WO2022037688A1 - 重建数据的方法及系统,扫描设备 - Google Patents

重建数据的方法及系统,扫描设备 Download PDF

Info

Publication number
WO2022037688A1
WO2022037688A1 PCT/CN2021/113854 CN2021113854W WO2022037688A1 WO 2022037688 A1 WO2022037688 A1 WO 2022037688A1 CN 2021113854 W CN2021113854 W CN 2021113854W WO 2022037688 A1 WO2022037688 A1 WO 2022037688A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
reconstruction
scanned
map
Prior art date
Application number
PCT/CN2021/113854
Other languages
English (en)
French (fr)
Inventor
马超
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Priority to JP2023512429A priority Critical patent/JP2023538639A/ja
Priority to US18/022,174 priority patent/US20230334634A1/en
Priority to EP21857776.5A priority patent/EP4202845A4/en
Publication of WO2022037688A1 publication Critical patent/WO2022037688A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes

Definitions

  • the present invention relates to the technical field of data processing, and in particular, to a method and system for reconstructing data, and a scanning device.
  • Intraoral 3D scanning technology uses an intraoral 3D scanner to directly scan the teeth to obtain 3D data.
  • the intraoral 3D scanner uses multi-angle multiple scans to obtain data of this type of material, which reduces the efficiency of data acquisition and brings discomfort to both the scanning operator and the patient.
  • the intraoral 3D scanner cannot obtain relatively complete data, which introduces the workload of restoration for the subsequent design and wearing of the teeth.
  • the present application provides a method and system for reconstructing data, a scanning device, in order to at least solve the problem in the related art that an intraoral scanner adopts a multi-angle and multiple scanning method to collect intraoral dental data, and if the scanned object has a local area of high brightness or ultra-darkness , it will cause a technical problem that the camera cannot obtain an image of uniform brightness.
  • a method for reconstructing data comprising: collecting multiple sets of image sequences with different brightness levels at the same position on an object to be scanned; Fusion and 3D reconstruction generate 3D data of the object to be scanned.
  • the collecting multiple sets of image sequences with different brightness levels at the same position on the object to be scanned includes: the three-dimensional scanner obtains multiple sets of image sequences at the same position based on different optical conditions.
  • the method further includes: adjusting the optical conditions of the three-dimensional scanner by adjusting the light source brightness and/or exposure parameters of the projection optical device, and/or adjusting the three-dimensional scanner by adjusting the exposure parameters and/or gain parameters of the image acquisition device.
  • adjusting the optical conditions of the scanner by adjusting the light source brightness and/or exposure parameters of the projection optical device, and/or adjusting the three-dimensional scanner by adjusting the exposure parameters and/or gain parameters of the image acquisition device.
  • Optical conditions of the scanner are examples of the scanner.
  • collecting multiple sets of image sequences with different brightness levels at the same position on the object to be scanned includes: collecting a first number of images under a first optical condition set of images, wherein the types of the images of the first quantity set include: encoding maps, reconstruction maps, and texture maps; collecting images of a second quantity set under a second optical condition, wherein the second quantity set of images
  • the types of images include: reconstruction maps and texture maps; and/or, acquiring a third set of images under a third optical condition, wherein the types of images in the third set of numbers include: reconstruction maps and texture maps.
  • image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned, including: combining the images of the first quantity set, the second Perform fusion processing on the image of the quantity set and the image in the third quantity set; perform three-dimensional reconstruction on the fused image to generate three-dimensional data of the object to be scanned, wherein the three-dimensional data includes point cloud data and texture data; Three-dimensional reconstruction is performed on the images of the first quantity set, the images of the second quantity set, and the images of the third quantity set respectively; the reconstruction results of the three-dimensional reconstruction are fused to generate an image of the object to be scanned. Three-dimensional data, wherein the three-dimensional data includes point cloud data and texture data.
  • the method before collecting multiple sets of image sequences with different brightness levels at the same position on the object to be scanned, the method further includes: acquiring an image of the surface of the object to be scanned and evaluating the image uniformity; if the image uniformity is uniform , then start the first scanning mode if the image uniformity is uneven, then start the second scanning mode, wherein the second scanning mode is to collect multiple sets of image sequences with different brightness levels at the same position on the object to be scanned, and carry out The mode of fusion and three-dimensional reconstruction; and/or, the brightness level of the sequence of images is determined by the degree of non-uniformity of the images.
  • the first scanning mode is: collecting an image sequence based on a preset fourth optical condition, wherein the image sequence includes an encoded map, a reconstructed map, and a texture map; A point cloud image is obtained through reconstruction, and a texture image is obtained based on the texture map, wherein the texture image corresponds to the point cloud image.
  • a system for reconstructing data including: a projection optical device, which adjusts optical conditions according to preset settings to adjust the brightness of the light source projected onto the object to be scanned; Multiple groups of image sequences with different brightness levels at the same position on the object, wherein the different brightness levels are the result of adjusting the brightness of the light source by the projection optical device; the processor, which is respectively connected with the projection optical device and the image acquisition device The communication is set to perform image fusion and three-dimensional reconstruction based on the multiple sets of image sequences with different brightness levels, and generate three-dimensional data of the object to be scanned.
  • a scanning device comprising: a processor; and a memory configured to store executable instructions of the processor; wherein the processor is configured to execute the executable instructions by executing the instruction to execute the method for reconstructing data described in any one of the above.
  • a computer-readable storage medium includes a stored computer program, wherein when the computer program is run, the computer-readable storage medium is controlled
  • the device performs the method for reconstructing data described in any one of the above.
  • the projection optical device by collecting multiple sets of image sequences with different brightness levels at the same position on the object to be scanned, projects multiple sets of image sequences onto the surface of the object to be measured, and each set of image sequences includes one or more images,
  • the projection optical device is adjusted according to the preset settings, so that the images in any set of image sequences are consistent with the images in other sets of image sequences, only the brightness levels are different.
  • the projection optical device adjusts the exposure time according to the preset settings, that is, The projection optical device projects a set of image sequences based on the first exposure time, and projects a set of image sequences based on the second exposure time.
  • Image sequence based on multiple sets of image sequences with different brightness levels, image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned.
  • image fusion and three-dimensional reconstruction can be performed through multiple sets of image sequences with different brightness levels at the same location to realize objects to be scanned with different bright and dark materials. All can obtain high-quality 3D data, thus solving the problem that the intraoral scanner uses multi-angle multiple scans to collect intraoral tooth data in the related art. If the scanned object has a local area of high brightness or ultra-darkness, the camera will not be able to obtain a uniform image.
  • Technical issues with image brightness are described in the image scanned.
  • FIG. 1 is a flowchart of an optional method for reconstructing data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optional system for reconstructing data according to an embodiment of the present invention.
  • Oral digital impression machine also known as intraoral 3D scanner, is an application of a probe-type optical scanning head to directly scan the interior of the patient's oral cavity to obtain the three-dimensional topography and color texture of the soft and hard tissue surfaces such as teeth, gums, and mucous membranes in the oral cavity. information equipment.
  • the active light pattern is projected by the projection optical device, the pattern is acquired by the image acquisition device, and the three-dimensional reconstruction and splicing are performed through algorithm processing.
  • the principle used by the oral digital impression instrument is not limited, for example, the imaging process can also be performed by using principles such as microscopic confocal imaging.
  • the projection optical device adopts DLP (Digital Light Processing, abbreviation for Digital Light Procession) projection technology, and uses a digital micromirror device (DMD, abbreviation for Digital Micromirror Device) as a key processing element to realize the digital optical processing process.
  • DLP Digital Light Processing, abbreviation for Digital Light Procession
  • DMD digital micromirror Device
  • the smaller pixel size of the projection optical device can reduce the interference between adjacent fringe patterns on the teeth, and use the high-precision fringe centerline extraction algorithm to avoid the unavoidable mutual influence between the fringes, which greatly reduces the enamel of the teeth itself.
  • the influence of transmission and diffusion, the use of the adjustment of the angle between the optical axis of the image acquisition device and the optical axis of the projection optical device greatly reduces the highly reflective properties of teeth or saliva.
  • the intraoral 3D scanner of the embodiment of the present invention integrates a first scanning mode and a second scanning mode, and in the process of directly acquiring the 3D data of teeth and gums, when a highly reflective material such as a metal restoration tooth is encountered, the second scanning mode is activated .
  • the implementation of the second scanning mode is to use the DLP projector to adjust the projection brightness in real time and the image acquisition device to adjust the exposure parameters and gain parameters in real time.
  • the DLP projector is set to at least two brightness levels level and match the appropriate camera exposure parameters and gain parameters to obtain multi-level images at the same position (including: light-level images and dark-level images, the light-dark level of the DLP projector can be adjusted according to the material of the object to be scanned, such as: 2, 3, 4, 5, etc., that is, in the second scanning mode of the 3D scanner, scanning can be performed based on two or three or other optical conditions), and then 3D reconstruction is performed on the multi-level image sequence respectively.
  • the three-dimensional data reconstructed from the hierarchical image sequence is fused into more perfect three-dimensional data, or the multi-level image sequence is fused to obtain a more perfect image sequence and then three-dimensional reconstruction to obtain perfect three-dimensional data.
  • this mode at least two sets of image sequences with different brightness levels are required, and this mode is only used for local highlight areas. Switching from the first scan mode to the second scan mode for highlight parts can meet the requirements of high reflective conditions. real-time scanning requirements.
  • the first scan mode is implemented by keeping the optical parameters of the DLP projector and the image acquisition device unchanged, and only acquiring an image sequence of one brightness level at the same position, that is, the normal scan mode, which is suitable for scanning under normal circumstances.
  • the projection optical device is a DLP projector
  • the image acquisition device is a camera
  • an embodiment of a method for reconstructing data is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer-executable instructions, and although A logical order is shown in the flowcharts, but in some cases steps shown or described may be performed in an order different from that herein.
  • FIG. 1 is a flowchart of an optional method for reconstructing data according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step S102 collecting multiple groups of image sequences with different brightness levels at the same position on the object to be scanned;
  • Step S104 based on multiple sets of image sequences with different brightness levels, image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned.
  • each set of image sequences includes one or more images, and projected The optical device is adjusted according to the preset settings, so that the images in any group of image sequences are consistent with the images in the other groups of image sequences, only the brightness levels are different.
  • the projection optical device adjusts the exposure time according to the preset settings, that is, the projection The optical device projects a set of image sequences based on the first exposure time, and projects a set of image sequences based on the second exposure time.
  • the image acquisition device collects the image sequence of the surface of the object to be scanned, and the image acquisition device obtains images with different brightness levels. Sequence, based on multiple sets of image sequences with different brightness levels, image fusion and 3D reconstruction are performed to generate 3D data of the object to be scanned. In this embodiment, if a local area is highlighted or super dark during the scanning process, image fusion and three-dimensional reconstruction can be performed through multiple sets of image sequences with different brightness levels at the same position, so as to realize the waiting of different bright and dark materials. Scanning objects can obtain high-quality three-dimensional data, so as to solve the problem that intraoral scanners use multi-angle multiple scanning methods to collect intraoral dental data in related technologies. Technical issues with obtaining images of uniform brightness.
  • the scanning subject in the embodiment of the present invention may be a scanning system, and the scanning system includes but is not limited to: an intraoral three-dimensional scanner and a computer.
  • Intraoral 3D scanners include but are not limited to: DLP projectors, monocular black and white cameras. Of course, other combinations are also possible, for example: a DLP projector, a monocular black and white camera, a texture camera, or a DLP projector, a binocular black and white camera, and so on.
  • the intraoral three-dimensional scanner integrates the first scanning mode and the second scanning mode, and switches from the first scanning mode to the second scanning mode for scanning the highlight part.
  • the second scanning mode may be included, or other types of scanning modes may be included, and the second scanning mode may also be subdivided into modes, for example, the second scanning mode may be subdivided into the second scanning mode A and the second scanning mode B, wherein, the second scan mode A includes the first, second, and third brightness levels; the second scan mode B includes the fourth and fifth brightness levels.
  • the scanning subject in the embodiment of the present invention is not limited to an intraoral 3D scanning system, and may also be a denture 3D scanning system, or other 3D scanning systems.
  • Step S102 collecting a plurality of image sequences with different brightness levels at the same position on the object to be scanned.
  • Intraoral 3D scanners are usually able to scan cases: Restorative, Orthodontic and Implant.
  • the intraoral 3D scanner In the field of restoration cases, the intraoral 3D scanner often encounters the patient's previously restored dentures such as metal teeth when acquiring dental data.
  • the intraoral 3D scanner In the field of implant cases, the intraoral 3D scanner needs to obtain the patient's dental data and directly scan the missing scan rod, abutment, etc., and their materials include highly reflective metal, bright white material, titanium alloy, etc. Whether it is a repaired metal tooth or a scanning rod, they are all highly reflective objects, which bring a lot of trouble to the intraoral 3D scanner using the principle of optical imaging.
  • the embodiment can acquire high-quality three-dimensional data by collecting multiple image sequences with different brightness levels at the same position on the object to be scanned.
  • the projection optical device can adjust the brightness level of the projected light by adjusting the brightness of the light source (generally, the brightness of the light source is adjusted by adjusting the current value) or the exposure parameter. Brightness level.
  • the image acquisition device acquires multiple sets of image sequences by adjusting exposure parameters and gain parameters in real time.
  • the image acquisition device may or may not be adjusted, as long as it can be adapted to multiple brightness levels of the projection optical device to acquire images of various brightness levels.
  • the exposure parameters include exposure time.
  • the intraoral 3D scanner acquires multiple sets of image sequences at the same position based on different optical conditions, by adjusting the light source brightness and/or exposure parameters of the projection optical device, and/or, by adjusting the exposure parameters and/or gain parameters of the image acquisition device , to adjust the optical conditions of the intraoral 3D scanner, specifically, set the intraoral 3D scanner to at least two or more brightness levels, and obtain multiple sets of image sequences with different brightness levels at the same position, for example, bright-level images and dark-level images. grade image.
  • the light and dark levels of the projection optical equipment can be adjusted according to the material conditions, such as grades 2, 3, 4, 5, etc., to perform 3D reconstruction on the image sequences of the light and dark levels respectively, and combine multiple sets of 3D data into more perfect 3D data. , or fuse the image sequences of light and dark levels to obtain a more perfect image sequence, and then reconstruct the three-dimensional data to obtain perfect three-dimensional data.
  • multiple groups of image sequences with different brightness levels are collected at the same position on the object to be scanned: the projection optical device projects the image sequence to the surface of the measured object based on different exposure times, and the image acquisition device synchronously collects the measured object The image sequence of the surface is obtained, and the image sequence of different brightness levels is obtained.
  • the step includes: the projection optical device projects a first number of images to the surface of the object to be measured based on the first exposure time, and the image acquisition device synchronously collects the first number of images on the surface of the object to be measured.
  • a number of sets of images wherein the images of the first number of sets include: encoding maps, reconstruction maps and texture maps; the projection optical device projects the images of the second number of sets to the surface of the object to be measured based on the second exposure time, and the image acquisition devices are synchronized Collecting a second set of images of the surface of the object to be measured, wherein the second set of images includes: a reconstruction map and a texture map; and/or the projection optical device projects the third set of images to the subject based on the third exposure time
  • the image acquisition device synchronously collects images of a third quantity set of the surface of the measured object, and the types of the images in the third quantity set include: reconstruction map and texture map.
  • the 3D scanner scans based on at least two different optical conditions to obtain multiple sets of images with different brightness levels.
  • the 3D scanner is based on two The case of scanning under optical conditions and the case of scanning based on three optical conditions, the following describes the processing of the three sets of image sequences obtained by the 3D scanner scanning based on the three optical conditions.
  • the second scanning mode adopts If there are two optical conditions or other optical conditions, the processing of the image sequence can refer to the processing of the three groups of image sequences.
  • the texture image in the embodiment of the present invention includes a red monochrome image, a green monochrome image, and a blue monochrome image, and a texture image is formed by combining the red, yellow, and blue monochrome images.
  • the texture map is the texture image.
  • Acquiring images of a first quantity set under a first optical condition optionally, acquiring an image sequence under a first exposure time, specifically including:
  • the projection optical device projects the coded map to the surface of the object to be measured based on the first optical condition, and the image acquisition device acquires the coded map modulated by the surface of the measured object based on the first optical condition.
  • the projection optical device is based on the first optical condition Projecting 3 coded images successively, the camera synchronously acquires 3 coded images modulated by the surface of the measured object based on the first optical condition;
  • the projection optical device projects the reconstructed image to the surface of the measured object based on the first optical condition, and the image acquisition device obtains the reconstructed image modulated by the surface of the measured object based on the first optical condition.
  • the projection optical device is based on the first optical condition. 3 reconstruction images are projected successively, and the camera synchronously acquires 3 reconstruction images modulated by the surface of the measured object based on the first optical condition (the first sub-reconstruction image A, the first sub-reconstruction image B, and the first sub-reconstruction image C);
  • the projection optical device projects the texture map to the surface of the measured object based on the first optical condition, and the image acquisition device obtains the texture map reflected by the surface of the measured object based on the first optical condition.
  • the projection optical device is based on the first optical condition.
  • Three texture maps are projected successively, and the camera synchronously acquires three texture maps reflected by the surface of the measured object based on the first optical condition, wherein the three texture maps are the red monochrome image, the green monochrome image and the blue monochrome image respectively. ;
  • Acquiring a second number of images under a second optical condition optionally, acquiring an image sequence under a second exposure time, specifically including:
  • the projection optical device projects the reconstructed image to the surface of the measured object based on the second optical condition, and the image acquisition device obtains the reconstructed image modulated by the surface of the measured object based on the second optical condition.
  • the projection optical device is based on the second optical condition. 3 reconstruction images are projected successively, and the image acquisition device synchronously acquires 3 reconstruction images modulated by the surface of the measured object based on the second optical condition (the second sub-reconstruction image A, the second sub-reconstruction image B, and the second sub-reconstruction image C) ;
  • the projection optical device projects the texture map to the surface of the measured object based on the second optical condition, and the image acquisition device acquires the texture map reflected by the surface of the measured object based on the second optical condition.
  • the projection optical device is based on the second optical condition.
  • Three texture maps are projected successively, and the camera synchronously acquires three texture maps reflected by the surface of the measured object based on the second optical condition.
  • the three texture maps are red monochrome image, green monochrome image and blue monochrome image respectively. ;
  • Acquiring a third set of images under a third optical condition optionally, acquiring an image sequence under a third exposure time, specifically including:
  • the projection optical device projects the reconstructed image to the surface of the measured object based on the third optical condition, and the image acquisition device obtains the reconstructed image modulated by the surface of the measured object based on the third optical condition.
  • the projection optical device is based on the third optical condition. 3 reconstruction images are projected successively, and the camera synchronously acquires 3 reconstruction images modulated by the surface of the measured object based on the third optical condition (the third reconstruction image A, the third sub-reconstruction image B, and the third sub-reconstruction image C);
  • the projection optical device projects a monochromatic image onto the surface of the measured object based on the third optical condition, and the image acquisition device acquires the texture map reflected by the surface of the measured object based on the third optical condition.
  • the projection optical device is based on the third optical condition.
  • Three texture maps are projected successively under the condition, and the image acquisition device synchronously acquires three texture maps reflected by the surface of the measured object based on the third optical condition.
  • the three texture maps are red monochrome map, green monochrome map and blue image respectively monochrome image;
  • the first sub-reconstruction map A, the second sub-reconstruction map A, and the third sub-reconstruction map A have the same fringe pattern, that is, the images are the same, only the brightness levels are different;
  • the first sub-reconstruction map B, the second sub-reconstruction map B, and the third sub-reconstruction map B Figure B has the same fringe pattern, that is, the images are the same, only the brightness levels are different;
  • the third sub-reconstruction map C, the third sub-reconstruction map C, and the third sub-reconstruction map C have the same fringe patterns, that is, the images are the same, only the brightness levels are different;
  • the second sub-reconstruction map A, and the third sub-reconstruction map A fused into a reconstructed map A, based on the fusion of the first sub-reconstruction map B, the second sub-reconstruction map B, and the third sub-reconstruction map B into a Reconstruction map B, based on the first sub-reconstruction map C, the second sub-reconstruction map C, and the third sub-reconstruction map C are merged into the reconstructed map C.
  • the first sub-reconstruction map, the second sub-reconstruction map and the The three sub-reconstruction maps are respectively fused into a reconstructed map through the weighted average of the gray values, so as to eliminate bad data; the first sub-reconstruction map A, the first sub-reconstruction map B, and the first sub-reconstruction map C are determined based on the three coded maps.
  • the fringe sequence is determined, that is, the fringe sequence of the reconstructed image A, the reconstructed image B, and the reconstructed image C are determined. Based on the reconstructed image A and its fringe sequence, a part of the point cloud A on the surface of the measured object is reconstructed three-dimensionally.
  • the sequence 3D reconstructs part of the point cloud B on the surface of the measured object, and based on the reconstructed image C and its fringe sequence, 3D reconstructs part of the point cloud C on the surface of the measured object, which consists of part of the point cloud A, part of the point cloud B and part of the point cloud C.
  • the red monochromatic image acquired under the first optical condition Based on the red monochromatic image acquired under the first optical condition, the red monochromatic image acquired under the second optical condition, and the red monochromatic image acquired under the third optical condition are fused, based on the green color acquired under the first optical condition.
  • the monochrome image, the green monochrome image obtained under the second optical condition, and the green monochrome image obtained under the third optical condition are fused, based on the blue monochrome image obtained under the first optical condition, based on the second optical condition
  • the green-blue image obtained under the condition and the blue monochrome image obtained under the third optical condition are fused.
  • the fusion of the red monochrome image, the green monochrome image, and the blue monochrome image is performed by
  • the weighted average of gray values is used for fusion;
  • the texture map is synthesized based on the fused red monochrome image, green monochrome image, and blue monochrome image; or, based on the red monochrome image, green monochrome image obtained under the first optical condition image and the blue monochrome image to synthesize a first texture image, based on the red monochrome image, green monochrome image, and blue monochrome image acquired under the second optical condition to synthesize a second texture image, based on the image acquired under the third optical condition
  • the red monochromatic map, the green monochromatic map and the blue monochromatic map are synthesized into a third texture map, and then based on the first texture map, the second texture map and the third texture map, a texture map is formed.
  • the fusion of the texture map and the third texture map is realized by the weighted average of gray values.
  • the corresponding relationship between the pixels of the reconstructed image and the texture map can be determined, that is, the texture information contained in each point in the single dense point cloud can be determined.
  • the second scanning mode is used to collect multiple image sequences, the same position is used to expose and collect three sets of image sequences with different exposure parameters, and the images are fused and 3D reconstructed to realize intraoral 3D scanning
  • the instrument is suitable for the acquisition of three-dimensional data of objects to be measured with different light and dark materials, and can obtain high-quality three-dimensional data.
  • the coding map in the above-mentioned embodiment may also be set as a three-dimensional reconstruction as a reconstruction map, or in other words, the reconstructed map may also be used as a coding map to participate in coding and decoding calculations.
  • first scan mode the DLP projector (projection optical device) projects 8 images successively, and the monocular black and white camera (image acquisition device) captures synchronously relative to the DLP projector 8 images are transmitted to the computer, and the computer processes the 8 images, of which 5 images are fringe images, and 3 of them are used as coding images, which are set to determine the sequence of each fringe in each image, and 5 images can also be used for reconstruction.
  • 3 images with dense stripes are used as reconstruction images.
  • the reconstructed images are 3D reconstructed based on the sequence of stripes to obtain point clouds.
  • the other 3 images are red monochrome images (texture images) and green monochrome images (texture images).
  • red monochrome images texture images
  • green monochrome images texture images
  • blue monochrome image texture image
  • 3 monochrome images to synthesize texture image, which is the texture corresponding to the point cloud.
  • the DLP projector projects 8 images (3 encoded images + 3 reconstructed images + 3 texture images) successively at the first exposure time , there is a coding image consistent with the reconstructed image, both are fringe images)
  • the image acquisition device collects 8 images synchronously, and projects 6 images (3 reconstructed images + 3 monochrome images) successively under the second exposure time.
  • the acquisition equipment synchronously collects 6 images, and projects 6 images (3 reconstructed images + 3 texture images) successively at the third exposure time, and the image acquisition equipment synchronously collects 6 images, based on the same image obtained at different exposure times.
  • 3 reconstructed images are fused, three-dimensional reconstruction is performed, and 9 monochrome images are synthesized into texture images.
  • the three reconstructed images obtained from the same image at different exposure times can also be reconstructed separately and then fused.
  • the projection sequence of each image is not limited.
  • Step S104 based on multiple sets of image sequences with different brightness levels, image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned.
  • image fusion may be performed first, and then three-dimensional reconstruction may be performed; of course, three-dimensional reconstruction may be performed first, and then image fusion may be performed. After image fusion and 3D reconstruction are completed, 3D data of the object to be scanned is generated.
  • image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned, including: combining the images of the first quantity set, the images of the second quantity set, and the third quantity set. Fusion processing is performed on the collected images; 3D reconstruction is performed on the fused images to generate 3D data of the object to be scanned, wherein the 3D data includes point cloud data and/or texture data (ie, texture images).
  • one-time 3D reconstruction can be performed on the quantity set images of different exposure times, and directly using the quantity set images of different exposure times. Generate 3D data of the object to be scanned.
  • the images collected under the three exposure times can also be reconstructed separately and then fused.
  • image fusion and three-dimensional reconstruction are performed to generate three-dimensional data of the object to be scanned, which further includes: comparing the images of the first quantity set, the images of the second quantity set, and the The images of the third quantity set are respectively subjected to point cloud reconstruction; the reconstruction results of the point cloud reconstruction are fused to generate three-dimensional data of the object to be scanned.
  • the method before collecting multiple sets of image sequences with different brightness levels at the same position on the object to be scanned, the method further includes: acquiring an image of the surface of the object to be scanned and evaluating the image uniformity; if the image uniformity is uniform , the first scanning mode is activated; if the image uniformity is uneven, the second scanning mode is activated, wherein the second scanning mode is to collect multiple sets of images with different brightness levels at the same position on the object to be scanned, and perform fusion and 3D reconstruction mode.
  • the second scanning mode can be understood as a scanning mode suitable for a highly reflective situation, and scanning is performed under different optical conditions for objects to be scanned with high reflectiveness.
  • each time a group of image sequences is acquired one thread may be used to set the group of image sequences for 3D reconstruction and fusion, another thread may be used to evaluate the uniformity of the image sequences, and the following The scanning mode of an image sequence acquisition, wherein the uniformity evaluation is determined according to whether the gray value of any image in the image sequence has changed significantly, preferably, according to the gray value of the reconstructed area of any image in the image sequence It is determined whether there has been a significant change. If the image uniformity evaluation result is uniform, use the first scanning mode to scan the object to be scanned, and if the image uniformity evaluation result is non-uniform, use the second scanning mode to scan the to-be-scanned object.
  • the brightness level of the image sequence is determined by the degree of non-uniformity of the image
  • the brightness level adopted by the intraoral 3D scanner in the second scanning mode is determined by the degree of non-uniformity of the image, that is, It is determined by the degree of non-uniformity of the image that the intraoral three-dimensional scanner adopts the second scanning mode A or the second scanning mode B or others.
  • the first scanning mode is: collecting an image sequence based on a preset fourth optical condition, wherein the image sequence includes an encoding map, a reconstruction map, and a texture map; and performing three-dimensional reconstruction based on the encoding map and the reconstructed map to obtain a point cloud image, And a texture image is obtained based on the texture map, wherein the texture image corresponds to the point cloud image.
  • the fourth optical condition may be the same as any optical condition in the second scanning mode, and of course may also be different.
  • the first scanning mode can be understood as: the scanner collects the coded map, the reconstructed map and the texture map according to the default optical conditions, the coded map is a coded fringe map, the reconstructed map is a dense fringe map, and the texture map is a monochrome image Figure, the encoding map is set to determine the sequence of each stripe in the reconstructed map, the reconstructed map is 3D reconstructed based on the sequence of stripes to obtain point cloud data, and the three-color monochrome map is synthesized into a true color texture image.
  • the second scanning mode can be understood as: the scanner collects the encoded map, the reconstructed map and the texture map according to multiple optical conditions, and obtains point cloud data and texture data through fusion and three-dimensional reconstruction.
  • Fig. 2 is a schematic diagram of an optional system for reconstructing data according to an embodiment of the present invention.
  • the system may include: a projection optical device 21, an image acquisition device 23, and a processor 25, wherein,
  • the projection optical device 21 adjusts optical conditions according to presets, and projects image sequences of different brightness levels onto the object to be scanned, specifically, adjusts the exposure time according to presets to adjust the brightness of the projected light.
  • the projection optical device can use DLP-based digital optical processing technology to adjust the brightness of the light source, that is, the projection optical device is a DLP projector, and the DLP projector adjusts the brightness of the projected light by adjusting the brightness of the light source.
  • the image acquisition device 23 acquires multiple sets of image sequences with different brightness levels at the same position on the object to be scanned.
  • the image acquisition device includes, but is not limited to: a monocular black and white camera, a texture camera, a binocular black and white camera, and the like.
  • the processor 25 communicates with the projection optical device and the image acquisition device respectively, and is configured to perform image fusion and three-dimensional reconstruction based on multiple sets of image sequences with different brightness levels to generate three-dimensional data of the object to be scanned.
  • the above system for reconstructing data can adjust the exposure time according to preset settings through the projection optical device 21 to adjust the brightness of the light projected on the object to be scanned, and collect multiple groups of different brightness levels at the same position on the object to be scanned through the image acquisition device 23.
  • the processor 25 communicates with the projection optical device and the image acquisition device respectively, and performs image fusion and three-dimensional reconstruction based on multiple sets of image sequences with different brightness levels to generate three-dimensional data of the object to be scanned.
  • image fusion and 3D reconstruction can be performed through multiple sets of images of different brightness levels at the same position, so that the intraoral 3D scanner can target different brightness levels.
  • Objects with dark materials to be scanned can obtain high-quality three-dimensional data, so as to solve the problem that the intraoral scanner in the related art uses multi-angle multiple scans to collect intraoral tooth data. If the scanned object has a local area of high brightness or ultra-darkness , a technical problem in which the camera cannot obtain images of uniform brightness.
  • a scanning device comprising: a processor; and a memory configured to store executable instructions of the processor; wherein the processor is configured to execute the above-mentioned execution by executing the executable instructions Any method of reconstructing data.
  • a computer-readable storage medium is also provided, where the computer-readable storage medium includes a stored computer program, wherein when the computer program runs, the device where the computer-readable storage medium is located is controlled to execute any of the above A method of reconstructing data.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes .
  • the solution provided by the embodiment of the present application can be used to obtain the three-dimensional data of the object to be scanned.
  • the image can be scanned through multiple sets of image sequences with different brightness levels at the same position. Fusion and 3D reconstruction enable high-quality 3D data for objects to be scanned with different light and dark materials.
  • multiple sets of image sequences with different brightness levels are collected at the same position on the object to be scanned.
  • the projection optical device projects multiple sets of image sequences to the surface of the object to be measured, each set of image sequences includes one or more images, and the projection optical device is adjusted according to the preset settings, so that the images in any set of image sequences are different from other sets of images.
  • the images in the image sequence are consistent, only the brightness levels are different.
  • image fusion and 3D reconstruction are performed to achieve high-quality 3D data for objects to be scanned with different light and dark materials. It solves the technical problem that the intraoral scanner in the related art uses multi-angle multiple scans to collect intraoral tooth data. If the scanned object has a local area of high brightness or ultra-darkness, the camera cannot obtain an image with uniform brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Computer Graphics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Quality & Reliability (AREA)
  • Rheumatology (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Epidemiology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种重建数据的方法及系统,扫描设备。其中,该方法包括:采集待扫描物体上同一位置的多组不同亮等级的图像序列;基于多组不同亮等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。

Description

重建数据的方法及系统,扫描设备
本申请要求于2020年08月21日提交中国专利局、申请号为202010851553.3、申请名称“重建数据的方法及系统、扫描设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数据处理技术领域,具体而言,涉及一种重建数据的方法及系统,扫描设备。
背景技术
相关技术中,获取牙模数据的手段从印模三维扫描逐渐转向口内三维扫描技术,口内三维扫描技术,通过口内三维扫描仪直接入口扫描获取牙齿三维数据,但是由于金属材质本身较多的镜面反射,通常口内三维扫描仪获取该类材质数据时采用多角度多次扫描的方式进行,降低了数据获取的效率,给扫描操作者和患者都带来了不适感。尤其是出现光学死角的时候,口内三维扫描仪无法获取到较完整的数据,为后续的设计和戴牙都引入修复的工作量。
同时,高反光通常会减少物体成像的动态范围,而采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域高亮或超暗的情况,会导致相机无法获取均匀亮度的图像,需要利用不同视角避免反光对三维重建的影响,若尝试改变牙齿光学特性,现有使用方法是利用在牙齿和牙龈上进行固体喷粉或液体涂层,利用粉或涂层对入射光进行遮挡,控制该粉或涂层的厚度即可还原出粉层下面的牙齿表面三维信息。然而粉末与涂层均有其不方便处,如患者对此过敏或难以接受,延长整个扫描的时间,粉末或涂层的厚度直接影响三维数据的精度,掩盖了牙齿表面的缺陷,无法获取真实的牙齿色彩等。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请提供了一种重建数据的方法及系统,扫描设备,以至少解决相关技术中口内扫描仪采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域 高亮或超暗的情况,会导致相机无法获取均匀亮度的图像的技术问题。
根据本申请的一个方面,提供了一种重建数据的方法,包括:采集待扫描物体上同一位置的多组不同亮等级的图像序列;基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据。
可选地,所述采集待扫描物体上同一位置的多组不同亮度等级的图像序列,包括:三维扫描仪基于不同的光学条件获取同一位置的多组图像序列。
可选地,方法还包括:通过调整投影光学设备的光源亮度和/或曝光参数以调整三维扫描仪的光学条件,和/或,通过调整图像采集设备的曝光参数和/或增益参数以调整三维扫描仪的光学条件。
可选地,采集待扫描物体上同一位置的多组不同亮等级的图像序列:基于不同的光学条件获取同一位置的多组图像序列,该步骤包括:采集第一光学条件下的第一数量集的图像,其中,所述第一数量集的图像的类型包括:编码图、重建图和纹理图;采集第二光学条件下的第二数量集的图像,其中,所述第二数量集的图像的类型包括:重建图和纹理图;和/或,采集第三光学条件下的第三数量集的图像,其中,所述第三数量集的图像的类型包括:重建图和纹理图。
可选地,基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据,包括:将所述第一数量集的图像、所述第二数量集的图像和所述第三数量集的图像进行融合处理;将融合后的图像进行三维重建,生成所述待扫描物体的三维数据,其中,所述三维数据包括点云数据和纹理数据;对所述第一数量集的图像、所述第二数量集的图像和所述第三数量集的图像分别进行三维重建;对所述三维重建的重建结果进行融合,生成所述待扫描物体的三维数据,其中,所述三维数据包括点云数据和纹理数据。
可选地,在采集待扫描物体上同一位置的多组不同亮度等级的图像序列之前,所述方法还包括:获取待扫描物体表面的图像并评估图像均匀性;如果所述图像均匀性为均匀,则启动第一扫描模式如果所述图像均匀性为不均匀,则启动第二扫描模式,其中,第二扫描模式为采集待扫描物体上同一位置的多组不同亮度等级的图像序列,并进行融合和三维重建的模式;和/或,通过所述图像的非均匀程度来确定图像序列的亮度等级。
可选地,所述第一扫描模式为:基于预设的第四光学条件采集图像序列,其中,所述图像序列包括编码图、重建图和纹理图;基于所述编码图和重建图进行三维重建得到点云图像,并基于纹理图得到纹理图像,其中,所述纹理图像与点云图像相对应。
根据本申请的另一方面,还提供了一种重建数据的系统,包括:投影光学设备,按照预先设置调整光学条件,以调整投影到待扫描物体上的光源亮度;图像采集设备,采集待扫描物体上同一位置的多组不同亮等级的图像序列,其中,所述不同亮度等级为所述投影光学设备的调整光源亮度的结果;处理器,分别与所述投影光学设备和所述图像采集设备通信,设置为基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据。
根据本申请的另一方面,还提供了一种扫描设备,包括:处理器;以及存储器,设置为存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述任意一项所述的重建数据的方法。
根据本申请的另一方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行上述任意一项所述的重建数据的方法。
本申请中,通过采集待扫描物体上同一位置的多组不同亮度等级的图像序列,投影光学设备投射多组图像序列至被测物体表面,每组图像序列包括一张或多张图像,投影光学设备按照预先设置调整,使得任一组图像序列中的图像与其他组图像序列中的图像一致仅亮度等级不同,在本实施例中,投影光学设备按照预先设置调整曝光时间,即投影光学设备基于第一曝光时间投射一组图像序列,基于第二曝光时间投射一组图像序列,图像采集设备采集待扫描物体表面的图像序列,图像采集设备由此获取到不同亮度等级的图像序列,基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。在申请中,扫描过程中如存在局部区域高亮或超暗的情况,可通过同一位置的多组不同亮度等级的图像序列,进行图像的融合和三维重建,实现不同亮暗材质的待扫描物体均能获取高质量三维数据,从而解决相关技术中口内扫描仪采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域高亮或超暗的情况,会导致相机无法获取均匀亮度的图像的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明设置为解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种可选的重建数据的方法的流程图;
图2是根据本发明实施例的一种可选的重建数据的系统的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是设置为区别类似的对象,而不必设置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于本领域技术人员理解本发明,下面对本发明各实施例中涉及的部分术语或者名词做出解释:
口腔数字印模仪,又称口内三维扫描仪,是一种应用探入式光学扫描头,直接扫描患者口腔内部,获取口腔内牙齿、牙龈、黏膜等软硬组织表面的三维形貌及彩色纹理信息的设备。利用投影光学设备投射主动光图案,图像采集设备获取图案,通过算法处理进行三维重建和拼接。当然口腔数字印模仪使用的原理并不限定,例如,也可采用显微共焦成像等原理进行成像处理。
投影光学设备,采用DLP(数字光处理,Digital Light Procession的简写)投影技术,并使用数字微镜设备(DMD,Digital Micromirror Device的简写)作为关键处理元件以实现数字光学处理过程。投影光学设备较小的像元尺寸可减少牙齿上相邻条纹图案之间的干扰,利用高精度条纹中心线提取算法避免条纹间不可消除的相互影响,该技术大大降低牙齿本身牙釉质对光的透射和扩散的影响,利用图像采集设备光轴与投影光学设备光轴夹角调整的配合,大大减少了牙齿或口水的高反光性质。
本发明实施例的口内三维扫描仪集成第一扫描模式及第二扫描模式,在直接获取牙齿和牙龈三维数据的过程中,当碰到有金属修复牙等高反光材质时,启用第二扫描模式。第二扫描模式的实现方式为,利用DLP投影机可实时调整投影亮度和图像采集设备实时调整曝光参数和增益参数的优势,在扫描的当前位置,将DLP投影机设为至 少两个以上的亮度等级并搭配合适的相机曝光参数和增益参数,获取到同一位置的多等级图像(包括:亮等级图像和暗等级图像,DLP投影机的亮暗等级按待扫描物体的材质情况可调整,如分2、3、4、5等的等级,即三维扫描仪的第二扫描模式下可基于两种或三种或其他种光学条件进行扫描),然后分别对多等级图像序列进行三维重建,将多等级图像序列重建的三维数据融合成更完美的三维数据,或者对多等级图像序列进行融合,获取更完美的图像序列后再三维重建得到完美的三维数据。此模式下,需要至少两组不同的亮度等级的图像序列,针对局部的高亮区域才运用该模式,针对高光部位从第一扫描模式切换到第二扫描模式进行扫描,可以满足高反光情形下的实时扫描的要求。第一扫描模式的实现方式为,保持DLP投影机及图像采集设备的光学参数不变,同一位置仅采集一种亮度等级的图像序列,即普通扫描模式,适于常规情况下的扫描。
在本实施例中,投影光学设备为DLP投影机,图像采集设备为相机。
根据本发明实施例,提供了一种重建数据的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的一种可选的重建数据的方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,采集待扫描物体上同一位置的多组不同亮等级的图像序列;
步骤S104,基于多组不同亮等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。
通过上述步骤,采集待扫描物体上同一位置的多组不同亮度等级的图像序列,投影光学设备投射多组图像序列至被测物体表面,每组图像序列包括一张或多张图像,投影光学设备按照预先设置调整,使得任一组图像序列中的图像与其他组图像序列中的图像一致仅亮度等级不同,在本实施例中,投影光学设备按照预先设置调整曝光时间,即投影光学设备基于第一曝光时间投射一组图像序列,基于第二曝光时间投射一组图像序列,图像采集设备采集待扫描物体表面的图像序列,图像采集设备由此获取到不同亮度等级的图像序列,基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。在该实施例中,扫描过程中如存在局部区域高亮或超暗的情况,可通过同一位置的多组不同亮度等级的图像序列,进行图像的融合和三维重建,实现不同亮暗材质的待扫描物体均能获取高质量三维数据,从而解决 相关技术中口内扫描仪采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域高亮或超暗的情况,会导致相机无法获取均匀亮度的图像的技术问题。
本发明实施例的扫描主体可以为一个扫描系统,该扫描系统包括但不限于:口内三维扫描仪和计算机。口内三维扫描仪包括但不限于:DLP投影机、单目黑白相机。当然也可以是其它组合,例如:DLP投影机、单目黑白相机、纹理相机,或者,DLP投影机、双目黑白相机等。口内三维扫描仪集成第一扫描模式及第二扫描模式,针对高光部位从第一扫描模式切换到第二扫描模式进行扫描。当然也可仅包含第二扫描模式,或者包含其他类型的扫描模式,且第二扫描模式还可进行模式细分,例如,将第二扫描模式细分为第二扫描模式A和第二扫描模式B,其中,第二扫描模式A包含第一、第二、第三这三种亮度等级;第二扫描模式B包含第四、第五两种亮度等级。
需要说明的是,本发明实施例的扫描主体并不局限于口内三维扫描系统,也可以是义齿三维扫描系统,或其他三维扫描系统。
下面结合上述各步骤来详细说明本发明。
步骤S102,采集待扫描物体上同一位置的多组不同亮度等级的图像序列。
口内三维扫描仪通常能扫描的病例有:修复,正畸和种植。在修复病例领域,口内三维扫描仪在获取牙齿数据的时候往往会碰到患者之前修复的假牙如金属牙。在种植病例领域,口内三维扫描仪需要获取患者口内牙齿数据的同时还能直接扫描缺失位的扫描杆、基台等,而他们的材料包括高反光的金属,亮白色的材质,钛合金等。无论是修复的金属牙,还是扫描杆等,都属于高反光物体,给利用光学成像原理的口内三维扫描仪带来了不小的麻烦。因为光投射到此类待扫描物体上,会发生不同角度的镜面反射或吸光现象,导致图像采集设备只能获取到过曝图像或者过暗图像,为三维重建引入较差的图像质量,本发明实施例可以通过采集待扫描物体上同一位置的多张不同亮度等级的图像序列,来获取高质量三维数据。
投影光学设备可以通过调整光源亮度(一般透过电流值调整来调节光源亮度)或曝光参数来调节投射的光的亮度等级,图像采集设备可以通过调整曝光参数或增益参数来调节获取到的图像的亮度等级。
可选的,图像采集设备通过实时调整曝光参数和增益参数来采集多组图像序列。在本发明实施例中,图像采集设备可调节,也可不调节,只需能够适配投影光学设备的多个亮度等级以采集到各种亮度等级的图像即可。其中,曝光参数包括曝光时间。
口内三维扫描仪基于不同的光学条件获取同一位置的多组图像序列,通过调整投影光学设备的光源亮度和/或曝光参数,和/或,通过调整图像采集设备的曝光参数和/ 或增益参数,来调节口内三维扫描仪的光学条件,具体地,将口内三维扫描仪设为至少两个以上的亮度等级,获取到同一位置的多组不同亮度等级的图像序列,例如,亮等级图像和暗等级图像。投影光学设备的亮暗等级按材质情况可调整,如分2、3、4、5等的等级,分别对亮暗等级的图像序列进行三维重建,结合多组三维数据融合成更完美的三维数据,或者对亮暗等级的图像序列进行融合,获取更完美的图像序列后再三维重建得到完美的三维数据。
作为本发明可选的实施例,采集待扫描物体上同一位置的多组不同亮度等级的图像序列:投影光学设备基于不同曝光时间投射图像序列至被测物体表面,图像采集设备同步采集被测物体表面的图像序列,获取到不同亮度等级的图像序列,该步骤包括:投影光学设备基于第一曝光时间投射第一数量集的图像至被测物体表面,图像采集设备同步采集被测物体表面的第一数量集的图像,其中,第一数量集的图像包括:编码图、重建图和纹理图;投影光学设备基于第二曝光时间投射第二数量集的图像至被测物体表面,图像采集设备同步采集被测物体表面的第二数量集的图像,其中,第二数量集的图像包括:重建图和纹理图;和/或,投影光学设备基于第三曝光时间投射第三数量集的图像至被测物体表面,图像采集设备同步采集被测物体表面的第三数量集的图像,第三数量集的图像的类型包括:重建图和纹理图。需要说明的是,第二扫描模式下,三维扫描仪基于至少两个不同的光学条件进行扫描,以获得多组不同亮等级的图像,在本实施例中,如上列举了三维扫描仪基于两种光学条件进行扫描的情形及基于三种光学条件进行扫描的情形,下文针对三维扫描仪基于三种光学条件进行扫描获取到的三组图像序列的处理进行了具体说明,如第二扫描模式采用了两种光学条件或其他数量种的光学条件,其图像序列的处理参考三组图像序列的处理即可。
本发明实施例中的纹理图包括红色单色图、绿色单色图及蓝色单色图,通过红、黄、蓝单色图组合形成纹理图像。当然,如果口内三维扫描仪配设有纹理相机时,纹理图即为纹理图像。
获取第一光学条件下的第一数量集的图像,可选地,获取第一曝光时间下的图像序列,具体包括:
投影光学设备基于第一光学条件投射编码图至被测物体表面,图像采集设备基于第一光学条件获取经被测物体表面调制的编码图,在本实施例中,投影光学设备基于第一光学条件先后投射3张编码图,相机基于第一光学条件同步获取经被测物体表面调制的3张编码图;
投影光学设备基于第一光学条件投射重建图至被测物体表面,图像采集设备基于第一光学条件获取经被测物体表面调制的重建图,在本实施例中,投影光学设备基于 第一光学条件先后投射3张重建图,相机基于第一光学条件同步获取经被测物体表面调制的3张重建图(第一子重建图A、第一子重建图B、第一子重建图C);
投影光学设备基于第一光学条件投射纹理图至被测物体表面,图像采集设备基于第一光学条件获取经被测物体表面反射的纹理图,在本实施例中,投影光学设备基于第一光学条件先后投射3张纹理图,相机基于第一光学条件同步获取经被测物体表面反射的3张纹理图,其中,3张纹理图分别为红色单色图、绿色单色图及蓝色单色图;
获取第二光学条件下的第二数量集的图像,可选地,获取第二曝光时间下的图像序列,具体包括:
投影光学设备基于第二光学条件投射重建图至被测物体表面,图像采集设备基于第二光学条件获取经被测物体表面调制的重建图,在本实施例中,投影光学设备基于第二光学条件先后投射3张重建图,图像采集设备基于第二光学条件同步获取经被测物体表面调制的3张重建图(第二子重建图A、第二子重建图B、第二子重建图C);
投影光学设备基于第二光学条件投射纹理图至被测物体表面,图像采集设备基于第二光学条件获取经被测物体表面反射的纹理图,在本实施例中,投影光学设备基于第二光学条件先后投射3张纹理图,相机基于第二光学条件同步获取经被测物体表面反射的3张纹理图,其中,3张纹理图分别为红色单色图、绿色单色图及蓝色单色图;
获取第三光学条件下的第三数量集的图像,可选地,获取第三曝光时间下的图像序列,具体包括:
投影光学设备基于第三光学条件投射重建图至被测物体表面,图像采集设备基于第三光学条件获取经被测物体表面调制的重建图,在本实施例中,投影光学设备基于第三光学条件先后投射3张重建图,相机基于第三光学条件同步获取经被测物体表面调制的3张重建图(第三重建图A、第三子重建图B、第三子重建图C);
投影光学设备基于第三光学条件投射单色图至被测物体表面,图像采集设备基于第三光学条件获取经被测物体表面反射的纹理图,在本实施例中,投影光学设备基于第三光学条件先后投射3张纹理图,图像采集设备基于第三光学条件同步获取经被测物体表面反射的3张纹理图,其中,3张纹理图分别为红色单色图、绿色单色图及蓝色单色图;
第一子重建图A、第二子重建图A及第三子重建图A条纹图案一致,即图像一致仅亮度等级不同;第一子重建图B、第二子重建图B及第三子重建图B条纹图案一致,即图像一致仅亮度等级不同;第三子重建图C、第三子重建图C及第三子重建图C条纹图案一致,即图像一致仅亮度等级不同;
基于第一子重建图A、第二子重建图A及第三子重建图A融合成重建图A,基于第一子重建图B、第二子重建图B及第三子重建图B融合成重建图B,基于第一子重建图C、第二子重建图C及第三子重建图C融合成重建图C,在本实施例中,第一子重建图、第二子重建图及第三子重建图分别通过灰度值的加权平均融合成重建图,以此剔除不良数据;基于3张编码图确定第一子重建图A、第一子重建图B、第一子重建图C各自的条纹序列,即确定重建图A、重建图B、重建图C各自的条纹序列,基于重建图A及其条纹序列三维重建出被测物体表面的部分点云A,基于重建图B及其条纹序列三维重建出被测物体表面的部分点云B,基于重建图C及其条纹序列三维重建出被测物体表面的部分点云C,部分点云A、部分点云B及部分点云C构成单片密集点云;或者,分别对各子重建图进行三维重建,然后对各子重建图三维重建得到的点云进行融合,具体基于各点的坐标进行加权平均来融合,以此剔除不良数据;
基于第一光学条件下获取的红色单色图、基于第二光学条件下获取的红色单色图及基于第三光学条件下获取的红色单色图进行融合,基于第一光学条件下获取的绿色单色图、基于第二光学条件下获取的绿色单色图及基于第三光学条件下获取的绿色单色图进行融合,基于第一光学条件下获取的蓝色单色图、基于第二光学条件下获取的绿色蓝色图及基于第三光学条件下获取的蓝色单色图进行融合,在本实施例中,红色单色图、绿色单色图及蓝色单色图的融合分别通过灰度值的加权平均进行融合;基于融合后的红色单色图、绿色单色图及蓝色单色图合成纹理图;或者,基于第一光学条件下获取的红色单色图、绿色单色图及蓝色单色图合成第一纹理图,基于第二光学条件下获取的红色单色图、绿色单色图及蓝色单色图合成第二纹理图,基于第三光学条件下获取的红色单色图、绿色单色图及蓝色单色图合成第三纹理图,再基于第一纹理图、第二纹理图及第三纹理图进行融合形成纹理图,第一纹理图、第二纹理图及第三纹理图的融合通过灰度值的加权平均实现。
基于重建图与纹理图的像素点的对应关系即可确定单片密集点云与纹理图像的对应关系,即确定单片密集点云中各点所包含的纹理信息。
本发明实施例采集图像时,采用第二扫描模式进行多次图像序列采集,采用同一位置分别以不同曝光参数来曝光采集三组图像序列,并将图像进行融合和三维重建,实现口内三维扫描仪适于不同亮暗材质待测物体的三维数据的获取且均能获取到高质量的三维数据。
上述实施例中的编码图也可设置为三维重建,作为重建图,或者说,重建图也可以作为编码图,参与编解码计算。例如,在口内三维扫描仪工作在第一扫描模式(第一扫描模式)下:DLP投影机(投影光学设备)先后投影8张图像,单目黑白相机(图 像采集设备)相对DLP投影机同步采集8张图像并传输至计算机,计算机对8张图像进行处理,其中5张图像为条纹图像,且其中3张作为编码图,设置为确定各图像中各条纹的序列,5张图像还可作为重建图,一般将条纹密集的3张作为重建图,重建图基于条纹的序列进行三维重建,得到点云,另外3张图像分别为红色单色图(纹理图)、绿色单色图(纹理图)、蓝色单色图(纹理图),3张单色图像合成纹理图像,即为点云对应的纹理。
例如,在口内三维扫描仪工作在第二扫描模式(第一扫描模式)下:DLP投影机在第一曝光时间下先后投影8张图像(3张编码图+3张重建图+3张纹理图,有一张编码图和重建图一致,都是条纹图),图像采集设备同步采集8张图像,在第二曝光时间下先后投影6张图像(3张重建图+3张单色图),图像采集设备同步采集6张图像,在第三曝光时间下先后投影6张图像(3张重建图+3张纹理图),图像采集设备同步采集6张图像,基于同一图像在不同曝光时间下获取的3张重建图进行融合处理后,进行三维重建,9张单色图合成纹理图像。当然,基于同一图像在不同曝光时间下获取的3张重建图也可分别进行点云重建后,再进行融合。
在本发明实施例中,各图像的投影顺序不作限制。
步骤S104,基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。
在本发明实施例中,在得到多组不同亮度等级的图像序列后,可以先进行图像融合,然后进行三维重建;当然,也可以先进行三维重建,再进行图像融合。完成图像的融合和三维重建后,生成待扫描物体的三维数据。
可选的,基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据,包括:将第一数量集的图像、第二数量集的图像和第三数量集的图像进行融合处理;将融合后的图像进行三维重建,生成待扫描物体的三维数据,其中,三维数据包括点云数据和/或纹理数据(即纹理图像)。
对应于上述的三个曝光时间下采集的数量集图像,在进行图像的融合和三维重建时,可对不同曝光时间的数量集图像进行一次性三维重建,利用不同曝光时间的数量集图像,直接生成待扫描物体的三维数据。
三种曝光时间下采集的图像也可分别进行点云重建后,再进行融合。
在本发明实施例中,基于多张不同亮度等级的图像,进行图像的融合和三维重建,生成待扫描物体的三维数据,还包括:对第一数量集的图像、第二数量集的图像和第三数量集的图像分别进行点云重建;对点云重建的重建结果进行融合,生成待扫描物 体的三维数据。
作为本发明可选的实施例,在采集待扫描物体上同一位置的多组不同亮度等级的图像序列之前,还包括:获取待扫描物体表面的图像并评估图像均匀性;如果图像均匀性为均匀,则启动第一扫描模式;如果图像均匀性为不均匀,则启动第二扫描模式,其中,第二扫描模式为采集待扫描物体上同一位置的多组不同亮度等级的图像,并进行融合和三维重建的模式。其中,第二扫描模式可以理解为适于高反光情形的扫描模式,针对反光较高的待扫描物体在不同光学条件下进行扫描。
本发明实施例中,每获取一组图像序列,可使用一个线程将该组图像序列设置为三维重建和融合,使用另一个线程对图像序列进行均匀性评估,根据均匀性评估结果确定下一次图像序列采集的扫描模式,其中,均匀性评估,是根据图像序列中任一图像的灰度值是否发生明显变化确定的,优选地,根据图像序列中任一图像的重建区域的灰度值是否发生明显变化确定的。如果图像均匀性评估结果为均匀,则使用第一扫描模式扫描待扫描物体,如果图像均匀性评估结果为非均匀,则使用第二扫描模式扫描待扫描物体。
另一种可选的,通过所述图像的非均匀程度来确定图像序列的亮度等级,通过图像的非均匀程度来确定口内三维扫描仪在第二扫描模式所采用的亮度等级,也就是说,通过图像的非均匀程度确定口内三维扫描仪采用第二扫描模式A或第二扫描模式B或其他。可选的,第一扫描模式为:基于预设的第四光学条件采集图像序列,其中,图像序列包括编码图、重建图和纹理图;基于编码图和重建图进行三维重建得到点云图像,并基于纹理图得到纹理图像,其中,纹理图像与点云图像相对应。需要注意的是,第四光学条件可与第二扫描模式下任一光学条件相同,当然也可不同。
在本发明实施例中,第一扫描模式可理解为:扫描仪按默认光学条件采集编码图、重建图和纹理图,编码图为编码条纹图,重建图为密集条纹图,纹理图为单色图,编码图设置为确定重建图中各条纹的序列,重建图基于条纹的序列进行三维重建得到点云数据,三种颜色的单色图合成真彩纹理图像。第二扫描模式可理解为:扫描仪按多个光学条件采集编码图、重建图和纹理图,通过融合和三维重建获得点云数据和纹理数据。
图2是根据本发明实施例的一种可选的重建数据的系统的示意图,如图2所示,该系统可以包括:投影光学设备21、图像采集设备23、处理器25,其中,
投影光学设备21,按照预先设置调整光学条件,投射不同亮度等级的图像序列至待扫描物体,具体地,按照预先设置调整曝光时间,以调整投射的光的亮度。其中, 投影光学设备可以使用基于DLP的数字光学处理技术进行光源亮度调节,即投影光学设备为DLP投影机,DLP投影机通过调整光源亮度来调整投射的光的亮度。
图像采集设备23,采集待扫描物体上同一位置的多组不同亮度等级的图像序列。该图像采集设备包括但不限于:单目黑白相机、纹理相机、双目黑白相机等。
处理器25,分别与投影光学设备和图像采集设备通信,设置为基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。
上述重建数据的系统,可以通过投影光学设备21按照预先设置调整曝光时间,以调整投影到待扫描物体上的光的亮度,通过图像采集设备23采集待扫描物体上同一位置的多组不同亮度等级的图像序列,通过处理器25分别与投影光学设备和图像采集设备通信,基于多组不同亮度等级的图像序列,进行图像的融合和三维重建,生成待扫描物体的三维数据。在该实施例中,扫描过程中如存在局部区域高亮或超暗的情况,可通过同一位置的多组不同亮度等级的图像,进行图像的融合和三维重建,实现口内三维扫描仪针对不同亮暗材质的待扫描物体均能获取高质量的三维数据,从而解决相关技术中口内扫描仪采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域高亮或超暗的情况,会导致相机无法获取均匀亮度的图像的技术问题。
根据本发明实施例的另一方面,还提供了一种扫描设备,包括:处理器;以及存储器,设置为存储处理器的可执行指令;其中,处理器配置为经由执行可执行指令来执行上述任意一项的重建数据的方法。
根据本发明实施例的另一方面,还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的计算机程序,其中,在计算机程序运行时控制计算机可读存储介质所在设备执行上述任意一项的重建数据的方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请实施例提供的方案可以用于获取待扫描物体的三维数据,扫描过程中如存在局部区域高亮或超暗的情况,可通过同一位置的多组不同亮度等级的图像序列,进行图像的融合和三维重建,实现不同亮暗材质的待扫描物体均能获取高质量三维数据,在本申请实施例提供的技术方案中,通过采集待扫描物体上同一位置的多组不同亮度等级的图像序列,投影光学设备投射多组图像序列至被测物体表面,每组图像序列包括一张或多张图像,投影光学设备按照预先设置调整,使得任一组图像序列中的图像与其他组图像序列中的图像一致仅亮度等级不同,通过同一位置的多组不同亮度等级的图像序列,进行图像的融合和三维重建,实现不同亮暗材质的待扫描物体均能获取高质量三维数据,解决相关技术中口内扫描仪采用多角度多次扫描的方式来采集口内牙齿数据,扫描物体如存在局部区域高亮或超暗的情况,会导致相机无法获取均匀亮度的图像的技术问题。

Claims (10)

  1. 一种重建数据的方法,包括:
    采集待扫描物体上同一位置的多组不同亮等级的图像序列;
    基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据。
  2. 根据权利要求1所述的方法,其中,所述采集待扫描物体上同一位置的多组不同亮度等级的图像序列,包括:三维扫描仪基于不同的光学条件获取同一位置的多组图像序列。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:通过调整投影光学设备的光源亮度和/或曝光参数以调整三维扫描仪的光学条件,和/或,通过调整图像采集设备的曝光参数和/或增益参数以调整三维扫描仪的光学条件。
  4. 根据权利要求3所述的方法,其中,采集待扫描物体上同一位置的多组不同亮等级的图像序列:
    基于不同的光学条件获取同一位置的多组图像序列,该步骤包括:
    采集第一光学条件下的第一数量集的图像,其中,所述第一数量集的图像的类型包括:编码图、重建图和纹理图;
    采集第二光学条件下的第二数量集的图像,其中,所述第二数量集的图像的类型包括:重建图和纹理图;和/或,
    采集第三光学条件下的第三数量集的图像,其中,所述第三数量集的图像的类型包括:重建图和纹理图。
  5. 根据权利要求4所述的方法,其中,基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据,包括:
    将所述第一数量集的图像、所述第二数量集的图像和所述第三数量集的图像进行融合处理;
    将融合后的图像进行三维重建,生成所述待扫描物体的三维数据,其中,所述三维数据包括点云数据和纹理数据;和/或,
    对所述第一数量集的图像、所述第二数量集的图像和所述第三数量集的图像 分别进行三维重建;
    对所述三维重建的重建结果进行融合,生成所述待扫描物体的三维数据,其中,所述三维数据包括点云数据和纹理数据。
  6. 根据权利要求1所述的方法,其中,在采集待扫描物体上同一位置的多组不同亮度等级的图像序列之前,所述方法还包括:
    获取待扫描物体表面的图像并评估图像均匀性;
    如果所述图像均匀性为均匀,则启动第一扫描模式,如果所述图像均匀性为不均匀,则启动第二扫描模式,其中,第二扫描模式为采集待扫描物体上同一位置的多组不同亮度等级的图像序列,并进行融合和三维重建的模式;和/或,
    通过所述图像的非均匀程度来确定图像序列的亮度等级。
  7. 根据权利要求6所述的方法,其中,所述第一扫描模式为:
    基于预设的第四光学条件采集图像序列,其中,所述图像序列包括编码图、重建图和纹理图;
    基于所述编码图和重建图进行三维重建得到点云图像,并基于纹理图得到纹理图像,其中,所述纹理图像与点云图像相对应。
  8. 一种重建数据的系统,包括:
    投影光学设备,按照预先设置调整光学条件,以调整投影到待扫描物体上的光源亮度;
    图像采集设备,采集所述待扫描物体上同一位置的多组不同亮等级的图像序列,其中,所述不同亮度等级为所述投影光学设备的调整光源亮度的结果;
    处理器,分别与所述投影光学设备和所述图像采集设备通信,设置为基于所述多组不同亮等级的图像序列,进行图像的融合和三维重建,生成所述待扫描物体的三维数据。
  9. 一种扫描设备,包括:
    处理器;以及
    存储器,设置为存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至7中任意一项所述的重建数据的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至7中任意一项所述的重建数据的方法。
PCT/CN2021/113854 2020-08-21 2021-08-20 重建数据的方法及系统,扫描设备 WO2022037688A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023512429A JP2023538639A (ja) 2020-08-21 2021-08-20 データを再構成する方法およびシステム、走査装置並びにコンピュータ可読記憶媒体
US18/022,174 US20230334634A1 (en) 2020-08-21 2021-08-20 Data reconstruction method and system, and scanning device
EP21857776.5A EP4202845A4 (en) 2020-08-21 2021-08-20 DATA RECONSTRUCTION METHOD AND SYSTEM, AND SCANNING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010851553.3A CN114078103A (zh) 2020-08-21 2020-08-21 重建数据的方法及系统,扫描设备
CN202010851553.3 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022037688A1 true WO2022037688A1 (zh) 2022-02-24

Family

ID=80282442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113854 WO2022037688A1 (zh) 2020-08-21 2021-08-20 重建数据的方法及系统,扫描设备

Country Status (5)

Country Link
US (1) US20230334634A1 (zh)
EP (1) EP4202845A4 (zh)
JP (1) JP2023538639A (zh)
CN (1) CN114078103A (zh)
WO (1) WO2022037688A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117414110B (zh) * 2023-12-14 2024-03-22 先临三维科技股份有限公司 三维扫描设备的控制方法、装置、终端设备及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694375A (zh) * 2009-10-23 2010-04-14 北京航空航天大学 一种用于强反射表面三维形貌测量的立体视觉检测方法
CN201548210U (zh) * 2009-04-01 2010-08-11 姚征远 投影三维测量装置
EP3064894A1 (de) * 2015-03-03 2016-09-07 Mohn Media Mohndruck GmbH 3d-scanvorrichtung und verfahren zum bestimmen einer digitalen 3d-repräsentation einer person
CN109584352A (zh) * 2018-08-21 2019-04-05 先临三维科技股份有限公司 三维扫描的图像获取、处理方法、装置以及三维扫描设备
CN109916336A (zh) * 2019-02-03 2019-06-21 武汉斌果科技有限公司 基于光谱调制与多光谱成像的高动态范围三维测量方法
CN110619601A (zh) * 2019-09-20 2019-12-27 西安知象光电科技有限公司 一种基于三维模型的图像数据集生成方法
CN110702031A (zh) * 2019-11-19 2020-01-17 四川长虹电器股份有限公司 适用于深色表面的三维扫描装置及扫描方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983905B2 (ja) * 2009-12-25 2012-07-25 カシオ計算機株式会社 撮像装置、3dモデリングデータ生成方法、および、プログラム
US10835352B2 (en) * 2018-03-19 2020-11-17 3D Imaging and Simulation Corp. Americas Intraoral scanner and computing system for capturing images and generating three-dimensional models

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201548210U (zh) * 2009-04-01 2010-08-11 姚征远 投影三维测量装置
CN101694375A (zh) * 2009-10-23 2010-04-14 北京航空航天大学 一种用于强反射表面三维形貌测量的立体视觉检测方法
EP3064894A1 (de) * 2015-03-03 2016-09-07 Mohn Media Mohndruck GmbH 3d-scanvorrichtung und verfahren zum bestimmen einer digitalen 3d-repräsentation einer person
CN109584352A (zh) * 2018-08-21 2019-04-05 先临三维科技股份有限公司 三维扫描的图像获取、处理方法、装置以及三维扫描设备
CN109916336A (zh) * 2019-02-03 2019-06-21 武汉斌果科技有限公司 基于光谱调制与多光谱成像的高动态范围三维测量方法
CN110619601A (zh) * 2019-09-20 2019-12-27 西安知象光电科技有限公司 一种基于三维模型的图像数据集生成方法
CN110702031A (zh) * 2019-11-19 2020-01-17 四川长虹电器股份有限公司 适用于深色表面的三维扫描装置及扫描方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202845A4

Also Published As

Publication number Publication date
EP4202845A4 (en) 2024-01-10
US20230334634A1 (en) 2023-10-19
CN114078103A (zh) 2022-02-22
JP2023538639A (ja) 2023-09-08
EP4202845A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2022218355A1 (zh) 一种三维扫描仪、系统及三维重建方法
JP5276006B2 (ja) 口腔内測定装置及び口腔内測定システム
US11418770B2 (en) Method and apparatus for colour imaging a three-dimensional structure
KR101999465B1 (ko) 구강 이미지의 자동 선택 및 잠금
JP5433381B2 (ja) 口腔内測定装置及び口腔内測定方法
JP7506961B2 (ja) 口腔内走査装置
AU2004212587A1 (en) Panoramic scanner
US20210059793A1 (en) Intraoral scanner and computing system for capturing images and generating three-dimensional models
WO2019085402A1 (zh) 口内三维扫描装置和方法
WO2022037688A1 (zh) 重建数据的方法及系统,扫描设备
US20080074648A1 (en) Method and Apparatus for Three-Dimensional Measurement of Objects in an Extended angular range
GB2589698A (en) Ocular prosthesis
US20230355360A1 (en) System and method for providing dynamic feedback during scanning of a dental object
CN211485040U (zh) 一种口内三维扫描仪
EP1849411A2 (en) Method for providing data associated with the intraoral cavity
CN101711675B (zh) 用于测量牙齿几何形状的装置
US20180271628A1 (en) Method for capturing the three-dimensional surface geometry of an object
KR101810917B1 (ko) 구강용 광스캐닝성 향상제 조성물을 이용하여 구강내 구조물을 3차원 촬영하는 3d 구강 스캐너 및 이를 이용한 3d 구강 스캐닝 방법
CN106562833A (zh) 一种应用于牙颌模型的颜色信息扫描方法
CN114681089B (zh) 三维扫描装置和方法
JP7178013B2 (ja) 歯科模型仮想化方法
WO2023175003A1 (en) Intra oral scanner and computer implemented method for updating a digital 3d scan
CN115381576A (zh) 一种测量口内扫描仪的精度偏差的方法
JP2024502065A (ja) 三次元走査機器、方法、装置、記憶媒体およびプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857776

Country of ref document: EP

Effective date: 20230321