WO2022037507A1 - 一种水陆两用的勘探、考查装置,系统及方法 - Google Patents

一种水陆两用的勘探、考查装置,系统及方法 Download PDF

Info

Publication number
WO2022037507A1
WO2022037507A1 PCT/CN2021/112647 CN2021112647W WO2022037507A1 WO 2022037507 A1 WO2022037507 A1 WO 2022037507A1 CN 2021112647 W CN2021112647 W CN 2021112647W WO 2022037507 A1 WO2022037507 A1 WO 2022037507A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
module
exploration
machine
soil
Prior art date
Application number
PCT/CN2021/112647
Other languages
English (en)
French (fr)
Inventor
谈斯聪
于皓
于梦非
Original Assignee
谈斯聪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谈斯聪 filed Critical 谈斯聪
Priority to AU2021326883A priority Critical patent/AU2021326883A1/en
Priority to CN202180051385.2A priority patent/CN117083429A/zh
Publication of WO2022037507A1 publication Critical patent/WO2022037507A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Definitions

  • the invention belongs to the technical field of automation robots, and relates to robot technology, automation equipment, and artificial intelligence image recognition systems and methods.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the above-mentioned prior art, and to provide a kind of exploration and inspection machine device, which utilizes the remote control robot arm, excavation device, lighting device, and drilling device to complete exploration, inspection, sampling operations, etc.
  • Problems use the camera on the machine, multi-sensor acquisition device, GIS, GPS location information device, ground penetrating radar, infrared spectroscopy device, remote control robot arm to explore, inspect, sample, collect, analyze data, identify rock layers, and explore
  • the material and intelligent dating have solved the problems of human error, difficult collection, heavy manual work and heavy burden.
  • the inspection and excavation tool modules carried by the machine include lighting equipment, excavation shovels, excavation hoes, drill heads, blowing equipment, and brushes. Move, place, take and place exploration objects and samples, and solve problems such as high work pressure and heavy physical workload. Improve exploration, inspection, sampling flexibility, high efficiency.
  • the invention also provides a real-time collection of scene pictures, a method for intelligent identification of topography and landforms, a bottom-penetrating radar, a dating method for detecting topographic strata, rock strata, soil, and exploration objects by a bottom-penetrating radar; a multi-sensing gas, wind speed , Humidity, temperature, environmental detection, pH, chemical monitoring data analysis, identification, exploration objects and multi-geological information, and environmental information, and topography, associated age intelligent identification method.
  • a machine device includes:
  • Robot main system device the robot main system device is used to connect and control machine devices, and the devices and modules connected and controlled include: voice device and voice module, visual device and visual recognition module, radar navigation mobile module, GIS/ GPS Beidou positioning and position information module, infrared spectrum module, multi-sensing module, inspection and excavation action planning module, soil rock stratum fossil collection and collection action planning module, remote control module;
  • the main robot system is connected with the visual device, used to collect and recognize land, underwater scenes, terrain, landform images, the scenes include: scene recognition, terrain recognition, soil, rock formation recognition, fossils Identification, underwater rock formation identification, underwater natural gas and other underwater resource feature identification.
  • the topography and landform refers to: fossil shape features, topographic features, texture features, soil features, and rock structure features.
  • Voice device and voice module the main system of the machine is connected to the voice device, which is used for collecting and recognizing voice, voice interaction between users and administrators, voice commands, voice and text conversion, voice synthesis, voiceprint recognition;
  • GIS/GPS Beidou positioning, position information module, and the main system module of the machine are connected to the position information positioning device for returning position information.
  • GIS/GPS Beidou positioning information module includes a GIS device, a GPS Beidou positioning device, an information module, and the information returned by the GIS device and the GPS Beidou positioning device is used for terrain inspection and positioning.
  • Radar, mobile mapping module including: ground penetrating radar, land use lidar, underwater lidar.
  • Ground penetrating radar is used for terrain, rock formation, and fossil detection
  • lidar is used for autonomous movement, scene recognition, and mapping modules.
  • the main system module of the machine is connected with lidar and visual devices, integrating visual maps, radar autonomous movement, combined with land, underwater scene terrain, land, and underwater landform recognition.
  • Lidar includes terrestrial lidar and underwater lidar;
  • the radar device includes: ground penetrating radar and lidar; using ground penetrating radar to detect topographic soil, rock formation information, fossil information, and underground exploration object information , using the rock formation and fossil information of the exploration object to identify and judge the age.
  • the mapping module is to connect lidar and visual devices with the main system module of the machine. Lidar autonomously locates, navigates, builds maps in real time, and visually recognizes scenes. The scenes include: land and underwater terrain, Landform, scene and LiDAR real-time mapping integration, autonomous positioning, navigation, and moving to the required corresponding position.
  • the main system module of the machine is connected with the infrared spectrum module, which is used to transmit and collect information of soil rock layers and fossils, identify geological layers, fossils and soil layers, and be used for mineral and antiquities detection and dating; by emitting infrared light, collecting information Information of soil, rock layers and fossils, based on geological layer and soil layer information, intelligently identify and judge the age and color information of exploration objects, identify exploration objects and surrounding soil, rock layers, fossils and geological information, environmental information, microbial information, paleontology Plant information, fossil information, chemical information.
  • Multi-sensing module the main system module of the machine is connected with multiple sensors to collect gas, wind speed, humidity, temperature, pH, geological information, environmental detection information, biological detection information, and chemical detection information;
  • the inspection and excavation action planning module and the soil and rock formation fossil collection action planning module are connected with the inspection and excavation device.
  • the main system module of the machine is connected with lighting equipment, drilling and excavation tools, and robotic arm claws. It is used for land and underwater operations, including: collecting soil, rock formations, fossils, exploration objects, and excavation, drilling, and inspection operations.
  • Set parameters through administrator user mediation and training machine learning planning actions and remote and adaptive mediation through neural network improvement methods to set action planning parameters, which are used for planning and examining excavation actions and soil and rock formation fossil collection actions.
  • the actions include: collection, Dig, drill, blow, sweep, brush.
  • the setting parameters include: excavation device and its action parameters, drilling device and its action parameters, acquisition device and its action parameters, robot arm claw parameters and angles.
  • a remote control device and a communication module include a client device, a satellite communication module, a wired communication module and a wireless communication module, which are used for the communication between the client device and the main system device of the machine, and the remote control Machine main system installation operation, remote command.
  • rock drilling the rock drilling device is used for drilling terrestrial and underwater rocks, and collecting drilled rock samples, fossil samples, terrestrial, underwater resources, and exploration objects. Drill to target depth, rock layer.
  • a soil excavation module the soil excavation module is used for excavating soil, terrestrial underwater rocks, and terrestrial underwater exploration objects, and excavating soil and rock formations according to the target position and target size. Dig the target depth, and the target soil layer, dig the angle, and conduct the survey.
  • sample collection module plans the movement of the sampling device, excavation, and collection of soil samples.
  • the said sample and exploration object pick and place configuration management module can be remotely picked, placed, and managed effectively.
  • the exploration and inspection task management optimization system includes an exploration and inspection machine device and a task management optimization system, and the exploration and inspection machine device is the exploration in any of the above schemes.
  • the inspection machine device, the task management optimization system is connected with the main machine system, the exploration is established, the task management optimization system is inspected, the optimization method is applied to calculate and plan the optimal exploration, the inspection route is completed, and the navigation of the machine device is completed in the shortest time. , exploration, and examination of each task.
  • a real-time collection of scene pictures, and an intelligent identification method for terrain, landform, land, and underwater exploration objects includes the following steps:
  • the machine vision device publishes pictures of land and underwater scenes, terrain, and landform information, corresponding to the coordinates of its location area;
  • the main system subscribes to the external location and coordinates, excavation, drilling, sampling;
  • the remote control terminal, the main system, and the robotic arm according to the location of the subscribed collection area and the image of the robotic arm, collect the actions of the action planning module, move, and publish the collected image information, and the machine main system and the visual recognition module subscribe to the image information;
  • a ground penetrating radar a method for detecting terrain strata, rock formations, fossils, soil, and exploration objects and an intelligent identification method for a spectral infrared transmitter, the method comprising the following steps:
  • the eigenvalues are converted into input items and input to the intelligent recognition model.
  • the machine ground penetrating radar releases the coordinates of the target area of the survey object and the corresponding location area;
  • the main system of the machine, the robot arm, the excavation module, and the drilling module subscribe to the coordinates of the target area and the corresponding location area to realize excavation, drilling, and sampling;
  • S5. Use the spectral transmitter to detect the spectral information of the terrain strata, rock formations, fossils, soil, and exploration objects, and collect the hyperspectral near-infrared diffuse reflection spectral information;
  • S6 Create a spectral intelligent identification model for spectral detection of terrain strata, rock layers, fossils, soil, and exploration objects, input near-infrared diffuse reflectance spectral information, and identify the spectral age of topographic layers, geological layers, fossil layers, soil layers, antiquities, and exploration objects. , soil rock formation information, mineral information, geological information, fossil information;
  • a method for comprehensive data analysis, identification, multi-geological information, environmental information, topographic and landform information, and terrestrial and underwater resource information correlation judgment and exploration object method comprises the following steps:
  • a method for remote control and autonomous excavation, drilling and sampling of a machine main system comprising the following steps:
  • the main control system issues task instruction information.
  • Digging device, lighting device, drilling device, blowing device, brush device, robotic arm subscribe to task information.
  • the visual recognition module publishes image information. Digging device, lighting device, drilling device, blowing device, brush device, robotic arm subscribe to image information.
  • the main system of the machine uses radar and radar to move autonomously, scene recognition, mapping module, positioning, navigation, and autonomously move to the target position.
  • the main system of the machine and the excavation device, lighting device, drilling device, blowing device, and brush device subscribe to the target position information, through the remote control of the operator, setting parameters and training the machine learning planning action and adaptive adjustment through the neural network improvement method Set jaw strength, depth, digging device angle, machine jaw angle and its motion planning parameters.
  • the lighting device, the drilling device, the blowing device, and the brush device subscribe the task information, excavation, drilling, use the blower device, the brush device, and the blower to clean the surface of the exploration object.
  • the invention can solve the problem of remote control of the remote end of the machine and autonomous isolation of excavation, drilling, sample collection, autonomous positioning, movement and navigation by examining the exploration machine device. Realize remote isolated excavation, drilling, and collection. Improve exploration, examine problems such as high work pressure and many labor operations. At the same time, the data and images collected by the machine are obtained in real time, which greatly improves the work efficiency.
  • the present invention can be connected through the machine main system and the task management optimization system, remotely collect excavation, drilling, image and video management, remotely control the robotic arm, excavator, drilling equipment and adjust the parameters of the robotic arm, excavation and drilling equipment, including : Drilling, Digging Depth, Drilling, Digging Range, Robot Claw Angle. Real-time dynamic control of acquisition, drilling, excavation operations.
  • Fig. 1 is a schematic diagram of a machine device module for exploration and investigation in the description of the application
  • 101-Machine main system 101-Machine main system; 102-Acquisition action planning module; 103-Camera vision module; 104-Location information module; 105-Voice module; 106-Multi-sensor acquisition module; 107-Radar mobile navigation module; 108-Ground penetrating radar module ; 109 - excavation drilling action planning module; 110 - remote control device and communication module;
  • Fig. 2 is a schematic diagram of the composition structure of a machine device used in the exploration and inspection of the application description
  • 201-machine main system 202-vision device; 203-excavation device, lighting device; 204-small robotic arm; 205-positioning device; 206-ground penetrating radar; 207-voice device; 208-radar mobile device; 209-more Sensing; 210-Blowing Device; 211-Infrared Spectroscopy Device; 212-Brush Device; 213-Drilling Device; 214-Remote Client;
  • the purpose of the present invention is to design a remote control machine that can replace human work, realize scene recognition, terrain, landform recognition, underground radar detection, and identification of exploration objects.
  • remotely control the robotic arm for excavation, drilling, inspection, exploration, and collection, and at the same time effectively solve the problem of autonomously collecting samples, environmental data, mining, and drilling.
  • robotic arm motion planning in the field of automation, cameras to collect scene information, exploration, and inspection of images and videos.
  • the vision device mounted on the machine collects images
  • the robotic arm and excavation device, lighting device, brush device, blowing device, and drilling device equipped on the machine are used to realize remote control of the machine for exploration, inspection, and sampling.
  • the GPS, ground penetrating radar, and lidar carried by the machine can detect, inspect and sample underground objects.
  • the machine is equipped with multi-sensors to comprehensively perceive environmental information.
  • the machine is equipped with an infrared device to identify geological information and age information of rock formations.
  • the invention also provides a real-time collection of scene pictures, an intelligent identification method for topography, landform, land and underwater exploration objects; a ground penetrating radar, a dating method for the transmitter to detect terrain strata, rock formations, soil and exploration objects; a Comprehensive data calculation, analysis, identification of multi-geological information, environmental information, topographic information, land and underwater resource scene image information correlation judgment method of exploration objects; a remote control robot arm and autonomous sample collection, digging, drilling, blowing, cleaning method.
  • a machine device includes:
  • Machine main system 101 the machine main system 101 is used to realize the main control of the machine, the voice module 105 is connected to the machine main system 101 for remote voice commands, and the camera vision module 103 is used for scene, terrain, landform recognition.
  • the location information positioning module 106 is used to collect GPS and GIS location information.
  • the radar mapping positioning and navigation module 107 is used for autonomous mobile real-time mapping, the ground penetrating radar module 108 is used for detecting underground exploration objects; the robotic arm is equipped with an excavation and drilling action planning module 109, which is used for collecting samples, digging, drilling, blowing, blowing Brush and sweep.
  • Voice module 105 the voice module is used to collect scene sounds and voice commands.
  • the machine main system 101 interacts with the user and provides voice guidance, voice commands, and voice interaction.
  • the visual recognition module 103 includes scene recognition, terrain, and landform recognition. It is used to identify exploration scenes, objects, terrain, landforms, etc.
  • the multi-sensor acquisition module 106 is used for the acquisition of multi-sensor data such as gas, wind speed, humidity, temperature, environmental detection, pH, chemical monitoring, etc.
  • the multi-sensor is used for comprehensive perception of environmental information.
  • the radar moves autonomously and is used for scene recognition, and the scene of the mapping module 108 and the visual recognition module are integrated with the radar real-time mapping for autonomous positioning, navigation and movement.
  • the main system of the machine is connected with the radar and the camera.
  • the radar moves autonomously, combined with the scene terrain, and the landform recognition and mapping module is to connect the radar and the camera with the main system.
  • Ground penetrating radar module is used to detect terrain and formation information. Apply the underlying information to determine the age.
  • the transmitting module the main system of the machine is connected to the transmitting module, which is used to transmit and collect the information of soil and rock layers, and to date the geological layers and soil layers according to the big data platform.
  • the mining and drilling action planning module is used for acquisition and mining. It is used to set parameters through operator mediation and to train machine learning planning actions and remote and adaptive mediation through neural network improvement methods to set action planning parameters. It is used for action planning and mining. , drilling, blowing, cleaning.
  • the set action planning parameters include: digging, rig strength, digging depth, digging device angle, and machine claw angle.
  • the sampling action planning module is used for the robotic arm to collect soil, rock formations, and exploration objects.
  • an exploration task management system and an exploration the use method of the inspection machine device is as follows:
  • the machine main system 201 assigns corresponding tasks within the time period, controls the machine remotely, and uses the visual device 202 to recognize the dual scenes of underwater and land, and its topography and landforms.
  • the real-time collection of scene pictures, and the intelligent identification method of terrain and landform including the following steps:
  • the machine camera 202 publishes pictures, topography, and landform information of each scene, corresponding to the coordinates of its location area.
  • the main system subscribes to the external location and coordinates to realize excavation, drilling, and sampling.
  • the remote main control system 201 and the autonomous robotic arm 204 move according to the subscribed location of the acquisition area and the action of the robotic arm image acquisition action planning module.
  • the collected image information is published, and the machine main system 201 and the visual recognition module 202 subscribe to the image information.
  • the main system 201 of the machine uses the ground penetrating radar 206, the infrared device 211, the ground penetrating radar, and the transmitter to detect the identification method and age identification method of the topographic stratum, rock formation, soil, and exploration objects, including the following steps:
  • ground penetrating radar 206 uses the ground penetrating radar 206 to implement the ground penetrating radar 206 detection of the underground target, and use the response characteristics of the small-scale targets of different materials and the soil structure and rock structure on the ground penetrating radar 206 image.
  • the machine ground penetrating radar 206 publishes the target area of the survey object and the coordinates of the corresponding location area.
  • the main system 201, the robotic arm 204, the excavation module 203, and the drilling module 213 subscribe to the coordinates of the target area and the corresponding location area to realize excavation, drilling, and sampling.
  • the spectroscopic device 211 uses infrared to detect the infrared of terrain strata, rock formations, soil, and exploration objects, and the spectroscopic device dates and collects near-infrared diffuse reflectance spectral data.
  • S6 Create a spectral dating model for spectral detection of terrain strata, rock strata, soil, and exploration objects, input near-infrared diffuse reflectance spectral data, and identify the spectral age of terrain strata, rock layers, soil, and exploration objects.
  • the main system 201 of the machine is connected to the multi-sensor 209, and uses the multi-sensors carried by it to collect gas, wind speed, humidity, temperature, environmental detection, pH, chemical monitoring data analysis, perceive environmental information, and identify multi-geological information-environmental information-topography and landforms -The intelligent identification method of the associated age, including the following steps:
  • the multi-sensor 209 publishes a corresponding data value message.
  • the machine main system 201 subscribes to the multi-sensing data value message.
  • the main machine system 201 uses machine learning clustering, classification method, data correlation multi-sensing data value information-topography, landform-correlation age judgment method, establishes a clustering method model, and a machine learning classification method model, for different scenarios. data analysis, correlating topographic and geological information.
  • S5. Determine the age of the exploration object and the rock layer where it is located, and the information of the exploration object through the correlation method.
  • the main machine system 201 uses the excavation device and the lighting device 203 mounted on it to process the excavation task, uses the robot arm 204 it carries to process the sampling task, and uses the air blowing device 210 and the brush device 212 it carries to process the task of cleaning the survey objects, Utilize the drilling device 213 carried by it to handle drilling tasks, excavation, drilling, and sampling methods, including the following steps:
  • the operator uses the speech synthesis technology of the speech device 207 to record the speech, convert speech to text, and issue task instructions.
  • the machine main system 201 When the machine main system 201 receives the excavation, drilling, and sampling tasks in a fixed time period, the machine uses the position information returned by the visual recognition module 103 .
  • the machine main system 201 uses the radar moving device 208 and the radar to move autonomously, scene recognition, map building module 107, positioning, navigation, and autonomously move to the target position.
  • the machine main system 201 sets the parameters remotely by the operator and trains the machine learning to plan the action and adaptively adjusts the setting intensity, depth, angle of the excavation device, angle of the machine claw, action planning parameters, using the excavation device, lighting
  • the device 203 and the drilling device 213 are used for excavation and drilling, and the air blowing device 210 and the brush device 212 are used to blow air to clean the surface of the exploration object.
  • the main machine system 201 uses the robot arm 204 to move and collect soil, rock samples, and exploration material samples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

水陆两用的勘探、考查装置,系统及方法。水陆两用的勘探、考查装置,利用机器搭载的摄像头、GIS、GPS、雷达模块、红外光谱模块、多传感器模块及机械臂,完成陆地、水下的远端及自主勘探、考查、取样作业,实现陆地、水下场景的智能识别、地形地貌识别、土壤岩层识别、环境的综合信息识别、勘察物的断代。水陆两用的勘探、考查系统包括水陆两用的勘探、考查装置以及任务管理最优化系统。

Description

一种水陆两用的勘探、考查装置,系统及方法 技术领域
本发明属于自动化机器人技术领域,涉及机器人技术,自动化设备,人工智能图像识别系统及方法。
背景技术
考查勘探的过程,由于受到各种人为因素的制约,环境信息,地质信息因为各种影响采集数据不准确。地质勘探,考查环境恶劣,勘探考查在复杂的地形,地貌很难实现。作业员远端控制采集气体、风速、湿度、温度、环境检测、酸碱度、化学监测数据、勘探,考查机器人装置。机器平台涉及机器人理论,智能识别,智能分析,光谱识别断代,GIS,GPS定位导航技术。因作业,考查,采集难,岩石层,土壤,地下勘探物识别困难,效率低下,人工采集不精准,风速、湿度、温度、环境检测酸碱度、化学物质等环境综合信息会严重影响地质勘探,考查的结果,勘探考查作业,分析时间长等问题严重,利用机器臂远端控制及自主钻探,挖掘,采集数据,考查地下勘查物。
利用机器的机器臂及摄像头,机器视觉及各种场景智能识别,物体识别,场景识别,地形地貌识别,土壤岩层识别。所述的特征是指:形状特征,纹理特征,土壤特征,岩石特征辅助识别,实现远端,自主,勘探,考查,取样作业,智能化分析数据,高效率,远端控制,自主完成勘探,考查,取样作业,精准采集数据。 
技术问题
本发明的目的就在于克服上述现有技术的缺点和不足,提供一种勘探,考查用机器装置,利用远端控制机器臂、挖掘装置、照明装置、钻探装置,完成勘探,考查,取样作业等问题,利用机器搭载的摄像头、多传感器采集装置、GIS、GPS定位位置信息装置、探地雷达、红外光谱装置、远端控制机器臂勘探,考查,取样,采集,分析数据,识别岩石层,勘查物并智能断代,解决了人为失误,采集难,体力作业量大,负担重等问题。
通过机器搭载的考查挖掘工具模块包括照明设备、挖掘铲、挖掘锄、钻探头、吹风设备、刷子,实现机器远端控制挖掘、钻探、吹风、勘查物刷子,机器臂抓取勘查物、样本,移动,放置,取放勘查物,样本,解决人员作业压力大,体力作业量多等问题。提高勘探,考查,取样灵活性,高效率。本发明还提供了一种场景图片实时采集,地形,地貌智能识别方法方法,一种探底雷达,发射器探测地形地层,岩层,土壤,勘查物的断代方法;一种多传感气体、风速、湿度、温度、环境检测、酸碱度、化学监测数据分析,识别,勘探物与多地质信息、与环境信息、与地形地貌、关联年代智能识别方法。
技术解决方案
一种机器装置包括:
机器人主系统装置,所述机器人主系统装置,用于连接并控制机器装置,其连接并控制的装置、模块包括:语音装置及语音模块,视觉装置及视觉识别模块,雷达导航移动模块,GIS/GPS北斗定位位置信息模块,红外光谱模块,多传感模块,考查挖掘动作规划模块,土壤岩层化石采集采集动作规划模块,远端控制模块;
视觉装置及视觉识别模块,机器人主系统与视觉装置连接,用于采集并识别陆地,水下场景,地形,地貌图像,所述的场景包括:场景识别,地形地貌识别,土壤、岩层识别,化石识别,水下岩层识别,水下天然气及其他水下资源的特征物识别。所述的地形,地貌是指:化石形状特征,地形特征,纹理特征,土壤特征,岩石结构特征。
语音装置及语音模块,机器主系统与语音装置连接,用于采集并识别声音,用户间管理员间的语音交互,语音命令,语音文字互转,语音合成,声纹识别;
GIS/GPS北斗定位,位置信息模块,机器主系统模块与位置信息定位装置连接,用于返回位置信息。GIS/GPS北斗定位信息模块,所述的GIS/GPS北斗定位模块,包括GIS装置,GPS北斗定位装置,信息模块,利用GIS装置,GPS北斗定位装置返回信息,用于地形考查,定位位置。
雷达、移动建图模块,包括:探地雷达,陆地用激光雷达,水下用激光雷达。探地雷达用于地形,岩层,化石的检测,激光雷达用于自主移动,场景识别,建图模块。机器主系统模块与激光雷达,视觉装置连接,融合视觉地图,雷达自主移动,结合陆地,水下场景地形,陆地,水下地貌识别。激光雷达包括陆地用激光雷达,水下用激光雷达;
雷达装置、探测地质信息模块、自主移动识别场景建图模块,所述的雷达装置,包括:探地雷达及激光雷达;利用探地雷达,探测地形土壤、岩层信息,化石信息,地下勘查物信息,利用勘查物所在岩层、化石信息,识别判断年代。利用激光雷达,自主移动,识别场景建图模块是将激光雷达,视觉装置与机器主系统模块连接,激光雷达自主定位,导航,实时建图及视觉识别场景,场景包括:陆地及水下地形、地貌、场景与激光雷达实时建图融合,自主定位,导航,移动至要求对应位置。
红外光谱模块,机器主系统模块与红外光谱模块连接,用于发射采集土壤岩层,化石的信息,识别地质层,化石曾及土壤层,用于矿物,古物探测,断代;通过发射红外光,采集土壤、岩层、化石的信息,依据地质层及土壤层信息,智能识别判断勘查物年代、颜色信息,识别勘查物及周边土壤、岩层、化石及各时间代地质信息、环境信息、微生物信息、古生物植物信息、化石信息、化学信息。
多传感模块,机器主系统模块与多传感器连接,采集气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息;
考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,机器主系统模块与考查挖掘装置连接,所述的考查挖掘装置包括照明设备、挖掘铲、挖掘锄、钻探头、吹风设备、刷子。机器主系统模块与照明设备,钻探挖掘工具,机器臂爪连接,用于陆地,水下作业,包括:采集土壤、岩层、化石、勘查物以及挖掘、钻探、考查作业。通过管理员用户调解设置参数及通过神经网络改进方法训练机器学习规划动作及远端及自适应调解设置动作规划参数,用于规划考查挖掘动作及土壤岩层化石采集动作,所述动作包括:采集、挖掘、钻探、吹风、扫、刷。所述设置参数包括:挖掘装置及其动作参数、钻探装置及其动作参数、采集装置及其动作参数、机器臂爪参数及角度。
远端控制装置及通信模块,所述远端控制装置及通信模块,包含客户端装置,卫星通信模块,有线通信模块及无线通信模块,用于客户端装置与机器主系统装置通信,远端控制机器主系统装置作业,远端指令。
进一步,岩石钻探,所述岩石钻探装置,用于钻探陆地,水下岩石,采集钻探的岩石样本,化石样本,陆地,水下资源,勘探物。钻探至目标深度,岩石层。
进一步,土壤挖掘模块,所述土壤挖掘模块,用于挖掘土壤,陆地水下岩石,陆地水下勘查物,按照目标位置,目标尺寸挖掘土壤,岩层。挖掘目标深度,及目标土壤层,挖掘角度,进行勘查。
进一步,样本采集模块,所述样本采集动作规划模块,规划采样装置移动,挖掘,采集土壤样本。
作为本发明的又一步改进,所述的样本,勘查物取放配置管理模块,远端拾取,放置,有效管理。
勘探,考查任务管理最优化系统,所述的勘探,考查任务管理最优化系统包括一种勘探,考查用机器装置及任务管理最优化系统,所述勘探考查用机器装置为上述任一方案中勘探考查用机器装置,所述的任务管理最优化系统与机器主系统连接,建立勘探,考查任务管理最优化系统,应用最优化方法计算规划最优勘探,考查路径,最短时间完成机器装置导航,移动,勘探,考查各任务。
一种场景图片实时采集,地形,地貌,陆地,水下勘查物智能识别方法,所述方法包括以下步骤:
S1、机器视觉装置发布陆地,水下各场景图片,地形,地貌信息,对应其位置区坐标;
S2、依据各场景图片,地形,地貌信息,对应其位置区坐标,机器机器臂,主系统订阅外部位置及坐标,挖掘,钻探,采样;
S3、远端控制端,主系统,机器臂依照订阅的采集区位置,依照机器臂图像,采集动作规划模块的动作,移动,发布采集的图像信息,机器主系统及视觉识别模块订阅图像信息;
S4、针对场景识别模块发布各场景图片,场景下特征物,地形,地貌,特殊标记,陆地,水下资源的特征物信息抽取其特征,输入地形,地貌轮廓,特殊标记,陆地,水下资源对应特征物,利用深度神经网络方法及权值优化器,得到输出值及其分类识别结果;
S5、依据输出结果,精准分类,识别场景图像,地形,地貌,水下岩层,水下天然气及其他水下资源,其识别结果关联场景图像,地形,地貌,位置信息,发布识别结果及对应的场景图像,地形,地貌,位置信息至机器主系统的管理员及用户远端控制端。
一种探地雷达,光谱红外发射器探测地形地层、岩层、化石、土壤、勘查物方法及智能识别方法,所述方法包括以下步骤:
S1、利用探地雷达探测地下目标体,抽取不同材质的小尺度目标体及土层结构岩石结构在探地雷达图像上的响应特征;
S2、依照地下点状、面状、线状的不同形状特征,不同的结构的目标体的探地雷达图像上的响应规律特征值,并将特征值转化为输入项,输入到智能识别模型,利用神经网络计算方法,找到勘查物目标及对应位置区域;
S3、机器探地雷达发布勘查物目标区域及对应位置区坐标;
S4、机器主系统,机器臂,挖掘模块,钻探模块订阅目标区域及对应位置区坐标,实现挖掘,钻探,采样;
S5、利用光谱发射器探测地形地层、岩层、化石、土壤、勘查物的光谱信息,采集高光谱近红外漫反射光谱信息;
S6、创建光谱探测地形地层、岩层、化石、土壤、勘查物的光谱智能识别模型,输入近红外漫反射光谱信息,识别地形层、地质层、化石层、土壤层,古物、勘查物的光谱年代、土壤岩层信息、矿物信息,地质信息,化石信息;
S7、利用深度神经网络方法及权值优化器,得到输出值及古物,勘查物名称,光谱年代,勘查物出处识别结果;
S8、返回古物、勘查物名称,光谱年代,出处及其位置信息,识别结果至主系统。
一种综合数据分析,识别,多地质信息,环境信息,地形地貌信息,陆地水下资源信息关联判断勘查物方法,所述方法包括以下步骤:
S1、建立综合数据模型,包括:气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息的数据信息,GIS/GPS北斗定位位置信息,地形、岩层、化石信息,光谱采集信息,及陆地水下场景地形地貌,土壤,岩层,化石,生物,植物图像信息;
S2、建立综合数据信息关联模型,利用机器学习改进分类,关联方法,将陆地水下资源及勘查物目标与GIS/GPS北斗定位位置信息,与多地质信息,环境信息,地形地貌信息,生物植物信息,化学检测信息,光谱采集信息,及陆地水下场景地形地貌,土壤、岩层、化石、生物、植物图像信息关联;
S3、改进分类方法及机器学习关联方法,对不同场景下的关联数据综合分析,识别;
S4、通过陆地勘查物,水下勘查物对应综合数据关联,分析计算勘查物及资源与其对应的位置信息,与地形、地貌、岩石层年代特征,与环境信息,与地形地貌信息,与生物植物信息,与化学检测信息,与光谱采集信息,与勘探资源关联的陆地水下场景、地形地貌、土壤岩层、化石、生物植物图像信息关联,计算数据之间的关联度;
S5、按照关联度,识别陆地勘查物,水下勘查物。
一种机器主系统远端控制及自主挖掘,钻探,采样方法,包括以下步骤:
S1、主控制系统发布任务指令信息。挖掘装置,照明装置,钻探装置,吹风装置,毛刷装置,机器臂订阅任务信息。
S2、视觉识别模块发布图像信息。挖掘装置,照明装置,钻探装置,吹风装置,毛刷装置,机器臂订阅图像信息。
S3、机器主系统利用雷达及雷达自主移动,场景识别,建图模块,定位,导航,自主移动到目标位置。
S4、机器主系统及挖掘装置,照明装置,钻探装置,吹风装置,毛刷装置订阅目标位置信息,通过作业员远端控制,设置参数及通过神经网络改进方法训练机器学习规划动作及自适应调解设置爪的强度,深度,挖掘装置角度,机器爪角度及其动作规划参数。
S5、依据挖掘装置,照明装置,钻探装置,吹风装置,毛刷装置订阅任务信息,挖掘,钻探,用吹风装置,毛刷装置,吹风,清理勘查物表面。
S6、依据机器臂订阅的任务信息,移动,抓取,采集,放置,土壤,岩石样本,勘查物样本。
S7、结束此时间段的任务。
有益效果
本发明能够通过考查勘探用机器装置,解决远端控制机器远端及自主隔离挖掘,钻探,采集样本,自主定位,移动,导航。实现远端隔离挖掘,钻探,采集。改善勘探,考查工作压力大,劳动作业多等问题。同时,实时获取机器采集的数据及图像,大幅度提高工作效率。本发明能够通过机器主系统及任务管理最优化系统连接,远端采集挖掘,钻探,图像视频管理,远端控制机器臂,挖掘机,钻探设备及调整机器臂,挖掘,钻探设备的参数,包括:钻探,挖掘深度,钻探,挖掘范围,机器爪的角度。实时动态控制采集,钻探,挖掘作业。
附图说明
图1是本申请说明书中勘探,考查用机器装置模块示意图;
附图1标记:
101-机器主系统;102-采集动作规划模块;103-摄像头视觉模块;104 -位置信息模块;105-语音模块;106-多传感器采集模块;107-雷达移动导航模块;108-探地雷达模块;109-挖掘钻探动作规划模块;110-远端控制装置及通信模块;
图2是本申请说明书勘探,考查中用机器装置组成结构示意图;
附图2标记:
201-机器主系统;202-视觉装置;203-挖掘装置,照明装置;204-小型机器臂;205-定位装置;206-探地雷达;207-语音装置;208-雷达移动装置;209-多传感;210-吹风装置;211-红外光谱装置;212-毛刷装置;213-钻探装置;214-远端客户端;
本发明的实施方式
本发明的目的是设计取代人类工作的可远端控制机器,实现场景识别,地形,地貌识别,地下雷达探测,识别勘查物。利用多传感感知环境信息,远端控制机器臂挖掘,钻探,考查,勘探,采集,同时有效解决自主采集样本,环境数据,挖掘,钻探。利用人工智能机器人技术,自动化领域的机器臂动作规划,摄像头采集场景信息,勘探,考查图像,视频。
有效提高智能采集的精准度和数据异常识别的准确度,提升勘探,挖掘作业的效率,减轻人力作业强度,为了更好的理解上述技术方案,下面结合实施例及附图,对本发明作进一步地的详细说明,但本发明的实施方式不限于此。
本申请实施中的技术方案为解决上述技术问题的总体思路:
通过机器的主系统,机器搭载的视觉装置采集图像,通过机器搭载的机器臂及挖掘装置,照明装置,毛刷装置,吹风装置,钻探装置实现机器远端控制勘探,考查,采样。机器搭载的GPS,探地雷达,激光雷达实现地下物探测,考查,采样。机器搭载多传感器综合感知环境信息。机器搭载红外装置识别岩层地质信息,年代信息。本发明还提供了一种场景图片实时采集,地形,地貌,陆地,水下勘查物智能识别方法; 一种探地雷达,发射器探测地形地层,岩层,土壤,勘查物的断代方法;一种综合数据计算,分析,识别多地质信息,环境信息,地形地貌信息,陆地水下资源场景图像信息关联判断勘查物方法;一种远端控制机器臂及自主采集样本,挖掘,钻探,吹风,清理方法。
实施例 1
如图1所示,一种机器装置包括:
机器主系统101,所述机器主系统101用于实现机器的主控制,语音模块105和机器主系统101连接,用于远端语音命令,摄像头视觉模块103,用于场景,地形,地貌识别。位置信息定位模块106,用于采集GPS,GIS位置信息。雷达建图定位导航模块107用于自主移动实时建图,探地雷达模块108,用于探测地下勘查物;机器臂搭载挖掘钻探动作规划模块109,用于采集样本,挖掘,钻探,吹风,毛刷扫除。
语音模块105,所述语音模块用于采集场景声音,语音指令。机器主系统101与用户间交互和语音引导,语音命令,语音交互。
摄像头及视觉模块103,所述视觉识别模块103中场景识别。所述视觉识别模块103中场景识别,地形,地貌识别。用于对勘探场景,物体,地形,地貌等识别。
多传感器采集模块106,用于气体,风速,湿度,温度,环境检测,酸碱度,化学监测等多传感数据的采集,多传感用于环境信息的综合感知。
雷达自主移动,用于场景识别,建图模块108与所述的视觉识别模块的场景与雷达实时建图融合,用于自主定位,导航,移动。机器主系统与雷达,摄像头连接,所述雷达自主移动,结合场景地形,地貌识别建图模块是将雷达,摄像头与主系统连接。
探地雷达模块,用于探测地形,地层信息。应用底层信息,判断年代。
发射模块,机器主系统与发射模块连接,用于发射采集土壤岩层的信息,依据大数据平台对地质层及土壤层断代。
挖掘钻探动作规划模块,用于采集,挖掘模块,是通过作业员调解设置参数及通过神经网络改进方法训练机器学习规划动作及远端及自适应调解设置动作规划参数,用于动作规划,实现挖掘,钻探,吹风,清理。所述设置动作规划参数包括:挖掘,钻塔强度,挖掘深度,挖掘装置角度,机器爪角度。
采样动作规划模块,用于机器臂采集土壤,岩层,勘查物。
如图2所示,一种勘探任务管理系统及一种勘探,考查用机器装置使用方法如下:
利用任务管理系统,机器主系统201,分配时间段内对应的任务,远端控制机器,利用视觉装置202,识别水下,陆地的双场景,及其地形,地貌。场景图片实时采集,地形,地貌智能识别方法,包括以下步骤:
S1、机器摄像头202发布各场景图片,地形,地貌信息,对应其位置区坐标。
S2、依据各场景图片,地形,地貌信息,对应其位置区坐标,机器机器臂204,主系统订阅外部位置及坐标实现挖掘,钻探,采样。
S3、远端主控制系统201及自主机器臂204依照订阅的采集区位置,依照机器臂图像采集动作规划模块的动作,移动。发布采集的图像信息,机器主系统201及视觉识别模块202订阅图像信息。
S4、针对场景识别模块发布各特定场景图片,场景下特征物,地形,地貌,特殊标记信息抽取其特征,输入地形,地貌轮廓,特殊标记,特征物,利用深度神经网络方法及权值优化器,得到输出值及其分类识别结果。
S5、依据输出结果,精准分类,识别场景图像,地形,地貌,识别结果关联场景图像,地形,地貌。发布识别结果及场景图像,地形,地貌,信息至机器主系统201的作业员及用户。
机器主系统201,利用其搭载的探地雷达206,红外装置211,探地雷达,发射器探测地形地层,岩层,土壤,勘查物的识别方法及年代识别方法,包括以下步骤:
S1、利用探地雷达206实施地下目标体探地雷达206探测,利用不同材质的小尺度目标体及土层结构岩石结构在探地雷达206图像上的响应特征。
S2、依照地下点状,面状,线状的不同形状,不同的结构的目标体的探地雷达图像上的响应规律特征值并输入到模型,找到勘查物目标区域。
S3、机器探地雷达206发布勘查物目标区域及对应位置区坐标。
S4、主系统201,机器臂204,挖掘模块203,钻探模块213订阅目标区域及对应位置区坐标,实现挖掘,钻探,采样。
S5、利用红外,光谱装置211探测地形地层,岩层,土壤,勘查物的红外,光谱装置断代,采集近红外漫反射光谱数据。
S6、创建光谱探测地形地层,岩层,土壤,勘查物的光谱断代模型,输入近红外漫反射光谱数据,识别地形地层,岩层,土壤,勘查物的光谱年代。
S7、利用深度神经网络方法及权值优化器,得到输出值及勘查物的光谱年代,勘查物出处,识别结果。
S8、返回勘查物的光谱年代,勘查物出处,识别结果至主系统。
机器主系统201连接多传感器209,利用其搭载的多传感器,采集气体,风速,湿度,温度,环境检测,酸碱度,化学监测数据分析,感知环境信息,以及识别多地质信息-环境信息-地形地貌-关联年代智能识别方法,包括以下步骤: 
S1、建立多传感209的环境模型,包括:气体,风速,湿度,温度,环境检测,酸碱度,化学监测等数据模型。
S2、多传感器209发布对应的数据值消息。
S3、机器主系统201订阅多传感的数据值消息。
S4、机器主系统201利用机器学习聚类,分类方法,数据关联多传感的数据值信息-地形,地貌-关联年代判断方法,建立聚类方法模型,机器学习分类方法模型,对不同场景下的数据分析,关联地形地貌及地质信息。
S5、通过关联方法判定勘查物及其所在的岩石层年代,勘查物信息。
机器主系统201,利用其搭载的挖掘装置,照明装置203,处理挖掘任务,利用其搭载的机器臂204,处理采样任务,利用其搭载的吹风装置210,毛刷装置212处理清理勘查物任务,利用其搭载的钻探装置213处理钻探任务,挖掘,钻探,采样方法,包括以下步骤:
S1、作业员利用语音装置207语音合成技术,语音记录,语音转文字,发布任务指令。
S2、机器主系统201在固定时间段接收到挖掘,钻探,采样任务时,机器利用视觉识别模块103返回的位置信息。
S3、机器主系统201利用雷达移动装置208及雷达自主移动,场景识别,建图模块107,定位,导航,自主移动到目标位置。
S4、机器主系统201通过作业员远端设置参数及通过神经网络改进方法训练机器学习规划动作及自适应调解设置强度,深度,挖掘装置角度,机器爪角度,动作规划参数,利用挖掘装置,照明装置203,钻探装置213,进行挖掘,钻探,用吹风装置210,毛刷装置212,吹风,清理勘查物表面。
S5、机器主系统201利用机器臂204,移动,采集土壤,岩石样本,勘查物样本。
S6、结束此时间段的任务。

Claims (11)

  1. 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种机器装置包括:
    机器主系统装置,所述机器主系统装置,用于连接并控制装置,其连接并控制的装置、模块包括:语音装置及语音模块,视觉装置及视觉识别模块,雷达导航移动模块,地理信息系统模块及卫星定位系统信息模块,红外光谱模块,多传感模块,考查挖掘动作规划模块,土壤岩层化石采集采集动作规划模块,远端控制装置及通信模块;
    视觉装置及视觉识别模块,机器主系统与视觉装置连接,用于采集并识别图像,包括:陆地,水下场景识别,地形地貌识别,土壤,岩层识别,化石识别,所述的图像特征是指:形状特征,纹理特征,土壤特征,岩石特征;
    语音装置及语音模块,机器主控制系统与语音装置连接,用于采集并识别声音,用户间管理员间的语音交互,语音命令,语音文字互转,语音合成,声纹识别;
    地理信息系统模块及卫星定位系统信息模块,机器主系统模块与卫星定位装置连接,用于定位,返回地理信息及位置信息;
    雷达、移动模块,包括:探地雷达,陆地用激光雷达,水下用激光雷达,移动底座;探地雷达用于地形,岩层,化石的检测,激光雷达用于自主移动,场景识别,建图,机器主系统模块与激光雷达,视觉装置连接,融合视觉地图,雷达自主移动导航,结合陆地,水下场景地形,陆地,水下地貌识别;激光雷达包括陆地用激光雷达,水下用激光雷达;移动底座与机器主系统,雷达连接,所述的移动底座,包括轮式底座及履带式底座;
    红外光谱模块,机器主系统模块与红外光谱模块连接,用于发射采集土壤岩层,化石的信息,识别地质层,化石曾及土壤层,用于矿物,古物探测,断代;
    多传感模块,机器主系统模块与多传感器连接,采集气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息;
    考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,机器主系统模块与考查挖掘装置连接,所述的考查挖掘装置,机器臂爪,可升降旋转,可伸缩折叠翻转结构,包括照明设备、挖掘铲、挖掘锄、钻探头、吹风设备、刷子,机器主系统模块与照明设备,钻探挖掘工具,机器臂爪连接,用于陆地,水下作业,包括:采集土壤、岩层、化石、勘查物以及挖掘、钻探、考查,采样作业;
    远端控制装置及通信模块,所述远端控制装置及通信模块,包含客户端装置,通信模块;通信模块是指卫星通信模块,有线通信模块及无线通信模块,用于客户端装置与机器主系统装置通信,远端指令,远端控制机器主系统装置作业。
  2. 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,雷达装置、探测地质信息模块、自主移动识别场景建图模块,所述的雷达装置,包括:探地雷达及陆地激光雷达,水下激光雷达;利用探地雷达,探测地形土壤、岩层信息,化石信息,地下勘查物信息,利用勘查物所在岩层、化石信息,识别判断年代,利用激光雷达,自主移动,识别场景建图模块是将激光雷达,视觉装置与机器主系统模块连接,激光雷达自主定位,导航,实时建图及视觉识别场景,场景包括:陆地及水下地形、地貌、场景与激光雷达实时建图融合,自主定位,导航,移动至要求对应位置。
  3. 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,地理信息系统模块及卫星定位系统信息模块,所述的地理信息系统信息模块及卫星定位系统信息模块,利用地理信息系统信息模块,卫星定位系统信息模块,卫星定位装置返回信息,用于地形考查,定位位置。
  4. 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,红外光谱模块,机器主系统模块与红外光谱模块连接,通过发射红外光,采集土壤、岩层、化石的信息,依据地质层及土壤层信息,智能识别判断勘查物年代、颜色信息,识别勘查物及周边土壤、岩层、化石及各时间代地质信息、环境信息、微生物信息、古生物植物信息、化石信息、化学信息。
  5. 根据权利要求2所述的雷达装置及根据权利要求4所述的红外光谱模块,一种水陆两用的勘探、考查装置,系统及方法,其特征在于,红外光谱发射器探测地形地层、岩层、化石、土壤、勘查物方法及智能识别方法,所述方法包括以下步骤:
    S1、利用探地雷达探测地下目标体,抽取不同材质的小尺度目标体及土层结构岩石结构在探地雷达图像上的响应特征;
    S2、依照地下点状、面状、线状的不同形状特征,不同的结构的目标体的探地雷达图像上的响应规律特征值,并将特征值转化为输入项,输入到智能识别模型,利用神经网络计算方法,找到勘查物目标及对应位置区域;
    S3、探地雷达发布勘查物目标区域及对应位置区坐标;
    S4、机器主系统,机器臂,挖掘模块,钻探模块订阅目标区域及对应位置区坐标,实现挖掘,钻探,采样;
    S5、利用光谱发射器探测地形地层、岩层、化石、土壤、勘查物的光谱信息,采集高光谱近红外漫反射光谱信息;
    S6、创建光谱探测地形地层、岩层、化石、土壤、勘查物的光谱智能识别模型,输入近红外漫反射光谱信息,识别地形层、地质层、化石层、土壤层,古物、勘查物的光谱年代、土壤岩层信息、矿物信息,地质信息,化石信息;
    S7、利用深度神经网络方法及权值优化器,得到输出值及古物,勘查物名称,光谱年代,勘查物出处识别结果;
    S8、返回古物、勘查物名称,光谱年代,出处及其位置信息,识别结果至主系统。
  6. 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,用于采集,挖掘,钻探,陆地作业,水下作业,是通过管理员用户调解设置参数及通过神经网络改进方法训练机器学习规划动作及远端及自适应调解设置动作规划参数,用于规划考查挖掘动作及土壤岩层化石采集动作,所述动作包括:采集、挖掘、钻探、吹风、扫、刷;所述设置参数包括:采集装置及动作参数、钻探装置及动作参数、挖掘装置及动作参数、机器臂爪装置参数及动作参数;
    所述的考查挖掘动作规划模块及土壤岩层化石采集动作规划模块,用于采集,挖掘,钻探;考查挖掘工具,包括:照明装置,挖掘铲,挖掘锄,钻探头,吹风设备,刷子,机器人主系统模块与照明装置,机器臂爪连接,机器臂采集土壤,岩层,化石,勘查物。
  7. 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,机器主系统模块远端控制及自主挖掘,钻探,采样方法,包括以下步骤:
    S1、远端控制端及主控制系统发布任务指令信息,挖掘装置、照明装置、钻探装置、吹风装置、毛刷装置、机器臂订阅任务信息;
    S2、视觉识别模块发布图像信息,挖掘装置、钻探装置、照明装置、吹风装置、毛刷装置、机器臂订阅图像信息;
    S3、机器人主控制系统利用雷达及雷达自主移动、场景识别,建图模块、定位、导航,自主移动到目标位置;
    S4、机器人主控制系统及挖掘装置,照明装置、钻探装置、吹风装置、毛刷装置订阅目标位置信息,通过管理员远端控制,设置参数及通过神经网络改进方法训练机器学习规划动作及自适应调解设置各装置参数,机器臂爪参数,及其动作规划参数;
    S5、依据挖掘装置、照明装置、钻探装置、吹风装置、毛刷装置订阅任务信息,挖掘,钻探,用吹风装置,毛刷装置,吹风,清理勘查物表面;
    S6、依据机器臂订阅的任务信息,移动,抓取,采集,放置土壤、岩石样本、勘查物样本;
    S7、结束此时间段的任务。
  8. 根据权利要求1所述的一种水陆两用的勘探、考查装置,其特征在于,视觉装置及视觉识别模块,机器主系统与视觉装置连接,用于采集并识别陆地,水下场景,地形,地貌图像;所述的场景包括:场景识别,地形地貌识别,土壤、岩层识别,化石识别,水下岩层识别,水下天然气及其他水下资源的特征物识别;所述的地形,地貌是指:化石形状特征,地形特征,纹理特征,土壤特征,岩石结构特征。
  9. 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种场景图片实时采集,地形,地貌,陆地,水下勘查物智能识别方法,所述方法包括以下步骤:
    S1、机器视觉装置发布陆地,水下各场景图片,地形,地貌信息,对应其位置区坐标;
    S2、依据各场景图片,地形,地貌信息,对应其位置区坐标,机器臂,主系统订阅外部位置及坐标,挖掘,钻探,采样;
    S3、远端控制端,主系统,机器臂依照订阅的采集区位置,依照机器臂图像,采集动作规划模块的动作,移动,发布采集的图像信息,机器主系统及视觉识别模块订阅图像信息;
    S4、针对场景识别模块发布各场景图片,场景下特征物,地形,地貌,特殊标记,陆地,水下资源的特征物信息抽取其特征,输入地形,地貌轮廓,特殊标记,陆地,水下资源对应特征物,利用深度神经网络方法及权值优化器,得到输出值及其分类识别结果;
    S5、依据输出结果,精准分类,识别场景图像,地形,地貌,水下岩层,水下天然气及其他水下资源,其识别结果关联场景图像,地形,地貌,位置信息,发布识别结果及对应的场景图像,地形,地貌,位置信息至机器主系统的管理员及用户远端控制端。
  10. 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,一种综合数据分析,识别,多地质信息,环境信息,地形地貌信息,陆地水下资源信息关联判断勘查物方法,所述方法包括以下步骤:
    S1、建立综合数据模型,包括:气体、风速、湿度、温度、酸碱度、地质信息,环境检测信息,生物检测信息,化学检测信息的数据信息,定位位置信息,地形、岩层、化石信息,光谱采集信息,及陆地水下场景地形地貌,土壤,岩层,化石,生物,植物图像信息;
    S2、建立综合数据信息关联模型,利用机器学习改进分类,关联方法,将陆地水下资源及勘查物目标与定位位置信息,与多地质信息,环境信息,地形地貌信息,生物植物信息,化学检测信息,光谱采集信息,及陆地水下场景地形地貌,土壤、岩层、化石、生物、植物图像信息关联;
    S3、改进分类方法及机器学习关联方法,对不同场景下的关联数据综合分析,识别;
    S4、通过陆地勘查物,水下勘查物对应综合数据关联,分析计算勘查物及资源与其对应的位置信息,与地形、地貌、岩石层年代特征,与环境信息,与地形地貌信息,与生物植物信息,与化学检测信息,与光谱采集信息,与勘探资源关联的陆地水下场景、地形地貌、土壤岩层、化石、生物植物图像信息关联,计算数据之间的关联度;
    S5、按照关联度,识别陆地勘查物,水下勘查物。
  11. 一种水陆两用的勘探、考查装置,系统及方法,其特征在于,勘探,考查任务管理最优化系统,所述的勘探,考查任务管理最优化系统包括一种勘探,考查用机器装置及任务管理最优化系统,所述勘探考查用机器装置为上述任一方案中勘探考查用机器装置,所述的任务管理最优化系统与机器主系统连接,建立勘探,考查任务管理最优化系统,应用最优化方法计算规划最优勘探,考查路径,最短时间完成机器装置导航,移动,勘探,考查各任务。 
     
PCT/CN2021/112647 2020-08-18 2021-08-15 一种水陆两用的勘探、考查装置,系统及方法 WO2022037507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2021326883A AU2021326883A1 (en) 2020-08-18 2021-08-15 Amphibious exploration and examination device, system and method
CN202180051385.2A CN117083429A (zh) 2020-08-18 2021-08-15 一种水陆两用的勘探、考查装置,系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010836827.1 2020-08-18
CN202010836827.1A CN112083720A (zh) 2020-08-18 2020-08-18 一种水陆两用的勘探,考查装置,系统及方法

Publications (1)

Publication Number Publication Date
WO2022037507A1 true WO2022037507A1 (zh) 2022-02-24

Family

ID=73729175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112647 WO2022037507A1 (zh) 2020-08-18 2021-08-15 一种水陆两用的勘探、考查装置,系统及方法

Country Status (3)

Country Link
CN (2) CN112083720A (zh)
AU (1) AU2021326883A1 (zh)
WO (1) WO2022037507A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640386A (zh) * 2022-03-09 2022-06-17 中国人民解放军国防科技大学 一种基于北斗通信的气象机器人数据回传处理系统
CN114675005A (zh) * 2022-03-25 2022-06-28 中煤浙江检测技术有限公司 一种地下水体检测方法及检测系统
CN115744926A (zh) * 2022-11-14 2023-03-07 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN116824513A (zh) * 2023-08-29 2023-09-29 北京建工环境修复股份有限公司 基于深度学习的钻探过程自动识别监管方法及系统
CN118035847A (zh) * 2024-04-10 2024-05-14 山东司南地理信息有限公司 一种基于地质矿产勘查的数据提取方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021317383A1 (en) * 2020-07-28 2023-04-06 Sicong TAN Underwater robot device and underwater regulation and control management optimization system and method
CN112083720A (zh) * 2020-08-18 2020-12-15 谈斯聪 一种水陆两用的勘探,考查装置,系统及方法
CN112966765A (zh) * 2021-03-18 2021-06-15 四川虹美智能科技有限公司 业务信息处理方法、装置及计算机可读介质
CN113139529B (zh) * 2021-06-21 2021-09-14 北京科技大学 线性文化遗产勘探方法、系统、存储介质和电子设备
CN113720394B (zh) * 2021-09-08 2023-10-31 苏州融萃特种机器人有限公司 一种智能探测机器人及其搜查方法
CN114627454B (zh) * 2022-03-18 2024-02-09 柳州柳工叉车有限公司 一种驾驶员举升意图感知方法、装置、设备及介质
CN118410315B (zh) * 2024-07-02 2024-08-23 临沂大学 基于多维分析的化石信息数据处理系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718206A (en) * 1971-01-18 1973-02-27 Delta Exploration Co Inc Amphibious seismic exploration vehicle and method
CN103775072A (zh) * 2014-01-16 2014-05-07 燕山大学 基于测井资料的煤岩类型确定方法
CN106194184A (zh) * 2015-05-28 2016-12-07 联邦科学和工业研究组织 改进的开采机和方法
CN108107481A (zh) * 2017-12-04 2018-06-01 中国石油天然气股份有限公司 铀矿勘探有利远景区的确定方法和装置
CN108674105A (zh) * 2018-04-27 2018-10-19 中交第三航务工程勘察设计院有限公司 水陆两栖岩土工程勘察平台及使用方法
CN109490986A (zh) * 2018-12-28 2019-03-19 西安长庆科技工程有限责任公司 一种远程控制式勘察装置及方法
CN109940620A (zh) * 2019-04-15 2019-06-28 于傲泽 一种智能探索机器人及其控制方法
CN109975273A (zh) * 2019-03-07 2019-07-05 四川大学 一种基于激光诱导击穿光谱的岩石分类方法
CN110622042A (zh) * 2017-05-10 2019-12-27 日本电气株式会社 分析设备、地层断代设备、分析方法、地层断代方法和程序
CN211217836U (zh) * 2019-12-20 2020-08-11 李飞帆 一种多功能考古发掘清理装置
CN112083720A (zh) * 2020-08-18 2020-12-15 谈斯聪 一种水陆两用的勘探,考查装置,系统及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718206A (en) * 1971-01-18 1973-02-27 Delta Exploration Co Inc Amphibious seismic exploration vehicle and method
CN103775072A (zh) * 2014-01-16 2014-05-07 燕山大学 基于测井资料的煤岩类型确定方法
CN106194184A (zh) * 2015-05-28 2016-12-07 联邦科学和工业研究组织 改进的开采机和方法
CN110622042A (zh) * 2017-05-10 2019-12-27 日本电气株式会社 分析设备、地层断代设备、分析方法、地层断代方法和程序
CN108107481A (zh) * 2017-12-04 2018-06-01 中国石油天然气股份有限公司 铀矿勘探有利远景区的确定方法和装置
CN108674105A (zh) * 2018-04-27 2018-10-19 中交第三航务工程勘察设计院有限公司 水陆两栖岩土工程勘察平台及使用方法
CN109490986A (zh) * 2018-12-28 2019-03-19 西安长庆科技工程有限责任公司 一种远程控制式勘察装置及方法
CN109975273A (zh) * 2019-03-07 2019-07-05 四川大学 一种基于激光诱导击穿光谱的岩石分类方法
CN109940620A (zh) * 2019-04-15 2019-06-28 于傲泽 一种智能探索机器人及其控制方法
CN211217836U (zh) * 2019-12-20 2020-08-11 李飞帆 一种多功能考古发掘清理装置
CN112083720A (zh) * 2020-08-18 2020-12-15 谈斯聪 一种水陆两用的勘探,考查装置,系统及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640386A (zh) * 2022-03-09 2022-06-17 中国人民解放军国防科技大学 一种基于北斗通信的气象机器人数据回传处理系统
CN114675005A (zh) * 2022-03-25 2022-06-28 中煤浙江检测技术有限公司 一种地下水体检测方法及检测系统
CN114675005B (zh) * 2022-03-25 2024-04-05 中煤浙江检测技术有限公司 一种地下水体检测方法及检测系统
CN115744926A (zh) * 2022-11-14 2023-03-07 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN115744926B (zh) * 2022-11-14 2023-09-12 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN116824513A (zh) * 2023-08-29 2023-09-29 北京建工环境修复股份有限公司 基于深度学习的钻探过程自动识别监管方法及系统
CN116824513B (zh) * 2023-08-29 2024-03-08 北京建工环境修复股份有限公司 基于深度学习的钻探过程自动识别监管方法及系统
CN118035847A (zh) * 2024-04-10 2024-05-14 山东司南地理信息有限公司 一种基于地质矿产勘查的数据提取方法及系统

Also Published As

Publication number Publication date
AU2021326883A1 (en) 2023-05-04
CN112083720A (zh) 2020-12-15
CN117083429A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2022037507A1 (zh) 一种水陆两用的勘探、考查装置,系统及方法
WO2022021804A1 (zh) 一种水下机器人装置.水下调控管理最优化系统及方法
CN113189977B (zh) 一种用于机器人的智能导航路径规划系统及方法
CN112282787B (zh) 一种隧道自动化维护多臂机器人及其控制方法
CN108858122A (zh) 一种温室植物病害巡检机器人及巡检方法
CN111638523A (zh) 一种水下机器人对失踪者的搜寻和定位系统及方法
CN113495561B (zh) 建设现场管理系统
CN115299245B (zh) 一种智能水果采摘机器人的控制方法及控制系统
CN102368158A (zh) 一种果园机械导航定位方法
KR102298643B1 (ko) 적외선 열화상 카메라와 수중드론을 이용한 수중표면 3차원 모델링 방법
CN109032174B (zh) 一种无人机作业航线规划方法以及作业执行方法
CN109940620A (zh) 一种智能探索机器人及其控制方法
CN108469817A (zh) 基于fpga和信息融合的无人船避障控制系统
CN111896481A (zh) 河湖水环境自动建模及水质参数自动识别系统及运行方法
CN108564628A (zh) 一种面向掘进机自动化的截割头视觉定位定向系统
CN115793649B (zh) 一种电缆沟自动巡检装置及巡检方法
CN115354708A (zh) 基于机器视觉的挖掘机铲斗自主挖掘识别控制系统及方法
Zhu et al. Design and implementation of a manipulator system for roadway crack sealing
Sharma et al. Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture
Fong et al. Human-robot site survey and sampling for space exploration
CN115933448A (zh) 智能农机控制系统
Melander et al. Classifying soil stoniness based on the excavator boom vibration data in mounding operations
Seki et al. Forest mapping and trunk parameter measurement on slope using a 3D-LIDAR
US20230400446A1 (en) Portable Agricultural Robot for Continuous Apparent Soil Electrical Conductivity Measurements to Improve Irrigation Practices
Meena et al. Autonomous underwater vehicle for rugosity and obstacle detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180051385.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: AU2021326883

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021326883

Country of ref document: AU

Date of ref document: 20210815

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-07-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21857602

Country of ref document: EP

Kind code of ref document: A1