WO2022037507A1 - 一种水陆两用的勘探、考查装置,系统及方法 - Google Patents
一种水陆两用的勘探、考查装置,系统及方法 Download PDFInfo
- Publication number
- WO2022037507A1 WO2022037507A1 PCT/CN2021/112647 CN2021112647W WO2022037507A1 WO 2022037507 A1 WO2022037507 A1 WO 2022037507A1 CN 2021112647 W CN2021112647 W CN 2021112647W WO 2022037507 A1 WO2022037507 A1 WO 2022037507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- module
- exploration
- machine
- soil
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 239000011435 rock Substances 0.000 claims abstract description 79
- 239000002689 soil Substances 0.000 claims abstract description 70
- 238000005070 sampling Methods 0.000 claims abstract description 20
- 238000005457 optimization Methods 0.000 claims abstract description 14
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 11
- 238000009412 basement excavation Methods 0.000 claims description 65
- 238000005553 drilling Methods 0.000 claims description 59
- 238000007689 inspection Methods 0.000 claims description 50
- 230000015572 biosynthetic process Effects 0.000 claims description 49
- 238000005755 formation reaction Methods 0.000 claims description 46
- 238000001514 detection method Methods 0.000 claims description 33
- 230000003595 spectral effect Effects 0.000 claims description 32
- 230000000149 penetrating effect Effects 0.000 claims description 31
- 230000000007 visual effect Effects 0.000 claims description 31
- 230000010391 action planning Effects 0.000 claims description 28
- 230000007613 environmental effect Effects 0.000 claims description 28
- 238000012876 topography Methods 0.000 claims description 24
- 230000009471 action Effects 0.000 claims description 22
- 238000007664 blowing Methods 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 16
- 238000013507 mapping Methods 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 16
- 238000007726 management method Methods 0.000 claims description 15
- 238000013528 artificial neural network Methods 0.000 claims description 13
- 238000010801 machine learning Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 9
- 210000000078 claw Anatomy 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 238000011835 investigation Methods 0.000 claims description 7
- 230000006872 improvement Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000007405 data analysis Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 239000003345 natural gas Substances 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000013499 data model Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000000813 microbial effect Effects 0.000 claims description 2
- 230000000875 corresponding effect Effects 0.000 claims 10
- 230000001680 brushing effect Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 claims 1
- 230000004927 fusion Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 238000010408 sweeping Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000005065 mining Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
- G05D1/0236—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/02—Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
Definitions
- the invention belongs to the technical field of automation robots, and relates to robot technology, automation equipment, and artificial intelligence image recognition systems and methods.
- the purpose of the present invention is to overcome the shortcomings and deficiencies of the above-mentioned prior art, and to provide a kind of exploration and inspection machine device, which utilizes the remote control robot arm, excavation device, lighting device, and drilling device to complete exploration, inspection, sampling operations, etc.
- Problems use the camera on the machine, multi-sensor acquisition device, GIS, GPS location information device, ground penetrating radar, infrared spectroscopy device, remote control robot arm to explore, inspect, sample, collect, analyze data, identify rock layers, and explore
- the material and intelligent dating have solved the problems of human error, difficult collection, heavy manual work and heavy burden.
- the inspection and excavation tool modules carried by the machine include lighting equipment, excavation shovels, excavation hoes, drill heads, blowing equipment, and brushes. Move, place, take and place exploration objects and samples, and solve problems such as high work pressure and heavy physical workload. Improve exploration, inspection, sampling flexibility, high efficiency.
- the invention also provides a real-time collection of scene pictures, a method for intelligent identification of topography and landforms, a bottom-penetrating radar, a dating method for detecting topographic strata, rock strata, soil, and exploration objects by a bottom-penetrating radar; a multi-sensing gas, wind speed , Humidity, temperature, environmental detection, pH, chemical monitoring data analysis, identification, exploration objects and multi-geological information, and environmental information, and topography, associated age intelligent identification method.
- a machine device includes:
- Robot main system device the robot main system device is used to connect and control machine devices, and the devices and modules connected and controlled include: voice device and voice module, visual device and visual recognition module, radar navigation mobile module, GIS/ GPS Beidou positioning and position information module, infrared spectrum module, multi-sensing module, inspection and excavation action planning module, soil rock stratum fossil collection and collection action planning module, remote control module;
- the main robot system is connected with the visual device, used to collect and recognize land, underwater scenes, terrain, landform images, the scenes include: scene recognition, terrain recognition, soil, rock formation recognition, fossils Identification, underwater rock formation identification, underwater natural gas and other underwater resource feature identification.
- the topography and landform refers to: fossil shape features, topographic features, texture features, soil features, and rock structure features.
- Voice device and voice module the main system of the machine is connected to the voice device, which is used for collecting and recognizing voice, voice interaction between users and administrators, voice commands, voice and text conversion, voice synthesis, voiceprint recognition;
- GIS/GPS Beidou positioning, position information module, and the main system module of the machine are connected to the position information positioning device for returning position information.
- GIS/GPS Beidou positioning information module includes a GIS device, a GPS Beidou positioning device, an information module, and the information returned by the GIS device and the GPS Beidou positioning device is used for terrain inspection and positioning.
- Radar, mobile mapping module including: ground penetrating radar, land use lidar, underwater lidar.
- Ground penetrating radar is used for terrain, rock formation, and fossil detection
- lidar is used for autonomous movement, scene recognition, and mapping modules.
- the main system module of the machine is connected with lidar and visual devices, integrating visual maps, radar autonomous movement, combined with land, underwater scene terrain, land, and underwater landform recognition.
- Lidar includes terrestrial lidar and underwater lidar;
- the radar device includes: ground penetrating radar and lidar; using ground penetrating radar to detect topographic soil, rock formation information, fossil information, and underground exploration object information , using the rock formation and fossil information of the exploration object to identify and judge the age.
- the mapping module is to connect lidar and visual devices with the main system module of the machine. Lidar autonomously locates, navigates, builds maps in real time, and visually recognizes scenes. The scenes include: land and underwater terrain, Landform, scene and LiDAR real-time mapping integration, autonomous positioning, navigation, and moving to the required corresponding position.
- the main system module of the machine is connected with the infrared spectrum module, which is used to transmit and collect information of soil rock layers and fossils, identify geological layers, fossils and soil layers, and be used for mineral and antiquities detection and dating; by emitting infrared light, collecting information Information of soil, rock layers and fossils, based on geological layer and soil layer information, intelligently identify and judge the age and color information of exploration objects, identify exploration objects and surrounding soil, rock layers, fossils and geological information, environmental information, microbial information, paleontology Plant information, fossil information, chemical information.
- Multi-sensing module the main system module of the machine is connected with multiple sensors to collect gas, wind speed, humidity, temperature, pH, geological information, environmental detection information, biological detection information, and chemical detection information;
- the inspection and excavation action planning module and the soil and rock formation fossil collection action planning module are connected with the inspection and excavation device.
- the main system module of the machine is connected with lighting equipment, drilling and excavation tools, and robotic arm claws. It is used for land and underwater operations, including: collecting soil, rock formations, fossils, exploration objects, and excavation, drilling, and inspection operations.
- Set parameters through administrator user mediation and training machine learning planning actions and remote and adaptive mediation through neural network improvement methods to set action planning parameters, which are used for planning and examining excavation actions and soil and rock formation fossil collection actions.
- the actions include: collection, Dig, drill, blow, sweep, brush.
- the setting parameters include: excavation device and its action parameters, drilling device and its action parameters, acquisition device and its action parameters, robot arm claw parameters and angles.
- a remote control device and a communication module include a client device, a satellite communication module, a wired communication module and a wireless communication module, which are used for the communication between the client device and the main system device of the machine, and the remote control Machine main system installation operation, remote command.
- rock drilling the rock drilling device is used for drilling terrestrial and underwater rocks, and collecting drilled rock samples, fossil samples, terrestrial, underwater resources, and exploration objects. Drill to target depth, rock layer.
- a soil excavation module the soil excavation module is used for excavating soil, terrestrial underwater rocks, and terrestrial underwater exploration objects, and excavating soil and rock formations according to the target position and target size. Dig the target depth, and the target soil layer, dig the angle, and conduct the survey.
- sample collection module plans the movement of the sampling device, excavation, and collection of soil samples.
- the said sample and exploration object pick and place configuration management module can be remotely picked, placed, and managed effectively.
- the exploration and inspection task management optimization system includes an exploration and inspection machine device and a task management optimization system, and the exploration and inspection machine device is the exploration in any of the above schemes.
- the inspection machine device, the task management optimization system is connected with the main machine system, the exploration is established, the task management optimization system is inspected, the optimization method is applied to calculate and plan the optimal exploration, the inspection route is completed, and the navigation of the machine device is completed in the shortest time. , exploration, and examination of each task.
- a real-time collection of scene pictures, and an intelligent identification method for terrain, landform, land, and underwater exploration objects includes the following steps:
- the machine vision device publishes pictures of land and underwater scenes, terrain, and landform information, corresponding to the coordinates of its location area;
- the main system subscribes to the external location and coordinates, excavation, drilling, sampling;
- the remote control terminal, the main system, and the robotic arm according to the location of the subscribed collection area and the image of the robotic arm, collect the actions of the action planning module, move, and publish the collected image information, and the machine main system and the visual recognition module subscribe to the image information;
- a ground penetrating radar a method for detecting terrain strata, rock formations, fossils, soil, and exploration objects and an intelligent identification method for a spectral infrared transmitter, the method comprising the following steps:
- the eigenvalues are converted into input items and input to the intelligent recognition model.
- the machine ground penetrating radar releases the coordinates of the target area of the survey object and the corresponding location area;
- the main system of the machine, the robot arm, the excavation module, and the drilling module subscribe to the coordinates of the target area and the corresponding location area to realize excavation, drilling, and sampling;
- S5. Use the spectral transmitter to detect the spectral information of the terrain strata, rock formations, fossils, soil, and exploration objects, and collect the hyperspectral near-infrared diffuse reflection spectral information;
- S6 Create a spectral intelligent identification model for spectral detection of terrain strata, rock layers, fossils, soil, and exploration objects, input near-infrared diffuse reflectance spectral information, and identify the spectral age of topographic layers, geological layers, fossil layers, soil layers, antiquities, and exploration objects. , soil rock formation information, mineral information, geological information, fossil information;
- a method for comprehensive data analysis, identification, multi-geological information, environmental information, topographic and landform information, and terrestrial and underwater resource information correlation judgment and exploration object method comprises the following steps:
- a method for remote control and autonomous excavation, drilling and sampling of a machine main system comprising the following steps:
- the main control system issues task instruction information.
- Digging device, lighting device, drilling device, blowing device, brush device, robotic arm subscribe to task information.
- the visual recognition module publishes image information. Digging device, lighting device, drilling device, blowing device, brush device, robotic arm subscribe to image information.
- the main system of the machine uses radar and radar to move autonomously, scene recognition, mapping module, positioning, navigation, and autonomously move to the target position.
- the main system of the machine and the excavation device, lighting device, drilling device, blowing device, and brush device subscribe to the target position information, through the remote control of the operator, setting parameters and training the machine learning planning action and adaptive adjustment through the neural network improvement method Set jaw strength, depth, digging device angle, machine jaw angle and its motion planning parameters.
- the lighting device, the drilling device, the blowing device, and the brush device subscribe the task information, excavation, drilling, use the blower device, the brush device, and the blower to clean the surface of the exploration object.
- the invention can solve the problem of remote control of the remote end of the machine and autonomous isolation of excavation, drilling, sample collection, autonomous positioning, movement and navigation by examining the exploration machine device. Realize remote isolated excavation, drilling, and collection. Improve exploration, examine problems such as high work pressure and many labor operations. At the same time, the data and images collected by the machine are obtained in real time, which greatly improves the work efficiency.
- the present invention can be connected through the machine main system and the task management optimization system, remotely collect excavation, drilling, image and video management, remotely control the robotic arm, excavator, drilling equipment and adjust the parameters of the robotic arm, excavation and drilling equipment, including : Drilling, Digging Depth, Drilling, Digging Range, Robot Claw Angle. Real-time dynamic control of acquisition, drilling, excavation operations.
- Fig. 1 is a schematic diagram of a machine device module for exploration and investigation in the description of the application
- 101-Machine main system 101-Machine main system; 102-Acquisition action planning module; 103-Camera vision module; 104-Location information module; 105-Voice module; 106-Multi-sensor acquisition module; 107-Radar mobile navigation module; 108-Ground penetrating radar module ; 109 - excavation drilling action planning module; 110 - remote control device and communication module;
- Fig. 2 is a schematic diagram of the composition structure of a machine device used in the exploration and inspection of the application description
- 201-machine main system 202-vision device; 203-excavation device, lighting device; 204-small robotic arm; 205-positioning device; 206-ground penetrating radar; 207-voice device; 208-radar mobile device; 209-more Sensing; 210-Blowing Device; 211-Infrared Spectroscopy Device; 212-Brush Device; 213-Drilling Device; 214-Remote Client;
- the purpose of the present invention is to design a remote control machine that can replace human work, realize scene recognition, terrain, landform recognition, underground radar detection, and identification of exploration objects.
- remotely control the robotic arm for excavation, drilling, inspection, exploration, and collection, and at the same time effectively solve the problem of autonomously collecting samples, environmental data, mining, and drilling.
- robotic arm motion planning in the field of automation, cameras to collect scene information, exploration, and inspection of images and videos.
- the vision device mounted on the machine collects images
- the robotic arm and excavation device, lighting device, brush device, blowing device, and drilling device equipped on the machine are used to realize remote control of the machine for exploration, inspection, and sampling.
- the GPS, ground penetrating radar, and lidar carried by the machine can detect, inspect and sample underground objects.
- the machine is equipped with multi-sensors to comprehensively perceive environmental information.
- the machine is equipped with an infrared device to identify geological information and age information of rock formations.
- the invention also provides a real-time collection of scene pictures, an intelligent identification method for topography, landform, land and underwater exploration objects; a ground penetrating radar, a dating method for the transmitter to detect terrain strata, rock formations, soil and exploration objects; a Comprehensive data calculation, analysis, identification of multi-geological information, environmental information, topographic information, land and underwater resource scene image information correlation judgment method of exploration objects; a remote control robot arm and autonomous sample collection, digging, drilling, blowing, cleaning method.
- a machine device includes:
- Machine main system 101 the machine main system 101 is used to realize the main control of the machine, the voice module 105 is connected to the machine main system 101 for remote voice commands, and the camera vision module 103 is used for scene, terrain, landform recognition.
- the location information positioning module 106 is used to collect GPS and GIS location information.
- the radar mapping positioning and navigation module 107 is used for autonomous mobile real-time mapping, the ground penetrating radar module 108 is used for detecting underground exploration objects; the robotic arm is equipped with an excavation and drilling action planning module 109, which is used for collecting samples, digging, drilling, blowing, blowing Brush and sweep.
- Voice module 105 the voice module is used to collect scene sounds and voice commands.
- the machine main system 101 interacts with the user and provides voice guidance, voice commands, and voice interaction.
- the visual recognition module 103 includes scene recognition, terrain, and landform recognition. It is used to identify exploration scenes, objects, terrain, landforms, etc.
- the multi-sensor acquisition module 106 is used for the acquisition of multi-sensor data such as gas, wind speed, humidity, temperature, environmental detection, pH, chemical monitoring, etc.
- the multi-sensor is used for comprehensive perception of environmental information.
- the radar moves autonomously and is used for scene recognition, and the scene of the mapping module 108 and the visual recognition module are integrated with the radar real-time mapping for autonomous positioning, navigation and movement.
- the main system of the machine is connected with the radar and the camera.
- the radar moves autonomously, combined with the scene terrain, and the landform recognition and mapping module is to connect the radar and the camera with the main system.
- Ground penetrating radar module is used to detect terrain and formation information. Apply the underlying information to determine the age.
- the transmitting module the main system of the machine is connected to the transmitting module, which is used to transmit and collect the information of soil and rock layers, and to date the geological layers and soil layers according to the big data platform.
- the mining and drilling action planning module is used for acquisition and mining. It is used to set parameters through operator mediation and to train machine learning planning actions and remote and adaptive mediation through neural network improvement methods to set action planning parameters. It is used for action planning and mining. , drilling, blowing, cleaning.
- the set action planning parameters include: digging, rig strength, digging depth, digging device angle, and machine claw angle.
- the sampling action planning module is used for the robotic arm to collect soil, rock formations, and exploration objects.
- an exploration task management system and an exploration the use method of the inspection machine device is as follows:
- the machine main system 201 assigns corresponding tasks within the time period, controls the machine remotely, and uses the visual device 202 to recognize the dual scenes of underwater and land, and its topography and landforms.
- the real-time collection of scene pictures, and the intelligent identification method of terrain and landform including the following steps:
- the machine camera 202 publishes pictures, topography, and landform information of each scene, corresponding to the coordinates of its location area.
- the main system subscribes to the external location and coordinates to realize excavation, drilling, and sampling.
- the remote main control system 201 and the autonomous robotic arm 204 move according to the subscribed location of the acquisition area and the action of the robotic arm image acquisition action planning module.
- the collected image information is published, and the machine main system 201 and the visual recognition module 202 subscribe to the image information.
- the main system 201 of the machine uses the ground penetrating radar 206, the infrared device 211, the ground penetrating radar, and the transmitter to detect the identification method and age identification method of the topographic stratum, rock formation, soil, and exploration objects, including the following steps:
- ground penetrating radar 206 uses the ground penetrating radar 206 to implement the ground penetrating radar 206 detection of the underground target, and use the response characteristics of the small-scale targets of different materials and the soil structure and rock structure on the ground penetrating radar 206 image.
- the machine ground penetrating radar 206 publishes the target area of the survey object and the coordinates of the corresponding location area.
- the main system 201, the robotic arm 204, the excavation module 203, and the drilling module 213 subscribe to the coordinates of the target area and the corresponding location area to realize excavation, drilling, and sampling.
- the spectroscopic device 211 uses infrared to detect the infrared of terrain strata, rock formations, soil, and exploration objects, and the spectroscopic device dates and collects near-infrared diffuse reflectance spectral data.
- S6 Create a spectral dating model for spectral detection of terrain strata, rock strata, soil, and exploration objects, input near-infrared diffuse reflectance spectral data, and identify the spectral age of terrain strata, rock layers, soil, and exploration objects.
- the main system 201 of the machine is connected to the multi-sensor 209, and uses the multi-sensors carried by it to collect gas, wind speed, humidity, temperature, environmental detection, pH, chemical monitoring data analysis, perceive environmental information, and identify multi-geological information-environmental information-topography and landforms -The intelligent identification method of the associated age, including the following steps:
- the multi-sensor 209 publishes a corresponding data value message.
- the machine main system 201 subscribes to the multi-sensing data value message.
- the main machine system 201 uses machine learning clustering, classification method, data correlation multi-sensing data value information-topography, landform-correlation age judgment method, establishes a clustering method model, and a machine learning classification method model, for different scenarios. data analysis, correlating topographic and geological information.
- S5. Determine the age of the exploration object and the rock layer where it is located, and the information of the exploration object through the correlation method.
- the main machine system 201 uses the excavation device and the lighting device 203 mounted on it to process the excavation task, uses the robot arm 204 it carries to process the sampling task, and uses the air blowing device 210 and the brush device 212 it carries to process the task of cleaning the survey objects, Utilize the drilling device 213 carried by it to handle drilling tasks, excavation, drilling, and sampling methods, including the following steps:
- the operator uses the speech synthesis technology of the speech device 207 to record the speech, convert speech to text, and issue task instructions.
- the machine main system 201 When the machine main system 201 receives the excavation, drilling, and sampling tasks in a fixed time period, the machine uses the position information returned by the visual recognition module 103 .
- the machine main system 201 uses the radar moving device 208 and the radar to move autonomously, scene recognition, map building module 107, positioning, navigation, and autonomously move to the target position.
- the machine main system 201 sets the parameters remotely by the operator and trains the machine learning to plan the action and adaptively adjusts the setting intensity, depth, angle of the excavation device, angle of the machine claw, action planning parameters, using the excavation device, lighting
- the device 203 and the drilling device 213 are used for excavation and drilling, and the air blowing device 210 and the brush device 212 are used to blow air to clean the surface of the exploration object.
- the main machine system 201 uses the robot arm 204 to move and collect soil, rock samples, and exploration material samples.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Geochemistry & Mineralogy (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Manipulator (AREA)
Abstract
Description
Claims (11)
- 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种机器装置包括:机器主系统装置,所述机器主系统装置,用于连接并控制装置,其连接并控制的装置、模块包括:语音装置及语音模块,视觉装置及视觉识别模块,雷达导航移动模块,地理信息系统模块及卫星定位系统信息模块,红外光谱模块,多传感模块,考查挖掘动作规划模块,土壤岩层化石采集采集动作规划模块,远端控制装置及通信模块;视觉装置及视觉识别模块,机器主系统与视觉装置连接,用于采集并识别图像,包括:陆地,水下场景识别,地形地貌识别,土壤,岩层识别,化石识别,所述的图像特征是指:形状特征,纹理特征,土壤特征,岩石特征;语音装置及语音模块,机器主控制系统与语音装置连接,用于采集并识别声音,用户间管理员间的语音交互,语音命令,语音文字互转,语音合成,声纹识别;地理信息系统模块及卫星定位系统信息模块,机器主系统模块与卫星定位装置连接,用于定位,返回地理信息及位置信息;雷达、移动模块,包括:探地雷达,陆地用激光雷达,水下用激光雷达,移动底座;探地雷达用于地形,岩层,化石的检测,激光雷达用于自主移动,场景识别,建图,机器主系统模块与激光雷达,视觉装置连接,融合视觉地图,雷达自主移动导航,结合陆地,水下场景地形,陆地,水下地貌识别;激光雷达包括陆地用激光雷达,水下用激光雷达;移动底座与机器主系统,雷达连接,所述的移动底座,包括轮式底座及履带式底座;红外光谱模块,机器主系统模块与红外光谱模块连接,用于发射采集土壤岩层,化石的信息,识别地质层,化石曾及土壤层,用于矿物,古物探测,断代;多传感模块,机器主系统模块与多传感器连接,采集气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息;考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,机器主系统模块与考查挖掘装置连接,所述的考查挖掘装置,机器臂爪,可升降旋转,可伸缩折叠翻转结构,包括照明设备、挖掘铲、挖掘锄、钻探头、吹风设备、刷子,机器主系统模块与照明设备,钻探挖掘工具,机器臂爪连接,用于陆地,水下作业,包括:采集土壤、岩层、化石、勘查物以及挖掘、钻探、考查,采样作业;远端控制装置及通信模块,所述远端控制装置及通信模块,包含客户端装置,通信模块;通信模块是指卫星通信模块,有线通信模块及无线通信模块,用于客户端装置与机器主系统装置通信,远端指令,远端控制机器主系统装置作业。
- 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,雷达装置、探测地质信息模块、自主移动识别场景建图模块,所述的雷达装置,包括:探地雷达及陆地激光雷达,水下激光雷达;利用探地雷达,探测地形土壤、岩层信息,化石信息,地下勘查物信息,利用勘查物所在岩层、化石信息,识别判断年代,利用激光雷达,自主移动,识别场景建图模块是将激光雷达,视觉装置与机器主系统模块连接,激光雷达自主定位,导航,实时建图及视觉识别场景,场景包括:陆地及水下地形、地貌、场景与激光雷达实时建图融合,自主定位,导航,移动至要求对应位置。
- 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,地理信息系统模块及卫星定位系统信息模块,所述的地理信息系统信息模块及卫星定位系统信息模块,利用地理信息系统信息模块,卫星定位系统信息模块,卫星定位装置返回信息,用于地形考查,定位位置。
- 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,红外光谱模块,机器主系统模块与红外光谱模块连接,通过发射红外光,采集土壤、岩层、化石的信息,依据地质层及土壤层信息,智能识别判断勘查物年代、颜色信息,识别勘查物及周边土壤、岩层、化石及各时间代地质信息、环境信息、微生物信息、古生物植物信息、化石信息、化学信息。
- 根据权利要求2所述的雷达装置及根据权利要求4所述的红外光谱模块,一种水陆两用的勘探、考查装置,系统及方法,其特征在于,红外光谱发射器探测地形地层、岩层、化石、土壤、勘查物方法及智能识别方法,所述方法包括以下步骤:S1、利用探地雷达探测地下目标体,抽取不同材质的小尺度目标体及土层结构岩石结构在探地雷达图像上的响应特征;S2、依照地下点状、面状、线状的不同形状特征,不同的结构的目标体的探地雷达图像上的响应规律特征值,并将特征值转化为输入项,输入到智能识别模型,利用神经网络计算方法,找到勘查物目标及对应位置区域;S3、探地雷达发布勘查物目标区域及对应位置区坐标;S4、机器主系统,机器臂,挖掘模块,钻探模块订阅目标区域及对应位置区坐标,实现挖掘,钻探,采样;S5、利用光谱发射器探测地形地层、岩层、化石、土壤、勘查物的光谱信息,采集高光谱近红外漫反射光谱信息;S6、创建光谱探测地形地层、岩层、化石、土壤、勘查物的光谱智能识别模型,输入近红外漫反射光谱信息,识别地形层、地质层、化石层、土壤层,古物、勘查物的光谱年代、土壤岩层信息、矿物信息,地质信息,化石信息;S7、利用深度神经网络方法及权值优化器,得到输出值及古物,勘查物名称,光谱年代,勘查物出处识别结果;S8、返回古物、勘查物名称,光谱年代,出处及其位置信息,识别结果至主系统。
- 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,用于采集,挖掘,钻探,陆地作业,水下作业,是通过管理员用户调解设置参数及通过神经网络改进方法训练机器学习规划动作及远端及自适应调解设置动作规划参数,用于规划考查挖掘动作及土壤岩层化石采集动作,所述动作包括:采集、挖掘、钻探、吹风、扫、刷;所述设置参数包括:采集装置及动作参数、钻探装置及动作参数、挖掘装置及动作参数、机器臂爪装置参数及动作参数;所述的考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,用于采集,挖掘,钻探;考查挖掘工具,包括:照明装置,挖掘铲,挖掘锄,钻探头,吹风设备,刷子,机器人主系统模块与照明装置,机器臂爪连接,机器臂采集土壤,岩层,化石,勘查物。
- 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,机器主系统模块远端控制及自主挖掘,钻探,采样方法,包括以下步骤:S1、远端控制端及主控制系统发布任务指令信息,挖掘装置、照明装置、钻探装置、吹风装置、毛刷装置、机器臂订阅任务信息;S2、视觉识别模块发布图像信息,挖掘装置、钻探装置、照明装置、吹风装置、毛刷装置、机器臂订阅图像信息;S3、机器人主控制系统利用雷达及雷达自主移动、场景识别,建图模块、定位、导航,自主移动到目标位置;S4、机器人主控制系统及挖掘装置,照明装置、钻探装置、吹风装置、毛刷装置订阅目标位置信息,通过管理员远端控制,设置参数及通过神经网络改进方法训练机器学习规划动作及自适应调解设置各装置参数,机器臂爪参数,及其动作规划参数;S5、依据挖掘装置、照明装置、钻探装置、吹风装置、毛刷装置订阅任务信息,挖掘,钻探,用吹风装置,毛刷装置,吹风,清理勘查物表面;S6、依据机器臂订阅的任务信息,移动,抓取,采集,放置土壤、岩石样本、勘查物样本;S7、结束此时间段的任务。
- 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,视觉装置及视觉识别模块,机器主系统与视觉装置连接,用于采集并识别陆地,水下场景,地形,地貌图像;所述的场景包括:场景识别,地形地貌识别,土壤、岩层识别,化石识别,水下岩层识别,水下天然气及其他水下资源的特征物识别;所述的地形,地貌是指:化石形状特征,地形特征,纹理特征,土壤特征,岩石结构特征。
- 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种场景图片实时采集,地形,地貌,陆地,水下勘查物智能识别方法,所述方法包括以下步骤:S1、机器视觉装置发布陆地,水下各场景图片,地形,地貌信息,对应其位置区坐标;S2、依据各场景图片,地形,地貌信息,对应其位置区坐标,机器臂,主系统订阅外部位置及坐标,挖掘,钻探,采样;S3、远端控制端,主系统,机器臂依照订阅的采集区位置,依照机器臂图像,采集动作规划模块的动作,移动,发布采集的图像信息,机器主系统及视觉识别模块订阅图像信息;S4、针对场景识别模块发布各场景图片,场景下特征物,地形,地貌,特殊标记,陆地,水下资源的特征物信息抽取其特征,输入地形,地貌轮廓,特殊标记,陆地,水下资源对应特征物,利用深度神经网络方法及权值优化器,得到输出值及其分类识别结果;S5、依据输出结果,精准分类,识别场景图像,地形,地貌,水下岩层,水下天然气及其他水下资源,其识别结果关联场景图像,地形,地貌,位置信息,发布识别结果及对应的场景图像,地形,地貌,位置信息至机器主系统的管理员及用户远端控制端。
- 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种综合数据分析,识别,多地质信息,环境信息,地形地貌信息,陆地水下资源信息关联判断勘查物方法,所述方法包括以下步骤:S1、建立综合数据模型,包括:气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息的数据信息,定位位置信息,地形、岩层、化石信息,光谱采集信息,及陆地水下场景地形地貌,土壤,岩层,化石,生物,植物图像信息;S2、建立综合数据信息关联模型,利用机器学习改进分类,关联方法,将陆地水下资源及勘查物目标与定位位置信息,与多地质信息,环境信息,地形地貌信息,生物植物信息,化学检测信息,光谱采集信息,及陆地水下场景地形地貌,土壤、岩层、化石、生物、植物图像信息关联;S3、改进分类方法及机器学习关联方法,对不同场景下的关联数据综合分析,识别;S4、通过陆地勘查物,水下勘查物对应综合数据关联,分析计算勘查物及资源与其对应的位置信息,与地形、地貌、岩石层年代特征,与环境信息,与地形地貌信息,与生物植物信息,与化学检测信息,与光谱采集信息,与勘探资源关联的陆地水下场景、地形地貌、土壤岩层、化石、生物植物图像信息关联,计算数据之间的关联度;S5、按照关联度,识别陆地勘查物,水下勘查物。
- 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,勘探,考查任务管理最优化系统,所述的勘探,考查任务管理最优化系统包括一种勘探,考查用机器装置及任务管理最优化系统,所述勘探考查用机器装置为上述任一方案中勘探考查用机器装置,所述的任务管理最优化系统与机器主系统连接,建立勘探,考查任务管理最优化系统,应用最优化方法计算规划最优勘探,考查路径,最短时间完成机器装置导航,移动,勘探,考查各任务。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021326883A AU2021326883A1 (en) | 2020-08-18 | 2021-08-15 | Amphibious exploration and examination device, system and method |
CN202180051385.2A CN117083429A (zh) | 2020-08-18 | 2021-08-15 | 一种水陆两用的勘探、考查装置,系统及方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010836827.1 | 2020-08-18 | ||
CN202010836827.1A CN112083720A (zh) | 2020-08-18 | 2020-08-18 | 一种水陆两用的勘探,考查装置,系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022037507A1 true WO2022037507A1 (zh) | 2022-02-24 |
Family
ID=73729175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/112647 WO2022037507A1 (zh) | 2020-08-18 | 2021-08-15 | 一种水陆两用的勘探、考查装置,系统及方法 |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN112083720A (zh) |
AU (1) | AU2021326883A1 (zh) |
WO (1) | WO2022037507A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114640386A (zh) * | 2022-03-09 | 2022-06-17 | 中国人民解放军国防科技大学 | 一种基于北斗通信的气象机器人数据回传处理系统 |
CN114675005A (zh) * | 2022-03-25 | 2022-06-28 | 中煤浙江检测技术有限公司 | 一种地下水体检测方法及检测系统 |
CN115744926A (zh) * | 2022-11-14 | 2023-03-07 | 中国科学院大气物理研究所 | 人工生成闪电熔岩的系统 |
CN116824513A (zh) * | 2023-08-29 | 2023-09-29 | 北京建工环境修复股份有限公司 | 基于深度学习的钻探过程自动识别监管方法及系统 |
CN118035847A (zh) * | 2024-04-10 | 2024-05-14 | 山东司南地理信息有限公司 | 一种基于地质矿产勘查的数据提取方法及系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2021317383A1 (en) * | 2020-07-28 | 2023-04-06 | Sicong TAN | Underwater robot device and underwater regulation and control management optimization system and method |
CN112083720A (zh) * | 2020-08-18 | 2020-12-15 | 谈斯聪 | 一种水陆两用的勘探,考查装置,系统及方法 |
CN112966765A (zh) * | 2021-03-18 | 2021-06-15 | 四川虹美智能科技有限公司 | 业务信息处理方法、装置及计算机可读介质 |
CN113139529B (zh) * | 2021-06-21 | 2021-09-14 | 北京科技大学 | 线性文化遗产勘探方法、系统、存储介质和电子设备 |
CN113720394B (zh) * | 2021-09-08 | 2023-10-31 | 苏州融萃特种机器人有限公司 | 一种智能探测机器人及其搜查方法 |
CN114627454B (zh) * | 2022-03-18 | 2024-02-09 | 柳州柳工叉车有限公司 | 一种驾驶员举升意图感知方法、装置、设备及介质 |
CN118410315B (zh) * | 2024-07-02 | 2024-08-23 | 临沂大学 | 基于多维分析的化石信息数据处理系统及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718206A (en) * | 1971-01-18 | 1973-02-27 | Delta Exploration Co Inc | Amphibious seismic exploration vehicle and method |
CN103775072A (zh) * | 2014-01-16 | 2014-05-07 | 燕山大学 | 基于测井资料的煤岩类型确定方法 |
CN106194184A (zh) * | 2015-05-28 | 2016-12-07 | 联邦科学和工业研究组织 | 改进的开采机和方法 |
CN108107481A (zh) * | 2017-12-04 | 2018-06-01 | 中国石油天然气股份有限公司 | 铀矿勘探有利远景区的确定方法和装置 |
CN108674105A (zh) * | 2018-04-27 | 2018-10-19 | 中交第三航务工程勘察设计院有限公司 | 水陆两栖岩土工程勘察平台及使用方法 |
CN109490986A (zh) * | 2018-12-28 | 2019-03-19 | 西安长庆科技工程有限责任公司 | 一种远程控制式勘察装置及方法 |
CN109940620A (zh) * | 2019-04-15 | 2019-06-28 | 于傲泽 | 一种智能探索机器人及其控制方法 |
CN109975273A (zh) * | 2019-03-07 | 2019-07-05 | 四川大学 | 一种基于激光诱导击穿光谱的岩石分类方法 |
CN110622042A (zh) * | 2017-05-10 | 2019-12-27 | 日本电气株式会社 | 分析设备、地层断代设备、分析方法、地层断代方法和程序 |
CN211217836U (zh) * | 2019-12-20 | 2020-08-11 | 李飞帆 | 一种多功能考古发掘清理装置 |
CN112083720A (zh) * | 2020-08-18 | 2020-12-15 | 谈斯聪 | 一种水陆两用的勘探,考查装置,系统及方法 |
-
2020
- 2020-08-18 CN CN202010836827.1A patent/CN112083720A/zh active Pending
-
2021
- 2021-08-15 WO PCT/CN2021/112647 patent/WO2022037507A1/zh active Application Filing
- 2021-08-15 CN CN202180051385.2A patent/CN117083429A/zh active Pending
- 2021-08-15 AU AU2021326883A patent/AU2021326883A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718206A (en) * | 1971-01-18 | 1973-02-27 | Delta Exploration Co Inc | Amphibious seismic exploration vehicle and method |
CN103775072A (zh) * | 2014-01-16 | 2014-05-07 | 燕山大学 | 基于测井资料的煤岩类型确定方法 |
CN106194184A (zh) * | 2015-05-28 | 2016-12-07 | 联邦科学和工业研究组织 | 改进的开采机和方法 |
CN110622042A (zh) * | 2017-05-10 | 2019-12-27 | 日本电气株式会社 | 分析设备、地层断代设备、分析方法、地层断代方法和程序 |
CN108107481A (zh) * | 2017-12-04 | 2018-06-01 | 中国石油天然气股份有限公司 | 铀矿勘探有利远景区的确定方法和装置 |
CN108674105A (zh) * | 2018-04-27 | 2018-10-19 | 中交第三航务工程勘察设计院有限公司 | 水陆两栖岩土工程勘察平台及使用方法 |
CN109490986A (zh) * | 2018-12-28 | 2019-03-19 | 西安长庆科技工程有限责任公司 | 一种远程控制式勘察装置及方法 |
CN109975273A (zh) * | 2019-03-07 | 2019-07-05 | 四川大学 | 一种基于激光诱导击穿光谱的岩石分类方法 |
CN109940620A (zh) * | 2019-04-15 | 2019-06-28 | 于傲泽 | 一种智能探索机器人及其控制方法 |
CN211217836U (zh) * | 2019-12-20 | 2020-08-11 | 李飞帆 | 一种多功能考古发掘清理装置 |
CN112083720A (zh) * | 2020-08-18 | 2020-12-15 | 谈斯聪 | 一种水陆两用的勘探,考查装置,系统及方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114640386A (zh) * | 2022-03-09 | 2022-06-17 | 中国人民解放军国防科技大学 | 一种基于北斗通信的气象机器人数据回传处理系统 |
CN114675005A (zh) * | 2022-03-25 | 2022-06-28 | 中煤浙江检测技术有限公司 | 一种地下水体检测方法及检测系统 |
CN114675005B (zh) * | 2022-03-25 | 2024-04-05 | 中煤浙江检测技术有限公司 | 一种地下水体检测方法及检测系统 |
CN115744926A (zh) * | 2022-11-14 | 2023-03-07 | 中国科学院大气物理研究所 | 人工生成闪电熔岩的系统 |
CN115744926B (zh) * | 2022-11-14 | 2023-09-12 | 中国科学院大气物理研究所 | 人工生成闪电熔岩的系统 |
CN116824513A (zh) * | 2023-08-29 | 2023-09-29 | 北京建工环境修复股份有限公司 | 基于深度学习的钻探过程自动识别监管方法及系统 |
CN116824513B (zh) * | 2023-08-29 | 2024-03-08 | 北京建工环境修复股份有限公司 | 基于深度学习的钻探过程自动识别监管方法及系统 |
CN118035847A (zh) * | 2024-04-10 | 2024-05-14 | 山东司南地理信息有限公司 | 一种基于地质矿产勘查的数据提取方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
AU2021326883A1 (en) | 2023-05-04 |
CN112083720A (zh) | 2020-12-15 |
CN117083429A (zh) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022037507A1 (zh) | 一种水陆两用的勘探、考查装置,系统及方法 | |
WO2022021804A1 (zh) | 一种水下机器人装置.水下调控管理最优化系统及方法 | |
CN113189977B (zh) | 一种用于机器人的智能导航路径规划系统及方法 | |
CN112282787B (zh) | 一种隧道自动化维护多臂机器人及其控制方法 | |
CN108858122A (zh) | 一种温室植物病害巡检机器人及巡检方法 | |
CN111638523A (zh) | 一种水下机器人对失踪者的搜寻和定位系统及方法 | |
CN113495561B (zh) | 建设现场管理系统 | |
CN115299245B (zh) | 一种智能水果采摘机器人的控制方法及控制系统 | |
CN102368158A (zh) | 一种果园机械导航定位方法 | |
KR102298643B1 (ko) | 적외선 열화상 카메라와 수중드론을 이용한 수중표면 3차원 모델링 방법 | |
CN109032174B (zh) | 一种无人机作业航线规划方法以及作业执行方法 | |
CN109940620A (zh) | 一种智能探索机器人及其控制方法 | |
CN108469817A (zh) | 基于fpga和信息融合的无人船避障控制系统 | |
CN111896481A (zh) | 河湖水环境自动建模及水质参数自动识别系统及运行方法 | |
CN108564628A (zh) | 一种面向掘进机自动化的截割头视觉定位定向系统 | |
CN115793649B (zh) | 一种电缆沟自动巡检装置及巡检方法 | |
CN115354708A (zh) | 基于机器视觉的挖掘机铲斗自主挖掘识别控制系统及方法 | |
Zhu et al. | Design and implementation of a manipulator system for roadway crack sealing | |
Sharma et al. | Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture | |
Fong et al. | Human-robot site survey and sampling for space exploration | |
CN115933448A (zh) | 智能农机控制系统 | |
Melander et al. | Classifying soil stoniness based on the excavator boom vibration data in mounding operations | |
Seki et al. | Forest mapping and trunk parameter measurement on slope using a 3D-LIDAR | |
US20230400446A1 (en) | Portable Agricultural Robot for Continuous Apparent Soil Electrical Conductivity Measurements to Improve Irrigation Practices | |
Meena et al. | Autonomous underwater vehicle for rugosity and obstacle detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21857602 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180051385.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2021326883 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021326883 Country of ref document: AU Date of ref document: 20210815 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-07-2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21857602 Country of ref document: EP Kind code of ref document: A1 |