WO2022036752A1 - 基于海流设计流速的海床基础局部冲刷深度确定方法及系统 - Google Patents

基于海流设计流速的海床基础局部冲刷深度确定方法及系统 Download PDF

Info

Publication number
WO2022036752A1
WO2022036752A1 PCT/CN2020/112420 CN2020112420W WO2022036752A1 WO 2022036752 A1 WO2022036752 A1 WO 2022036752A1 CN 2020112420 W CN2020112420 W CN 2020112420W WO 2022036752 A1 WO2022036752 A1 WO 2022036752A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
design
tidal
wave
flow rate
Prior art date
Application number
PCT/CN2020/112420
Other languages
English (en)
French (fr)
Inventor
潘晓春
王晓惠
蔡升华
沈旭伟
王作民
任亚群
徐君民
葛海明
李刚
许文超
Original Assignee
中国能源建设集团江苏省电力设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国能源建设集团江苏省电力设计院有限公司 filed Critical 中国能源建设集团江苏省电力设计院有限公司
Publication of WO2022036752A1 publication Critical patent/WO2022036752A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of marine engineering surveying, in particular to a method for calculating the local scour of a seabed foundation, in particular to a method and system for determining the local scour depth of a seabed foundation based on the design flow rate of ocean currents.
  • the ocean dynamic conditions used in the local scour calculation of the seabed foundation mainly include the measured maximum spring tide velocity and the possible maximum current velocity, and also use the measured spring tidal maximum velocity combined with the average wave height of each return period under extreme high water level, and the possible maximum tidal velocity vector combination design height
  • the technical problem to be solved by the present invention is to provide an ideal and clear method and system for determining the local scour depth of the seabed foundation for the technicians engaged in the determination of the local scour depth of the seabed foundation, so as to improve the design quality and efficiency.
  • the present invention adopts the following technical solutions:
  • the present invention provides a method for determining the local scour depth of a seabed foundation based on a design flow rate of sea currents, comprising the following steps:
  • the tidal ellipse parameters are obtained by harmonic analysis; the tidal current types of each layer are determined according to the obtained tidal ellipse parameters, and the possible maximum velocity vectors of the tidal currents of different tidal types in each layer are calculated, and the possible maximum tidal current in each layer is determined.
  • the design current velocity is obtained; the local scour depth of the seabed foundation is determined according to the design current velocity.
  • trend types include regular half-day trend, irregular half-day trend, regular all-day trend and irregular all-day trend; the specific method for judging the trend type is as follows:
  • K is the power flow type discrimination coefficient
  • the length of the major semi-axis of the ellipse of the main lunar sub-current is the major semi-axis length of the ellipse of the solar declination diurnal current;
  • the length of the major semi-axis of the ellipse of the main lunar semi-diurnal current is the power flow type discrimination coefficient
  • K is less than or equal to the first set value, it is determined as a regular semi-diurnal flow; if K is greater than the first set value and less than or equal to the second set value, it is determined as an irregular semi-diurnal flow; K is greater than the second set value and less than or equal to The third set value is determined as an irregular all-day trend; if K is greater than the third set value, it is determined as a regular all-day trend;
  • Equation (1) is used layer by layer to determine the type of power flow.
  • the calculation of the possible maximum flow velocity vector of the power flow of each layer specifically includes:
  • the possible maximum velocity vector of the tidal current in each layer is calculated as follows:
  • the following parameters are obtained through the harmonic analysis of the tidal current: ellipse major semi-axis vector of the main lunar semi-diurnal trend; ellipse major semi-axis vector of the semidiurnal current of the main sun; is the ellipse major semi-axis vector of the solar declination diurnal current; ellipse major semi-axis vector of the main lunar day sub-current; ellipse major semi-axis vector of the main lunar quarter diurnal current; The semi-major axis vector of the ellipse for the solar quarter diurnal tide.
  • the weighted average calculation method is used to determine the vertical average velocity vector of the possible maximum velocity vectors of tidal currents in each layer.
  • the wind current velocity vector is determined according to the measured wind speed data
  • the method is as follows: Calculate the wind current velocity V u , the calculation formula is as follows:
  • V u MU (4)
  • V u is the wind current flow rate
  • M is the coefficient
  • U is the average wind speed in the selected time at the selected height on the average sea surface
  • the design wave velocity vector of the wave-generated flow is calculated by using the design wave element with the cumulative frequency j in the return period R year in the direction i Calculate as follows:
  • HR,j,i is the return period in the direction i
  • the cumulative frequency in R years is j
  • the wave height, g is the local gravitational acceleration.
  • the wind and ocean current velocity vector and the wave-generated current design velocity vector are synthesized to obtain the expression of the ocean current design velocity as follows:
  • VR ,i is the design flow rate of the ocean current with a return period of R years
  • VR is the design flow rate of the ocean current with a return period of R years
  • ⁇ R is the design flow rate of the ocean current with a return period of R years.
  • the present invention provides a system for determining the local scour depth of the seabed foundation based on the design flow rate of the ocean current, a marine hydrometeorological condition acquisition device, a tidal current type analysis module, a module for determining the design flow rate of the ocean current, and a module for determining the local scour depth of the seabed foundation;
  • the marine hydrometeorological condition acquisition device is used to collect ocean current observation data in layers according to the layered method of water depth in the engineering sea area under the pre-determined design tidal level condition; elements;
  • the tidal current type analysis module is used to obtain tidal current ellipse parameters through harmonic analysis according to the collected ocean current observation data;
  • the ocean current design flow velocity determination module is used to calculate the possible maximum flow velocity vectors of tidal currents of different tidal current types in each layer and determine the vertical average velocity vector of the possible maximum flow velocity vectors of tidal currents in each layer;
  • the seabed topography information determines the wind and ocean current velocity vector; according to the predetermined design wave elements, the wave-generated current design velocity vector is calculated;
  • the wind current velocity vector and the wave-generated current design velocity vector are synthesized to obtain the ocean current design velocity
  • the local scour depth determination module of the seabed foundation is used for determining the local scour depth of the seabed foundation according to the design flow rate of the sea current.
  • the present invention also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the method provided in the above solution.
  • the method provided by the present invention can fill the relevant technical gaps in the analysis and calculation of local scour of the seabed foundation of the offshore wind farm project, and can also be used as a reference when determining the calculation conditions of the current load of the marine underwater structure. Since there are many factors that cause seawater flow, the current velocity and tidal level may not be positively correlated, that is, the two events are not of the same frequency, and it is not appropriate to indirectly specify the local scour calculation standard of the seabed foundation by designing the return period of the high tide level;
  • the method for calculating the design flow velocity of the ocean current provided by the present invention is simple and feasible, and solves the above problems well.
  • the present invention selects the design current velocity as the most direct and significant marine dynamic factor for local scouring of the seabed foundation, and the water depth/tidal level and design wave elements are used as indirect factors or boundary conditions for the calculation of the design current velocity.
  • the calculation principle and process are more in line with the practical situation, and the calculation results are more reliable.
  • the present invention provides a computing system, which can not only directly connect the data collection results, but also directly calculate and obtain the flushing results, thereby avoiding calculation errors caused by data transmission and human operation. Efficient and accurate comparison of scour results of multiple methods provides strong support for engineering practice.
  • Fig. 1 is a flow chart of calculation of local scour of pile foundation of an offshore wind farm according to a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of a system module according to a specific embodiment of the present invention.
  • Figure 3 shows a topographic map of the seabed and a location map of ocean current observation points of an offshore wind farm according to a specific embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the synthesis of velocity vectors of tidal currents, wind currents and wave-generated currents according to a specific embodiment of the present invention.
  • Embodiment 1 The method for determining the local scour depth of the seabed foundation based on the design flow rate of the ocean current.
  • This embodiment takes the calculation of the local scour of the pile foundation of an offshore wind farm as an example.
  • the calculation process is shown in FIG. 1 and includes the following steps: Design the layered method of water depth in the engineering sea area under the condition of tidal level, collect ocean current observation data in layers; collect on-site wind measurement data and seabed topographic information in the engineering sea area and determine the design wave elements;
  • the tidal current ellipse parameters are obtained by harmonic analysis; according to the obtained tidal ellipse parameters, the tidal current types of each layer are determined, the possible maximum velocity vectors of the tidal currents of different tidal current types in each layer are calculated, and the possible maximum tidal current in each layer is determined.
  • the vertical average flow velocity vector of the flow velocity vector; the wind and ocean current velocity vector is determined according to the measured on-site wind measurement data in the engineering sea area; the design flow velocity vector of the wave-generated current is calculated according to the determined design wave elements; the possible maximum flow velocity of each layered tidal current obtained by calculation
  • the vertical average velocity vector of the vector, the wind current velocity vector and the wave-generated current design velocity vector are synthesized to obtain the ocean current design velocity;
  • the local scour depth of the seabed foundation is determined according to the design flow rate of the ocean current.
  • the power flow ellipse parameters are obtained by harmonic analysis of the measured power flow data on each layer, and the power flow ellipse parameters on each layer are different.
  • Stratification involves only the calculation of tidal flow velocity. It is common knowledge in the field to obtain the power flow ellipse parameters by harmonic analysis, and will not be explained too much in this application.
  • the calculation results of wind currents and wave-generated currents are the average values of vertical lines and do not involve layered calculations.
  • the average flow velocity vector in the vertical direction (that is, the average flow velocity vector of the vertical line) is obtained by weighting the possible maximum flow velocity vectors of the tidal currents of each layer, and then the current design velocity vector is superimposed with the wave-generated flow design velocity vector and the wind and ocean current velocity vector to obtain the ocean current design. flow rate.
  • the scour is calculated based on the superimposed flow velocity and does not involve the concept of stratification.
  • the corresponding water depth is 26.3m, and the six-point method is used for observation and stratification according to the "Offshore Wind Farm Marine Hydrological Observation Specification".
  • the six-point method is used for observation and stratification, otherwise, the three-point method is used for observation and stratification.
  • a winter full-tidal marine hydrological survey is carried out, and the station C1 is located in the center of the site sea area ( Figure 3).
  • the quasi-harmonic analysis method was used to organize and analyze the ocean current observation data.
  • the main tidal ellipse elements of each layer are listed in Table 1.
  • Table 1 The main components of the tidal current ellipse in each layer of the C1 station
  • the flow direction i is the angle of clockwise rotation from the N direction.
  • Table 2 The average wind speed of each month at a height of 10 m from the central wind measuring tower in the sea area of a wind farm
  • the impact period of tropical cyclones in the engineering sea area is determined to be from July to September, the corresponding average wind speed of the above three months is 5.0m/s, and the prevailing wind direction is between ENE and NE, about 60°.
  • the strong wave season is consistent with the strong winds caused by tropical cyclones, so the average wind speed in the strong wave season is 5.0m/s, and the wind direction is 60°.
  • K is the power flow type discrimination coefficient
  • the length of the major semi-axis of the ellipse of the main lunar sub-current is the major semi-axis length of the ellipse of the solar declination diurnal current;
  • the length of the major semi-axis of the ellipse of the main lunar semi-diurnal current is the power flow type discrimination coefficient
  • This embodiment sets: K ⁇ 0.5, it is determined as a regular half-day flow; 0.5 ⁇ K ⁇ 2.0, it is determined as an irregular half-day flow; 2.0 ⁇ K ⁇ 4.0, it is determined as an irregular full-day flow; 4.0 ⁇ K, it is determined as a regular full-day flow trend.
  • the premise of the calculation of the flow velocity of the tidal current is to judge the type of the tidal current, and the calculation methods of different types in the present invention are different.
  • Harmonic analysis is the basis for judging the type of power flow. Based on the results of the harmonic analysis, the above formula is used to calculate the results to determine the type of power flow.
  • the K value is between 0.10 and 0.27, so it is judged to be a regular half-day trend.
  • the calculation of the possible maximum velocity vector of tidal currents at each sub-layer adopts the orthogonal decomposition method: take the flow direction N and flow direction E as the vertical and horizontal coordinates respectively, and establish a plane rectangular coordinate system ; Decompose the ellipse major semi-axis vectors of the main tidal currents at different levels, and calculate their projected components in the N and E directions respectively; multiply the coefficients and sum them up in the N and E directions respectively; finally, the vector Synthesis, using the inverse function and judging the flow direction of the synthetic stream based on the component quadrants.
  • Equation (2) is used to calculate the possible maximum velocity vector of the k-th tidal current layer by layer. Equation (2) is as follows:
  • the formula for calculating the possible maximum flow velocity vector of the power flow is also the same.
  • the average flow velocity vector of the tidal line vertical line is calculated according to the following formula:
  • the impact period of tropical cyclones in the engineering sea area is from July to September, the average wind speed at the corresponding sea surface height of 10m is 5.0m/s, and the prevailing wind direction is between ENE and NE, about 60.0°. Based on this, the flow velocity of the strong-wave monsoon current is calculated, and the wind current conversion coefficient K is taken as 0.030 in this example, and the flow velocity value of the wind and ocean current is as follows.
  • the flow velocity calculated according to the above formula and the direction of the isobath of the seabed together form the wind current velocity vector
  • the flow direction of the wind and ocean current is approximately the same as that of the isobath.
  • the flow direction of the wind and ocean current in this example is about 60.0°, which is basically consistent with the prevailing wind direction of ENE-NE in this sea area.
  • the design flow velocity vector of the wave-generated flow in the 100-year and 50-year wave directions is calculated.
  • the offshore wind power foundation is generally pier type, and the scour affects the stability of the foundation. Therefore, the cumulative frequency is 5% in this embodiment, so the formula (5) is in the form of the following formula.
  • the results are listed in Table 7. The waves are in the same direction.
  • Table 7 Design velocity vector results of wave-generated flow in each main wave direction at C1 station
  • the design flow rate of the wave-generated current in the wind farm sea area C1 station in 100 years and 50 years in each main wave direction (E ⁇ S ⁇ WSW) is as above.
  • the process of orthogonal decomposition, component summation and recombination shown is to perform vector synthesis with the average velocity vector of the maximum vertical line of the tidal current and the velocity vector of wind and ocean current, respectively. The results are listed in Table 8.
  • ⁇ R is the corresponding flow direction of the current design flow with a return period of R years;
  • the foundation form is a straight pile with a pile diameter of 2.3m. It can be seen from the case that the water depth under the design high tide level of the wind farm sea area is 26.3m (Table 3). The direction corresponds to SSW (202.5°), the corresponding design wave elements are selected in Table 3, and the specific input parameters are shown in the following table.
  • parameter value parameter value Water depth (m) 26.3 Median particle size mm 0.09 Wave height (m) 5.46 Density kg/m 3 2650 Period(s) 9.8 Density of seawater (kg/m 3 ) 1025 Current Velocity (m/s) 2 Seawater viscosity coefficient (m 2 /s) 1.00E-06
  • Equation 65-2 The calculation formulas for local scour of non-clay riverbed piers recommended in my country's "Code for Hydrological Survey and Design of Highway Engineering" (JTG C30-200) are Equation 65-2 and Modified Equation 65-1.
  • the 65-2 formula is expressed as:
  • the 65-1 correction can be expressed as:
  • K ⁇ 1 0.8(d 50 -0.45 +d 50 -0.15 ), which is the influence coefficient of river bed particles;
  • V′ 0 0.462(d 50 /B 1 ) 0.06 V 0 ;
  • Han Haiqian obtained the basic local scour formula under the action of tidal current by using the dimension analysis method through the measured data and physical model test of the water tank, which has also been widely used in practical engineering.
  • the expression is:
  • h p is taken as 26.3m
  • the pier shape coefficient K ⁇ of the cylindrical pile foundation is taken as 1.0
  • the local scour depth of the foundation is calculated to be 12.15m.
  • the velocity V near the pier is taken as the design maximum velocity of 2.00m/s for the once-in-100-year ocean current.
  • h p is taken as 26.3m
  • the pier shape coefficient K ⁇ of the cylindrical pile foundation is taken as 1.0
  • the local scour depth of the foundation is calculated to be 18.84m.
  • Embodiment 2 Corresponding to Embodiment 1, this embodiment provides a system for determining the local scour depth of seabed foundations based on the design flow rate of ocean currents, as shown in FIG.
  • the marine hydrometeorological condition acquisition device is used to collect ocean current observation data in layers according to the layered method of water depth in the engineering sea area under the pre-determined design tidal level condition; elements;
  • the tidal current type analysis module is used to obtain the tidal current ellipse parameters through harmonic analysis according to the collected ocean current observation data;
  • the ocean current design flow velocity determination module is used to calculate the possible maximum flow velocity vectors of tidal currents of different tidal current types in each layer and determine the vertical average velocity vector of the possible maximum flow velocity vectors of tidal currents in each layer;
  • the wind and ocean current velocity vector is determined from the seabed topographic information;
  • the wave-generated current design velocity vector is calculated according to the determined design wave elements;
  • the vertical average velocity vector, the wind-ocean current velocity vector and the wave-generated current are obtained according to the calculated maximum flow velocity of each layered tidal current.
  • Design velocity vector synthesis to obtain design velocity of ocean current;
  • the described module for determining the local scour depth of the seabed foundation is used to determine the local scour depth of the seabed foundation according to the design flow rate model and the flow direction of the sea current.
  • the marine hydrometeorological condition collection device includes: a sub-module for collection of ocean current hydrological test results, a sub-module for collection of average wind speed in strong wave season, and a sub-module for collection of design wave elements.
  • the sub-module of ocean current hydrological test results collection adopts different layered methods to collect tidal ellipse elements.
  • the three-point method was used to collect data in layers, and the observation levels were 0.2d, 0.6d, and 0.8d; They are the surface layer, 0.2d, 0.4d, 0.6d, 0.8d, and the bottom layer, respectively.
  • the surface layer refers to the water layer 0.5m below the water surface; the bottom layer refers to the water layer 0-1.0m away from the seabed; d, the water layer at the depth of 0.8d, d refers to the total water depth; when observing the bottom layer, it should be ensured that the instrument does not touch the bottom.
  • Collect one complete full tide data including water depth, water temperature, salinity, sediment content, ocean current, wind speed, wind direction, etc.) for each successive observation period of large, medium and neap tides in summer and winter.
  • the average wind speed collection sub-module in strong wave season collects on-site wind measurement data in the engineering sea area for a whole year, including wind speed and wind direction, and the wind measurement height is 10m above sea level.
  • the strong wave season is determined according to the statistical results of waves or the frequency of occurrence of tropical cyclones.
  • the average wind speed value of each month is counted, and the average wind speed and wind direction (incoming wind direction) of the month corresponding to the strong wave season are calculated by weighted average.
  • the design wave element collection sub-module collects the design wave elements of different return periods of the wave station under the design high tide level of the engineering sea area (the high tide level with a cumulative frequency of 10%) according to the special research results of waves in the engineering sea area.
  • Design wave elements include incoming wave direction, average wave height, effective wave height, cumulative frequency 5% wave height, cumulative frequency 1% wave height, average period, and wavelength. According to the collection results, select the corresponding design wave elements according to the consistent selection of wind and wave directions.
  • the power flow type analysis module mainly performs harmonic analysis on the results of the full tide test at each layer, and judges the type of the power flow. Carry out the harmonic analysis and calculation of the power flow according to the collected full tide data, and obtain the ellipse elements of each sub - tidal flow at different layers , namely the flow, direction. Calculate the K value of the discrimination coefficient of each layered flow type, and judge the type of flow according to the K value (the flow types include: regular half-day flow, regular full-day flow, irregular half-day flow, and irregular full-day flow).
  • the ocean current design velocity model and flow direction determination module includes an ocean current design maximum velocity calculation module, a tidal current possible maximum vertical average velocity calculation sub-module, a wind and ocean current velocity vector calculation sub-module, a wave-generated flow design velocity vector calculation sub-module, and a tidal current, wind flow velocity vector calculation sub-module.
  • Vector synthesis sub-module for ocean currents and wave-generated currents.
  • the calculation module of the maximum flow velocity in the current design includes: a sub-module for the calculation of the maximum possible vertical average velocity of the tidal current; a sub-module for the calculation of the wind-ocean current velocity vector; a sub-module for the calculation of the design velocity of the wave-generated current; a vector synthesis sub-module of the tidal current, wind-current and wave-generated current .
  • the sub-module for calculating the possible maximum vertical average flow velocity of the tidal current according to the different types of tidal currents judged by the tidal flow type analysis module, select different calculation methods for the possible maximum flow velocity of each layer, and then follow the layered methods (three-point method, six-point method, six-point method) described above. method) weighted average of the possible maximum flow velocity of each layer to calculate the possible maximum vertical average flow velocity of the tidal current.
  • the wind-ocean current velocity vector calculation sub-module calculates the wind-ocean current velocity vector according to the average wind speed and wind direction selected by the sub-module of the average wind speed collection sub-module in the strong current and strong wave season.
  • the wave-generated flow design velocity vector calculation sub-module calculates the wave-generated flow design flow velocity according to the design wave elements selected by the design wave element acquisition sub-module.
  • the vector synthesis sub-module of tidal current, wind-ocean current and wave-generated current performs vector calculation according to the flow velocity calculated by the sub-module of the maximum possible vertical average velocity of tidal current, the vector calculation sub-module of wind-ocean current flow velocity, and the vector calculation sub-module of wave-generated current design velocity. And select the velocity with the largest velocity value as the design velocity of the ocean current.
  • Seabed foundation local scour depth determination module provides a variety of basic local scour calculation methods. According to the calculation results of each module as the input conditions of this module, the multi-method basic local scour calculation results are output for engineers or production practice.
  • the invention provides an ideal and definite calculation method and method for technicians engaged in local scour calculation of seabed foundation, and improves design quality and efficiency.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了基于海流设计流速的海床基础局部冲刷深度确定方法和系统,分层采集海流观测数据经调和分析判别各分层的潮流类型,计算各分层潮流可能最大流速矢量及垂线平均流速矢量;根据测得的风速数据和海床地形确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;据此最终确定海床基础局部冲刷深度。本发明通过波要素设计重现期来确定海床基础局部冲刷计算的水动力条件取值标准,计算原理与过程与实践情况更加符合,计算成果更加可靠。

Description

基于海流设计流速的海床基础局部冲刷深度确定方法及系统 技术领域
本发明涉及海洋工程勘测技术领域,具体涉及海床基础局部冲刷计算的方法,尤其是一种基于海流设计流速的海床基础局部冲刷深度确定方法和系统。
背景技术
对于冲刷计算选取的海洋环境动力条件的标准鲜有研究和明确规定,目前海上风电场实际工程中海床基础局部冲刷计算的环境动力条件设计标准及其确定方法等,存在如下主要问题:
(1)海上风电工程现行勘测设计标准《风电场工程等级划分及设计安全标准》以及和海油行业设计技术标准等,均无关于海上风电场海上固定平台海床基础局部冲刷计算的海洋动力条件设计标准明确且直接的规定。
(2)因为技术标准缺乏明确规定,在海上风电场实际工程中冲刷计算中动力条件的取值标准并不统一。目前海床基础局部冲刷计算采用的海洋动力条件主要有实测大潮最大流速、海流可能最大流速,也有采用实测大潮最大流速组合极端高水位下各重现期平均波高、潮流可能最大流速矢量组合设计高水位下5年一遇有效波高、潮流可能最大流速矢量组合不同重现期设计风速形成的风海流等等,不一而足。
(3)一些现行海上风电工程文件中,对各类海流只按标量(流速)进行简单相加,未按矢量求和的方法进行流速矢量叠加。
由此可见,目前关于海上风电场工程海床基础局部冲刷计算的动力条件的取值标准不统一,甚至稍显混乱,不利于得出关于海床基础局部冲刷计算方法优劣对比的合理可靠的结论,当然也不利于经济合理地设计海床基础工程。因此需要明确海床基础冲刷深度的确定方法。
发明内容
本发明所要解决的技术问题是为从事海床基础局部冲刷深度确定的技术人员提供一种理想的、明确的海床基础局部冲刷深度确定方法和系统,提高设计质量和效率。
为解决上述技术问题,本发明采用如下技术方案:
一方面,本发明提供基于海流设计流速的海床基础局部冲刷深度确定方法包括以下步骤:
根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程海域现场测风数据以及确定设计波要素;
根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流类型,计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;
根据采集的工程海域现场测风数据和海床地形信息确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;
根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;根据海流设计流速确定海床基础局部冲刷深度。
进一步地,所述潮流类型包括规则的半日潮流、不规则的半日潮流、规则的全日潮流和不规则的全日潮流;判别潮流类型的具体方法如下:
Figure PCTCN2020112420-appb-000001
式中,K为潮流类型判别系数;
Figure PCTCN2020112420-appb-000002
为主太阴日分潮流的椭圆长半轴长度;
Figure PCTCN2020112420-appb-000003
为太阴太阳赤纬日分潮流的椭圆长半轴长度;
Figure PCTCN2020112420-appb-000004
为主太阴半日分潮流的椭圆长半轴长度。
K小于等于第一设定值,则判定为规则半日潮流;K大于第一设定值且小于等于第二设定值,则判定为不规则半日潮流;K大于第二设定值且小于等于第三设定值,判定为不规则全日潮流;K大于第三设定值,判定为规则全日潮流;
逐层采用式(1)判断潮流类型。
进一步地,根据不同分层的潮流类型,计算各分层的潮流可能最大流速矢量具体包括:
对规则半日潮流海区,各分层的潮流可能最大流速矢量按下式计算
Figure PCTCN2020112420-appb-000005
式中,
Figure PCTCN2020112420-appb-000006
为潮流的可能最大流速,通过潮流的调和分析得到以下参数:
Figure PCTCN2020112420-appb-000007
为主太阴半日分潮流的椭圆长半轴矢量;
Figure PCTCN2020112420-appb-000008
为主太阳半日分潮流的椭圆长半轴矢量;
Figure PCTCN2020112420-appb-000009
为太阴太阳赤纬日分潮流的椭圆长半轴矢量;
Figure PCTCN2020112420-appb-000010
为主太阴日分潮流的椭圆长半轴矢量;
Figure PCTCN2020112420-appb-000011
为主太阴 四分之一日分潮流的椭圆长半轴矢量;
Figure PCTCN2020112420-appb-000012
为太阴太阳四分之一日分潮流的椭圆长半轴矢量。
对规则全日潮流海区可按下式计算
Figure PCTCN2020112420-appb-000013
对不规则半日潮流海区和不规则全日潮流海区,采用式(2)和式(3)中的大值;
对每一层潮流均按式(2)或式(3)等计算各分层潮流可能最大流速矢量。
进一步地,对各分层不同潮流类型的潮流可能最大流速矢量,采用加权平均计算方法确定各分层潮流可能最大流速矢量的垂线平均流速矢量
Figure PCTCN2020112420-appb-000014
进一步地,根据测得的风速数据确定风海流流速矢量
Figure PCTCN2020112420-appb-000015
的方法如下:计算风海流流速V u,计算公式如下:
V u=MU          (4)
式中,V u为风海流流速;M为系数,U为平均海面上选定高处的选定时间内的平均风速;根据式(4)计算所得流速与海床等深线方向一起组成风海流流速矢量
Figure PCTCN2020112420-appb-000016
进一步地,用方向i上的重现期R年累积频率为j的设计波要素计算波生流设计流速矢量
Figure PCTCN2020112420-appb-000017
按下式计算:
Figure PCTCN2020112420-appb-000018
式中,L i为方向i上的波长;T i为方向i上的波周期;d为计算点总水深,H R,j,i为方向i上的重现期R年的累积频率为j的波高,g为当地的重力加速度。
进一步地,根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速的表达式如下:
Figure PCTCN2020112420-appb-000019
式中,V R,i为重现期为R年流向为i的海流设计流速;V R为重现期为R年的海流设计流速;θ R为重现期为R年的海流设计流速相应流向;
Figure PCTCN2020112420-appb-000020
为综合考虑各种误差和忽略项的安全系数,
Figure PCTCN2020112420-appb-000021
为潮流可能最大流速矢量的垂线平均流速矢量,
Figure PCTCN2020112420-appb-000022
为风海流流速矢量,
Figure PCTCN2020112420-appb-000023
为波生流设计流速矢量。
第二方面,本发明提供基于海流设计流速的海床基础局部冲刷深度确定系统,海洋水文气象条件采集装置、潮流类型分析模块、海流设计流速确定模块和海床基础局部冲刷深度确定模块;
所述海洋水文气象条件采集装置,用于根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程海域现场测风数据、海床地形信息以及确定设计波要素;
所述潮流类型分析模块,用于根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流 类型,
所述海流设计流速确定模块,用于计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;根据采集的工程海域现场测风数据和海床地形信息确定风海流流速矢量;根据预先确定的设计波要素计算波生流设计流速矢量;
根据计算获得的各分层潮流可能最大流速的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;
所述海床基础局部冲刷深度确定模块,用于根据海流设计流速确定海床基础局部冲刷深度。
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如以上方案提供的所述方法的步骤。
有益技术效果:
1.本发明提供的方法可填补海上风电场工程海床基础局部冲刷分析计算方面的相关技术空白,还可供确定海洋水下结构海流荷载计算条件时参考。由于造成海水流动的因素比较多,海流流速与潮位未必正相关,即两者非同频率事件,不宜通过设计高潮位重现期来间接规定海床基础局部冲刷计算标准;
2.另一方面,受海流实测资料条件限制客观上也难以通过历年实测海流资料经频率分析推求设计重现期的海流设计流速。本发明提供的海流设计流速计算方法简便可行,很好的解决了上述问题。
3、在海洋水文动力因素中,以流速对冲刷最为敏感;水深/潮位和波高、波周期对冲刷的直接影响并不显著,但因波浪可能会产生波生流,而设计波浪往往与水深相关,亦即它们可能通过海流对冲刷产生间接影响。因此,本发明选取海流设计流速作为海床基础局部冲刷的最直接最显著的海洋动力因素,水深/潮位、设计波要素则作为海流设计流速计算的间接因素或边界条件。计算原理与过程与实践情况更加符合,计算成果更加可靠。
4、本发明提供了计算系统,不仅可以直接对接数据采集成果,还可以直接计算获得冲刷成果,避免了数据传递、人为操作造成的计算错误。高效、准确的进行多方法的冲刷成果比较,为工程实践提供有力支撑。
附图说明
图1所示是本发明具体实施例的某海上风电场桩基局部冲刷计算流程图;
图2所示是本发明具体实施例的系统模块示意图;
图3所示是本发明具体实施例的某海上风电场海床地形图与海流观测测点位置图;
图4所示是本发明具体实施例的潮流、风海流与波生流的流速矢量合成示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一、基于海流设计流速的海床基础局部冲刷深度确定方法,本实施例以某海上风电场桩基局部冲刷计算为例,计算流程如图1所示,包括以下步骤:根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程海域现场测风数据、海床地形信息以及确定设计波要素;
根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流类型,计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;根据测得的工程海域现场测风数据确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;
根据海流设计流速确定海床基础局部冲刷深度。
本发明中潮流椭圆参数是在各个分层上的实测潮流资料经调和分析得来的,各个层上的潮流椭圆参数不同。分层只涉及潮流流速的计算。调和分析得到潮流椭圆参数是领域内的公知常识,在本申请中不过多解释。风海流、波生流计算结果为垂线平均值,不涉及分层计算。最终通过各分层的潮流可能最大流速矢量加权计算得到垂向上的平均流速矢量(也就是垂线平均流速矢量),然后再与波生流设计流速矢量、风海流流速矢量进行矢量叠加获得海流设计流速。冲刷是基于叠加后的流速计算,不涉及分层概念。
本实施例中某海上风电场设计高潮位下,相应水深为26.3m,按 照《海上风电场海洋水文观测规范》采用六点法进行观测分层。可选地当水深大于6米采用六点法进行观测分层,否则采用3点法进行观测分层。工程海域实施冬季全潮海洋水文测验,测站C1位于场址海域中央(图3)。用准调和分析方法进行海流观测数据资料整理分析,各分层主要分潮流椭圆要素列于表1。
表1 C1测站各分层主要分潮流椭圆要素表
Figure PCTCN2020112420-appb-000024
注:流向i为从N向起按顺时针旋转的角度。
根据工程海域一整年现场测风,中央测风塔10m高度各月平均风速列于表2。
表2某风电场海域中央测风塔10m高度各月平均风速
Figure PCTCN2020112420-appb-000025
另据统计,1949~2017年间共有106个热带气旋经过工程海域,在全年5~12月均有出现,大部分热带气旋集中于7月~9月出现,并在8月达到活动的最高峰,占比24.6%,7月为次高峰,占比25.5%。 因此确定工程海域热带气旋影响期为7月~9月,上述3个月相应平均风速为5.0m/s,盛行风风向在ENE~NE之间,约60°。强浪季与热带气旋引起的大风发生时间一致,因此选取强浪季的平均风速按5.0m/s,风向按60°取值。
根据本工程波浪专题研究,工程海域设计高潮位(累积频率10%的高潮位)下,C1测站100年一遇、50年一遇设计波要素分别列于下表:
表3 C1测站100年一遇、50年一遇设计波要素成果表
(潮位:设计高潮位;相应水深26.3m)
Figure PCTCN2020112420-appb-000026
采用表1数据代入式(1)计算,各分层潮流类型判别系数列于表4:
Figure PCTCN2020112420-appb-000027
式中,K为潮流类型判别系数;
Figure PCTCN2020112420-appb-000028
为主太阴日分潮流的椭圆长半轴长度;
Figure PCTCN2020112420-appb-000029
为太阴太阳赤纬日分潮流的椭圆长半轴长度;
Figure PCTCN2020112420-appb-000030
为主太阴半日分潮流的椭圆长半轴长度。
本实施例设定:K≤0.5,判定为规则半日潮流;0.5<K≤2.0,判定为不规则半日潮流;2.0<K≤4.0,判定为不规则全日潮流;4.0<K,判定为规则全日潮流。
潮流流速的计算前提是判断潮流的类型,本发明中不同的类型计算方法不同。调和分析是判断潮流类型的基础,基于调和分析的结果,采用以上公式计算成果判断潮流类型。
表4各分层潮流类型判别系数K值
Figure PCTCN2020112420-appb-000031
K值在0.10~0.27之间,由此判定属于规则半日潮流型。
本风电场海域潮流类型按上文判定为规则半日潮流型,另根据本海域三个潮位站的主要分潮潮位振幅计算的潮汐类型判别系数K=1.06~1.95,判定本海域潮汐属于不规则半日潮汐型。可见本海域潮流和潮汐的类型不一致。
计算各分层不同潮流类型的潮流可能最大流速矢量,本例中各分层次潮流可能最大流速矢量计算采用正交分解法:分别以流向N和 流向E作为纵、横坐标,建立平面直角坐标系;分层次对各主要分潮潮流的椭圆长半轴矢量进行分解,分别计算其投影在N方向和E方向的分量;乘以各项系数后按N方向和E方向分别求和;最后进行矢量合成,利用反函数并基于分量象限判断推算合成流的流向。
本例所在海域属于规则半日潮流,采用式(2)分层计算第k层潮流可能最大流速矢量,公式(2)如下所示:
Figure PCTCN2020112420-appb-000032
若各分层的潮流类型一致,则计算潮流可能最大流速矢量的公式也一样。
以0.6d层为例,潮流可能最大流速矢量列表计算如下:
表5 C1测站潮流可能最大流速矢量计算表(0.6d层)
Figure PCTCN2020112420-appb-000033
表5备注:本表各分潮流的椭圆长半轴的长度与其方向的数值, 一起组成该分潮流的椭圆长半轴矢量,例如
Figure PCTCN2020112420-appb-000034
的椭圆长半轴的长度为3.9cm/s、方向为225°。
其余层次的潮流可能最大流速矢量计算表与此一致,故略去。
按上文方法逐层计算潮流可能最大流速矢量,进而采用六点法公式计算垂线平均流速矢量,也就是按照前文所述的分层方法(三点法、六点法)对各分层可能最大流速矢量加权平均,计算潮流可能最大垂线平均流速矢量。将陆地河流垂线平均流速矢量计算六点法公式改用矢量表达,即式(7)。各分层潮流可能最大流速矢量及其垂线平均流速矢量计算过程一并列于下表。
六点法计算公式:
Figure PCTCN2020112420-appb-000035
式中,
Figure PCTCN2020112420-appb-000036
—水深为0(即海面)处的可能最大流速矢量,
Figure PCTCN2020112420-appb-000037
—水深为自海面往下0.2倍水深处的可能最大流速矢量,其余符号含义类推。
如果采用三点法,则潮流垂线平均流速矢量计算按照如下公式如下:
三点法计算公式:
Figure PCTCN2020112420-appb-000038
表6C1测站潮流可能最大垂线流速矢量计算表
Figure PCTCN2020112420-appb-000039
由上表计算成果可见,本海域潮流可能最大垂线平均流速矢量与0.8d层非常接近。
工程海域热带气旋影响期为7月~9月,相应海面10m高度平均风速为5.0m/s,盛行风风向在ENE~NE之间,约60.0°。据此计算强浪季节风海流流速,其中风流转换系数K本例取0.030,则风海流的流速值如下。
V u=MU=0.03×5.0=0.15m/s
根据上式计算所得流速与海床等深线方向一起组成风海流流速矢量
Figure PCTCN2020112420-appb-000040
风海流流向按近似与等深线方向一致,根据图2,本例风海流流向约60.0°,也与本海域盛行ENE~NE的风向基本一致。
根据式(5)计算100年一遇、50年一遇各波向波生流设计流速 矢量。
根据现行《港口与航道水文规范》JTS 145-2015第6.2.4条和现行《海堤工程设计规范》GB/T 51015-2014第6.1.2条的规定,对海上直墙式和墩柱式的基床、基础垫层和护底块石的稳定性波高累积频率j取5%。JTS 145-2015第6.2.4条相应条文说明为“直墙式和墩柱式建筑物基床的护面块石或人工块体的设计波高采用H 5%,主要是考虑它的损坏将影响整个建筑物的安全。
海上风电基础一般为墩柱式,冲刷影响基础的稳定性,因此本实施例采用累积频率5%,所以式(5)为下式形式,成果分列于表7,其中波生流流向与来波方向一致。
Figure PCTCN2020112420-appb-000041
表7 C1测站波生流各主要波向设计流速矢量成果表
Figure PCTCN2020112420-appb-000042
对比可见,本算例以式
Figure PCTCN2020112420-appb-000043
计算的波生流设计流速大于式
Figure PCTCN2020112420-appb-000044
计算成果,取其中大值。
按下式(本实施例中累积频率5%)将风电场海域C1测站波生流100年一遇、50年一遇各主要来波方向(E~S~WSW)的设计流速按上文所示的正交分解、分量求和再合成的过程分别与潮流可能最大 垂线平均流速矢量、风海流流速矢量进行矢量合成,选择流速值最大的流速值作为海流设计流速,按下式计算,结果列于表8。
Figure PCTCN2020112420-appb-000045
V R,i为重现期为R年流向为i的海流设计流速模;V R为重现期为R年的海流设计流速;θ R为重现期为R年的海流设计流速相应流向;
Figure PCTCN2020112420-appb-000046
为综合考虑各种误差和忽略项的安全系数,
Figure PCTCN2020112420-appb-000047
为潮流可能最大流速矢量的垂线平均流速矢量,
Figure PCTCN2020112420-appb-000048
为风海流流速矢量,
Figure PCTCN2020112420-appb-000049
为波生流设计流速矢量。
表8 C1测站潮流、风海流与波生流的矢量合成结果
Figure PCTCN2020112420-appb-000050
以重现期100年为例,矢量叠加过程参见图4(本例只显示了三 个合成流速较大的方向)。
由图表成果可知,潮流、风海流与波生流的矢量合成后,工程海域C1测站100年一遇、50年一遇海流设计最大流速分别为181.42cm/s和172.91cm/s,合成流流向均在20°附近。合成流流速大于C1测站冬季实测大潮最大垂线平均流速(77cm/s)。
本组合方法忽略了潮余流和密度流,并考虑如波生流流向概化误差等,安全放大系数
Figure PCTCN2020112420-appb-000051
取1.10,则根据式(6)计算,工程海域C1测站100年一遇、50年一遇海流设计最大流速分别为2.00m/s和1.90m/s,相应流向均在20°(即θ R=20°)附近,用于海上风电场海床基础局部冲刷计算。
下文以100年一遇基础冲刷为例说明局部冲刷计算过程,基础形式为直桩,桩径2.3m。由案例可知,风电场海域设计高潮位下水深为26.3m(表3),100年一遇海流设计最大流速为2.00m/s,相应流向为20°(接近NNE,22.5°),则来波方向对应为SSW(202.5°),对应的设计波要素在表3中选取,具体输入参数如下表所示。
表9海床基础局部冲刷计算的输入参数
参数 取值 参数 取值
水深(m) 26.3 中值粒径mm 0.09
波高(m) 5.46 密度kg/m 3 2650
周期(s) 9.8 海水密度(kg/m 3) 1025
海流流速(m/s) 2 海水粘滞系数(m 2/s) 1.00E-06
本例中基础局部冲刷深度的经验方法选取了以下三种:①65-2式、②65-1修正式、③韩海骞公式。
我国《公路工程水文勘测设计规范》(JTG C30—200)中推荐使 用的非黏土河床桥墩局部冲刷计算公式为65-2式和65-1修正式。65-2式表示为:
Figure PCTCN2020112420-appb-000052
式中,h b为桥墩局部冲刷深度;V为一般冲刷后墩前行近流速,实施例中V=V R;K ε为墩形系数;K η2=0.0023d 50 -2.2+0.375d 50 0.24,为河床颗粒影响系数,d 50为河床泥沙中值粒径;B 1为桥墩计算宽度;h p为一般冲刷后的最大水深;V 0=0.28(d 50+0.7) 0.5,为河床泥沙起动流速;V′ 0=0.12(d 50+0.5) 0.55,为墩前泥沙起冲流速;
Figure PCTCN2020112420-appb-000053
为指数。
65-1修正式可以表示为:
Figure PCTCN2020112420-appb-000054
式中,K η1=0.8(d 50 -0.45+d 50 -0.15),为河床颗粒影响系数;
Figure PCTCN2020112420-appb-000055
V′ 0=0.462(d 50/B 1) 0.06V 0
Figure PCTCN2020112420-appb-000056
韩海骞通过实测数据和水槽物理模型试验,采用因次分析法获得了潮流作用下的基础局部冲刷公式,在实际工程中也得到了广泛应用,其表达式为:
Figure PCTCN2020112420-appb-000057
式中,h b—潮流作用下基础冲刷深度(m);d—全潮最大水深(m); B—全潮最大水深条件下平均阻水宽度,即墩宽或桩径(m);d 50—泥沙颗粒中值粒径(m);F r—水流Froude数,
Figure PCTCN2020112420-appb-000058
V为一般冲刷后墩前行近流速(m/s),实施例中V=V R;g—重力加速度(m/s 2);k 1—基础桩平面布置系数,条带型取1.0,梅花型取0.862;k 2—基础桩垂直布置系数,直桩取1.0,斜桩取1.176,V R为重现期为R年的海流设计流速。
采用65-2式计算,河床泥沙起动流速V 0=0.28×(0.09+0.7) 0.5=0.249m/s,墩前泥沙起冲流速V′ 0=0.12×(0.09+0.5) 0.5=0.092m/s,墩前行近流速V按100年一遇海流设计最大流速2.00m/s取值。河床颗粒影响系数K η2=0.0023×0.09 -2.2+0.375×0.09 0.24=0.67,h p按26.3m取值,圆柱体桩基的墩形系数K ε按1.0取值,指数n=(0.249/2.00)^(0.23+0.19lg0.09)=0.937。按照式(10),计算得到基础局部冲刷深度为12.15m。
采用65-1修正式计算,河床泥沙起动流速V 0=0.0246×(26.3/0.09) 0.14×(332×0.09+(10+26.3)/0.09)^0.5=1.138m/s,墩前泥沙起冲流速V′ 0=0.462×(0.09/2.3) 0.06×1.138=0.433m/s,墩前行近流速V按100年一遇海流设计最大流速2.00m/s取值。河床颗粒影响系数K η2=0.8×(0.09 -0.45+0.09 -0.15)=3.512,h p按26.3m取值,圆柱体桩基的墩形系数K ε按1.0取值,指数n=(1.138/2.00)^(0.25×0.09 0.19)=0.915。按照式(11),计算得到基础局部冲刷深度为18.84m。
采用韩海骞公式计算,k 1、k 2均取1.0,水流Froude数F r=2/(9.81×26.3)=0.125,H按26.3m取值。按照式(12),计算得到局 部冲刷深度为6.84m。
综上罗列上述方法的海床基础局部冲刷成果,如下表所示。
表10海床基础局部冲刷计算成果
方法 冲刷成果(m)
65-2式 12.15
65-1修正式 18.84
韩海骞方法 6.84
实施例二、与实施例一对应的,本实施例提供了基于海流设计流速的海床基础局部冲刷深度确定系统,如图2所示,包括:海洋水文气象条件采集装置、潮流类型分析模块、海流设计流速确定模块和基础局部冲刷深度确定模块;
所述海洋水文气象条件采集装置,用于根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程海域现场测风数据、海床地形信息以及确定设计波要素;
所述潮流类型分析模块,用于根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流类型;
所述海流设计流速确定模块,用于计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;根据采集的工程海域现场测风数据和海床地形信息确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;根据计算获得的各分层潮流可能最大流速的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;
所述海床基础局部冲刷深度确定模块,用于根据海流设计流速模 及流向确定海床基础局部冲刷深度。
在具体实施例中,所述海洋水文气象条件采集装置,包括:海流水文测验成果采集子模块、强浪季节平均风速采集子模块、设计波要素采集子模块。
海流水文测验成果采集子模块根据工程海域的水深条件,采用不同的分层方法采集潮流椭圆要素。当水深d≤5m时,采用三点法分层采集数据,观测层次分别为0.2d、0.6d、0.8d;当水深d>5m且≤50m时,采用六点法分层采集数据,观测层次分别为表层、0.2d、0.4d、0.6d、0.8d、底层。需要说明的是表层指水面以下0.5m处的水层;底层指离海底0~1.0m处的水层;0.2d、0.4d、0.6d、0.8d分别指水面以下0.2d、0.4d、0.6d、0.8d深度处的水层,d指总水深;观测底层时,应保证仪器不触底。采集夏、冬两季各连续观测1个完整的大、中、小潮潮期的全潮数据(包括水深、水温、盐度、含沙量、海流、风速、风向等要素)。
强浪季节平均风速采集子模块,采集工程海域一整年现场的测风数据,包括风速、风向,测风高度均为海平面以上10m高度处。根据波浪的统计成果或热带气旋等发生的频次确定强浪季,同时进行统计各个月份的平均风速值,加权平均计算强浪季对应月份的平均风速及风向(来风方向)。
设计波要素采集子模块,根据工程海域波浪专题研究成果,采集工程海域设计高潮位(累积频率10%的高潮位)下,波浪测站不同重现期的设计波要素。设计波要素包括来波方向、平均波高、有效波高、 累积频率5%波高、累积频率1%波高、平均周期、波长。根据采集成果,按照风、波方向一致的选择,挑选对应的设计波要素。
潮流类型分析模块主要对各分层上的全潮测验成果进行调和分析,并判断潮流的类型。根据采集到的全潮数据进行潮流的调和分析计算,得出不同分层上各个分潮流的椭圆要素,即分潮(O 1、K 1、M 2、S 2、M 4、MS 4)的流速、流向。计算各分层潮流类型的判别系数K值,根据K值判断潮流的类型(潮流类型有:规则半日潮流、规则全金日潮流、不规则半日潮流、不规则全日潮流)。
所述海流设计流速模及流向确定模块包括海流设计最大流速计算模块、潮流可能最大垂线平均流速计算子模块、风海流流速矢量计算子模块、波生流设计流速矢量计算子模块以及潮流、风海流与波生流的矢量合成子模块。
海流设计最大流速计算模块包括:潮流可能最大垂线平均流速计算子模块;风海流流速矢量计算子模块;波生流设计流速矢量计算子模块;潮流、风海流与波生流的矢量合成子模块。
潮流可能最大垂线平均流速计算子模块,根据潮流类型分析模块判断的潮流不同类型,选取不同的各分层可能最大流速计算方法,再按照前文所述的分层方法(三点法、六点法)对各分层可能最大流速加权平均,计算潮流可能最大垂线平均流速。
风海流流速矢量计算子模块根据海流强浪季平均风速采集子模块挑选的海流强浪季的平均风速、风向,进行风海流流速矢量的计算。
波生流设计流速矢量计算子模块根据设计波要素采集子模块挑 选的设计波要素进行波生流设计流速的计算。
潮流、风海流与波生流的矢量合成子模块按照潮流可能最大垂线平均流速计算子模块、风海流流速矢量计算子模块、波生流设计流速矢量计算子模块计算得到的流速进行矢量计算,并选择流速值最大的流速作为海流设计流速。
海床基础局部冲刷深度确定模块提供多种基础局部冲刷的计算方法,按照各个模块的计算成果作为该模块的输入条件,进行多方法的基础局部冲刷计算成果的输出,供工程师或生产实践使用。
本实施例中各个模块的具体实现方法与实施例一中的方法一一对应,在本实施例中不再介绍。
发明为从事海床基础局部冲刷计算的技术人员提供一种理想的、明确的计算手段与方法,提高设计质量和效率。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指 令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,包括以下步骤:
    根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程海域现场测风数据、海床地形信息以及确定设计波要素;
    根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流类型,计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;根据采集的工程海域现场测风数据和海床地形信息确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;
    根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;根据海流设计流速确定海床基础局部冲刷深度。
  2. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,所述潮流类型包括规则的半日潮流、不规则的半日潮流、规则的全日潮流和不规则的全日潮流;判别潮流类型的具体方法如下:
    Figure PCTCN2020112420-appb-100001
    式中,K为潮流类型判别系数;
    Figure PCTCN2020112420-appb-100002
    为主太阴日分潮流的椭圆长半轴 长度;
    Figure PCTCN2020112420-appb-100003
    为太阴太阳赤纬日分潮流的椭圆长半轴长度;
    Figure PCTCN2020112420-appb-100004
    为主太阴半日分潮流的椭圆长半轴长度;
    K小于等于第一设定值,则判定为规则半日潮流;K大于第一设定值且小于等于第二设定值,则判定为不规则半日潮流;K大于第二设定值且小于等于第三设定值,判定为不规则全日潮流;K大于第三设定值,判定为规则全日潮流。
  3. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,根据不同分层的潮流类型,计算各分层的潮流可能最大流速矢量具体包括:
    对规则半日潮流海区,各分层的潮流可能最大流速矢量按下式计算
    Figure PCTCN2020112420-appb-100005
    式中,
    Figure PCTCN2020112420-appb-100006
    为潮流可能最大流速矢量;通过潮流的调和分析得到以下参数:
    Figure PCTCN2020112420-appb-100007
    为主太阴半日分潮流的椭圆长半轴矢量;
    Figure PCTCN2020112420-appb-100008
    为主太阳半日分潮流的椭圆长半轴矢量;
    Figure PCTCN2020112420-appb-100009
    为太阴太阳赤纬日分潮流的椭圆长半轴矢量;
    Figure PCTCN2020112420-appb-100010
    为主太阴日分潮流的椭圆长半轴矢量;
    Figure PCTCN2020112420-appb-100011
    为主太阴四分之一日分潮流的椭圆长半轴矢量;
    Figure PCTCN2020112420-appb-100012
    为太阴太阳四分之一日分潮流的椭圆长半轴矢量;
    对规则全日潮流海区可按下式计算
    Figure PCTCN2020112420-appb-100013
    对不规则半日潮流海区和不规则全日潮流海区,采用式(2)和式(3)中的大值;
    对每一层潮流均按式(2)或式(3)等计算各分层潮流可能最大流速矢量。
  4. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,对各分层不同潮流类型的潮流可能最大流速矢量,采用加权平均计算方法确定各分层潮流可能最大流速矢量的垂线平均流速矢量
    Figure PCTCN2020112420-appb-100014
  5. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,根据测得的风速数据确定风海流流速矢量
    Figure PCTCN2020112420-appb-100015
    的方法如下:
    计算风海流流速V u,计算公式如下:
    V u=MU     (4)
    式中,V u为风海流流速;M为系数,U为平均海面上选定高处的选定时间内的平均风速;
    根据式(4)计算所得流速与海床等深线方向一起组成风海流流速矢量
    Figure PCTCN2020112420-appb-100016
  6. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,用方向i上的重现期R年累积频率j的设计波要素计算波生流设计流速矢量
    Figure PCTCN2020112420-appb-100017
    按下式计算:
    Figure PCTCN2020112420-appb-100018
    式中,L i为方向i上的波长;T i为方向i上的波周期;g为当地的重力 加速度;d为计算点总水深,H R,j,i为方向i上的重现期R年累积频率为j的波高。
  7. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速的表达式如下:
    Figure PCTCN2020112420-appb-100019
    式中,V R,i为重现期为R年流向为i的海流设计流速模;V R为重现期为R年的海流设计流速;θ R为重现期为R年的海流设计流速相应流向;
    Figure PCTCN2020112420-appb-100020
    为综合考虑各种误差和忽略项的安全系数,
    Figure PCTCN2020112420-appb-100021
    为潮流可能最大流速矢量的垂线平均流速矢量,
    Figure PCTCN2020112420-appb-100022
    为风海流流速矢量,
    Figure PCTCN2020112420-appb-100023
    为波生流设计流速矢量。
  8. 根据权利要求1所述的基于海流设计流速的海床基础局部冲刷深度确定方法,其特征在于,所述设计波要素包括来波方向上的波浪重现期、平均波高、有效波高、累积频率的波高、平均周期和波长。
  9. 基于海流设计流速的海床基础局部冲刷深度确定系统,其特征在于,包括:海洋水文气象条件采集装置、潮流类型分析模块、海流设计流速确定模块和海床基础局部冲刷深度确定模块;
    所述海洋水文气象条件采集装置,用于根据预先确定的设计潮位条件下工程海域水深的分层方法,分层采集海流观测数据;采集工程 海域现场测风数据、海床地形信息以及确定设计波要素;
    所述潮流类型分析模块,用于根据采集到的海流观测数据经调和分析得到潮流椭圆参数;根据获得的潮流椭圆参数判别各分层的潮流类型;
    所述海流设计流速确定模块,用于计算各分层不同潮流类型的潮流可能最大流速矢量并确定各分层潮流可能最大流速矢量的垂线平均流速矢量;根据采集的工程海域现场测风数据和海床地形信息确定风海流流速矢量;根据确定的设计波要素计算波生流设计流速矢量;根据计算获得的各分层潮流可能最大流速矢量的垂线平均流速矢量、风海流流速矢量与波生流设计流速矢量合成获得海流设计流速;
    所述海床基础局部冲刷深度确定模块,用于根据海流设计流速确定海床基础局部冲刷深度。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1~8任意一项权利要求所述方法的步骤。
PCT/CN2020/112420 2020-08-18 2020-08-31 基于海流设计流速的海床基础局部冲刷深度确定方法及系统 WO2022036752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010831362.0A CN111950211B (zh) 2020-08-18 2020-08-18 基于海流设计流速的海床基础局部冲刷深度确定方法及系统
CN202010831362.0 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022036752A1 true WO2022036752A1 (zh) 2022-02-24

Family

ID=73343649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112420 WO2022036752A1 (zh) 2020-08-18 2020-08-31 基于海流设计流速的海床基础局部冲刷深度确定方法及系统

Country Status (2)

Country Link
CN (1) CN111950211B (zh)
WO (1) WO2022036752A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114611425A (zh) * 2022-03-11 2022-06-10 江苏省水利科学研究院 波浪作用下细粉沙层移运动特征分析方法
CN114674526A (zh) * 2022-03-11 2022-06-28 水利部交通运输部国家能源局南京水利科学研究院 波浪作用下细粉沙层移运动临界条件确定方法
CN114859073A (zh) * 2022-04-13 2022-08-05 武汉大学 一种泥沙起动感应装置
CN115114809A (zh) * 2022-08-31 2022-09-27 中交(天津)生态环保设计研究院有限公司 一种装舱溢流施工流失量的计算方法及系统
CN115329606A (zh) * 2022-10-13 2022-11-11 交通运输部天津水运工程科学研究所 一种强非线性波浪作用下护底块石稳定重量计算方法
CN115392098A (zh) * 2022-10-31 2022-11-25 浙江远算科技有限公司 基于水沙数值仿真的海上风电海缆裸露预测方法和系统
CN115467290A (zh) * 2022-10-25 2022-12-13 成都市市政工程设计研究院有限公司 一种生态固床件、试验装置及其试验方法
CN116400101A (zh) * 2023-06-08 2023-07-07 自然资源部第一海洋研究所 一种近表层海流数据可信性判断的方法
CN116522727A (zh) * 2023-04-25 2023-08-01 中国长江三峡集团有限公司 基于流场分析的网格化胶结抛石防冲刷施工方法及装置
CN116882206A (zh) * 2023-09-06 2023-10-13 浙江省水利河口研究院(浙江省海洋规划设计研究院) 淤泥质海床相邻岬湾沙滩泥化分界高程计算方法及装置
CN117454720A (zh) * 2023-12-21 2024-01-26 浙江远算科技有限公司 一种极端天气海上风电场冲刷风险仿真预测方法和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814276B (zh) * 2022-03-21 2023-08-18 汕头大学 海上风电设备运行导致周边海水垂向运动流速的计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798821A (zh) * 2010-03-05 2010-08-11 河海大学 淤泥质海岸近海风电塔基局部冲刷预报方法
US20110265547A1 (en) * 2009-01-09 2011-11-03 Farhad Ansari Sensor, methods of calibrating a sensor, methods of operating a sensor
CN111291470A (zh) * 2020-01-17 2020-06-16 上海交通大学 一种快速预测海洋桩局部冲刷深度的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715632B (zh) * 2019-12-06 2021-08-17 浙江省水利河口研究院 强潮河口海湾桥墩局部冲刷深度预测及预警的专用终端
CN111289219B (zh) * 2020-02-25 2021-08-27 李熙 一种超临界流条件下基础局部冲刷的水槽试验方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265547A1 (en) * 2009-01-09 2011-11-03 Farhad Ansari Sensor, methods of calibrating a sensor, methods of operating a sensor
CN101798821A (zh) * 2010-03-05 2010-08-11 河海大学 淤泥质海岸近海风电塔基局部冲刷预报方法
CN111291470A (zh) * 2020-01-17 2020-06-16 上海交通大学 一种快速预测海洋桩局部冲刷深度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU SHUO;DAI GUOLIANG;GAO LUCHAO;WAN ZHIHUI;ZHU MINGXING: "Prediction of Local Scour Depth at Offshore Wind Turbine Monopile Foundation in Combined Waves and Current", JOURNAL OF SOUTHEAST UNIVERSITY(NATURAL SCIENCE EDITION), vol. 50, no. 4, 20 July 2020 (2020-07-20), pages 616 - 622, XP055902539, ISSN: 1001-0505, DOI: 10.3969/j.issn.1001-0505.2020.04.003 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674526B (zh) * 2022-03-11 2023-06-23 水利部交通运输部国家能源局南京水利科学研究院 波浪作用下细粉沙层移运动临界条件确定方法
CN114674526A (zh) * 2022-03-11 2022-06-28 水利部交通运输部国家能源局南京水利科学研究院 波浪作用下细粉沙层移运动临界条件确定方法
CN114611425A (zh) * 2022-03-11 2022-06-10 江苏省水利科学研究院 波浪作用下细粉沙层移运动特征分析方法
CN114859073A (zh) * 2022-04-13 2022-08-05 武汉大学 一种泥沙起动感应装置
CN115114809A (zh) * 2022-08-31 2022-09-27 中交(天津)生态环保设计研究院有限公司 一种装舱溢流施工流失量的计算方法及系统
CN115329606A (zh) * 2022-10-13 2022-11-11 交通运输部天津水运工程科学研究所 一种强非线性波浪作用下护底块石稳定重量计算方法
CN115467290A (zh) * 2022-10-25 2022-12-13 成都市市政工程设计研究院有限公司 一种生态固床件、试验装置及其试验方法
CN115467290B (zh) * 2022-10-25 2023-09-01 成都市市政工程设计研究院有限公司 一种生态固床件试验装置的试验方法
CN115392098B (zh) * 2022-10-31 2023-02-03 浙江远算科技有限公司 基于水沙数值仿真的海上风电海缆裸露预测方法和系统
CN115392098A (zh) * 2022-10-31 2022-11-25 浙江远算科技有限公司 基于水沙数值仿真的海上风电海缆裸露预测方法和系统
CN116522727A (zh) * 2023-04-25 2023-08-01 中国长江三峡集团有限公司 基于流场分析的网格化胶结抛石防冲刷施工方法及装置
CN116400101A (zh) * 2023-06-08 2023-07-07 自然资源部第一海洋研究所 一种近表层海流数据可信性判断的方法
CN116400101B (zh) * 2023-06-08 2023-08-29 自然资源部第一海洋研究所 一种近表层海流数据可信性判断的方法
CN116882206A (zh) * 2023-09-06 2023-10-13 浙江省水利河口研究院(浙江省海洋规划设计研究院) 淤泥质海床相邻岬湾沙滩泥化分界高程计算方法及装置
CN116882206B (zh) * 2023-09-06 2023-11-14 浙江省水利河口研究院(浙江省海洋规划设计研究院) 淤泥质海床相邻岬湾沙滩泥化分界高程计算方法及装置
CN117454720A (zh) * 2023-12-21 2024-01-26 浙江远算科技有限公司 一种极端天气海上风电场冲刷风险仿真预测方法和设备
CN117454720B (zh) * 2023-12-21 2024-03-29 浙江远算科技有限公司 一种极端天气海上风电场冲刷风险仿真预测方法和设备

Also Published As

Publication number Publication date
CN111950211A (zh) 2020-11-17
CN111950211B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022036752A1 (zh) 基于海流设计流速的海床基础局部冲刷深度确定方法及系统
Elias et al. Field and model data analysis of sand transport patterns in Texel Tidal inlet (the Netherlands)
CN107729656A (zh) 基于台风过程风场作用下的风暴潮漫堤风险预警方法
CN105844427B (zh) 一种风暴潮灾害风险精细化评估的计算方法
Li et al. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics
CN115840975B (zh) 一种风暴潮增水漫堤预警方法、系统、装置和存储介质
CN101798821B (zh) 淤泥质海岸近海风电塔基局部冲刷预报方法
Yang et al. The impact of coastal reclamation on tidal and storm surge level in Sanmen Bay, China
CN107256312A (zh) 一种基于潮流环境下海湾纳潮变化量计算方法
CN110543679B (zh) 一种多波况大尺寸固定式海工平台水平力计算方法
Ma et al. A high-precision hydrodynamic model coupled with the hydrological habitat suitability model to reveal estuarine vegetation distribution
Wang et al. The impact of surface wave on the sediment erosion and deposition near the wellow river mouth, China.
Sharbaty Two Dimensional simulations of seasonal flow patterns in the Gorgan Bay
Ding et al. Coastal and Estuarine planning for flood and erosion protection using integrated coastal model
Chonwattana et al. 3D Modeling of morphological changes using representative waves
Ma et al. Identification and simulation the response of storm-induced coastal erosion in the China Yellow sea
CN116882206B (zh) 淤泥质海床相邻岬湾沙滩泥化分界高程计算方法及装置
Ding et al. Three-dimensional numerical simulation of tidal flows in the Yangtze River Estuary
Demirbilek et al. Wave modeling for jetty rehabilitation at the Mouth of the Columbia River, Washington/Oregon, USA
Jiang et al. Waterway design criteria of land reclamation based on an environmental fluid dynamics computer model
Sarhan et al. Prediction of Shoreline Deformation around Multiple Hard Coastal Protection Systems.
Ping et al. Analysis of the Influence of Tidal Creek Dredging on Tidal Flat Hydrodynamics
CN118446128A (zh) 基于海流各向设计流速的海床基础局部冲刷防护范围确定方法和系统
Guo et al. Numerical simulation study of hydrodynamic impact of sea-crossing bridge
Martín Grandes Understanding Longshore Sediment Transport on a Mixed Beach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949958

Country of ref document: EP

Kind code of ref document: A1