IF160.
  • the electronic circuit 600 is connected to the signal line 601.
  • the electronic circuit 600 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the functions of the components of the control device 100 may be realized by one electronic circuit or may be distributed and realized by a plurality of electronic circuits. As another modification, some functions of the components of the control device 100 may be realized by an electronic circuit, and the remaining functions may be realized by software.
  • Each of the processor 110 and the electronic circuit 600 is also called a processing circuit.
  • the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118 may be realized by the processing circuit.
  • it may be realized by processing circuit storage.
  • first embodiment including a plurality of modified examples has been described above, one of the first embodiments including a plurality of modified examples may be partially implemented. Alternatively, two or more of the first embodiments including a plurality of modifications may be partially combined and carried out. The present disclosure is not limited to the first embodiment, and various modifications can be made as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

A control device (100) controls the rate of heating by return air (RA) to a first stationary desiccant (30) and a second stationary desiccant (31) by performing at least one of the following controls: switching timing control in which the switching timing at which an upstream damper (20) switches between a return air channel through which the return air (RA) flows and an outside air channel through which outside air (OA) flows is controlled on the basis of the outside air dehumidification amount that is to be dehumidified from the outside air (OA); heating start control in which the start time for the heating of the return air (RA) by a heater (10) is controlled on the basis of the outside air dehumidification amount; and heating capacity control in which the return air (RA) heating capacity of the heater (10) is controlled on the basis of the outside air dehumidification amount.

Description

空気処理装置Air treatment equipment
 本開示は、静止型デシカントを備えた空気処理装置に関する。 The present disclosure relates to an air treatment apparatus equipped with a static desiccant.
 従来の静止型デシカントを使用する空気処理システムでは、風路を切り替える切り替え時間が決められている。デシカントによって低温高湿度の空気の水分の吸着が完了した場合、水分を吸着したデシカントには、風路の切り替えにより、加熱された高温低湿度の空気が流入され、水分を吸着したデシカント(以下、再生側デシカント)は再生される。
 一方、再生側デシカントは再生完了時点が、水分を吸着するべき空気を流入する次の風路の切り替え時点よりも先に到達するように、デシカントに対する加熱能力が設定されている。つまり、水分を吸着するべき空気を再生側デシカントに流入する切り替え時点よりも前に、再生側デシカントが再生完了する制御になっている。
 しかし、再生側デシカントの再生が完了した後に、引き続き加熱空気を再生側デシカントに送ると、再生側デシカント自体の温度が過熱により高くなる。
 すると、再生側デシカントに水分を吸着するべき空気を流入する切り替え後、再生側デシカントが水分吸着を開始するまでの間、再生側デシカントに水分が吸着されず、再生側デシカントの温度が下がる時間帯が発生する。よって、再生側デシカントによる、除湿効率が低下する。
In the conventional air treatment system using a stationary desiccant, the switching time for switching the air passage is fixed. When the adsorption of moisture in the low-temperature and high-humidity air is completed by the desiccant, the heated high-temperature and low-humidity air flows into the desiccant that has adsorbed the moisture by switching the air passage, and the desiccant that has adsorbed the moisture (hereinafter referred to as “decicant”). The playback side desiccant) is played.
On the other hand, the regeneration side desiccant is set to have a heating capacity for the desiccant so that the time when the regeneration is completed arrives before the time when the next air passage in which the air to adsorb the moisture is switched is switched. That is, the control is such that the regeneration side desiccant is completed before the switching time when the air to be adsorbed with water flows into the regeneration side desiccant.
However, if the heated air is continuously sent to the regeneration side desiccant after the regeneration of the regeneration side desiccant is completed, the temperature of the regeneration side desiccant itself becomes high due to overheating.
Then, after switching the air that should adsorb water to the regeneration side desiccant, the moisture is not adsorbed to the regeneration side desiccant until the regeneration side desiccant starts adsorbing water, and the temperature of the regeneration side desiccant drops. Occurs. Therefore, the dehumidification efficiency due to the regeneration side desiccant is lowered.
 従来技術には、風路を切り替える切り替え時間の間隔を制御する技術の開示がある(例えば特許文献1)。しかし、特許文献1の技術は、空気温度の遅れを低減する技術であり、再生側デシカントによる除湿効率の低下を改善する技術ではない。 The prior art includes disclosure of a technique for controlling the interval of switching time for switching air passages (for example, Patent Document 1). However, the technique of Patent Document 1 is a technique for reducing the delay in air temperature, and is not a technique for improving the decrease in dehumidification efficiency due to the desiccant on the regeneration side.
特開2005-291569号公報Japanese Unexamined Patent Publication No. 2005-291569
 本開示は、再生側デシカントの除湿効率の低下を改善する技術の提供を目的とする。 The purpose of this disclosure is to provide a technique for improving the dehumidification efficiency of the regenerating desiccant.
 本開示に係る空気処理装置は、
 加熱器と冷却器とを有する熱供給装置と、
 ダンパーと、
 第1の静止型除湿デバイスと第2の静止型除湿デバイスとを有する複合除湿デバイスと、
を備え、
 前記熱供給装置、前記ダンパー及び前記複合除湿デバイスは、
 前記熱供給装置、前記ダンパー及び前記複合除湿デバイスの順に、配置されており、
 前記加熱器、前記ダンパー及び前記複合除湿デバイスは、
 還気の流れる還気流路の上流から下流に向かって、前記加熱器から順に、前記還気流路に配置され、
 前記冷却器、前記ダンパー及び前記複合除湿デバイスは、
 外気の流れる外気流路の上流から下流に向かって、前記冷却器から順に、前記外気流路に配置され、
 前記ダンパーは、
 前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのうち、一方の前記静止型除湿デバイスに前記還気を流入させ、他方の前記静止型除湿デバイスに前記外気を流入させ、
 かつ、
 前記還気と前記外気とが前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのうち異なる前記静止型除湿デバイスを通過するように、前記還気流路と前記外気流路とを切り替え、
 前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとは、
 前記外気から除湿するべき除湿量に基づいて、前記還気によって加熱される。
The air treatment device according to the present disclosure is
A heat supply device having a heater and a cooler,
With the damper,
A composite dehumidifying device having a first static dehumidifying device and a second static dehumidifying device,
Equipped with
The heat supply device, the damper and the composite dehumidifying device are
The heat supply device, the damper, and the composite dehumidifying device are arranged in this order.
The heater, the damper and the composite dehumidifying device
From the upstream to the downstream of the return air flow path through which the return air flows, the heaters are arranged in the return air flow path in order from the heater.
The cooler, the damper and the composite dehumidifying device
From the upstream to the downstream of the outside air flow path through which the outside air flows, they are arranged in the outside air flow path in order from the cooler.
The damper is
Of the first static dehumidifying device and the second static dehumidifying device, the return air is made to flow into one of the static dehumidifying devices, and the outside air is made to flow into the other static dehumidifying device.
and,
The return air flow path and the outside air flow path so that the return air and the outside air pass through the static dehumidification device which is different from the first static dehumidification device and the second static dehumidification device. To switch,
The first static dehumidifying device and the second static dehumidifying device are
It is heated by the return air based on the amount of dehumidification to be dehumidified from the outside air.
 本開示の空気処理装置によれば、第1の静止型除湿デバイスと第2の静止型除湿デバイスとは、外気から除湿するべき除湿量に基づいて、還気によって加熱される。よって、再生側となる除湿デバイスの除湿効率の低下を改善する技術を提供できる。 According to the air treatment apparatus of the present disclosure, the first static dehumidifying device and the second static dehumidifying device are heated by returning air based on the dehumidifying amount to be dehumidified from the outside air. Therefore, it is possible to provide a technique for improving the dehumidification efficiency of the dehumidification device on the regeneration side.
実施の形態1の図で、第1のダンパー状態の空気処理装置を透過した模式的な図。FIG. 1 is a schematic view of the first embodiment through the air treatment device in the first damper state. 実施の形態1の図で、第2のダンパー状態の空気処理装置を透過した模式的な図。FIG. 1 is a schematic view of the first embodiment through a second damper state air treatment device. 実施の形態1の図で、第1のダンパー状態の空気処理装置を透過し模式的な左側面図。FIG. 1 is a schematic left side view of the first embodiment through the air treatment device in the first damper state. 実施の形態1の図で、第1のダンパー状態の空気処理装置の上面を透過した模式的な上面図。In the figure of Embodiment 1, the schematic top view which passed through the upper surface of the air treatment apparatus in the 1st damper state. 実施の形態1の図で、第2のダンパー状態の空気処理装置を透過し模式的な左側面図。FIG. 1 is a schematic left side view of the first embodiment through the air treatment device in the second damper state. 実施の形態1の図で、第2のダンパー状態の空気処理装置の上面を透過した模式的な上面図。In the figure of Embodiment 1, the schematic top view which passed through the upper surface of the air treatment apparatus in the 2nd damper state. 実施の形態1の図で、制御装置のハードウェア構成を示す図。FIG. 1 is a diagram showing a hardware configuration of a control device in the first embodiment. 実施の形態1の図で、空気処理装置の模式的な正面図。FIG. 1 is a schematic front view of an air treatment device according to a first embodiment. 実施の形態1の図で、空気処理装置の模式的な背面図。FIG. 1 is a schematic rear view of the air treatment device according to the first embodiment. 実施の形態1の図で、図4と図6を簡略化した図。FIG. 6 is a simplified diagram of FIGS. 4 and 6 in the figure of the first embodiment. 実施の形態1の図で、空気処理装置500の比較例の制御の動作を示す図。In the figure of Embodiment 1, the figure which shows the operation of the control of the comparative example of the air treatment apparatus 500. 実施の形態1の図で、空気処理装置500による制御と比較例による制御とを示す図。In the figure of Embodiment 1, the figure which shows the control by the air processing apparatus 500 and the control by a comparative example. 実施の形態1の図で、加熱器制御部114が、還気の流入開始から加熱器10による加熱開始までの時間を減少する制御を示す図。In the figure of the first embodiment, the figure which shows the control which reduces the time from the start of the inflow of return air to the start of heating by a heater 10 by the heater control unit 114. 実施の形態1の図で、変形例1における第1のダンパー状態を示す模式的な透過図。FIG. 6 is a schematic transmission diagram showing a first damper state in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1における第2のダンパー状態を示す模式的な透過図。FIG. 6 is a schematic transmission diagram showing a second damper state in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1における第2のダンパー状態を示す模式的な上面図。FIG. 6 is a schematic top view showing a second damper state in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1における第2のダンパー状態を示す模式的な下面図。FIG. 6 is a schematic bottom view showing a second damper state in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1におけるバイパス経路を示す模式的な側面図。FIG. 6 is a schematic side view showing a bypass path in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1におけるバイパス経路を示す模式的な斜視図。FIG. 6 is a schematic perspective view showing a bypass path in the first modification in the figure of the first embodiment. 実施の形態1の図で、変形例1におけるバイパス判定テーブルを示す図。In the figure of Embodiment 1, the figure which shows the bypass determination table in the modification 1. FIG. 実施の形態1の図で、バイパスにおける外気の空気線図を示す図。FIG. 1 is a diagram showing an air diagram of the outside air in the bypass. 実施の形態1の図で、変形例2を示す図。The figure which shows the modification 2 in the figure of Embodiment 1. FIG. 実施の形態1の図で、変形例3を示す図。The figure which shows the modification 3 in the figure of Embodiment 1. FIG. 実施の形態1の図で、制御装置の変形例のハードウェア構成を示す図。FIG. 1 is a diagram showing a hardware configuration of a modified example of the control device in the figure of the first embodiment.
 以下、本開示に係る空気処理装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。
 図面にXYZ座標の記載がある場合、図面間でXYZ座標は同一の座標系である。図面では、還気をRA、外気をOA、排気をEA及び給気をSAと表記している。また図面において外気OAを白の矢印、還気RAを斜線の矢印で示している。
 以下の説明では、第1のダンパー状態における還気流路を還気流路RA(1)と表記し、第2のダンパー状態における還気流路を還気流路RA(2)と表記し、第1のダンパー状態における外気流路を外気流路OA(1)と表記し、第2のダンパー状態における還気流路を外気流路OA(2)と表記する。
 第1のダンパー状態とは、上流ダンパー20の4つのサブダンパーのうち、サブダンパー20a,20dが開状態、かつ、下流ダンパー21の4つのサブダンパーのうち、サブダンパー21b,21cが開状態の場合をいう。
 第2のダンパー状態とは、上流ダンパー20の4つのサブダンパーのうち、サブダンパー20b,20cが開状態、かつ、下流ダンパー21の4つのサブダンパーのうち、サブダンパー21a,21dが開状態の場合をいう。
Hereinafter, embodiments of the air treatment apparatus according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below.
When there is a description of XYZ coordinates in the drawings, the XYZ coordinates are in the same coordinate system between the drawings. In the drawings, return air is referred to as RA, outside air is referred to as OA, exhaust is referred to as EA, and supply air is referred to as SA. In the drawings, the outside air OA is indicated by a white arrow, and the return air RA is indicated by a diagonal arrow.
In the following description, the return air flow path in the first damper state is referred to as a return air flow path RA (1), and the return air flow path in the second damper state is referred to as a return air flow path RA (2). The outside air flow path in the damper state is referred to as an outside air flow path OA (1), and the return air flow path in the second damper state is referred to as an outside air flow path OA (2).
In the first damper state, the sub dampers 20a and 20d of the four sub dampers of the upstream damper 20 are in the open state, and the sub dampers 21b and 21c of the four sub dampers of the downstream damper 21 are in the open state. Say the case.
In the second damper state, the sub dampers 20b and 20c of the four sub dampers of the upstream damper 20 are in the open state, and the sub dampers 21a and 21d of the four sub dampers of the downstream damper 21 are in the open state. Say the case.
 実施の形態1.
***構成の説明***
 以下に図面を参照して空気処理装置500を説明する。空気処理装置500の特徴は以下のとおりである。
 図1は、第1のダンパー状態の空気処理装置500を示す。
 図2は、第2のダンパー状態の空気処理装置500を示す。
 実施の形態1の空気処理装置500の特徴は、後述する切替タイミング制御100A、加熱開始制御100B及び加熱能力制御100Cにある。各制御の前に空気処理装置500の構成を説明する。以下、空気処理装置500を詳しく説明する。
Embodiment 1.
*** Explanation of configuration ***
The air treatment apparatus 500 will be described below with reference to the drawings. The features of the air treatment device 500 are as follows.
FIG. 1 shows an air treatment device 500 in a first damper state.
FIG. 2 shows an air treatment device 500 in a second damper state.
The features of the air treatment device 500 of the first embodiment are the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C, which will be described later. The configuration of the air treatment device 500 will be described before each control. Hereinafter, the air treatment apparatus 500 will be described in detail.
 図3は、第1のダンパー状態において、左側面を透過して模式的に示す。
 図4は、第1のダンパー状態において、空気処理装置500の上面を透過して模式的に示す。
 図5は、第2のダンパー状態において、左側面を透過して模式的に示す。
 図6は、第2のダンパー状態において、空気処理装置500の上面を透過して模式的に示す。
FIG. 3 schematically shows the left side surface in the first damper state.
FIG. 4 schematically shows the air processing device 500 through the upper surface in the first damper state.
FIG. 5 is schematically shown through the left side surface in the second damper state.
FIG. 6 schematically shows the air processing device 500 through the upper surface in the second damper state.
 空気処理装置500は、
(1)流入装置210、(2)加熱器10、(3)冷却器11、(4)上流ダンパー20、(5)第1の静止型デシカント30、(6)第2の静止型デシカント31、(7)下流ダンパー21、(8)流出装置220、(9)外気検知センサー80、(10)還気検知センサー81、(11)設定情報記憶部82を備える。図1に示すように、加熱器10及び冷却器11から、下流ダンパー21は筐体400の内部に配置されている。
The air treatment device 500 is
(1) Inflow device 210, (2) Heater 10, (3) Cooler 11, (4) Upstream damper 20, (5) First static desiccant 30, (6) Second static desiccant 31, It includes (7) a downstream damper 21, (8) an outflow device 220, (9) an outside air detection sensor 80, (10) a return air detection sensor 81, and (11) a setting information storage unit 82. As shown in FIG. 1, from the heater 10 and the cooler 11, the downstream damper 21 is arranged inside the housing 400.
(1)図1及び図2では、流入装置210を透過的に示している。
 図1を参照して流入装置210を説明する。流入装置210は内部が中空の直方体の形状である。流入装置210は、仕切り板216によって、同じ形状の2つの直方体の空間に分けられている。点P5は線分P1、P4の中点であり、点P6は線分P2、P3の中点である。流入装置210は、還気が流入する還気流入口211と、外気が流入する外気流入口213とを有する。
 また、流入装置210は、開口である流出口212及び開口である流出口214を有する。流出口212の下側は仕切り板217で塞がれており、流出口214の上側は仕切り板218で塞がれている。仕切り板217と仕切り板218は同一の形状であり、点P7に対して点対称に位置する。還気流入口211は円形であり、円の中心の(Y,Z)座標は、以下のようである。Y座標は線分P3,P6の中点であり、Z座標は線分P3,P4の中点である。同様に、外気流入口213は円形であり、円の中心の(Y,Z)座標は、以下のようである。Y座標は線分P2,P6の中点であり、Z座標は線分P2,P1の中点である。還気流入口211に流入した還気は、左上に形成された流出口212からX方向へ流出する。外気流入口213に流入した外気は、右下に形成された流出口214からX方向へ流出する。なお、左方向はY方向、上方向はZ方向である。
(2)加熱器10は、還気を加熱して、デシカントを再生させる高温低湿の空気にする。
(3)冷却器11は、外気を冷却し、デシカントによって除湿(吸着)される低温高湿の空気にする。
(4)上流ダンパー20は、還気と外気が流入するデシカントを切り替える。
上流ダンパー20は第1のダンパーである。
(5)第1の静止型デシカント30は、外気が通る場合に外気を除湿する。
(6)第2の静止型デシカント31は、外気が通る場合に外気を除湿する。
(7)下流ダンパー21は、上流ダンパー20の切り替えに応じて切り替わり、還気及び外気が通る。下流ダンパー21は第2のダンパーである。
(8)図1及び図2では、流出装置220を透過的に示している。流出装置220は、第3仕切り板803によって、上下の2つの空間に分けら得ている。流出装置220は、下流ダンパー21に接続しており、サブダンパー21a,21b,21c,21dに対応し、サブダンパー21a,21b,21c,21dと同等の大きさの4つの開口が形成されている。例えばサブダンパー21cが開状態であれば、サブダンパー21cの開口と、サブダンパー21cに対応する流出装置220の開口は重なる。上流ダンパー20では上側の空間の左側に外気流出口222が形成されており、下側の空間の右側に還気流出口221が形成されている。
(9)外気検知センサー80は、外気の温度及び湿度を検出する。
(10)還気検知センサー81は、還気の温度及び湿度を検出する。
(11)設定情報記憶部82は、設定情報である設定温度及び設定湿度を記憶する。
(1) In FIGS. 1 and 2, the inflow device 210 is transparently shown.
The inflow device 210 will be described with reference to FIG. The inflow device 210 has a rectangular parallelepiped shape with a hollow inside. The inflow device 210 is divided into two rectangular parallelepiped spaces having the same shape by a partition plate 216. The point P5 is the midpoint of the line segments P1 and P4, and the point P6 is the midpoint of the line segments P2 and P3. The inflow device 210 has a return airflow inlet 211 into which the return air flows in, and an outside airflow inlet 213 in which the outside air flows.
Further, the inflow device 210 has an outlet 212 which is an opening and an outlet 214 which is an opening. The lower side of the outlet 212 is closed by the partition plate 217, and the upper side of the outlet 214 is closed by the partition plate 218. The partition plate 217 and the partition plate 218 have the same shape and are located point-symmetrically with respect to the point P7. The return airflow inlet 211 is circular, and the (Y, Z) coordinates of the center of the circle are as follows. The Y coordinate is the midpoint of the line segments P3 and P6, and the Z coordinate is the midpoint of the line segments P3 and P4. Similarly, the outside airflow inlet 213 is circular, and the (Y, Z) coordinates of the center of the circle are as follows. The Y coordinate is the midpoint of the line segments P2 and P6, and the Z coordinate is the midpoint of the line segments P2 and P1. The return air that has flowed into the return airflow inlet 211 flows out in the X direction from the outlet 212 formed in the upper left. The outside air flowing into the outside airflow inlet 213 flows out in the X direction from the outflow port 214 formed in the lower right. The left direction is the Y direction, and the upward direction is the Z direction.
(2) The heater 10 heats the return air into high-temperature and low-humidity air that regenerates the desiccant.
(3) The cooler 11 cools the outside air into low-temperature and high-humidity air that is dehumidified (adsorbed) by the desiccant.
(4) The upstream damper 20 switches between the return air and the desiccant in which the outside air flows.
The upstream damper 20 is the first damper.
(5) The first stationary desiccant 30 dehumidifies the outside air when the outside air passes through.
(6) The second stationary desiccant 31 dehumidifies the outside air when the outside air passes through.
(7) The downstream damper 21 is switched according to the switching of the upstream damper 20, and the return air and the outside air pass through. The downstream damper 21 is a second damper.
(8) In FIGS. 1 and 2, the outflow device 220 is transparently shown. The outflow device 220 is divided into two upper and lower spaces by a third partition plate 803. The outflow device 220 is connected to the downstream damper 21, corresponds to the sub dampers 21a, 21b, 21c, 21d, and has four openings having the same size as the sub dampers 21a, 21b, 21c, 21d. .. For example, when the sub-damper 21c is in the open state, the opening of the sub-damper 21c and the opening of the outflow device 220 corresponding to the sub-damper 21c overlap. In the upstream damper 20, the outside airflow outlet 222 is formed on the left side of the upper space, and the return airflow outlet 221 is formed on the right side of the lower space.
(9) The outside air detection sensor 80 detects the temperature and humidity of the outside air.
(10) The return air detection sensor 81 detects the temperature and humidity of the return air.
(11) The setting information storage unit 82 stores the set temperature and the set humidity, which are the setting information.
 加熱器10と冷却器11とは熱供給装置12を構成する。加熱器10は第1の熱交換器であり、冷却器11は第2の熱交換器である。第1の静止型デシカント30は第1の静止型除湿デバイスである。第2の静止型デシカント31は第2の静止型除湿デバイスである。第1の静止型デシカント30と第2の静止型デシカント31とは、複合除湿デバイス32を構成する。
 第1の静止型除湿デバイスである第1の静止型デシカント30と、第2の静止型除湿デバイスである第2の静止型デシカント31とは、水平に設置された状態で水平方向で隣接する。図1に示すように、第1の静止型デシカント30と第2の静止型デシカント31は、第1の静止型デシカント30及び第2の静止型デシカント31から還気及び外気が流出する流出方向に対して左右に配置されている。
The heater 10 and the cooler 11 constitute a heat supply device 12. The heater 10 is the first heat exchanger and the cooler 11 is the second heat exchanger. The first static desiccant 30 is a first static dehumidifying device. The second static desiccant 31 is a second static dehumidifying device. The first static desiccant 30 and the second static desiccant 31 constitute a composite dehumidifying device 32.
The first static dehumidifying device, the first static desiccant 30, and the second static dehumidifying device, the second static desiccant 31, are horizontally adjacent to each other in a horizontally installed state. As shown in FIG. 1, the first stationary desiccant 30 and the second stationary desiccant 31 are in the outflow direction in which the return air and the outside air flow out from the first stationary desiccant 30 and the second stationary desiccant 31. On the other hand, they are arranged on the left and right.
 上流ダンパー20は、第1の静止型除湿デバイスと第2の静止型除湿デバイスとのうち、一方の静止型除湿デバイスに還気を流入させ、他方の前記静止型除湿デバイスに外気を流入させる。また、上流ダンパー20は、還気と外気とが第1の静止型除湿デバイスと第2の静止型除湿デバイスとのうち異なる静止型除湿デバイスを通過するように、還気流路と外気流路とを切り替える。 The upstream damper 20 causes the return air to flow into one of the static dehumidifying devices of the first static dehumidifying device and the second static dehumidifying device, and the outside air to flow into the other static dehumidifying device. Further, the upstream damper 20 has a return air flow path and an outside air flow path so that the return air and the outside air pass through different static dehumidification devices of the first static dehumidification device and the second static dehumidification device. To switch.
 図1に示すように、流入装置210、熱供給装置12、上流ダンパー20、複合除湿デバイス32、下流ダンパー21及び流出装置220は、流入装置210、熱供給装置12、上流ダンパー20、複合除湿デバイス32、下流ダンパー21及び流出装置220の順に、配置されている。図1に示すように、流入装置210、第1の熱交換器である加熱器10、上流ダンパー20、複合除湿デバイス32、下流ダンパー21及び流出装置220は、還気の流れる還気流路の上流から下流に向かって、流入装置210から順に、還気流路に配置されている。同様に、流入装置210、第2の熱交換器である冷却器11、上流ダンパー20、複合除湿デバイス32、下流ダンパー21及び0220は、外気の流れる外気流路の上流から下流に向かって、流入装置210から順に、外気流路に配置されている。 As shown in FIG. 1, the inflow device 210, the heat supply device 12, the upstream damper 20, the composite dehumidifying device 32, the downstream damper 21 and the outflow device 220 are the inflow device 210, the heat supply device 12, the upstream damper 20, and the composite dehumidifying device. 32, the downstream damper 21, and the outflow device 220 are arranged in this order. As shown in FIG. 1, the inflow device 210, the first heat exchanger heater 10, the upstream damper 20, the composite dehumidifying device 32, the downstream damper 21, and the outflow device 220 are upstream of the return air flow path through which the return air flows. From the inflow device 210 to the downstream, they are arranged in the return air flow path in order. Similarly, the inflow device 210, the second heat exchanger cooler 11, the upstream damper 20, the composite dehumidifying device 32, the downstream dampers 21 and 0220 flow in from the upstream to the downstream of the outside air flow path through which the outside air flows. They are arranged in the outside air flow path in order from the device 210.
<仕切り板>
 図1に示すように、第1仕切り板801は、流入装置210と上流ダンパー20との間の筐体400の内部を、上下に分けている。第1仕切り板801の上部には加熱器10が位置し、第1仕切り板801の下部には冷却器11が位置する。第1仕切り板801は、A、B,C,Dで示される四角形である。
 第2仕切り板802は、上流ダンパー20から下流ダンパー21までの筐体400の内部を左右に分けている。第2仕切り板802の左側には第1の静止型デシカント30が位置し、第2仕切り板802の右側には第2の静止型デシカント31が位置する。第2仕切り板802は、E,F,G,Hで示される四角形である。
 第3仕切り板803は、下流ダンパー21を起点として流出装置220の内部を上下に分けている。流出装置220において、第3仕切り板803の上側から給気が流出し、第3仕切り板803の下側から排気が流出する。第3仕切り板803は、I,J,K,Lで示される四角形である。
<Partition plate>
As shown in FIG. 1, the first partition plate 801 divides the inside of the housing 400 between the inflow device 210 and the upstream damper 20 into upper and lower parts. The heater 10 is located above the first partition plate 801 and the cooler 11 is located below the first partition plate 801. The first partition plate 801 is a quadrangle represented by A, B, C, and D.
The second partition plate 802 divides the inside of the housing 400 from the upstream damper 20 to the downstream damper 21 into left and right. The first stationary desiccant 30 is located on the left side of the second partition plate 802, and the second stationary desiccant 31 is located on the right side of the second partition plate 802. The second partition plate 802 is a quadrangle represented by E, F, G, and H.
The third partition plate 803 divides the inside of the outflow device 220 into upper and lower parts starting from the downstream damper 21. In the outflow device 220, the supply air flows out from the upper side of the third partition plate 803, and the exhaust gas flows out from the lower side of the third partition plate 803. The third partition plate 803 is a quadrangle represented by I, J, K, and L.
<ダンパー開閉装置、仕切り板開閉装置>
 空気処理装置500は、さらに、上流ダンパー開閉装置320、下流ダンパー開閉装置321、仕切り板開閉装置350を備える。上流ダンパー開閉装置320及び下流ダンパー開閉装置321は、上流ダンパー20及び下流ダンパー21の各サブダンパーを開閉させる開閉機構である。上流ダンパー開閉装置320は、上流ダンパー20の有するサブダンパー20a、20b、20c、20dを開閉する。下流ダンパー開閉装置321は、下流ダンパー21の有するサブダンパー21a、21b、21c、21dを開閉する。仕切り板開閉装置350は、後述するバイパス路仕切り板804を開閉させる開閉機構である。バイパス路仕切り板804が開くことで、後述する還気のバイパス路50が形成される。
<Damper opening / closing device, partition plate opening / closing device>
The air treatment device 500 further includes an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition plate opening / closing device 350. The upstream damper opening / closing device 320 and the downstream damper opening / closing device 321 are opening / closing mechanisms for opening / closing each sub-damper of the upstream damper 20 and the downstream damper 21. The upstream damper opening / closing device 320 opens / closes the sub dampers 20a, 20b, 20c, and 20d of the upstream damper 20. The downstream damper opening / closing device 321 opens / closes the sub dampers 21a, 21b, 21c, 21d of the downstream damper 21. The partition plate opening / closing device 350 is an opening / closing mechanism for opening / closing the bypass path partition plate 804 described later. By opening the bypass path partition plate 804, the return air bypass path 50, which will be described later, is formed.
<制御装置>
 空気処理装置500は、さらに、上流ダンパー開閉装置320、下流ダンパー開閉装置321及び仕切り板開閉装置350を制御する制御装置100を備える。後述する図7で説明するように、制御装置100には、外気検知センサー80、還気検知センサー81、設定情報記憶部82、給気検知センサー83、排気検知センサー84、上流ダンパー開閉装置320、下流ダンパー開閉装置321、仕切り板開閉装置350及び冷凍サイクル装置450が接続している。
<Control device>
The air treatment device 500 further includes a control device 100 that controls an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition plate opening / closing device 350. As will be described later with reference to FIG. 7, the control device 100 includes an outside air detection sensor 80, a return air detection sensor 81, a setting information storage unit 82, an air supply detection sensor 83, an exhaust detection sensor 84, an upstream damper opening / closing device 320, and the like. The downstream damper opening / closing device 321, the partition plate opening / closing device 350, and the refrigeration cycle device 450 are connected.
***構成の説明***
 図7は、制御装置100のハードウェア構成を示す。制御装置100はコンピュータである。制御装置100は、バイパス制御装置であり、冷媒制御装置であり、ダンパー制御装置である。制御装置100は、プロセッサ110を備えるとともに、主記憶装置120、補助記憶装置130、入力インタフェース140、出力インタフェース150及び通信インタフェース160といった他のハードウェアを備える。以下ではインタフェースはIFと表記する。プロセッサ110は、信号線170を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
*** Explanation of configuration ***
FIG. 7 shows the hardware configuration of the control device 100. The control device 100 is a computer. The control device 100 is a bypass control device, a refrigerant control device, and a damper control device. The control device 100 includes a processor 110 and other hardware such as a main storage device 120, an auxiliary storage device 130, an input interface 140, an output interface 150, and a communication interface 160. In the following, the interface is referred to as IF. The processor 110 is connected to other hardware via the signal line 170 and controls these other hardware.
 制御装置100はダンパー制御装置として、上流ダンパー20の複数のサブダンパーの開閉状態と、下流ダンパー21の複数のサブダンパーの開閉とを、連動して切り替える。 As a damper control device, the control device 100 switches between the open / closed state of the plurality of sub dampers of the upstream damper 20 and the open / closed state of the plurality of sub dampers of the downstream damper 21 in conjunction with each other.
 制御装置100は、機能要素として、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118を備える。変形例2で後述するように空気処理装置500が冷凍サイクルを備えるときには、冷媒制御部113が加熱器制御部114を兼用してもよい。ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118の機能は、制御プログラム101により実現される。制御プログラム101は補助記憶装置130に格納されている。 The control device 100 includes a damper control unit 111, a partition plate control unit 112, a refrigerant control unit 113, a heater control unit 114, and a dehumidification amount determination unit 118 as functional elements. As will be described later in Modification 2, when the air treatment device 500 includes a refrigeration cycle, the refrigerant control unit 113 may also serve as the heater control unit 114. The functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118 are realized by the control program 101. The control program 101 is stored in the auxiliary storage device 130.
 プロセッサ110は、制御プログラム101を実行する装置である。制御プログラム101は、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118の機能を実現するプログラムである。プロセッサ110は、演算処理を行うIC(Integrated Circuit)である。プロセッサ110の具体例は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 The processor 110 is a device that executes the control program 101. The control program 101 is a program that realizes the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118. The processor 110 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 110 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 主記憶装置120は、データを記憶する記憶装置である。主記憶装置120の具体例は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。主記憶装置120は、プロセッサ110の演算結果を保持する。
 補助記憶装置130は、データを不揮発的に保管する記憶装置である。補助記憶装置130の具体例は、HDD(Hard Disk Drive)である。また、補助記憶装置130は、SD(登録商標)(Secure Digital)メモリカード、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であっても良い。補助記憶装置130には、第1の静止型デシカント30及び第2の静止型デシカント31の特性が保存されている。ダンパー制御部111、加熱器制御部114、及び除湿量決定部118はこの特性を参照可能である。
The main storage device 120 is a storage device for storing data. Specific examples of the main storage device 120 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory). The main storage device 120 holds the calculation result of the processor 110.
The auxiliary storage device 130 is a storage device that stores data non-volatilely. A specific example of the auxiliary storage device 130 is an HDD (Hard Disk Drive). Further, the auxiliary storage device 130 is a portable recording medium such as an SD (registered trademark) (Secure Digital) memory card, a NAND flash, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disk, and a DVD (Digital Versaille Disk). There may be. The auxiliary storage device 130 stores the characteristics of the first stationary desiccant 30 and the second static desiccant 31. The damper control unit 111, the heater control unit 114, and the dehumidification amount determination unit 118 can refer to this characteristic.
 入力IF140は、各種機器が接続され、各種機器のデータが入力されるポートである。
 出力IF150は、各種機器が接続され、各種機器にプロセッサ110により制御信号が出力されるポートである。
 通信IF160は、各種機器とプロセッサ110とが通信する通信ポートである。図7では、通信IF160には、外気検知センサー80、還気検知センサー81、設定情報記憶部82、給気検知センサー83、排気検知センサー84、上流ダンパー開閉装置320、下流ダンパー開閉装置321、仕切り板開閉装置350及び冷凍サイクル装置450が接続している。通信IF160には、空気処理装置500で換気される室内の湿度を検出する室内湿度センサー85が、接続している。
The input IF 140 is a port to which various devices are connected and data of various devices are input.
The output IF 150 is a port to which various devices are connected and a control signal is output to the various devices by the processor 110.
The communication IF 160 is a communication port through which various devices and the processor 110 communicate with each other. In FIG. 7, the communication IF 160 includes an outside air detection sensor 80, a return air detection sensor 81, a setting information storage unit 82, an air supply detection sensor 83, an exhaust detection sensor 84, an upstream damper opening / closing device 320, a downstream damper opening / closing device 321 and a partition. The plate switchgear 350 and the refrigeration cycle device 450 are connected. An indoor humidity sensor 85 that detects the humidity in the room ventilated by the air treatment device 500 is connected to the communication IF 160.
 プロセッサ110は補助記憶装置130から制御プログラム101を主記憶装置120にロードし、主記憶装置120から制御プログラム101を読み込み実行する。主記憶装置120には、制御プログラム101だけでなく、OS(Operating System)も記憶されている。プロセッサ110は、OSを実行しながら、制御プログラム101を実行する。 The processor 110 loads the control program 101 from the auxiliary storage device 130 into the main storage device 120, and reads and executes the control program 101 from the main storage device 120. Not only the control program 101 but also the OS (Operating System) is stored in the main storage device 120. The processor 110 executes the control program 101 while executing the OS.
 制御装置100は、プロセッサ110を代替する複数のプロセッサを備えていても良い。複数のプロセッサは、制御プログラム101の実行を分担する。それぞれのプロセッサは、プロセッサ110と同じように、制御プログラム101を実行する装置である。 The control device 100 may include a plurality of processors that replace the processor 110. The plurality of processors share the execution of the control program 101. Each processor, like the processor 110, is a device that executes the control program 101.
 制御プログラム101により利用、処理または出力されるデータ、情報、信号値及び変数値は、主記憶装置120、補助記憶装置130、または、プロセッサ110内のレジスタあるいはキャッシュメモリに記憶される。制御プログラム101は、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程をコンピュータに実行させるプログラムである。 The data, information, signal values and variable values used, processed or output by the control program 101 are stored in the main storage device 120, the auxiliary storage device 130, or the register or cache memory in the processor 110. The control program 101 "processes", "procedures" or "processes" the "units" of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114 and the dehumidification amount determination unit 118. It is a program that causes a computer to execute each process, each procedure, or each process.
 制御方法は、コンピュータである制御装置100が制御プログラム101を実行することにより行われる方法である。制御プログラム101は、コンピュータ読取可能な記録媒体に格納されて提供されても良いし、プログラムプロダクトとして提供されても良い。 The control method is a method performed by the control device 100, which is a computer, executing the control program 101. The control program 101 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
 なお、制御装置100の動作は制御方法に相当する。制御装置100の動作は制御プログラムの処理に相当する。 The operation of the control device 100 corresponds to the control method. The operation of the control device 100 corresponds to the processing of the control program.
 上流ダンパー20は、還気と外気とが第1の静止型デシカント30と第2の静止型デシカント31とのうち異なる静止型除湿デシカントを通るように、還気流路と外気流路とを切り替える。図1では、還気流路RA(1)は第2の静止型デシカント31へ流入し、外気流路OA(1)は第1の静止型デシカント30へ流入する。 The upstream damper 20 switches between the return air flow path and the outside air flow path so that the return air and the outside air pass through different static dehumidifying desiccants between the first static desiccant 30 and the second static desiccant 31. In FIG. 1, the return air flow path RA (1) flows into the second stationary desiccant 31, and the outside air flow path OA (1) flows into the first stationary desiccant 30.
 図1に示すように、加熱器10が冷却器11に対して上に設置されている。具体的には、加熱器10は、重力の方向を基準にして、冷却器11の上方に配置されている。
 なお、逆に、冷却器11が、重力の方向を基準にして、加熱器10の上方に配置されても構わない。
As shown in FIG. 1, the heater 10 is installed above the cooler 11. Specifically, the heater 10 is arranged above the cooler 11 with respect to the direction of gravity.
On the contrary, the cooler 11 may be arranged above the heater 10 with respect to the direction of gravity.
***動作の説明***
<第1のダンパー状態>
 図1を参照して第1のダンパー状態における、還気流路RA(1)及び外気流路OA(1)を説明する。図1及び図4に示すように、第1のダンパー状態のときには、外気及び還気は、それぞれ冷却器11、加熱器10の直後、上流ダンパー20の手前で一度曲がる。具体的には、白の矢印で示す外気は、加熱器10の直後、かつ、上流ダンパー20の手前の位置P(1)で一度曲がる。外気及び還気は、第1の静止型デシカント30または第2の静止型デシカント31のどちらかに流れる。つまり、第1のダンパー状態では、外気が第1の静止型デシカント30を通過する場合は、還気は第2の静止型デシカント31を通過する。第1の静止型デシカント30及び第2の静止型デシカント31を通過後は、外気及び還気は、そのまま直線上にある外気流出口222及び還気流出口221から、外気は給気として、還気は排気として流出する。
*** Explanation of operation ***
<First damper state>
The return air flow path RA (1) and the outside air flow path OA (1) in the first damper state will be described with reference to FIG. As shown in FIGS. 1 and 4, in the first damper state, the outside air and the return air bend once immediately after the cooler 11 and the heater 10, respectively, and before the upstream damper 20. Specifically, the outside air indicated by the white arrow bends once immediately after the heater 10 and at the position P (1) immediately before the upstream damper 20. The outside air and the return air flow to either the first stationary desiccant 30 or the second stationary desiccant 31. That is, in the first damper state, when the outside air passes through the first stationary desiccant 30, the return air passes through the second stationary desiccant 31. After passing through the first stationary desiccant 30 and the second static desiccant 31, the outside air and the return air are returned from the outside airflow outlet 222 and the return airflow outlet 221 which are on a straight line as they are, and the outside air is supplied and returned. Outflows as exhaust.
 第1のダンパー状態における還気の進路は以下のようである。
(1)還気は、流入装置210の還気流入口211から流入し、流入装置210の流出口212から流出して第1仕切り板801の上を流れる。
(2)還気は加熱器10へ流入後、上流ダンパー20へ流入する。
(3)上流ダンパー20では、図1に示すように、4つのサブダンパー20a,20b,20c,20dのうち、サブダンパー20a,20cが、第1仕切り板801の上側にある。サブダンパー20a,20cのうちサブダンパー20aが開いているので還気はサブダンパー20aを通り抜けて、第2の静止型デシカント31に向かい、第2の静止型デシカント31へ流入する。
(4)下流ダンパー21では、右側のサブダンパー21a、21bのうち、サブダンパー21bが開いている。よって、第2の静止型デシカント31へ流入した還気は、サブダンパー21bを通り抜けて、流出装置220へ流入し、流出装置220の還気流出口221から流出する。
The course of return air in the first damper state is as follows.
(1) The return air flows in from the return airflow inlet 211 of the inflow device 210, flows out from the outflow port 212 of the inflow device 210, and flows on the first partition plate 801.
(2) The return air flows into the heater 10 and then into the upstream damper 20.
(3) In the upstream damper 20, as shown in FIG. 1, of the four sub dampers 20a, 20b, 20c, 20d, the sub dampers 20a, 20c are on the upper side of the first partition plate 801. Since the sub-damper 20a of the sub-dampers 20a and 20c is open, the return air passes through the sub-damper 20a, heads for the second stationary desiccant 31, and flows into the second static desiccant 31.
(4) In the downstream damper 21, the sub damper 21b is open among the sub dampers 21a and 21b on the right side. Therefore, the return air flowing into the second stationary desiccant 31 passes through the sub-damper 21b, flows into the outflow device 220, and flows out from the return airflow outlet 221 of the outflow device 220.
 第1のダンパー状態における外気の進路は以下のようである。
(1)外気は、流入装置210の外気流入口213から流入し、流入装置210の流出口214から流出して第1仕切り板801の下を流れる。
(2)外気は冷却器11へ流入後、上流ダンパー20へ流入する。
(3)上流ダンパー20では、サブダンパー20b,20dのうちサブダンパー20dが開いているので外気はサブダンパー20dを通り抜けて、第1の静止型デシカント30に向かい、第1の静止型デシカント30へ流入する。
(4)下流ダンパー21では、左側のサブダンパー21c、21dのうち、サブダンパー21cが開いている。よって、第1の静止型デシカント30へ流入した外気は、サブダンパー21cを通り抜けて、流出装置220へ流入し、流出装置220の外気流出口222から流出する。
The course of the outside air in the first damper state is as follows.
(1) The outside air flows in from the outside airflow inlet 213 of the inflow device 210, flows out from the outflow port 214 of the inflow device 210, and flows under the first partition plate 801.
(2) The outside air flows into the cooler 11 and then into the upstream damper 20.
(3) In the upstream damper 20, since the sub damper 20d of the sub dampers 20b and 20d is open, the outside air passes through the sub damper 20d, heads for the first static desiccant 30, and goes to the first static desiccant 30. Inflow.
(4) In the downstream damper 21, the sub damper 21c is open among the sub dampers 21c and 21d on the left side. Therefore, the outside air that has flowed into the first stationary desiccant 30 passes through the sub-damper 21c, flows into the outflow device 220, and flows out from the outside airflow outlet 222 of the outflow device 220.
<第2のダンパー状態>
 図2及び図6を参照して、第2のダンパー状態における、還気流路RA(2)及び外気流路OA(2)を説明する。図2及び図6に示すように、第2のダンパー状態のときには、外気及び還気はそれぞれ冷却器11、加熱器10を通過後、それぞれの直線上にある上流ダンパー20、第2の静止型デシカント31、第1の静止型デシカント30を流れる。その後、下流ダンパー21を流出の直後、還気流出口221及び外気流出口222の手前の位置P(2)で一度曲がり、還気流出口221及び外気流出口222が流出する。
<Second damper state>
The return air flow path RA (2) and the outside air flow path OA (2) in the second damper state will be described with reference to FIGS. 2 and 6. As shown in FIGS. 2 and 6, in the second damper state, the outside air and the return air pass through the cooler 11 and the heater 10, respectively, and then the upstream damper 20 and the second stationary type are on their respective straight lines. It flows through the desiccant 31 and the first stationary desiccant 30. After that, immediately after the downstream damper 21 flows out, it bends once at the position P (2) in front of the return airflow outlet 221 and the outside airflow outlet 222, and the return airflow outlet 221 and the outside airflow outlet 222 flow out.
 第2のダンパー状態における還気の進路は以下のようである。
(1)還気は、流入装置210の還気流入口211から流入し、流入装置210の流出口212から流出して第1仕切り板801の上を流れる。
(2)還気は加熱器10へ流入後、上流ダンパー20へ流入する。
(3)上流ダンパー20では、図2に示すように、サブダンパー20cが開いているので還気はサブダンパー20cを通り抜けて、第1の静止型デシカント30に向かい、第1の静止型デシカント30へ流入する。
(4)下流ダンパー21では、サブダンパー21dが開いている。よって、第1の静止型デシカント30へ流入した還気は、サブダンパー21dを通り抜けて、流出装置220へ流入し、流出装置220の還気流出口221から流出する。
The course of return air in the second damper state is as follows.
(1) The return air flows in from the return airflow inlet 211 of the inflow device 210, flows out from the outflow port 212 of the inflow device 210, and flows on the first partition plate 801.
(2) The return air flows into the heater 10 and then into the upstream damper 20.
(3) In the upstream damper 20, as shown in FIG. 2, since the sub-damper 20c is open, the return air passes through the sub-damper 20c and heads for the first stationary desiccant 30, and the first stationary desiccant 30. Inflow to.
(4) In the downstream damper 21, the sub damper 21d is open. Therefore, the return air that has flowed into the first stationary desiccant 30 passes through the sub-damper 21d, flows into the outflow device 220, and flows out from the return airflow outlet 221 of the outflow device 220.
 第2のダンパー状態における外気の進路は以下のようである。
(1)外気は、流入装置210の外気流入口213から流入し、流入装置210の流出口214から流出して第1仕切り板801の下を流れる。
(2)外気は冷却器11へ流入後、上流ダンパー20へ流入する。
(3)上流ダンパー20では、サブダンパー20b,20dのうちサブダンパー20bが開いているので外気はサブダンパー20bを通り抜けて、第2の静止型デシカント31に向かい、第2の静止型デシカント31へ流入する。
(4)下流ダンパー21では、左側のサブダンパー21a、21bのうち、サブダンパー21aが開いている。よって、第2の静止型デシカント31へ流入した外気は、サブダンパー21aを通り抜けて、流出装置220へ流入し、流出装置220の外気流出口222から流出する。
The course of the outside air in the second damper state is as follows.
(1) The outside air flows in from the outside airflow inlet 213 of the inflow device 210, flows out from the outflow port 214 of the inflow device 210, and flows under the first partition plate 801.
(2) The outside air flows into the cooler 11 and then into the upstream damper 20.
(3) In the upstream damper 20, since the sub damper 20b out of the sub dampers 20b and 20d is open, the outside air passes through the sub damper 20b, heads for the second static desiccant 31, and goes to the second static desiccant 31. Inflow.
(4) In the downstream damper 21, the sub damper 21a is open among the sub dampers 21a and 21b on the left side. Therefore, the outside air flowing into the second stationary desiccant 31 passes through the sub-damper 21a, flows into the outflow device 220, and flows out from the outside airflow outlet 222 of the outflow device 220.
 以上のように、第1のダンパーである上流ダンパー20と、第2のダンパーである下流ダンパー21とは、連動することで、還気流路と外気流路とを切り替える。
 還気流路は、切り替えに従って、第1の静止型除湿デバイスである第1の静止型デシカント30と第2の静止型除湿デバイスである第2の静止型デシカント31とを交互に通過すると共に、還気の流れる方向の変化が対応する部分を切り替え前後で有する。
 外気流路は、切り替えに従って、還気流路が通過する静止型除湿デバイスと異なる静止型除湿デバイスを通過するように、第1の静止型デシカント30と第2の静止型デシカント31とを交互に通過すると共に、外気の流れる方向の変化が対応する部分を切り替え前後で有する。
As described above, the upstream damper 20 which is the first damper and the downstream damper 21 which is the second damper are interlocked to switch between the return air flow path and the outside air flow path.
The return air flow path alternately passes through the first static dehumidifying device, the first static desiccant 30, and the second static dehumidifying device, the second static desiccant 31, according to the switching, and returns. It has a part corresponding to the change in the direction of air flow before and after switching.
The outside air flow path alternately passes through the first static desiccant 30 and the second static desiccant 31 so as to pass through a static dehumidifying device different from the static dehumidifying device through which the return air flow path passes according to the switching. At the same time, it has a portion corresponding to the change in the flow direction of the outside air before and after the switching.
 図1及び図2において、還気及び外気の流入する側を正面と呼び、還気及び外気の流出する側を背面と呼ぶ。
 図8は、空気処理装置500の模式的な正面図である。
 図9は、空気処理装置500の模式的な背面図である。図8では、還気の流入する加熱器10が、外気の流入する冷却器11の上に配置されている状態を示している。図9では、下流ダンパー21において、サブダンパー21a,21dが開いており、サブダンパー21b,21cが閉じている状態である。
In FIGS. 1 and 2, the side on which the return air and the outside air flow in is referred to as the front surface, and the side on which the return air and the outside air flow out is referred to as the back surface.
FIG. 8 is a schematic front view of the air treatment device 500.
FIG. 9 is a schematic rear view of the air treatment device 500. FIG. 8 shows a state in which the heater 10 into which the return air flows is arranged on the cooler 11 into which the outside air flows. In FIG. 9, in the downstream damper 21, the sub dampers 21a and 21d are open, and the sub dampers 21b and 21c are closed.
 図1及び図2に示すように、上流ダンパー20と下流ダンパー21は、4つのサブダンパーが一組になっている。つまり、上流ダンパー20は、サブダンパー20a、20b、20c、20dを備えており、下流ダンパー21は、サブダンパー21a、21b、21c、21dを備えている。 As shown in FIGS. 1 and 2, the upstream damper 20 and the downstream damper 21 are a set of four sub-dampers. That is, the upstream damper 20 includes the sub dampers 20a, 20b, 20c, and 20d, and the downstream damper 21 includes the sub dampers 21a, 21b, 21c, and 21d.
 加熱器10は、温水が流れる水・空気熱交換器でも良いし、高温冷媒が流れる直膨式の冷媒・空気熱交換器でも良い。冷却器11は、冷水が流れる水・空気熱交換器でも良いし、低温冷媒が流れる直膨式の冷媒・空気熱交換器でも良い。 The heater 10 may be a water / air heat exchanger through which hot water flows, or a direct expansion type refrigerant / air heat exchanger through which a high temperature refrigerant flows. The cooler 11 may be a water / air heat exchanger through which cold water flows, or may be a direct expansion type refrigerant / air heat exchanger through which a low temperature refrigerant flows.
 第1の静止型デシカント30と第2の静止型デシカント31とは、外気から除湿するべき除湿量を示す外気除湿量に基づいて、還気によって加熱される。 The first static desiccant 30 and the second static desiccant 31 are heated by returning air based on the amount of dehumidified outside air indicating the amount of dehumidified to be dehumidified from the outside air.
 第1の静止型デシカント30と第2の静止型デシカント31とが、外気除湿量に基づき、還気によって加熱される場合を説明する。以下では第1の静止型デシカント30に注目して説明する。
外気から除湿するべき外気除湿量は、
空気処理装置500の設置される室内の湿度と、室内における設定湿度との差、もしくは、外気の湿度と、設定湿度との差から計算することができる。
ダンパー制御部111及び加熱器制御部114は、これら差により、外気除湿量を計算する。第2の静止型デシカント31については第1の静止型デシカント30と同様である。
The case where the first static desiccant 30 and the second static desiccant 31 are heated by the return air based on the amount of dehumidified outside air will be described. Hereinafter, the first stationary desiccant 30 will be described with attention.
The amount of dehumidified outside air that should be dehumidified from the outside air is
It can be calculated from the difference between the humidity in the room where the air treatment device 500 is installed and the set humidity in the room, or the difference between the humidity of the outside air and the set humidity.
The damper control unit 111 and the heater control unit 114 calculate the amount of dehumidification of the outside air based on these differences. The second stationary desiccant 31 is the same as the first stationary desiccant 30.
 制御装置100は、外気除湿量に応じて、還気によってデシカントの加熱量を変化させる。制御装置100は、デシカントの加熱量を変化させるために、以下の切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cの3つの制御を実行する。制御装置100は、切替タイミング制御100Aと、加熱開始制御100Bと、加熱能力制御100Cとの少なくともいずれかの制御によって、第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を制御する。切替タイミング制御100Aは、上流ダンパー20が還気流路と外気流路とを切り替える切替タイミングを、外気除湿量に基づいて制御する。
 加熱開始制御100Bは、加熱器10による還気の加熱開始時間を、外気除湿量に基づいて制御する。加熱能力制御100Cは、加熱器10による還気の加熱能力を、外気除湿量に基づいて制御する。このように、制御装置100は、切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cの3つの制御方式のうちのいずれか一つ、もしくは組み合わせによって、デシカントに対する加熱量を調整する。
The control device 100 changes the heating amount of the desiccant by returning air according to the amount of dehumidified outside air. The control device 100 executes the following three controls of switching timing control 100A, heating start control 100B, and heating capacity control 100C in order to change the heating amount of the desiccant. The control device 100 returns air to the first stationary desiccant 30 and the second static desiccant 31 by controlling at least one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. Controls the amount of heating by. The switching timing control 100A controls the switching timing at which the upstream damper 20 switches between the return air flow path and the outside air flow path based on the outside air dehumidification amount.
The heating start control 100B controls the heating start time of the return air by the heater 10 based on the amount of dehumidification of the outside air. The heating capacity control 100C controls the heating capacity of the return air by the heater 10 based on the amount of dehumidified outside air. As described above, the control device 100 adjusts the heating amount for the desiccant by any one or a combination of the three control methods of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C.
 制御装置100は、外気除湿量が増加するほど第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を増加する。また、制御装置100は、外気除湿量が減少するほど第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を減少する。 The control device 100 increases the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of dehumidification of the outside air increases. Further, the control device 100 reduces the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of dehumidification of the outside air decreases.
 図10は、上面図である図4と図6を簡略化した図である。図10の再生状態1及び再生状態2が図6に相当し、吸着状態が図4に相当する。図10では第1の静止型デシカント30に着目し、第1の静止型デシカント30に還気が流入する場合を再生状態1及び再生状態2と呼び、第1の静止型デシカント30に外気が流入する場合を吸着状態1と呼んでいる。第1の静止型デシカント30に着目すれば以下のようである。
(1)再生状態1では、加熱器10で加熱された高温低湿の還気は、外気を除湿した後の第1の静止型デシカント30を乾燥し、再生する。
(2)ダンパー制御部111が上流ダンパー20を切り替えることで、再生状態1は吸着状態1へ移る。吸着状態1では、冷却器11で冷却された低温高湿の外気は、水分が第1の静止型デシカント30に吸着され、除湿される。
(3)ダンパー制御部111が上流ダンパー20を切り替えることで、吸着状態1は再生状態2へ移る。再生状態2では、加熱器10で加熱された高温低湿の還気は、吸着状態1で外気を除湿した第1の静止型デシカント30を乾燥し、再生する。以下、第1の静止型デシカント30の吸着状態と再生状態とが繰り返される。
FIG. 10 is a simplified view of FIGS. 4 and 6 which are top views. The reproduction state 1 and the reproduction state 2 of FIG. 10 correspond to FIG. 6, and the adsorption state corresponds to FIG. In FIG. 10, paying attention to the first stationary desiccant 30, the case where the return air flows into the first stationary desiccant 30 is called the regeneration state 1 and the regeneration state 2, and the outside air flows into the first stationary desiccant 30. This case is called the adsorption state 1. Focusing on the first stationary desiccant 30, it is as follows.
(1) In the regeneration state 1, the high-temperature and low-humidity return air heated by the heater 10 dries and regenerates the first static desiccant 30 after dehumidifying the outside air.
(2) When the damper control unit 111 switches the upstream damper 20, the reproduction state 1 shifts to the suction state 1. In the adsorption state 1, the low-temperature and high-humidity outside air cooled by the cooler 11 is dehumidified by adsorbing moisture to the first static desiccant 30.
(3) When the damper control unit 111 switches the upstream damper 20, the suction state 1 shifts to the reproduction state 2. In the regeneration state 2, the high-temperature and low-humidity return air heated by the heater 10 dries and regenerates the first static desiccant 30 from which the outside air has been dehumidified in the adsorption state 1. Hereinafter, the adsorption state and the regeneration state of the first stationary desiccant 30 are repeated.
 図11は、実施の形態1の空気処理装置500の比較例の制御の動作を示す図である。図11では第1の静止型デシカント30に着目したときの、第1の静止型デシカント30の温度変化を示す。横軸は時間であり、縦軸は第1の静止型デシカント30の温度を示す。再生状態1,2及び吸着状態1は図10に示した各状態である。温度T1は、第1の静止型デシカント30が還気に水分を放出する脱着及び第1の静止型デシカント30が外気の水分を吸う吸着の温度である。図11に示す比較例の制御では、デシカントの吸着時間に合わせてデシカントの切り替え時間tswが設定される。図11ではtsw0,tsw1,tsw2,tsw3を示している。隣接するデシカントの切り替え時間tswの間隔である△tswは、等しい。すなわち、tsw3-tsw2=tsw2-tsw1=tsw1-tsw0=△tswである。脱着完了時間tdeからデシカントの切り替え時間tsw1では、加熱器10で加熱された還気の有する熱は第1の静止型デシカント30の温度上昇に使われる。具体的には、第1の静止型デシカント30の再生が完了した脱着完了時間tdeの後に、引き続き加熱された還気が第1の静止型デシカント30に送られる。そうすると、第1の静止型デシカント30は過熱状態になって温度が高くなり、第1の静止型デシカント30の温度は切り替え時間tsw1で温度T2に至る。ダンパー切り替えにより、切り替え時間tsw1で、再生された第1の静止型デシカント30に外気が流入する場合、第1の静止型デシカント30が外気を除湿するまでにデシカントの温度を下げる時間△tdwが発生し、時間tadで第1の静止型デシカント30は外気の水分の吸着を開始する。よって、第1の静止型デシカント30の過熱により、吸着状態1において、再生された第1の静止型デシカント30の除湿効率が低下する。つまり、図11に示すように、デシカント再生時間tdeに対して、切り替え時間tsw1の関係が、
de≦tsw1
となっている。
sw1-tde=△tdeとすると、△tdeが長いほど、ダンパー切り替え後の除湿効率が低下する。つまり△tdeが長いほど、tad-tsw1=△tdwが長くなる。従って、
△tde≒0となるように、制御装置100は、デシカントの加熱量を制御する。
FIG. 11 is a diagram showing a control operation of a comparative example of the air treatment device 500 according to the first embodiment. FIG. 11 shows the temperature change of the first stationary desiccant 30 when the first stationary desiccant 30 is focused on. The horizontal axis is time, and the vertical axis is the temperature of the first stationary desiccant 30. The regeneration states 1 and 2 and the adsorption state 1 are the respective states shown in FIG. The temperature T1 is the temperature at which the first stationary desiccant 30 releases moisture from the return air and the first stationary desiccant 30 absorbs moisture from the outside air. In the control of the comparative example shown in FIG. 11, the desiccant switching time tsw is set according to the adsorption time of the desiccant. FIG. 11 shows t sw0 , t sw1 , t sw2 , and t sw3 . Δt sw , which is the interval of the switching time t sw of the adjacent desiccants, is equal. That is, t sw3 -t sw2 = t sw2 -t sw1 = t sw1 -t sw0 = Δt sw . In the desorption completion time t de to the desiccant switching time t sw1 , the heat of the return air heated by the heater 10 is used to raise the temperature of the first stationary desiccant 30. Specifically, after the desorption completion time t de when the regeneration of the first stationary desiccant 30 is completed, the continuously heated return air is sent to the first stationary desiccant 30. Then, the first static desiccant 30 becomes overheated and the temperature rises, and the temperature of the first static desiccant 30 reaches the temperature T2 in the switching time t sw1 . When the outside air flows into the regenerated first stationary desiccant 30 at the switching time t sw1 due to the damper switching, the time for lowering the temperature of the desiccant until the first stationary desiccant 30 dehumidifies the outside air Δt dw . The first stationary desiccant 30 starts adsorbing the moisture of the outside air at the time tad . Therefore, due to the overheating of the first static desiccant 30, the dehumidifying efficiency of the regenerated first static desiccant 30 is lowered in the adsorption state 1. That is, as shown in FIG. 11, the relationship between the desiccant reproduction time t de and the switching time t sw 1 is as follows.
t de ≤ t sw1 ,
It has become.
Assuming that t sw1 -t de = Δt de , the longer Δt de , the lower the dehumidifying efficiency after switching the damper. That is, the longer Δt de , the longer tad −t sw1 = Δt dw . Therefore,
The control device 100 controls the heating amount of the desiccant so that Δt de ≈ 0.
<制御装置による制御>
 図12は、空気処理装置500による制御と比較例による制御とを示す。破線は図11の比較例のグラフの一部を示す。空気処理装置500による制御では、図12に示すように図11で述べた△tdeは発生しない。△tdeは発生しないことについては後述する。このため、tde=tsw1=tadとなって、空気処理装置500による制御を示すグラフは温度T1の水平な直線になる。つまり、空気処理装置500による制御では、第1の静止型デシカント30は、△tde=0である。空気処理装置500では、制御装置100が、切替タイミング制御100Aと、加熱開始制御100Bと、加熱能力制御100Cとの少なくともいずれかの制御によって、図12に示す温度T1の水平な直線を実現する。切替タイミング制御100Aは、制御装置100のダンパー制御部111が実行する。加熱開始制御100B及び加熱能力制御100Cは、加熱器制御部114が実行する。
<Control by control device>
FIG. 12 shows the control by the air treatment device 500 and the control by the comparative example. The broken line shows a part of the graph of the comparative example of FIG. In the control by the air treatment device 500, as shown in FIG. 12, the Δt de described in FIG. 11 does not occur. It will be described later that Δt de does not occur. Therefore, t de = t sw1 = ta ad , and the graph showing the control by the air treatment device 500 becomes a horizontal straight line at the temperature T1. That is, under the control by the air processing device 500, the first stationary desiccant 30 has Δt de = 0. In the air treatment device 500, the control device 100 realizes a horizontal straight line of the temperature T1 shown in FIG. 12 by controlling at least one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. The switching timing control 100A is executed by the damper control unit 111 of the control device 100. The heater control unit 114 executes the heating start control 100B and the heating capacity control 100C.
 制御装置100が実行する、切替タイミング制御100A、加熱開始制御100B及び加熱能力制御100Cの概要を以下に説明する。背景技術で述べたように、再生側デシカントの再生完了時点は、水分を吸着するべき空気を流入する次の風路の切り替え時点tswよりも先に到達するように、デシカントに対する加熱能力が設定されている。ここで、吸着側デシカントの吸着完了は保証されていない。しかし、デシカントへの加熱量の制御によって、「吸着までにかかる時間=脱着完了までにかかる時間」とできる。これは、tde=tsw1,=tadを意味する。例えば、図11の比較例において、吸着完了まで5分、脱着完了まで3分だったところを、デシカントに対する加熱量を調整して、吸着完了5分、脱着完了5分という制御が可能である。 The outline of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C executed by the control device 100 will be described below. As described in the background technology, the heating capacity for the desiccant is set so that when the regeneration of the regeneration side desiccant is completed, the heating capacity for the desiccant reaches before the switching time tsw of the next air passage in which the air to adsorb the moisture flows. Has been done. Here, the completion of adsorption of the adsorption side desiccant is not guaranteed. However, by controlling the amount of heating to the desiccant, "time required for adsorption = time required to complete desorption" can be obtained. This means t de = t sw1 , = ta d. For example, in the comparative example of FIG. 11, it is possible to control the adsorption completion 5 minutes and the desorption completion 5 minutes by adjusting the heating amount for the desiccant, instead of 5 minutes until the adsorption completion and 3 minutes until the desorption completion.
 また、外気から除湿すべき外気除湿量に合わせて、デシカントへの加熱量も調整する。具体的には、外気除湿量が小さければ吸着する水分量は少なく、つまりデシカントの再生に必要な加熱量も小さくて済む。 Also, adjust the amount of heating to the desiccant according to the amount of dehumidified outside air that should be dehumidified from the outside air. Specifically, if the amount of dehumidification of the outside air is small, the amount of water adsorbed is small, that is, the amount of heating required for regeneration of the desiccant can be small.
 制御装置100は、切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cのいずれか一つ、あるいはこれら3つのうちの2以上の組み合わせを実行する。これによって制御装置100は、△tswの間に再生側デシカントを「過熱」なく脱着し、かつ、「過熱」なく脱着完了した再生完了直後のデシカントで、他方のデシカントの再生期間△tswの間に、外気からの水分吸着を完了させる。この場合、切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cの概要は以下のようである。図11で想定したように、吸着完了まで5分、脱着完了まで3分のシステムを考える。
(1)切替タイミング制御100Aの場合、制御装置100は、脱着が完了、つまり3分経過の時にダンパー切り替える。ここでは、吸着側のデシカントは飽和状態まで吸着していないが、制御装置100は、ダンパーを切り替える。
(2)加熱開始制御100Bの場合、制御装置100は、吸着開始2分後から脱着を開始して、吸着完了時刻に脱着完了となるように、脱着開始時刻を遅らせる。ここで、脱着開始時刻とは、加熱器10による還気の加熱開示時刻である。
(3)加熱能力制御100Cの場合、制御装置100は、再生側デシカントに3分間で与える熱量を、5分間で与えるように、加熱器10による還気の加熱量を下げる。
The control device 100 executes any one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C, or a combination of two or more of these three. As a result, the control device 100 desorbs and desorbs the regeneration side desiccant without "overheating" during Δtsw , and is the desiccant immediately after the completion of desorption that has been desorbed without “overheating”, and the regeneration period of the other desiccant is Δtsw . In the meantime, complete the adsorption of moisture from the outside air. In this case, the outline of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C is as follows. As assumed in FIG. 11, consider a system in which adsorption is completed in 5 minutes and desorption is completed in 3 minutes.
(1) In the case of the switching timing control 100A, the control device 100 switches the damper when the attachment / detachment is completed, that is, after 3 minutes have elapsed. Here, the desiccant on the adsorption side is not adsorbed to the saturated state, but the control device 100 switches the damper.
(2) In the case of the heating start control 100B, the control device 100 starts desorption 2 minutes after the start of adsorption, and delays the desorption start time so that the desorption is completed at the adsorption completion time. Here, the desorption start time is the heating disclosure time of the return air by the heater 10.
(3) In the case of the heating capacity control 100C, the control device 100 reduces the heating amount of the return air by the heater 10 so that the heat amount given to the regeneration side desiccant in 3 minutes is given in 5 minutes.
 外気から除湿するべき必要な除湿量である外気除湿量に応じて、制御装置100は、再生側デシカントの加熱量を変化させる。上記のように、制御装置100は、切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cのいずれか一つ、あるいは組み合わせによって、再生側デシカントに対する加熱量を変化させる。
(1)切替タイミング制御100Aでは、制御装置100は、ダンパー切り替え時間tswを変更する。
(2)加熱開始制御100Bでは、制御装置100は、加熱器10で還気を加熱する加熱開始時刻を変更する。
(3)加熱能力制御100Cでは、制御装置100は、還気を加熱する加熱器10の加熱能力を変更する。
The control device 100 changes the heating amount of the regeneration side desiccant according to the outside air dehumidification amount which is a necessary dehumidification amount to be dehumidified from the outside air. As described above, the control device 100 changes the heating amount for the regeneration side desiccant by any one or a combination of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C.
(1) In the switching timing control 100A, the control device 100 changes the damper switching time t sw .
(2) In the heating start control 100B, the control device 100 changes the heating start time for heating the return air with the heater 10.
(3) In the heating capacity control 100C, the control device 100 changes the heating capacity of the heater 10 for heating the return air.
 制御装置100の除湿量決定部118は、外気除湿量から、再生側デシカントの必要な加熱量を、以下のように求める。
(1)まず、除湿量決定部118は、外気除湿量を求める。
除湿量決定部118は、室内湿度センサー85の検出する空気処理装置500の設置される室内の湿度と、設定情報記憶部82の有する室内における設定湿度との差から、外気除湿量を求める。あるいは、除湿量決定部118は、外気検知センサー80の検知する外気の湿度と、設定情報記憶部82の有する設定湿度との差から、外気除湿量を求める。
(2)除湿量決定部118は、求めた外気除湿量から、再生側デシカントの加熱量を以下のように求める。
(3)除湿量決定部118が求める外気除湿量を△xと表記する。デシカントの再生のために必要な加熱量、つまり、再生側デシカントの脱着のために必要な加熱量は、外気除湿量△xの関数になっている。関数をF、再生に必要な加熱量をJと表記すれば、
J=F(△x)  (式1)
と書ける。一般的には、外気除湿量△xが大きいほど、脱着に必要な加熱量Jが大きいという関係がある。つまり関数Fは増加関数である。式1により、制御装置100の除湿量決定部118は、再生に必要な加熱量Jを求めることができる。なお、外気除湿量△xと再生に必要な加熱量Jとの対応関係を示す対応情報を、除湿量決定部118は、式1として保有してもよいし、テーブルとして保有してもよい。
The dehumidifying amount determining unit 118 of the control device 100 obtains the required heating amount of the regeneration side desiccant from the outside air dehumidifying amount as follows.
(1) First, the dehumidification amount determination unit 118 obtains the outside air dehumidification amount.
The dehumidification amount determination unit 118 obtains the outside air dehumidification amount from the difference between the indoor humidity in which the air treatment device 500 detected by the indoor humidity sensor 85 is installed and the set humidity in the room of the setting information storage unit 82. Alternatively, the dehumidifying amount determining unit 118 obtains the outside air dehumidifying amount from the difference between the humidity of the outside air detected by the outside air detection sensor 80 and the set humidity of the setting information storage unit 82.
(2) The dehumidification amount determination unit 118 obtains the heating amount of the regeneration side desiccant from the obtained outside air dehumidification amount as follows.
(3) The outside air dehumidification amount obtained by the dehumidification amount determination unit 118 is expressed as Δx. The amount of heat required for the regeneration of the desiccant, that is, the amount of heat required for the desorption of the desiccant on the regeneration side is a function of the outside air dehumidification amount Δx. If the function is expressed as F and the amount of heating required for regeneration is expressed as J,
J = F (Δx) (Equation 1)
Can be written. In general, the larger the amount of dehumidified outside air Δx, the larger the amount of heating J required for desorption. That is, the function F is an increasing function. According to the formula 1, the dehumidifying amount determining unit 118 of the control device 100 can obtain the heating amount J required for regeneration. The dehumidification amount determination unit 118 may have the correspondence information indicating the correspondence relationship between the outside air dehumidification amount Δx and the heating amount J required for regeneration as the formula 1 or as a table.
 以上により、デシカント再生に必要な加熱量J[kJ]が計算できる。必要な加熱量J[kJ]を目標値とし、目標値を超えるぶんの熱量が再生側デシカントに供給されなければ、再生側デシカントの「過熱」がなくなり、図11で加熱Δtde=0となる。 From the above, the heating amount J [kJ] required for desiccant regeneration can be calculated. If the required heating amount J [kJ] is set as the target value and the amount of heat exceeding the target value is not supplied to the regeneration side desiccant, the “overheating” of the regeneration side desiccant disappears, and the heating Δtde = 0 in FIG.
 除湿量決定部118が求めた必要な加熱量J[kJ]を用いて、ダンパー制御部111は、切替タイミング制御100Aを実行できる。除湿量決定部118が求めた必要な加熱量J[kJ]を用いて、加熱器制御部115は、加熱開始制御100B、加熱能力制御100Cを実行できる。 The damper control unit 111 can execute the switching timing control 100A by using the required heating amount J [kJ] obtained by the dehumidification amount determination unit 118. Using the required heating amount J [kJ] obtained by the dehumidifying amount determining unit 118, the heater control unit 115 can execute the heating start control 100B and the heating capacity control 100C.
 除湿量決定部118が必要な加熱量J[kJ]を求めた後、切替タイミング制御100A、加熱開始制御100B、加熱能力制御100Cは以下のように実行される。
(1)ダンパー制御部111は、ダンパーの切替タイミング制御100Aを実行する。ダンパー制御部111は、必要な加熱量Jと、加熱器10の加熱能力Q[kW]とから、
△tsw=J÷Qを計算する。ダンパー制御部111は、計算した△tswでダンパーを切り替える。例示したシステムでは△tsw=3分が求まる。
(2)加熱器制御部114は、加熱開始制御100Bを実行する。△tsw=3分の場合、実際には△tswが5分であれば、加熱器制御部114は、例えば図11のtsw0の2分後から、加熱器10による還気の加熱を開始するように、加熱開始時刻を遅らせる。
(3)加熱器制御部114は、加熱能力制御100Cを実行する。必要な加熱量Jは一定であるので、加熱器10の加熱能力Qを小さくすれば、図11に示す△tswは長くなる。この例では、加熱器制御部114が加熱器10の加熱能力を0.6倍に制御すれば、脱着時間は3分から5分となる。
After the dehumidifying amount determining unit 118 obtains the required heating amount J [kJ], the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C are executed as follows.
(1) The damper control unit 111 executes the damper switching timing control 100A. The damper control unit 111 is based on the required heating amount J and the heating capacity Q [kW] of the heater 10.
Calculate Δt sw = J ÷ Q. The damper control unit 111 switches the damper at the calculated Δt sw . In the illustrated system, Δt sw = 3 minutes can be obtained.
(2) The heater control unit 114 executes the heating start control 100B. In the case of Δt sw = 3 minutes, if Δt sw is actually 5 minutes, the heater control unit 114 heats the return air by the heater 10 from 2 minutes after t sw0 in FIG. 11, for example. Delay the heating start time so that it starts.
(3) The heater control unit 114 executes the heating capacity control 100C. Since the required heating amount J is constant, if the heating capacity Q of the heater 10 is reduced, the Δt sw shown in FIG. 11 becomes longer. In this example, if the heater control unit 114 controls the heating capacity of the heater 10 to be 0.6 times, the desorption time is 3 to 5 minutes.
 さらに、制御装置100による外気除湿量△xに基づく具体的な制御を説明する。外気除湿量△xに基づき制御装置100が再生側デシカントの加熱量を増加する制御は以下のようである。除湿量決定部118が新たに求めた必要な熱量Jが、上昇傾向にある場合、ダンパー制御部111及び加熱器制御部114は、再生側デシカントの加熱量を増加する制御を実行する。
(1)ダンパー制御部111は、切替タイミング制御100Aによって再生側デシカントの加熱量を増加する場合には、第1の静止型デシカント30と第2の静止型デシカント31とに還気が継続して流入する継続時間△tswを増加する切替タイミング制御100Aを実行する。つまり図11を参照すれば、tsw0とtsw1との間、tsw1とtsw2との間,tsw2からtsw3との間のような、切り替え時間の間△tswを増加する。
(2)加熱器制御部114は、第1の静止型デシカント30と第2の静止型デシカント31とのいずれかに還気が流入を開始すると加熱開始制御100Bとして流入開始の後に加熱器10によって還気の加熱を開始し、かつ、加熱開始制御100Bによって加熱量を増加する場合には、還気の流入開始から加熱器10による加熱開始までの時間を減少する加熱開始制御100Bを実行する。
 図13は、加熱器制御部114が、加熱開始制御100Bによって加熱量を増加する場合に、還気の流入開始から加熱器10による加熱開始までの時間を減少する制御を示す。横軸は時間であり、縦軸は第1の静止型デシカント30に供給される熱量である。加熱器制御部114は、ダンパーの切り替え時刻tsw1と加熱器10による還気の加熱の開始時刻tsoとの間を減少する制御を実行する。図13では、加熱器制御部114の制御により加熱量はQ1に向かって増加する。比較例では加熱量は時間の経過に対して一定である。
(3)加熱器制御部114は、加熱能力制御100Cによって加熱量を増加する場合には、加熱器10の加熱能力を増加する加熱能力制御100Cを実行する。
Further, specific control based on the outside air dehumidification amount Δx by the control device 100 will be described. The control in which the control device 100 increases the heating amount of the regeneration side desiccant based on the outside air dehumidification amount Δx is as follows. When the required heat amount J newly obtained by the dehumidification amount determination unit 118 tends to increase, the damper control unit 111 and the heater control unit 114 execute control to increase the heat amount of the regeneration side desiccant.
(1) When the damper control unit 111 increases the heating amount of the reproduction side desiccant by the switching timing control 100A, the return air continues to the first static desiccant 30 and the second static desiccant 31. The switching timing control 100A for increasing the inflow duration Δtsw is executed. That is, referring to FIG. 11, Δt sw is increased during the switching time, such as between t sw0 and t sw1 , between t sw1 and t sw2 , and between t sw2 and t sw3 .
(2) When the return air starts to flow into either the first static desiccant 30 or the second static desiccant 31, the heater control unit 114 sets the heating start control 100B by the heater 10 after the inflow starts. When the heating of the return air is started and the heating amount is increased by the heating start control 100B, the heating start control 100B for reducing the time from the start of the inflow of the return air to the start of heating by the heater 10 is executed.
FIG. 13 shows a control in which the heater control unit 114 reduces the time from the start of inflow of return air to the start of heating by the heater 10 when the heating amount is increased by the heating start control 100B. The horizontal axis is time, and the vertical axis is the amount of heat supplied to the first stationary desiccant 30. The heater control unit 114 executes a control for reducing the time between the damper switching time t sw1 and the start time t so of heating the return air by the heater 10. In FIG. 13, the heating amount increases toward Q1 under the control of the heater control unit 114. In the comparative example, the amount of heating is constant with the passage of time.
(3) When the heating amount is increased by the heating capacity control 100C, the heater control unit 114 executes the heating capacity control 100C for increasing the heating capacity of the heater 10.
 外気除湿量に基づき制御装置100が再生側デシカントの加熱量を減少する制御は以下のようである。除湿量決定部118が新たに求めた必要な熱量Jが、下降傾向にある場合、ダンパー制御部111及び加熱器制御部114は、再生側デシカントの加熱量を減少する制御を実行する。
(1)ダンパー制御部111は、切替タイミング制御100Aによって再生側デシカントの加熱量を減少する場合には、第1の静止型デシカント30と第2の静止型デシカント31とに還気が継続して流入する継続時間△tswを減少する切替タイミング制御100Aを実行する。つまり図11を参照すれば、tsw0とtsw1との間、tsw1とtsw2との間,tsw2からtsw3との間のような、切り替え時間の間△tswを減少する。
(2)加熱器制御部114は、第1の静止型デシカント30と第2の静止型デシカント31とのいずれかに還気が流入を開始すると加熱開始制御100Bとして流入開始の後に加熱器10によって還気の加熱を開始し、かつ、加熱開始制御100Bによって加熱量を減少する場合には、還気の流入開始から加熱器10による加熱開始までの時間を増加する加熱開始制御100Bを実行する。図13では、加熱器制御部114が、加熱開始制御100Bによって加熱量を減少する場合には、ダンパーの切り替え時刻tsw1と加熱器10による還気の加熱の開始時刻tsoとの間を増加する制御を実行する。
(3)加熱器制御部114は、加熱能力制御100Cによって加熱量を減少する場合には、加熱器10の加熱能力を減少する加熱能力制御100Cを実行する。
The control in which the control device 100 reduces the heating amount of the regeneration side desiccant based on the outside air dehumidification amount is as follows. When the required heat amount J newly obtained by the dehumidification amount determination unit 118 is on a downward trend, the damper control unit 111 and the heater control unit 114 execute control to reduce the heat amount of the regeneration side desiccant.
(1) When the amount of heating of the reproduction side desiccant is reduced by the switching timing control 100A, the damper control unit 111 continuously returns air to the first static desiccant 30 and the second static desiccant 31. The switching timing control 100A for reducing the inflow duration Δtsw is executed. That is, with reference to FIG. 11, Δt sw is reduced during the switching time, such as between t sw0 and t sw1 , between t sw1 and t sw2 , and between t sw2 and t sw3 .
(2) When the return air starts to flow into either the first static desiccant 30 or the second static desiccant 31, the heater control unit 114 sets the heating start control 100B by the heater 10 after the inflow starts. When the heating of the return air is started and the heating amount is reduced by the heating start control 100B, the heating start control 100B for increasing the time from the start of the inflow of the return air to the start of heating by the heater 10 is executed. In FIG. 13, when the heater control unit 114 reduces the heating amount by the heating start control 100B, it increases between the damper switching time t sw1 and the heating start time t so of the return air by the heater 10. Perform control.
(3) When the heating amount is reduced by the heating capacity control 100C, the heater control unit 114 executes the heating capacity control 100C for reducing the heating capacity of the heater 10.
<水分吸着量に基づく制御>
 上記の切替タイミング制御100A、加熱開始制御100B及び加熱能力制御100Cでは、外気除湿量に基づいてデシカントの加熱量を制御する。上記の外気除湿量の代わりに、外気温湿度、風量、ダンパー切り替え時間のような測定値から求まる水分吸着量△xに応じて、デシカントを加熱する加熱量を制御する構成でも良い。この制御は、外気除湿量の場合に似ているが、外気除湿量の場合に対して、加熱器制御部114は、実際に外気から除湿された水分吸着量△Xから、加熱器10の加熱量を制御する点が異なる。具体的には以下のような制御である。
<Control based on the amount of water adsorbed>
In the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C, the heating amount of the desiccant is controlled based on the outside air dehumidifying amount. Instead of the above-mentioned outside air dehumidification amount, the heating amount for heating the desiccant may be controlled according to the water adsorption amount Δx obtained from the measured values such as the outside air temperature / humidity, the air volume, and the damper switching time. This control is similar to the case of the outside air dehumidification amount, but in the case of the outside air dehumidification amount, the heater control unit 114 heats the heater 10 from the moisture adsorption amount ΔX actually dehumidified from the outside air. The difference is that the amount is controlled. Specifically, the control is as follows.
 制御装置100は、切替タイミング制御100Aと、加熱開始制御100Bと、加熱能力制御100Cとの少なくともいずれかの制御によって、第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を制御する。切替タイミング制御100Aは、上流ダンパー20が還気流路と外気流路とを切り替える切替タイミングを、水分吸着量に基づいて制御する。加熱開始制御100Bは、加熱器10による還気の加熱開始時間を、水分吸着量に基づいて制御する。加熱能力制御100Cは、加熱器10による還気の加熱能力を、水分吸着量に基づいて制御する。 The control device 100 returns air to the first stationary desiccant 30 and the second static desiccant 31 by controlling at least one of the switching timing control 100A, the heating start control 100B, and the heating capacity control 100C. Controls the amount of heating by. The switching timing control 100A controls the switching timing at which the upstream damper 20 switches between the return air flow path and the outside air flow path based on the amount of water adsorbed. The heating start control 100B controls the heating start time of the return air by the heater 10 based on the amount of water adsorbed. The heating capacity control 100C controls the heating capacity of the return air by the heater 10 based on the amount of water adsorbed.
 制御装置100は、水分吸着量が増加するほど第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を増加する。また、制御装置100は、水分吸着量が減少するほど第1の静止型デシカント30と第2の静止型デシカント31とへの還気による加熱の加熱量を減少する。 The control device 100 increases the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of water adsorbed increases. Further, the control device 100 reduces the amount of heating by returning air to the first static desiccant 30 and the second static desiccant 31 as the amount of water adsorbed decreases.
 つまり、デシカントが外気から吸着できる水分吸着量が多いときは還気によってデシカントを加熱する際の加熱量を大きくし、デシカントが外気から吸着できる水分吸着量が少ないときは還気によってデシカントを加熱する際の加熱量を小さくする。水分吸着量の多いときの加熱量の制御は上記で述べた外気除湿量の多いときの加熱量の制御と同様であり、水分吸着量の少ないときの加熱量の制御は上記で述べた外気除湿量の少ないときの加熱量の制御と同様であるので説明は省略する。 That is, when the amount of water adsorbed by the desiccant from the outside air is large, the amount of heating when heating the desiccant by the return air is increased, and when the amount of water adsorbed by the desiccant from the outside air is small, the desiccant is heated by the return air. Reduce the amount of heating. The control of the heating amount when the amount of water adsorption is large is the same as the control of the heating amount when the amount of outside air dehumidification is large, and the control of the heating amount when the amount of water adsorption is small is the same as the control of the heating amount when the amount of water adsorption is small. Since it is the same as the control of the heating amount when the amount is small, the description thereof will be omitted.
***実施の形態1の効果***
 本実施の形態1の制御装置100によるデシカントへの加熱制御により、還気によって再生するデシカントが過熱されず、デシカントの温度上昇を抑制できる。このため、上流ダンパー20により風路切り替え直後から再生直後のデシカントは外気から水分の吸着を開始できるので、単位時間あたりの除湿量が向上する。また、デシカントヘ無駄な加熱をしないので、加熱に要するエネルギーを削減できる。
*** Effect of Embodiment 1 ***
By controlling the heating of the desiccant by the control device 100 of the first embodiment, the desiccant regenerated by the return air is not overheated, and the temperature rise of the desiccant can be suppressed. Therefore, the upstream damper 20 allows the desiccant immediately after switching the air passage to immediately after regeneration to start adsorbing moisture from the outside air, so that the amount of dehumidification per unit time is improved. In addition, since unnecessary heating is not performed on the desiccant, the energy required for heating can be reduced.
<変形例1>
 次に、実施の形態1における変形例1を説明する。変形例1は、空気処理装置500において、加熱器10と冷却器11からなる熱供給装置12と流入装置210との間に、給気流路と還気流路とをまたぐように、全熱交換器40が配置された構成である。
 全熱交換器40は、流入装置210を流出する還気が流入し、還気を加熱器10に流入させ、流入装置210を流出する外気が流入し、外気を冷却器11に流入させる。
<Modification 1>
Next, a modification 1 in the first embodiment will be described. Modification 1 is a total heat exchanger in the air treatment device 500 so as to straddle the supply air flow path and the return air flow path between the heat supply device 12 including the heater 10 and the cooler 11 and the inflow device 210. It is a configuration in which 40 is arranged.
In the total heat exchanger 40, the return air flowing out of the inflow device 210 flows in, the return air flows into the heater 10, the outside air flowing out of the inflow device 210 flows in, and the outside air flows into the cooler 11.
 図14は、第1のダンパー状態における変形例1の空気処理装置500を示す。
 図15は、第2のダンパー状態における変形例1の空気処理装置500を示す。変形例1では、流入装置210の構成が異なる。
 図14に示すように、変形例1では、流入装置210において2還気の流出する流出口212は左下に形成されており、2外気の流出する流出口214は、右上に形成されている。
 還気は第1仕切り板801の下に流れ込み、外気は第1仕切り板801の上に流れ込む必要があるためである。これは、還気は全熱交換器40の下側から全熱交換器40に流れ込んで全熱交換器40の上側から流出し、外気は全熱交換器40の上側から全熱交換器40に流れ込んで全熱交換器40の下側から流出するからである。外気及び還気が全熱交換器40を流出したあとの流れは図1及び図2の空気処理装置500と同じである。
FIG. 14 shows the air treatment device 500 of the modification 1 in the first damper state.
FIG. 15 shows the air treatment device 500 of the modification 1 in the second damper state. In the first modification, the configuration of the inflow device 210 is different.
As shown in FIG. 14, in the modified example 1, in the inflow device 210, the outflow port 212 from which the 2 return air flows out is formed in the lower left, and the outflow port 214 from which the 2 outside air flows out is formed in the upper right.
This is because the return air needs to flow under the first partition plate 801 and the outside air needs to flow over the first partition plate 801. This means that the return air flows into the total heat exchanger 40 from the lower side of the total heat exchanger 40 and flows out from the upper side of the total heat exchanger 40, and the outside air flows from the upper side of the total heat exchanger 40 to the total heat exchanger 40. This is because it flows in and flows out from the lower side of the total heat exchanger 40. The flow after the outside air and the return air flow out of the total heat exchanger 40 is the same as that of the air treatment device 500 of FIGS. 1 and 2.
<熱交換モード>
 以下に熱交換モードを説明する。熱交換モードとは、還気と外気とが全熱交換器40において、全熱交換を行うことを意味する。
(1)図14及び図15に示すように、外気と、外気に比較して温度及び湿度が低い還気とが、全熱交換器40に流入する。全熱交換器40で、外気と外気とは、温度と湿度とを熱交換する。
(2)このとき、バイパス路50を形成するバイパス路仕切り板804は、閉じられており、還気は全熱交換器40をバイパスしない。つまり、バイパス路仕切り板804が閉じている場合、還気は、全熱交換器40に流入し、全熱交換器40から加熱器10に流入する。加熱器10へ流入した還気は、高温、かつ、相対湿度が低い。
(3)上述のように、上流ダンパー20の4つのサブダンパー20a,20b,20c,20dは開閉制御が可能であり、下流ダンパー21の4つのサブダンパー21a,21b,21c,21dも開閉制御が可能である。
(4)上述のように、下流ダンパー21のサブダンパー21a,21b,21c,21dは、上流ダンパー20のサブダンパー20a,20b,20c,20dの開閉状態と逆の開閉状態である。サブダンパー20a,20b,20c,20dには上流ダンパー開閉装置320が接続しており、サブダンパー21a,21b,21c,21dには下流ダンパー開閉装置321が接続している。上流ダンパー開閉装置320は、サブダンパー20a,20b,20c,20dを開閉する。下流ダンパー開閉装置321は、サブダンパー21a,21b,21c,21dを開閉する。制御装置100のダンパー制御部111は、上流ダンパー開閉装置320を制御することでサブダンパー20a,20b,20c,20dの開閉を制御し、下流ダンパー開閉装置321を制御することでサブダンパー21a,21b,21c,21dの開閉を制御する。
(5)図15の場合、上流ダンパー20のサブダンパー20bとサブダンパー20cが開いており、サブダンパー20aとサブダンパー20dが、閉じている。
(6)下流ダンパー21では、サブダンパー21aとサブダンパー21dが開いており、サブダンパー21bとサブダンパー21cが閉じている。
<Heat exchange mode>
The heat exchange mode will be described below. The heat exchange mode means that the return air and the outside air perform total heat exchange in the total heat exchanger 40.
(1) As shown in FIGS. 14 and 15, the outside air and the return air having a lower temperature and humidity than the outside air flow into the total heat exchanger 40. In the total heat exchanger 40, the outside air and the outside air exchange heat with each other for temperature and humidity.
(2) At this time, the bypass path partition plate 804 forming the bypass path 50 is closed, and the return air does not bypass the total heat exchanger 40. That is, when the bypass path partition plate 804 is closed, the return air flows into the total heat exchanger 40 and flows from the total heat exchanger 40 into the heater 10. The return air flowing into the heater 10 has a high temperature and a low relative humidity.
(3) As described above, the four sub-dampers 20a, 20b, 20c, 20d of the upstream damper 20 can be controlled to open and close, and the four sub-dampers 21a, 21b, 21c, 21d of the downstream damper 21 can also be controlled to open and close. It is possible.
(4) As described above, the sub dampers 21a, 21b, 21c, 21d of the downstream damper 21 are in an open / closed state opposite to the open / closed state of the sub dampers 20a, 20b, 20c, 20d of the upstream damper 20. An upstream damper opening / closing device 320 is connected to the sub dampers 20a, 20b, 20c, 20d, and a downstream damper opening / closing device 321 is connected to the sub dampers 21a, 21b, 21c, 21d. The upstream damper opening / closing device 320 opens / closes the sub dampers 20a, 20b, 20c, 20d. The downstream damper opening / closing device 321 opens / closes the sub dampers 21a, 21b, 21c, 21d. The damper control unit 111 of the control device 100 controls the opening and closing of the sub dampers 20a, 20b, 20c, 20d by controlling the upstream damper opening / closing device 320, and controls the downstream damper opening / closing device 321 to control the sub dampers 21a, 21b. , 21c, 21d are controlled to open and close.
(5) In the case of FIG. 15, the sub damper 20b and the sub damper 20c of the upstream damper 20 are open, and the sub damper 20a and the sub damper 20d are closed.
(6) In the downstream damper 21, the sub damper 21a and the sub damper 21d are open, and the sub damper 21b and the sub damper 21c are closed.
 還気は、上流ダンパー20を通り抜けた後、第1の静止型デシカント30または第2の静止型デシカント31のどちらかへ流入する。図15では、還気が流入する第1の静止型デシカント30では、吸着している水分が蒸発し、乾燥する。第1の静止型デシカント30へ流入した還気は、温度が下がり、相対湿度が増大する。第1の静止型デシカント30へ流入した還気は、下流ダンパー21を通って排気される。図15に示すように、サブダンパー21dが開いている場合、還気は、サブダンパー21dから、排気として排気される。 After passing through the upstream damper 20, the return air flows into either the first stationary desiccant 30 or the second stationary desiccant 31. In FIG. 15, in the first stationary desiccant 30 into which the return air flows, the adsorbed water evaporates and dries. The return air flowing into the first stationary desiccant 30 has a lower temperature and an increased relative humidity. The return air flowing into the first stationary desiccant 30 is exhausted through the downstream damper 21. As shown in FIG. 15, when the sub-damper 21d is open, the return air is exhausted from the sub-damper 21d as exhaust gas.
 図15において、外気は全熱交換器40へ流入後、冷却器11へ流入し、低温、かつ、相対湿度が高くなる。 In FIG. 15, the outside air flows into the total heat exchanger 40 and then into the cooler 11, resulting in a low temperature and a high relative humidity.
 外気は、上流ダンパー20を通り抜けた後、サブダンパー20b,20dの開閉状態にしたがって、第1の静止型デシカント30または第2の静止型デシカント31へ流入する。
 図15ではサブダンパー20bが開いているので、外気は第2の静止型デシカント31へ流入する。外気が流入する第2の静止型デシカント31では、第2の静止型デシカント31が外気の水分を吸着し、外気を除湿する。第2の静止型デシカント31へ流入して通過した外気の温度は上がり、相対湿度が低下する。第2の静止型デシカント31を通過した外気は、下流ダンパー21を通って排気される。図15ではサブダンパー21aが開いているので、外気は、サブダンパー21aから、給気として供給される。
After passing through the upstream damper 20, the outside air flows into the first stationary desiccant 30 or the second static desiccant 31 according to the open / closed state of the sub dampers 20b and 20d.
In FIG. 15, since the sub damper 20b is open, the outside air flows into the second stationary desiccant 31. In the second static desiccant 31 into which the outside air flows, the second static desiccant 31 adsorbs the moisture of the outside air and dehumidifies the outside air. The temperature of the outside air flowing into and passing through the second stationary desiccant 31 rises, and the relative humidity decreases. The outside air that has passed through the second stationary desiccant 31 is exhausted through the downstream damper 21. Since the sub-damper 21a is open in FIG. 15, the outside air is supplied from the sub-damper 21a as supply air.
 上流ダンパー20では、サブダンパー20a、20dが閉状態であればサブダンパー20b、20cが開状態であり、このとき、下流ダンパー21では、サブダンパー21a、20dが開状態であり、サブダンパー21b、21cが閉状態である。この上流ダンパー20及び下流ダンパー21の状態を第2のダンパー状態(図15)と呼ぶ。また、サブダンパー20a、20dが開状態であればサブダンパー20b、20cは閉状態であり、このとき、下流ダンパー21では、サブダンパー21a、20dが閉状態であり、サブダンパー21b、21cが開状態である。この上流ダンパー20及び下流ダンパー21の状態を第1のダンパー状態(図14)と呼ぶ。 In the upstream damper 20, if the sub dampers 20a and 20d are in the closed state, the sub dampers 20b and 20c are in the open state. At this time, in the downstream damper 21, the sub dampers 21a and 20d are in the open state and the sub dampers 21b, 21c is in the closed state. The state of the upstream damper 20 and the downstream damper 21 is referred to as a second damper state (FIG. 15). Further, if the sub dampers 20a and 20d are in the open state, the sub dampers 20b and 20c are in the closed state. At this time, in the downstream damper 21, the sub dampers 21a and 20d are in the closed state and the sub dampers 21b and 21c are open. It is in a state. The state of the upstream damper 20 and the downstream damper 21 is referred to as a first damper state (FIG. 14).
 つまり、第1のダンパー状態は、還気が第2の静止型デシカント31に流入し、外気が第1の静止型デシカント30に流入する状態である(図14)。
 第2のダンパー状態は、還気が第1の静止型デシカント30に流入し、外気が第2の静止型デシカント31に流入する状態である(図15)。
 このような第1のダンパー状態及び第2のダンパー状態は、予め定められた時間が経過した後に切り替わる方式でも良い。制御装置100のダンパー制御部111が、予め定められた時間が経過した後に、上流ダンパー開閉装置320及び下流ダンパー開閉装置321を介して、第1のダンパー状態のサブダンパーの開閉状態と第2のダンパー状態の開閉状態とを切り替える。あるいは、給気検知センサー83(図7)によって検知した給気温湿度または排気検知センサー84(図7)によって検知した排気温湿度に応じて、ダンパー制御部111が上流ダンパー開閉装置320及び下流ダンパー開閉装置321を介して、第1のダンパー状態と第2のダンパー状態とを切り替える方式でも良い。
That is, the first damper state is a state in which the return air flows into the second stationary desiccant 31 and the outside air flows into the first stationary desiccant 30 (FIG. 14).
The second damper state is a state in which the return air flows into the first stationary desiccant 30 and the outside air flows into the second stationary desiccant 31 (FIG. 15).
Such a first damper state and a second damper state may be switched after a predetermined time has elapsed. After a predetermined time has elapsed, the damper control unit 111 of the control device 100 passes through the upstream damper opening / closing device 320 and the downstream damper opening / closing device 321 to open / close the sub-damper in the first damper state and the second damper. Switch between the open / closed state of the damper. Alternatively, the damper control unit 111 opens and closes the upstream damper opening / closing device 320 and the downstream damper according to the air temperature / humidity detected by the air supply detection sensor 83 (FIG. 7) or the exhaust temperature / humidity detected by the exhaust detection sensor 84 (FIG. 7). A method of switching between the first damper state and the second damper state may be used via the device 321.
 ダンパー制御部111が第1のダンパー状態と第2のダンパー状態とを切り替えることより、水分を吸着するデシカントと、再生されるデシカントが切り替わる。水分を吸着するデシカントは外気が通り抜けるデシカントであり、再生されるデシカントは加熱器10で加熱された還気が通り抜けるデシカントである。よって、空気処理装置500において、連続的に除湿運転が可能になる。 The damper control unit 111 switches between the first damper state and the second damper state, so that the desiccant that adsorbs water and the desiccant that is regenerated are switched. The desiccant that adsorbs moisture is a desiccant that allows the outside air to pass through, and the desiccant that is regenerated is a desiccant that allows the return air heated by the heater 10 to pass through. Therefore, in the air treatment device 500, the dehumidifying operation can be continuously performed.
<バイパスモード>
 図14、図15、図16、図17、図18、図19を参照して、バイパスモードを説明する。図16から図19では、流入装置210は省略している。図16は、変形例1における第2のダンパー状態を示す模式的な上面図である。
 図17は、変形例1における第2のダンパー状態を示す模式的な下面図である。
 図18は、バイパス路50が形成されるときの空気処理装置500の模式的な側面図である。
 図19は、バイパス路50が形成されるときの空気処理装置500の模式的な斜視図である。バイパスモードとは、還気が全熱交換器40へ流入することなく加熱器10へ流入し、還気が全熱交換器40で外気と全熱交換しないモードである。
<Bypass mode>
The bypass mode will be described with reference to FIGS. 14, 15, 16, 17, 17, 18, and 19. In FIGS. 16 to 19, the inflow device 210 is omitted. FIG. 16 is a schematic top view showing the second damper state in the first modification.
FIG. 17 is a schematic bottom view showing the second damper state in the first modification.
FIG. 18 is a schematic side view of the air treatment device 500 when the bypass path 50 is formed.
FIG. 19 is a schematic perspective view of the air treatment device 500 when the bypass path 50 is formed. The bypass mode is a mode in which the return air flows into the heater 10 without flowing into the total heat exchanger 40, and the return air does not exchange total heat with the outside air in the total heat exchanger 40.
 空気処理装置500は、還気が全熱交換器40をバイパスして加熱器10に向かうバイパス路50を有する。バイパス路50は、制御を受けることによって、還気をバイパスさせるオン状態と、還気をバイパスさせないオフ状態に切り替わる。バイパス路仕切り板804が開いている状態は、バイパス路50のオン状態である。バイパス路仕切り板804が閉じている状態は、バイパス路50のオフ状態である。
 仕切り板開閉装置350がバイパス路仕切り板804を開閉することで還気のバイパス路50がオン、オフする。後述のように制御装置100の仕切り板制御部112が仕切り板開閉装置350を制御することで、バイパス路仕切り板804が開閉する。
 制御装置100は、バイパス制御装置である。制御装置100の仕切り板制御部112は、外気の温度及び湿度と、還気の温度及び湿度とに基づいて、バイパス路50を、オン状態とオフ状態とのいずれかに切り替える。
The air treatment device 500 has a bypass path 50 in which the return air bypasses the total heat exchanger 40 and heads for the heater 10. By receiving control, the bypass path 50 switches between an on state in which the return air is bypassed and an off state in which the return air is not bypassed. The state in which the bypass path partition plate 804 is open is the on state of the bypass path 50. The state in which the bypass path partition plate 804 is closed is the off state of the bypass path 50.
When the partition plate opening / closing device 350 opens / closes the bypass path partition plate 804, the return air bypass path 50 is turned on / off. As will be described later, the partition plate control unit 112 of the control device 100 controls the partition plate opening / closing device 350 to open / close the bypass path partition plate 804.
The control device 100 is a bypass control device. The partition plate control unit 112 of the control device 100 switches the bypass path 50 between an on state and an off state based on the temperature and humidity of the outside air and the temperature and humidity of the return air.
 以下に、バイパス路仕切り板804、板805及び開口806を説明する。図14、図15では、これらを実線で示している。図14、図15に示すように、第1仕切り板801の一部には、m,n,o,pの四角形で示す開口806が形成されている。また、全熱交換器40に対してY軸の方向には、n,o,r,qで示す板805が配置されている。板805は、全熱交換器40のY軸の方向の位置に固定されており、回転しない。板805は、外気が全熱交換器40を通らずに加熱器10の配置されている側に流入することを防止する。
 第1仕切り板801の下側には、n,o,t,sで示すバイパス路仕切り板804が配置されている。図14、図15のバイパス路仕切り板804は、閉じた状態である。バイパス路仕切り板804は、閉じた状態、つまり、バイパス路50を形成しない状態では、第1仕切り板801に対して板805と対称に配置され、還気が全熱交換器40を通らずに冷却器11の配置されている側に流入することを防止する。図19では、バイパス路仕切り板804が開いた状態となり、バイパス路50が形成された状態を示す。バイパス路仕切り板804は、仕切り板開閉装置350によって、n,oが回転の軸となって回転する。回転によってバイパス路仕切り板804のt,sは板805のr,qに近づき、最後にはr,qに重なる。バイパス路仕切り板804が開いた状態では、全熱交換器40の下部から流入した還気は、全熱交換器40へ流入することなく、バイパス路仕切り板804の開状態によって現れた開口806(m、n、o、p)を通り抜けて、加熱器10へ流入する。この還気の流路がバイパス路50である。
The bypass path partition plate 804, the plate 805, and the opening 806 will be described below. In FIGS. 14 and 15, these are shown by solid lines. As shown in FIGS. 14 and 15, an opening 806 represented by a quadrangle of m, n, o, and p is formed in a part of the first partition plate 801. Further, a plate 805 represented by n, o, r, and q is arranged in the direction of the Y axis with respect to the total heat exchanger 40. The plate 805 is fixed at a position in the Y-axis direction of the total heat exchanger 40 and does not rotate. The plate 805 prevents outside air from flowing into the side where the heater 10 is arranged without passing through the total heat exchanger 40.
A bypass path partition plate 804 represented by n, o, t, and s is arranged below the first partition plate 801. The bypass path partition plate 804 of FIGS. 14 and 15 is in a closed state. The bypass path partition plate 804 is arranged symmetrically with respect to the first partition plate 801 in a closed state, that is, in a state where the bypass path 50 is not formed, and the return air does not pass through the total heat exchanger 40. It prevents the cooler 11 from flowing into the side where the cooler 11 is arranged. FIG. 19 shows a state in which the bypass path partition plate 804 is in an open state and a bypass path 50 is formed. The bypass path partition plate 804 is rotated by the partition plate opening / closing device 350 with n and o as the axis of rotation. Due to the rotation, t and s of the bypass path partition plate 804 approach r and q of the plate 805, and finally overlap with r and q. When the bypass path partition plate 804 is open, the return air flowing from the lower part of the total heat exchanger 40 does not flow into the total heat exchanger 40, and the opening 806 (opening 806) that appears due to the open state of the bypass path partition plate 804 ( It passes through m, n, o, p) and flows into the heater 10. This return air flow path is the bypass path 50.
 還気をバイパスさせるかどうかは、仕切り板制御部112が以下のように判断する。仕切り板制御部112は、外気検知センサー80と、還気検知センサー81とによって検知された値、及び設定情報記憶部82に設定された値に従って、還気をバイパスさせるかどうかを判断する。
 図20は、仕切り板制御部112が有するバイパス判定情報を示すバイパス判定テーブルである。バイパス判定テーブルは補助記憶装置130に格納されている。バイパス判定テーブルに示すv1からv12は、値の範囲を示す。仕切り板制御部112は、外気検知センサー80、還気検知センサー81及び設定情報記憶部82から値を取得し、取得した値がバイパス判定テーブルにおける1行目のv1、v2、v3、3行目のv7、v8、v9に該当する場合は、還気をバイパスさせる。この場合、仕切り板制御部112は、仕切り板開閉装置350を制御することで、バイパス路仕切り板804を開状態にする。
The partition plate control unit 112 determines whether or not to bypass the return air as follows. The partition plate control unit 112 determines whether to bypass the return air according to the values detected by the outside air detection sensor 80 and the return air detection sensor 81, and the values set in the setting information storage unit 82.
FIG. 20 is a bypass determination table showing the bypass determination information possessed by the partition plate control unit 112. The bypass determination table is stored in the auxiliary storage device 130. V1 to v12 shown in the bypass determination table indicate a range of values. The partition plate control unit 112 acquires values from the outside air detection sensor 80, the return air detection sensor 81, and the setting information storage unit 82, and the acquired values are the first row v1, v2, v3, and the third row in the bypass determination table. If it corresponds to v7, v8, v9 of, the return air is bypassed. In this case, the partition plate control unit 112 controls the partition plate opening / closing device 350 to open the bypass path partition plate 804.
 バイパスモードでは、図14、図15及び図18に示すように、外気と、外気と比較して温度と湿度が低い還気とは、全熱交換器40で全熱交換を行わない。これにより、還気と外気とは、温度と湿度とを交換せずに、それぞれ加熱器10と冷却器11に流入する。それ以降の動作は、熱交換モードと同一である。 In the bypass mode, as shown in FIGS. 14, 15 and 18, the total heat exchange between the outside air and the return air whose temperature and humidity are lower than those of the outside air is not performed by the total heat exchanger 40. As a result, the return air and the outside air flow into the heater 10 and the cooler 11, respectively, without exchanging the temperature and the humidity. Subsequent operations are the same as in the heat exchange mode.
 バイパスモードと熱交換モードの切替えは、加熱器10と冷却器11とに必要なエネルギーが最小になるか否かで決められる。
 図21は、外気の空気線図上の動きを示す。図21において、記号は以下のとおりである。
Lo_OA:全熱交換器40の出口外気、
Lo_RA:全熱交換器40の出口還気、
HEXo:冷却器11の出口空気、
ET:冷媒の蒸発温度、
I:空気エンタルピー、
ΔI_Lo:全熱交換器40の通過時に冷却器11で必要なエンタルピー変化、
ΔI_bypass:全熱交換器40のバイパス時に冷却器11で必要なエンタルピー変化。
Switching between the bypass mode and the heat exchange mode is determined by whether or not the energy required for the heater 10 and the cooler 11 is minimized.
FIG. 21 shows the movement of the outside air on the psychrometric chart. In FIG. 21, the symbols are as follows.
Lo_OA: Outlet outside air of total heat exchanger 40,
Lo_RA: Outlet return air of total heat exchanger 40,
HEXo: Outlet air of cooler 11
ET: Refrigerant evaporation temperature,
I: Air enthalpy,
ΔI_Lo: Change in enthalpy required by the cooler 11 when passing through the total heat exchanger 40,
ΔI_bypass: The enthalpy change required by the cooler 11 when bypassing the total heat exchanger 40.
 図21に示すように、全熱交換器40を通過させることで、冷却器11で必要な比エンタルピー変化ΔI_bypassが、ΔI_Loに減少する。つまり、冷却器11で必要な冷却能力が減少する。
 一方で、全熱交換器40を通過した還気は室内空気(還気よりも高温多湿な空気)(Lo_RA)となり、加熱器10に流入する。加熱器10では静止型デシカントを再生させるために流入空気が一定の相対湿度よりも低くなるように加熱能力が制御されるため、湿度が高い空気ほど加熱器10で必要な加熱能力が大きくなる。従って、還気を全熱交換器40に流入させることで、加熱器10において必要な加熱能力が増加する。
As shown in FIG. 21, by passing through the total heat exchanger 40, the specific enthalpy change ΔI_bypass required by the cooler 11 is reduced to ΔI_Lo. That is, the cooling capacity required for the cooler 11 is reduced.
On the other hand, the return air that has passed through the total heat exchanger 40 becomes indoor air (air that is hotter and more humid than the return air) (Lo_RA) and flows into the heater 10. In the heater 10, the heating capacity is controlled so that the inflow air becomes lower than a constant relative humidity in order to regenerate the static desiccant. Therefore, the higher the humidity of the air, the larger the heating capacity required by the heater 10. Therefore, by flowing the return air into the total heat exchanger 40, the heating capacity required in the heater 10 is increased.
 外気の状態と、還気を全熱交換器40へ流入させるかとによって、必要な加熱能力と冷却能力、つまりは必要なエネルギーが変化する。このため、バイパスモードが熱交換モードよりも必要エネルギーが小さい状況が存在する。空気処理装置500では、上記で述べたように、外気検知センサー80、還気検知センサー81及び設定情報記憶部82から取得した値が、バイパス判定テーブルのバイパス路ONを満たすときに、仕切り板制御部112がバイパス路仕切り板804を開状態にしてバイパス路50を形成する。 The required heating capacity and cooling capacity, that is, the required energy, change depending on the state of the outside air and whether the return air flows into the total heat exchanger 40. Therefore, there is a situation where the bypass mode requires less energy than the heat exchange mode. In the air treatment device 500, as described above, when the values acquired from the outside air detection sensor 80, the return air detection sensor 81, and the setting information storage unit 82 satisfy the bypass path ON of the bypass determination table, the partition plate control is performed. The portion 112 opens the bypass path partition plate 804 to form the bypass path 50.
***変形例1の効果***
 変形例1の空気処理装置500によれば、必要な除湿量を満足しながら、外気の状態に応じてバイパスモードと熱交換モードとを切り替える。よって、必要エネルギーが最小となるような、エネルギー効率の高い空気処理装置を提供できる。
*** Effect of Modification 1 ***
According to the air treatment device 500 of the first modification, the bypass mode and the heat exchange mode are switched according to the state of the outside air while satisfying the required dehumidification amount. Therefore, it is possible to provide an energy-efficient air treatment device that minimizes the required energy.
 また、冷却器11が加熱器10よりも下側に配置する構成とすれば、冷却器11で発生する凝縮水が加熱器10にかからないため、凝縮水の回収が容易になる。 Further, if the cooler 11 is arranged below the heater 10, the condensed water generated by the cooler 11 does not cover the heater 10, so that the condensed water can be easily recovered.
<変形例2>
 図22は、変形例2の構成を示す。図22では流入装置210を省略している。空気処理装置500は、さらに、圧縮機、第1の熱交換器である凝縮器、膨張弁及び第2の熱交換器である蒸発器を有し、冷媒が循環する冷凍サイクル装置を備えてもよい。具体的には図22に示すように、空気処理装置500は、圧縮機71、第1の熱交換器、膨張弁70、及び、第2の熱交換器を配管で接続して冷媒を循環させる冷凍サイクル装置450を備える。空気処理装置500は、第1の熱交換器を加熱器10、第2の熱交換器を冷却器11として用いる。
<Modification 2>
FIG. 22 shows the configuration of the modified example 2. In FIG. 22, the inflow device 210 is omitted. The air treatment device 500 further includes a compressor, a condenser which is a first heat exchanger, an expansion valve, and an evaporator which is a second heat exchanger, and may include a refrigeration cycle device in which a refrigerant circulates. good. Specifically, as shown in FIG. 22, the air treatment device 500 connects the compressor 71, the first heat exchanger, the expansion valve 70, and the second heat exchanger with pipes to circulate the refrigerant. A refrigeration cycle device 450 is provided. The air treatment device 500 uses the first heat exchanger as the heater 10 and the second heat exchanger as the cooler 11.
 制御装置100は冷媒制御装置である。制御装置100の冷媒制御部113は、凝縮器である第1の熱交換器及び第2の熱交換器である蒸発器に流入する冷媒の流量と温度とを制御する。制御装置100の冷媒制御部113は、圧縮機71の回転数と膨張弁70の開度とを調整することで、加熱器10である凝縮器の加熱能力と、冷却器11である蒸発器の冷却能力を制御する。加熱能力と冷却能力は、外気検知センサー80、還気検知センサー81、設定情報記憶部82よって検知された、あるいは設定情報記憶部82に設定された値によって、図7に示す冷媒制御部113が決定する。 The control device 100 is a refrigerant control device. The refrigerant control unit 113 of the control device 100 controls the flow rate and temperature of the refrigerant flowing into the first heat exchanger, which is a condenser, and the evaporator, which is a second heat exchanger. The refrigerant control unit 113 of the control device 100 adjusts the rotation speed of the compressor 71 and the opening degree of the expansion valve 70 to increase the heating capacity of the condenser, which is the heater 10, and the evaporator, which is the cooler 11. Control cooling capacity. The heating capacity and the cooling capacity are detected by the outside air detection sensor 80, the return air detection sensor 81, and the setting information storage unit 82, or are set by the setting information storage unit 82, and the refrigerant control unit 113 shown in FIG. 7 determines the heating capacity and the cooling capacity. decide.
 冷凍サイクル装置450を備えることで、単一の冷媒回路で加熱と冷却を行なえるため、空気処理装置500をコンパクトに構成できる。また、冷熱を生成する際に発生する排熱を加熱器10に利用するため、エネルギー効率を高めることができる。 By providing the refrigeration cycle device 450, heating and cooling can be performed by a single refrigerant circuit, so that the air treatment device 500 can be compactly configured. Further, since the waste heat generated when the cold heat is generated is used for the heater 10, the energy efficiency can be improved.
 なお、図示はしてないが、加熱器10と圧縮機71の間に熱交換器と送風ファンを備えた室外機を設置し、加熱能力を調整できるようにしても良い。 Although not shown, an outdoor unit equipped with a heat exchanger and a blower fan may be installed between the heater 10 and the compressor 71 so that the heating capacity can be adjusted.
<変形例3>
 図23は、変形例3を示す。図23では流入装置210を省略している。変形例3では、冷凍サイクル装置450は、第1の熱交換器である凝縮器を蒸発器として機能させ、第2の熱交換器である蒸発器を凝縮器として機能させる四方弁を備える。空気処理装置500は、さらに、外気流路において複合除湿デバイス32の下流に配置され、凝縮器が蒸発器として機能する場合に、外気が通過し、通過する外気を加湿する加湿装置90を備える。図23に示すように、変形例2の冷凍サイクル装置450に四方弁72を加え、さらに下流ダンパー21の下流に外気を加湿する加湿装置90を設置する。
<Modification 3>
FIG. 23 shows a modification 3. In FIG. 23, the inflow device 210 is omitted. In the third modification, the refrigeration cycle apparatus 450 includes a four-way valve that causes the condenser, which is the first heat exchanger, to function as an evaporator, and the evaporator, which is the second heat exchanger, to function as a condenser. The air treatment device 500 is further arranged downstream of the composite dehumidifying device 32 in the outside air flow path, and includes a humidifying device 90 through which the outside air passes and humidifies the passing outside air when the condenser functions as an evaporator. As shown in FIG. 23, a four-way valve 72 is added to the refrigeration cycle device 450 of the second modification, and a humidifying device 90 for humidifying the outside air is further installed downstream of the downstream damper 21.
 除湿時の動作は変形例2と同様である。四方弁72を切り替えることで第2の熱交換器を凝縮器(加熱器)として用いる。これにより、外気を第2の熱交換器で加熱してから加湿装置90に流入させることで加湿を行う。加湿時はデシカントを利用しなくても良い。デシカントを利用する場合は、除湿時とは反対に外気によってデシカントから放出される水分によって加湿し、さらに加湿装置90で加湿を行う。 The operation during dehumidification is the same as in the modified example 2. By switching the four-way valve 72, the second heat exchanger is used as a condenser (heater). As a result, the outside air is heated by the second heat exchanger and then flowed into the humidifying device 90 to perform humidification. It is not necessary to use a desiccant when humidifying. When the desiccant is used, it is humidified by the moisture released from the desiccant by the outside air, which is opposite to the dehumidification, and further humidified by the humidifying device 90.
 同一の空気処理装置500で加湿と除湿を行う事ができるので、空気処理装置500を通年利用できる効果がある。 Since humidification and dehumidification can be performed with the same air treatment device 500, there is an effect that the air treatment device 500 can be used all year round.
<ハードウェア構成の補足>
 以下に、制御装置100のハードウェア構成の補足をしておく。図7の制御装置100では、制御装置100の機能がソフトウェアで実現されるが、制御装置100の機能がハードウェアで実現されても良い。
 図24は、制御装置100の変形例のハードウェア構成を示す。図24の電子回路600は、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118、主記憶装置120、補助記憶装置130、入力IF140、出力IF150及び通信IF160の機能を実現する専用の電子回路である。電子回路600は、信号線601に接続している。電子回路600は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。制御装置100の構成要素の機能は、1つの電子回路で実現されても良いし、複数の電子回路に分散して実現されても良い。別の変形例として、制御装置100の構成要素の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されても良い。
<Supplement to hardware configuration>
The following is a supplement to the hardware configuration of the control device 100. In the control device 100 of FIG. 7, the function of the control device 100 is realized by software, but the function of the control device 100 may be realized by hardware.
FIG. 24 shows a hardware configuration of a modified example of the control device 100. The electronic circuit 600 of FIG. 24 includes a damper control unit 111, a partition plate control unit 112, a refrigerant control unit 113, a heater control unit 114 and a dehumidification amount determination unit 118, a main storage device 120, an auxiliary storage device 130, an input IF 140, and an output. It is a dedicated electronic circuit that realizes the functions of IF150 and communication IF160. The electronic circuit 600 is connected to the signal line 601. Specifically, the electronic circuit 600 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA. GA is an abbreviation for Gate Array. ASIC is an abbreviation for Application Specific Integrated Circuit. FPGA is an abbreviation for Field-Programmable Gate Array. The functions of the components of the control device 100 may be realized by one electronic circuit or may be distributed and realized by a plurality of electronic circuits. As another modification, some functions of the components of the control device 100 may be realized by an electronic circuit, and the remaining functions may be realized by software.
 プロセッサ110と電子回路600の各々は、プロセッシングサーキットリとも呼ばれる。制御装置100において、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118の機能がプロセッシングサーキットリにより実現されても良い。あるいは、ダンパー制御部111、仕切り板制御部112、冷媒制御部113、加熱器制御部114及び除湿量決定部118、主記憶装置120、補助記憶装置130、入力IF140、出力IF150及び通信IF160の機能が、プロセッシングサーキットリにより実現されても良い。 Each of the processor 110 and the electronic circuit 600 is also called a processing circuit. In the control device 100, the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114, and the dehumidification amount determination unit 118 may be realized by the processing circuit. Alternatively, the functions of the damper control unit 111, the partition plate control unit 112, the refrigerant control unit 113, the heater control unit 114 and the dehumidification amount determination unit 118, the main storage device 120, the auxiliary storage device 130, the input IF 140, the output IF 150 and the communication IF 160. However, it may be realized by processing circuit storage.
 以上、複数の変形例を含む実施の形態1を説明したが、複数の変形例を含む実施の形態1のうち、1つを部分的に実施しても構わない。あるいは、複数の変形例を含む実施の形態1のうち、2つ以上を部分的に組み合わせて実施しても構わない。なお、本開示は、実施の形態1に限定されるものではなく、必要に応じて種々の変更が可能である。 Although the first embodiment including a plurality of modified examples has been described above, one of the first embodiments including a plurality of modified examples may be partially implemented. Alternatively, two or more of the first embodiments including a plurality of modifications may be partially combined and carried out. The present disclosure is not limited to the first embodiment, and various modifications can be made as necessary.
 10 加熱器、11 冷却器、12 熱供給装置、20 上流ダンパー、20a,20b,20c,20d サブダンパー、21 下流ダンパー、21a,21b,21c,21d サブダンパー、30 第1の静止型デシカント、31 第2の静止型デシカント、32 複合除湿デバイス、40 全熱交換器、50 バイパス路、60 冷媒配管、70 膨張弁、71 圧縮機、72 四方弁、80 外気検知センサー、81 還気検知センサー、82 設定情報記憶部、83 給気検知センサー、84 排気検知センサー、85 室内湿度センサー、90 加湿装置、100 制御装置、101 制御プログラム、110 プロセッサ、111 ダンパー制御部、112 仕切り板制御部、113 冷媒制御部、114 加熱器制御部、120 主記憶装置、130 補助記憶装置、140 入力IF、118 除湿量決定部、150 出力IF、160 通信IF、170 信号線、210 流入装置、211 還気流入口、212 流出口、213 外気流入口、214 流出口、216,217,218 仕切り板、220 流出装置、221 還気流出口、222 外気流出口、320 上流ダンパー開閉装置、321 下流ダンパー開閉装置、350 仕切り板開閉装置、400 筐体、450 冷凍サイクル装置、500 空気処理装置、600 電子回路、601 信号線、801 第1仕切り板、802 第2仕切り板、803 第3仕切り板、804 バイパス路仕切り板、805 板、806 開口、801a 第1仕切り板、802a 第2仕切り板、803a 第3仕切り板、810 還気流路、811 外気流路。 10 heater, 11 cooler, 12 heat supply device, 20 upstream damper, 20a, 20b, 20c, 20d sub-damper, 21 downstream damper, 21a, 21b, 21c, 21d sub-damper, 30 first stationary desiccant, 31 2nd static desiccant, 32 compound dehumidifying device, 40 total heat exchanger, 50 bypass path, 60 refrigerant piping, 70 expansion valve, 71 compressor, 72 four-way valve, 80 outside air detection sensor, 81 return air detection sensor, 82 Setting information storage unit, 83 air supply detection sensor, 84 exhaust detection sensor, 85 indoor humidity sensor, 90 humidification device, 100 control device, 101 control program, 110 processor, 111 damper control unit, 112 partition plate control unit, 113 refrigerant control Unit, 114 heater control unit, 120 main storage device, 130 auxiliary storage device, 140 input IF, 118 dehumidification amount determination unit, 150 output IF, 160 communication IF, 170 signal line, 210 inflow device, 211 return air inlet, 212 Outlet, 213 outside air flow inlet, 214 outflow port, 216, 217,218 partition plate, 220 outflow device, 221 return air flow outlet, 222 outside air flow outlet, 320 upstream damper opening / closing device, 321 downstream damper opening / closing device, 350 partition plate opening / closing Equipment, 400 housing, 450 refrigeration cycle equipment, 500 air treatment equipment, 600 electronic circuit, 601 signal line, 801 first partition plate, 802 second partition plate, 803 third partition plate, 804 bypass path partition plate, 805 plate , 806 opening, 801a 1st partition plate, 802a 2nd partition plate, 803a 3rd partition plate, 810 return air flow path, 811 outside air flow path.

Claims (8)

  1.  加熱器と冷却器とを有する熱供給装置と、
     ダンパーと、
     第1の静止型除湿デバイスと第2の静止型除湿デバイスとを有する複合除湿デバイスと、
    を備え、
     前記熱供給装置、前記ダンパー及び前記複合除湿デバイスは、
     前記熱供給装置、前記ダンパー及び前記複合除湿デバイスの順に、配置されており、
     前記加熱器、前記ダンパー及び前記複合除湿デバイスは、
     還気の流れる還気流路の上流から下流に向かって、前記加熱器から順に、前記還気流路に配置され、
     前記冷却器、前記ダンパー及び前記複合除湿デバイスは、
     外気の流れる外気流路の上流から下流に向かって、前記冷却器から順に、前記外気流路に配置され、
     前記ダンパーは、
     前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのうち、一方の前記静止型除湿デバイスに前記還気を流入させ、他方の前記静止型除湿デバイスに前記外気を流入させ、
     かつ、
     前記還気と前記外気とが前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのうち異なる前記静止型除湿デバイスを通過するように、前記還気流路と前記外気流路とを切り替え、
     前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとは、
     前記外気から除湿するべき除湿量に基づいて、前記還気によって加熱される空気処理装置。
    A heat supply device having a heater and a cooler,
    With the damper,
    A composite dehumidifying device having a first static dehumidifying device and a second static dehumidifying device,
    Equipped with
    The heat supply device, the damper and the composite dehumidifying device are
    The heat supply device, the damper, and the composite dehumidifying device are arranged in this order.
    The heater, the damper and the composite dehumidifying device
    From the upstream to the downstream of the return air flow path through which the return air flows, the heaters are arranged in the return air flow path in order from the heater.
    The cooler, the damper and the composite dehumidifying device
    From the upstream to the downstream of the outside air flow path through which the outside air flows, they are arranged in the outside air flow path in order from the cooler.
    The damper is
    Of the first static dehumidifying device and the second static dehumidifying device, the return air is made to flow into one of the static dehumidifying devices, and the outside air is made to flow into the other static dehumidifying device.
    and,
    The return air flow path and the outside air flow path so that the return air and the outside air pass through the static dehumidification device which is different from the first static dehumidification device and the second static dehumidification device. To switch,
    The first static dehumidifying device and the second static dehumidifying device are
    An air treatment device heated by the return air based on the amount of dehumidification to be dehumidified from the outside air.
  2.  前記空気処理装置は、さらに、
     前記ダンパーが前記還気流路と前記外気流路とを切り替える切替タイミングを、前記除湿量に基づいて制御する切替タイミング制御と、
     前記加熱器による前記還気の加熱開始時間を、前記除湿量に基づいて制御する加熱開始制御と、
     前記加熱器による前記還気の加熱能力を、前記除湿量に基づいて制御する加熱能力制御と、
    の少なくともいずれかの制御によって、
    前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとへの前記還気による加熱の加熱量を制御する制御装置を備える請求項1に記載の空気処理装置。
    The air treatment device further
    Switching timing control in which the damper controls the switching timing between the return air flow path and the outside air flow path based on the dehumidification amount, and
    Heating start control that controls the heating start time of the return air by the heater based on the dehumidification amount, and
    Heating capacity control that controls the heating capacity of the return air by the heater based on the dehumidification amount, and
    By controlling at least one of
    The air treatment device according to claim 1, further comprising a control device for controlling the amount of heating by the return air to the first static dehumidifying device and the second static dehumidifying device.
  3.  前記制御装置は、
     前記除湿量が増加するほど前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとへの前記還気による加熱の加熱量を増加し、
     前記除湿量が減少するほど前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとへの前記還気による加熱の加熱量を減少する請求項2に記載の空気処理装置。
    The control device is
    As the amount of dehumidification increases, the amount of heating by the return air to the first static dehumidifying device and the second static dehumidifying device is increased.
    The air treatment apparatus according to claim 2, wherein the amount of heating by the return air to the first static dehumidifying device and the second static dehumidifying device is reduced as the amount of dehumidification decreases.
  4.  前記制御装置は、
     前記切替タイミング制御によって前記加熱量を増加する場合には、前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとに前記還気が継続して流入する継続時間を増加する前記切替タイミング制御を実行し、
     前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのいずれかに前記還気が流入を開始すると前記加熱開始制御として流入開始の後に前記加熱器によって前記還気の加熱を開始し、かつ、前記加熱開始制御によって前記加熱量を増加する場合には、前記還気の流入開始から前記加熱器による加熱開始までの時間を減少する前記加熱開始制御を実行し、
     前記加熱能力制御によって前記加熱量を増加する場合には、前記加熱器の加熱能力を増加する前記加熱能力制御を実行する請求項3に記載の空気処理装置。
    The control device is
    When the heating amount is increased by the switching timing control, the switching that increases the duration of continuous inflow of the return air into the first static dehumidifying device and the second static dehumidifying device. Execute timing control and
    When the return air starts to flow into either the first static dehumidifying device or the second static dehumidifying device, the return air is heated by the heater after the inflow is started as the heating start control. In addition, when the heating amount is increased by the heating start control, the heating start control for reducing the time from the start of inflow of the dehumidifier to the start of heating by the heater is executed.
    The air treatment apparatus according to claim 3, wherein when the heating amount is increased by the heating capacity control, the heating capacity control for increasing the heating capacity of the heater is executed.
  5.  前記制御装置は、
     前記切替タイミング制御によって前記加熱量を減少する場合には、前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとに前記還気が継続して流入する継続時間を減少する前記切替タイミング制御を実行し、
     前記加熱開始制御として、前記第1の静止型除湿デバイスと前記第2の静止型除湿デバイスとのいずれかに前記還気が流入を開始すると、流入開始の後に前記加熱器によって前記還気の加熱を開始し、かつ、前記加熱開始制御によって前記加熱量を減少する場合には、前記還気の流入開始から前記加熱器による加熱開始までの時間を増加する前記加熱開始制御を実行し、
     前記加熱能力制御によって前記加熱量を減少する場合には、前記加熱器の加熱能力を減少する前記加熱能力制御を実行する請求項3に記載の空気処理装置。
    The control device is
    When the heating amount is reduced by the switching timing control, the switching that reduces the duration of continuous inflow of the return air into the first static dehumidifying device and the second static dehumidifying device. Execute timing control and
    As the heating start control, when the return air starts to flow into either the first static dehumidifying device or the second static dehumidifying device, the return air is heated by the heater after the inflow starts. And when the heating amount is reduced by the heating start control, the heating start control for increasing the time from the start of the inflow of the dehumidifier to the start of heating by the heater is executed.
    The air treatment apparatus according to claim 3, wherein when the heating amount is reduced by the heating capacity control, the heating capacity control for reducing the heating capacity of the heater is executed.
  6.  前記空気処理装置は、さらに、
     圧縮機、凝縮器、膨張弁及び蒸発器を有し冷媒が循環する冷凍サイクル装置を備え、
     前記加熱器は、
     前記凝縮器が使用され、
     前記冷却器は、
     前記蒸発器が使用される請求項1から請求項5のいずれか1項に記載の空気処理装置。
    The air treatment device further
    It has a compressor, a condenser, an expansion valve and an evaporator, and is equipped with a refrigeration cycle device in which the refrigerant circulates.
    The heater is
    The condenser is used
    The cooler
    The air treatment apparatus according to any one of claims 1 to 5, wherein the evaporator is used.
  7.  前記空気処理装置は、さらに、
     前記凝縮器及び前記蒸発器に流入する前記冷媒の流量と温度とを制御する冷媒制御装置を備える請求項6に記載の空気処理装置。
    The air treatment device further
    The air treatment device according to claim 6, further comprising a refrigerant control device that controls the flow rate and temperature of the refrigerant flowing into the condenser and the evaporator.
  8.  前記冷凍サイクル装置は、さらに、
     前記凝縮器を前記蒸発器として機能させ、前記蒸発器を前記凝縮器として機能させる四方弁を備え、
     前記空気処理装置は、さらに、
     前記外気流路において前記複合除湿デバイスの下流に配置され、前記凝縮器が前記蒸発器として機能する場合に、前記外気が通過し、通過する前記外気を加湿する加湿装置を備える請求項6または請求項7に記載の空気処理装置。
    The refrigeration cycle device further
    A four-way valve that causes the condenser to function as the evaporator and the evaporator to function as the condenser is provided.
    The air treatment device further
    4. Item 7. The air treatment apparatus according to Item 7.
PCT/JP2020/031330 2020-08-19 2020-08-19 Air treatment device WO2022038721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022543880A JP7361936B2 (en) 2020-08-19 2020-08-19 air treatment equipment
PCT/JP2020/031330 WO2022038721A1 (en) 2020-08-19 2020-08-19 Air treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031330 WO2022038721A1 (en) 2020-08-19 2020-08-19 Air treatment device

Publications (1)

Publication Number Publication Date
WO2022038721A1 true WO2022038721A1 (en) 2022-02-24

Family

ID=80323459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031330 WO2022038721A1 (en) 2020-08-19 2020-08-19 Air treatment device

Country Status (2)

Country Link
JP (1) JP7361936B2 (en)
WO (1) WO2022038721A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273963A (en) * 2008-05-12 2009-11-26 Daikin Ind Ltd Dehumidifying apparatus
JP2010084956A (en) * 2008-09-29 2010-04-15 Daikin Ind Ltd Humidity conditioning device
JP2010190495A (en) * 2009-02-18 2010-09-02 Daikin Ind Ltd Humidity conditioning device
JP2013124778A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Humidity control device
WO2013115143A1 (en) * 2012-01-31 2013-08-08 株式会社クボタ Static desiccant air conditioner and operation method
JP2015028415A (en) * 2013-06-28 2015-02-12 ダイキン工業株式会社 Dehumidifying device and dehumidifying system
JP2016084982A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Dehumidifier
JP2016125720A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Dehumidification system
JP2017072346A (en) * 2015-10-09 2017-04-13 大阪瓦斯株式会社 Air conditioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273963A (en) * 2008-05-12 2009-11-26 Daikin Ind Ltd Dehumidifying apparatus
JP2010084956A (en) * 2008-09-29 2010-04-15 Daikin Ind Ltd Humidity conditioning device
JP2010190495A (en) * 2009-02-18 2010-09-02 Daikin Ind Ltd Humidity conditioning device
JP2013124778A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Humidity control device
WO2013115143A1 (en) * 2012-01-31 2013-08-08 株式会社クボタ Static desiccant air conditioner and operation method
JP2015028415A (en) * 2013-06-28 2015-02-12 ダイキン工業株式会社 Dehumidifying device and dehumidifying system
JP2016084982A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Dehumidifier
JP2016125720A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Dehumidification system
JP2017072346A (en) * 2015-10-09 2017-04-13 大阪瓦斯株式会社 Air conditioning system

Also Published As

Publication number Publication date
JPWO2022038721A1 (en) 2022-02-24
JP7361936B2 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US20230022397A1 (en) Air quality adjustment system
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
WO2011111753A1 (en) Desiccant air conditioning device
JP5218135B2 (en) Humidity control device
WO2005103577A1 (en) Humidity controller
JP7258122B2 (en) air treatment equipment
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
WO2022038721A1 (en) Air treatment device
JP7273962B2 (en) air treatment equipment
US7874174B2 (en) Humidity control system
JP6054734B2 (en) Dehumidification system
JP5624185B1 (en) Dehumidification system
WO2023223527A1 (en) Dehumidification system
JP2005140372A (en) Air conditioner
JP7129281B2 (en) Desiccant air conditioner
JP6911400B2 (en) Humidity control device
JP4356182B2 (en) Air conditioning system
JP2005164220A (en) Air conditioner
WO2023223526A1 (en) Dehumidification system
JP7395030B2 (en) Outside air processing equipment
WO2023079709A1 (en) Air treatment system
JP4350976B2 (en) Cooling system
JP4569150B2 (en) Humidity control device
JP3358325B2 (en) Control method of adsorption refrigeration apparatus and adsorption refrigeration apparatus
JP6235942B2 (en) Dehumidification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950286

Country of ref document: EP

Kind code of ref document: A1