WO2022038689A1 - Reception device, reception method, program, and transmission device - Google Patents

Reception device, reception method, program, and transmission device Download PDF

Info

Publication number
WO2022038689A1
WO2022038689A1 PCT/JP2020/031171 JP2020031171W WO2022038689A1 WO 2022038689 A1 WO2022038689 A1 WO 2022038689A1 JP 2020031171 W JP2020031171 W JP 2020031171W WO 2022038689 A1 WO2022038689 A1 WO 2022038689A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
characteristic
signal
variable
unit
Prior art date
Application number
PCT/JP2020/031171
Other languages
French (fr)
Japanese (ja)
Inventor
友規 村上
匡史 岩渕
陸 大宮
智明 小川
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/031171 priority Critical patent/WO2022038689A1/en
Priority to JP2022543854A priority patent/JP7468667B2/en
Publication of WO2022038689A1 publication Critical patent/WO2022038689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • This disclosure relates to a receiving device, a receiving method, a program, and a transmitting device.
  • Wireless communication traffic continues to increase due to the rapid spread of wireless devices.
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • Non-Patent Document 1 discloses a technique called Virtual Massive MIMO (VM-MIMO).
  • VM-MIMO Virtual Massive MIMO
  • the radio base station receives a signal while periodically switching the antenna characteristics by the characteristic variable antenna. Then, each signal sampled at the timing when the antenna characteristics become the same is extracted, and each extracted signal is subjected to signal processing similar to that of normal MIMO. As a result, for example, the number of antennas and the like can be reduced, so that the size and cost of the radio base station can be reduced.
  • a characteristic variable antenna that receives a radio signal transmitted from a transmitting device while switching antenna characteristics, and a characteristic variable antenna.
  • a notification unit that determines a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifies the transmitting device of the determined setting. From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic.
  • a signal extraction unit that extracts the received second signal, and A receiving device is provided.
  • the disclosed technology can be applied to various receiving devices (equipment) that receive radio signals transmitted from a plurality of antennas at the same frequency and at the same time.
  • the wireless terminal station 1 is used as the receiving device.
  • the transmitting device may be, for example, a wireless base station 2, a smart glass, a peripheral device such as a smart watch, or the like.
  • the wireless terminal station 1 is used as the transmitting device and the wireless base station 2 is used as the receiving device will be described.
  • the wireless communication system according to the present embodiment has a wireless terminal station 1 and a wireless base station 2.
  • the radio terminal station 1 has one or more antennas, and the radio base station 2 has one characteristic variable antenna.
  • the number of characteristic variable antennas in the radio base station 2 may be plural.
  • uplink communication (uplink) from the wireless terminal station 1 to the wireless base station 2 is targeted.
  • FIG. 1 shows an example in the case where the radio base station 2 receives a signal transmitted from a radio terminal station 1 having one or more antennas (single user MIMO). Further, FIG. 2 shows an example in which the radio base station 2 receives a signal transmitted from a plurality of radio terminal stations 1 having one or more antennas (in the case of multi-user MIMO or the like).
  • the radio base station 2 receives each radio signal with a virtual multi-antenna using one characteristic variable antenna by the technique of Visual Massive MIMO (VM-MIMO) disclosed in Non-Patent Document 1. You may.
  • VM-MIMO Visual Massive MIMO
  • the radio base station 2 changes the antenna characteristics of the variable characteristic antenna at high speed and periodically by changing the signal transmitted from each antenna of one or more radio terminal stations 1 at the same frequency and at the same time. Receive while.
  • the radio base station 2 samples the received signal at a higher speed than in the case of general MIMO, divides and extracts the received signal at the timing when the antenna characteristics are the same from the sampled received signal, and extracts the extracted received signal.
  • general MIMO reception processing is performed.
  • Each extracted received signal can be regarded as a signal arriving from different propagation paths, although a slight delay occurs due to sampling deviation. Therefore, each radio signal arriving from each propagation path with one characteristic variable antenna. Can be received.
  • the radio base station 2 receives a signal while periodically changing the four antenna characteristics 1 to 4.
  • the timing signal of the antenna characteristic 1 is indicated by “1”
  • the timing signal of the antenna characteristic 2 is indicated by “2”
  • the timing signal of the antenna characteristic 3 is indicated by "3”
  • the antenna characteristic is indicated.
  • the signal of the timing of 4 is indicated by "4".
  • the antennas with antenna characteristics 1 to 4 are called virtual antennas 1 to 4, respectively.
  • the waveform of the signal indicated by "1" is shown as the waveform of the virtual antenna 1.
  • FIG. 4 shows a configuration example of the wireless terminal station 1 according to the present embodiment.
  • the radio terminal station 1 has one or more antennas 10, a plurality of RF units 11, a plurality of D / A conversion units 12, a MIMO signal generation unit 13, and a setting unit 14. It should be noted that the functional block generally mounted on the wireless terminal station 1 is omitted.
  • the setting unit 14 sets various parameters related to transmission in the MIMO signal generation unit 13 based on various parameters related to transmission from the wireless terminal station 1 to the wireless base station 2 (hereinafter, referred to as “transmission parameters”).
  • the transmission parameter is notified from the radio base station 2.
  • the MIMO signal generation unit 13 generates a plurality of MIMO signals from the transmission data based on various parameters related to transmission set by the setting unit 14, and inputs each MIMO signal to the D / A conversion unit 12.
  • the D / A conversion unit 12 converts the input MIMO signal into an analog signal and outputs the analog signal to the RF unit 11.
  • the RF unit 11 performs analog processing such as amplification, frequency conversion, and filtering on the analog signal, and outputs the processed signal to each antenna 10. It is assumed that the RF unit 11 here is equipped with the function of the RF front end of a general wireless device.
  • the antenna 10 radiates the input signal into the air as a radio signal.
  • FIG. 5 shows a configuration example of the radio base station 2 in the present embodiment.
  • the radio base station 2 in the present embodiment includes a variable characteristic antenna 20, an RF unit 21, an A / D conversion unit 22, an antenna control unit 23, a signal extraction unit 24, and a MIMO signal demodulation unit 25. It has an index value calculation unit 26 and a determination unit 27 (an example of a “notification unit”).
  • the functional blocks generally mounted on the radio base station are not shown. The functions of each part are as follows.
  • the characteristic variable antenna 20 is an antenna capable of switching the characteristics of the antenna, and receives the radio signal transmitted from the wireless terminal station 1 while switching the antenna characteristics.
  • the variable characteristic antenna 20 may periodically switch the antenna characteristics (directivity, output power, phase, etc.) according to the control information input from the antenna control unit 23, for example.
  • FIG. 6 shows a configuration example of the variable characteristic antenna 20.
  • the characteristic variable antenna 20 shown in FIG. 6 has a feeding element (Antenna element) such as a dipole antenna arranged at the center, and one or more non-feeding elements (Parastic elements) arranged around the feeding element (Antenna element).
  • a feeding element such as a dipole antenna arranged at the center
  • Non-feeding elements such as a dipole antenna arranged at the center
  • the characteristic variable antenna 20 may change the reflection characteristic of the non-feeding element by, for example, periodically rotating the non-feeding element based on the control information input from the antenna control unit 23. As a result, the propagation path to the feeding element fluctuates periodically, so that the characteristics of the antenna can be switched.
  • the characteristic variable antenna 20 outputs the received signal to one RF unit 21.
  • the RF unit 21 performs processing such as amplification, frequency change, and filtering on the signal input from the characteristic variable antenna 20, and outputs the processed signal to the A / D conversion unit 22. It is assumed that the RF unit 21 here is equipped with the function of the RF front end of a general wireless device.
  • the A / D conversion unit 22 converts an analog signal input from the RF unit 21 into a digital signal by sampling the analog signal, and outputs the digital signal to the signal extraction unit 24 and the index value calculation unit 26. Further, the A / D conversion unit 22 notifies the antenna control unit 23 of the sampling period.
  • the A / D conversion unit 22 may determine the timing for sampling the analog signal input from the RF unit 21 based on the information indicating the timing at which the preamble signal received from the wireless terminal station 1 is detected. Thereby, for example, the radio signal received from the radio terminal station 1 that transmitted the preamble signal can be sampled at a more appropriate timing.
  • the antenna control unit 23 outputs an antenna control signal according to the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20.
  • the signal extraction unit 24 extracts each signal received by the characteristic variable antenna 20 at each periodic time point having different antenna characteristics from the signal input from the A / D conversion unit 22.
  • the signal extraction unit 24 uses the signal input from the A / D conversion unit 22 at each time point in the cycle in which the antenna characteristics of the variable characteristic antenna 20 change, as described with reference to FIG. Divide into each sampled signal. As a result, each signal sampled at the timing when the antenna characteristics of the variable characteristic antenna 20 become the same is extracted (generated).
  • the signal extraction unit 24 extracts (selects) the signal to be output to the MIMO signal demodulation unit 25 from the plurality of signals obtained by division based on the information input from the determination unit 27. Then, the signal extraction unit 24 outputs the extracted signal to the MIMO signal demodulation unit 25. As a result, it is possible to acquire a radio signal similar to a radio signal received by a plurality of antennas having different antenna characteristics from one characteristic variable antenna 20.
  • the MIMO signal demodulation unit 25 performs demodulation processing on the signal received from the signal extraction unit 24.
  • the MIMO signal demodulation unit 25 may perform demodulation processing similar to demodulation processing in general MIMO or the like, for example.
  • one characteristic variable antenna 20 can be used as a plurality of virtual antennas to receive a radio signal.
  • the index value calculation unit 26 calculates various index values related to the transmission quality of the uplink according to the antenna characteristics of the characteristic variable antenna 20 when the radio base station 2 receives the radio signal transmitted from the radio terminal station 1. do.
  • the index value calculation unit 26 includes, for example, a channel correlation value, a transmission capacity based on the virtual antenna used (channel capacity, transmission line capacity, throughput), a received power for each spatial transmission based on the virtual antenna used, and the like. And the received power to noise power ratio (SNR) based on the virtual antenna used, the propagation channel response, and the like may be calculated as index values.
  • SNR received power to noise power ratio
  • the channel correlation value is a numerical representation of the difference between different antenna characteristics.
  • the index value calculation unit 26 may calculate the propagation channel response in each antenna characteristic from the signal input from the A / D conversion unit 22 based on the control information of the antenna input from the antenna control unit 23. good. Then, the index value calculation unit 26 may calculate the channel correlation value based on the propagation channel response of each antenna characteristic set by the characteristic variable antenna 20.
  • the index value calculation unit 26 outputs the calculated index value to the determination unit 27.
  • the determination unit 27 determines the transmission parameter based on the index value input from the index value calculation unit 26, and notifies the wireless terminal station 1 of the determined transmission parameter by wireless communication. Further, the determination unit 27 calculates the number of extraction signals based on the index value input from the index value calculation unit 26 and outputs the number to the signal extraction unit 24. An example of a method for calculating the number of extracted signals will be described later.
  • the A / D conversion unit 22 is a general radio base. Signals 1 to 4 corresponding to each antenna characteristic are sampled and output at a sampling period that is four times or more the sampling period of the A / D conversion unit 22 of the station. Then, the antenna control unit 23 selects one of the four virtual antennas in the sampling cycle of the A / D conversion unit 22 and switches the antenna characteristics.
  • the signal extraction unit 24 divides and extracts the signals 1 to 4 corresponding to each antenna characteristic in the same sampling period as the sampling period of the A / D conversion unit 22, and outputs the signals to the MIMO signal demodulation unit 25.
  • signals 1 to 4 having the same antenna characteristics are periodically output to the four output ports of the signal extraction unit 24.
  • each functional block in the radio base station 2 shown in FIG. 5 may be realized by dedicated hardware (LSI or the like), or "characteristic variable antenna 20, RF unit 21, A / D conversion unit 22, reference antenna" may be realized.
  • a part other than "28" (that is, a part that processes a digital signal) may be realized by a general-purpose computer including a processor (CPU, DSP, etc.) and a memory, and software running on the computer.
  • FIG. 7 shows a configuration example of the wireless base station 2 when the wireless base station 2 is realized by using a computer and software.
  • the radio base station 2 includes a processor 101, a memory 102, an auxiliary storage device 103, an input / output device 104, a characteristic variable antenna 20, an RF unit 21, and an A / D conversion unit 22. Has a configuration connected by a bus.
  • the auxiliary storage device 103 stores a program that realizes the operation of the radio base station 2.
  • the program is read into the memory 102, and the processor 101 reads the program from the memory 102 and executes it.
  • the processor 101 executes the processing of the antenna control unit 23, the signal extraction unit 24, the MIMO signal demodulation unit 25, the index value calculation unit 26, and the determination unit 27 by the program.
  • the input / output device 104 outputs, for example, the signal obtained by the MIMO signal demodulation unit 25. Further, the information set in advance may be input from the input / output device 104.
  • the antenna control unit 23 outputs an antenna control signal synchronized with the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20, and the characteristic variable antenna 20 periodically switches the antenna characteristics according to the antenna control signal. ing.
  • the radio terminal station 1 transmits a radio signal to the radio base station 2.
  • the radio terminal station 1 may transmit, for example, a radio signal of a random access preamble (PRACH: Physical Random Access Channel) to the radio base station 2.
  • PRACH is a channel for first transmitting a preamble signal when establishing a connection with the radio terminal station 1 and the radio base station 2 and when performing resynchronization.
  • the radio base station 2 receives signals simultaneously transmitted from each antenna of one or more radio terminal stations 1.
  • the signal received by the characteristic variable antenna 20 of the radio base station 2 is input to the RF unit 21, and the signal processed by the RF unit 21 is output to the A / D conversion unit 22.
  • the A / D conversion unit 22 samples the input signal (analog signal) and acquires the sampled signal (digital signal).
  • the "signal” described below is a signal acquired by sampling.
  • the signal obtained by the A / D conversion unit 22 is output to the signal extraction unit 24 and the index value calculation unit 26.
  • the A / D conversion unit 22 may perform sampling a predetermined number of times in the cycle of change in antenna characteristics.
  • the index value calculation unit 26 of the radio base station 2 has a propagation channel in each antenna characteristic from the signal input from the A / D conversion unit 22 based on the control information of the antenna input from the antenna control unit 23.
  • the correlation value channel correlation value between the propagation channel responses at each antenna characteristic set by the characteristic variable antenna 20 is calculated.
  • the index value calculation unit 26 may calculate the correlation value between the propagation channel responses at each antenna characteristic, for example, by the following equation 1.
  • Equation 1 ai is the propagation channel response vector between the antenna at a certain antenna characteristic and the i -th antenna of the radio terminal station 1, and bi is the antenna and the radio terminal station 1 at an antenna characteristic different from ai . It is a propagation channel response vector to and from the i-th antenna of.
  • the index value calculation unit 26 calculates the channel correlation value in all the antenna characteristics by obtaining the channel correlation value by the equation 1 for each set of antenna characteristics and adding the channel correlation values of all the sets.
  • the antennas in each characteristic are referred to as a virtual antenna 1, a virtual antenna 2, a virtual antenna 3, and a virtual antenna 4.
  • the index value calculation unit 26 uses the channel correlation value between the virtual antenna 1 and the virtual antenna 2, the channel correlation value between the virtual antenna 1 and the virtual antenna 3, and the interval between the virtual antenna 1 and the virtual antenna 4.
  • the virtual antennas 1, 2 and 3 are used.
  • the channel correlation value, the channel correlation value between the virtual antennas 1, 2 and 4, and the channel correlation value between the virtual antennas 2, 3 and 4 may be calculated. That is, the channel correlation value may be calculated for all combinations.
  • the determination unit 27 of the radio base station 2 determines various parameters based on various index values input from the index value calculation unit 26.
  • the determination unit 27 of the radio base station 2 calculates the number of extraction signals based on the channel correlation value input from the index value calculation unit 26, and outputs the calculation result to the signal extraction unit 24, for example.
  • the determination unit 27 holds, for example, a table showing the relationship between the channel correlation value calculated in advance by simulation or actual measurement and the transmission capacity, and is based on the channel correlation value calculated by the index value calculation unit 26. Refer to the table to determine the minimum number of extracted signals that will reduce the amount of transmission capacity degradation below the threshold.
  • the threshold value is a value given in advance.
  • the larger the number of extracted signals (that is, the larger the number of virtual antennas used to receive the signal input to the MIMO signal demodulation unit 25), the larger the transmission capacity, but if the number of extracted signals becomes too large, MIMO The processing load of the signal demodulation unit 25 becomes excessive.
  • the degree of increase in transmission capacity with respect to the increase in the number of extracted signals decreases as the number of extracted signals increases. For example, the amount of increase in transmission capacity when the number of extracted signals increases from 16 to 18 is smaller than the amount of increase in transmission capacity when the number of extracted signals increases from 10 to 12.
  • the transmission capacity in the number of extracted signals M smaller than N is deteriorated as compared with the transmission capacity when the number of extracted signals equal to the number of virtual antennas used for switching (referred to as N for convenience) is used.
  • the "minimum number of extracted signals whose transmission capacity deterioration amount is equal to or less than the threshold value" is set so that the processing load of the MIMO signal demodulation unit 25 does not become excessive while reducing the deterioration of the transmission capacity. It is decided and notified to the signal extraction unit 24.
  • the determination unit 27 holds a table as shown in FIG. 9 for each number of virtual antennas used for signal reception while switching.
  • the determination unit 27 refers to the table of FIG. 9 held by itself as the number of extracted signals. N1 "is decided.
  • the determination unit 27 may determine only the number of extracted signals as described above, or determine the number of virtual antennas (which virtual antenna signal is used) in addition to the number of extracted signals. You may.
  • the determination unit 27 selects, for example, a set of virtual antennas having the minimum channel correlation value (weak correlation) between the number of virtual antennas (weak correlation). decide.
  • the determination unit 27 determines virtual antennas 1, 2 and 3 as virtual antennas having a determined number of extracted signals.
  • the determination unit 27 also notifies the signal extraction unit 24 of information indicating the virtual antennas of the determined number of extraction signals.
  • the determination unit 27 corresponds to the antenna characteristics of the characteristic variable antenna 20 when receiving the radio signal transmitted from the wireless terminal station 1 based on the index value input from the index value calculation unit 26. Determine the transmission parameters.
  • the index value may include the channel correlation value described above. Further, as will be described later, the index values include the transmission capacity C based on the virtual antenna used, the received power for each spatial transmission based on the virtual antenna used, and the reception based on the virtual antenna used.
  • the power-to-noise power ratio (SNR) and the like may be included.
  • the determination unit 27 may use, for example, a spatial multiplex of MIMO transmission, a modulation method, and a coding method (code) in uplink communication (uplink) from the radio terminal station 1 to the radio base station 2.
  • the conversion method), the coding rate, the band, and the like may be determined.
  • the determination unit 27 may determine various parameters for performing higher quality communication when it can be determined that the transmission environment is better based on the index value input from the index value calculation unit 26. In this case, for example, the determination unit 27 may determine various parameters for performing higher quality communication as the channel correlation value is lower (smaller). Further, the determination unit 27 has, for example, a transmission capacity C based on the virtual antenna used, received power for each spatial transmission based on the virtual antenna used, and received power vs. noise power based on the virtual antenna used. The higher (larger) the value of the ratio (SNR), the more various parameters may be determined to enable higher quality communication.
  • the determination unit 27 may determine, for example, to perform communication with a larger number of spatial multiplex (for example, 4 or more) as various parameters for performing higher quality communication. Further, the determination unit 27 causes communication by, for example, a modulation method having a higher degree of modulation (for example, 64QAM (Quadrature Amplitude Modulation), 256QAM, 1024QAM, etc.) as various parameters for performing higher quality communication. May be decided.
  • a modulation method having a higher degree of modulation for example, 64QAM (Quadrature Amplitude Modulation), 256QAM, 1024QAM, etc.
  • the determination unit 27 performs communication with a higher efficiency coding rate (code rate, information rate, for example, 5/6, 7/8, etc.) as various parameters for performing higher quality communication. You may decide to do it. Further, the determination unit 27 may determine, for example, to perform communication in a wider bandwidth (for example, 20 MHz or more) as various parameters for performing higher quality communication.
  • a higher efficiency coding rate code rate, information rate, for example, 5/6, 7/8, etc.
  • the determination unit 27 may determine various parameters for performing lower quality communication, for example, when it can be determined that the transmission environment is worse based on the transmission quality information. In this case, for example, the determination unit 27 may determine various parameters that cause lower quality communication as the channel correlation value is higher (larger). Further, the determination unit 27 has, for example, a transmission capacity C based on the virtual antenna used, received power for each spatial transmission based on the virtual antenna used, and received power vs. noise power based on the virtual antenna used. The lower (smaller) the value of the ratio (SNR), the various parameters that cause lower quality communication may be determined.
  • the determination unit 27 may determine, for example, to perform communication with a smaller number of spatial multiplex (for example, less than 4) as various parameters for performing lower quality communication. Further, the determination unit 27 uses, for example, a modulation method with a lower modulation degree (for example, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM) as various parameters for performing lower quality communication. May be decided to communicate.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM 16QAM
  • the determination unit 27 determines as various parameters for performing communication with lower quality, for example, to perform communication with a lower efficiency coding rate (for example, 1/2, 2/3, etc.). You may. Further, the determination unit 27 may determine, for example, to perform communication with a narrower bandwidth (for example, less than 20 MHz) as various parameters for performing lower quality communication.
  • a lower efficiency coding rate for example, 1/2, 2/3, etc.
  • the determination unit 27 of the radio base station 2 notifies the wireless terminal station 1 of the determined transmission parameter by wireless communication.
  • the determination unit 27 of the radio base station 2 may notify the transmission parameter by using, for example, an uplink control channel or the like.
  • the setting unit 14 of the wireless terminal station 1 sets various parameters related to transmission in the MIMO signal generation unit 13 based on the transmission parameters notified from the wireless base station 2.
  • the radio terminal station 1 transmits an uplink radio signal to the radio base station 2 based on the transmission parameters set in the setting unit 14.
  • the radio base station 2 receives signals simultaneously transmitted from each antenna of one or more radio terminal stations 1.
  • the signal received by the characteristic variable antenna 20 of the radio base station 2 is input to the RF unit 21, and the signal processed by the RF unit 21 is input to the A / D conversion unit 22. It is output.
  • the A / D conversion unit 22 samples the input signal (analog signal) and acquires the sampled signal (digital signal).
  • the signal extraction unit 24 divides the signal input from the A / D conversion unit 22 into the same sampling period as the sampling period of the A / D conversion unit 22 based on the number of extraction signals received from the determination unit 27. A signal with the number of extracted signals is extracted (selected) from the divided signals, and the extracted signal is output to the MIMO signal demodulator 25.
  • the maximum number of signals that can be extracted by the signal extraction unit 24 may be predetermined. In that case, when the signal extraction unit 24 is notified of the number of extraction signals larger than the maximum number of signals, the signal extraction unit 24 extracts the signal with the maximum number of signals and uses the extracted signal as a MIMO signal. Output to the demodulation unit 25.
  • which signal is extracted from the divided signals is not limited to a specific method, but for example, which signal is to be extracted is determined in advance. It may be decided.
  • the signal extraction unit 24 extracts the signals of the virtual antennas 1, 2 and 3 from the signals of the virtual antennas 1 to 4 and outputs them to the MIMO signal demodulation unit 25. do.
  • the signal extraction unit 24 receives the information of the virtual antenna (information of the signal to be extracted) from the determination unit 27, the signal extraction unit 24 extracts the signal notified by the determination unit 27 from the divided signals. Then, it is output to the MIMO signal demodulation unit 25.
  • FIG. 10 shows an image of the operation by the signal extraction unit 24.
  • virtual antennas 1 to 8 are used.
  • the signals corresponding to the virtual antennas 1 to 8 are the signals 1 to 8 (in the figure, the circles with numbers indicate the signals).
  • the signal extraction unit 24 receives the signal sampled by the A / D conversion unit 22.
  • the signal extraction unit 24 divides the input signal in the same cycle as the sampling cycle, so that the signals 1, 2, 3, 4, 5, 6, 7, 8, ... Are sequentially acquired (identified).
  • the determination unit 27 is specified to the signal extraction unit 24 to extract signals 1, 4, 7, and 8 from the signals 1 to 8.
  • the signal extraction unit 24 extracts signals 1, 4, 7, and 8 from the signals 1 to 8, and outputs these signals to the MIMO signal demodulation unit 25.
  • the MIMO signal demodulation unit 25 performs the MIMO demodulation processing defined in a general wireless communication system with respect to the signal received from the signal extraction unit 24.
  • Information required for MIMO demodulation processing may be given in advance or may be estimated.
  • the channel correlation value between virtual antennas is used as an index value for determining the number of extracted signals, but this is an example.
  • the number of extracted signals may be determined using an index value other than the channel correlation value.
  • the index value calculation unit 26 uses the following equation 2 in place of or in addition to the channel correlation value to provide a theoretical transmission capacity C based on the virtual antenna used. May be calculated as an index value.
  • Pt is the transmission power.
  • ⁇ 2 n is noise power.
  • H is a Nr ⁇ Nt channel matrix (a matrix having a propagation channel response as an element), and det is a determinant of the matrix in parentheses.
  • the characteristic variable antenna 20 switches between four antenna characteristics. That is, it is assumed that the virtual antenna 1, the virtual antenna 2, the virtual antenna 3, and the virtual antenna 4 are used.
  • the index value calculation unit 26 calculates the transmission capacity when the virtual antennas 1 to 4 are used by using the equation 2.
  • the transmission capacity when the virtual antennas 2, 3 and 4 are used may be calculated. That is, the transmission capacity may be calculated for all combinations.
  • the determination unit 27 calculates the number of extraction signals from the transmission capacity input from the index value calculation unit 26, and outputs the calculation result to the signal extraction unit 24.
  • the determination unit 27 holds a table in which the transmission capacity is associated with the "minimum number of extracted signals whose deterioration of the transmission capacity is equal to or less than the threshold value" for each number of virtual antennas to be used.
  • the determination unit 27 determines "N1" as the number of extracted signals by referring to the table.
  • the determination unit 27 may determine only the number of extracted signals as described above, or determine the number of virtual antennas (which virtual antenna signal is used) in addition to the number of extracted signals. You may.
  • the determination unit 27 selects (determines), for example, the set of virtual antennas that maximizes the transmission capacity of the number of virtual antennas.
  • the determination unit 27 determines the virtual antennas 1, 2, and 3 as the virtual antennas having the determined number of extracted signals.
  • the index value calculation unit 26 uses the index value as the index value in place of or in addition to the channel correlation value and the transmission capacity described so far, for example, as the received power for each spatial transmission based on the virtual antenna used.
  • the corresponding value or the like may be calculated.
  • the value corresponding to the received power for each spatial transmission based on the virtual antenna used may be, for example, an eigenvalue obtained by decomposing the above channel matrix H into eigenvalues.
  • the index value calculation unit 26 may calculate, for example, the received power to noise power ratio (SNR) based on the virtual antenna used as the index value.
  • the received power to noise power ratio (SNR) based on the virtual antenna used may be a value obtained by dividing the above eigenvalues by the noise power.
  • Modification example Although the basic configuration has been described above as a basic example, the configuration and operation as described in the following modification examples 1 and 2 may be adopted for further improvement and the like. In addition, a part or all of the modification 1 and 2 may be combined. Further, the above-mentioned basic example may be applied to the portions not described in the modified examples 1 and 2.
  • the determination unit 27 of the radio base station 2 determines the transmission parameter so as to perform transmission using the antenna which is an index value indicating a better transmission environment among the antennas 10 of the plurality of radio terminal stations 1. May be good. As a result, it is possible to appropriately perform wireless communication in the receiving device that receives the wireless signals transmitted from the plurality of antennas at the same frequency and at the same time by the characteristic variable antenna.
  • the determination unit 27 selects an antenna having a low channel correlation value from the antennas 10 of the plurality of wireless terminal stations 1 and performs transmission using the selected antenna according to the transmission parameter. You may instruct the wireless terminal station 1.
  • the determination unit 27 is, for example, among the antennas 10 of the plurality of wireless terminal stations 1, the transmission capacity C based on the virtual antenna used, the received power for each space transmission, and the received power to noise power ratio (SNR). ) May be selected, and the wireless terminal station 1 may be instructed to perform transmission using the selected antenna by the transmission parameter.
  • SNR received power to noise power ratio
  • the radio base station 2 may be an optical overhanging base station.
  • the slave station having the characteristic variable antenna 20 and the RF unit 21 and the A / D conversion unit 22 may be connected by an optical fiber.
  • the A / D conversion unit 22 may determine the timing for sampling the analog signal input from the RF unit 21 via the optical fiber based on the delay time of transmission by the optical fiber.
  • This specification describes at least the receiving device, the receiving method, and the program described in each of the following sections.
  • (Section 1) A variable antenna with characteristics that receives the wireless signal transmitted from the transmitter while switching the antenna characteristics, A notification unit that determines a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifies the transmitting device of the determined setting. From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. A signal extraction unit that extracts the received second signal, and A receiver equipped with.
  • the information about the antenna characteristic of the variable characteristic antenna includes at least one of the correlation value between the propagation channel responses of each antenna characteristic of the variable characteristic antenna and the propagation channel response of each antenna characteristic of the variable characteristic antenna.
  • the receiving device according to paragraph 1. Information on the antenna characteristics of the variable characteristic antenna includes the transmission capacity of each antenna characteristic of the variable characteristic antenna, the received power for each spatial transmission based on each antenna characteristic of the variable characteristic antenna, and each antenna of the variable characteristic antenna. Includes at least one of the received power to noise power ratios based on the characteristics.
  • the above settings include Includes settings for at least one of the spatial multiplex, modulation scheme, code rate, and band.
  • the receiving device according to any one of paragraphs 1 to 3.
  • (Section 5) A receiving device equipped with a characteristic variable antenna that receives a wireless signal transmitted from a transmitting device while switching antenna characteristics
  • (Section 6) A program for causing a computer to function as the notification unit and the signal extraction unit in the receiving device according to any one of the items 1 to 4.
  • (Section 7) Spatial multiplex, modulation method, coding factor, and band based on the setting information according to the antenna characteristics of the characteristic variable antenna notified from the receiver having the characteristic variable antenna that receives the radio signal while switching the antenna characteristics.
  • the setting part that sets for at least one of A generator that generates a MIMO (Multiple Input Multiple Output) signal based on the settings made by the setting unit, and a generation unit.
  • a transmitter equipped with A transmitter equipped with.
  • Wireless terminal station 10 Antenna 11 RF unit 12 D / A conversion unit 13 MIMO signal generation unit 14 Setting unit 2 Wireless base station 20 Characteristic variable antenna 21 RF unit 22 A / D conversion unit 23 Antenna control unit 24 Signal extraction unit 25 MIMO Signal demodulator 26 Index value calculation unit 27 Determination unit 101 Processor 102 Memory 103 Auxiliary storage device 104 Input / output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A reception device according to the present invention comprises: a reconfigurable antenna that, while switching antenna characteristics, receives radio signals transmitted from a transmission device; a notification unit that determines a setting related to the transport of the radio signals on the basis of information related to the antenna characteristics of the reconfigurable antenna used when receiving the radio signals and that notifies the transmission device of the determined setting; and a signal extracting unit that extracts, from the radio signals transmitted from the transmission device by use of the setting, first signals received at times when the reconfigurable antenna exhibits a first antenna characteristic and second signals received at times when the reconfigurable antenna exhibits a second antenna characteristic.

Description

受信装置、受信方法、プログラム、及び送信装置Receiver, receiving method, program, and transmitter
 本開示は、受信装置、受信方法、プログラム、及び送信装置に関する。 This disclosure relates to a receiving device, a receiving method, a program, and a transmitting device.
 無線デバイスの急速な普及によって無線通信トラヒックが増加し続けている。この無線通信トラヒックを安定的に収容するために、無線通信システムの大容量化が求められている。無線通信システムの大容量化を実現するべく、複数のアンテナを用いて同一周波数かつ同一時刻に空間分割多重伝送を行うMIMO(Multiple Input Multiple Output)が実用化されている。更に、将来無線通信システムを対象として、MIMOが実現する容量の更なる拡大に向けて、超多数のアンテナを利用した大規模(Massive)MIMOの研究開発が進められている。 Wireless communication traffic continues to increase due to the rapid spread of wireless devices. In order to stably accommodate this wireless communication traffic, it is required to increase the capacity of the wireless communication system. In order to realize a large capacity of a wireless communication system, MIMO (Multiple Input Multiple Output), which performs spatial division multiplex transmission at the same frequency and at the same time using a plurality of antennas, has been put into practical use. Furthermore, for future wireless communication systems, research and development of large-scale (Massive) MIMO using a large number of antennas is underway for further expansion of the capacity realized by MIMO.
 非特許文献1には、Virtual Massive MIMO(VM-MIMO)と称される技術が開示されている。このVM-MIMOでは、無線基地局は、特性可変アンテナにより周期的にアンテナ特性を切り替えながら信号を受信する。そして、アンテナ特性が同等となるタイミングでサンプリングされた各信号を抽出し、抽出した各信号に対して、通常のMIMOと同様の信号処理を行う。これにより、例えば、アンテナ等の数を削減できるため、無線基地局のサイズ及びコスト等を低減できる。 Non-Patent Document 1 discloses a technique called Virtual Massive MIMO (VM-MIMO). In this VM-MIMO, the radio base station receives a signal while periodically switching the antenna characteristics by the characteristic variable antenna. Then, each signal sampled at the timing when the antenna characteristics become the same is extracted, and each extracted signal is subjected to signal processing similar to that of normal MIMO. As a result, for example, the number of antennas and the like can be reduced, so that the size and cost of the radio base station can be reduced.
 特性可変アンテナにより周期的にアンテナ特性を切り替えながら信号を受信する場合、アンテナ特性の切り替えにより無線通信の品質が適切でなくなる場合があると考えられる。 When receiving a signal while periodically switching the antenna characteristics with a variable characteristic antenna, it is considered that the quality of wireless communication may not be appropriate due to the switching of the antenna characteristics.
 本開示は、複数のアンテナから同一周波数かつ同一時刻に送信される無線信号を特性可変アンテナで受信する受信装置において、適切に無線通信を行わせることができる技術を提供することを目的とする。 It is an object of the present disclosure to provide a technique capable of appropriately performing wireless communication in a receiving device that receives wireless signals transmitted from a plurality of antennas at the same frequency and at the same time with a variable characteristic antenna.
 開示の技術によれば、送信装置から送信される無線信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
 前記無線信号を受信する際の前記特性可変アンテナのアンテナ特性に関する情報に基づいて、前記無線信号の伝送に関する設定を決定し、決定した前記設定を前記送信装置に通知する通知部と、
 前記設定により前記送信装置から送信される前記無線信号から、前記特性可変アンテナが第1アンテナ特性である各時点で受信した第1信号と、前記特性可変アンテナが第2アンテナ特性である各時点で受信した第2信号とを抽出する信号抽出部と、
 を備える受信装置が提供される。
According to the disclosed technology, a characteristic variable antenna that receives a radio signal transmitted from a transmitting device while switching antenna characteristics, and a characteristic variable antenna.
A notification unit that determines a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifies the transmitting device of the determined setting.
From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. A signal extraction unit that extracts the received second signal, and
A receiving device is provided.
 開示の技術によれば、複数のアンテナから同一周波数かつ同一時刻に送信される無線信号を特性可変アンテナで受信する受信装置において、適切に無線通信を行わせることができる。 According to the disclosed technology, it is possible to appropriately perform wireless communication in a receiving device that receives wireless signals transmitted from a plurality of antennas at the same frequency and at the same time with a variable characteristic antenna.
本実施の形態におけるシステム構成図である。It is a system configuration diagram in this embodiment. 本実施の形態におけるシステム構成図である。It is a system configuration diagram in this embodiment. VM-MIMOの動作を説明するための図である。It is a figure for demonstrating the operation of VM-MIMO. 無線端末局の構成図である。It is a block diagram of a wireless terminal station. 無線基地局の構成図である。It is a block diagram of a radio base station. 特性可変アンテナの構成図である。It is a block diagram of the characteristic variable antenna. 無線基地局の構成図である。It is a block diagram of a radio base station. 無線通信システムの動作を示すシーケンス図である。It is a sequence diagram which shows the operation of a wireless communication system. テーブルの例を示す図である。It is a figure which shows the example of a table. 信号抽出部の動作を説明するための図である。It is a figure for demonstrating operation of a signal extraction part.
 以下、図面を参照して本開示の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本開示が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, an embodiment of the present disclosure (the present embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present disclosure applies are not limited to the following embodiments.
 開示の技術は、複数のアンテナから同一周波数かつ同一時刻に送信される無線信号を受信する各種の受信装置(機器)に適用できる。例えば、受信装置として無線端末局1を使用する場合にも適用できる。この場合、送信装置は、例えば、無線基地局2でもよいし、スマートグラス、及びスマートウォッチ等の周辺機器等でもよい。 The disclosed technology can be applied to various receiving devices (equipment) that receive radio signals transmitted from a plurality of antennas at the same frequency and at the same time. For example, it can be applied to the case where the wireless terminal station 1 is used as the receiving device. In this case, the transmitting device may be, for example, a wireless base station 2, a smart glass, a peripheral device such as a smart watch, or the like.
 なお、以下では、送信装置として無線端末局1を使用し、受信装置として無線基地局2を使用する例について説明する。 In the following, an example in which the wireless terminal station 1 is used as the transmitting device and the wireless base station 2 is used as the receiving device will be described.
 (全体構成)
 図1、及び図2に、本実施の形態における無線通信システムの構成例を示す。図1、及び図2に示すように、本実施の形態における無線通信システムは、無線端末局1と無線基地局2とを有する。無線端末局1は1以上のアンテナを有しており、無線基地局2は1本の特性可変アンテナを有している。無線基地局2における特性可変アンテナの数は複数であってもよい。図示のとおり、本実施の形態では、無線端末局1から無線基地局2への上り方向の通信(アップリンク)を対象としている。
(overall structure)
1 and 2 show a configuration example of a wireless communication system according to the present embodiment. As shown in FIGS. 1 and 2, the wireless communication system according to the present embodiment has a wireless terminal station 1 and a wireless base station 2. The radio terminal station 1 has one or more antennas, and the radio base station 2 has one characteristic variable antenna. The number of characteristic variable antennas in the radio base station 2 may be plural. As shown in the figure, in the present embodiment, uplink communication (uplink) from the wireless terminal station 1 to the wireless base station 2 is targeted.
 図1には、無線基地局2が、1以上のアンテナを有する無線端末局1から送信された信号を受信する場合(シングルユーザMIMO)の場合の例が示されている。また、図2には、無線基地局2が、1以上のアンテナを有する複数の無線端末局1から送信された信号を受信する場合(マルチユーザMIMO等の場合)の例が示されている。 FIG. 1 shows an example in the case where the radio base station 2 receives a signal transmitted from a radio terminal station 1 having one or more antennas (single user MIMO). Further, FIG. 2 shows an example in which the radio base station 2 receives a signal transmitted from a plurality of radio terminal stations 1 having one or more antennas (in the case of multi-user MIMO or the like).
 (無線通信システムの動作概要)
 無線基地局2は、例えば、非特許文献1に開示されたVirtual Massive MIMO(VM-MIMO)の技術により、1本の特性可変アンテナを用いた仮想的なマルチアンテナで各無線信号の受信を行ってもよい。
(Outline of operation of wireless communication system)
For example, the radio base station 2 receives each radio signal with a virtual multi-antenna using one characteristic variable antenna by the technique of Visual Massive MIMO (VM-MIMO) disclosed in Non-Patent Document 1. You may.
 図3に示すように、無線基地局2は、1以上の無線端末局1の各アンテナから同一周波数かつ同一時刻に送信される信号を、特性可変アンテナのアンテナ特性を高速かつ周期的に変化させながら受信する。無線基地局2は、一般的なMIMOの場合よりも高速に受信信号をサンプリングして、サンプリングした受信信号からアンテナ特性が同等となるタイミングの受信信号を分割して抽出し、抽出した受信信号に対して、一般的なMIMOの受信処理を行う。抽出した各受信信号は、サンプリングずれによる微小な遅延が発生するものの、互いに異なる伝搬路から到来する信号とみなすことができるため、1本の特性可変アンテナで、各伝搬路から到来する各無線信号の受信が可能となる。 As shown in FIG. 3, the radio base station 2 changes the antenna characteristics of the variable characteristic antenna at high speed and periodically by changing the signal transmitted from each antenna of one or more radio terminal stations 1 at the same frequency and at the same time. Receive while. The radio base station 2 samples the received signal at a higher speed than in the case of general MIMO, divides and extracts the received signal at the timing when the antenna characteristics are the same from the sampled received signal, and extracts the extracted received signal. On the other hand, general MIMO reception processing is performed. Each extracted received signal can be regarded as a signal arriving from different propagation paths, although a slight delay occurs due to sampling deviation. Therefore, each radio signal arriving from each propagation path with one characteristic variable antenna. Can be received.
 図3の例では、無線基地局2は、4つのアンテナ特性1~4を周期的に変化させながら信号を受信している。図3の例において、アンテナ特性1のタイミングの信号を"1"ので示し、アンテナ特性2のタイミングの信号を"2"で示し、アンテナ特性3のタイミングの信号を"3"で示し、アンテナ特性4のタイミングの信号を"4"で示している。 In the example of FIG. 3, the radio base station 2 receives a signal while periodically changing the four antenna characteristics 1 to 4. In the example of FIG. 3, the timing signal of the antenna characteristic 1 is indicated by "1", the timing signal of the antenna characteristic 2 is indicated by "2", the timing signal of the antenna characteristic 3 is indicated by "3", and the antenna characteristic is indicated. The signal of the timing of 4 is indicated by "4".
 また、アンテナ特性1~4のアンテナをそれぞれ仮想アンテナ1~4と呼んでいる。図3において、"1"で示す信号の波形が仮想アンテナ1の波形として示されている。 Also, the antennas with antenna characteristics 1 to 4 are called virtual antennas 1 to 4, respectively. In FIG. 3, the waveform of the signal indicated by "1" is shown as the waveform of the virtual antenna 1.
 (無線端末局1)
 図4に、本実施の形態における無線端末局1の構成例を示す。図4に示すとおり、無線端末局1は、1以上のアンテナ10、複数のRF部11、複数のD/A変換部12、MIMO信号生成部13、及び設定部14を有する。なお、一般的に無線端末局1に搭載される機能ブロックについては省略している。
(Wireless terminal station 1)
FIG. 4 shows a configuration example of the wireless terminal station 1 according to the present embodiment. As shown in FIG. 4, the radio terminal station 1 has one or more antennas 10, a plurality of RF units 11, a plurality of D / A conversion units 12, a MIMO signal generation unit 13, and a setting unit 14. It should be noted that the functional block generally mounted on the wireless terminal station 1 is omitted.
 設定部14は、無線端末局1から無線基地局2への伝送に関する各種パラメータ(以下で、「伝送パラメータ」と称する。)に基づいて、伝送に関する各種パラメータをMIMO信号生成部13に設定する。なお、伝送パラメータは、無線基地局2から通知される。 The setting unit 14 sets various parameters related to transmission in the MIMO signal generation unit 13 based on various parameters related to transmission from the wireless terminal station 1 to the wireless base station 2 (hereinafter, referred to as “transmission parameters”). The transmission parameter is notified from the radio base station 2.
 MIMO信号生成部13は、設定部14により設定された伝送に関する各種パラメータに基づいて、送信データから複数のMIMO信号を生成し、それぞれのMIMO信号をD/A変換部12に入力する。 The MIMO signal generation unit 13 generates a plurality of MIMO signals from the transmission data based on various parameters related to transmission set by the setting unit 14, and inputs each MIMO signal to the D / A conversion unit 12.
 D/A変換部12は、入力されたMIMO信号をアナログ信号に変換し、当該アナログ信号をRF部11に出力する。 The D / A conversion unit 12 converts the input MIMO signal into an analog signal and outputs the analog signal to the RF unit 11.
 RF部11は、アナログ信号に対して、増幅・周波数変換・フィルタリング等のアナログ処理を施し、処理を施した信号を各アンテナ10に出力する。ここでのRF部11として、一般的な無線装置のRFフロントエンドの機能が搭載されることを想定する。アンテナ10は、入力された信号を無線信号として空中に放射する。 The RF unit 11 performs analog processing such as amplification, frequency conversion, and filtering on the analog signal, and outputs the processed signal to each antenna 10. It is assumed that the RF unit 11 here is equipped with the function of the RF front end of a general wireless device. The antenna 10 radiates the input signal into the air as a radio signal.
 (無線基地局2)
 図5に、本実施の形態における無線基地局2の構成例を示す。図5に示すように、本実施の形態における無線基地局2は、特性可変アンテナ20、RF部21、A/D変換部22、アンテナ制御部23、信号抽出部24、MIMO信号復調部25、指標値算出部26、及び決定部27(「通知部」の一例。)を有する。なお、一般的に無線基地局に搭載される機能ブロックについては図示を省略している。各部の機能は下記のとおりである。
(Wireless base station 2)
FIG. 5 shows a configuration example of the radio base station 2 in the present embodiment. As shown in FIG. 5, the radio base station 2 in the present embodiment includes a variable characteristic antenna 20, an RF unit 21, an A / D conversion unit 22, an antenna control unit 23, a signal extraction unit 24, and a MIMO signal demodulation unit 25. It has an index value calculation unit 26 and a determination unit 27 (an example of a “notification unit”). It should be noted that the functional blocks generally mounted on the radio base station are not shown. The functions of each part are as follows.
 ((特性可変アンテナ20について))
 特性可変アンテナ20は、アンテナの特性を切り替え可能なアンテナであり、アンテナ特性を切り替えながら、無線端末局1から送信された無線信号を受信する。特性可変アンテナ20は、例えば、アンテナ制御部23から入力させる制御情報に応じてアンテナ特性(指向性、出力電力、位相等)を周期的に切り替えてもよい。
((About the variable characteristic antenna 20))
The characteristic variable antenna 20 is an antenna capable of switching the characteristics of the antenna, and receives the radio signal transmitted from the wireless terminal station 1 while switching the antenna characteristics. The variable characteristic antenna 20 may periodically switch the antenna characteristics (directivity, output power, phase, etc.) according to the control information input from the antenna control unit 23, for example.
 図6に、特性可変アンテナ20の構成例を示す。図6に示す特性可変アンテナ20は、中心に配置されるダイポールアンテナ等の給電素子(Antenna element)と、その周りに配置される1以上の無給電素子(Parasitic element)を有している。 FIG. 6 shows a configuration example of the variable characteristic antenna 20. The characteristic variable antenna 20 shown in FIG. 6 has a feeding element (Antenna element) such as a dipole antenna arranged at the center, and one or more non-feeding elements (Parastic elements) arranged around the feeding element (Antenna element).
 特性可変アンテナ20は、例えば、アンテナ制御部23から入力させる制御情報に基づいて無給電素子を周期的に回転させる等により、無給電素子の反射特性を変化させてもよい。これにより、給電素子に対する伝搬路が周期的に変動するため、アンテナの特性を切り替えることができる。 The characteristic variable antenna 20 may change the reflection characteristic of the non-feeding element by, for example, periodically rotating the non-feeding element based on the control information input from the antenna control unit 23. As a result, the propagation path to the feeding element fluctuates periodically, so that the characteristics of the antenna can be switched.
 特性可変アンテナ20は、受信した信号を1つのRF部21に出力する。RF部21は、特性可変アンテナ20から入力した信号に対して、増幅・周波数変更・フィルタリング等の処理を行い、処理した信号をA/D変換部22に出力する。ここでのRF部21として、一般的な無線装置のRFフロントエンドの機能が搭載されることを想定する。 The characteristic variable antenna 20 outputs the received signal to one RF unit 21. The RF unit 21 performs processing such as amplification, frequency change, and filtering on the signal input from the characteristic variable antenna 20, and outputs the processed signal to the A / D conversion unit 22. It is assumed that the RF unit 21 here is equipped with the function of the RF front end of a general wireless device.
 A/D変換部22は、RF部21から入力するアナログ信号をサンプリングすることにより、デジタル信号に変換し、当該デジタル信号を信号抽出部24及び指標値算出部26に出力する。また、A/D変換部22は、サンプリング周期をアンテナ制御部23に通知する。なお、A/D変換部22は、無線端末局1から受信したプリアンブル信号が検出されたタイミングを示す情報に基づいて、RF部21から入力するアナログ信号をサンプリングするタイミングを決定してもよい。これにより、例えば、プリアンブル信号を送信した無線端末局1から受信した無線信号を、より適切なタイミングでサンプリングすることができる。 The A / D conversion unit 22 converts an analog signal input from the RF unit 21 into a digital signal by sampling the analog signal, and outputs the digital signal to the signal extraction unit 24 and the index value calculation unit 26. Further, the A / D conversion unit 22 notifies the antenna control unit 23 of the sampling period. The A / D conversion unit 22 may determine the timing for sampling the analog signal input from the RF unit 21 based on the information indicating the timing at which the preamble signal received from the wireless terminal station 1 is detected. Thereby, for example, the radio signal received from the radio terminal station 1 that transmitted the preamble signal can be sampled at a more appropriate timing.
 アンテナ制御部23は、A/D変換部22のサンプリング周期に応じたアンテナ制御信号を特性可変アンテナ20に出力する。 The antenna control unit 23 outputs an antenna control signal according to the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20.
 信号抽出部24は、例えば、特性可変アンテナ20が、それぞれ異なるアンテナ特性である周期的な各時点で受信した各信号を、A/D変換部22から入力された信号から抽出する。 The signal extraction unit 24, for example, extracts each signal received by the characteristic variable antenna 20 at each periodic time point having different antenna characteristics from the signal input from the A / D conversion unit 22.
 より具体的には、信号抽出部24は、A/D変換部22から入力された信号を、図3を用いて説明したように、特性可変アンテナ20のアンテナ特性が変化する周期における各時点でサンプリングされた各信号に分割する。これにより、特性可変アンテナ20のアンテナ特性が同等となるタイミングでサンプリングされた各信号が抽出(生成)される。 More specifically, the signal extraction unit 24 uses the signal input from the A / D conversion unit 22 at each time point in the cycle in which the antenna characteristics of the variable characteristic antenna 20 change, as described with reference to FIG. Divide into each sampled signal. As a result, each signal sampled at the timing when the antenna characteristics of the variable characteristic antenna 20 become the same is extracted (generated).
 そして、信号抽出部24は、決定部27から入力される情報に基づいて、分割して得られた複数の信号の中から、MIMO信号復調部25に出力する信号を抽出(選択)する。そして、信号抽出部24は、抽出した信号をMIMO信号復調部25に出力する。これより、アンテナ特性がそれぞれ異なる複数のアンテナで受信した無線信号と同様の無線信号を、1つの特性可変アンテナ20から取得することができる。 Then, the signal extraction unit 24 extracts (selects) the signal to be output to the MIMO signal demodulation unit 25 from the plurality of signals obtained by division based on the information input from the determination unit 27. Then, the signal extraction unit 24 outputs the extracted signal to the MIMO signal demodulation unit 25. As a result, it is possible to acquire a radio signal similar to a radio signal received by a plurality of antennas having different antenna characteristics from one characteristic variable antenna 20.
 MIMO信号復調部25は、信号抽出部24から受信した信号に対して復調処理を行う。MIMO信号復調部25は、例えば、一般的なMIMO等での復調処理と同様の復調処理を行ってもよい。これにより、例えば、1つの特性可変アンテナ20を仮想的な複数のアンテナとして用いて無線信号の受信を行うことができる。 The MIMO signal demodulation unit 25 performs demodulation processing on the signal received from the signal extraction unit 24. The MIMO signal demodulation unit 25 may perform demodulation processing similar to demodulation processing in general MIMO or the like, for example. Thereby, for example, one characteristic variable antenna 20 can be used as a plurality of virtual antennas to receive a radio signal.
 指標値算出部26は、無線端末局1から送信される無線信号を無線基地局2が受信する際の特性可変アンテナ20のアンテナ特性に応じた、アップリンクの伝送品質に関する各種の指標値を算出する。指標値算出部26は、例えば、チャネル相関値、使用している仮想アンテナに基づく伝送容量(通信路容量、伝送路容量、スループット)、使用している仮想アンテナに基づく各空間伝送に対する受信電力、及び使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)、及び伝搬チャネル応答等を指標値として算出してもよい。 The index value calculation unit 26 calculates various index values related to the transmission quality of the uplink according to the antenna characteristics of the characteristic variable antenna 20 when the radio base station 2 receives the radio signal transmitted from the radio terminal station 1. do. The index value calculation unit 26 includes, for example, a channel correlation value, a transmission capacity based on the virtual antenna used (channel capacity, transmission line capacity, throughput), a received power for each spatial transmission based on the virtual antenna used, and the like. And the received power to noise power ratio (SNR) based on the virtual antenna used, the propagation channel response, and the like may be calculated as index values.
 なお、チャネル相関値は、異なるアンテナ特性間での違いを数値で表したものである。指標値算出部26は、例えば、アンテナ制御部23から入力されるアンテナの制御情報に基づいて、A/D変換部22から入力される信号からそれぞれのアンテナ特性における伝搬チャネル応答を算出してもよい。そして、指標値算出部26は、特性可変アンテナ20で設定される各アンテナ特性の伝搬チャネル応答に基づいて、チャネル相関値を算出してもよい。 The channel correlation value is a numerical representation of the difference between different antenna characteristics. For example, the index value calculation unit 26 may calculate the propagation channel response in each antenna characteristic from the signal input from the A / D conversion unit 22 based on the control information of the antenna input from the antenna control unit 23. good. Then, the index value calculation unit 26 may calculate the channel correlation value based on the propagation channel response of each antenna characteristic set by the characteristic variable antenna 20.
 指標値算出部26は、算出した指標値を決定部27に出力する。 The index value calculation unit 26 outputs the calculated index value to the determination unit 27.
 決定部27は、指標値算出部26から入力される指標値に基づいて伝送パラメータを決定し、決定した伝送パラメータを無線通信により無線端末局1に通知する。また、決定部27は、指標値算出部26から入力される指標値に基づいて、抽出信号数を算出して、信号抽出部24に出力する。抽出信号数の算出方法の例については後述する。 The determination unit 27 determines the transmission parameter based on the index value input from the index value calculation unit 26, and notifies the wireless terminal station 1 of the determined transmission parameter by wireless communication. Further, the determination unit 27 calculates the number of extraction signals based on the index value input from the index value calculation unit 26 and outputs the number to the signal extraction unit 24. An example of a method for calculating the number of extracted signals will be described later.
 ここで、特性可変アンテナ20において、例えば4本の仮想アンテナの1つを周期的に選択することによりアンテナ特性を周期的に切り替える場合には、A/D変換部22は、一般的な無線基地局のA/D変換部22のサンプリング周期の4倍以上のサンプリング周期で、各アンテナ特性に対応する信号1~4をサンプリングして出力する。そして、アンテナ制御部23は、A/D変換部22のサンプリング周期で4本の仮想アンテナのうちの1つを選択してアンテナ特性を切り替える。 Here, in the characteristic variable antenna 20, when the antenna characteristics are periodically switched by, for example, one of four virtual antennas is periodically selected, the A / D conversion unit 22 is a general radio base. Signals 1 to 4 corresponding to each antenna characteristic are sampled and output at a sampling period that is four times or more the sampling period of the A / D conversion unit 22 of the station. Then, the antenna control unit 23 selects one of the four virtual antennas in the sampling cycle of the A / D conversion unit 22 and switches the antenna characteristics.
 便宜上、ここでは決定部27において決定された抽出信号数が4であるとする。このとき、信号抽出部24は、A/D変換部22のサンプリング周期と同じサンプリング周期で各アンテナ特性に対応する信号1~4を分割して抽出し、MIMO信号復調部25に出力する。その結果、信号抽出部24の4つの出力ポートには、それぞれ同じアンテナ特性の信号1~4が周期的に出力される。 For convenience, it is assumed here that the number of extraction signals determined by the determination unit 27 is 4. At this time, the signal extraction unit 24 divides and extracts the signals 1 to 4 corresponding to each antenna characteristic in the same sampling period as the sampling period of the A / D conversion unit 22, and outputs the signals to the MIMO signal demodulation unit 25. As a result, signals 1 to 4 having the same antenna characteristics are periodically output to the four output ports of the signal extraction unit 24.
 (その他の構成例)
 図5に示す無線基地局2における各機能ブロックの機能を専用のハードウェア(LSI等)で実現してもよいし、「特性可変アンテナ20、RF部21、A/D変換部22、基準アンテナ28」以外の部分(つまり、デジタル信号の処理を行う部分)を、プロセッサ(CPU、DSP等)とメモリとを備える汎用的なコンピュータと、当該コンピュータ上で動作するソフトウェアで実現してもよい。
(Other configuration examples)
The function of each functional block in the radio base station 2 shown in FIG. 5 may be realized by dedicated hardware (LSI or the like), or "characteristic variable antenna 20, RF unit 21, A / D conversion unit 22, reference antenna" may be realized. A part other than "28" (that is, a part that processes a digital signal) may be realized by a general-purpose computer including a processor (CPU, DSP, etc.) and a memory, and software running on the computer.
 コンピュータとソフトウェアを用いて無線基地局2を実現する場合における無線基地局2の構成例を図7に示す。 FIG. 7 shows a configuration example of the wireless base station 2 when the wireless base station 2 is realized by using a computer and software.
 図7に示すように、当該無線基地局2は、プロセッサ101、メモリ102、補助記憶装置103、入出力装置104、特性可変アンテナ20、RF部21、A/D変換部22を有し、これらがバスで接続された構成を有する。 As shown in FIG. 7, the radio base station 2 includes a processor 101, a memory 102, an auxiliary storage device 103, an input / output device 104, a characteristic variable antenna 20, an RF unit 21, and an A / D conversion unit 22. Has a configuration connected by a bus.
 例えば、補助記憶装置103(記憶媒体)に、無線基地局2の動作を実現するプログラムが格納される。無線基地局2の動作時に、当該プログラムがメモリ102に読み込まれ、プロセッサ101がメモリ102からプログラムを読み出して実行する。例えば、プロセッサ101は、当該プログラムにより、アンテナ制御部23、信号抽出部24、MIMO信号復調部25、指標値算出部26、及び決定部27の処理を実行する。 For example, the auxiliary storage device 103 (storage medium) stores a program that realizes the operation of the radio base station 2. During the operation of the radio base station 2, the program is read into the memory 102, and the processor 101 reads the program from the memory 102 and executes it. For example, the processor 101 executes the processing of the antenna control unit 23, the signal extraction unit 24, the MIMO signal demodulation unit 25, the index value calculation unit 26, and the determination unit 27 by the program.
 入出力装置104は、例えば、MIMO信号復調部25により得られた信号を出力する。また、入出力装置104から、事前に設定しておく情報を入力することとしてもよい。 The input / output device 104 outputs, for example, the signal obtained by the MIMO signal demodulation unit 25. Further, the information set in advance may be input from the input / output device 104.
 (動作例)
 次に、無線通信システムの動作(処理)例を、図8のシーケンス図を参照してより具体的に説明する。なお、抽出信号数決定に関わる処理と、実処理(通信サービス提供のための処理)とは並行して実行される。従って、抽出信号数は、通信サービス提供中に随時変更され得る。
(Operation example)
Next, an operation (processing) example of the wireless communication system will be described more specifically with reference to the sequence diagram of FIG. The process related to the determination of the number of extracted signals and the actual process (process for providing the communication service) are executed in parallel. Therefore, the number of extracted signals can be changed at any time during the communication service provision.
 アンテナ制御部23は、A/D変換部22のサンプリング周期に同期させたアンテナ制御信号を特性可変アンテナ20に出力し、特性可変アンテナ20は、当該アンテナ制御信号に従って、アンテナ特性を周期的に切り替えている。 The antenna control unit 23 outputs an antenna control signal synchronized with the sampling cycle of the A / D conversion unit 22 to the characteristic variable antenna 20, and the characteristic variable antenna 20 periodically switches the antenna characteristics according to the antenna control signal. ing.
 <S1>
 S1(ステップ1)において、無線端末局1は、無線信号を無線基地局2に送信する。ここで、無線端末局1は、例えば、ランダムアクセスプリアンブル(PRACH:Physical Random Access Channel)の無線信号を無線基地局2に送信してもよい。なお、PRACHは、無線端末局1無線基地局2と接続を確立する場合、及び再同期を行う場合に、最初にプリアンブル信号を送信するためのチャネルである。
<S1>
In S1 (step 1), the radio terminal station 1 transmits a radio signal to the radio base station 2. Here, the radio terminal station 1 may transmit, for example, a radio signal of a random access preamble (PRACH: Physical Random Access Channel) to the radio base station 2. The PRACH is a channel for first transmitting a preamble signal when establishing a connection with the radio terminal station 1 and the radio base station 2 and when performing resynchronization.
 <S2>
 S2において、無線基地局2は、1以上の無線端末局1の各アンテナから同時に送信された信号を受信する。ここで、無線基地局2の特性可変アンテナ20により受信された信号はRF部21に入力され、RF部21により処理された信号はA/D変換部22に出力される。
<S2>
In S2, the radio base station 2 receives signals simultaneously transmitted from each antenna of one or more radio terminal stations 1. Here, the signal received by the characteristic variable antenna 20 of the radio base station 2 is input to the RF unit 21, and the signal processed by the RF unit 21 is output to the A / D conversion unit 22.
 A/D変換部22は、入力された信号(アナログ信号)に対してサンプリングを行い、サンプリングされた信号(デジタル信号)を取得する。以降の説明の「信号」は、サンプリングにより取得された信号である。A/D変換部22により得られた信号は、信号抽出部24及び指標値算出部26に出力される。なお、A/D変換部22は、アンテナ特性の変化の周期において、所定回数のサンプリングを行ってもよい。 The A / D conversion unit 22 samples the input signal (analog signal) and acquires the sampled signal (digital signal). The "signal" described below is a signal acquired by sampling. The signal obtained by the A / D conversion unit 22 is output to the signal extraction unit 24 and the index value calculation unit 26. The A / D conversion unit 22 may perform sampling a predetermined number of times in the cycle of change in antenna characteristics.
 <S3>
 S3において、無線基地局2の指標値算出部26は、アンテナ制御部23から入力されるアンテナの制御情報に基づいて、A/D変換部22から入力される信号からそれぞれのアンテナ特性における伝搬チャネル応答を算出するとともに、特性可変アンテナ20で設定される各アンテナ特性での伝搬チャネル応答間の相関値(チャネル相関値)を算出する。
<S3>
In S3, the index value calculation unit 26 of the radio base station 2 has a propagation channel in each antenna characteristic from the signal input from the A / D conversion unit 22 based on the control information of the antenna input from the antenna control unit 23. In addition to calculating the response, the correlation value (channel correlation value) between the propagation channel responses at each antenna characteristic set by the characteristic variable antenna 20 is calculated.
 指標値算出部26は、各アンテナ特性での伝搬チャネル応答間の相関値を、例えは下記の式1により算出してもよい。 The index value calculation unit 26 may calculate the correlation value between the propagation channel responses at each antenna characteristic, for example, by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
 式1において、aはあるアンテナ特性におけるアンテナと無線端末局1のi番目のアンテナとの間の伝搬チャネル応答ベクトルであり、bはaとは異なるアンテナ特性におけるアンテナと無線端末局1のi番目のアンテナとの間の伝搬チャネル応答ベクトルである。指標値算出部26は、アンテナ特性の組毎に、式1でチャネル相関値を求め、全組のチャネル相関値を足し合わせることで、全アンテナ特性におけるチャネル相関値を算出する。
Figure JPOXMLDOC01-appb-M000001
In Equation 1, ai is the propagation channel response vector between the antenna at a certain antenna characteristic and the i -th antenna of the radio terminal station 1, and bi is the antenna and the radio terminal station 1 at an antenna characteristic different from ai . It is a propagation channel response vector to and from the i-th antenna of. The index value calculation unit 26 calculates the channel correlation value in all the antenna characteristics by obtaining the channel correlation value by the equation 1 for each set of antenna characteristics and adding the channel correlation values of all the sets.
 例えば、特性可変アンテナ20が4つのアンテナ特性を切り替えているとし、それぞれの特性におけるアンテナを仮想アンテナ1、仮想アンテナ2、仮想アンテナ3、仮想アンテナ4と呼ぶこととする。 For example, assuming that the characteristic variable antenna 20 switches between four antenna characteristics, the antennas in each characteristic are referred to as a virtual antenna 1, a virtual antenna 2, a virtual antenna 3, and a virtual antenna 4.
 この場合、指標値算出部26は、仮想アンテナ1と仮想アンテナ2との間のチャネル相関値、仮想アンテナ1と仮想アンテナ3との間のチャネル相関値、仮想アンテナ1と仮想アンテナ4との間のチャネル相関値、仮想アンテナ2と仮想アンテナ3との間のチャネル相関値、仮想アンテナ2と仮想アンテナ4との間のチャネル相関値、仮想アンテナ3と仮想アンテナ4との間のチャネル相関値を算出し、これらのチャネル相関値の和を求めることで、仮想アンテナ1~4間のチャネル相関値を算出する。 In this case, the index value calculation unit 26 uses the channel correlation value between the virtual antenna 1 and the virtual antenna 2, the channel correlation value between the virtual antenna 1 and the virtual antenna 3, and the interval between the virtual antenna 1 and the virtual antenna 4. Channel correlation value, channel correlation value between virtual antenna 2 and virtual antenna 3, channel correlation value between virtual antenna 2 and virtual antenna 4, and channel correlation value between virtual antenna 3 and virtual antenna 4. By calculating and calculating the sum of these channel correlation values, the channel correlation value between the virtual antennas 1 to 4 is calculated.
 また、抽出信号数の算出方法に応じて、上記のような2仮想アンテナ間での各チャネル相関値、仮想アンテナ1~4間のチャネル相関値に加えて、仮想アンテナ1、2、3間のチャネル相関値、仮想アンテナ1、2、4間のチャネル相関値、仮想アンテナ2、3、4間のチャネル相関値を算出してもよい。つまり、全ての組み合わせについてのチャネル相関値を算出してもよい。 Further, depending on the calculation method of the number of extracted signals, in addition to the channel correlation value between the two virtual antennas and the channel correlation value between the virtual antennas 1 to 4 as described above, the virtual antennas 1, 2 and 3 are used. The channel correlation value, the channel correlation value between the virtual antennas 1, 2 and 4, and the channel correlation value between the virtual antennas 2, 3 and 4 may be calculated. That is, the channel correlation value may be calculated for all combinations.
 <S4>
 S4において、無線基地局2の決定部27は、指標値算出部26から入力される各種の指標値に基づいて、各種のパラメータを決定する。ここで、無線基地局2の決定部27は、例えば、指標値算出部26から入力されるチャネル相関値に基づいて抽出信号数を算出し、算出結果を信号抽出部24に出力する。
<S4>
In S4, the determination unit 27 of the radio base station 2 determines various parameters based on various index values input from the index value calculation unit 26. Here, the determination unit 27 of the radio base station 2 calculates the number of extraction signals based on the channel correlation value input from the index value calculation unit 26, and outputs the calculation result to the signal extraction unit 24, for example.
 この場合、決定部27は、例えば、事前にシミュレーションもしくは実測で算出したチャネル相関値と伝送容量の関係性を示すテーブルを保持しており、指標値算出部26により算出されたチャネル相関値に基づきテーブルを参照し、伝送容量の劣化量がしきい値以下となる最小の抽出信号数を決定する。しきい値は、事前に与えておく値である。 In this case, the determination unit 27 holds, for example, a table showing the relationship between the channel correlation value calculated in advance by simulation or actual measurement and the transmission capacity, and is based on the channel correlation value calculated by the index value calculation unit 26. Refer to the table to determine the minimum number of extracted signals that will reduce the amount of transmission capacity degradation below the threshold. The threshold value is a value given in advance.
 「伝送容量の劣化量がしきい値以下となる最小の抽出信号数」の意味は下記のとおりである。 The meaning of "the minimum number of extracted signals whose transmission capacity deterioration amount is less than the threshold value" is as follows.
 抽出信号数が多いほど(つまり、MIMO信号復調部25へ入力される信号の受信に使用される仮想アンテナの数が多いほど)、伝送容量が大きくなるが、抽出信号数が大きくなり過ぎるとMIMO信号復調部25の処理負荷が過大になる。抽出信号数の増加に対する伝送容量の増加の度合いは、抽出信号数が大きいほど小さくなる。例えば、抽出信号数が16から18に増加する場合の伝送容量の増加量は、抽出信号数が10から12に増加する場合の伝送容量の増加量よりも小さい。 The larger the number of extracted signals (that is, the larger the number of virtual antennas used to receive the signal input to the MIMO signal demodulation unit 25), the larger the transmission capacity, but if the number of extracted signals becomes too large, MIMO The processing load of the signal demodulation unit 25 becomes excessive. The degree of increase in transmission capacity with respect to the increase in the number of extracted signals decreases as the number of extracted signals increases. For example, the amount of increase in transmission capacity when the number of extracted signals increases from 16 to 18 is smaller than the amount of increase in transmission capacity when the number of extracted signals increases from 10 to 12.
 つまり、切り替えに使用される仮想アンテナ数と等しい抽出信号数(便宜上Nとする)を用いた場合の伝送容量に比べて、Nよりも小さい抽出信号数Mにおける伝送容量は劣化する。本実施の形態では、伝送容量の劣化を小さくしつつ、MIMO信号復調部25の処理負荷が過大にならないように、「伝送容量の劣化量がしきい値以下となる最小の抽出信号数」を決定し、それを信号抽出部24へ通知することとしている。 That is, the transmission capacity in the number of extracted signals M smaller than N is deteriorated as compared with the transmission capacity when the number of extracted signals equal to the number of virtual antennas used for switching (referred to as N for convenience) is used. In the present embodiment, the "minimum number of extracted signals whose transmission capacity deterioration amount is equal to or less than the threshold value" is set so that the processing load of the MIMO signal demodulation unit 25 does not become excessive while reducing the deterioration of the transmission capacity. It is decided and notified to the signal extraction unit 24.
 例えば、N=16とした場合において、抽出信号数=16のときの伝送容量に対する抽出信号数=14の伝送容量の劣化量が、しきい値以下(つまり、あまり劣化しない)であり、抽出信号数=12の伝送容量の劣化量もしきい値以下であるが、抽出信号数=10の伝送容量の劣化量はしきい値を超える場合、抽出信号数=12となる。 For example, when N = 16, the amount of deterioration of the transmission capacity of the number of extraction signals = 14 with respect to the transmission capacity when the number of extraction signals = 16 is equal to or less than the threshold value (that is, it does not deteriorate much), and the extraction signal The amount of deterioration of the transmission capacity of the number = 12 is also equal to or less than the threshold value, but when the amount of deterioration of the transmission capacity of the number of extracted signals = 10 exceeds the threshold value, the number of extracted signals = 12.
 より具体的には、例えば、決定部27は、切り替えながらの信号受信に使用される仮想アンテナ数毎に、図9に示すようなテーブルを保持している。図9に示すテーブルは、指標値算出部26により得られたチャネル相関値に対応する抽出信号数(=「伝送容量の劣化がしきい値以下となる最小の抽出信号数」)を、チャネル相関値毎に保持するテーブルである。 More specifically, for example, the determination unit 27 holds a table as shown in FIG. 9 for each number of virtual antennas used for signal reception while switching. In the table shown in FIG. 9, the number of extracted signals corresponding to the channel correlation value obtained by the index value calculation unit 26 (= “minimum number of extracted signals whose transmission capacity deterioration is equal to or less than the threshold value”) is determined by channel correlation. It is a table that holds each value.
 例えば、仮想アンテナ数=Nである場合に、チャネル相関値として「A」が算出された場合、決定部27は、自身が保持する図9のテーブルを参照することにより、抽出信号数として、「N1」を決定する。 For example, when the number of virtual antennas = N and "A" is calculated as the channel correlation value, the determination unit 27 refers to the table of FIG. 9 held by itself as the number of extracted signals. N1 "is decided.
 S4において、決定部27は、上記のようにして抽出信号数のみを決定してもよいし、抽出信号数に加えて、その数の仮想アンテナ(どの仮想アンテナの信号を使用するか)を決定してもよい。 In S4, the determination unit 27 may determine only the number of extracted signals as described above, or determine the number of virtual antennas (which virtual antenna signal is used) in addition to the number of extracted signals. You may.
 抽出信号数に加えて、その数の仮想アンテナも決定する場合において、決定部27は、例えば、その数の仮想アンテナ間のチャネル相関値が最小(相関が弱い)の仮想アンテナの組を選択(決定)する。 When determining the number of virtual antennas in addition to the number of extracted signals, the determination unit 27 selects, for example, a set of virtual antennas having the minimum channel correlation value (weak correlation) between the number of virtual antennas (weak correlation). decide.
 例えば、仮想アンテナ1~4の4つの仮想アンテナを切り替えて使用する場合において、抽出信号数=3となった場合を想定する。この場合、例えば、仮想アンテナ1、2、3間のチャネル相関値、仮想アンテナ1、2、4間のチャネル相関値、仮想アンテナ2、3、4間のチャネル相関値のうち、仮想アンテナ1、2、3間のチャネル相関値が最小になったとすると、決定部27は、決定した抽出信号数の仮想アンテナとして、仮想アンテナ1、2、3を決定する。なお、決定部27は、抽出信号数に加えて、その数の仮想アンテナも決定した場合には、決定した抽出信号数の仮想アンテナを示す情報も信号抽出部24に通知する。 For example, it is assumed that the number of extracted signals = 3 when the four virtual antennas 1 to 4 are switched and used. In this case, for example, among the channel correlation values between the virtual antennas 1, 2 and 3, the channel correlation values between the virtual antennas 1, 2 and 4, and the channel correlation values between the virtual antennas 2, 3 and 4, the virtual antenna 1 Assuming that the channel correlation value between 2 and 3 is minimized, the determination unit 27 determines virtual antennas 1, 2 and 3 as virtual antennas having a determined number of extracted signals. When the determination unit 27 determines the number of virtual antennas in addition to the number of extraction signals, the determination unit 27 also notifies the signal extraction unit 24 of information indicating the virtual antennas of the determined number of extraction signals.
 また、S4において、決定部27は、指標値算出部26から入力される指標値に基づいて、無線端末局1から送信される無線信号を受信する際の特性可変アンテナ20のアンテナ特性に応じた伝送パラメータを決定する。当該指標値には、上述したチャネル相関値が含まれてもよい。また、後述するように、当該指標値には、使用している仮想アンテナに基づく伝送容量C、使用している仮想アンテナに基づく各空間伝送に対する受信電力、及び使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)等が含まれてもよい。 Further, in S4, the determination unit 27 corresponds to the antenna characteristics of the characteristic variable antenna 20 when receiving the radio signal transmitted from the wireless terminal station 1 based on the index value input from the index value calculation unit 26. Determine the transmission parameters. The index value may include the channel correlation value described above. Further, as will be described later, the index values include the transmission capacity C based on the virtual antenna used, the received power for each spatial transmission based on the virtual antenna used, and the reception based on the virtual antenna used. The power-to-noise power ratio (SNR) and the like may be included.
 ここで、決定部27は、伝送パラメータとして、例えば、無線端末局1から無線基地局2への上り方向の通信(アップリンク)における、MIMO伝送の空間多重数、変調方式、符号化方式(符号化手法)、符号化率、及び帯域等を決定してもよい。 Here, as transmission parameters, the determination unit 27 may use, for example, a spatial multiplex of MIMO transmission, a modulation method, and a coding method (code) in uplink communication (uplink) from the radio terminal station 1 to the radio base station 2. The conversion method), the coding rate, the band, and the like may be determined.
 (伝送環境が良い場合に、より高品質の通信を行わせる例)
 決定部27は、例えば、指標値算出部26から入力される指標値に基づいて、より良い伝送環境であると判定できる場合、より高品質の通信を行わせる各種パラメータを決定してもよい。この場合、決定部27は、例えば、チャネル相関値が低い(小さい)ほど、より高品質の通信を行わせる各種パラメータを決定してもよい。また、決定部27は、例えば、使用している仮想アンテナに基づく伝送容量C、使用している仮想アンテナに基づく各空間伝送に対する受信電力、及び使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)の値が高い(大きい)ほど、より高品質の通信を行わせる各種パラメータを決定してもよい。
(Example of making higher quality communication when the transmission environment is good)
For example, the determination unit 27 may determine various parameters for performing higher quality communication when it can be determined that the transmission environment is better based on the index value input from the index value calculation unit 26. In this case, for example, the determination unit 27 may determine various parameters for performing higher quality communication as the channel correlation value is lower (smaller). Further, the determination unit 27 has, for example, a transmission capacity C based on the virtual antenna used, received power for each spatial transmission based on the virtual antenna used, and received power vs. noise power based on the virtual antenna used. The higher (larger) the value of the ratio (SNR), the more various parameters may be determined to enable higher quality communication.
 この場合、決定部27は、より高品質の通信を行わせる各種パラメータとして、例えば、より多い空間多重数(例えば、4以上)での通信を行わせるように決定してもよい。また、決定部27は、より高品質の通信を行わせる各種パラメータとして、例えば、より変調度の高い変調方式(例えば、64QAM(Quadrature Amplitude Modulation)、256QAM、1024QAMなど)での通信を行わせるように決定してもよい。 In this case, the determination unit 27 may determine, for example, to perform communication with a larger number of spatial multiplex (for example, 4 or more) as various parameters for performing higher quality communication. Further, the determination unit 27 causes communication by, for example, a modulation method having a higher degree of modulation (for example, 64QAM (Quadrature Amplitude Modulation), 256QAM, 1024QAM, etc.) as various parameters for performing higher quality communication. May be decided.
 また、決定部27は、より高品質の通信を行わせる各種パラメータとして、例えば、より高効率な符号化率(符号率。情報レート。例えば、5/6、7/8など)での通信を行わせるように決定してもよい。また、決定部27は、より高品質の通信を行わせる各種パラメータとして、例えば、より広帯域な帯域幅(例えば、20MHz以上)での通信を行わせるように決定してもよい。 Further, the determination unit 27 performs communication with a higher efficiency coding rate (code rate, information rate, for example, 5/6, 7/8, etc.) as various parameters for performing higher quality communication. You may decide to do it. Further, the determination unit 27 may determine, for example, to perform communication in a wider bandwidth (for example, 20 MHz or more) as various parameters for performing higher quality communication.
 (伝送環境が悪い場合に、より低品質の通信を行わせる例)
 決定部27は、例えば、伝送品質情報に基づいて、より悪い伝送環境であると判定できる場合、より低品質の通信を行わせる各種パラメータを決定してもよい。この場合、決定部27は、例えば、チャネル相関値が高い(大きい)ほど、より低品質の通信を行わせる各種パラメータを決定してもよい。また、決定部27は、例えば、使用している仮想アンテナに基づく伝送容量C、使用している仮想アンテナに基づく各空間伝送に対する受信電力、及び使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)の値が低い(小さい)ほど、より低品質の通信を行わせる各種パラメータを決定してもよい。
(Example of making lower quality communication when the transmission environment is bad)
The determination unit 27 may determine various parameters for performing lower quality communication, for example, when it can be determined that the transmission environment is worse based on the transmission quality information. In this case, for example, the determination unit 27 may determine various parameters that cause lower quality communication as the channel correlation value is higher (larger). Further, the determination unit 27 has, for example, a transmission capacity C based on the virtual antenna used, received power for each spatial transmission based on the virtual antenna used, and received power vs. noise power based on the virtual antenna used. The lower (smaller) the value of the ratio (SNR), the various parameters that cause lower quality communication may be determined.
 この場合、決定部27は、より低品質の通信を行わせる各種パラメータとして、例えば、より少ない空間多重数(例えば、4未満)での通信を行わせるように決定してもよい。また、決定部27は、より低品質の通信を行わせる各種パラメータとして、例えば、より変調度の低い変調方式(例えば、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、16QAM)での通信を行わせるように決定してもよい。 In this case, the determination unit 27 may determine, for example, to perform communication with a smaller number of spatial multiplex (for example, less than 4) as various parameters for performing lower quality communication. Further, the determination unit 27 uses, for example, a modulation method with a lower modulation degree (for example, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM) as various parameters for performing lower quality communication. May be decided to communicate.
 また、決定部27は、より低品質の通信を行わせる各種パラメータとして、例えば、より低効率な符号化率(例えば、1/2、2/3など)での通信を行わせるように決定してもよい。また、決定部27は、より低品質の通信を行わせる各種パラメータとして、例えば、より狭帯域な帯域幅(例えば、20MHz未満)での通信を行わせるように決定してもよい。 Further, the determination unit 27 determines as various parameters for performing communication with lower quality, for example, to perform communication with a lower efficiency coding rate (for example, 1/2, 2/3, etc.). You may. Further, the determination unit 27 may determine, for example, to perform communication with a narrower bandwidth (for example, less than 20 MHz) as various parameters for performing lower quality communication.
 <S5>
 S5において、無線基地局2の決定部27は、決定した伝送パラメータを無線端末局1に無線通信により通知する。ここで、無線基地局2の決定部27は、例えば、アップリンクの制御用チャネル等を用いて、伝送パラメータを通知してもよい。
<S5>
In S5, the determination unit 27 of the radio base station 2 notifies the wireless terminal station 1 of the determined transmission parameter by wireless communication. Here, the determination unit 27 of the radio base station 2 may notify the transmission parameter by using, for example, an uplink control channel or the like.
 <S6>
 S6において、無線端末局1の設定部14は、無線基地局2から通知される伝送パラメータに基づいて、伝送に関する各種パラメータをMIMO信号生成部13に設定する。
<S6>
In S6, the setting unit 14 of the wireless terminal station 1 sets various parameters related to transmission in the MIMO signal generation unit 13 based on the transmission parameters notified from the wireless base station 2.
 <S7>
 S7において、無線端末局1は、設定部14に設定された伝送パラメータに基づいて、アップリンクの無線信号を無線基地局2に送信する。
<S7>
In S7, the radio terminal station 1 transmits an uplink radio signal to the radio base station 2 based on the transmission parameters set in the setting unit 14.
 <S8>
 S8において、無線基地局2は、1以上の無線端末局1の各アンテナから同時に送信された信号を受信する。ここで、上述したS2の処理と同様に、無線基地局2の特性可変アンテナ20により受信された信号はRF部21に入力され、RF部21により処理された信号はA/D変換部22に出力される。A/D変換部22は、入力された信号(アナログ信号)に対してサンプリングを行い、サンプリングされた信号(デジタル信号)を取得する。
<S8>
In S8, the radio base station 2 receives signals simultaneously transmitted from each antenna of one or more radio terminal stations 1. Here, similarly to the processing of S2 described above, the signal received by the characteristic variable antenna 20 of the radio base station 2 is input to the RF unit 21, and the signal processed by the RF unit 21 is input to the A / D conversion unit 22. It is output. The A / D conversion unit 22 samples the input signal (analog signal) and acquires the sampled signal (digital signal).
 そして、信号抽出部24は、決定部27から受信した抽出信号数に基づいて、A/D変換部22から入力された信号をA/D変換部22のサンプリング周期と同じサンプリング周期で分割し、分割した信号から抽出信号数の信号を抽出(選択)し、抽出した信号をMIMO信号復調部25に出力する。 Then, the signal extraction unit 24 divides the signal input from the A / D conversion unit 22 into the same sampling period as the sampling period of the A / D conversion unit 22 based on the number of extraction signals received from the determination unit 27. A signal with the number of extracted signals is extracted (selected) from the divided signals, and the extracted signal is output to the MIMO signal demodulator 25.
 なお、信号抽出部24で抽出可能な最大信号数が予め定められていてもよい。その場合、信号抽出部24に対して当該最大信号数よりも大きな抽出信号数が通知された場合には、信号抽出部24は、当該最大信号数の信号を抽出し、抽出した信号をMIMO信号復調部25に出力する。 The maximum number of signals that can be extracted by the signal extraction unit 24 may be predetermined. In that case, when the signal extraction unit 24 is notified of the number of extraction signals larger than the maximum number of signals, the signal extraction unit 24 extracts the signal with the maximum number of signals and uses the extracted signal as a MIMO signal. Output to the demodulation unit 25.
 信号抽出部24が、決定部27から抽出信号数のみを受信した場合、分割した信号からどの信号を抽出するかについては、特定の方法に限定されないが、例えば、どの信号を抽出するかを予め定めておくこととしてもよい。 When the signal extraction unit 24 receives only the number of extraction signals from the determination unit 27, which signal is extracted from the divided signals is not limited to a specific method, but for example, which signal is to be extracted is determined in advance. It may be decided.
 例えば、仮想アンテナ1~4を使用する場合において、仮想アンテナ1、2、3、4の順で選択するように定められているとする。この場合、仮に抽出信号数=3であるとすると、信号抽出部24は、仮想アンテナ1~4の信号のうち、仮想アンテナ1、2、3の信号を抽出し、MIMO信号復調部25に出力する。 For example, when using virtual antennas 1 to 4, it is assumed that the virtual antennas 1, 2, 3, and 4 are selected in this order. In this case, assuming that the number of extracted signals = 3, the signal extraction unit 24 extracts the signals of the virtual antennas 1, 2 and 3 from the signals of the virtual antennas 1 to 4 and outputs them to the MIMO signal demodulation unit 25. do.
 また、信号抽出部24が、決定部27から仮想アンテナの情報(抽出するべき信号の情報)を受信した場合、信号抽出部24は、分割した信号から、決定部27により通知された信号を抽出し、MIMO信号復調部25に出力する。 Further, when the signal extraction unit 24 receives the information of the virtual antenna (information of the signal to be extracted) from the determination unit 27, the signal extraction unit 24 extracts the signal notified by the determination unit 27 from the divided signals. Then, it is output to the MIMO signal demodulation unit 25.
 図10に、信号抽出部24による動作のイメージを示す。図10に示す例では、仮想アンテナ1~8が使用されていることを想定している。仮想アンテナ1~8に対応する信号を信号1~8とする(図では、数字の入った○が信号を示す)。 FIG. 10 shows an image of the operation by the signal extraction unit 24. In the example shown in FIG. 10, it is assumed that virtual antennas 1 to 8 are used. The signals corresponding to the virtual antennas 1 to 8 are the signals 1 to 8 (in the figure, the circles with numbers indicate the signals).
 信号抽出部24は、A/D変換部22によりサンプリングされた信号を受信する。信号抽出部24は、サンプリング周期と同じ周期で、入力された信号を分割することにより、信号1、2、3、4、5、6、7、8、....を順次取得(識別)する。 The signal extraction unit 24 receives the signal sampled by the A / D conversion unit 22. The signal extraction unit 24 divides the input signal in the same cycle as the sampling cycle, so that the signals 1, 2, 3, 4, 5, 6, 7, 8, ... Are sequentially acquired (identified).
 図10の例では、決定部27から信号抽出部24に対して、信号1~8のうち、信号1、4、7、8を抽出するよう指定されているものとする。この場合、信号抽出部24は、信号1~8のうち、信号1、4、7、8を抽出し、これらの信号をMIMO信号復調部25に出力する。 In the example of FIG. 10, it is assumed that the determination unit 27 is specified to the signal extraction unit 24 to extract signals 1, 4, 7, and 8 from the signals 1 to 8. In this case, the signal extraction unit 24 extracts signals 1, 4, 7, and 8 from the signals 1 to 8, and outputs these signals to the MIMO signal demodulation unit 25.
 <S9>
 S9において、MIMO信号復調部25は、信号抽出部24から受信した信号に対して、一般的な無線通信システムで規定されるMIMOの復調処理を行う。なお、MIMO復調処理において必要となる情報(無線端末局1のアンテナ数等)は、事前に与えられていることとしてもよいし、推定することとしてもよい。
<S9>
In S9, the MIMO signal demodulation unit 25 performs the MIMO demodulation processing defined in a general wireless communication system with respect to the signal received from the signal extraction unit 24. Information required for MIMO demodulation processing (number of antennas of wireless terminal station 1 and the like) may be given in advance or may be estimated.
 (チャネル相関値以外の指標値例)
 上記の例では、抽出信号数の決定のための指標値として、仮想アンテナ間のチャネル相関値を用いているが、これは一例である。チャネル相関値以外の指標値を用いて抽出信号数を決定してもよい。
(Example of index value other than channel correlation value)
In the above example, the channel correlation value between virtual antennas is used as an index value for determining the number of extracted signals, but this is an example. The number of extracted signals may be determined using an index value other than the channel correlation value.
 例えば、図8のフローのS3において、指標値算出部26は、チャネル相関値に代えて、またはこれに加えて、下記の式2により、使用している仮想アンテナに基づく理論的な伝送容量Cを指標値として算出してもよい。 For example, in S3 of the flow of FIG. 8, the index value calculation unit 26 uses the following equation 2 in place of or in addition to the channel correlation value to provide a theoretical transmission capacity C based on the virtual antenna used. May be calculated as an index value.
Figure JPOXMLDOC01-appb-M000002
 上記の式2におけるINrは、Nr×Nrの単位行列である。Nrは、受信アンテナ数(=使用している仮想アンテナの数(切り替えるアンテナ特性の数))である。Ntは送信アンテナ数(=無線端末局1のアンテナ数)である。Ptは送信電力である。σ は雑音電力である。Hは、Nr×Ntのチャネル行列(伝搬チャネル応答を要素として持つ行列)であり、detは括弧内の行列の行列式である。
Figure JPOXMLDOC01-appb-M000002
INr in the above equation 2 is an identity matrix of Nr × Nr. Nr is the number of receiving antennas (= the number of virtual antennas used (the number of antenna characteristics to be switched)). Nt is the number of transmitting antennas (= the number of antennas of the wireless terminal station 1). Pt is the transmission power. σ 2 n is noise power. H is a Nr × Nt channel matrix (a matrix having a propagation channel response as an element), and det is a determinant of the matrix in parentheses.
 例えば、特性可変アンテナ20が4つのアンテナ特性を切り替えているとする。つまり、仮想アンテナ1、仮想アンテナ2、仮想アンテナ3、仮想アンテナ4を使用しているとする。 For example, it is assumed that the characteristic variable antenna 20 switches between four antenna characteristics. That is, it is assumed that the virtual antenna 1, the virtual antenna 2, the virtual antenna 3, and the virtual antenna 4 are used.
 この場合、指標値算出部26は、式2を用いて、仮想アンテナ1~4を使用した場合の伝送容量を算出する。 In this case, the index value calculation unit 26 calculates the transmission capacity when the virtual antennas 1 to 4 are used by using the equation 2.
 また、抽出信号数の算出方法に応じて、上記のような全仮想アンテナを用いた場合の伝送容量に加えて、仮想アンテナ1と仮想アンテナ2を使用した場合の伝送容量、仮想アンテナ1と仮想アンテナ3を使用した場合の伝送容量、仮想アンテナ1と仮想アンテナ4を使用した場合の伝送容量、仮想アンテナ2と仮想アンテナ3を使用した場合の伝送容量、仮想アンテナ2と仮想アンテナ4を使用した場合の伝送容量、仮想アンテナ3と仮想アンテナ4を使用した場合の伝送容量、仮想アンテナ1、2、3を使用した場合の伝送容量、仮想アンテナ1、2、4を使用した場合の伝送容量、仮想アンテナ2、3、4を使用した場合の伝送容量を算出してもよい。つまり、全ての組み合わせについての伝送容量を算出してもよい。 Further, depending on the calculation method of the number of extracted signals, in addition to the transmission capacity when all the virtual antennas are used as described above, the transmission capacity when the virtual antenna 1 and the virtual antenna 2 are used, and the virtual antenna 1 and the virtual antenna 1 are virtual. The transmission capacity when the antenna 3 is used, the transmission capacity when the virtual antenna 1 and the virtual antenna 4 are used, the transmission capacity when the virtual antenna 2 and the virtual antenna 3 are used, and the virtual antenna 2 and the virtual antenna 4 are used. Transmission capacity in the case, transmission capacity when the virtual antenna 3 and the virtual antenna 4 are used, transmission capacity when the virtual antennas 1, 2 and 3 are used, transmission capacity when the virtual antennas 1, 2 and 4 are used, The transmission capacity when the virtual antennas 2, 3 and 4 are used may be calculated. That is, the transmission capacity may be calculated for all combinations.
 S4において、決定部27は、指標値算出部26から入力される伝送容量から抽出信号数を算出し、算出結果を信号抽出部24に出力する。 In S4, the determination unit 27 calculates the number of extraction signals from the transmission capacity input from the index value calculation unit 26, and outputs the calculation result to the signal extraction unit 24.
 例えば、決定部27は、伝送容量と「伝送容量の劣化がしきい値以下となる最小の抽出信号数」とを対応付けたテーブルを、使用する仮想アンテナの数毎に保持している。 For example, the determination unit 27 holds a table in which the transmission capacity is associated with the "minimum number of extracted signals whose deterioration of the transmission capacity is equal to or less than the threshold value" for each number of virtual antennas to be used.
 ここで、仮想アンテナ数=Nに対応するテーブルにおける、伝送容量Cに対応する「伝送容量の劣化がしきい値以下となる最小の抽出信号数」が「N1」であるとする。 Here, it is assumed that the "minimum number of extracted signals whose deterioration of the transmission capacity is equal to or less than the threshold value" corresponding to the transmission capacity C in the table corresponding to the number of virtual antennas = N is "N1".
 このとき、式2による計算で伝送容量としてCが算出された場合、決定部27は、テーブルを参照することにより、抽出信号数として「N1」を決定する。 At this time, when C is calculated as the transmission capacity by the calculation according to Equation 2, the determination unit 27 determines "N1" as the number of extracted signals by referring to the table.
 S4において、決定部27は、上記のようにして抽出信号数のみを決定してもよいし、抽出信号数に加えて、その数の仮想アンテナ(どの仮想アンテナの信号を使用するか)を決定してもよい。 In S4, the determination unit 27 may determine only the number of extracted signals as described above, or determine the number of virtual antennas (which virtual antenna signal is used) in addition to the number of extracted signals. You may.
 抽出信号数に加えて、その数の仮想アンテナも決定する場合において、決定部27は、例えば、その数の仮想アンテナの伝送容量が最大となる仮想アンテナの組を選択(決定)する。 When determining the number of virtual antennas in addition to the number of extracted signals, the determination unit 27 selects (determines), for example, the set of virtual antennas that maximizes the transmission capacity of the number of virtual antennas.
 例えば、仮想アンテナ1~4の4つの仮想アンテナを切り替えて使用する場合において、抽出信号数=3となった場合を想定する。この場合、例えば、仮想アンテナ1、2、3での伝送容量、仮想アンテナ1、2、4での伝送容量、仮想アンテナ2、3、4での伝送容量のうち、仮想アンテナ1、2、3での伝送容量が最大になったとすると、決定部27は、決定した抽出信号数の仮想アンテナとして、仮想アンテナ1、2、3を決定する。 For example, it is assumed that the number of extracted signals = 3 when the four virtual antennas 1 to 4 are switched and used. In this case, for example, among the transmission capacities of the virtual antennas 1, 2, and 3, the transmission capacities of the virtual antennas 1, 2, and 4, and the transmission capacities of the virtual antennas 2, 3, and 4, the virtual antennas 1, 2, and 3. Assuming that the transmission capacity in the above is maximized, the determination unit 27 determines the virtual antennas 1, 2, and 3 as the virtual antennas having the determined number of extracted signals.
 指標値算出部26は、指標値として、これまでに説明したチャネル相関値、及び伝送容量に代えて、またはこれらに加えて、例えば、使用している仮想アンテナに基づく各空間伝送に対する受信電力に相当する値等を算出してもよい。使用している仮想アンテナに基づく各空間伝送に対する受信電力に相当する値は、例えば、上記のチャネル行列Hを固有値分解して得られる固有値でもよい。 The index value calculation unit 26 uses the index value as the index value in place of or in addition to the channel correlation value and the transmission capacity described so far, for example, as the received power for each spatial transmission based on the virtual antenna used. The corresponding value or the like may be calculated. The value corresponding to the received power for each spatial transmission based on the virtual antenna used may be, for example, an eigenvalue obtained by decomposing the above channel matrix H into eigenvalues.
 また、指標値算出部26は、指標値として、例えば、使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)等を算出してもよい。使用している仮想アンテナに基づく受信電力対雑音電力比(SNR)は、上記の固有値を雑音電力で割った値でもよい。 Further, the index value calculation unit 26 may calculate, for example, the received power to noise power ratio (SNR) based on the virtual antenna used as the index value. The received power to noise power ratio (SNR) based on the virtual antenna used may be a value obtained by dividing the above eigenvalues by the noise power.
 (変形例)
 以上、基本的な構成を基本例として説明したが、更なる改善等のために、下記の変形例1~2に説明するような構成及び動作を採用することとしてもよい。なお、変形例1~2のうちの一部又は全部を組み合わせてもよい。また、変形例1~2において説明していない部分については、上述した基本例が適用されてもよい。
(Modification example)
Although the basic configuration has been described above as a basic example, the configuration and operation as described in the following modification examples 1 and 2 may be adopted for further improvement and the like. In addition, a part or all of the modification 1 and 2 may be combined. Further, the above-mentioned basic example may be applied to the portions not described in the modified examples 1 and 2.
 <変形例1>
 無線基地局2の決定部27は、複数の無線端末局1の各アンテナ10のうち、より良い伝送環境を示す指標値となるアンテナを用いた伝送を行わせるように、伝送パラメータを決定してもよい。これにより、複数のアンテナから同一周波数かつ同一時刻に送信される無線信号を特性可変アンテナで受信する受信装置において、適切に無線通信を行わせることができる。
<Modification 1>
The determination unit 27 of the radio base station 2 determines the transmission parameter so as to perform transmission using the antenna which is an index value indicating a better transmission environment among the antennas 10 of the plurality of radio terminal stations 1. May be good. As a result, it is possible to appropriately perform wireless communication in the receiving device that receives the wireless signals transmitted from the plurality of antennas at the same frequency and at the same time by the characteristic variable antenna.
 この場合、決定部27は、例えば、複数の無線端末局1の各アンテナ10のうち、上述したチャネル相関値が低くなるアンテナを選択し、選択したアンテナを用いた伝送を行うことを伝送パラメータにより無線端末局1に指示してもよい。 In this case, for example, the determination unit 27 selects an antenna having a low channel correlation value from the antennas 10 of the plurality of wireless terminal stations 1 and performs transmission using the selected antenna according to the transmission parameter. You may instruct the wireless terminal station 1.
 また、決定部27は、例えば、複数の無線端末局1の各アンテナ10のうち、使用している仮想アンテナに基づく伝送容量C、各空間伝送に対する受信電力、及び受信電力対雑音電力比(SNR)の値が高くなるアンテナを選択し、選択したアンテナを用いた伝送を行うことを伝送パラメータにより無線端末局1に指示してもよい。 Further, the determination unit 27 is, for example, among the antennas 10 of the plurality of wireless terminal stations 1, the transmission capacity C based on the virtual antenna used, the received power for each space transmission, and the received power to noise power ratio (SNR). ) May be selected, and the wireless terminal station 1 may be instructed to perform transmission using the selected antenna by the transmission parameter.
 <変形例2>
 無線基地局2は、光張り出し基地局でもよい。この場合、特性可変アンテナ20及びRF部21を有する子局と、A/D変換部22との間を光ファイバーで接続する構成としてもよい。この場合、A/D変換部22は、当該光ファイバーによる伝送の遅延時間に基づいて、RF部21から光ファイバーを介して入力するアナログ信号をサンプリングするタイミングを決定してもよい。
<Modification 2>
The radio base station 2 may be an optical overhanging base station. In this case, the slave station having the characteristic variable antenna 20 and the RF unit 21 and the A / D conversion unit 22 may be connected by an optical fiber. In this case, the A / D conversion unit 22 may determine the timing for sampling the analog signal input from the RF unit 21 via the optical fiber based on the delay time of transmission by the optical fiber.
 (実施の形態の効果)
 本実施の形態に係る技術により、複数のアンテナから同一周波数かつ同一時刻に送信される無線信号を特性可変アンテナで受信する受信装置において、適切に無線通信を行わせることができる。
(Effect of embodiment)
According to the technique according to the present embodiment, it is possible to appropriately perform wireless communication in a receiving device that receives wireless signals transmitted from a plurality of antennas at the same frequency and at the same time by a characteristic variable antenna.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した受信装置、受信方法、及びプログラムが記載されている。
(第1項)
 送信装置から送信される無線信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
 前記無線信号を受信する際の前記特性可変アンテナのアンテナ特性に関する情報に基づいて、前記無線信号の伝送に関する設定を決定し、決定した前記設定を前記送信装置に通知する通知部と、
 前記設定により前記送信装置から送信される前記無線信号から、前記特性可変アンテナが第1アンテナ特性である各時点で受信した第1信号と、前記特性可変アンテナが第2アンテナ特性である各時点で受信した第2信号とを抽出する信号抽出部と、
 を備える受信装置。
(第2項)
 前記特性可変アンテナのアンテナ特性に関する情報には、前記特性可変アンテナの各アンテナ特性での伝搬チャネル応答間の相関値、及び前記特性可変アンテナの各アンテナ特性の伝搬チャネル応答の少なくとも一方が含まれる、
 第1項に記載の受信装置。
(第3項)
 前記特性可変アンテナのアンテナ特性に関する情報には、前記特性可変アンテナの各アンテナ特性での伝送容量、前記特性可変アンテナの各アンテナ特性に基づく各空間伝送に対する受信電力、及び前記特性可変アンテナの各アンテナ特性に基づく受信電力対雑音電力比の少なくとも一つが含まれる、
 第1項又は第2項に記載の受信装置。
(第4項)
 前記設定には、
 空間多重数、変調方式、符号化率、及び帯域の少なくとも一つに対する設定が含まれる、
 第1項から第3項のいずれか一項に記載の受信装置。
(第5項)
 送信装置から送信される無線信号を、アンテナ特性を切り替えながら受信する特性可変アンテナを備える受信装置が、
 前記無線信号を受信する際の前記特性可変アンテナのアンテナ特性に関する情報に基づいて、前記無線信号の伝送に関する設定を決定し、決定した前記設定を前記送信装置に通知する処理と、
 前記設定により前記送信装置から送信される前記無線信号から、前記特性可変アンテナが第1アンテナ特性である各時点で受信した第1信号と、前記特性可変アンテナが第2アンテナ特性である各時点で受信した第2信号とを抽出する処理と、
を実行する受信方法。
(第6項)
 コンピュータを、第1項ないし第4項のうちいずれか1項に記載の受信装置における前記通知部、及び前記信号抽出部として機能させるためのプログラム。
(第7項)
 アンテナ特性を切り替えながら無線信号を受信する特性可変アンテナを有する受信装置から通知された、前記特性可変アンテナのアンテナ特性に応じた設定情報に基づき、空間多重数、変調方式、符号化率、及び帯域の少なくとも一つに対する設定を行う設定部と、
 前記設定部による設定に基づいてMIMO(Multiple Input Multiple Output)信号を生成する生成部と、
 を備える送信装置。
(Summary of embodiments)
This specification describes at least the receiving device, the receiving method, and the program described in each of the following sections.
(Section 1)
A variable antenna with characteristics that receives the wireless signal transmitted from the transmitter while switching the antenna characteristics,
A notification unit that determines a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifies the transmitting device of the determined setting.
From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. A signal extraction unit that extracts the received second signal, and
A receiver equipped with.
(Section 2)
The information about the antenna characteristic of the variable characteristic antenna includes at least one of the correlation value between the propagation channel responses of each antenna characteristic of the variable characteristic antenna and the propagation channel response of each antenna characteristic of the variable characteristic antenna.
The receiving device according to paragraph 1.
(Section 3)
Information on the antenna characteristics of the variable characteristic antenna includes the transmission capacity of each antenna characteristic of the variable characteristic antenna, the received power for each spatial transmission based on each antenna characteristic of the variable characteristic antenna, and each antenna of the variable characteristic antenna. Includes at least one of the received power to noise power ratios based on the characteristics.
The receiving device according to the first or second paragraph.
(Section 4)
The above settings include
Includes settings for at least one of the spatial multiplex, modulation scheme, code rate, and band.
The receiving device according to any one of paragraphs 1 to 3.
(Section 5)
A receiving device equipped with a characteristic variable antenna that receives a wireless signal transmitted from a transmitting device while switching antenna characteristics
A process of determining a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifying the transmitting device of the determined setting.
From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. The process of extracting the received second signal and
Receiving method to execute.
(Section 6)
A program for causing a computer to function as the notification unit and the signal extraction unit in the receiving device according to any one of the items 1 to 4.
(Section 7)
Spatial multiplex, modulation method, coding factor, and band based on the setting information according to the antenna characteristics of the characteristic variable antenna notified from the receiver having the characteristic variable antenna that receives the radio signal while switching the antenna characteristics. And the setting part that sets for at least one of
A generator that generates a MIMO (Multiple Input Multiple Output) signal based on the settings made by the setting unit, and a generation unit.
A transmitter equipped with.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible.
1 無線端末局
10 アンテナ
11 RF部
12 D/A変換部
13 MIMO信号生成部
14 設定部
2 無線基地局
20 特性可変アンテナ
21 RF部
22 A/D変換部
23 アンテナ制御部
24 信号抽出部
25 MIMO信号復調部
26 指標値算出部
27 決定部
101 プロセッサ
102 メモリ
103 補助記憶装置
104 入出力装置
1 Wireless terminal station 10 Antenna 11 RF unit 12 D / A conversion unit 13 MIMO signal generation unit 14 Setting unit 2 Wireless base station 20 Characteristic variable antenna 21 RF unit 22 A / D conversion unit 23 Antenna control unit 24 Signal extraction unit 25 MIMO Signal demodulator 26 Index value calculation unit 27 Determination unit 101 Processor 102 Memory 103 Auxiliary storage device 104 Input / output device

Claims (7)

  1.  送信装置から送信される無線信号を、アンテナ特性を切り替えながら受信する特性可変アンテナと、
     前記無線信号を受信する際の前記特性可変アンテナのアンテナ特性に関する情報に基づいて、前記無線信号の伝送に関する設定を決定し、決定した前記設定を前記送信装置に通知する通知部と、
     前記設定により前記送信装置から送信される前記無線信号から、前記特性可変アンテナが第1アンテナ特性である各時点で受信した第1信号と、前記特性可変アンテナが第2アンテナ特性である各時点で受信した第2信号とを抽出する信号抽出部と、
     を備える受信装置。
    A variable antenna with characteristics that receives the wireless signal transmitted from the transmitter while switching the antenna characteristics,
    A notification unit that determines a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifies the transmitting device of the determined setting.
    From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. A signal extraction unit that extracts the received second signal, and
    A receiver equipped with.
  2.  前記特性可変アンテナのアンテナ特性に関する情報には、前記特性可変アンテナの各アンテナ特性での伝搬チャネル応答間の相関値、及び前記特性可変アンテナの各アンテナ特性の伝搬チャネル応答の少なくとも一方が含まれる、
     請求項1に記載の受信装置。
    The information about the antenna characteristic of the variable characteristic antenna includes at least one of the correlation value between the propagation channel responses of each antenna characteristic of the variable characteristic antenna and the propagation channel response of each antenna characteristic of the variable characteristic antenna.
    The receiving device according to claim 1.
  3.  前記特性可変アンテナのアンテナ特性に関する情報には、前記特性可変アンテナの各アンテナ特性での伝送容量、前記特性可変アンテナの各アンテナ特性に基づく各空間伝送に対する受信電力、及び前記特性可変アンテナの各アンテナ特性に基づく受信電力対雑音電力比の少なくとも一つが含まれる、
     請求項1又は2に記載の受信装置。
    Information on the antenna characteristics of the variable characteristic antenna includes the transmission capacity of each antenna characteristic of the variable characteristic antenna, the received power for each spatial transmission based on each antenna characteristic of the variable characteristic antenna, and each antenna of the variable characteristic antenna. Includes at least one of the received power to noise power ratios based on the characteristics.
    The receiving device according to claim 1 or 2.
  4.  前記設定には、
     空間多重数、変調方式、符号化率、及び帯域の少なくとも一つに対する設定が含まれる、
     請求項1から3のいずれか一項に記載の受信装置。
    The above settings include
    Includes settings for at least one of the spatial multiplex, modulation scheme, code rate, and band.
    The receiving device according to any one of claims 1 to 3.
  5.  送信装置から送信される無線信号を、アンテナ特性を切り替えながら受信する特性可変アンテナを備える受信装置が、
     前記無線信号を受信する際の前記特性可変アンテナのアンテナ特性に関する情報に基づいて、前記無線信号の伝送に関する設定を決定し、決定した前記設定を前記送信装置に通知する処理と、
     前記設定により前記送信装置から送信される前記無線信号から、前記特性可変アンテナが第1アンテナ特性である各時点で受信した第1信号と、前記特性可変アンテナが第2アンテナ特性である各時点で受信した第2信号とを抽出する処理と、
    を実行する受信方法。
    A receiving device equipped with a characteristic variable antenna that receives a wireless signal transmitted from a transmitting device while switching antenna characteristics.
    A process of determining a setting related to transmission of the wireless signal based on information on the antenna characteristic of the characteristic variable antenna when receiving the wireless signal, and notifying the transmitting device of the determined setting.
    From the radio signal transmitted from the transmitter according to the setting, the first signal received at each time point in which the characteristic variable antenna has the first antenna characteristic and the first signal received at each time point in which the characteristic variable antenna has the second antenna characteristic. The process of extracting the received second signal and
    Receiving method to execute.
  6.  コンピュータを、請求項1ないし4のうちいずれか1項に記載の受信装置における前記通知部、及び前記信号抽出部として機能させるためのプログラム。 A program for making a computer function as the notification unit and the signal extraction unit in the receiving device according to any one of claims 1 to 4.
  7.  アンテナ特性を切り替えながら無線信号を受信する特性可変アンテナを有する受信装置から通知された、前記特性可変アンテナのアンテナ特性に応じた設定情報に基づき、空間多重数、変調方式、符号化率、及び帯域の少なくとも一つに対する設定を行う設定部と、
     前記設定部による設定に基づいてMIMO(Multiple Input Multiple Output)信号を生成する生成部と、
     を備える送信装置。
    Spatial multiplex, modulation method, coding factor, and band based on the setting information according to the antenna characteristics of the characteristic variable antenna notified from the receiver having the characteristic variable antenna that receives the radio signal while switching the antenna characteristics. And the setting part that sets for at least one of
    A generator that generates a MIMO (Multiple Input Multiple Output) signal based on the settings made by the setting unit, and a generation unit.
    A transmitter equipped with.
PCT/JP2020/031171 2020-08-18 2020-08-18 Reception device, reception method, program, and transmission device WO2022038689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/031171 WO2022038689A1 (en) 2020-08-18 2020-08-18 Reception device, reception method, program, and transmission device
JP2022543854A JP7468667B2 (en) 2020-08-18 2020-08-18 Receiving device, receiving method, program, and transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031171 WO2022038689A1 (en) 2020-08-18 2020-08-18 Reception device, reception method, program, and transmission device

Publications (1)

Publication Number Publication Date
WO2022038689A1 true WO2022038689A1 (en) 2022-02-24

Family

ID=80323472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031171 WO2022038689A1 (en) 2020-08-18 2020-08-18 Reception device, reception method, program, and transmission device

Country Status (2)

Country Link
JP (1) JP7468667B2 (en)
WO (1) WO2022038689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260097A1 (en) * 2021-06-11 2022-12-15 国立大学法人東京工業大学 Wireless communication device and wireless communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMIN MUHAMMAD BILAL; ZIRWAS WOLFGANG; HAARDT MARTIN: "Virtual Massive MIMO Beamforming Gains for 5G User Terminals", 2016 IEEE 84TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), IEEE, 18 September 2016 (2016-09-18), pages 1 - 6, XP033079102, DOI: 10.1109/VTCFall.2016.7881964 *
WATANABE ISSEI; NISHIMORI KENTARO; TANIGUCHI RYOTARO; MURAKAMI TOMOKI: "A proposal on propagation environmental control by a virtual massive array", 2019 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), ANTENNA BRANCH OF CHINESE INSTITUTE OF ELECTRONICS, 27 October 2019 (2019-10-27), pages 1 - 2, XP033692358 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260097A1 (en) * 2021-06-11 2022-12-15 国立大学法人東京工業大学 Wireless communication device and wireless communication method

Also Published As

Publication number Publication date
JP7468667B2 (en) 2024-04-16
JPWO2022038689A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US10237769B2 (en) Joint user clustering and power allocation method and base station using the same
EP1811705B1 (en) Transmitting method, receiving method, and radio apparatus using them
US20110150066A1 (en) Multi-antenna wireless communication method, multi-antenna wireless communication system, and multi-antenna wireless communication device
CN105453465A (en) Radio base station apparatus and scheduling method
WO2006070478A1 (en) Wireless communication system
CN106911371B (en) Beam training method and device
JP2004104206A (en) Space division multiplex access control method, wireless communication system, base station, and mobile station
CN102624436B (en) WLAN (Wireless Local Area Network) communication device and switch network
EP2084828A1 (en) Adaptive multiple-antenna systems with onmi-directional and sector-directional antenna modes
US9634775B2 (en) Method for configuring a reconfigurable antenna system
WO2006020423A1 (en) Method and system for using angular hopping in wireless communication systems
CN106301508B (en) Order reduction method and device for antenna channel
CN107888260B (en) Beam selection method and related equipment
JP3798325B2 (en) Transmitter
WO2022038689A1 (en) Reception device, reception method, program, and transmission device
WO2018163333A1 (en) Radio communication apparatus and radio communication method
JP2005236686A (en) Communications system and communication method by adaptive array antenna
WO2022038688A1 (en) Receiving device, receiving method, program, and transmission device
WO2022038684A1 (en) Reception device, reception method, and program
WO2022038687A1 (en) Receiving device, receiving method, and program
EP3316622A1 (en) Transmission method, transmission device, and communication system
JP7144808B2 (en) Wireless communication device and wireless communication method
KR101323378B1 (en) Transmission rate related information transmission apparatus and method for receiver selection in multi cell mimo downlink network, and receiver selection apparatus, method and system in multi cell mimo downlink network
WO2022123630A1 (en) Reception device and reception method
EP2413529B1 (en) Wireless transmitter, wireless receiver, and preamble sequence generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950255

Country of ref document: EP

Kind code of ref document: A1