WO2022036709A1 - 波束失败确定方法、装置、设备及存储介质 - Google Patents

波束失败确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022036709A1
WO2022036709A1 PCT/CN2020/110593 CN2020110593W WO2022036709A1 WO 2022036709 A1 WO2022036709 A1 WO 2022036709A1 CN 2020110593 W CN2020110593 W CN 2020110593W WO 2022036709 A1 WO2022036709 A1 WO 2022036709A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
pucch
reference signal
beam failure
signal resource
Prior art date
Application number
PCT/CN2020/110593
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/004,587 priority Critical patent/US20230254712A1/en
Priority to CN202211210024.0A priority patent/CN115378485A/zh
Priority to CN202080002068.7A priority patent/CN112119597B/zh
Priority to PCT/CN2020/110593 priority patent/WO2022036709A1/zh
Priority to KR1020237001024A priority patent/KR20230023741A/ko
Priority to EP20949917.7A priority patent/EP4203337A4/en
Priority to JP2022581684A priority patent/JP2023532563A/ja
Publication of WO2022036709A1 publication Critical patent/WO2022036709A1/zh
Priority to JP2024070904A priority patent/JP2024097047A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a beam failure determination method, device, terminal and medium.
  • NR New Radio
  • the control channel since the control channel also needs to use beam-based transmission and reception, when the user equipment (User Equipment, UE) moves or the antenna direction rotates, the currently configured UE is used for sending and receiving physical downlink control
  • the receiving beam or the transmitting beam of the channel may have problems, that is, the problem of beam failure occurs.
  • the current communication protocol defines a reference signal resource set q0 for beam failure detection. When the UE detects that the radio link quality on all reference signals in these reference signal resource sets is lower than a threshold value #1, it indicates that the occurrence of The beam failed.
  • the UE shall, according to the reference signal resource set q1 configured by the base station to determine the candidate beam, detect whether the reference signal received power (Reference Signal Received Power, RSRP) in each reference signal in the reference signal resource set meets the threshold #2 the reference signal. If so, when the UE notifies the base station of a beam failure, the UE may also notify a new candidate beam for the base station to configure a new beam for the terminal.
  • RSRP Reference Signal Received Power
  • the embodiments of the present application provide a beam failure determination method, apparatus, terminal, and medium, which can implement a network device to recover from a beam failure on a single TRP in a scenario of multiple TRPs.
  • the technical solution is as follows:
  • a beam failure determination method which is applied in a terminal, and the method includes:
  • N reference signal resource sets for beam failure detection and a TRP identifier corresponding to each of the reference signal resource sets, where there are at least two different reference signal resource sets in the N reference signal resource sets, the The TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • a beam failure determination method which is applied to a network device, and the method includes:
  • the configuration information configures at least one reference signal resource set in the N reference signal resource sets used for beam failure detection to the terminal, and the corresponding reference signal resource set in each reference signal resource set in the at least one reference resource set Sending and receiving point TRP identification;
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical The cell IDs are the same.
  • a beam failure determination apparatus comprising:
  • a determination module configured to determine N reference signal resource sets used for beam failure detection, and a TRP identifier of a transmission and reception point corresponding to each of the reference signal resource sets, where there are at least two different reference signal resource sets in the N reference signal resource sets.
  • reference signal resource sets, the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • a beam failure determination apparatus comprising:
  • a configuration module configured to send configuration information, the configuration information configures at least one reference signal resource set in the N reference signal resource sets for beam failure detection to the terminal, and each of the at least one reference signal resource set The TRP identifier of the sending and receiving point corresponding to the reference signal resource set;
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical The cell IDs are the same.
  • a terminal includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the above beam failure determination method.
  • a network device comprising:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the above beam failure determination method.
  • a computer-readable storage medium wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above beam failure Determine the method.
  • the terminal can also accurately determine the beam failure event of the TRP, and then accurately report the beam failure determination to the base station to avoid waste of communication resources.
  • FIG. 1 is a schematic diagram of a four-step random access process provided by an exemplary embodiment of the present application
  • FIG. 2 is a schematic diagram of a two-step random access process provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a method for determining a beam failure provided by an exemplary embodiment of the present application
  • FIG. 5 is a flowchart of a method for determining a beam failure provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for determining a beam failure provided by an exemplary embodiment of the present application
  • FIG. 7 is a flowchart of a method for determining a beam failure provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a method for determining a beam failure provided by an exemplary embodiment of the present application.
  • FIG. 9 is a block diagram of an apparatus for determining beam failure provided by an exemplary embodiment of the present application.
  • FIG. 10 is a block diagram of an apparatus for determining beam failure provided by an exemplary embodiment of the present application.
  • FIG. 11 is a block diagram of a terminal provided by an exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of a network device provided by an exemplary embodiment of the present application.
  • the random access process refers to the process from when the terminal device sends a preamble and attempts to access the network until the basic signaling connection is established with the network.
  • the random access process is one of the most basic requirements for any cellular communication system. It is used to enable the terminal device to establish data communication with the network side.
  • the random access process is divided into: four-step (4-step) random access and two-step (2-step) random access.
  • Figure 1 shows that in the contention-based random access procedure, the four steps of the random access procedure include:
  • the terminal device device sends a message 1: a preamble to the network device.
  • the terminal device sends a preamble to the network device, and the network device estimates the transmission delay of the terminal device accordingly to realize uplink synchronization.
  • RAR Random Access Response
  • the network device Based on the transmission delay estimated in the above step (1), the network device sends a timing advance command to adjust the sending time of the terminal device.
  • Message 2 is organized by the media access control layer (Media Access Control, MAC) of the network device, and is carried by the Down Link Share Channel (DL_SCH).
  • Media Access Control Media Access Control
  • DL_SCH Down Link Share Channel
  • the network device uses the Physical Downlink Control Channel (PDCCH) to schedule message 2, and addresses (also called scrambling) through C-RNTI or RA-RNTI.
  • RA-RNTI is accessed by the physical random access that carries message 1.
  • Channel Physical Random Access Channel, PRACH
  • Message 2 contains uplink transmission timing advance, and message 3 is allocated uplink resources and temporary C-RNTI.
  • the terminal device sends a message 3 to the network device: first scheduling transmission.
  • the terminal device After receiving the message 2, the terminal device transmits the message 3 on the allocated uplink resources, and sends the user equipment identity (User Equipment Identify, UE ID) to the network device through the Physical Uplink Share Channel (PUSCH).
  • the user equipment identity User Equipment Identify, UE ID
  • PUSCH Physical Uplink Share Channel
  • the network device sends message 4 to the terminal device: contention resolution message.
  • PDSCH Physical Downlink Share Channel
  • the 4-step random access process can be combined into a 2-step random access process.
  • the combination includes message A and message B, and the relevant steps include:
  • the terminal device sends a message A to the network device.
  • the network device After receiving the message A sent by the terminal device, the network device sends the message B to the terminal device.
  • the message A includes the contents of the message 1 and the message 3, that is, the message A includes: a preamble and a UE ID
  • the UE ID can be: a cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C-RNTI), One of a temporary C-RNTI, a random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI), and a non-access stratum (Non-Access Stratum) UE ID.
  • C-RNTI Cell Radio Network Temporary Identifier
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • Non-Access Stratum Non-Access Stratum
  • the message B includes the contents of the message 2 and the message 4, that is, the message B includes: a random access response and a contention resolution message.
  • FIG. 3 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal device 14 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal device.
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different.
  • eNodeBs or eNBs In LTE systems, they are called eNodeBs or eNBs; in 5G NR systems, they are called gNodeBs or gNBs.
  • the description of "base station” may change.
  • the above-mentioned apparatuses for providing wireless communication functions for the terminal device 14 are collectively referred to as network devices.
  • the network device may also be a vehicle terminal device.
  • the terminal device 14 may include various handheld devices, in-vehicle devices, wearable devices, computing devices or Internet of Things (Internet of Things, IoT) devices or Industrial Internet of Things (IIoT) devices or connections with wireless communication functions Other processing equipment to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), terminal (terminal device) and so on.
  • IoT Internet of Things
  • IIoT Industrial Internet of Things
  • Other processing equipment to wireless modems as well as various forms of user equipment, mobile stations (Mobile Station, MS), terminal (terminal device) and so on.
  • the network device 120 and the terminal device 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • Frequency Division Duplex FDD
  • Time Division Duplex TDD
  • Advanced Long Term Evolution Advanced Long Term Evolution
  • LTE-A New Radio
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to Unlicensed spectrum, LTE-U) system on unlicensed frequency band, NR-U system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi) , next-generation communication systems or other communication systems, etc.
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • Each serving cell of the terminal includes: a primary cell (Primary Cell, Pcell), a primary secondary cell (Primary Secondary Cell, PScell), and each bandwidth part (Bandwidth Part, BWP) of the secondary cell (Secondary Cell, SCell), Only one q0 and one q1 are configured at most, where q0 is the reference signal resource set used for beam failure detection, and q1 is the reference signal resource set used for candidate beam discovery. Even if the terminal is configured with multiple TRPs to transmit PDCCH on the activated BWP of one serving cell, only one q0 and one q1 are configured for the serving cell.
  • TRP1 If the PDCCH sent by TRP1 is only for scheduling the PDSCH or PUSCH of TRP1, beam failure on TRP1 will affect the waste of PDCCH resources and PDSCH/PUSCH resources, and increase the power consumption of the terminal monitoring unnecessary PDCCH.
  • FIG. 4 shows a flowchart of a method for determining a beam failure provided by an embodiment of the present application.
  • the method is applied to the terminal as shown in FIG. 1 for illustration.
  • the method includes:
  • Step 402 Determine N reference signal resource sets for beam failure detection, and a TRP identifier corresponding to each reference signal resource set;
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • reference signal resource set 1 corresponds to TPR1
  • reference signal resource set 2 corresponds to TRP2.
  • TRP1 and TRP2 are two different TRPs, and both TRP1 and TRP2 correspond to the same serving cell 1 .
  • the correspondence between the N reference signal resource sets and the N TRP identifiers can be any one of the following four ways:
  • the TRP identifier includes the control resource set index identifier (CORESET pool index), and the control resource set index identifier corresponds to the TRP one-to-one;
  • the TRP identifier includes the reference signal resource set index, and the reference signal resource set index corresponds to the TRP one-to-one;
  • the TRP identifier includes the reference signal resource index, and the reference signal resource index corresponds to the TRP one-to-one;
  • the TRP identification includes the TRP number.
  • the physical cell identifier includes: a serving cell of the terminal and/or a physical cell identifier of a neighboring cell.
  • the reference signal resources include: Synchronization Signal Block (SSB), Channel-Slate Information Reference Signal (CSI-RS), Positioning Reference Signal (Positioning Reference Signal, PRS), Tracking Reference At least one of a signal (Tracking Reference Signal, TRS) and a sounding reference signal (Sounding Reference Signal, SRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel-Slate Information Reference Signal
  • PRS Positioning Reference Signal
  • PRS Positioning Reference Signal
  • Tracking Reference At least one of a signal Tracking Reference Signal
  • TRS Tracking Reference Signal
  • Sounding Reference Signal Sounding Reference Signal
  • the terminal by setting at least two reference signal resource sets for the terminal, the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers are the same, so that it can be used in the same serving cell.
  • the terminal can also accurately determine the beam failure event of the TRP, and then accurately report the beam failure determination to the base station to avoid waste of communication resources.
  • step 402 may be implemented in at least one of the following three ways:
  • the network device sends first configuration information to the terminal, where the first configuration information is used to configure N reference signal resource sets and TRP identifiers corresponding to the N reference signal resource sets.
  • the terminal receives the first configuration information from the network device, and determines N reference signal resource sets for beam failure detection according to the first configuration information.
  • Table 1 schematically presents N reference signal resource sets.
  • the terminal determines default N reference signal resource sets and TRP identifiers corresponding to the N reference signal resource sets.
  • the default reference signal resource set is the reference signal resource set corresponding to the target TCI state
  • the target TCI state is the transmission configuration indication configured for the terminal when monitoring the PDCCH on the CORESET corresponding to the TRP (Transmission Configuration Indication, TCI) status.
  • the default reference signal resource set corresponding to TRP1 includes reference signal resources corresponding to TCI state 1, which is the TCI state configured for the terminal when monitoring the PDCCH on the CORESET corresponding to TRP1.
  • the default reference signal resource set corresponding to TRP2 includes reference signal resources corresponding to TCI state 2
  • TCI state 2 is the TCI state configured for the terminal when monitoring the PDCCH on the CORESET corresponding to TRP2.
  • Table 2 schematically presents N reference signal resource sets.
  • each element in Table 2 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each of these elements is independent of the value of any other element in Table II. Therefore, those skilled in the art can understand that the value of each element in Table 2 is an independent embodiment.
  • the network device sends second configuration information to the terminal, where the second configuration information is used to configure the first part of the reference signal resource set in the N reference signal resource sets and the TRP identifier corresponding to the first part of the reference signal resource set.
  • the terminal receives the second configuration information from the network device, and determines the first partial reference signal resource set according to the second configuration information. In addition, the terminal also determines a default second partial reference signal resource set, where the second partial reference signal resource set is the remaining set of the N reference signal resource sets except the first partial reference signal resource set.
  • FIG. 5 shows a flowchart of a method for determining a beam failure provided by an embodiment of the present application.
  • the method is applied to the terminal as shown in FIG. 1 for illustration.
  • the method includes:
  • Step 502 The terminal determines N reference signal resource sets for beam failure detection, and a TRP identifier corresponding to each reference signal resource set.
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • reference signal resource set 1 corresponds to TPR1
  • reference signal resource set 2 corresponds to TRP2.
  • TRP1 and TRP2 are two different TRPs, and both TRP1 and TRP2 correspond to the same serving cell 1 .
  • the correspondence between the N reference signal resource sets and the N TRP identifiers can be any one of the following four ways:
  • the TRP identifier includes the control resource set index identifier (CORESET pool index), and the control resource set index identifier corresponds to the TRP one-to-one;
  • the TRP identifier includes the reference signal resource set index, and the reference signal resource set index corresponds to the TRP one-to-one;
  • the TRP identifier includes a reference signal resource index, and the reference signal resource index is in one-to-one correspondence with the TRP;
  • the TRP identification includes the TRP number.
  • Step 504 When the reference signals in the first reference signal resource set in the at least two reference signal resource sets satisfy the beam failure condition, the terminal determines that the first TRP corresponding to the first reference signal resource set has a beam failure.
  • the beam failure condition includes: the radio link quality of the reference signal is lower than a threshold value.
  • the radio link quality of the reference signal is characterized by: L1-reference signal received power (Reference Signal Received Power, RSRP).
  • the radio link quality of the reference signal is characterized by: L1-Signal-to-Interference-and-Noise Ratio (SINR).
  • Step 506 When a beam failure occurs in the first TRP, the terminal sends a beam failure recovery request to the network device.
  • the beam failure recovery request is used to indicate that the first TRP has a beam failure, or it is used to indicate that there is a TRP that has a beam failure but does not indicate which TRP has a beam failure, and then indicate which TRP has a beam failure in subsequent signaling.
  • the terminal when a beam failure occurs in the first TRP, the terminal sends a beam failure recovery request to the network device, so that when a beam failure occurs in a certain TRP in the scenario of sending multiple TRPs , the terminal accurately sends a beam failure recovery request to the network device.
  • step 506 there are two transmission modes in step 506:
  • the first way is to send a beam failure recovery request by randomly accessing time-frequency resources, as shown in the embodiment shown in FIG. 6 below;
  • the second way is to send a beam failure recovery request through the SR carried on the Physical Uplink Control Channel (PUCCH), as shown in the embodiment shown in Figure 7 below.
  • PUCCH Physical Uplink Control Channel
  • the first sending method for beam failure recovery request (random access time-frequency resource):
  • FIG. 6 shows a flowchart of a method for determining a beam failure provided by an embodiment of the present application.
  • the method is applied to the terminal and the network device shown in FIG. 1 for illustration.
  • the method includes:
  • Step 502 The terminal determines N reference signal resource sets for beam failure detection, and a TRP identifier corresponding to each reference signal resource set.
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • Step 504 When the reference signals in the first reference signal resource set in the at least two reference signal resource sets satisfy the beam failure condition, the terminal determines that the first TRP corresponding to the first reference signal resource set has a beam failure.
  • Step 506-1 When a beam failure occurs in the first TRP, the terminal sends a first random access preamble on the first random access time-frequency resource, where the first random access preamble is used to indicate a beam failure recovery request.
  • step 506-1 is a method for sending a first random access preamble when a beam fails, provided by this embodiment of the present application; step 506-1 may be performed alone, or may be combined with any one of the present disclosure steps are performed together.
  • the beam failure recovery request is used to indicate that the first TRP has a beam failure, or it is used to indicate that there is a TRP with a beam failure, but it does not indicate which TRP has a beam failure, and will indicate which TRP has a beam failure in subsequent signaling.
  • the first random access preamble is a preamble allocated to indicate a beam failure recovery request among the plurality of random access preambles.
  • This step includes but is not limited to at least one of the following implementations:
  • the first random access preamble is sent on the first random access time-frequency resource
  • the first random access preamble is sent on the first random access time-frequency resource.
  • the TRP in which the beam failure occurs is a PCell or PScell TRP, and any TRP belonging to the PCell or PScell has a beam failure, the first random access time-frequency resource is used to send a beam failure recovery request.
  • the first random access preamble is sent on the first random access time-frequency resource.
  • the configuration CORESET#0 of the terminal indicates that before the beam failure occurs in the first TRP, the terminal receives the indication information of CORESET#0 from the first TRP.
  • the above-mentioned first random access time-frequency resource may be the random access time-frequency resource corresponding to the first TRP, or may be the random access time-frequency resource corresponding to the second TRP.
  • the random access time-frequency resources may be referred to as random access resources for short.
  • the first random time-frequency resource is the random access time-frequency resource corresponding to the first TRP itself:
  • the first random access time-frequency resource is the random access time-frequency resource corresponding to the first SSB sent by the first TRP.
  • the method for the terminal to determine the first random access time-frequency resource may include:
  • the reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET poolindex index identifier corresponding to the first TRP is the first SSB, and the random access time-frequency resource of the first SSB is determined as the first random access time-frequency resource. That is, the first SSB is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET poolindex index corresponding to the first TRP.
  • the reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET poolindex index identifier corresponding to the first TRP is the first CSI-RS, and the first SSB corresponds to the first CSI-RS.
  • the frequency resource is determined as the first random access time-frequency resource. That is, the first CSI-RS is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET index identifier corresponding to the first TRP.
  • the network device directly indicates the first SSB corresponding to the first TRP, or directly indicates the first SSB corresponding to the CORESETpoolindex index identifier corresponding to the first TRP.
  • the first random time-frequency resource is the random access time-frequency resource corresponding to other TRPs:
  • the first random access time-frequency resource is the random access time-frequency resource corresponding to the second SSB
  • the second SSB is the SSB sent by the TRP configured with CORESET#0 of the terminal.
  • the TRP configured with CORESET#0 of the terminal may be the same as or different from the first TRP.
  • the first TRP in which beam failure occurs is configured with CORESET#0, its own random access resources are preferentially used.
  • the method further includes:
  • the identification information is sent in the PUSCH of the message A in the two-step random access procedure, and the identification information is used to indicate the identification of the first TRP; or, the identification information is sent in the PUSCH of the message 3 in the four-step random access procedure.
  • the terminal notifies the network device of beam failure through message A or the first random access preamble in message 1, and also informs the network device of beam failure through message A or message 3.
  • the TRP is the first TRP.
  • the identification information includes at least one of the following:
  • the cell identity of the first TRP is the cell identity of the first TRP.
  • the reference signal resources include: at least one of SSB, CSI-RS, PRS, TRS, and SRS.
  • the first TRP includes one or more TRPs, and when the first TRP includes multiple TRPs, identification information of each TRP in the first TRP needs to be indicated.
  • Multiple TRPs can belong to different cells; multiple TRPs can also belong to the same cell.
  • the identifiers of the multiple TRPs that have failed beams will be indicated. information; when beam failure occurs in all TRPs in the cell, the identification information of multiple TRPs with beam failures may be indicated respectively, or the identification information of the cell may be directly indicated.
  • the network device further configures the terminal with a second reference signal resource set for discovering candidate beams, and when the radio link quality of the reference signal in the second reference signal resource set is greater than the threshold value, The candidate beam corresponding to the reference signal is determined as the target candidate beam.
  • the radio link quality of the reference signal corresponding to the target candidate beam is greater than the threshold value, and the reference signal is the reference signal in the second reference signal resource set used to discover the candidate beam.
  • the wireless link quality is represented by L1-RSRP or L1-SINR.
  • the first random access time-frequency resource is the random access time-frequency resource corresponding to the SSB corresponding to the target candidate beam.
  • the SSB corresponding to the target candidate beam is the SSB sent by the first TRP or the second TRP.
  • the terminal also sends identification information in the PUSCH of message A in the two-step random access process, and the identification information is used to indicate the first TRP; or, in the fourth step The identification information is sent in the PUSCH of message 3 in the random access process.
  • Step 508 the network device receives the first random access preamble on the first random access time-frequency resource
  • the network device After receiving the first random access preamble sent by the terminal, the network device determines that a beam failure has occurred in the terminal.
  • Step 510 The network device determines the first TRP.
  • the network device determines, according to the first SSB corresponding to the first random access time-frequency resource, that the first TRP fails to generate a beam.
  • the first SSB and the first TRP have a corresponding relationship.
  • the first SSB is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET poolindex index corresponding to the first TRP.
  • the first SSB corresponds to the first CSI-RS, and the random access time-frequency resource of the first SSB is determined as the first random access time-frequency resource.
  • the first CSI-RS is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the CORESET poolindex index corresponding to the first TRP.
  • the network device directly indicates the first SSB corresponding to the first TRP, or directly indicates the first SSB corresponding to the CORESETpoolindex index identifier corresponding to the first TRP.
  • the network device When the first random access time-frequency resource is the SSB sent by the second SSB or other TRP, the network device also receives identification information in the PUSCH of message A in the two-step random access process, and determines the first random access according to the identification information. TRP; or, the network device receives identification information in the PUSCH of message 3 in the four-step random access process, and the network device determines the first TRP according to the identification information.
  • the network device further configures the terminal with a second reference signal resource set for discovering candidate beams.
  • the network device determines the target candidate beam according to the SSB corresponding to the first random access time-frequency resource.
  • Step 512 The network device performs beam failure recovery for the terminal for the first TRP.
  • the network device When there is a target candidate beam reported by the terminal, the network device performs beam failure recovery for the terminal according to the target candidate beam, for example, specifying the target candidate beam as the recovered beam. When there is no target candidate beam reported by the terminal, the network device automatically designates the beam as the restored beam, or the network device instructs the terminal to perform beam management measurement and reporting, and designate the restored beam based on the reporting result.
  • the terminal when a beam failure occurs in the first TRP, uses the first random access time-frequency resource to send the first random access preamble, and simultaneously transmits the first random access preamble through the first random access time-frequency resource.
  • the resource or identification information is used to indicate the first TRP, so that the network device can accurately know that a beam failure has occurred in the first TRP, and the network device can perform beam failure recovery for the terminal for the first TRP.
  • the second sending method for beam failure recovery request (SR-BFR):
  • FIG. 7 shows a flowchart of a method for determining a beam failure provided by an embodiment of the present application.
  • the method is applied to the terminal and the network device shown in FIG. 1 for illustration.
  • the method includes:
  • Step 502 The terminal determines N reference signal resource sets for beam failure detection, and a TRP identifier corresponding to each reference signal resource set.
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • Step 504 When the reference signals in the first reference signal resource set in the at least two reference signal resource sets satisfy the beam failure condition, the terminal determines that the first TRP corresponding to the first reference signal resource set has a beam failure.
  • Step 506-2 the terminal sends an SR-BFR to the network device on the PUCCH when a beam failure occurs in the first TRP;
  • SR-BFR is SR for beam failure recovery request.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH of the neighboring cell; or, the PUCCH is the third TRP that does not have beam failure in the same cell as the first TRP.
  • the PUCCH sent on the TRP; or, the PUCCH is the PUCCH of the serving cell that does not belong to the first TRP without beam failure.
  • the first TRP is the TRP of the Scell.
  • PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH sent on the fourth TRP in the Scell to which the first TRP belongs without beam failure; or, the PUCCH is the PUCCH to which the first TRP belongs PUCCH of other serving cells other than the Scell.
  • the first TRP is the TRP of PCell or PScell.
  • PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH sent on the fifth TRP in the PCell or PScell to which the first TRP belongs without beam failure; or, the PUCCH is the first PUCCH of other serving cells other than the PCell or PScell to which the TRP belongs.
  • the first TRP is a TRP in PCell or PScell where CORESET#0 of the terminal is not configured.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH sent on the sixth TRP in the PCell or PScell to which the first TRP belongs without beam failure, and the sixth TRP includes The TRP of CORESET#0 of the terminal is configured, or the TRP of CORESET#0 of the terminal is not configured; or, the PUCCH is the PUCCH of the serving cell other than the PCell or PScell to which the first TRP belongs.
  • the first TRP is a TRP in PCell or PScell configured with CORESET#0 of the terminal.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH sent on the seventh TRP that does not have beam failure in the PCell or PScell to which the first TRP belongs, and the seventh TRP includes The TRP of CORESET#0 of the terminal is not configured; or, the PUCCH is the PUCCH of the serving cell other than the PCell or PScell to which the first TRP belongs.
  • the first TRP is the TRP of a neighbor cell.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH of the neighboring cell.
  • step 506-2 is a method for sending SR-BFR on PUCCH when a beam fails provided by this embodiment of the present application; step 506-2 may be performed alone, or may be combined with any one of the steps in the present disclosure execute together.
  • Step 507 The network device receives the SR-BFR sent on the PUCCH, and sends resource configuration information to the terminal;
  • the network device After receiving the SR-BFR, the network device determines that there is a TRP and a beam failure occurs.
  • the network device generates resource configuration information for scheduling PUSCH resources.
  • the resource configuration information is carried in the UL grant scheduling information, and the UL grant scheduling information is replied by the network device based on the SR-BFR.
  • the network device sends UL grant scheduling information to the terminal.
  • UL grant scheduling information which can be referred to as UL grant.
  • Step 509 The terminal receives resource configuration information of the network device, and the resource configuration information is used to allocate PUSCH resources;
  • the terminal receives the uplink grant (UL grant) scheduling information sent by the network device, and determines the scheduled PUSCH resources from the UL grant.
  • UL grant uplink grant
  • Step 511 The terminal sends identification information on the PUSCH resource, where the identification information is used to indicate the first TRP.
  • the terminal sends a medium access control control element (English Medium Access Control Control Element, MAC CE) on the PUSCH resource, and the MAC CE carries identification information, and the identification information is used to indicate the first TRP.
  • a medium access control control element English Medium Access Control Control Element, MAC CE
  • the identification information includes at least one of the following:
  • the cell identity of the first TRP is the cell identity of the first TRP.
  • the reference signal resources include: at least one of SSB, CSI-RS, PRS, TRS, and SRS.
  • the first TRP includes one or more TRPs, and when the first TRP includes multiple TRPs, identification information of each TRP in the first TRP needs to be indicated.
  • Multiple TRPs can belong to different cells; multiple TRPs can also belong to the same cell.
  • the identifiers of the multiple TRPs that have failed beams will be indicated. information; when beam failure occurs in all TRPs in the cell, the identification information of multiple TRPs with beam failures may be indicated respectively, or the identification information of the cell may be directly indicated.
  • the terminal is further configured with a second reference signal resource set for discovering candidate beams, and when the radio link quality of the reference signal in the second reference signal resource set is greater than a threshold value, determine the The candidate beam corresponding to the reference signal is the target candidate beam. That is, the radio link quality of the reference signal corresponding to the target candidate beam is greater than the threshold value, and the reference signal is the reference signal in the second reference signal resource set used to discover the candidate beam.
  • the wireless link quality is represented by L1-RSRP or L1-SINR.
  • the terminal also sends the reference signal identifier of the target candidate beam on the PUSCH resource.
  • the radio link quality of the reference signal corresponding to the target candidate beam is greater than the threshold value, and the reference signal is a reference signal in the second reference signal resource set used to discover the candidate beam.
  • Step 513 The network device determines, according to the identification information, that the first TRP has failed to generate a beam
  • the network device receives the identification information on the PUSCH resource, and determines, according to the identification information, that a beam failure occurs in the first TRP.
  • Step 515 The network device performs beam failure recovery for the terminal for the first TRP.
  • the network device When the PUSCH resource also carries the reference signal identifier of the target candidate beam reported by the terminal, the network device performs beam failure recovery for the terminal according to the target candidate beam, for example, designating the target candidate beam as the recovered beam. When there is no target candidate beam reported by the terminal, the network device automatically designates the beam as the restored beam, or the network device instructs the terminal to perform beam management measurement and reporting, and designate the restored beam based on the reporting result.
  • the terminal when a beam failure occurs in the first TRP, the terminal adopts SR-BFR to indicate that the beam failure occurs, and at the same time indicates the first TRP through the identification information sent on the PUSCH resource, Therefore, the network device can accurately know that a beam failure has occurred in the first TRP, and the network device can perform beam failure recovery for the terminal for the first TRP.
  • FIG. 8 shows a flowchart of a method for determining a beam failure provided by an embodiment of the present application.
  • the method is applied to a network device, and the method includes:
  • Step 802 Send configuration information, the configuration information configures at least one reference signal resource set in the N reference signal resource sets used for beam failure detection to the terminal, and the transmission corresponding to each reference signal resource set in the at least one reference resource set Receiving point TRP identifier;
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers corresponding to the at least two reference signal resource sets are the same.
  • the network device sends first configuration information to the terminal, where the first configuration information is used to configure the N reference signal resource sets.
  • the network device sends second configuration information to the terminal, where the second configuration information is used to configure the first part of the reference signal resource set in the N reference signal resource sets.
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical cell identifiers are the same, and can be used in the same serving cell.
  • the terminal can also accurately determine the beam failure event of the TRP, and then accurately report the beam failure determination to the base station to avoid waste of communication resources.
  • FIG. 9 shows a block diagram of an apparatus for determining a beam failure provided by an embodiment of the present application.
  • the apparatus can be implemented as a terminal, or implemented as a part of a terminal.
  • the device includes:
  • the determining module 920 is configured to determine N reference signal resource sets used for beam failure detection, and TRP identifiers corresponding to each of the reference signal resource sets, and the N reference signal resource sets have different at least Two reference signal resource sets, the TRP identities corresponding to the at least two reference signal resource sets are different, and the physical cell identities corresponding to the at least two reference signal resource sets are the same.
  • the TRP identifier includes a control resource set index identifier, and the control resource set index identifier corresponds to the TRP one-to-one; or, the TRP identifier includes a reference signal resource set index or reference A signal resource index, the reference signal resource set index is in one-to-one correspondence with the TRP, or, the reference signal resource index is in a one-to-one correspondence with the TRP; or, the TRP identifier includes a TRP number.
  • the physical cell identifier includes: a physical cell identifier of a serving cell and/or a neighboring cell of the terminal.
  • the determining module 920 is configured to receive first configuration information from a network device, where the first configuration information is used to configure the N reference signal resource sets; or, the The determining module 920 is configured to determine the default N reference signal resource sets; or, the determining module 920 is configured to receive second configuration information from the network device, where the second configuration information is used to configure all determining a first part of the reference signal resource set in the N reference signal resource sets; and determining a default second part of the reference signal resource set, the second part of the reference signal resource set is the N reference signal resource sets divided by the The remaining sets other than the first part of the reference signal resource set.
  • the default reference signal resource set is a reference signal resource set corresponding to a target TCI state, where the target TCI state is the The TCI state configured by the terminal when monitoring the PDCCH on the control resource set corresponding to the TRP.
  • the determining module 920 is further configured to, when the reference signals in the first reference signal resource set in the at least two reference signal resource sets satisfy the beam failure condition, determine the A beam failure occurs for the first TRP corresponding to the first reference signal resource set.
  • the apparatus further includes: a sending module 940, configured to send a beam failure recovery request to a network device when a beam failure occurs in the first TRP.
  • the sending module 940 is further configured to send the first random access preamble on the first random access time-frequency resource when a beam failure occurs in the first TRP, so The first random access preamble is used to indicate a beam failure recovery request.
  • the sending module 940 is further configured to, when a beam failure occurs in the first TRP and the first TRP is the TRP of the PCell, the first random access time-frequency sending the first random access preamble on the resource; or, when a beam failure occurs on the first TRP and the first TRP is a TRP of PScell, sending the first random access time-frequency resource on the first random access time-frequency resource. the first random access preamble.
  • the sending module 940 is further configured to, when a beam failure occurs in the first TRP and the first TRP is a TRP configured with CORESET#0 of the terminal in the PCell, Sending the first random access preamble on the first random access time-frequency resource; or, beam failure occurs in the first TRP and the first TRP is the CORESET of the terminal configured in the PScell When the TRP of #0 is used, the first random access preamble is sent on the first random access time-frequency resource.
  • the first random access time-frequency resource is a random access time-frequency resource corresponding to the first SSB sent by the first TRP.
  • the first SSB is the reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the control resource set index identifier corresponding to the first TRP; or, the first SSB corresponds to the first CSI-RS, and the first SSB corresponds to the first CSI-RS.
  • a CSI-RS is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the control resource set index identifier corresponding to the first TRP.
  • the first random access time-frequency resource is a random access time-frequency resource corresponding to a second SSB
  • the second SSB is an SSB sent by a TRP configured with CORESET#0.
  • the first random access time-frequency resource is a random access time-frequency resource corresponding to the SSB corresponding to the target candidate beam
  • the radio link quality of the reference signal corresponding to the target candidate beam is greater than the threshold value, and the reference signal is a reference signal in the second reference signal resource set used to discover the candidate beam.
  • the SSB corresponding to the target candidate beam is the SSB sent by the first TRP or the second TRP.
  • the sending module 940 is further configured to send identification information in the PUSCH of the message A in the two-step random access process, where the identification information is used to indicate the first TRP; Or, the identification information is sent in the PUSCH of message 3 in the four-step random access procedure.
  • the sending module 940 is further configured to send an SR-BFR to the network device on the PUCCH when a beam failure occurs in the first TRP, where the SR-BFR is used for a beam Failed recovery SR.
  • the PUCCH is a PUCCH of a primary cell group; or, the PUCCH is a PUCCH of a secondary cell group; or, the PUCCH is a PUCCH of a neighboring cell; or, the PUCCH is a
  • the first TRP belongs to a PUCCH sent on a third TRP without beam failure in the same cell; or, the PUCCH is a PUCCH of a non-serving cell to which the first TRP belongs without beam failure.
  • the first TRP is the TRP of the Scell; the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH of the secondary cell group
  • the first TRP is the TRP of PCell or PScell; the PUCCH is the PUCCH of the primary cell group; or the PUCCH is the PUCCH of the secondary cell group; or the PUCCH is the PUCCH of the secondary cell group
  • the first TRP is a TRP in PCell or PScell where CORESET#0 of the terminal is not configured.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is sent on the sixth TRP in which beam failure does not occur in the PCell or PScell to which the first TRP belongs PUCCH, the sixth TRP includes a TRP configured with CORESET #0 of the terminal or a TRP not configured with CORESET #0 of the terminal; or, the PUCCH is outside the PCell or PScell to which the first TRP belongs PUCCH of other serving cells.
  • the first TRP is a TRP in PCell or PScell configured with CORESET#0 of the terminal.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is sent on the seventh TRP in which beam failure does not occur in the PCell or PScell to which the first TRP belongs PUCCH, the seventh TRP includes a TRP in which CORESET#0 of the terminal is not configured; or, the PUCCH is a PUCCH of a serving cell other than the PCell or PScell to which the first TRP belongs.
  • the first TRP is a TRP of a neighboring cell
  • the PUCCH is a PUCCH of a primary cell group; or, the PUCCH is a PUCCH of a secondary cell group; or, the PUCCH is a neighboring cell PUCCH of the cell.
  • the device further includes:
  • a receiving module 960 configured to receive resource configuration information of the network device, where the resource configuration information is used to allocate PUSCH resources;
  • a sending module 940 configured to send identification information on the PUSCH resource, where the identification information is used to indicate the first TRP.
  • the resource configuration information is carried in a UL grant, and the UL grant is replied by the network device based on the SR-BFR.
  • the sending module 940 is configured to send a MAC CE on the PUSCH resource, where the MAC CE carries identification information, and the identification information is used to indicate the first TRP.
  • the identification information includes at least one of the following:
  • the cell identifier of the first TRP is the cell identifier of the first TRP.
  • the sending module 940 is further configured to send the reference signal identifier of the target candidate beam on the PUSCH resource, where the radio link quality of the reference signal corresponding to the target candidate beam is greater than the threshold The limit value, the reference signal is the reference signal in the second reference signal resource set used to discover the candidate beam.
  • FIG. 10 shows a block diagram of an apparatus for determining a beam failure provided by an embodiment of the present application.
  • the apparatus can be implemented as a network device, or implemented as a part of a network device.
  • the device includes:
  • a configuration module 1020 configured to send configuration information, the configuration information configures at least one reference signal resource set in the N reference signal resource sets for beam failure detection to the terminal, and each of the at least one reference resource set The TRP identifier of the sending and receiving point corresponding to the reference signal resource set;
  • the TRP identifiers corresponding to the at least two reference signal resource sets are different, and the physical The cell IDs are the same.
  • the configuration module 1020 is configured to send first configuration information, where the first configuration information is used to configure the N reference signal resource sets; or, the configuration module 1020, is used for sending second configuration information, where the second configuration information is used to configure the first part of the reference signal resource set in the N reference signal resource sets.
  • the device further includes:
  • the receiving module 1040 is configured to receive a beam failure recovery request sent by the terminal, where the beam failure recovery request is sent by the terminal when a beam failure occurs in the first TRP.
  • the receiving module 1040 is configured to receive a first random access preamble on the first random access time-frequency resource, where the first random access preamble is used to indicate a beam Failed recovery request.
  • the device further includes:
  • a determining module 1060 configured to determine, according to the first SSB corresponding to the first random access time-frequency resource, that the first TRP has failed to generate a beam
  • the first SSB is the reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the control resource set index identifier corresponding to the first TRP; or, the first SSB corresponds to the first CSI-RS, and the The first CSI-RS is a reference signal resource corresponding to the TCI state of at least one CORESET corresponding to the control resource set index identifier corresponding to the first TRP.
  • the receiving module 1040 is configured to receive identification information in the PUSCH of message A in the two-step random access process, and determine, according to the identification information, that the first TRP has failed to generate a beam ; or, the receiving module 1040 is configured to receive the identification information in the PUSCH of message 3 in the four-step random access process, and determine the beam failure of the first TRP according to the identification information.
  • the receiving module 1040 is configured to receive the SR-BFR sent on the PUCCH, where the SR-BFR is an SR used for beam failure recovery.
  • the PUCCH is a PUCCH of a primary cell group; or, the PUCCH is a PUCCH of a secondary cell group; or, the PUCCH is a PUCCH of a neighboring cell; or, the PUCCH is a
  • the first TRP belongs to a PUCCH sent on a third TRP without beam failure in the same cell; or, the PUCCH is a PUCCH of a non-serving cell to which the first TRP belongs without beam failure.
  • the first TRP is the TRP of the Scell; the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is the PUCCH of the secondary cell group
  • the first TRP is the TRP of PCell or PScell; the PUCCH is the PUCCH of the primary cell group; or the PUCCH is the PUCCH of the secondary cell group; or the PUCCH is the PUCCH of the secondary cell group
  • the first TRP is a TRP in PCell or PScell where CORESET#0 of the terminal is not configured.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is sent on the sixth TRP in which beam failure does not occur in the PCell or PScell to which the first TRP belongs PUCCH, the sixth TRP includes a TRP configured with CORESET #0 of the terminal or a TRP not configured with CORESET #0 of the terminal; or, the PUCCH is outside the PCell or PScell to which the first TRP belongs PUCCH of other serving cells.
  • the first TRP is a TRP in PCell or PScell configured with CORESET#0 of the terminal.
  • the PUCCH is the PUCCH of the primary cell group; or, the PUCCH is the PUCCH of the secondary cell group; or, the PUCCH is sent on the seventh TRP in which beam failure does not occur in the PCell or PScell to which the first TRP belongs PUCCH, the seventh TRP includes a TRP in which CORESET#0 of the terminal is not configured; or, the PUCCH is a PUCCH of a serving cell other than the PCell or PScell to which the first TRP belongs.
  • the first TRP is a TRP of a neighboring cell
  • the PUCCH is a PUCCH of a primary cell group; or, the PUCCH is a PUCCH of a secondary cell group; or, the PUCCH is a neighboring cell PUCCH of the cell.
  • the configuration module 1020 is configured to send resource configuration information to the terminal, where the resource configuration information is used to allocate PUSCH resources; the receiving module 1040 is configured to send resource configuration information on the PUSCH resources Receive identification information; the determining module 1060 is configured to determine, according to the identification information, that the first TRP fails to generate a beam.
  • the resource configuration information is carried in a UL grant, and the UL grant is replied by the network device based on the SR-BFR.
  • the receiving module 1040 is configured to receive a MAC CE on the PUSCH resource, where the MAC CE carries the identification information.
  • the identification information includes at least one of the following:
  • the cell identifier of the first TRP is the cell identifier of the first TRP.
  • FIG. 11 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • the terminal includes: a processor 1101 , a receiver 1102 , a transmitter 1103 , a memory 1104 , and a bus 1105 .
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 may be implemented as a communication component, which may be a communication chip.
  • the memory 1104 is connected to the processor 1101 through the bus 1105 .
  • the memory 1104 may be configured to store at least one instruction, and the processor 1101 may be configured to execute the at least one instruction to implement various steps in the above method embodiments.
  • memory 1104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the beam failure determination method executed by the terminal provided by each of the foregoing method embodiments.
  • FIG. 12 shows a schematic structural diagram of a network device provided by an exemplary embodiment of the present application.
  • the network device includes: a processor 1201 , a receiver 1202 , a transmitter 1203 , a memory 1204 , and a bus 1205 .
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1202 and the transmitter 1203 may be implemented as a communication component, which may be a communication chip.
  • the memory 1204 is connected to the processor 1201 through the bus 1205 .
  • the memory 1204 may be configured to store at least one instruction, and the processor 1201 may be configured to execute the at least one instruction to implement various steps in the above method embodiments.
  • memory 1204 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the beam failure determination method provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束失败确定方法、装置、终端及存储介质,涉及通信技术领域,该方法包括:确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的发送接收点TRP标识(402),所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。

Description

波束失败确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种波束失败确定方法、装置、终端及介质。
背景技术
在新空口(New Radio,NR)系统中,特别是通信频段在频段范围2时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
而在NR系统中,由于控制信道也需要使用基于波束的发送和接收,当用户设备(User Equipment,UE)发生移动,或者天线方向发生旋转时,当前配置给UE的用于发送接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收波束或发送波束可能会出现问题,即出现了波束失败的问题。目前的通信协议定义了用于检测波束失败的参考信号资源集合q0,当UE检测到这些参考信号资源集合中所有参考信号上的无线链路质量都低于一个门限值#1时,说明发生了波束失败。这时,UE要根据基站配置的确定候选波束的参考信号资源集合q1,检测参考信号资源集合中的各个参考信号中是否有参考信号接收功率(Reference Signal Received Power,RSRP)满足门限值#2的参考信号。若有,则UE在告知基站发生波束失败时,也可以告知新的候选波束,供基站为终端配置新的波束。
发明内容
本申请实施例提供了一种波束失败确定方法、装置、终端及介质,可以在多个TRP的场景下,实现网络设备针对单个TRP上的波束失败进行恢复。所述技术方案如下:
根据本申请的一个方面,提供了一种波束失败确定方法,应用于终端中,所述方法包括:
确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的TRP标识,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
根据本申请的另一方面,提供了一种波束失败确定方法,应用于网络设备中,所述方法包括:
发送配置信息,所述配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及所述至少一个参考资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;
其中,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
根据本申请的另一方面,提供了一种波束失败确定装置,所述装置包括:
确定模块,用于确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的发送接收点TRP标识,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
根据本申请的另一方面,提供了一种波束失败确定装置,所述装置包括:
配置模块,用于发送配置信息,所述配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及所述至少一个参考信号资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;
其中,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
根据本申请的另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现上述的波束失败确定方法。
根据本申请的另一方面,提供了一种网络设备,所述网络设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现上述的波束失败确定方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现上述的波束失败确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过为终端设置至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且物理小区标识相同,能够在同一个服务小区的多个TRP中的某一个TRP发生波束失败时,终端也能准确判断出该TRP的波束失败事件,进而向基站准确上报波束失败确定,避免通信资源的浪费。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的四步随机接入过程的示意图;
图2是本申请一个示例性实施例提供的两步随机接入过程的示意图;
图3是本申请一个示例性实施例提供的通信系统的示意图;
图4是本申请一个示例性实施例提供的波束失败确定方法的流程图;
图5是本申请一个示例性实施例提供的波束失败确定方法的流程图;
图6是本申请一个示例性实施例提供的波束失败确定方法的流程图;
图7是本申请一个示例性实施例提供的波束失败确定方法的流程图;
图8是本申请一个示例性实施例提供的波束失败确定方法的流程图;
图9是本申请一个示例性实施例提供的波束失败确定装置的框图;
图10是本申请一个示例性实施例提供的波束失败确定装置的框图;
图11是本申请一个示例性实施例提供的终端的框图;
图12是本申请一个示例性实施例提供的网络设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本公开以下的所有实施例中,虽然不同的步骤采用了数字来进行编号,但是这些编号都只是为了使得文字更为清楚的目的而进行的编号,并非是对于步骤的执行顺序和时隙的限定。本公开的所有实施例中,这些编号的步骤可以被单独实施,也可以被任何组合在一起实施;当这些步骤被任意组合在一起实施时,其执行顺序并不受到编号的数字的限制,即其可以以任意的顺序被执行。
首先对本申请涉及的若干个技术术语进行简介:
随机接入过程
随机接入过程是指从终端设备发送前导码开始尝试接入网络到与网络间建立起基本的信令连接之前的过程,随机接入过程是对于任意一个蜂窝通信系统的最基本要求之一,用于使终端设备与网络侧建立数据通信。
随机接入过程分为:四步(4-step)随机接入和两步(2-step)随机接入。
四步随机接入
图1示出了在基于竞争的随机接入过程中,随机接入过程的4个步骤包括:
(1)终端设备设备向网络设备发送消息1:前导码(preamble)。
终端设备向网络设备发送前导码(preamble),网络设备据此估计终端设备的传输时延以实现上行同步。
(2)网络设备向终端设备发送消息2:随机接入响应(Random Access Response,RAR)。
网络设备基于上述步骤(1)中估计得到的传输时延,发送时间提前(timing advance)命令,以调整终端设备的发送时间。消息2由网络设备的媒体接入控制层(Media Access Control,MAC)组织,并由下行共享信道(Down Link Share Channel,DL_SCH)承载。
网络设备采用物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度消息2,并通过C-RNTI或RA-RNTI进行寻址(也称加扰),RA-RNTI由承载消息1的物理随机接入信道(Physical Random Access Channel,PRACH) 时频资源位置确定。消息2包含上行传输定时提前量,为消息3分配上行资源和临时C-RNTI。
(3)终端设备向网络设备发送消息3:第一次调度传输。
终端设备在收到消息2后,在分配的上行资源上传输消息3,通过物理上行共享信道(Physical Uplink Share Channel,PUSCH)向网络设备发送用户设备身份(User Equipment Identify,UE ID)。
(4)网络设备向终端设备发送消息4:竞争解决消息。
网络设备在物理下行共享信道(Physical Downlink Share Channel,PDSCH)上发送给终端设备的竞争解决消息。
两步随机接入
在基于竞争的随机接入的过程中,可以将4步的随机接入过程合并成2步的随机接入过程,结合图2,合并后包括消息A和消息B,相关步骤包括:
(1)终端设备向网络设备发送消息A。
(2)网络设备接收到终端设备发送的消息A后,向终端设备发送消息B。
可选地,消息A包括消息1和消息3的内容,也即消息A包括:前导码和UE ID,UE ID可以是:小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)、临时C-RNTI、随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)、非接入层(Non-Access Stratum)UE ID中的一种。
可选地,消息B包括消息2和消息4的内容,也即消息B包括:随机接入响应和竞争解决消息。
图3示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端设备14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端设备提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端设备14提供无线通信功能的装置统称为网络设备。在车联网通信中,网络设备还可以是车载终端设备。
终端设备14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或物联网(Internet of Things,IoT)设备或工业物联网(Industry Internet of Things,IIoT)设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端设备。网络设备120与终端设备14之间通过某种空口技术互相通信,例如Uu接口。
本公开实施例的技术方案可以应用于各种通信系统,例如:频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex, TDD)系统、先进的长期演进(Advanced long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
对于终端的每个服务小区包括:主小区(Primary Cell,Pcell),主辅小区(Primary Secondary Cell,PScell),辅小区(Secondary Cell,SCell)的每个带宽部分(Bandwidth Part,BWP)上,最多只配置1个q0和1个q1,q0是用于波束失败检测的参考信号资源集合,q1是用于候选波束发现的参考信号资源集合。即使是对于一个服务小区的激活BWP上,终端被配置了多个TRP来发送PDCCH的情况,也是只针对服务小区来配置1个q0和1个q1。那么就存在一个技术问题:由于q0和q1都是针对服务小区来配置的,不区分服务小区的多个TRP。但实际上,当终端被配置为要监测该服务小区的多个TRP的PDCCH时,可能TRP1的PDCCH发生波束失败,而TRP2的波束链路正常,由于基站不知道UE侧的波束情况,就会继续使用TRP1和TRP2为终端发送PDCCH。若TRP1和TRP2发送的PDCCH指示内容一样,即TRP1是为了重复发送TRP2的PDCCH,那么TRP1发生了波束失败就会影响PDCCH的可靠性。如果TRP1发送的PDCCH只是为了调度TRP1的PDSCH或PUSCH,那么TRP1发生了波束失败就会影响PDCCH资源和PDSCH/PUSCH资源的浪费,以及增大终端监测没必要的PDCCH的功耗。
图4示出了本申请一个实施例提供的波束失败确定方法的流程图。该方法应用于如图1所示的终端中来举例说明。该方法包括:
步骤402:确定用于波束失败检测的N个参考信号资源集合,以及每个参考信号资源集合对应的TRP标识;
N个参考信号资源集合中存在不同的至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且至少两个参考信号资源集合对应的物理小区标识相同。
示意性的,存在参考信号资源集合1对应TPR1,参考信号资源集合2对应TRP2。其中,TRP1和TRP2是不同的两个TRP,且TRP1和TRP2均对应同一个服务小区1。
N个参考信号资源集合与N个TRP标识的对应关系,可以为如下四种方式中的任意一种:
·TRP标识包括控制资源集索引标识(CORESET pool index),控制资源集索引标识与TRP一一对应;
·TRP标识包括参考信号资源集合索引,参考信号资源集合索引与TRP一一对应;
·TRP标识包括参考信号资源索引,参考信号资源索引与TRP一一对应;
·TRP标识包括TRP编号。
示意性的,物理小区标识包括:终端的服务小区和/或邻小区的物理小区标识。
示意性,参考信号资源包含:同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel-Slate Information Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signal,PRS)、追踪参考信号(Tracking Reference Signal,TRS)、探测参考信号(Sounding Reference Signal,SRS)中的至少一种。
综上所述,本实施例提供的方法,通过为终端设置至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且物理小区标识相同,能够在同一个服务小区的多个TRP中的某一个TRP发生波束失败时,终端也能准确判断出该TRP的波束失败事件,进而向基站准确上报波束失败确定,避免通信资源的浪费。
在基于图4的一个可选实施例中,上述步骤402可采用如下三种方式中的至少一种来实现:
1、网络设备向终端发送第一配置信息,第一配置信息用于配置N个参考信号资源集合,以及N个参考信号资源集合对应的TRP标识。终端接收来自网络设备的第一配置信息,根据第一配置信息确定用于波束失败检测的N个参考信号资源集合。表一示意性的给出了N个参考信号资源集合。
表一
集合 TRP
参考信号资源集合1 TRP ID 1
参考信号资源集合2 TRP ID 2
2、终端确定默认的N个参考信号资源集合,以及N个参考信号资源集合对应的TRP标识。
对于该N个TRP中的每个TRP,默认的参考信号资源集合是目标TCI状态对应的参考信号资源集合,目标TCI状态是为终端配置的监测该TRP对应的CORESET上的PDCCH时的传输配置指示(Transmission Configuration Indication,TCI)状态。
比如,对于TRP1,与TRP1对应的默认的参考信号资源集合包含TCI状态1对应的参考信号资源,TCI状态1是为终端配置的监测TRP1对应的CORESET上的PDCCH时的TCI状态。又比如,对于TRP2,与TRP2对应的默认的参考 信号资源集合包含TCI状态2对应的参考信号资源,TCI状态2是为终端配置的监测TRP2对应的CORESET上的PDCCH时的TCI状态。表二示意性的给出了N个参考信号资源集合。
表二
集合 TCI状态 TRP
参考信号资源集合0 TCI状态0 TRP ID 1
参考信号资源集合1 TCI状态1 TRP ID 2
参考信号资源集合5 TCI状态5 TRP ID 3
可以理解的是,表二中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表二中任何其他元素值。因此本领域内技术人员可以理解,该表二中的每一个元素的取值都是一个独立的实施例。
3、网络设备向终端发送第二配置信息,第二配置信息用于配置N个参考信号资源集合中的第一部分参考信号资源集合,以及第一部分参考信号资源集合对应的TRP标识。终端接收来自网络设备的第二配置信息,根据第二配置信息确定第一部分参考信号资源集合。此外,终端还确定默认的第二部分参考信号资源集合,第二部分参考信号资源集合是N个参考信号资源集合中除第一部分参考信号资源集合之外的剩余集合。
图5示出了本申请一个实施例提供的波束失败确定方法的流程图。该方法应用于如图1所示的终端中来举例说明。该方法包括:
步骤502:终端确定用于波束失败检测的N个参考信号资源集合,以及每个参考信号资源集合对应的TRP标识。
N个参考信号资源集合中存在不同的至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且至少两个参考信号资源集合对应的物理小区标识相同。
示意性的,存在参考信号资源集合1对应TPR1,参考信号资源集合2对应TRP2。其中,TRP1和TRP2是不同的两个TRP,且TRP1和TRP2均对应同一个服务小区1。
N个参考信号资源集合与N个TRP标识的对应关系,可以为如下四种方式中的任意一种:
·TRP标识包括控制资源集索引标识(CORESET pool index),控制资源集索引标识与TRP一一对应;
·TRP标识包括参考信号资源集合索引,参考信号资源集合索引与TRP一一对应;
·TRP标识包括参考信号资源索引,参考信号资源索引与TRP一一对应;
·TRP标识包括TRP编号。
步骤504:当至少两个参考信号资源集合中的第一参考信号资源集合中的参考信号满足波束失败条件时,终端确定第一参考信号资源集合对应的第一TRP 发生波束失败。
示意性的,波束失败条件包括:参考信号的无线链路质量低于门限值。
可选地,参考信号的无线链路质量采用:L1-参考信号接收功率(Reference Signal Received Power,RSRP)表征。可选地,参考信号的无线链路质量采用:L1-信干噪比(Signal-to-Interference-and-Noise Ratio,SINR)表征。
步骤506:在第一TRP发生波束失败时,终端向网络设备发送波束失败恢复请求。
波束失败恢复请求用于指示第一TRP发生波束失败,或者,用于指示存在TRP发生波束失败但是不指示是哪个TRP发生波束失败,在后续信令中再指示哪个TRP发生波束失败。
综上所述,本实施例提供的方法,通过在第一TRP发生波束失败时,由终端向网络设备发送波束失败恢复请求,能够在多个TRP发送的场景下的某一个TRP发生波束失败时,终端准确地向网络设备发送波束失败恢复请求。
在基于图5的可选实施例中,步骤506存在两种发送方式:
方式一,通过随机接入时频资源来发送波束失败恢复请求,如下图6所示实施例;
方式二,通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)上承载的SR发送波束失败恢复请求,如下图7所示实施例。
针对波束失败恢复请求的第一种发送方式(随机接入时频资源):
图6示出了本申请一个实施例提供的波束失败确定方法的流程图。该方法应用于图1所示的终端和网络设备中来举例说明。该方法包括:
步骤502:终端确定用于波束失败检测的N个参考信号资源集合,以及每个参考信号资源集合对应的TRP标识。
N个参考信号资源集合中存在不同的至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且至少两个参考信号资源集合对应的物理小区标识相同。
步骤504:当至少两个参考信号资源集合中的第一参考信号资源集合中的参考信号满足波束失败条件时,终端确定第一参考信号资源集合对应的第一TRP发生波束失败。
步骤506-1:终端在第一TRP发生波束失败时,在第一随机接入时频资源上发送第一随机接入前导码,第一随机接入前导码用于指示波束失败恢复请求。
在上述实施例中,步骤506-1为本申请实施例提供的一种波束失败时发送第一随机接入前导码的方法;步骤506-1可以单独被执行,也可以结合本公开中任意一个步骤一起执行。
波束失败恢复请求用于指示第一TRP发生波束失败,或者,用于指示存在TRP发生波束失败,但是不指示是哪个TRP发生波束失败,在后续信令中再指示哪个TRP发生波束失败。第一随机接入前导码是多个随机接入前导码中被分 配用于指示波束失败恢复请求的前导码。
本步骤包括但不限于如下实现方式中的至少一种:
·在第一TRP发生波束失败且第一TRP是PCell的TRP时,在第一随机接入时频资源上发送第一随机接入前导码;
·在第一TRP发生波束失败且第一TRP是PScell的TRP时,在第一随机接入时频资源上发送第一随机接入前导码。
在发生波束失败的TRP为PCell或PScell的TRP,且属于PCell或PScell的任意TRP发生波束失败时,都使用第一随机接入时频资源发送波束失败恢复请求。
·在第一TRP发生波束失败且第一TRP是PCell中配置了终端的CORESET#0的TRP时,在第一随机接入时频资源上发送第一随机接入前导码;
·在第一TRP发生波束失败且第一TRP是PScell中配置了终端的CORESET#0的TRP时,在第一随机接入时频资源上发送第一随机接入前导码。
需要说明的是,配置了终端的CORESET#0是表示在第一TRP发生波束失败之前,终端接收来自第一TRP的CORESET#0的指示信息。
针对第一随机时频资源:
示意性的,上述第一随机接入时频资源可以是第一TRP对应的随机接入时频资源,也可以是第二TRP对应的随机接入时频资源。随机接入时频资源,可简称为随机接入资源。
针对第一随机时频资源是第一TRP自身对应的随机接入时频资源的情形:
第一随机接入时频资源是第一TRP发送的第一SSB对应的随机接入时频资源。终端确定第一随机接入时频资源的方法可以包括:
1、第一TRP对应的CORESETpoolindex索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源为第一SSB,将第一SSB的随机接入时频资源确定为第一随机接入时频资源。也即,第一SSB是第一TRP对应的CORESETpoolindex索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。
2、第一TRP对应的CORESETpoolindex索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源为第一CSI-RS,第一SSB与第一CSI-RS对应,将第一SSB的随机接入时频资源确定为第一随机接入时频资源。也即,第一CSI-RS是第一TRP对应的CORESET索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。
3、网络设备直接指示了第一TRP对应的第一SSB,或,直接指示了第一TRP对应的CORESETpoolindex索引标识对应的第一SSB。
针对第一随机时频资源是其它TRP对应的随机接入时频资源的情形:
第一随机接入时频资源是第二SSB对应的随机接入时频资源,第二SSB是配置了终端的CORESET#0的TRP发送的SSB。配置了终端的CORESET#0的TRP与第一TRP可以相同,也可以不同。示意性的,若发生波束失败的第一TRP自身配置了CORESET#0,则优先使用自身的随机接入资源。
此时,所述方法还包括:
在两步随机接入过程中的消息A的PUSCH中发送标识信息,标识信息用于指示第一TRP的标识;或,在四步随机接入过程中的消息3的PUSCH中发送标识信息。
也即,终端通过消息A或消息1中的第一随机接入前导码通知网络设备发生了波束失败,还通过消息A或消息3通知网络设备发生了波束失败的TRP是第一TRP。
示意性的,标识信息包括如下至少之一:
第一TRP对应的控制资源集索引标识;
第一TRP对应的参考信号资源集合索引或参考信号资源索引;
第一TRP的标识;
第一TRP的小区标识。
示意性的,参考信号资源包含:SSB、CSI-RS、PRS、TRS、SRS中的至少一种。
示意性的,第一TRP包含一个或多个TRP,第一TRP包含多个TRP时,需要指示第一TRP中每个TRP的标识信息。多个TRP可以属于不同小区;多个TRP也可以属于同一小区,当多个TRP属于同一小区时,如果该小区还有没发生波束失败的TRP,那么指示发生了波束失败的多个TRP的标识信息;当该小区内所有TRP发生波束失败时,可以分别指示发生了波束失败的多个TRP的标识信息或者直接指示该小区的标识信息。
在一个可选的实现方式中,网络设备还向终端配置有用于发现候选波束的第二参考信号资源集合,当第二参考信号资源集合中存在参考信号的无线链路质量大于门限值时,确定该参考信号对应的候选波束为目标候选波束。
也即,目标候选波束对应的参考信号的无线链路质量大于门限值,该参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。无线链路质量采用L1-RSRP或L1-SINR来表示。
此时,第一随机接入时频资源是与目标候选波束对应的SSB对应的随机接入时频资源。
示意性的,目标候选波束对应的SSB是由第一TRP或第二TRP发送的SSB。当目标候选波束对应的SSB是第二TRP发送的SSB时,终端还在两步随机接入过程中的消息A的PUSCH中发送标识信息,标识信息用于指示第一TRP;或,在四步随机接入过程中的消息3的PUSCH中发送标识信息。
步骤508:网络设备在第一随机接入时频资源上接收第一随机接入前导码;
网络设备在接收到终端发送的第一随机接入前导码后,确定终端发生了波束失败。
步骤510:网络设备确定第一TRP。
在第一随机接入时频资源是第一SSB的随机接入时频资源时,网络设备根据第一随机接入时频资源对应的第一SSB,确定第一TRP发生波束失败。
其中,第一SSB与第一TRP存在对应关系。比如,第一SSB是第一TRP对应的CORESETpoolindex索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。又比如,第一SSB与第一CSI-RS对应,将第一SSB的随 机接入时频资源确定为第一随机接入时频资源。也即,第一CSI-RS是第一TRP对应的CORESETpoolindex索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。再比如,网络设备直接指示了第一TRP对应的第一SSB,或,直接指示了第一TRP对应的CORESETpoolindex索引标识对应的第一SSB。
在第一随机接入时频资源是第二SSB或其它TRP发送的SSB的情况下,网络设备还在两步随机接入过程中的消息A的PUSCH中接收标识信息,根据标识信息确定第一TRP;或,网络设备在四步随机接入过程中的消息3的PUSCH中接收标识信息,网络设备根据标识信息确定第一TRP。
在一个可选的实现方式中,网络设备还向终端配置有用于发现候选波束的第二参考信号资源集合。在第一随机接入时频资源是是与目标候选波束对应的SSB对应的随机接入时频资源时,网络设备根据第一随机接入时频资源对应的SSB,确定出目标候选波束。
步骤512:网络设备针对第一TRP,为终端进行波束失败恢复。
在存在终端上报的目标候选波束时,网络设备根据目标候选波束为终端进行波束失败恢复,比如将目标候选波束指定为恢复后的波束。在不存在终端上报的目标候选波束时,由网络设备自行指定波束为恢复后的波束,或网络设备指示终端进行波束管理测量和上报,并基于上报结果指定恢复后的波束。
综上所述,本实施例提供的方法,通过在第一TRP发生波束失败时,终端采用第一随机接入时频资源发送第一随机接入前导码,同时通过第一随机接入时频资源或标识信息来指示第一TRP,从而使得网络设备能够准确获知第一TRP发生了波束失败,网络设备能够针对第一TRP为终端进行波束失败恢复。
针对波束失败恢复请求的第二种发送方式(SR-BFR):
图7示出了本申请一个实施例提供的波束失败确定方法的流程图。该方法应用于图1所示的终端和网络设备中来举例说明。该方法包括:
步骤502:终端确定用于波束失败检测的N个参考信号资源集合,以及每个参考信号资源集合对应的TRP标识。
N个参考信号资源集合中存在不同的至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且至少两个参考信号资源集合对应的物理小区标识相同。
步骤504:当至少两个参考信号资源集合中的第一参考信号资源集合中的参考信号满足波束失败条件时,终端确定第一参考信号资源集合对应的第一TRP发生波束失败。
步骤506-2:终端在第一TRP发生波束失败时,在PUCCH上向网络设备发送SR-BFR;
SR-BFR是用于波束失败恢复请求的SR。
示意性的,PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是邻小区的PUCCH;或,PUCCH是与第一TRP属于同一小区中未发生波束失败的第三TRP上发送的PUCCH;或,PUCCH是未发生 波束失败的非第一TRP所属服务小区的PUCCH。
在一个示例中,第一TRP是Scell的TRP。PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是第一TRP所属的Scell中未发生波束失败的第四TRP上发送的PUCCH;或,PUCCH是第一TRP所属的Scell之外的其它服务小区的PUCCH。
在一个示例中,第一TRP是PCell或PScell的TRP。PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是第一TRP所属的PCell或PScell中未发生波束失败的第五TRP上发送的PUCCH;或,PUCCH是第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在一个示例中,第一TRP是PCell或PScell中未配置终端的CORESET#0的TRP。PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是第一TRP所属的PCell或PScell中未发生波束失败的第六TRP上发送的PUCCH,所述第六TRP包含配置了终端的CORESET#0的TRP,或未配置终端的CORESET#0的TRP;或,PUCCH是第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在一个示例中,第一TRP是PCell或PScell中配置了终端的CORESET#0的TRP。PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是第一TRP所属的PCell或PScell中未发生波束失败的第七TRP上发送的PUCCH,所述第七TRP包含未配置终端的CORESET#0的TRP;或,PUCCH是第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在一个示例中,第一TRP是邻小区的TRP。PUCCH是主小区组的PUCCH;或,PUCCH是辅小区组的PUCCH;或,PUCCH是邻小区的PUCCH。
在上述实施例中,步骤506-2为本申请实施例提供的一种波束失败时在PUCCH上发送SR-BFR的方法;步骤506-2可以单独被执行,也可以结合本公开中任意一个步骤一起执行。
步骤507:网络设备接收在PUCCH上发送的SR-BFR,向终端发送资源配置信息;
网络设备在接收到SR-BFR后,确定存在TRP发生了波束失败。
网络设备生成用于调度PUSCH资源的资源配置信息。可选地,资源配置信息是携带在UL grant调度信息中,UL grant调度信息是网络设备基于SR-BFR回复的。
网络设备向终端发送UL grant调度信息。UL grant调度信息,可简称为UL grant。
步骤509:终端接收网络设备的资源配置信息,资源配置信息用于分配PUSCH资源;
终端接收网络设备发送的上行授权(UL grant)调度信息,从UL grant中确定被调度的PUSCH资源。
步骤511:终端在PUSCH资源上发送标识信息,标识信息用于指示第一TRP。
终端在PUSCH资源上发送媒体接入控制控制单元(英文Medium Access  Control Control Element,MAC CE),MAC CE携带有标识信息,标识信息用于指示第一TRP。
示意性的,标识信息包括如下至少之一:
第一TRP对应的控制资源集索引标识;
第一TRP对应的参考信号资源集合索引或参考信号资源索引;
第一TRP的标识;
第一TRP的小区标识。
示意性的,参考信号资源包含:SSB、CSI-RS、PRS、TRS、SRS中的至少一种。
示意性的,第一TRP包含一个或多个TRP,第一TRP包含多个TRP时,需要指示第一TRP中每个TRP的标识信息。多个TRP可以属于不同小区;多个TRP也可以属于同一小区,当多个TRP属于同一小区时,如果该小区还有没发生波束失败的TRP,那么指示发生了波束失败的多个TRP的标识信息;当该小区内所有TRP发生波束失败时,可以分别指示发生了波束失败的多个TRP的标识信息或者直接指示该小区的标识信息。
在一个可选的实现方式中,终端还被配置有用于发现候选波束的第二参考信号资源集合,当第二参考信号资源集合中存在参考信号的无线链路质量大于门限值时,确定该参考信号对应的候选波束为目标候选波束。也即,目标候选波束对应的参考信号的无线链路质量大于门限值,该参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。无线链路质量采用L1-RSRP或L1-SINR来表示。
此时,终端还在PUSCH资源上发送目标候选波束的参考信号标识。目标候选波束对应的参考信号的无线链路质量大于门限值,参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。
步骤513:网络设备根据标识信息确定第一TRP发生波束失败;
网络设备在PUSCH资源上接收标识信息,根据标识信息确定第一TRP发生波束失败。
步骤515:网络设备针对第一TRP,为终端进行波束失败恢复。
在PUSCH资源上还携带有终端上报的目标候选波束的参考信号标识时,网络设备根据目标候选波束为终端进行波束失败恢复,比如将目标候选波束指定为恢复后的波束。在不存在终端上报的目标候选波束时,由网络设备自行指定波束为恢复后的波束,或网络设备指示终端进行波束管理测量和上报,并基于上报结果指定恢复后的波束。
综上所述,本实施例提供的方法,通过在第一TRP发生波束失败时,终端采用SR-BFR来指示发生了波束失败,同时通过在PUSCH资源上发送的标识信息来指示第一TRP,从而使得网络设备能够准确获知第一TRP发生了波束失败,网络设备能够针对第一TRP为终端进行波束失败恢复。
图8示出了本申请一个实施例提供的波束失败确定方法的流程图。该方法应用于网络设备中,该方法包括:
步骤802:发送配置信息,配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及至少一个参考资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;
其中,N个参考信号资源集合中存在不同的至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且至少两个参考信号资源集合对应的物理小区标识相同。
在一个示例中,网络设备向终端发送第一配置信息,所述第一配置信息用于配置所述N个参考信号资源集合。
在一个示例中,网络设备向终端发送第二配置信息,所述第二配置信息用于配置所述N个参考信号资源集合中的第一部分参考信号资源集合。
综上所述,本实施例提供的方法,通过为终端配置至少两个参考信号资源集合,至少两个参考信号资源集合对应的TRP标识不同,且物理小区标识相同,能够在同一个服务小区的多个TRP中的某一个TRP发生波束失败时,终端也能准确判断出该TRP的波束失败事件,进而向基站准确上报波束失败确定,避免通信资源的浪费。
图9示出了本申请一个实施例提供的波束失败确定装置的框图,该装置能够实现成为终端,或实现成为终端中的一部分。所述装置包括:
确定模块920,用于确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的发送接收点TRP标识,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
在本申请的一个可选实现中,所述TRP标识包括控制资源集索引标识,所述控制资源集索引标识与所述TRP一一对应;或,所述TRP标识包括参考信号资源集合索引或参考信号资源索引,所述参考信号资源集合索引与所述TRP一一对应,或,所述参考信号资源索引与所述TRP一一对应;或,所述TRP标识包括TRP编号。
在本申请的一个可选实现中,所述物理小区标识包括:所述终端的服务小区和/或邻小区的物理小区标识。
在本申请的一个可选实现中,所述确定模块920,用于接收来自网络设备的第一配置信息,所述第一配置信息用于配置所述N个参考信号资源集合;或,所述确定模块920,用于确定默认的所述N个参考信号资源集合;或,所述确定模块920,用于接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置所述N个参考信号资源集合中的第一部分参考信号资源集合;以及确定默认的第二部分参考信号资源集合,所述第二部分参考信号资源集合是所述N个参考信号资源集合中除所述第一部分参考信号资源集合之外的剩余集合。
在本申请的一个可选实现中,对于所述N个TRP中的每个TRP,所述默认的参考信号资源集合是目标TCI状态对应的参考信号资源集合,所述目标TCI状态是为所述终端配置的监测所述TRP对应的控制资源集上的PDCCH时的TCI 状态。
在本申请的一个可选实现中,所述确定模块920,还用于当所述至少两个参考信号资源集合中的第一参考信号资源集合中的参考信号满足波束失败条件时,确定所述第一参考信号资源集合对应的第一TRP发生波束失败。
在本申请的一个可选实现中,所述装置还包括:发送模块940,用于在所述第一TRP发生波束失败时,向网络设备发送波束失败恢复请求。
在本申请的一个可选实现中,所述发送模块940,还用于在所述第一TRP发生波束失败时,在第一随机接入时频资源上发送第一随机接入前导码,所述第一随机接入前导码用于指示波束失败恢复请求。
在本申请的一个可选实现中,所述发送模块940,还用于在所述第一TRP发生波束失败且所述第一TRP是PCell的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码;或,在所述第一TRP发生波束失败且所述第一TRP是PScell的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码。
在本申请的一个可选实现中,所述发送模块940,还用于在所述第一TRP发生波束失败且所述第一TRP是PCell中配置了所述终端的CORESET#0的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码;或,在所述第一TRP发生波束失败且所述第一TRP是PScell中配置了所述终端的CORESET#0的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码。
在本申请的一个可选实现中,所述第一随机接入时频资源是所述第一TRP发送的第一SSB对应的随机接入时频资源。所述第一SSB是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源;或,所述第一SSB与第一CSI-RS对应,所述第一CSI-RS是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。
在本申请的一个可选实现中,所述第一随机接入时频资源是第二SSB对应的随机接入时频资源,所述第二SSB是配置了CORESET#0的TRP发送的SSB。
在本申请的一个可选实现中,所述第一随机接入时频资源是与目标候选波束对应的SSB对应的随机接入时频资源;
所述目标候选波束对应的参考信号的无线链路质量大于门限值,所述参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。
在本申请的一个可选实现中,所述目标候选波束对应的SSB是由所述第一TRP或第二TRP发送的SSB。
在本申请的一个可选实现中,所述发送模块940,还用于在两步随机接入过程中的消息A的PUSCH中发送标识信息,所述标识信息用于指示所述第一TRP;或,在四步随机接入过程中的消息3的PUSCH中发送所述标识信息。
在本申请的一个可选实现中,所述发送模块940,还用于在所述第一TRP发生波束失败时,在PUCCH上向网络设备发送SR-BFR,所述SR-BFR是用于波束失败恢复的SR。
在本申请的一个可选实现中,所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是邻小区的PUCCH;或,所述PUCCH是与所述第一TRP属于同一小区中未发生波束失败的第三TRP上发送的PUCCH;或,所述PUCCH是未发生波束失败的非所述第一TRP所属服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是Scell的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的Scell中未发生波束失败的第四TRP上发送的PUCCH;或,所述PUCCH是所述第一TRP所属的Scell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第五TRP上发送的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell中未配置所述终端的CORESET#0的TRP。所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第六TRP上发送的PUCCH,所述第六TRP包含配置了所述终端的CORESET#0的TRP或未配置所述终端的CORESET#0的TRP;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell中配置了所述终端的CORESET#0的TRP。所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第七TRP上发送的PUCCH,所述第七TRP包含未配置所述终端的CORESET#0的TRP;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是邻小区的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是邻小区的PUCCH。
在本申请的一个可选实现中,所述装置还包括:
接收模块960,用于接收所述网络设备的资源配置信息,所述资源配置信息用于分配PUSCH资源;
发送模块940,用于在所述PUSCH资源上发送标识信息,所述标识信息用于指示所述第一TRP。
在本申请的一个可选实现中,所述资源配置信息是携带在UL grant中,所述UL grant是网络设备基于所述SR-BFR回复的。
在本申请的一个可选实现中,所述发送模块940,用于在所述PUSCH资源上发送MAC CE,所述MAC CE携带有标识信息,所述标识信息用于指示所述第一TRP。
在本申请的一个可选实现中,所述标识信息包括如下至少之一:
所述第一TRP对应的控制资源集索引标识;
所述第一TRP对应的参考信号资源集合索引或参考信号资源索引;
所述第一TRP的标识;
所述第一TRP的小区标识。
在本申请的一个可选实现中,所述发送模块940,还用于在所述PUSCH资源上发送目标候选波束的参考信号标识,所述目标候选波束对应的参考信号的无线链路质量大于门限值,所述参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。
图10示出了本申请一个实施例提供的波束失败确定装置的框图,该装置能够实现成为网络设备,或实现成为网络设备中的一部分。所述装置包括:
配置模块1020,用于发送配置信息,所述配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及所述至少一个参考资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;
其中,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
在本申请的一个可选实现中,所述配置模块1020,用于发送第一配置信息,所述第一配置信息用于配置所述N个参考信号资源集合;或,所述配置模块1020,用于发送第二配置信息,所述第二配置信息用于配置所述N个参考信号资源集合中的第一部分参考信号资源集合。
在本申请的一个可选实现中,所述装置还包括:
接收模块1040,用于接收所述终端发送的波束失败恢复请求,所述波束失败恢复请求是所述终端在第一TRP发生波束失败时发送的。
在本申请的一个可选实现中,所述接收模块1040,用于在第一随机接入时频资源上接收第一随机接入前导码,所述第一随机接入前导码用于指示波束失败恢复请求。
在本申请的一个可选实现中,所述装置还包括:
确定模块1060,用于根据所述第一随机接入时频资源所对应的第一SSB,确定所述第一TRP发生波束失败;
其中,所述第一SSB是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源;或,所述第一SSB与第一CSI-RS对应,所述第一CSI-RS是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。
在本申请的一个可选实现中,所述接收模块1040,用于在两步随机接入过程中的消息A的PUSCH中接收标识信息,根据所述标识信息确定所述第一TRP发生波束失败;或,所述接收模块1040,用于在四步随机接入过程中的消息3的PUSCH中接收所述标识信息,根据所述标识信息确定所述第一TRP发生波束失败。
在本申请的一个可选实现中,所述接收模块1040,用于接收在PUCCH上发送的SR-BFR,所述SR-BFR是用于波束失败恢复的SR。
在本申请的一个可选实现中,所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是邻小区的PUCCH;或,所述PUCCH是与所述第一TRP属于同一小区中未发生波束失败的第三TRP上发送的PUCCH;或,所述PUCCH是未发生波束失败的非所述第一TRP所属服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是Scell的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的Scell中未发生波束失败的第四TRP上发送的PUCCH;或,所述PUCCH是所述第一TRP所属的Scell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第五TRP上发送的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell中未配置所述终端的CORESET#0的TRP。所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第六TRP上发送的PUCCH,所述第六TRP包含配置了所述终端的CORESET#0的TRP或未配置所述终端的CORESET#0的TRP;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是PCell或PScell中配置了所述终端的CORESET#0的TRP。所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是所述第一TRP所属的PCell或PScell中未发生波束失败的第七TRP上发送的PUCCH,所述第七TRP包含未配置所述终端的CORESET#0的TRP;或,所述PUCCH是所述第一TRP所属的PCell或PScell之外的其它服务小区的PUCCH。
在本申请的一个可选实现中,所述第一TRP是邻小区的TRP;所述PUCCH是主小区组的PUCCH;或,所述PUCCH是辅小区组的PUCCH;或,所述PUCCH是邻小区的PUCCH。
在本申请的一个可选实现中,所述配置模块1020,用于向终端发送资源配置信息,所述资源配置信息用于分配PUSCH资源;所述接收模块1040,用于在所述PUSCH资源上接收标识信息;所述确定模块1060,用于根据所述标识信息确定所述第一TRP发生波束失败。
在本申请的一个可选实现中,所述资源配置信息是携带在UL grant中,所述UL grant是网络设备基于所述SR-BFR回复的。
在本申请的一个可选实现中,所述接收模块1040,用于在所述PUSCH资源上接收MAC CE,所述MAC CE携带有所述标识信息。
在本申请的一个可选实现中,所述标识信息包括如下至少之一:
所述第一TRP对应的控制资源集索引标识;
所述第一TRP对应的参考信号资源集合索引或参考信号资源索引;
所述第一TRP的标识;
所述第一TRP的小区标识。
图11示出了本申请一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1102和发射器1103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1104通过总线1105与处理器1101相连。
存储器1104可用于存储至少一个指令,处理器1101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端执行的波束失败确定方法。
图12示出了本申请一个示例性实施例提供的网络设备的结构示意图,该网络设备包括:处理器1201、接收器1202、发射器1203、存储器1204和总线1205。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1202和发射器1203可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1204通过总线1205与处理器1201相连。
存储器1204可用于存储至少一个指令,处理器1201用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读 存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的波束失败确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (50)

  1. 一种波束失败确定方法,其特征在于,应用于终端中,所述方法包括:
    确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的发送接收点TRP标识,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
  2. 根据权利要求1所述的方法,其特征在于,
    所述TRP标识包括控制资源集索引标识,所述控制资源集索引标识与所述TRP一一对应;
    或,
    所述TRP标识包括参考信号资源集合索引或参考信号资源索引,所述参考信号资源集合索引与所述TRP一一对应,或,所述参考信号资源索引与所述TRP一一对应;
    或,
    所述TRP标识包括TRP编号。
  3. 根据权利要求2所述的方法,其特征在于,所述物理小区标识包括:所述终端的服务小区和/或邻小区的物理小区标识。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述确定用于波束失败检测的N个参考信号资源集合,包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于配置所述N个参考信号资源集合;
    或,
    确定默认的所述N个参考信号资源集合;
    或,
    接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置所述N个参考信号资源集合中的第一部分参考信号资源集合;以及确定默认的第二部分参考信号资源集合,所述第二部分参考信号资源集合是所述N个参考信号资源集合中除所述第一部分参考信号资源集合之外的剩余集合。
  5. 根据权利要求4所述的方法,其特征在于,
    对于所述N个TRP中的每个TRP,所述默认的参考信号资源集合是目标传输配置指示TCI状态对应的参考信号资源集合,所述目标TCI状态是为所述终端配置的监测所述TRP对应的控制资源集上的PDCCH时的TCI状态。
  6. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    当所述至少两个参考信号资源集合中的第一参考信号资源集合中的参考信号满足波束失败条件时,确定所述第一参考信号资源集合对应的第一TRP发生波束失败。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述第一TRP发生波束失败时,向网络设备发送波束失败恢复请求。
  8. 根据权利要求7所述的方法,其特征在于,所述在所述第一TRP发生波束失败时,向网络设备发送波束失败恢复请求,包括:
    在所述第一TRP发生波束失败时,在第一随机接入时频资源上发送第一随机接入前导码,所述第一随机接入前导码用于指示波束失败恢复请求。
  9. 根据权利要求8所述的方法,其特征在于,所述在所述第一TRP发生波束失败时,在第一随机接入时频资源上发送第一随机接入前导码,包括:
    在所述第一TRP发生波束失败且所述第一TRP是主小区PCell的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码;
    或,
    在所述第一TRP发生波束失败且所述第一TRP是主辅小区PScell的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码。
  10. 根据权利要求8所述的方法,其特征在于,所述在所述第一TRP发生波束失败时,在第一随机接入时频资源上发送第一随机接入前导码,包括:
    在所述第一TRP发生波束失败且所述第一TRP是主小区PCell中配置了所述终端的CORESET#0的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码;
    或,
    在所述第一TRP发生波束失败且所述第一TRP是主辅小区PScell中配置了所述终端的CORESET#0的TRP时,在所述第一随机接入时频资源上发送所述第一随机接入前导码。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一随机接入时频资源是所述第一TRP发送的第一同步信号块SSB对应的随机接入时频资源。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一SSB是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源;
    或,
    所述第一SSB与第一信道状态信息参考信号CSI-RS对应,所述第一CSI-RS是所述第一TRP对应的控制资源集索引标识对应的至少一个控制资源集 CORESET的传输配置指示TCI状态对应的参考信号资源。
  13. 根据权利要求9所述的方法,其特征在于,所述第一随机接入时频资源是第二SSB对应的随机接入时频资源,所述第二SSB是配置了所述终端的CORESET#0的TRP发送的SSB。
  14. 根据权利要求9或10所述的方法,其特征在于,所述第一随机接入时频资源是与目标候选波束对应的SSB对应的随机接入时频资源;
    所述目标候选波束对应的参考信号的无线链路质量大于门限值,所述参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。
  15. 根据权利要求14所述的方法,其特征在于,所述目标候选波束对应的SSB是由所述第一TRP或第二TRP发送的SSB。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在两步随机接入过程中的消息A的物理上行共享信道PUSCH中发送标识信息,所述标识信息用于指示所述第一TRP;
    或,
    在四步随机接入过程中的消息3的所述PUSCH中发送所述标识信息。
  17. 根据权利要求7所述的方法,其特征在于,所述在所述第一TRP发生波束失败时,向网络设备发送波束失败恢复请求,包括:
    在所述第一TRP发生波束失败时,在物理上行控制信道PUCCH上向网络设备发送SR-BFR,所述SR-BFR是用于波束失败恢复请求的调度申请SR。
  18. 根据权利要求17所述的方法,其特征在于,
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是邻小区的PUCCH;
    或,
    所述PUCCH是与所述第一TRP属于同一小区中未发生波束失败的第三TRP上发送的PUCCH;
    或,
    所述PUCCH是未发生波束失败的非所述第一TRP所属服务小区的PUCCH。
  19. 根据权利要求17所述的方法,其特征在于,所述第一TRP是辅小区 Scell的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述Scell中未发生波束失败的第四TRP上发送的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述Scell之外的其它服务小区的PUCCH。
  20. 根据权利要求17所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波束失败的第五TRP上发送的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell之外的其它服务小区的PUCCH。
  21. 根据权利要求17所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell中未配置所述终端的CORESET#0的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波束失败的第六TRP上发送的PUCCH,所述第六TRP包含配置了所述终端的CORESET#0的TRP或未配置所述终端的CORESET#0的TRP。
  22. 根据权利要求17所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell中配置了所述终端的CORESET#0的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波束失败的第七TRP上发送的PUCCH,所述第七TRP包含未配置所述终端的CORESET#0的TRP。
  23. 根据权利要求17所述的方法,其特征在于,所述第一TRP是邻小区的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是邻小区的PUCCH。
  24. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备的资源配置信息,所述资源配置信息用于分配物理上行共享信道PUSCH资源;
    在所述PUSCH资源上发送标识信息,所述标识信息用于指示所述第一TRP。
  25. 根据权利要求24所述的方法,其特征在于,所述资源配置信息是携带在上行授权UL grant中,所述UL grant是所述网络设备基于所述SR-BFR回复的。
  26. 根据权利要求24所述的方法,其特征在于,所述在所述PUSCH资源上发送标识信息,所述标识信息用于指示所述第一TRP,包括:
    在所述PUSCH资源上发送媒体接入控制控制单元MAC CE,所述MAC CE携带有标识信息,所述标识信息用于指示所述第一TRP。
  27. 根据权利要求17或24或26所述的方法,其特征在于,所述标识信息包括如下至少之一:
    所述第一TRP对应的控制资源集索引标识;
    所述第一TRP对应的参考信号资源集合索引或参考信号资源索引;
    所述第一TRP的标识;
    所述第一TRP的小区标识。
  28. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    在所述PUSCH资源上发送目标候选波束的参考信号标识,所述目标候选波束对应的参考信号的无线链路质量大于门限值,所述参考信号是用于发现候选波束的第二参考信号资源集合中的参考信号。
  29. 一种波束失败确定方法,其特征在于,应用于网络设备中,所述方法包括:
    发送配置信息,所述配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及所述至少一个参考资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;
    其中,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
  30. 根据权利要求29所述的方法,其特征在于,所述发送配置信息包括:
    发送第一配置信息,所述第一配置信息用于配置所述N个参考信号资源集合;
    或,
    发送第二配置信息,所述第二配置信息用于配置所述N个参考信号资源集合中的第一部分参考信号资源集合。
  31. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的波束失败恢复请求,所述波束失败恢复请求是所述终端在第一TRP发生波束失败时发送的。
  32. 根据权利要求31所述的方法,其特征在于,所述接收所述终端发送的波束失败恢复请求,包括:
    在第一随机接入时频资源上接收第一随机接入前导码,所述第一随机接入前导码用于指示波束失败恢复请求。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    根据所述第一随机接入时频资源所对应的第一同步信号块SSB,确定所述第一TRP发生波束失败;
    其中,所述第一SSB是所述第一TRP对应的控制资源集索引标识对应的至少一个控制资源集CORESET的传输配置指示TCI状态对应的参考信号资源;或,所述第一SSB与第一信道状态信息参考信号CSI-RS对应,所述第一CSI-RS是所述第一TRP对应的控制资源集索引标识对应的至少一个CORESET的TCI状态对应的参考信号资源。
  34. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    在两步随机接入过程中的消息A的物理上行共享信道PUSCH中接收标识信息,根据所述标识信息确定所述第一TRP发生波束失败;
    或,
    在四步随机接入过程中的消息3的PUSCH中接收所述标识信息,根据所述 标识信息确定所述第一TRP发生波束失败。
  35. 根据权利要求34所述的方法,其特征在于,所述接收所述终端发送的波束失败恢复请求,包括:
    接收在物理上行控制信道PUCCH上发送的SR-BFR,所述SR-BFR是用于波束失败恢复请求的SR。
  36. 根据权利要求35所述的方法,其特征在于,
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是邻小区的PUCCH;
    或,
    所述PUCCH是与所述第一TRP属于同一小区中未发生波束失败的第三TRP上发送的PUCCH;
    或,
    所述PUCCH是未发生波束失败的非所述第一TRP所属服务小区的PUCCH。
  37. 根据权利要求35所述的方法,其特征在于,所述第一TRP是辅小区Scell的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述Scell中未发生波束失败的第四TRP上发送的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述Scell之外的其它服务小区的PUCCH。
  38. 根据权利要求35所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波 束失败的第五TRP上发送的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell之外的其它服务小区的PUCCH。
  39. 根据权利要求17所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell中未配置所述终端的CORESET#0的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波束失败的第六TRP上发送的PUCCH,所述第六TRP包含配置了所述终端的CORESET#0的TRP或未配置所述终端的CORESET#0的TRP。
  40. 根据权利要求17所述的方法,其特征在于,所述第一TRP是主小区PCell或主辅小区PScell中配置了所述终端的CORESET#0的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是所述第一TRP所属的所述PCell或所述PScell中未发生波束失败的第七TRP上发送的PUCCH,所述第七TRP包含未配置所述终端的CORESET#0的TRP。
  41. 根据权利要求35所述的方法,其特征在于,所述第一TRP是邻小区的TRP;
    所述PUCCH是主小区组的PUCCH;
    或,
    所述PUCCH是辅小区组的PUCCH;
    或,
    所述PUCCH是邻小区的PUCCH。
  42. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    向终端发送资源配置信息,所述资源配置信息用于分配物理上行共享信道PUSCH资源;
    在所述PUSCH资源上接收标识信息;
    根据所述标识信息确定所述第一TRP发生波束失败。
  43. 根据权利要求42所述的方法,其特征在于,所述资源配置信息是携带在上行授权UL grant中,所述UL grant是所述网络设备基于所述SR-BFR回复的。
  44. 根据权利要求43所述的方法,其特征在于,所述在所述PUSCH资源上接收标识信息,所述标识信息用于指示所述第一TRP,包括:
    在所述PUSCH资源上接收媒体接入控制控制单元MAC CE,所述MAC CE携带有所述标识信息。
  45. 根据权利要求34或42或44所述的方法,其特征在于,所述标识信息包括如下至少之一:
    所述第一TRP对应的控制资源集索引标识;
    所述第一TRP对应的参考信号资源集合索引或参考信号资源索引;
    所述第一TRP的标识;
    所述第一TRP的小区标识。
  46. 一种波束失败确定装置,其特征在于,所述装置包括:
    确定模块,用于确定用于波束失败检测的N个参考信号资源集合,以及每个所述参考信号资源集合对应的发送接收点TRP标识,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
  47. 一种波束失败确定装置,其特征在于,所述装置包括:
    配置模块,用于发送配置信息,所述配置信息向终端配置用于波束失败检测的N个参考信号资源集合中的至少一个参考信号资源集合,以及所述至少一个参考信号资源集合中的每个参考信号资源集合对应的发送接收点TRP标识;其中,所述N个参考信号资源集合中存在不同的至少两个参考信号资源集合,所述至少两个参考信号资源集合对应的TRP标识不同,且所述至少两个参考信号资源集合对应的物理小区标识相同。
  48. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至28任一所述的波束失败确定方法。
  49. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求29至45中任一项所述的波束失败确定方法。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至28任一所述的波束失败确定方法,或,如权利要求29至45中任一项所述的波束失败确定方法。
PCT/CN2020/110593 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质 WO2022036709A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US18/004,587 US20230254712A1 (en) 2020-08-21 2020-08-21 Beam failure determination method and apparatus, device, and storage medium
CN202211210024.0A CN115378485A (zh) 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质
CN202080002068.7A CN112119597B (zh) 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质
PCT/CN2020/110593 WO2022036709A1 (zh) 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质
KR1020237001024A KR20230023741A (ko) 2020-08-21 2020-08-21 빔 실패 결정 방법, 장치, 기기 및 저장 매체
EP20949917.7A EP4203337A4 (en) 2020-08-21 2020-08-21 METHOD FOR DETERMINING BEAM FAILURE AND APPARATUS, DEVICE AND RECORDING MEDIUM
JP2022581684A JP2023532563A (ja) 2020-08-21 2020-08-21 ビーム失敗決定方法、装置、デバイス及び記憶媒体
JP2024070904A JP2024097047A (ja) 2020-08-21 2024-04-24 ビーム失敗決定方法、装置、デバイス及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110593 WO2022036709A1 (zh) 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022036709A1 true WO2022036709A1 (zh) 2022-02-24

Family

ID=73794518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110593 WO2022036709A1 (zh) 2020-08-21 2020-08-21 波束失败确定方法、装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20230254712A1 (zh)
EP (1) EP4203337A4 (zh)
JP (2) JP2023532563A (zh)
KR (1) KR20230023741A (zh)
CN (2) CN115378485A (zh)
WO (1) WO2022036709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087258A1 (zh) * 2022-10-28 2024-05-02 北京小米移动软件有限公司 波束失败检测参考信号资源的确定方法、装置及存储介质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258054A (zh) * 2020-09-25 2022-03-29 展讯通信(上海)有限公司 传输接收点的确定方法及装置
WO2022141405A1 (zh) * 2020-12-31 2022-07-07 北京小米移动软件有限公司 资源集合配置方法、装置及存储介质
CN117676649A (zh) * 2021-01-04 2024-03-08 北京小米移动软件有限公司 波束失败检测bfd资源的确定方法、装置及通信设备
BR112023013326A2 (pt) * 2021-01-04 2023-11-28 Beijing Xiaomi Mobile Software Co Ltd Método para determinar um feixe padrão, equipamento de usuário, dispositivo de rede, e, meio de armazenamento de computador
US20240073711A1 (en) * 2021-01-13 2024-02-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for determining scheduling request resource, and communication device
JP2024502624A (ja) * 2021-01-13 2024-01-22 富士通株式会社 ビーム障害情報の生成方法、報告方法及び装置
US20240237123A9 (en) * 2021-03-04 2024-07-11 Beijing Xiaomi Mobile Software Co., Ltd. Beam configuration method, beam configuration apparatus and storage medium
WO2022183499A1 (zh) * 2021-03-05 2022-09-09 北京小米移动软件有限公司 波束失败检测方法、波束失败检测装置及存储介质
US11632750B2 (en) 2021-04-02 2023-04-18 Nokia Technologies Oy Inter-cell multi-TRP operation for wireless networks
CN113286369B (zh) * 2021-04-02 2022-11-11 中国信息通信研究院 一种多点上行数据免授权调度传送方法和设备
CN115334555A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 波束失败恢复方法、终端及网络侧设备
CN115333694B (zh) * 2021-05-10 2024-05-31 维沃移动通信有限公司 Csi测量资源的处理方法及装置、终端及可读存储介质
WO2022236775A1 (en) * 2021-05-13 2022-11-17 Qualcomm Incorporated Beam failure recovery in wireless communication systems employing multiple transmission/reception points
EP4294103A4 (en) * 2021-05-27 2024-03-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. BEAM FAILURE RECOVERY METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN117413611A (zh) * 2021-06-03 2024-01-16 Lg电子株式会社 无线通信中的故障修复
JP2024526168A (ja) * 2021-06-24 2024-07-17 北京小米移動軟件有限公司 物理アップリンク制御チャネルビーム回復の方法及びその装置
CN117121392A (zh) * 2021-08-05 2023-11-24 Oppo广东移动通信有限公司 通信方法、终端设备、网络设备及通信系统
WO2023030425A1 (zh) * 2021-09-06 2023-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN116458235A (zh) * 2021-09-18 2023-07-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023044865A1 (en) * 2021-09-26 2023-03-30 Nec Corporation Method, device and computer readable medium for communication
WO2023065213A1 (zh) * 2021-10-21 2023-04-27 Oppo广东移动通信有限公司 一种波束失败恢复方法及装置、终端设备
WO2023164852A1 (zh) * 2022-03-02 2023-09-07 北京小米移动软件有限公司 测量方法及装置
WO2024000221A1 (en) * 2022-06-29 2024-01-04 Qualcomm Incorporated Transmission configuration indicator state selection for reference signals in multi transmission and reception point operation
CN118300730A (zh) * 2023-01-04 2024-07-05 华为技术有限公司 一种中继的波束失效检测方法及装置
WO2024207163A1 (zh) * 2023-04-03 2024-10-10 北京小米移动软件有限公司 一种通信方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169116A (zh) * 2019-04-10 2019-08-23 北京小米移动软件有限公司 波束失败确定方法和装置
CN110351756A (zh) * 2018-04-04 2019-10-18 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
CN110881220A (zh) * 2018-09-06 2020-03-13 电信科学技术研究院有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
WO2020069415A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Association of transmission configuration indicator states to physical cell identities
CN111278122A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
WO2020164579A1 (en) * 2019-02-15 2020-08-20 FG Innovation Company Limited Method and apparatus for scell beam failure recovery configuration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896016B2 (ja) * 2012-03-19 2016-03-30 富士通株式会社 無線通信方法、無線通信システム、無線局、及び無線端末
CN109039408B (zh) * 2017-06-09 2021-07-13 维沃移动通信有限公司 一种波束失败处理方法、终端及网络设备
WO2020012619A1 (ja) * 2018-07-12 2020-01-16 株式会社Nttドコモ ユーザ端末
WO2020010630A1 (en) * 2018-07-13 2020-01-16 Nec Corporation Beam failure recovery
CN110896546B (zh) * 2018-09-13 2022-04-22 展讯通信(上海)有限公司 波束失败恢复方法及装置、存储介质、用户设备
CN110505711B (zh) * 2019-09-30 2022-03-04 展讯通信(上海)有限公司 处理调度请求的方法、设备、装置及介质
KR20220164041A (ko) * 2020-04-09 2022-12-12 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 빔 실패 검출 방법, 장치, 기기 및 판독 가능 저장 매체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351756A (zh) * 2018-04-04 2019-10-18 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
CN110881220A (zh) * 2018-09-06 2020-03-13 电信科学技术研究院有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
WO2020069415A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Association of transmission configuration indicator states to physical cell identities
CN111278122A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
WO2020164579A1 (en) * 2019-02-15 2020-08-20 FG Innovation Company Limited Method and apparatus for scell beam failure recovery configuration
CN110169116A (zh) * 2019-04-10 2019-08-23 北京小米移动软件有限公司 波束失败确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203337A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087258A1 (zh) * 2022-10-28 2024-05-02 北京小米移动软件有限公司 波束失败检测参考信号资源的确定方法、装置及存储介质

Also Published As

Publication number Publication date
EP4203337A1 (en) 2023-06-28
CN115378485A (zh) 2022-11-22
US20230254712A1 (en) 2023-08-10
KR20230023741A (ko) 2023-02-17
JP2024097047A (ja) 2024-07-17
EP4203337A4 (en) 2024-05-01
CN112119597B (zh) 2022-10-14
JP2023532563A (ja) 2023-07-28
CN112119597A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2022036709A1 (zh) 波束失败确定方法、装置、设备及存储介质
JP7515610B2 (ja) ビーム失敗検出方法、装置、デバイス及び読み取り可能な記憶媒体
US11937320B2 (en) Method for managing radio link in multi-carrier environment, and device for same
US20240196389A1 (en) Beam Failure Recovery for Serving Cell
CN111567119B (zh) 用于执行波束故障恢复的方法和无线通信设备
US11425552B2 (en) Method of connection control for direct communication between terminals, and apparatus therefor
KR102138749B1 (ko) 커버리지 확장을 위한 핸드오버
US20210314049A1 (en) User terminal and radio communication method
US20210315041A1 (en) User terminal and radio communication method
EP3439422B1 (en) Device and method supporting access to secondary cells for dual connectivity and handover
JP7179961B2 (ja) ワイヤレス通信におけるリンク回復
US20210037499A1 (en) Paging mechanism in radio network with multiple beam operation
EP4098068B1 (en) Early indication for reduced capability devices
EP3439421B1 (en) Device and method supporting access to secondary cells for dual connectivity
WO2023167678A1 (en) User equipment autonomous resource detection for calibration
WO2021232337A1 (en) Beam failure recovery in secondary cell activation
RU2810605C1 (ru) Способ и устройство для определения отказа луча
KR20150129286A (ko) 데이터 전송 방법 및 그 장치
RU2796633C1 (ru) Способ обнаружения отказа луча и оконечное устройство
US20240334527A1 (en) Beam management for small data transmission
US20240023195A1 (en) Method and apparatus for network saving energy in communication systems
WO2024171988A1 (ja) 通信システム
WO2022150994A1 (en) Mechanism for beam failure recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581684

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001024

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000041

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023000041

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, NOVAS FOLHAS DE RELATORIO DESCRITIVO ADAPTADAS AO ART. 39 DA INSTRUCAO NORMATIVA 31/2013 UMA VEZ QUE O CONTEUDO ENVIADO NA PETICAO NO 870230011741 DE 09/02/2023 ENCONTRA-SE FORA DA NORMA.

WWE Wipo information: entry into national phase

Ref document number: 2023100887

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020949917

Country of ref document: EP

Effective date: 20230321

ENP Entry into the national phase

Ref document number: 112023000041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230102