WO2022035239A1 - Method for preparing perovskite optoelectronic device and perovskite optoelectronic device prepared thereby - Google Patents

Method for preparing perovskite optoelectronic device and perovskite optoelectronic device prepared thereby Download PDF

Info

Publication number
WO2022035239A1
WO2022035239A1 PCT/KR2021/010692 KR2021010692W WO2022035239A1 WO 2022035239 A1 WO2022035239 A1 WO 2022035239A1 KR 2021010692 W KR2021010692 W KR 2021010692W WO 2022035239 A1 WO2022035239 A1 WO 2022035239A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
perovskite compound
transport layer
photoactive layer
compound
Prior art date
Application number
PCT/KR2021/010692
Other languages
French (fr)
Korean (ko)
Inventor
임상혁
허진혁
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022035239A1 publication Critical patent/WO2022035239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a perovskite optoelectronic device and a perovskite optoelectronic device manufactured through the method, and more particularly, by using spray coating to form a photoactive layer to have a compositional gradient in the depth direction,
  • the present invention relates to a method for manufacturing a perovskite optoelectronic device capable of improving absorption wavelength range and carrier lifetime, and to a perovskite optoelectronic device manufactured through the same.
  • the solar cell refers to a cell that generates current-voltage using the photovoltaic effect of absorbing light energy from sunlight to generate electrons and holes.
  • Dye-sensitized solar cell was first successfully developed in 1991 by Professor Michael Gratzel of Lausanne Institute of Technology (EPFL) in Switzerland and introduced in Nature (Vol. 353, p. 737). became The initial structure of the dye-sensitized solar cell was a simple structure in which a light-absorbing dye was adsorbed to a porous photoanode on a transparent electrode film that conducts light and electricity, another conductive glass substrate was placed on top, and a liquid electrolyte was filled. is made of
  • liquid-type dye-sensitized solar cells The highest efficiency reported so far for liquid-type dye-sensitized solar cells has remained at 11-12% for about 20 years. Although the liquid-type dye-sensitized solar cell has relatively high efficiency, it has potential for commercialization, but there are also problems with stability over time due to volatile liquid electrolytes and cost reduction due to the use of expensive ruthenium (Ru)-based dyes.
  • ruthenium (Ru)-based dyes expensive
  • organic photovoltaic (OPV) cells which have been studied in earnest since the mid-1990s, are organic materials with electron donor (D, or sometimes called hole acceptor) characteristics and electron acceptor (A) characteristics. is composed of When a solar cell made of organic molecules absorbs light, electrons and holes are formed, which is called exciton. Excitons move to the D-A interface to separate charges, and electrons move to electron acceptors and holes move to electron donors to generate photocurrent.
  • D electron donor
  • A electron acceptor
  • the organic solar cell has a simpler manufacturing process compared to the conventional solar cell due to the easy processability, diversity, and low cost of organic materials.
  • the organic solar cell has a big problem in that the structure of the BHJ is deteriorated by moisture or oxygen in the air, so that the efficiency is rapidly reduced, that is, the stability of the solar cell.
  • stability can be increased by introducing a complete sealing technology, but there is a problem that the price increases.
  • Organic-inorganic hybrid perovskite is a next-generation light-absorbing material with excellent optical and electrical properties, low price, and easy use in the process.
  • recent organic-inorganic hybrid perovskite semiconductors have a basic chemical composition of ABX 3 , so they can be easily synthesized with various types of materials, and solar cells can be manufactured at low material costs, making them the ultimate next-generation solar cell material. It's getting a lot of attention.
  • perovskite solar cells can be solution-processed like organic solar cells, they can be used in a wide variety of large-area and flexible devices. .
  • the method of manufacturing a perovskite film includes a method of forming a uniform perovskite film by slowing the crystallization rate by controlling the solubility of the perovskite solution, and forcing the perovskite film through nonsolvent dripping.
  • There is a method of crystallization a method of forming a perovskite film by first coating PbI 2 , etc., and then dripping MAI solution or the like thereto (two step process).
  • the rough surface of the perovskite film has a problem that recombination occurs due to poor contact between the perovskite film and the charge transport layer.
  • a photoactive layer containing a perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method to absorb sunlight (1-sun light soaking)
  • An object of the present invention is to provide a perovskite photoelectric device capable of improving long-term operation stability so as to have less than 10% degradation even when continuously operated for 1000 hours under the present invention, and a method for manufacturing the same.
  • the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer, and the absorption wavelength is expanded to 750 nm to increase the light collecting property (
  • An object of the present invention is to provide a perovskite optoelectronic device capable of improving light harvesting and a method for manufacturing the same.
  • the perovskite film can be manufactured in a large area regardless of the size of the substrate through a relatively simple process by forming a photoactive layer containing a perovskite compound by a spray coating method.
  • An object of the present invention is to provide an optoelectronic device and a method for manufacturing the same.
  • a method of manufacturing a perovskite optoelectronic device comprises: forming an electron transport layer on a first electrode; forming a photoactive layer comprising a perovskite compound on the electron transport layer by spray coating (orthogonal spray coating); forming a hole transport layer on the photoactive layer containing the perovskite compound; and forming a second electrode on the hole transport layer, wherein the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer.
  • a band structure gradient may be continuously formed in a depth direction from the hole transport layer to the electron transport layer.
  • At least one electric field may be formed therein in the photoactive layer including the perovskite compound.
  • the perovskite compound may be represented by the following formula (1).
  • M is a divalent or trivalent metal cation
  • X is a monovalent anion
  • M is a divalent metal cation
  • a+2b c
  • M is a trivalent metal
  • a+3b c
  • a, b, and c are natural numbers.
  • the perovskite compound may be represented by the following formula (2).
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions
  • m is 0 ⁇ m ⁇ 1.
  • the perovskite compound may include at least two or more monovalent anions, and the composition ratio of the at least two or more monovalent anions may change in the depth direction.
  • Forming a photoactive layer comprising a perovskite compound by spray coating on the electron transport layer may include: coating a first perovskite compound on the electron transport layer; and coating a second perovskite compound on the coated first perovskite compound.
  • the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the perovskite in contact with the hole transport layer
  • the concentration of the second perovskite compound may be higher than that of the first perovskite compound.
  • the coating time of the second perovskite compound may be 0.5 seconds to 200 seconds.
  • It may include adjusting the average diameter of the perovskite compound according to the coating time of the second perovskite compound.
  • the first perovskite compound may be represented by the following Chemical Formula 3
  • the second perovskite compound may be represented by the following Chemical Formula 4.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions.
  • Perovskite is a first electrode; an electron transport layer formed on the first electrode; a photoactive layer formed by orthogonal spray coating on the electron transport layer and including a perovskite compound; a hole transport layer formed on the photoactive layer including the perovskite compound; and a second electrode formed on the hole transport layer, wherein the photoactive layer including the perovskite compound has a composition gradient in a depth direction from the hole transport layer to the electron transport layer.
  • a band structure gradient may be continuously formed in a depth direction from the hole transport layer to the electron transport layer.
  • At least one electric field may be formed therein in the photoactive layer including the perovskite compound.
  • the perovskite compound may be represented by the following formula (1).
  • M is a divalent or trivalent metal cation
  • X is a monovalent anion
  • M is a divalent metal cation
  • a+2b c
  • M is a trivalent metal
  • a+3b c
  • a, b, and c are natural numbers.
  • the photoactive layer may be a perovskite compound represented by the following Chemical Formula 2.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions
  • m is 0 ⁇ m ⁇ 1.
  • the perovskite compound may include at least two or more monovalent anions, and the composition ratio of the at least two or more monovalent anions may change in the depth direction.
  • the photoactive layer comprising the perovskite compound comprises a first perovskite compound and a second perovskite compound, and the photoactive layer comprising the perovskite compound in contact with the electron transport layer is a first
  • the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the photoactive layer including the perovskite compound in contact with the hole transport layer has a second perovskite compound concentration. It can be higher than 1 perovskite compound.
  • the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method to absorb sunlight (1-sun light). Soaking), it is possible to improve long-term operation stability so as to have less than 10% degradation even when continuously operated for 1000 hours.
  • the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer to expand the absorption wavelength to 750 nm. Light harvesting can be improved.
  • the photoactive layer containing the perovskite compound is formed by a spray coating method, and the perovskite film can be manufactured in a large area regardless of the size of the substrate through a relatively simple process.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a perovskite optoelectronic device according to an embodiment of the present invention.
  • FIG. 3 is an image illustrating a band diagram of a perovskite optoelectronic device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional scanning electron microscopy (SEM) image of a photoactive layer prepared by spray coating for 5 seconds
  • FIG. 5 is a surface scanning electron microscope image.
  • FIG. 6 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 10 seconds
  • FIG. 7 is a surface scanning electron microscope image.
  • FIG. 8 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 15 seconds
  • FIG. 9 is a surface scanning electron microscope image.
  • FIG. 10 is a cross-sectional scanning electron microscope image of the photoactive layer prepared by spray coating for 20 seconds
  • FIG. 11 is a surface scanning electron microscope image.
  • GIXRD 12 shows a grazing incidence X-ray diffraction (GIXRD) graph of the penetration depth of the photoactive layer according to the spray coating time.
  • GIXRD grazing incidence X-ray diffraction
  • FIG. 13 is a grazing incidence X-ray diffraction graph of the photoactive layer prepared by spray coating for 5 seconds
  • FIG. 14 is a graph showing spray coating for 10 seconds
  • FIG. 15 is spray coating for 15 seconds. It is a graph in progress
  • FIG. 16 is a graph in which spray coating was performed for 20 seconds.
  • 17 is a graph showing the depth profile of the (200) peak position of the photoactive layer according to the spray coating time.
  • 19 is a graph showing compositional depth profiles of the photoactive layer according to spray coating time.
  • CBM conduction band minimum
  • VBM valence band maximum
  • FIG. 22 is a scanning electron microscope image of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds.
  • FIG. 23 is a graph showing an absorption spectrum of a perovskite photoelectric device according to an embodiment of the present invention
  • FIG. 24 is a graph showing an external quantum efficiency spectrum (EQE spectra)
  • FIG. 25 is an open It is a graph showing the voltage (Voc)
  • Fig. 26 is a graph showing the short-circuit current (Jsc)
  • Fig. 27 is a graph showing the charging factor (FF)
  • Fig. 28 is a graph showing the energy conversion efficiency (PCE) It is a graph.
  • FIG. 29 is a graph showing current density-voltage curves (JV curves) of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 5 seconds
  • FIG. 30 is It is a graph of spray coating for 10 seconds
  • FIG. 31 is a graph of spray coating for 15 seconds
  • FIG. 32 is a graph showing spray coating for 20 seconds.
  • FIG. 33 is an image showing a sub-module of a perovskite optoelectronic device according to an embodiment of the present invention
  • FIG. 34 is a graph showing a photocurrent-voltage (IV) curve of the sub-module
  • FIG. 35 is an initial stage ( It is a graph showing the stabilized power output (Stabilized power output) of the sub-module in early stage)
  • FIG. 36 is 1-sun illumination at room temperature and nitrogen (N2) atmosphere of the sub-module that is not encapsulated. It is a graph showing the results of a long-term light-soaking stability test under
  • the term 'or' means 'inclusive or' rather than 'exclusive or'. That is, unless stated otherwise or clear from context, the expression 'x employs a or b' means any of natural inclusive permutations.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention.
  • the method of manufacturing a perovskite optoelectronic device comprises the steps of forming an electron transport layer on the first electrode (S110), spray coating on the electron transport layer (orthogonal spray coating) on the perovskite compound. Forming a photoactive layer comprising (S120), forming a hole transport layer on the photoactive layer comprising a perovskite compound (S130), and forming a second electrode on the hole transport layer (S140) do.
  • the method of manufacturing a perovskite optoelectronic device proceeds with the step of forming an electron transport layer on the first electrode (S110).
  • an inorganic substrate or an organic substrate may be used.
  • the inorganic substrate may include at least one of glass, quartz, Al 2 O 3 , SiC, Si, GaAs, and InP.
  • the organic substrate is Kepton foil, polyimide (PI), polyethersulfone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN) ), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyarylate, polycarbonate (PC), cellulose triacetate (CTA) and cellulose acetate It may include any one of propionate (cellulose acetate propionate, CAP).
  • the inorganic substrate and the organic substrate are made of a transparent material through which light is transmitted, and in general, the substrate can be used as long as it can be positioned on the front electrode.
  • the flexibility of the electrode can be increased.
  • the first electrode is located on the substrate and a conductive electrode, in particular a transparent conductive electrode, is preferred to enhance the transmission of light.
  • the first electrode may be used as long as it is an electrode material commonly used in the field of solar cells.
  • the first electrode contains, for example, fluorine doped tin oxide (FTO), indium doped tin oxide (ITO), aluminum-doped zinc oxide (AZO) and indium. At least one of indium doped zinc oxide (IZO) may be included.
  • FTO fluorine doped tin oxide
  • ITO indium doped tin oxide
  • AZO aluminum-doped zinc oxide
  • IZO indium doped zinc oxide
  • the electron transport layer may be positioned between the first electrode and the photoactive layer.
  • the electron transport layer may allow electrons generated in the photoactive layer to be easily transferred to the first electrode.
  • the electron transport layer may include at least one of fullerene (C60), a fullerene derivative, perylene, polybenzimidazole (PBI), and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), , the fullerene derivative may include at least one of PCBM ((6,6)-phenyl-C61-butyric acid-methylester) and PCBCR ((6,6)-phenyl-C61-butyric acid cholesteryl ester), but in this It is not limited.
  • PCBM ((6,6)-phenyl-C61-butyric acid-methylester)
  • PCBCR ((6,6)-phenyl-C61-butyric acid cholesteryl ester)
  • a TiO 2 based or Al 2 O 3 based porous material may be used as the electron transport layer in the inverted structure, but is not limited thereto.
  • the method of manufacturing a perovskite photoelectric device proceeds with the step (S120) of forming a photoactive layer containing a perovskite compound by spray coating on the electron transport layer.
  • the photoactive layer may serve as a photoelectric conversion layer that generates current by separating electrons (e) and holes (h).
  • the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer by spray coating.
  • the photoactive layer having a composition gradient in the depth direction may be formed by performing orthogonal processable spray coating.
  • the method of manufacturing a perovskite optoelectronic device uses orthogonal spray coating that can coat the perovskite multilayer thin film in a vertical direction, a solution is used, but the spray-coated When the micro-drops fall, the solvent is evaporated instantaneously to form a multi-layer thin film in a vertical direction like vacuum deposition, and a small amount of solvent remains between the first perovskite thin film formed in the lower layer and the newly formed thin film. Inter mixing may take place to produce a perovskite film having a continuous composition change.
  • various spray coaters such as an air brush, ultrasonic spray, mega sonic spray, or electrospray may be used.
  • the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention is not limited to a spray coater, but when ultrasonic spray coating is used, a micro drop of the sprayed perovskite solution is used. ) is small, so it is easy to precisely control in terms of process.
  • Spray coating can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min. If the spray nozzle is moved at a speed of less than 0.001 m/min, the process speed is too slow, and 20 m/min. If it exceeds , the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without pinholes.
  • the discharge amount discharged to the spray nozzle may be 0.001 ml/min to 1000 ml/min, and when the discharge amount is less than 0.001 ml/min, the amount of the solution containing the perovskite compound sprayed from the spray nozzle is small, so that the solvent is There is a disadvantage that the process time is prolonged because all of them are blown away or the amount applied is small, and when it exceeds 1000 ml/min, an excess solution is applied and it is difficult to obtain a uniform film because it is difficult to dry.
  • a photoactive layer containing a perovskite compound is formed by a spray coating method, and the perovskite film is formed through a relatively simple process regardless of the size of the substrate. It can be manufactured in a large area.
  • the method of manufacturing a perovskite photoelectric device proceeds with the step (S120) of forming a photoactive layer containing the perovskite compound by spray coating on the electron transport layer, the perovskite compound
  • the photoactive layer containing may have a composition gradient in the depth direction from the hole transport layer to the electron transport layer.
  • the perovskite compound may include a metal halide.
  • the perovskite compound of the photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer may be represented by the following formula (1).
  • M is a divalent or trivalent metal cation
  • X is a monovalent anion
  • M is a divalent metal cation
  • a+2b c
  • M is a trivalent metal
  • a+3b c
  • a, b, and c are natural numbers.
  • A is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group (-OCH 3 ) Or imidazolium group substituted C 1-24 straight or branched chain alkyl, Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + and Au(I) ) may include at least one of + .
  • M' is Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ , Rf 2+ , In 3+ , Bi 3+ , Co 3+ , Sb 3+ , Ni 3+ , Al 3+ , Ga 3+ , Tl 3+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Fe 3+ , Ru 3+ , Cr 3+ , V 3+ , and Ti 3+ may be included.
  • X may include at least one of F - , Cl - , Br - , I - , SCN - , PF 6 - , and BF 4 - .
  • the perovskite compound of Chemical Formula 1 of the photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer may be represented by Chemical Formula 2 below.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions
  • m is 0 ⁇ m ⁇ 1.
  • the step of forming a photoactive layer containing a perovskite compound by spray coating on the electron transport layer (S120) is on the electron transport layer It may include the step of coating the first perovskite compound on (S121) and coating the second perovskite compound on the coated first perovskite compound (S122).
  • the step of coating the first perovskite compound on the electron transport layer (S121) may proceed.
  • the method of manufacturing a perovskite photoelectric device is prepared by spray-coating a first perovskite compound precursor solution containing a first perovskite compound and a solvent on an electron transport layer. 1
  • a perovskite compound film can be formed.
  • the coating time of the first perovskite compound is less than 0.1 seconds, the amount of the first perovskite compound to be coated is too small, so the efficiency of the device is low, and if it exceeds 600 seconds, the first perovskite compound to be coated There are disadvantages in that the efficiency of the device is lowered or the process time is too long because the amount of the compound is too large.
  • Spray coating of the first perovskite compound can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min, and the process speed is too high when the spray nozzle is moved at a speed of less than 0.001 m/min.
  • the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without a pin hole.
  • the discharge amount discharged to the spray nozzle may be 0.001ml/min to 1000ml/min, and when the discharge amount is less than 0.001ml/min, the first perovskite compound sprayed from the spray nozzle
  • the amount of the solution contained is small, so that all the solvent is blown away before it reaches the substrate or the amount of application is small, so the process time is long.
  • the disadvantage is that it is difficult to obtain.
  • the first perovskite compound may be represented by Formula 3 below.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions.
  • the first perovskite compound may be CsPbI 2 Br.
  • the step of coating the second perovskite compound on the coated first perovskite compound (S122) may be performed.
  • a second perovskite compound precursor solution containing a second perovskite compound and a solvent is mixed with a first perovskite compound film. It is possible to form a photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer by spray coating on it.
  • the spray coating of the second perovskite compound can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min, and if the spray nozzle is moved at a speed of less than 0.001 m/min, the process speed is too high There is a disadvantage that it is slow, and when it exceeds 20 m/min, the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without a pin hole.
  • the discharge amount discharged to the spray nozzle may be 0.001ml/min to 1000ml/min, and when the discharge amount is less than 0.001ml/min, the second perovskite compound sprayed from the spray nozzle
  • the amount of the solution contained is small, so that all the solvent is blown away before it reaches the substrate or the amount of application is small, so the process time is long.
  • the disadvantage is that it is difficult to obtain.
  • the second perovskite compound may be represented by Formula 4 below.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions.
  • the second perovskite compound may be CsPbI 3 .
  • the second perovskite compound-derived monovalent anion eg, the second halide ion
  • the composition of at least two or more monovalent anions of the perovskite compound eg, a first halide ion and a second halide ion
  • the perovskite compound of Chemical Formula 1 of the photoactive layer having a compositional gradient in the depth direction from the hole transport layer to the electron transport layer is represented by the following Chemical Formula 2
  • the first perovskite compound is represented by Chemical Formula 3
  • the second compound When the rovskite compound is represented by Chemical Formula 4, in the method for manufacturing a perovskite photoelectric device according to an embodiment of the present invention, as the coating time of the second perovskite compound increases, X' and The composition of X" can be varied.
  • the perovskite compound contains at least two or more monovalent anions, and the composition ratio of at least two or more monovalent anions in the depth direction is changed, so that the band gap and Fermi level of the photoactive layer are continuously changed. can be formed.
  • the composition ratio of X′′/M′ may be changed in the depth direction.
  • the band gap and the Fermi level of the photoactive layer are changed continuously A band structure gradient may be formed.
  • the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the perovskite compound in contact with the hole transport layer
  • concentration of the second perovskite compound in the photoactive layer comprising a may be higher than that of the first perovskite compound.
  • a first perovskite compound is coated on an electron transport layer, and then a second perovskite compound is coated to form a photoactive layer
  • the perovskite compound in contact with the hole transport layer which is the upper surface portion of the photoactive layer on which the second perovskite compound is coated, has a concentration of the second perovskite compound in the first It may be higher than the concentration of the perovskite compound.
  • the photoactive layer including the perovskite compound in contact with the electron transport layer may include only the first perovskite compound, or the photoactive layer comprising the perovskite compound in contact with the hole transport layer 2 It may also contain only perovskite compounds.
  • the photoactive layer containing the perovskite compound absorbs light to generate electron-hole pairs, and the generated electrons move to the first electrode through the electron transport layer, and at the same time, the holes move to the second electrode through the hole transport layer . At this time, when the two electrodes are connected, electricity may continuously flow while electrons move to the counter electrode through an external circuit.
  • the perovskite optoelectronic device manufactured by the method for manufacturing a perovskite optoelectronic device according to an embodiment of the present invention is a photoactive layer comprising a perovskite compound in contact with the electron transport layer and the perovskite in contact with the hole transport layer Electron-hole pairs can be created in the photoactive layer containing the skyte compound, leading to the electrons and holes moving in opposite directions across the photoactive layer to the electron transport layer and hole transport layer, improving charge collection ability can be
  • the photoactive layer including the perovskite compound has a composition gradient in the depth direction, at least one electric field may be formed therein.
  • an electric field is formed at the interface where the electron transport layer and the photoactive contact and the photoactive layer and the hole transport layer contact each other.
  • Fermi level matching occurs at the interface between the first perovskite compound and the second perovskite compound, and through this, an additional electric field is generated inside the photoactive layer. Electron-hole pairs generated inside the photoactive layer are separated and moved much more effectively, so that the efficiency of the photoelectric device can be increased.
  • the coating time of the second perovskite compound may be 0.5 seconds to 200 seconds, and if the coating time of the second perovskite compound solution is less than 5 seconds, the coating amount of the second perovskite compound is too small, the composition It is difficult to manufacture the photoactive layer having an inclination, and when it exceeds 200 seconds, the surface roughness becomes too large, and it is difficult to form a uniform hole transport layer, so that device efficiency is lowered.
  • the average diameter of the perovskite compound may be adjusted according to the coating time of the second perovskite compound.
  • the average diameter of the perovskite compound particles can be continuously increased during the spray coating process, with dissolution and regrowth.
  • the second perovskite compound since the second perovskite compound has lower solubility in a solvent than the first perovskite compound, the second perovskite compound When spray-coated on the first perovskite compound, the second perovskite compound is rapidly nucleated to a higher nuclei density than the first perovskite compound, so that the average perovskite compound particles The diameter may be reduced.
  • the trap or exciton binding energy can be adjusted.
  • the method of manufacturing a perovskite optoelectronic device proceeds to the step of forming a hole transport layer on the photoactive layer containing the perovskite compound (S130).
  • the hole transport layer may be positioned between the photoactive layer and the second electrode.
  • the hole transport layer may allow holes generated in the photoactive layer to be easily transferred to the second electrode.
  • the hole transport layer is P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV (poly[ 2-methoxy-5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT (poly(3-octyl thiophene)), POT( poly(octyl thiophene)), P3DT (poly(3-decyl thiophene) ), P3DDT (poly(3-dodecyl thiophene), PPV (poly(p-phenylene vinylene)), TFB (poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), Polyani
  • the method of manufacturing a perovskite optoelectronic device includes forming a second electrode on the hole transport layer ( S140 ).
  • the second electrode may be an electrode commonly used in the field of solar cells. More specifically, the second electrode is gold (Au), silver (Ag), platinum (Pt), palladium (Pd), copper (Cu), aluminum (Al), carbon (C), cobalt sulfide (CoS), sulfide At least one of copper (CuS) and nickel oxide (NiO) may be included. Since the second electrode may also be formed by the method described for the first electrode, a redundant description thereof will be omitted.
  • the photoactive layer containing the perovskite compound is a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method. Long-term operation stability can be improved so that it has less than 10% degradation even when continuously operated for 1000 hours under 1-sun light soaking.
  • the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer to form an absorption wavelength ( The absorption wavelength can be extended to 750 nm to improve light harvesting.
  • a perovskite optoelectronic device is a perovskite photoelectric device according to an embodiment of the present invention manufactured through a method for manufacturing a perovskite photoelectric device according to an embodiment of the present invention A photoelectric device will be described.
  • FIG. 2 is a cross-sectional view illustrating a perovskite optoelectronic device according to an embodiment of the present invention.
  • the perovskite optoelectronic device according to the embodiment of the present invention is manufactured through the manufacturing method of the perovskite optoelectronic device according to the embodiment of the present invention, and detailed descriptions of the same components will be omitted.
  • the perovskite photoelectric device is spray coated on the first electrode 110 , the electron transport layer 120 formed on the first electrode 110 , and the electron transport layer 120 . ), and formed on the photoactive layer 130 containing the perovskite compound, the hole transport layer 140 and the hole transport layer 140 formed on the photoactive layer 130 containing the perovskite compound and a second electrode 150 to be
  • a perovskite photoelectric device has a perovskite structure in which an anode electrode is disposed on a substrate or a plannar-heterojunction structure in which a cathode electrode is disposed on a substrate. It can be implemented as a photovoltaic cell.
  • the perovskite optoelectronic device includes a first electrode 110, the first electrode 110 is located on a substrate, and a conductive electrode, in particular, a transparent conductive electrode to improve light transmission. desirable.
  • the first electrode 110 is, for example, fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), aluminum-containing zinc oxide (Al-doped Zinc Oxide, AZO) And it may include at least one of indium-doped zinc oxide (IZO).
  • FTO fluorine-doped tin oxide
  • ITO indium-doped tin oxide
  • Al-doped Zinc Oxide, AZO aluminum-containing zinc oxide
  • IZO indium-doped zinc oxide
  • the perovskite photoelectric device includes an electron transport layer 120 formed on a first electrode 110 , and the electron transport layer 120 includes the first electrode 110 and the photoactive layer 130 . ) can be located between The electron transport layer 120 may allow electrons generated in the photoactive layer to be easily transferred to the first electrode 110 .
  • the electron transport layer 120 may be formed of a TiO 2 based material, but is not limited thereto.
  • the perovskite photoelectric device is formed by spray coating (orthogonal spray coating) on the electron transport layer 120, and includes a photoactive layer 130 including a perovskite compound.
  • the highest occupied molecular orbital (HOMO) level of the hole transport layer 140 and the lowest unoccupied molecular orbital (LUMO) level of the electron transport layer 120 are perovskite, respectively. It matches well with a valence band and a conduction band of the electron, so that electrons can be transferred to the electron transport layer 120 and holes can be transferred to the hole transport layer 140 .
  • electron-hole pairs can be effectively separated into electrons and holes, and the separated electrons and holes are accumulated with an internal electric field formed by a difference in work function between the first electrode 110 and the second electrode 150 . It is collected by moving to each electrode by the difference in the concentration of charges and finally flows in the form of current through an external circuit.
  • the photoactive layer 130 including the perovskite compound may have a composition gradient in the depth direction from the hole transport layer 140 to the electron transport layer 120, and the photoactive layer having a composition gradient in the depth direction ( 130) of the perovskite compound may be represented by the following formula (2).
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions
  • m is 0 ⁇ m ⁇ 1.
  • A is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group (-OCH 3 ) Or imidazolium group substituted C 1-24 straight or branched chain alkyl, Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + and Au(I) ) may include at least one of + .
  • M may include at least one of Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ and Rf 2+ . .
  • X' and X" may include at least one of F - , Cl - , Br - , I - , SCN - and BF 4 - .
  • the perovskite photoelectric device includes a photoactive layer 130 formed by coating a first perovskite compound and then coating a second perovskite compound, the perovskite In the compound, the composition ratio of X′′/M′ may be changed in the depth direction from the hole transport layer 140 to the electron transport layer 120 .
  • the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the hole transport layer 140 ) and the photoactive layer 132 including the perovskite compound in contact with the concentration of the second perovskite compound may be higher than that of the first perovskite compound.
  • the photoactive layer 131 including the perovskite compound in contact with the electron transport layer 120 may include only the first perovskite compound, or the perovskite in contact with the hole transport layer 140 .
  • the photoactive layer 132 including the skyte compound may include only the second perovskite compound,
  • electron-hole pairs can be generated in the photoactive layer including the perovskite compound in contact with the electron transport layer and the photoactive layer including the perovskite compound in contact with the hole transport layer, so that electrons and holes are separated from the photoactive layer
  • the charge collection ability can be improved by guiding electrons and holes to move in opposite directions across to the electron transport layer and the hole transport layer.
  • the photoactive layer 130 has a composition gradient in the depth direction, a band gap gradient is generated according to the composition gradient, so that the electrons and holes generated in the photoactive layer 130 reduce the loss of open-circuit voltage. Separation and migration can occur much more effectively while being visible.
  • At least one electric field may be formed therein in the photoactive layer 130 including the perovskite compound.
  • the first perovskite compound may be represented by Formula 3 below.
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions.
  • the first perovskite compound may be CsPbI 2 Br.
  • the second perovskite compound may be represented by the following formula (4).
  • A is a monovalent cation
  • M' is a divalent metal cation
  • X' and X" are monovalent anions.
  • the second perovskite compound may be CsPbI 3 .
  • the hole transport layer 140 may be PTAA (poly(triarylamine)), but is not limited thereto.
  • Gold may be used as the second electrode 150 , but is not limited thereto.
  • the perovskite photoelectric device is formed so that the photoactive layer containing the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method.
  • Long-term operation stability can be improved to have less than 10% degradation even when continuously operated for 1000 hours under 1-sun light soaking.
  • the perovskite photoelectric device is formed so that the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer, so that the absorption wavelength is can be extended to 750 nm to improve light harvesting.
  • FIG. 3 is an image illustrating a band diagram of a perovskite optoelectronic device according to an embodiment of the present invention.
  • the perovskite photoelectric device includes a photoactive layer 130 having a composition gradient in the depth direction to the electron transport layer 120, and when illuminated by sunlight, the electron transport layer 120 is in contact with it. Electron-hole pairs may be generated in the photoactive layer 131 including the rovskite compound and the photoactive layer 132 including the perovskite compound in contact with the hole transport layer 140 .
  • electrons and holes cross the photoactive layer 130 to the electron transport layer 120 and the hole transport layer 140 to guide the electrons and holes to move in opposite directions, thereby making it easier to collect charges. there is.
  • the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer, so that the composition ratio of at least two monovalent anions of the perovskite compound is It can be seen that the band structure gradient in which the band gap and the Fermi level of the photoactive layer are continuously changed is formed by continuously changing.
  • the organic substrates doped with patterned fluorine-doped tin oxide (FTO) were extensively cleaned using deionized water, acetone and isopropanol, followed by an airbrush (DH-125, Spamax).
  • FTO fluorine-doped tin oxide
  • DH-125, Spamax deionized water, acetone and isopropanol
  • a compact 50 nm TiO 2 (c-TiO 2 ) solution using spray-pyrolysis deposition with a 20 mM solution of titanium diisopropoxide bis(acetylacetate) (TAA) at 450°C ) layer was formed.
  • 0.5M CsPbI2Br precursor solution was sprayed at a flow rate of 0.8 mL/min for 280 seconds, and then 0.25 M CsPbI 3 precursor solution was added.
  • a graded CsPbI 3-x Br x perovskite thin film was formed on the c-TiO 2 /FTO substrate by spraying at a flow rate of 0.5 mL/min for 5 seconds.
  • the ultrasonic spray coating process conditions were a nozzle-to-substrate distance of 5 cm, a nozzle scan rate of 10 mm/s, and a CsPbI 2 Br precursor solution of 0.8 mL/min. It has a solution flow rate, a CsPbI 3 precursor solution flow rate of 0.5 mL/min (flow gas: N 2 , pressure: 7 psi), and a deposition temperature of 150°C.
  • Perovskite optoelectronic devices were fabricated in an atmospheric atmosphere under a controlled relative humidity of ⁇ 20%.
  • FIG. 4 is a cross-sectional scanning electron microscopy (SEM) image of a photoactive layer prepared by spray coating for 5 seconds (Example 1), and FIG. 5 shows a surface scanning electron microscope image.
  • SEM scanning electron microscopy
  • FIG. 6 is a cross-sectional scanning electron microscope image of the photoactive layer prepared by spray coating for 10 seconds (Example 2)
  • FIG. 7 is a surface scanning electron microscope image.
  • FIG. 8 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 15 seconds (Example 3), and FIG. 9 is a surface scanning electron microscope image.
  • FIG. 10 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 20 seconds (Example 4), and FIG. 11 is a surface scanning electron microscope image.
  • the thickness of the photoactive layer having a composition gradient in the depth direction increases from ⁇ 490 nm to ⁇ 500 nm.
  • GIXRD 12 shows a grazing incidence X-ray diffraction (GIXRD) graph of the penetration depth of the photoactive layer according to the spray coating time.
  • GIXRD grazing incidence X-ray diffraction
  • the photoactive layer is CsPbI 3.00 , CsPbI 2.75 Br 0.25 , CsPbI 2.50 Br 0.05 , CsPbI 2.25 Br 0.75 and CsPbI 2.00 Br 1 , and the composition of I and Br is changed in the depth direction. It can be seen that the composition has a gradient.
  • FIG. 13 is a grazing incidence X-ray diffraction graph of a photoactive layer prepared by spray coating for 5 seconds (Example 1)
  • FIG. 14 is a graph showing spray coating for 10 seconds (Example 2).
  • FIG. 15 is a graph showing spray coating for 15 seconds (Example 3)
  • FIG. 16 is a graph showing spray coating for 20 seconds (Example 4).
  • the (200) peak position of (200) CsPbI 3 is 28.69°, and the (200) peak position of CsPbI 2 Br is 29.55°, but as the grazing incidence angle increases, the (200) peak position is It can be seen that is gradually increased.
  • FIG. 17 is a graph showing the depth profile of the (200) peak position of the photoactive layer according to the spray coating time
  • FIG. 18 shows the correlation between the Br/Pb composition ratio (y) and the (200) peak position (x) It is a graph
  • FIG. 19 is a graph showing compositional depth profiles of the photoactive layer according to spray coating time.
  • Equation 1 The correlation between the Br/Pb composition ratio (y) and the (200) peak position (x) may be expressed by Equation 1 below.
  • FIG. 20 is a graph showing the depth profile of the electronic bandgap (Eg) of the photoactive layer according to the spray coating time
  • FIG. 21 is the minimum conduction band (CBM) of the photoactive layer according to the spray coating time
  • It is a graph showing the depth profile of the maximum valence band (VBM).
  • the average carrier life is increased as the spray coating time is increased from 5 seconds to 20 seconds.
  • the band gap may decrease, and the exciton binding energy may decrease, so that the emission lifetime may be increased.
  • the amount of I increases and the emission lifetime decreases due to the decrease of the exciton binding energy.
  • the electron-hole pairs generated in the perovskite photoactive layer become Separation occurs more easily, which may shorten the luminescence lifetime.
  • 22 to 32 are graphs illustrating device performance characteristics of a perovskite optoelectronic device according to an embodiment of the present invention.
  • FIG. 22 shows a scanning electron microscope image of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds (Example 3).
  • a perovskite photoelectric device FTO/bl-TiO 2 /graded CsPbI 3-x Br x /PTAA/Au
  • FTO/bl-TiO 2 /graded CsPbI 3-x Br x /PTAA/Au perovskite photoelectric device
  • FIG. 23 is a graph showing an absorption spectrum of a perovskite photoelectric device according to an embodiment of the present invention
  • FIG. 24 is a graph showing an external quantum efficiency spectrum (EQE spectra)
  • FIG. 25 is an open It is a graph showing the voltage (Voc)
  • Fig. 26 is a graph showing the short circuit current density (Jsc)
  • Fig. 27 is a graph showing the charging factor (FF)
  • Fig. 28 is a graph showing the energy conversion efficiency (PCE) It is one graph.
  • Table 1 is a table showing the electrical and optical characteristics of the perovskite optoelectronic device according to an embodiment of the present invention.
  • the absorption wavelength may gradually shift to red, which is a longer wavelength.
  • the spray coating time increases, so that the absorption wavelength gradually increases to a longer wavelength, so that the amount of light absorption increases, thereby increasing the amount of generated current density.
  • the filling factor has a maximum value when spray coating is performed for 15 seconds, and as a result, it can be seen that it has an energy conversion efficiency of 14.63 ⁇ 1.07% under 1-sun conditions.
  • FIG. 29 is a graph showing current density-voltage curves (JV curves) of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 5 seconds (Example 1)
  • 30 is a graph in which spray coating is performed for 10 seconds (Example 2)
  • FIG. 31 is a graph in which spray coating is performed for 15 seconds (Example 3)
  • FIG. 32 is spray coating in progress for 20 seconds.
  • It is a graph.
  • the perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds (Example 3) in the case of forward scan It can be seen that 16.45%, high energy conversion efficiency of 16.81% for the reverse scan and charged particles.
  • 33 to 36 are graphs illustrating sub-modules and long-term stability characteristics of a perovskite optoelectronic device according to an embodiment of the present invention.
  • FIG. 33 is an image showing a sub-module of a perovskite optoelectronic device according to an embodiment of the present invention
  • FIG. 34 is a graph showing a photocurrent-voltage (IV) curve of the sub-module
  • FIG. 35 is an initial stage ( It is a graph showing the stabilized power output of the sub-module in the early stage; 0 to 60 sec. It is a graph showing the results of a long-term light-soaking stability test under (1-sun illumination)
  • FIG. 37 is a graph showing a photocurrent-voltage curve during a stability test for 1000 hours.
  • the western module of FIG. 33 is composed of 7 sub-cells connected in series.
  • the open circuit voltage is 7.64V
  • the current density is 281.12mA
  • the charging factor is 13.82%.
  • the sub-module of the perovskite optoelectronic device according to the embodiment of the present invention under 1-sun illumination shows a stabilized power output and has long-term stability under continuous light absorption. there is.
  • the energy conversion efficiency of the sub-module of the perovskite optoelectronic device according to the embodiment of the present invention is 12.54%, which is reduced by only ⁇ 09.3% compared to the perovskite optoelectronic device of the initial stage.

Abstract

Disclosed are a perovskite optoelectronic device and porous polymer particles prepared by means of same. The present invention comprises the steps of: forming an electron transport layer on a first electrode; forming a photoactive layer comprising a perovskite compound on the electron transport layer by means of orthogonal spray coating; forming a hole transport layer on the photoactive layer comprising the perovskite compound; and forming a second electrode on the hole transport layer, wherein the photoactive layer comprising the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer.

Description

페로브스카이트 광전 소자의 제조 방법 및 이를 통하여 제조된 페로브스카이트 광전 소자Method for manufacturing perovskite optoelectronic device and perovskite optoelectronic device manufactured through the same
본 발명은 페로브스카이트 광전 소자의 제조 방법 및 이를 통하여 제조된 페로브스카이트 광전 소자에 관한 것으로, 보다 상세하게는, 스프레이 코팅을 사용하여 광활성층을 깊이 방향으로 조성 경사를 갖도록 형성함으로써, 흡수 파장 범위 및 캐리어 수명을 향상시킬 수 있는 페로브스카이트 광전 소자의 제조 방법 및 이를 통하여 제조된 페로브스카이트 광전 소자에 관한 것이다.The present invention relates to a method of manufacturing a perovskite optoelectronic device and a perovskite optoelectronic device manufactured through the method, and more particularly, by using spray coating to form a photoactive layer to have a compositional gradient in the depth direction, The present invention relates to a method for manufacturing a perovskite optoelectronic device capable of improving absorption wavelength range and carrier lifetime, and to a perovskite optoelectronic device manufactured through the same.
화석 에너지의 고갈과 이의 사용에 의한 지구 환경적인 문제를 해결하기 위하여 태양 에너지, 풍력, 수력과 같은 재생 가능하며 청정한 대체 에너지원에 대한 연구가 활발히 진행되고 있다.In order to solve the global environmental problems caused by the depletion of fossil energy and its use, research on renewable and clean alternative energy sources such as solar energy, wind power, and hydroelectric power is being actively conducted.
이중, 태양광으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. 여기서, 태양전지란 태양광으로부터 광 에너지를 흡수하여 전자와 정공을 발생시키는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다.Among them, interest in solar cells that directly change electrical energy from sunlight is increasing significantly. Here, the solar cell refers to a cell that generates current-voltage using the photovoltaic effect of absorbing light energy from sunlight to generate electrons and holes.
현재 광에너지 변환효율이 20%가 넘는 n-p 다이오드형 실리콘(Si) 단결정 기반 태양전지의 제조가 가능하여 실제 태양광 발전에 사용되고 있으며, 이보다 변환효율이 더 우수한 갈륨아세나이드(GaAs)와 같은 화합물 반도체를 이용한 태양전지도 있다. 그러나 이러한 무기 반도체 기반의 태양전지는 고효율화를 위하여 매우 고순도로 정제한 소재가 필요하므로 원소재의 정제에 많은 에너지가 소비되고, 원소재를 이용하여 단결정 또는 박막화하는 과정에 고가의 공정 장비가 요구되어 태양전지의 제조 비용을 낮게 하는데 한계가 있어 대규모적인 활용에 걸림돌이 되어 왔다.Currently, it is possible to manufacture np diode-type silicon (Si) single-crystal-based solar cells with a light energy conversion efficiency of more than 20%, which is used in actual photovoltaic power generation. Compound semiconductors such as gallium arsenide (GaAs) with better conversion efficiency There are also solar cells using However, since these inorganic semiconductor-based solar cells require very high-purity purified materials for high efficiency, a lot of energy is consumed for refining raw materials, and expensive process equipment is required for single crystal or thin film using raw materials. There is a limit to lowering the manufacturing cost of solar cells, which has been an obstacle to large-scale utilization.
이에 따라, 태양전지를 저가로 제조하기 위해서 태양전지의 핵심 소재 또는 제조 공정의 비용을 대폭 감소시킬 필요가 있으며, 무기 반도체 기반 태양전지의 대안으로 저가의 소재와 공정으로 제조 가능한 염료감응태양전지와 유기태양전지가 활발히 연구되고 있다.Accordingly, in order to manufacture a solar cell at a low cost, it is necessary to significantly reduce the cost of the core material or manufacturing process of the solar cell, and as an alternative to the inorganic semiconductor-based solar cell, the dye-sensitized solar cell and Organic solar cells are being actively researched.
염료감응태양전지(DSSC; dye-sensitized solar cell)는 1991년 스위스 로잔공대(EPFL)의 미카엘 그라첼(Michael Gratzel) 교수가 처음 개발에 성공하여 네이쳐지(Vol. 353, p. 737)에 소개되었다. 초기의 염료감응태양전지 구조는 빛과 전기가 통하는 투명전극필름 위에 다공성 광음극(photoanode)에 빛을 흡수하는 염료를 흡착한 후, 또 다른 전도성 유리 기판을 상부에 위치시키고 액체 전해질을 채운 간단한 구조로 되어 있다.Dye-sensitized solar cell (DSSC) was first successfully developed in 1991 by Professor Michael Gratzel of Lausanne Institute of Technology (EPFL) in Switzerland and introduced in Nature (Vol. 353, p. 737). became The initial structure of the dye-sensitized solar cell was a simple structure in which a light-absorbing dye was adsorbed to a porous photoanode on a transparent electrode film that conducts light and electricity, another conductive glass substrate was placed on top, and a liquid electrolyte was filled. is made of
현재까지 보고된 액체형 염료감응태양전지의 최고 효율은 약 20년 동안 11-12%에 머물고 있다. 액체형 염료감응태양전지의 효율은 상대적으로 높아 상용화 가능성이 있으나, 휘발성 액체 전해질에 의한 시간에 따른 안정성 문제와 고가의 루테늄(Ru)계 염료 사용에 의한 저가화에도 문제가 있다.The highest efficiency reported so far for liquid-type dye-sensitized solar cells has remained at 11-12% for about 20 years. Although the liquid-type dye-sensitized solar cell has relatively high efficiency, it has potential for commercialization, but there are also problems with stability over time due to volatile liquid electrolytes and cost reduction due to the use of expensive ruthenium (Ru)-based dyes.
한편, 1990년 중반부터 본격적으로 연구되기 시작한 유기태양전지(OPV; organic photovoltaic)는 전자 도너(electron donor, D 또는 종종 hole acceptor로 불림) 특성과 전자 받개(electron acceptor, A) 특성을 갖는 유기물들로 구성된다. 유기 분자로 이루어진 태양전지가 빛을 흡수하면 전자와 홀이 형성되는데 이것을 엑시톤(exiton)이라 한다. 엑시톤은 D-A 계면으로 이동하여 전하가 분리되고 전자는 전자 억셉터(electron acceptor)로, 홀은 전자 도너(electron donor)로 이동하여 광전류가 발생한다.On the other hand, organic photovoltaic (OPV) cells, which have been studied in earnest since the mid-1990s, are organic materials with electron donor (D, or sometimes called hole acceptor) characteristics and electron acceptor (A) characteristics. is composed of When a solar cell made of organic molecules absorbs light, electrons and holes are formed, which is called exciton. Excitons move to the D-A interface to separate charges, and electrons move to electron acceptors and holes move to electron donors to generate photocurrent.
전자 도너에서 발생한 엑시톤이 통상 이동할 수 있는 거리는 10 nm 안팎으로 매우 짧기 때문에 광할성 유기물질을 두껍게 쌓을 수 없어 광흡수도가 낮아 효율이 낮았다. 그러나, 최근에는 계면에서의 표면적을 증가시키는 소위 BHJ(bulk heterojuction) 개념의 도입과 넓은 범위의 태양광 흡수에 용이한 밴드갭이 작은 전자 도너 유기물의 개발과 함께 효율이 크게 증가하여, 8%가 넘는 효율을 가진 유기 태양전지가 보고 되고 있다(Advanced Materials, 23 (2011) 4636).Since the exciton generated from the electron donor can normally travel at a very short distance of around 10 nm, the photoreactive organic material cannot be thickly stacked, resulting in low light absorption and low efficiency. However, recently, with the introduction of the so-called BHJ (bulk heterojuction) concept that increases the surface area at the interface and the development of an electron donor organic material with a small bandgap that is easy to absorb in a wide range of sunlight, the efficiency has greatly increased, so that 8% An organic solar cell with higher efficiency has been reported (Advanced Materials, 23 (2011) 4636).
유기태양전지는 유기 재료의 손쉬운 가공성과 다양성, 낮은 단가로 인해 기존 태양전지와 비교하여 소자의 제작 과정이 간단하고, 따라서 기존의 태양전지에 비하여 저가 제조 단가의 실현이 가능하다. 그러나 유기태양전지는 BHJ의 구조가 공기 중의 수분이나 산소에 의해 열화되어 그 효율이 빠르게 저하되는, 즉 태양전지의 안정성에 큰 문제가 있다. 이를 해결하기 위한 방법으로 완전한 실링 기술을 도입하여 안정성을 증가시킬 수 있으나, 가격이 올라가는 문제가 있다.The organic solar cell has a simpler manufacturing process compared to the conventional solar cell due to the easy processability, diversity, and low cost of organic materials. However, the organic solar cell has a big problem in that the structure of the BHJ is deteriorated by moisture or oxygen in the air, so that the efficiency is rapidly reduced, that is, the stability of the solar cell. As a way to solve this problem, stability can be increased by introducing a complete sealing technology, but there is a problem that the price increases.
이외에 순수한 무기물로 된 양자점이 아닌, 유무기 하이브리드 페로브스카이트(perovskite) 구조를 가진 물질을 염료감응태양전지의 염료 대신 사용하여 약 9%의 효율이 보고된 바 있다(Scientific Reports 2, 591).In addition, an efficiency of about 9% has been reported by using a material having an organic/inorganic hybrid perovskite structure instead of a pure inorganic quantum dot instead of a dye in a dye-sensitized solar cell (Scientific Reports 2, 591). .
유무기 하이브리드 페로브스카이트는 광학적 및 전기적 특성이 우수하고 가격이 저렴하며 공정에서의 이용이 용이한 장점을 지닌 차세대 광흡수 물질이다. 특히, 최근 유무기 하이브리드 페로브스카이트 반도체는 기본적으로 화학 조성이 ABX3이므로, 다양한 종류의 물질과의 합성이 용이하고, 저가의 재료비로 태양전지의 제작이 가능하여 궁극적인 차세대 태양전지 물질로 많은 관심을 받고 있다.Organic-inorganic hybrid perovskite is a next-generation light-absorbing material with excellent optical and electrical properties, low price, and easy use in the process. In particular, recent organic-inorganic hybrid perovskite semiconductors have a basic chemical composition of ABX 3 , so they can be easily synthesized with various types of materials, and solar cells can be manufactured at low material costs, making them the ultimate next-generation solar cell material. It's getting a lot of attention.
또한, 페로브스카이트 태양전지는 유기태양전지와 같이 용액 공정이 가능하기 때문에 대면적 및 플랙서블 소자로의 다양한 활용이 가능하여 레이저나 발광전자소자와 같은 다양한 분야로의 연구가 활발히 진행되고 있다.In addition, as perovskite solar cells can be solution-processed like organic solar cells, they can be used in a wide variety of large-area and flexible devices. .
한편, 페로브스카이트 태양전지에서 고효율을 달성하기 위한 핵심 기술은 균일한 페로브스카이트막의 형성에 크게 의존하기 때문에, 페로브스카이트 태양전지에 대한 상업적 응용을 위해서는 균일한 페로브스카이트막의 형성을 위한 기술을 개발하는 것이 중요하다.On the other hand, since the core technology for achieving high efficiency in perovskite solar cells largely depends on the formation of a uniform perovskite film, for commercial application to perovskite solar cells, the It is important to develop skills for shaping.
페로브스카이트막을 제조하는 방법에는 페로브스카이트 용액의 용해도를 조절하여 결정화 속도를 늦춰 균일한 페로브스카이트막을 형성하는 방법, 논솔벤트 드리핑(nonsolvent dripping)을 통해 페로브스카이트막을 강제로 결정화시키는 방법, PbI2 등을 먼저 코팅하고 여기에 MAI 용액 등을 드리핑(two step 공정)하여 페로브스카이트막을 형성하는 방법 등이 있다.The method of manufacturing a perovskite film includes a method of forming a uniform perovskite film by slowing the crystallization rate by controlling the solubility of the perovskite solution, and forcing the perovskite film through nonsolvent dripping. There is a method of crystallization, a method of forming a perovskite film by first coating PbI 2 , etc., and then dripping MAI solution or the like thereto (two step process).
그러나 이러한 방법들의 경우, 외부 환경(온도, 습도)의 영향을 많이 받기 때문에 균일한 페로브스카이트막을 형성하기가 어렵고, 페로브스카이트 결정 입자의 크기를 제어하기가 어려우며, 빠른 결정화와 고르지 않은 성장으로 인해 표면거칠기가 증가하여 페로브스카이트 막의 품질이 감소하고, 비압축 막은 불균일한 입자 크기 및 핀 홀에 의해 외부 침식을 야기하는 등의 수많은 결함을 형성하는 단점이 있다.However, in the case of these methods, it is difficult to form a uniform perovskite film because it is greatly affected by the external environment (temperature, humidity), it is difficult to control the size of the perovskite crystal grains, and it is difficult to achieve rapid crystallization and unevenness. The surface roughness increases due to growth, which reduces the quality of the perovskite film, and the non-compressed film has disadvantages in forming numerous defects such as non-uniform particle size and external erosion caused by pinholes.
또한, 페로브스카이트 막의 거친 표면은 페로브스카이트 막과 전하 수송층 사이의 접촉이 불량하여 재조합(surface recombination)이 야기되는 문제가 있고, 이러한 방법들은 스핀 코팅 공정을 이용하기 때문에 일정 크기 이상의 페로브스카이트 태양전지를 제조하기 어렵다는 단점이 있다.In addition, the rough surface of the perovskite film has a problem that recombination occurs due to poor contact between the perovskite film and the charge transport layer. There is a disadvantage in that it is difficult to manufacture a lobskite solar cell.
고효율의 페로브스카이트 태양전지를 제조하기 위해서는 균일하며 큰 결정 입자(grain)를 갖는 페로브스카이트막을 기판의 크기에 관계없이 대면적으로 형성 가능한 기술 개발이 필요하고, 장시간 동작 안정성을 확보해야 한다.In order to manufacture a high-efficiency perovskite solar cell, it is necessary to develop a technology capable of forming a perovskite film with uniform and large grains in a large area regardless of the size of the substrate, and to ensure long-term operation stability. do.
본 발명의 실시예는 스프레이 코팅 방법으로 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 태양광 흡수(1-sun light soaking) 하에서 1000시간 동안 연속적으로 동작하여도 10% 미만의 열화를 갖도록 장기간 동작 안정성을 향상시킬 수 있는 페로브스카이트 광전 소자 및 이의 제조 방법을 제공하고자 한다.In an embodiment of the present invention, a photoactive layer containing a perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method to absorb sunlight (1-sun light soaking) An object of the present invention is to provide a perovskite photoelectric device capable of improving long-term operation stability so as to have less than 10% degradation even when continuously operated for 1000 hours under the present invention, and a method for manufacturing the same.
본 발명의 실시예는 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 흡수 파장(absorption wavelength)을 750nm까지 확대하여 집광성(light harvesting)을 향상시킬 수 있는 페로브스카이트 광전 소자 및 이의 제조 방법을 제공하고자 한다.In an embodiment of the present invention, the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer, and the absorption wavelength is expanded to 750 nm to increase the light collecting property ( An object of the present invention is to provide a perovskite optoelectronic device capable of improving light harvesting and a method for manufacturing the same.
본 발명의 실시예는 페로브스카이트 화합물을 포함하는 광활성층을 스프레이 코팅 방법으로 형성하여 비교적 간단한 공정을 통해 페로브스카이트막을 기판의 크기에 관계없이 대면적으로 제조할 수 있는 페로브스카이트 광전 소자 및 이의 제조 방법을 제공하고자 한다.In an embodiment of the present invention, the perovskite film can be manufactured in a large area regardless of the size of the substrate through a relatively simple process by forming a photoactive layer containing a perovskite compound by a spray coating method. An object of the present invention is to provide an optoelectronic device and a method for manufacturing the same.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제1 전극 상에 전자수송층을 형성하는 단계; 상기 전자수송층 상에 스프레이 코팅(orthogonal spray coating)으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계; 상기 페로브스카이트 화합물을 포함하는 광활성층 상에 정공수송층을 형성하는 단계; 및 상기 정공수송층 상에 제2 전극을 형성하는 단계;를 포함하고, 상기 페로브스카이트 화합물을 포함하는 광활성층은, 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖는다.A method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention comprises: forming an electron transport layer on a first electrode; forming a photoactive layer comprising a perovskite compound on the electron transport layer by spray coating (orthogonal spray coating); forming a hole transport layer on the photoactive layer containing the perovskite compound; and forming a second electrode on the hole transport layer, wherein the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer. .
상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 연속적으로 밴드 구조 경사가 형성될 수 있다.In the photoactive layer including the perovskite compound, a band structure gradient may be continuously formed in a depth direction from the hole transport layer to the electron transport layer.
상기 페로브스카이트 화합물을 포함하는 광활성층은 내부에 적어도 하나 이상의 전기장이 형성될 수 있다.At least one electric field may be formed therein in the photoactive layer including the perovskite compound.
상기 페로브스카이트 화합물은 하기 화학식 1로 표현될 수 있다.The perovskite compound may be represented by the following formula (1).
[화학식 1][Formula 1]
AaMmXcAaMmXc
(상기 화학식 1에서, A는 1가의 양이온이고, M은 2가 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=c이며, a, b, c는 자연수이다.)(In Formula 1, when A is a monovalent cation, M is a divalent or trivalent metal cation, X is a monovalent anion, and M is a divalent metal cation, a+2b=c, M is a trivalent metal For positive ions, a+3b=c, and a, b, and c are natural numbers.)
상기 페로브스카이트 화합물은 하기 화학식 2로 표현될 수 있다.The perovskite compound may be represented by the following formula (2).
[화학식 2][Formula 2]
AM'X'(3-m)X"m AM'X' (3-m) X" m
(상기 화학식 2에서, A는 1가의 양이온이고, M'는 2가의 금속 양이온이며, X' 및 X"은 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
상기 페로브스카이트 화합물은 적어도 둘 이상의 1가 음이온을 포함하고, 상기 깊이 방향으로 상기 적어도 둘 이상의 1가 음이온의 조성비가 변화될 수 있다.The perovskite compound may include at least two or more monovalent anions, and the composition ratio of the at least two or more monovalent anions may change in the depth direction.
상기 전자수송층 상에 스프레이 코팅으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계는, 상기 전자수송층 상에 제1 페로브스카이트 화합물을 코팅하는 단계; 및 상기 코팅된 제1 페로브스카이트 화합물 상에 제2 페로브스카이트 화합물을 코팅하는 단계;를 포함할 수 있다.Forming a photoactive layer comprising a perovskite compound by spray coating on the electron transport layer may include: coating a first perovskite compound on the electron transport layer; and coating a second perovskite compound on the coated first perovskite compound.
상기 전자수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높고, 상기 정공수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높을 수 있다.In the photoactive layer comprising the perovskite compound in contact with the electron transport layer, the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the perovskite in contact with the hole transport layer In the photoactive layer including the dot compound, the concentration of the second perovskite compound may be higher than that of the first perovskite compound.
상기 제2 페로브스카이트 화합물의 코팅 시간은 0.5초 내지 200초일 수 있다.The coating time of the second perovskite compound may be 0.5 seconds to 200 seconds.
상기 제2 페로브스카이트 화합물의 코팅 시간에 따라 상기 페로브스카이트 화합물의 평균 직경이 조절되는 것을 포함할 수 있다.It may include adjusting the average diameter of the perovskite compound according to the coating time of the second perovskite compound.
상기 제1 페로브스카이트 화합물은 하기 화학식 3로 표현되고, 상기 제2 페로브스카이트 화합물은 하기 화학식 4로 표현될 수 있다.The first perovskite compound may be represented by the following Chemical Formula 3, and the second perovskite compound may be represented by the following Chemical Formula 4.
[화학식 3][Formula 3]
AM'X'2X"AM'X' 2X "
[화학식 4][Formula 4]
AM'X'3 AM'X' 3
(상기 화학식 3 및 4에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formulas 3 and 4, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
본 발명의 실시예에 따른 페로브스카이트는 제1 전극; 상기 제1 전극 상에 형성되는 전자수송층; 상기 전자수송층 상에 스프레이 코팅(orthogonal spray coating)으로 형성되고, 페로브스카이트 화합물을 포함하는 광활성층; 상기 페로브스카이트 화합물을 포함하는 광활성층 상에 형성되는 정공수송층; 및 상기 정공수송층 상에 형성되는 제2 전극을 포함하고, 상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖는다.Perovskite according to an embodiment of the present invention is a first electrode; an electron transport layer formed on the first electrode; a photoactive layer formed by orthogonal spray coating on the electron transport layer and including a perovskite compound; a hole transport layer formed on the photoactive layer including the perovskite compound; and a second electrode formed on the hole transport layer, wherein the photoactive layer including the perovskite compound has a composition gradient in a depth direction from the hole transport layer to the electron transport layer.
상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 연속적으로 밴드 구조 경사가 형성될 수 있다.In the photoactive layer including the perovskite compound, a band structure gradient may be continuously formed in a depth direction from the hole transport layer to the electron transport layer.
상기 페로브스카이트 화합물을 포함하는 광활성층은 내부에 적어도 하나 이상의 전기장이 형성될 수 있다.At least one electric field may be formed therein in the photoactive layer including the perovskite compound.
상기 페로브스카이트 화합물은 하기 화학식 1로 표현될 수 있다.The perovskite compound may be represented by the following formula (1).
[화학식 1][Formula 1]
AaMmXcAaMmXc
(상기 화학식 1에서, A는 1가의 양이온이고, M은 2가 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=c이며, a, b, c는 자연수이다.)(In Formula 1, when A is a monovalent cation, M is a divalent or trivalent metal cation, X is a monovalent anion, and M is a divalent metal cation, a+2b=c, M is a trivalent metal For positive ions, a+3b=c, and a, b, and c are natural numbers.)
상기 광활성층은 페로브스카이트 화합물은 하기 화학식 2로 표현될 수 있다.The photoactive layer may be a perovskite compound represented by the following Chemical Formula 2.
[화학식 2][Formula 2]
AM'X'(3-m)X"m AM'X' (3-m) X" m
(상기 화학식 2에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
상기 페로브스카이트 화합물은 적어도 둘 이상의 1가 음이온을 포함하고, 상기 깊이 방향으로 상기 적어도 둘 이상의 1가 음이온의 조성비가 변화될 수 입다.The perovskite compound may include at least two or more monovalent anions, and the composition ratio of the at least two or more monovalent anions may change in the depth direction.
상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물 및 제2 페로브스카이트 화합물을 포함하고, 상기 전자수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높으며, 상기 정공수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높을 수 있다.The photoactive layer comprising the perovskite compound comprises a first perovskite compound and a second perovskite compound, and the photoactive layer comprising the perovskite compound in contact with the electron transport layer is a first The concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the photoactive layer including the perovskite compound in contact with the hole transport layer has a second perovskite compound concentration. It can be higher than 1 perovskite compound.
본 발명의 실시예에 따르면, 스프레이 코팅 방법으로 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 태양광 흡수(1-sun light soaking) 하에서 1000시간 동안 연속적으로 동작하여도 10% 미만의 열화를 갖도록 장기간 동작 안정성을 향상시킬 수 있다.According to an embodiment of the present invention, the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method to absorb sunlight (1-sun light). Soaking), it is possible to improve long-term operation stability so as to have less than 10% degradation even when continuously operated for 1000 hours.
본 발명의 실시예에 따르면, 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 흡수 파장(absorption wavelength)을 750nm까지 확대하여 집광성(light harvesting)을 향상시킬 수 있다.According to an embodiment of the present invention, the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer to expand the absorption wavelength to 750 nm. Light harvesting can be improved.
본 발명의 실시예에 따르면, 페로브스카이트 화합물을 포함하는 광활성층을 스프레이 코팅 방법으로 형성하여 비교적 간단한 공정을 통해 페로브스카이트막을 기판의 크기에 관계없이 대면적으로 제조할 수 있다.According to an embodiment of the present invention, the photoactive layer containing the perovskite compound is formed by a spray coating method, and the perovskite film can be manufactured in a large area regardless of the size of the substrate through a relatively simple process.
도 1은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법을 도시한 흐름도이다.1 is a flowchart illustrating a method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 페로브스카이트 광전 소자를 도시한 단면도 입다.2 is a cross-sectional view illustrating a perovskite optoelectronic device according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 밴드 다이어그램(band diagram)을 도시한 이미지이다.3 is an image illustrating a band diagram of a perovskite optoelectronic device according to an embodiment of the present invention.
도 4 내지 도 11은 스프레이 코팅 시간에 따른 광활성층의 모폴로지 변화(Morphology variations) 변화 특성을 도시한 것이다.4 to 11 show the characteristics of change in morphology variations of the photoactive layer according to the spray coating time.
도 4는 5초 동안 스프레이 코팅을 진행하여 제조된 광활성층의 단면 주사전자현미경(Scanning electron microscopy, SEM) 이미지이고, 도 5는 표면 주사전자현미경 이미지를 도시한 것이다.4 is a cross-sectional scanning electron microscopy (SEM) image of a photoactive layer prepared by spray coating for 5 seconds, and FIG. 5 is a surface scanning electron microscope image.
도 6은 10초 동안 스프레이 코팅을 진행하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 7은 표면 주사전자현미경 이미지를 도시한 것이다.6 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 10 seconds, and FIG. 7 is a surface scanning electron microscope image.
도 8은 15초 동안 스프레이 코팅을 진행하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 9는 표면 주사전자현미경 이미지를 도시한 것이다.8 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 15 seconds, and FIG. 9 is a surface scanning electron microscope image.
도 10은 20초 동안 스프레이 코팅을 진행하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 11은 표면 주사전자현미경 이미지를 도시한 것이다.10 is a cross-sectional scanning electron microscope image of the photoactive layer prepared by spray coating for 20 seconds, and FIG. 11 is a surface scanning electron microscope image.
도 12는 스프레이 코팅 시간에 따른 광활성층의 관통 깊이의 스침 입사 X선 회절(Grazing incidence X-ray diffraction, GIXRD) 그래프를 도시한 것이다.12 shows a grazing incidence X-ray diffraction (GIXRD) graph of the penetration depth of the photoactive layer according to the spray coating time.
도 13은 5초 동안 스프레이 코팅을 진행하여 제조된 광활성층의 스침 입사 X선 회절 그래프를 도시한 것이고, 도 14는 10초 동한 스프레이 코팅을 진행한 그래프이고, 도 15는 15초 동안 스프레이 코팅을 진행한 그래프이고, 도 16은 20초 동안 스프레이 코팅을 진행한 그래프이다.13 is a grazing incidence X-ray diffraction graph of the photoactive layer prepared by spray coating for 5 seconds, FIG. 14 is a graph showing spray coating for 10 seconds, and FIG. 15 is spray coating for 15 seconds. It is a graph in progress, and FIG. 16 is a graph in which spray coating was performed for 20 seconds.
도 17은 스프레이 코팅 시간에 따른 광활성층의 (200) 피크 위치의 깊이 프로파일을 도시한 그래프이다.17 is a graph showing the depth profile of the (200) peak position of the photoactive layer according to the spray coating time.
도 18은 Br/Pb 조성비(y)와 (200) 피크 위치(x) 사이의 상관관계를 도시한 그래프이다.18 is a graph showing the correlation between the Br/Pb composition ratio (y) and the (200) peak position (x).
도 19는 스프레이 코팅 시간에 따른 광활성층의 조성 깊이 프로파일(Compositional depth profiles)을 도시한 그래프이다.19 is a graph showing compositional depth profiles of the photoactive layer according to spray coating time.
도 20은 스프레이 코팅 시간에 따른 광활성층의 전자 밴드 갭(electronic bandgap, Eg)의 깊이 프로파일을 도시한 그래프이다.20 is a graph showing the depth profile of the electronic bandgap (Eg) of the photoactive layer according to the spray coating time.
도 21은 스프레이 코팅 시간에 따른 광활성층의 최소 전도대(conduction band minimum, CBM) 및 최대 가전자대(valence band maximum, VBM)의 깊이 프로파일을 도시한 그래프이다.21 is a graph illustrating depth profiles of conduction band minimum (CBM) and valence band maximum (VBM) of the photoactive layer according to spray coating time.
도 22는 15초 동안 스프레이 코팅을 진행하여 제조된 광활성층을 포함하는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 주사전자현미경 이미지를 도시한 것이다.22 is a scanning electron microscope image of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds.
도 23은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 흡수 스펙트럼(Absorption spectra)을 도시한 그래프이고, 도 24는 외부 양자 효율 스펙트럼(EQE spectra)을 도시한 그래프이며, 도 25는 개방전압(Voc)을 도시한 그래프이고, 도 26은 단락전류(Jsc)를 도시한 그래프이며, 도 27은 충전인자(FF)를 도시한 그래프이고, 도 28은 에너지 전환 효율(PCE)을 도시한 그래프이다.23 is a graph showing an absorption spectrum of a perovskite photoelectric device according to an embodiment of the present invention, FIG. 24 is a graph showing an external quantum efficiency spectrum (EQE spectra), and FIG. 25 is an open It is a graph showing the voltage (Voc), Fig. 26 is a graph showing the short-circuit current (Jsc), Fig. 27 is a graph showing the charging factor (FF), and Fig. 28 is a graph showing the energy conversion efficiency (PCE) It is a graph.
도 29는 5초 동안 스프레이 코팅을 진행하여 제조된 광활성층을 포함하는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 전류밀도-전압 곡선(J-V curves)을 도시한 그래프이고, 도 30은 10초 동안 스프레이 코팅을 진행한 그래프이고, 도 31은 15초동안 스프레이 코팅을 진행한 그래프이며, 도 32는 20초 동안 스프레이 코팅을 진행한 그래프이다.29 is a graph showing current density-voltage curves (JV curves) of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 5 seconds, FIG. 30 is It is a graph of spray coating for 10 seconds, FIG. 31 is a graph of spray coating for 15 seconds, and FIG. 32 is a graph showing spray coating for 20 seconds.
도 33은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 서브 모듈을 도시한 이미지이고, 도 34는 서브 모듈의 광전류-전압(I-V) 곡선을 도시한 그래피이며, 도 35는 초기 단계(early stage)에서의 서브 모듈의 안정화된 전력 출력(Stabilized power output)을 도시한 그래프이고, 도 36은 캡슐화되지 않은 서브 모듈의 실온 및 질소(N2) 분위기의 1-태양 조명(1-sun illumination) 하에서 장기간 태양광 흡수 안정성 시험(Long-term light-soaking stability test) 결과를 도시한 그래프이며, 도 37은 1000시간의 안정성 시험 동안의 광전류-전압 곡선을 도시한 그래프이다.33 is an image showing a sub-module of a perovskite optoelectronic device according to an embodiment of the present invention, FIG. 34 is a graph showing a photocurrent-voltage (IV) curve of the sub-module, and FIG. 35 is an initial stage ( It is a graph showing the stabilized power output (Stabilized power output) of the sub-module in early stage), and FIG. 36 is 1-sun illumination at room temperature and nitrogen (N2) atmosphere of the sub-module that is not encapsulated. It is a graph showing the results of a long-term light-soaking stability test under
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계는 하나 이상의 다른 구성요소, 단계의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and/or "comprising" does not exclude the presence or addition of one or more other elements, steps, or elements mentioned.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.As used herein, “embodiment”, “example”, “aspect”, “exemplary”, etc. are to be construed as advantageous in any aspect or design described as being preferred or advantageous over other aspects or designs. is not doing
또한, '또는'이라는 용어는 배타적 논리합 'exclusive or'이기보다는 포함적인 논리합 'inclusive or'를 의미한다. 즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다'라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.Also, the term 'or' means 'inclusive or' rather than 'exclusive or'. That is, unless stated otherwise or clear from context, the expression 'x employs a or b' means any of natural inclusive permutations.
또한, 본 명세서 및 청구항들에서 사용되는 단수 표현("a" 또는 "an")은, 달리 언급하지 않는 한 또는 단수 형태에 관한 것이라고 문맥으로부터 명확하지 않는 한, 일반적으로 "하나 이상"을 의미하는 것으로 해석되어야 한다.Also, as used herein and in the claims, the singular expression "a" or "an" generally means "one or more," unless stated otherwise or clear from the context that it relates to the singular form. should be interpreted as
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.The terms used in the description below have been selected as general and universal in the related technical field, but there may be other terms depending on the development and/or change of technology, customs, preferences of technicians, and the like. Therefore, the terms used in the description below should not be construed as limiting the technical idea, but as illustrative terms for describing the embodiments.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the corresponding description. Therefore, the terms used in the description below should be understood based on the meaning of the term and the content throughout the specification, rather than the simple name of the term.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.
한편, 본 발명의 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Meanwhile, in the description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms used in this specification are terms used to properly express the embodiment of the present invention, which may vary according to the intention of a user or operator or customs in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the content throughout this specification.
도 1은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법을 도시한 흐름도이다.1 is a flowchart illustrating a method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제1 전극 상에 전자수송층을 형성하는 단계(S110), 전자수송층 상에 스프레이 코팅(orthogonal spray coating)으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계(S120), 페로브스카이트 화합물을 포함하는 광활성층 상에 정공수송층을 형성하는 단계(S130) 및 정공수송층 상에 제2 전극을 형성하는 단계(S140)를 포함한다.The method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention comprises the steps of forming an electron transport layer on the first electrode (S110), spray coating on the electron transport layer (orthogonal spray coating) on the perovskite compound. Forming a photoactive layer comprising (S120), forming a hole transport layer on the photoactive layer comprising a perovskite compound (S130), and forming a second electrode on the hole transport layer (S140) do.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제1 전극 상에 전자수송층을 형성하는 단계(S110)를 진행한다.The method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention proceeds with the step of forming an electron transport layer on the first electrode (S110).
기판은 무기물 기판 또는 유기물 기판이 사용될 수 있다.As the substrate, an inorganic substrate or an organic substrate may be used.
무기물 기판은 유리, 석영(Quartz), Al2O3, SiC, Si, GaAs 및 InP 중 적어도 어느 하나를 포함할 수 있다.The inorganic substrate may include at least one of glass, quartz, Al 2 O 3 , SiC, Si, GaAs, and InP.
유기물 기판은 켑톤 호일, 폴리이미드(polyimide, PI), 폴리에테르술폰(polyethersulfone, PES), 폴리아크릴레이트(polyacrylate, PAR), 폴리에테르 이미드(polyetherimide, PEI), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 트리아세테이트(cellulose triacetate, CTA) 및 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP) 중 어느 하나를 포함할 수 있다.The organic substrate is Kepton foil, polyimide (PI), polyethersulfone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN) ), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyarylate, polycarbonate (PC), cellulose triacetate (CTA) and cellulose acetate It may include any one of propionate (cellulose acetate propionate, CAP).
무기물 기판 및 유기물 기판은 광이 투과되는 투명한 소재로 이루어지는 것이 더욱 바람직하고, 통상적으로 기판은 전면 전극 상에 위치할 수 있는 기판이면 사용 가능하다. 유기물 기판을 도입하는 경우, 전극의 유연성을 높일 수 있다.It is more preferable that the inorganic substrate and the organic substrate are made of a transparent material through which light is transmitted, and in general, the substrate can be used as long as it can be positioned on the front electrode. When the organic substrate is introduced, the flexibility of the electrode can be increased.
제1 전극은 기판 상에 위치하며 전도성 전극, 특히 광의 투과를 향상시키기 위해 투명 전도성 전극이 바람직하다. 제1 전극은 태양전지 분야에서 통상적으로 사용되는 전극 물질이면 사용 가능하다.The first electrode is located on the substrate and a conductive electrode, in particular a transparent conductive electrode, is preferred to enhance the transmission of light. The first electrode may be used as long as it is an electrode material commonly used in the field of solar cells.
제1 전극은 예를 들어, 불소 함유 산화주석(Fluorine doped Tin Oxide, FTO), 인듐 함유 산화주석(Indium doped Tin Oxide, ITO), 알루미늄 함유 산화아연(Al-doped Zinc Oxide, AZO) 및 인듐 함유 산화아연(Indium doped Zinc Oxide, IZO) 중 적어도 어느 하나를 포함할 수 있다.The first electrode contains, for example, fluorine doped tin oxide (FTO), indium doped tin oxide (ITO), aluminum-doped zinc oxide (AZO) and indium. At least one of indium doped zinc oxide (IZO) may be included.
전자수송층은 제1 전극과 광활성층 사이에 위치할 수 있다. 전자수송층은 광활성층에서 생성된 전자가 제1 전극으로 용이하게 전달되도록 할 수 있다.The electron transport layer may be positioned between the first electrode and the photoactive layer. The electron transport layer may allow electrons generated in the photoactive layer to be easily transferred to the first electrode.
전자수송층은 플러렌 (fullerene, C60), 플러렌 유도체, 페릴렌 (perylene), PBI (polybenzimidazole) 및 PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole) 중 적어도 어느 하나를 포함할 수 있고, 플러렌 유도체는 PCBM ((6,6)-phenyl-C61-butyric acid-methylester) 및 PCBCR ((6,6)-phenyl-C61-butyric acid cholesteryl ester) 중 적어도 어느 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.The electron transport layer may include at least one of fullerene (C60), a fullerene derivative, perylene, polybenzimidazole (PBI), and PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), , the fullerene derivative may include at least one of PCBM ((6,6)-phenyl-C61-butyric acid-methylester) and PCBCR ((6,6)-phenyl-C61-butyric acid cholesteryl ester), but in this It is not limited.
다만, 인버티드 구조에서 전자수송층으로 TiO2 계열이나 Al2O3 계열의 다공성 물질이 사용될 수 있으나, 이에 제한되는 것은 아니다.However, a TiO 2 based or Al 2 O 3 based porous material may be used as the electron transport layer in the inverted structure, but is not limited thereto.
이 후, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 전자수송층 상에 스프레이 코팅으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계(S120)를 진행한다.Thereafter, the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention proceeds with the step (S120) of forming a photoactive layer containing a perovskite compound by spray coating on the electron transport layer.
광활성층은 전자(e)와 정공(h)을 분리시켜 전류를 만들어내는 광전변환층으로의 역할을 수행할 수 있다.The photoactive layer may serve as a photoelectric conversion layer that generates current by separating electrons (e) and holes (h).
페로브스카이트 화합물을 포함하는 광활성층은 스프레이 코팅을 진행하여 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖는다.The photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer by spray coating.
바람직하게는, 직교 스프레이 코팅(Orthogonal processable spray coating)을 진행하여 깊이 방향으로 조성 경사를 갖는 광활성층을 형성할 수 있다.Preferably, the photoactive layer having a composition gradient in the depth direction may be formed by performing orthogonal processable spray coating.
일반적인 용액 공정(일반적인 스핀 코팅의 경우)경우, 첫번째 페로브스카이트 막을 형성한 다음, 두번째 페로브스카이트 막을 형성할 때, 두번째 페로브스카이트 막을 형성하기 위한 페로브스카이트 용액에 포함된 용매에 첫번째 페로브스카이트 막이 용해되기 때문에 용액 공정으로 페로브스카이트 다층박막을 수직한 방향으로 형성할 수 없다.In the case of a general solution process (in the case of general spin coating), when the first perovskite film is formed, and then the second perovskite film is formed, the solvent contained in the perovskite solution for forming the second perovskite film Since the first perovskite film is dissolved in the
또한, 용매를 이용하지 않는 진공 증착의 경우, 첫번째 페로브스카이트 막과 두번째 페로브스카이트 막 간의 용매에 의한 내부 혼합(inter mixing)이 없기 때문에 페로브스카이트 다층박막을 수직한 방향으로 형성할 수 있으나, 공정이 복잡하고 대면적으로 형성하기에 어려움이 있다.In addition, in the case of vacuum deposition without using a solvent, since there is no intermixing by solvent between the first perovskite film and the second perovskite film, a perovskite multilayer thin film is formed in a vertical direction. However, the process is complicated and it is difficult to form in a large area.
반면, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 수직한 방향으로 페로브스카이트 다층박막을 코팅할 수 있는 직교 스프레이 코팅을 사용하기 때문에, 용액을 이용하지만, 스프레이 코팅된 마이크로 드랍이 떨어질 경우, 순간적으로 용매가 증발됨으로 진공 증착과 같이 수직한 방향으로 다층 박막을 형성할 수 있으며, 소량의 용매가 남아 있어, 아래층에 형성된 첫번째 페로브스카이트 박막과 새로 형성되는 박막 간의 내부 혼합(inter mixing)이 일어나서 연속적인 조성 변화를 가지는 페로브스카이트 막을 제조할 수 있다.On the other hand, since the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention uses orthogonal spray coating that can coat the perovskite multilayer thin film in a vertical direction, a solution is used, but the spray-coated When the micro-drops fall, the solvent is evaporated instantaneously to form a multi-layer thin film in a vertical direction like vacuum deposition, and a small amount of solvent remains between the first perovskite thin film formed in the lower layer and the newly formed thin film. Inter mixing may take place to produce a perovskite film having a continuous composition change.
스프레이 코팅에 사용되는 스프레이 코터(spray coater)는 에어 브러쉬 (air brush), 초음파 스프레이, 메가소닉 스프레이 (mega sonic spray) 또는 전기 방사 (electrospray)등 다양한 스프레이 코터가 사용될 수 있다.As a spray coater used for spray coating, various spray coaters such as an air brush, ultrasonic spray, mega sonic spray, or electrospray may be used.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 스프레이 코터에 제한이 없으나, 초음파 스프레이 코팅(ultrasonic spray coating)를 사용하는 경우, 분사되는 페로브스카이트 용액의 마이크로 드랍 (micro drop)의 크기가 작아 공정적인 측면에서 정밀 제어가 용이하다.The method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention is not limited to a spray coater, but when ultrasonic spray coating is used, a micro drop of the sprayed perovskite solution is used. ) is small, so it is easy to precisely control in terms of process.
스프레이 코팅은 0.001m/분 내지 20m/분의 속도로 스프레이 노즐을 이동시키면서 수행할 수 있고, 스프레이 노즐을 0.001m/분 미만의 속도로 이동시킬 경우 공정 속도가 너무 느린 단점이 있고, 20m/분을 초과할 경우 이동 속도가 과도하게 빨라 핀 홀이 없는 균일한 경사 벽을 얻기 힘든 단점이 있다.Spray coating can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min. If the spray nozzle is moved at a speed of less than 0.001 m/min, the process speed is too slow, and 20 m/min. If it exceeds , the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without pinholes.
스프레이 노즐에 토출되는 토출량은 0.001ml/분 내지 1000ml/분일 수 있고, 토출량이 0.001ml/분 미만일 경우 스프레이 노즐에서 분무되는 페로브스카이트 화합물을 포함하는 용액의 양이 적어 기재에 닿기 전에 용매가 모두 날아가거나 도포되는 양이 적아 공정 시간이 길어지는 단점이 있고, 1000 ml/분을 초과하는 경우 과량의 용액이 도포되어 건조가 어려워 균일한 막을 얻기 힘든 단점이 있다.The discharge amount discharged to the spray nozzle may be 0.001 ml/min to 1000 ml/min, and when the discharge amount is less than 0.001 ml/min, the amount of the solution containing the perovskite compound sprayed from the spray nozzle is small, so that the solvent is There is a disadvantage that the process time is prolonged because all of them are blown away or the amount applied is small, and when it exceeds 1000 ml/min, an excess solution is applied and it is difficult to obtain a uniform film because it is difficult to dry.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 페로브스카이트 화합물을 포함하는 광활성층을 스프레이 코팅 방법으로 형성하여 비교적 간단한 공정을 통해 페로브스카이트막을 기판의 크기에 관계없이 대면적으로 제조할 수 있다.In the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention, a photoactive layer containing a perovskite compound is formed by a spray coating method, and the perovskite film is formed through a relatively simple process regardless of the size of the substrate. It can be manufactured in a large area.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 전자수송층 상에 스프레이 코팅으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계(S120)를 진행하여, 페로브스카이트 화합물을 포함하는 광활성층은, 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 가질 수 있다.The method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention proceeds with the step (S120) of forming a photoactive layer containing the perovskite compound by spray coating on the electron transport layer, the perovskite compound The photoactive layer containing may have a composition gradient in the depth direction from the hole transport layer to the electron transport layer.
페로브스카이트 화합물은 금속 할라이드를 포함할 수 있다.The perovskite compound may include a metal halide.
구체적으로, 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사를 갖는 광활성층의 페로브스카이트 화합물은 하기 화학식 1로 표현될 수 있다.Specifically, the perovskite compound of the photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer may be represented by the following formula (1).
[화학식 1][Formula 1]
AaMmXcAaMmXc
(상기 화학식 1에서, A는 1가의 양이온이고, M은 2가 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=c이며, a, b, c는 자연수이다.)(In Formula 1, when A is a monovalent cation, M is a divalent or trivalent metal cation, X is a monovalent anion, and M is a divalent metal cation, a+2b=c, M is a trivalent metal For positive ions, a+3b=c, and a, b, and c are natural numbers.)
A는 C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬, Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+ 및 Au(I)+ 중 적어도 어느 하나를 포함할 수 있다.A is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group (-OCH 3 ) Or imidazolium group substituted C 1-24 straight or branched chain alkyl, Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + and Au(I) ) may include at least one of + .
M'는 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+, Rf2+, In3+, Bi3+, Co3+, Sb3+, Ni3+, Al3+, Ga3+, Tl3+, Sc3+, Y3+, La3+, Ce3+, Fe3+, Ru3+, Cr3+, V3+ 및 Ti3+ 중 적어도 어느 하나를 포함할 수 있다.M' is Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ , Rf 2+ , In 3+ , Bi 3+ , Co 3+ , Sb 3+ , Ni 3+ , Al 3+ , Ga 3+ , Tl 3+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Fe 3+ , Ru 3+ , Cr 3+ , V 3+ , and Ti 3+ may be included.
X는 F-, Cl-, Br-, I-, SCN-, PF6 -, 및 BF4 - 중 적어도 어느 하나를 포함할 수 있다.X may include at least one of F - , Cl - , Br - , I - , SCN - , PF 6 - , and BF 4 - .
예를 들어, 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사를 갖는 광활성층의 화학식 1의 페로브스카이트 화합물은 하기 화학식 2로 표현될 수 있다.For example, the perovskite compound of Chemical Formula 1 of the photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer may be represented by Chemical Formula 2 below.
[화학식 2][Formula 2]
AM'X'(3-m)X"m AM'X' (3-m) X" m
(상기 화학식 2에서, A는 1가의 양이온이고, M'는 2가의 금속 양이온이며, X' 및 X"은 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
실시예에 따라, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 전자수송층 상에 스프레이 코팅으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계(S120)는 전자수송층 상에 제1 페로브스카이트 화합물을 코팅하는 단계(S121) 및 코팅된 제1 페로브스카이트 화합물 상에 제2 페로브스카이트 화합물을 코팅하는 단계(S122)를 포함할 수 있다.According to an embodiment, in the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention, the step of forming a photoactive layer containing a perovskite compound by spray coating on the electron transport layer (S120) is on the electron transport layer It may include the step of coating the first perovskite compound on (S121) and coating the second perovskite compound on the coated first perovskite compound (S122).
먼저, 전자수송층 상에 제1 페로브스카이트 화합물을 코팅하는 단계(S121)를 진행할 수 있다.First, the step of coating the first perovskite compound on the electron transport layer (S121) may proceed.
구체적으로, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제1 페로브스카이트 화합물 및 용매를 포함하는 제1 페로브스카이트 화합물 전구체 용액을 전자수송층 상에 스프레이 코팅하여 제1 페로브스카이트 화합물 막을 형성할 수 있다.Specifically, the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention is prepared by spray-coating a first perovskite compound precursor solution containing a first perovskite compound and a solvent on an electron transport layer. 1 A perovskite compound film can be formed.
제1 페로브스카이트 화합물의 코팅시간은 코팅하고자 하는 면적에 비례하고, 1cm2의 페로브스카이트 면적 기준으로 0.1 초 내지 600 초(1cm/(20 m/분) = 분/2000 = 0.03초 내지 1cm / (0.001m/분) = 분/0.1 = 10 분 = 600 초)일 수 있다.The coating time of the first perovskite compound is proportional to the area to be coated, and based on the perovskite area of 1 cm 2 , 0.1 seconds to 600 seconds (1 cm/(20 m/minute) = minutes/2000 = 0.03 seconds) to 1 cm/(0.001 m/min)=min/0.1=10 min=600 sec).
제1 페로브스카이트 화합물의 코팅 시간이 0.1초 미만이면 코팅되는 제1 페로브스카이트 화합물의 양이 너무 작아 소자의 효율이 낮은 단점이 있고, 600초를 초과하면 코팅되는 제1 페로브스카이트 화합물의 양이 너무 많아 소자의 효율이 저하되거나 공정 시간이 너무 긴 단점이 있다.If the coating time of the first perovskite compound is less than 0.1 seconds, the amount of the first perovskite compound to be coated is too small, so the efficiency of the device is low, and if it exceeds 600 seconds, the first perovskite compound to be coated There are disadvantages in that the efficiency of the device is lowered or the process time is too long because the amount of the compound is too large.
제1 페로브스카이트 화합물의 스프레이 코팅은 0.001m/분 내지 20m/분의 속도로 스프레이 노즐을 이동시키면서 수행할 수 있고, 스프레이 노즐을 0.001m/분 미만의 속도로 이동시킬 경우 공정 속도가 너무 느린 단점이 있고, 20m/분을 초과할 경우 이동 속도가 과도하게 빨라 핀 홀이 없는 균일한 경사 벽을 얻기 힘든 단점이 있다.Spray coating of the first perovskite compound can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min, and the process speed is too high when the spray nozzle is moved at a speed of less than 0.001 m/min. There is a disadvantage that it is slow, and when it exceeds 20 m/min, the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without a pin hole.
제1 페로브스카이트 화합물 스프레이 코팅 시, 스프레이 노즐에 토출되는 토출량은 0.001ml/분 내지 1000ml/분일 수 있고, 토출량이 0.001ml/분 미만일 경우 스프레이 노즐에서 분무되는 제1 페로브스카이트 화합물을 포함하는 용액의 양이 적어 기재에 닿기 전에 용매가 모두 날아가거나 도포되는 양이 적아 공정 시간이 길어지는 단점이 있고, 1000 ml/분을 초과하는 경우 과량의 용액이 도포되어 건조가 어려워 균일한 막을 얻기 힘든 단점이 있다.When the first perovskite compound is spray coated, the discharge amount discharged to the spray nozzle may be 0.001ml/min to 1000ml/min, and when the discharge amount is less than 0.001ml/min, the first perovskite compound sprayed from the spray nozzle The amount of the solution contained is small, so that all the solvent is blown away before it reaches the substrate or the amount of application is small, so the process time is long. The disadvantage is that it is difficult to obtain.
예를 들어, 제1 페로브스카이트 화합물은 하기 화학식 3로 표현될 수 있다.For example, the first perovskite compound may be represented by Formula 3 below.
[화학식 3][Formula 3]
AM'X'2X"AM'X' 2X "
(상기 화학식 3에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formula 3, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
바람직하게는, 제1 페로브스카이트 화합물은 CsPbI2Br 일 수 있다.Preferably, the first perovskite compound may be CsPbI 2 Br.
이 후, 코팅된 제1 페로브스카이트 화합물 상에 제2 페로브스카이트 화합물을 코팅하는 단계(S122)를 진행할 수 있다.Thereafter, the step of coating the second perovskite compound on the coated first perovskite compound (S122) may be performed.
구체적으로, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제2 페로브스카이트 화합물 및 용매를 포함하는 제2 페로브스카이트 화합물 전구체 용액을 제1 페로브스카이트 화합물막 상에 스프레이 코팅하여 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사를 갖는 광활성층을 형성할 수 있다.Specifically, in the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention, a second perovskite compound precursor solution containing a second perovskite compound and a solvent is mixed with a first perovskite compound film. It is possible to form a photoactive layer having a composition gradient in the depth direction from the hole transport layer to the electron transport layer by spray coating on it.
제2 페로브스카이트 화합물의 스프레이 코팅은 0.001m/분 내지 20m/분의 속도로 스프레이 노즐을 이동시키면서 수행할 수 있고, 스프레이 노즐을 0.001m/분 미만의 속도로 이동시킬 경우 공정 속도가 너무 느린 단점이 있고, 20m/분을 초과할 경우 이동 속도가 과도하게 빨라 핀 홀이 없는 균일한 경사 벽을 얻기 힘든 단점이 있다.The spray coating of the second perovskite compound can be performed while moving the spray nozzle at a speed of 0.001 m/min to 20 m/min, and if the spray nozzle is moved at a speed of less than 0.001 m/min, the process speed is too high There is a disadvantage that it is slow, and when it exceeds 20 m/min, the moving speed is excessively fast, so it is difficult to obtain a uniform inclined wall without a pin hole.
제2 페로브스카이트 화합물 스프레이 코팅 시, 스프레이 노즐에 토출되는 토출량은 0.001ml/분 내지 1000ml/분일 수 있고, 토출량이 0.001ml/분 미만일 경우 스프레이 노즐에서 분무되는 제2 페로브스카이트 화합물을 포함하는 용액의 양이 적어 기재에 닿기 전에 용매가 모두 날아가거나 도포되는 양이 적아 공정 시간이 길어지는 단점이 있고, 1000 ml/분을 초과하는 경우 과량의 용액이 도포되어 건조가 어려워 균일한 막을 얻기 힘든 단점이 있다.When the second perovskite compound is spray coated, the discharge amount discharged to the spray nozzle may be 0.001ml/min to 1000ml/min, and when the discharge amount is less than 0.001ml/min, the second perovskite compound sprayed from the spray nozzle The amount of the solution contained is small, so that all the solvent is blown away before it reaches the substrate or the amount of application is small, so the process time is long. The disadvantage is that it is difficult to obtain.
예를 들어, 제2 페로브스카이트 화합물은 하기 화학식 4로 표현될 수 있다.For example, the second perovskite compound may be represented by Formula 4 below.
[화학식 4][Formula 4]
AM'X'3 AM'X' 3
(상기 화학식 4에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formula 4, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
바람직하게는, 제2 페로브스카이트 화합물은 CsPbI3 일 수 있다.Preferably, the second perovskite compound may be CsPbI 3 .
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제2 페로브스카이트 화합물의 코팅 시간이 증가함에 따라, 제2 페로브스카이트 화합물 유래 1가 음이온(예; 제2 할라이드 이온)이 증가되어, 페로브스카이트 화합물의 적어도 둘 이상의 1가 음이온(예; 제1 할라이드 이온 및 제2 할라이드 이온)의 조성이 변화될 수 있다.In the method for manufacturing a perovskite optoelectronic device according to an embodiment of the present invention, as the coating time of the second perovskite compound increases, the second perovskite compound-derived monovalent anion (eg, the second halide ion) ), the composition of at least two or more monovalent anions of the perovskite compound (eg, a first halide ion and a second halide ion) may be changed.
정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사를 갖는 광활성층의 화학식 1의 페로브스카이트 화합물은 하기 화학식 2로 표현되고, 제1 페로브스카이트 화합물이 화학식 3로 표현되고, 제2 페로브스카이트 화합물이 화학식 4으로 표현되는 경우, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제2 페로브스카이트 화합물의 코팅 시간이 증가함에 따라, 깊이 방향으로 X'및 X"의 조성이 변화될 수 있다.The perovskite compound of Chemical Formula 1 of the photoactive layer having a compositional gradient in the depth direction from the hole transport layer to the electron transport layer is represented by the following Chemical Formula 2, the first perovskite compound is represented by Chemical Formula 3, and the second compound When the rovskite compound is represented by Chemical Formula 4, in the method for manufacturing a perovskite photoelectric device according to an embodiment of the present invention, as the coating time of the second perovskite compound increases, X' and The composition of X" can be varied.
보다 구체적으로, 제1 페로브스카이트 화합물로 CsPbI2Br를 사용하고, 제2 페로브스카이트 화합물로 CsPbI3를 사용하는 경우, CsPbI3 전구체 용액의 코팅 시간이 길어짐에 따라, X'인 I가 증가되고, X"인 Br은 감소되어, 광활성층이 CsPbI3.00, CsPbI2.75Br0.25, CsPbI2.50Br0.05, CsPbI2.25Br0.75 및 CsPbI2.00Br1 를 갖도록 조성이 변화되어, 깊이 방향으로 조성 경사를 가질 수 있다.More specifically, when using CsPbI 2 Br as the first perovskite compound and CsPbI 3 as the second perovskite compound, as the coating time of the CsPbI 3 precursor solution increases, I is increased, and Br, which is X", is decreased, and the composition is changed so that the photoactive layer has CsPbI 3.00 , CsPbI 2.75 Br 0.25 , CsPbI 2.50 Br 0.05 , CsPbI 2.25 Br 0.75 and CsPbI 2.00 Br 1 , thereby increasing the compositional gradient in the depth direction. can have
따라서, 페로브스카이트 화합물은 적어도 둘 이상의 1가 음이온을 포함하고, 깊이 방향으로 적어도 둘 이상의 1가 음이온의 조성비가 변화되어, 광활성층의 밴드갭 및 페르미 레벨이 연속적으로 변화되는 밴드 구조 경사가 형성될 수 있다.Therefore, the perovskite compound contains at least two or more monovalent anions, and the composition ratio of at least two or more monovalent anions in the depth direction is changed, so that the band gap and Fermi level of the photoactive layer are continuously changed. can be formed.
더 나아가, 페로브스카이트 화합물은 깊이 방향으로 X"/M'의 조성비가 변화될 수 있다.Furthermore, in the perovskite compound, the composition ratio of X″/M′ may be changed in the depth direction.
페로브스카이트 화합물을 포함하는 광활성층은 정공수송층에서 전자수송층으로의 깊이 방향으로 페로브스카이트 화합물의 X"/M' 조성비가 변화되면, 광활성층의 밴드갭 및 페르미 레벨이 변화되어 연속적으로 밴드 구조 경사가 형성될 수 있다.In the photoactive layer containing the perovskite compound, when the X"/M' composition ratio of the perovskite compound is changed in the depth direction from the hole transport layer to the electron transport layer, the band gap and the Fermi level of the photoactive layer are changed continuously A band structure gradient may be formed.
따라서, 태양전지의 경우, 페로브스카이트 화합물이 깊이 방향으로 X"/M' 조성비가 연속적으로 변화되면 밴드갭 및 페르미 레벨이 연속적으로 변화되어, 생성된 전하가 재결합 없이 더 효과적으로 분리 및 이동될 수 있다.Therefore, in the case of a solar cell, when the X"/M' composition ratio of the perovskite compound is continuously changed in the depth direction, the bandgap and Fermi level are continuously changed, so that the generated charges can be separated and moved more effectively without recombination. can
또한, 예를 들어, 제1 페로브스카이트 화합물로 CsPbI2Br를 사용하고, 제2 페로브스카이트 화합물로 CsPbI3를 사용하는 경우, 제2 페로브스카이트 화합물의 코팅 시간이 증가함에 따라, X"의 조성이 증가되기 때문에, 광활성층의 깊이 방향으로 X"/M' 조성비가 증가될 수 있다.In addition, for example, when using CsPbI 2 Br as the first perovskite compound and CsPbI 3 as the second perovskite compound, as the coating time of the second perovskite compound increases , because the composition of X" is increased, the composition ratio of X"/M' in the depth direction of the photoactive layer may be increased.
또한, 전자수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높고, 정공수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높을 수 있다.In addition, in the photoactive layer comprising the perovskite compound in contact with the electron transport layer, the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the perovskite compound in contact with the hole transport layer The concentration of the second perovskite compound in the photoactive layer comprising a may be higher than that of the first perovskite compound.
구체적으로, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 전자수송층 상에 제1 페로브스카이트 화합물을 코팅한 다음, 제2 페로브스카이트 화합물을 코팅하여 광활성층을 형성한 후, 정공수송층을 형성하기 때문에, 제2 페로브스카이트 화합물이 코팅되는 광활성층의 상단 표면 부분인 정공수송층과 접촉하는 페로브스카이트 화합물은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물의 농도보다 높을 수 있다.Specifically, in the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention, a first perovskite compound is coated on an electron transport layer, and then a second perovskite compound is coated to form a photoactive layer After that, since the hole transport layer is formed, the perovskite compound in contact with the hole transport layer, which is the upper surface portion of the photoactive layer on which the second perovskite compound is coated, has a concentration of the second perovskite compound in the first It may be higher than the concentration of the perovskite compound.
실시예에 따라, 전자수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물만 포함할 수도 있고, 정공수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층 제2 페로브스카이트 화합물만 포함할 수도 있다.According to an embodiment, the photoactive layer including the perovskite compound in contact with the electron transport layer may include only the first perovskite compound, or the photoactive layer comprising the perovskite compound in contact with the hole transport layer 2 It may also contain only perovskite compounds.
페로브스카이트 화합물을 포함하는 광활성층은 빛을 흡수하여 전자-정공 쌍을 생성하고, 생성된 전자는 전자수송층을 통하여 제1 전극으로 이동하고 동시에 정공은 정공수송층을 통하여 제2 전극으로 이동한다. 이 때, 두 전극을 연결하면 전자가 외부 회로를 통해서 상대전극으로 이동하면서 연속적으로 전기의 흐름이 발생할 수 있다.The photoactive layer containing the perovskite compound absorbs light to generate electron-hole pairs, and the generated electrons move to the first electrode through the electron transport layer, and at the same time, the holes move to the second electrode through the hole transport layer . At this time, when the two electrodes are connected, electricity may continuously flow while electrons move to the counter electrode through an external circuit.
따라서, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법으로 제조된 페로브스카이트 광전소자은 전자수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층 및 정공수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층에서 전자-정공 쌍을 생성할 수 있어, 전자 및 정공이 광활성층을 가로질러 전자수송층 및 정공수송층까지 전자 및 정공이 반대 방향으로 이동하도록 안내하여 전하 수집 능력이 향상될 수 있다.Therefore, the perovskite optoelectronic device manufactured by the method for manufacturing a perovskite optoelectronic device according to an embodiment of the present invention is a photoactive layer comprising a perovskite compound in contact with the electron transport layer and the perovskite in contact with the hole transport layer Electron-hole pairs can be created in the photoactive layer containing the skyte compound, leading to the electrons and holes moving in opposite directions across the photoactive layer to the electron transport layer and hole transport layer, improving charge collection ability can be
또한, 페로브스카이트 화합물을 포함하는 광활성층이 깊이 방향으로 조성 경사를 가짐으로써, 내부에 적어도 하나 이상의 전기장이 형성될 수 있다.In addition, since the photoactive layer including the perovskite compound has a composition gradient in the depth direction, at least one electric field may be formed therein.
일반적으로 페로브스카이트 광전 소자의 경우, 전자수송층과 광활성이 맞닿는 계면 및 광활성층과 정공전달층이 맞닿는 계면에서 전기장이 형성되나, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제2 페로브스카이트 화합물이 코팅됨에 따라 제1 페로브스카이트 화합물 및 제2 페로브스카이트 화합물의 계면에서 페르미 레벨의 매칭이 일어나게 되고, 이를 통해서 광활성층 내부에 추가적인 전기장이 발생하게 되어 광활성층 내부에서 생성된 전자-정공 쌍이 훨씬 더 효과적으로 분리 및 이동이 일어나게 되어 광전소자의 효율이 증가될 수 있다.In general, in the case of a perovskite optoelectronic device, an electric field is formed at the interface where the electron transport layer and the photoactive contact and the photoactive layer and the hole transport layer contact each other. As the silver second perovskite compound is coated, Fermi level matching occurs at the interface between the first perovskite compound and the second perovskite compound, and through this, an additional electric field is generated inside the photoactive layer. Electron-hole pairs generated inside the photoactive layer are separated and moved much more effectively, so that the efficiency of the photoelectric device can be increased.
제2 페로브스카이트 화합물의 코팅 시간은 0.5초 내지 200초일 수 있고, 제2 페로브스카이트 화합물 용액의 코팅 시간이 5초 미만이면 제2 페로브스카이트 화합물의 코팅 양이 너무 적어, 조성 경사를 가지는 광활성층을 제조하기 어렵고, 200초를 초과하면 표면 거칠기가 너무 커져 균일한 정공수송층을 형성하기 어려워 소자 효율이 저하되는 단점이 있다.The coating time of the second perovskite compound may be 0.5 seconds to 200 seconds, and if the coating time of the second perovskite compound solution is less than 5 seconds, the coating amount of the second perovskite compound is too small, the composition It is difficult to manufacture the photoactive layer having an inclination, and when it exceeds 200 seconds, the surface roughness becomes too large, and it is difficult to form a uniform hole transport layer, so that device efficiency is lowered.
또한, 제2 페로브스카이트 화합물의 코팅 시간에 따라 페로브스카이트 화합물의 평균 직경이 조절될 수 있다.In addition, the average diameter of the perovskite compound may be adjusted according to the coating time of the second perovskite compound.
일반적으로, 페로브스카이트 화합물 입자의 평균 직경은 용해 및 재성장에 따라, 스프레이 코팅이 진행되는 동안 연속적으로 증가될 수 있다.In general, the average diameter of the perovskite compound particles can be continuously increased during the spray coating process, with dissolution and regrowth.
그러나, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 제1 페로브스카이트 화합물보다 제2 페로브스카이트 화합물이 용매에 대한 용해도가 낮기 때문에, 제2 페로브스카이트 화합물을 제1 페로브스카이트 화합물 상에 스프레이 코팅하게 되면, 제2 페로브스카이트 화합물이 제1 페로브스카이트 화합물 보다 높은 핵밀도(nuclei density)로 빠르게 핵화되어 평균 페로브스카이트 화합물 입자의 직경이 감소될 수 있다.However, in the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention, since the second perovskite compound has lower solubility in a solvent than the first perovskite compound, the second perovskite compound When spray-coated on the first perovskite compound, the second perovskite compound is rapidly nucleated to a higher nuclei density than the first perovskite compound, so that the average perovskite compound particles The diameter may be reduced.
또한, 제2 페로브스카이트 화합물의 스프레이 코팅 시간이 증가됨에 따라 트랩 또는 엑시톤 결합 에너지가 조절될 수 있다.In addition, as the spray coating time of the second perovskite compound is increased, the trap or exciton binding energy can be adjusted.
제2 페로브스카이트 화합물의 스프레이 코팅 시간이 증가되면 페로브스카이트 화합물 입자의 직경이 감소되어 계면 트랩이 증가되고, 엑시톤 결합 에너지가 증가될 수 있다.When the spray coating time of the second perovskite compound is increased, the diameter of the perovskite compound particles is reduced, so that the interfacial trap is increased, and the exciton binding energy can be increased.
이 후, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 페로브스카이트 화합물을 포함하는 광활성층 상에 정공수송층을 형성하는 단계(S130)를 진행한다.Thereafter, the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention proceeds to the step of forming a hole transport layer on the photoactive layer containing the perovskite compound (S130).
정공수송층은 광활성층 과 제2 전극 사이에 위치할 수 있다. 정공수송층은 광활성층에서 생성된 정공이 제2 전극으로 용이하게 전달되도록 할 수 있다.The hole transport layer may be positioned between the photoactive layer and the second electrode. The hole transport layer may allow holes generated in the photoactive layer to be easily transferred to the second electrode.
정공수송층은 P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV (poly[2-methoxy-5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT (poly(3-octyl thiophene)), POT( poly(octyl thiophene)), P3DT (poly(3-decyl thiophene)), P3DDT (poly(3-dodecyl thiophene), PPV (poly(p-phenylene vinylene)), TFB (poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), Polyaniline, Spiro-MeOTAD ([2,22′,7,77′-tetrkis (N,N-dipmethoxyphenylamine)-9,9,9′-spirobi fluorine]), CuSCN, CuI, PCPDTBT (Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl-4H- cyclopenta [2,1-b:3,4-b']dithiophene-2,6-diyl]], Si-PCPDTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD (poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl)-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT (poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4', 7,-di-2-thienyl-2',1', 3'-benzothiadiazole)]), PFO-DBT (poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2', 1', 3'-benzothiadiazole)]), PSiFDTBT (poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]), PSBTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT (Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB (poly(9,9′-dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine), F8BT (poly(9,9′-dioctylfluorene-cobenzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PTAA (poly(triarylamine)) 및 poly(4-butylphenyldiphenyl-amine) 중 적어도 어느 하나를 포함할 수 있다.The hole transport layer is P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV (poly[ 2-methoxy-5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT (poly(3-octyl thiophene)), POT( poly(octyl thiophene)), P3DT (poly(3-decyl thiophene) ), P3DDT (poly(3-dodecyl thiophene), PPV (poly(p-phenylene vinylene)), TFB (poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), Polyaniline, Spiro -MeOTAD ([2,22′,7,77′-tetrkis (N,N-dipmethoxyphenylamine)-9,9,9′-spirobi fluorine]), CuSCN, CuI, PCPDTBT (Poly[2,1,3-benzothiadiazole -4,7-diyl[4,4-bis(2-ethylhexyl-4H-cyclopenta [2,1-b:3,4-b']dithiophene-2,6-diyl]], Si-PCPDTBT (poly[ (4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4 ,7-diyl]), PBDTTPD (poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl)-alt-((5- octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT (poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt -5,5-(4', 7,-di-2-thienyl-2',1', 3' -benzothiadiazole)]), PFO-DBT (poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2', 1',3'-benzothiadiazole)]), PSiFDTBT (poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole) )-5,5′-diyl]), PSBTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6- diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT (Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5- thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB (poly(9,9′-dioctylfluorene-co-bis(N,N′-(4,butylphenyl)) bis(N,N′-phenyl-1,4-phenylene)diamine), F8BT (poly(9,9′-dioctylfluorene-cobenzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS, poly( 3,4-ethylenedioxythiophene) poly(styrenesulfonate), PTAA (poly(triarylamine)), and poly(4-butylphenyldiphenyl-amine) may be included.
마지막으로, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 정공수송층 상에 제2 전극을 형성하는 단계(S140)를 포함한다.Finally, the method of manufacturing a perovskite optoelectronic device according to an embodiment of the present invention includes forming a second electrode on the hole transport layer ( S140 ).
제2 전극은 태양전지 분야에서 통상적으로 사용되는 전극이면 무방하다. 보다 구체적으로, 제2 전극은 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 구리(Cu), 알루미늄(Al), 탄소(C), 황화코발트(CoS), 황화구리(CuS) 및 산화니켈(NiO) 중 적어도 어느 하나를 포함할 수 있다. 제2 전극 또한 제1 전극에서 설명한 방법으로 형성될 수 있으므로 중복 설명은 생략한다.The second electrode may be an electrode commonly used in the field of solar cells. More specifically, the second electrode is gold (Au), silver (Ag), platinum (Pt), palladium (Pd), copper (Cu), aluminum (Al), carbon (C), cobalt sulfide (CoS), sulfide At least one of copper (CuS) and nickel oxide (NiO) may be included. Since the second electrode may also be formed by the method described for the first electrode, a redundant description thereof will be omitted.
따라서, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 스프레이 코팅 방법으로 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 태양광 흡수(1-sun light soaking) 하에서 1000시간 동안 연속적으로 동작하여도 10% 미만의 열화를 갖도록 장기간 동작 안정성을 향상시킬 수 있다.Therefore, in the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention, the photoactive layer containing the perovskite compound is a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method. Long-term operation stability can be improved so that it has less than 10% degradation even when continuously operated for 1000 hours under 1-sun light soaking.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법은 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 흡수 파장(absorption wavelength)을 750nm까지 확대하여 집광성(light harvesting)을 향상시킬 수 있다.In the method of manufacturing a perovskite photoelectric device according to an embodiment of the present invention, the photoactive layer containing the perovskite compound is formed to have a composition gradient in the depth direction from the hole transport layer to the electron transport layer to form an absorption wavelength ( The absorption wavelength can be extended to 750 nm to improve light harvesting.
이하에서는, 본 발명의 본 발명의 실시예에 따른 페로브스카이트 광전 소자는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법을 통해 제조된 본 발명의 실시예에 따른 페로브스카이트 광전 소자에 대해 설명하기로 한다.Hereinafter, a perovskite optoelectronic device according to an embodiment of the present invention is a perovskite photoelectric device according to an embodiment of the present invention manufactured through a method for manufacturing a perovskite photoelectric device according to an embodiment of the present invention A photoelectric device will be described.
도 2는 본 발명의 실시예에 따른 페로브스카이트 광전 소자를 도시한 단면도 입다.2 is a cross-sectional view illustrating a perovskite optoelectronic device according to an embodiment of the present invention.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 제조 방법을 통해 제조되어, 동일한 구성 요소에 대한 상세한 설명은 생략하기로 한다.The perovskite optoelectronic device according to the embodiment of the present invention is manufactured through the manufacturing method of the perovskite optoelectronic device according to the embodiment of the present invention, and detailed descriptions of the same components will be omitted.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 제1 전극(110), 제1 전극(110) 상에 형성되는 전자수송층(120), 전자수송층(120) 상에 스프레이 코팅(orthogonal spray coating)으로 형성되고, 페로브스카이트 화합물을 포함하는 광활성층(130), 페로브스카이트 화합물을 포함하는 광활성(130)층 상에 형성되는 정공수송층(140) 및 정공수송층(140) 상에 형성되는 제2 전극(150)을 포함한다.The perovskite photoelectric device according to an embodiment of the present invention is spray coated on the first electrode 110 , the electron transport layer 120 formed on the first electrode 110 , and the electron transport layer 120 . ), and formed on the photoactive layer 130 containing the perovskite compound, the hole transport layer 140 and the hole transport layer 140 formed on the photoactive layer 130 containing the perovskite compound and a second electrode 150 to be
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 기판 상에 애노드 전극이 배치되는 평면 이종접합(plannar-heterojunction) 구조 또는 기판 상에 캐소드 전극이 배치되는 인버티드(inverted) 구조의 페로브스카이트 태양전지로 구현될 수 있다.A perovskite photoelectric device according to an embodiment of the present invention has a perovskite structure in which an anode electrode is disposed on a substrate or a plannar-heterojunction structure in which a cathode electrode is disposed on a substrate. It can be implemented as a photovoltaic cell.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 제1 전극(110)을 포함하고, 제1 전극(110)은 기판 상에 위치하며 전도성 전극, 특히 광의 투과를 향상시키기 위해 투명 전도성 전극이 바람직하다. The perovskite optoelectronic device according to an embodiment of the present invention includes a first electrode 110, the first electrode 110 is located on a substrate, and a conductive electrode, in particular, a transparent conductive electrode to improve light transmission. desirable.
제1 전극(110)은 예를 들어, 불소 함유 산화주석(Fluorine doped Tin Oxide, FTO), 인듐 함유 산화주석(Indium doped Tin Oxide, ITO), 알루미늄 함유 산화아연(Al-doped Zinc Oxide, AZO) 및 인듐 함유 산화아연(Indium doped Zinc Oxide, IZO) 중 적어도 어느 하나를 포함할 수 있다.The first electrode 110 is, for example, fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), aluminum-containing zinc oxide (Al-doped Zinc Oxide, AZO) And it may include at least one of indium-doped zinc oxide (IZO).
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 제1 전극(110) 상에 형성되는 전자수송층(120)을 포함하고, 전자수송층(120)은 제1 전극(110)과 광활성층(130) 사이에 위치할 수 있다. 전자수송층(120)은 광활성층에서 생성된 전자가 제1 전극(110)으로 용이하게 전달되도록 할 수 있다. The perovskite photoelectric device according to an embodiment of the present invention includes an electron transport layer 120 formed on a first electrode 110 , and the electron transport layer 120 includes the first electrode 110 and the photoactive layer 130 . ) can be located between The electron transport layer 120 may allow electrons generated in the photoactive layer to be easily transferred to the first electrode 110 .
전자수송층(120)은 TiO2 계열의 물질이 사용될 수 있으나, 이에 제한되는 것은 아니다.The electron transport layer 120 may be formed of a TiO 2 based material, but is not limited thereto.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 전자수송층(120) 상에 스프레이 코팅(orthogonal spray coating)으로 형성되고, 페로브스카이트 화합물을 포함하는 광활성층(130)을 포함한다.The perovskite photoelectric device according to the embodiment of the present invention is formed by spray coating (orthogonal spray coating) on the electron transport layer 120, and includes a photoactive layer 130 including a perovskite compound.
페로브스카이트 화합물을 광활성층(130)에 도입한 경우, 정공수송층(140)의 HOMO(Highest Occupied Molecular Orbital) 준위와 전자수송층(120)의 LUMO(Lowest Unoccupied Molecular Orbital) 준위는 각각 페로브스카이트의 가전자대 띠(valence band) 및 전도대 띠(conduction band)와 잘 매칭되어, 전자는 전자수송층(120) 쪽으로, 정공은 정공수송층(140) 쪽으로 잘 전달될 수 있다.When the perovskite compound is introduced into the photoactive layer 130 , the highest occupied molecular orbital (HOMO) level of the hole transport layer 140 and the lowest unoccupied molecular orbital (LUMO) level of the electron transport layer 120 are perovskite, respectively. It matches well with a valence band and a conduction band of the electron, so that electrons can be transferred to the electron transport layer 120 and holes can be transferred to the hole transport layer 140 .
이와 같은 메커니즘을 통하여 전자-정공 쌍들이 효과적으로 전자와 정공으로 분리될 수 있으며, 분리된 전자 및 정공은 제1 전극(110)과 제2 전극(150)의 일함수 차이로 형성된 내부 전기장과 축적된 전하의 농도차에 의해 각각의 전극으로 이동하여 수집되며 최종적으로 외부회로를 통해 전류의 형태로 흐르게 된다.Through such a mechanism, electron-hole pairs can be effectively separated into electrons and holes, and the separated electrons and holes are accumulated with an internal electric field formed by a difference in work function between the first electrode 110 and the second electrode 150 . It is collected by moving to each electrode by the difference in the concentration of charges and finally flows in the form of current through an external circuit.
페로브스카이트 화합물을 포함하는 광 활성층(130)은 정공수송층(140)에서 전자수송층(120)으로의 깊이 방향으로 조성 경사(Graded)를 가질 수 있고, 깊이 방향으로 조성 경사를 갖는 광활성층(130)의 페로브스카이트 화합물은 하기 화학식 2로 표현될 수 있다.The photoactive layer 130 including the perovskite compound may have a composition gradient in the depth direction from the hole transport layer 140 to the electron transport layer 120, and the photoactive layer having a composition gradient in the depth direction ( 130) of the perovskite compound may be represented by the following formula (2).
[화학식 2][Formula 2]
AM'X'(3-m)X"m AM'X' (3-m) X" m
(상기 화학식 2에서, A는 1가의 양이온이고, M'는 2가의 금속 양이온이며, X' 및 X"은 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
A는 C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬, Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+ 및 Au(I)+ 중 적어도 어느 하나를 포함할 수 있다.A is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group (-OCH 3 ) Or imidazolium group substituted C 1-24 straight or branched chain alkyl, Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + and Au(I) ) may include at least one of + .
M은 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+ 및 Rf2+ 중 적어도 어느 하나를 포함할 수 있다.M may include at least one of Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ and Rf 2+ . .
X' 및 X"는 F-, Cl-, Br-, I-, SCN- 및 BF4 - 중 적어도 어느 하나를 포함할 수 있다.X' and X" may include at least one of F - , Cl - , Br - , I - , SCN - and BF 4 - .
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 제1 페로브스카이트 화합물을 코팅한 다음, 제2 페로브스카이트 화합물을 코팅하여 형성된 광활성층(130)을 포함하므로, 페로브스카이트 화합물은 정공수송층(140)에서 전자수송층(120)으로의 깊이 방향으로 X"/M' 조성비가 변화될 수 있다.Since the perovskite photoelectric device according to an embodiment of the present invention includes a photoactive layer 130 formed by coating a first perovskite compound and then coating a second perovskite compound, the perovskite In the compound, the composition ratio of X″/M′ may be changed in the depth direction from the hole transport layer 140 to the electron transport layer 120 .
또한, 전자수송층(120)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(131)은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높고, 정공수송층(140)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(132)은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높을 수 있다.In addition, in the photoactive layer 131 including the perovskite compound in contact with the electron transport layer 120 , the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound, and the hole transport layer 140 ) and the photoactive layer 132 including the perovskite compound in contact with the concentration of the second perovskite compound may be higher than that of the first perovskite compound.
실시예에 따라, 전자수송층(120)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(131)은 제1 페로브스카이트 화합물만 포함할 수도 있고, 정공수송층(140)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(132)은 제2 페로브스카이트 화합물만 포함할 수도 있다,According to an embodiment, the photoactive layer 131 including the perovskite compound in contact with the electron transport layer 120 may include only the first perovskite compound, or the perovskite in contact with the hole transport layer 140 . The photoactive layer 132 including the skyte compound may include only the second perovskite compound,
따라서, 전자수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층 및 정공수송층과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층에서 전자-정공 쌍을 생성할 수 있어, 전자 및 정공이 광활성층을 가로질러 전자수송층 및 정공수송층까지 전자 및 정공이 반대 방향으로 이동하도록 안내하여 전하 수집 능력이 향상될 수 있다.Therefore, electron-hole pairs can be generated in the photoactive layer including the perovskite compound in contact with the electron transport layer and the photoactive layer including the perovskite compound in contact with the hole transport layer, so that electrons and holes are separated from the photoactive layer The charge collection ability can be improved by guiding electrons and holes to move in opposite directions across to the electron transport layer and the hole transport layer.
광활성층(130)이 깊이 방향으로 조성 경사를 갖는 경우, 조성 경사에 따라 밴드갭의 경사가 발생되어 광활성층(130)에서 생성된 전자(electrin)와 홀(hole)이 작은 개방전압의 손실을 보이면서 훨씬 더 효과적으로 분리 및 이동이 일어날 수 있다.When the photoactive layer 130 has a composition gradient in the depth direction, a band gap gradient is generated according to the composition gradient, so that the electrons and holes generated in the photoactive layer 130 reduce the loss of open-circuit voltage. Separation and migration can occur much more effectively while being visible.
또한, 페로브스카이트 화합물을 포함하는 광활성층(130)은 내부에 적어도 하나 이상의 전기장이 형성될 수 있다.In addition, at least one electric field may be formed therein in the photoactive layer 130 including the perovskite compound.
제2 페로브스카이트 화합물이 코팅됨에 따라 제1 페로브스카이트 화합물 및 제2 페로브스카이트 화합물의 계면에서 페르미 레벨의 매칭이 일어나게 되고, 이를 통해서 광활성층(130) 내부에 추가적인 전기장이 발생하게 되어 광활성층 내부에서 생성된 전자-정공 쌍이 훨씬 더 효과적으로 분리 및 이동이 일어나게 되어 광전소자의 효율이 증가될 수 있다.As the second perovskite compound is coated, Fermi level matching occurs at the interface between the first perovskite compound and the second perovskite compound, and through this, an additional electric field is generated inside the photoactive layer 130 Thus, the electron-hole pairs generated inside the photoactive layer are separated and moved much more effectively, so that the efficiency of the photoelectric device can be increased.
제1 페로브스카이트 화합물은 하기 화학식 3로 표현될 수 있다.The first perovskite compound may be represented by Formula 3 below.
[화학식 3][Formula 3]
AM'X'2X"AM'X' 2X "
(상기 화학식 3에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formula 3, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
바람직하게는, 제1 페로브스카이트 화합물은 CsPbI2Br 일 수 있다.Preferably, the first perovskite compound may be CsPbI 2 Br.
제2 페로브스카이트 화합물은 하기 화학식 4로 표현될 수 있다.The second perovskite compound may be represented by the following formula (4).
[화학식 4][Formula 4]
AM'X'3 AM'X' 3
(상기 화학식 4에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formula 4, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
바람직하게는, 제2 페로브스카이트 화합물은 CsPbI3 일 수 있다.Preferably, the second perovskite compound may be CsPbI 3 .
정공수송층(140)은 PTAA (poly(triarylamine))가 사용될 수 있으나, 이에 제한되는 것은 아니다.The hole transport layer 140 may be PTAA (poly(triarylamine)), but is not limited thereto.
제2 전극(150)은 금(Au)이 사용될 수 있으나, 이에 제한되는 것은 아니다.Gold (Au) may be used as the second electrode 150 , but is not limited thereto.
따라서, 본 발명의 실시예에 따른 페로브스카이트 광전 소자는 스프레이 코팅 방법으로 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 태양광 흡수(1-sun light soaking) 하에서 1000시간 동안 연속적으로 동작하여도 10% 미만의 열화를 갖도록 장기간 동작 안정성을 향상시킬 수 있다.Therefore, the perovskite photoelectric device according to an embodiment of the present invention is formed so that the photoactive layer containing the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer by a spray coating method. Long-term operation stability can be improved to have less than 10% degradation even when continuously operated for 1000 hours under 1-sun light soaking.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 페로브스카이트 화합물을 포함하는 광활성층이 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖도록 형성하여 흡수 파장(absorption wavelength)을 750nm까지 확대하여 집광성(light harvesting)을 향상시킬 수 있다.The perovskite photoelectric device according to an embodiment of the present invention is formed so that the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer, so that the absorption wavelength is can be extended to 750 nm to improve light harvesting.
도 3은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 밴드 다이어그램(band diagram)을 도시한 이미지이다.3 is an image illustrating a band diagram of a perovskite optoelectronic device according to an embodiment of the present invention.
본 발명의 실시예에 따른 페로브스카이트 광전 소자는 전자수송층(120)으로의 깊이 방향으로 조성 경사를 갖는 광활성층(130)을 포함하여 태양광 조명 시, 전자수송층(120)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(131) 및 정공수송층(140)과 접촉하는 페로브스카이트 화합물을 포함하는 광활성층(132)에서 전자-정공 쌍을 생성할 수 있다.The perovskite photoelectric device according to an embodiment of the present invention includes a photoactive layer 130 having a composition gradient in the depth direction to the electron transport layer 120, and when illuminated by sunlight, the electron transport layer 120 is in contact with it. Electron-hole pairs may be generated in the photoactive layer 131 including the rovskite compound and the photoactive layer 132 including the perovskite compound in contact with the hole transport layer 140 .
따라서, 도 3을 참조하면, 전자 및 정공이 광활성층(130)을 가로질러 전자수송층(120) 및 정공수송층(140)까지 전자 및 정공이 반대 방향으로 이동하도록 안내하여 전하 수집이 보다 용이해질 수 있다.Therefore, referring to FIG. 3 , electrons and holes cross the photoactive layer 130 to the electron transport layer 120 and the hole transport layer 140 to guide the electrons and holes to move in opposite directions, thereby making it easier to collect charges. there is.
또한, 도 3을 참조하면, 페로브스카이트 화합물을 포함하는 광활성층은 정공수송층에서 전자수송층으로의 깊이 방향으로 조성 경사를 가짐으로써, 페로브스카이트 화합물의 적어도 둘 이상의 1가 음이온의 조성비가 연속적으로 변화되어, 광활성층의 밴드갭 및 페르미 레벨이 연속적으로 변화되는 밴드 구조 경사가 형성된 것을 알 수 있다.In addition, referring to FIG. 3 , the photoactive layer including the perovskite compound has a composition gradient in the depth direction from the hole transport layer to the electron transport layer, so that the composition ratio of at least two monovalent anions of the perovskite compound is It can be seen that the band structure gradient in which the band gap and the Fermi level of the photoactive layer are continuously changed is formed by continuously changing.
[실시예 1] : 5초(5s)[Example 1]: 5 seconds (5s)
플루로린이 도핑된 틴 옥사이드(patterned fluorine-doped tin oxide, FTO) 패턴이 도핑된 유기 기판을 탈이온수, 아세톤 및 이소프로판올이 사용히여 광범위하게 세정하고, 에어 브러쉬(DH-125, Spamax)를 사용하여 450℃에서 20mM의 티타늄 디이소프로폭사이드 비스(아세틸아세테이트)(titanium diisopropoxide bis(acetylacetate), TAA) 용액 스프레이 열분해 침적(spray-pyrolysis deposition)을 이용하여 50nm의 컴팩트한 TiO2(c-TiO2) 층을 형성하였다.The organic substrates doped with patterned fluorine-doped tin oxide (FTO) were extensively cleaned using deionized water, acetone and isopropanol, followed by an airbrush (DH-125, Spamax). A compact 50 nm TiO 2 (c-TiO 2 ) solution using spray-pyrolysis deposition with a 20 mM solution of titanium diisopropoxide bis(acetylacetate) (TAA) at 450°C ) layer was formed.
1.06g의 CsBr 및 2.31g의 PbI2와 0.52g의 CsI 및 0.92g of PbI2을 각각 60℃에서 100mL의 DMSO에 완전히 용해시켜, CsPbI2Br 전구체 용액 및 CsPbI3 전구체 용액을 제조하였다.1.06 g of CsBr and 2.31 g of PbI 2 and 0.52 g of CsI and 0.92 g of PbI 2 were completely dissolved in 100 mL of DMSO at 60° C., respectively, to prepare a CsPbI2Br precursor solution and a CsPbI3 precursor solution.
이 후, 3D 프린터와 결함된 초음파 스트레이 코터(S80, CERA-TORQ, 80 kHz)를 사용하여 0.5M CsPbI2Br 전구체 용액 280초 동안 0.8mL/분의 유속으로 분무한 다음, 0.25M CsPbI3 전구체 용액을 5초 동안 0.5mL/분의 유속으로 분무하여 c-TiO2/FTO 기판 상에 등급화된 CsPbI3-xBrx 페로브스카이트 박막을 형성하였다.Thereafter, using a 3D printer and a defective ultrasonic stray coater (S80, CERA-TORQ, 80 kHz), 0.5M CsPbI2Br precursor solution was sprayed at a flow rate of 0.8 mL/min for 280 seconds, and then 0.25 M CsPbI 3 precursor solution was added. A graded CsPbI 3-x Br x perovskite thin film was formed on the c-TiO 2 /FTO substrate by spraying at a flow rate of 0.5 mL/min for 5 seconds.
이 때, 초음파 스프레이 코팅 공정 조건은 5cm 의 노즐과 기판 사이의 거리(nozzle-to-substrate distance), 10 mm/s의 노즐 스캔 속도(nozzle scan rate), 0.8 mL/min의 CsPbI2Br 전구체 용액 흐름 속도(solution flow rate), 0.5 mL/min의 CsPbI3 전구체 용액 흐름 속도(유도 가스(flow gas): N2, 압력: 7 psi), 150℃의 퇴적 온도(deposition temperature)를 가진다.At this time, the ultrasonic spray coating process conditions were a nozzle-to-substrate distance of 5 cm, a nozzle scan rate of 10 mm/s, and a CsPbI 2 Br precursor solution of 0.8 mL/min. It has a solution flow rate, a CsPbI 3 precursor solution flow rate of 0.5 mL/min (flow gas: N 2 , pressure: 7 psi), and a deposition temperature of 150°C.
등급화된 CsPbI3-xBrx 페로브스카이트 박막을 형성한 후, 폴리-트릴아민(PTAA, EM index) 정공 수송 물질(HTMs)을 스핀 코팅한 다음, Au 카운터 전극을 열증착(thermal evaporation) 방법으로 증착하였다.After forming a graded CsPbI 3-x Br x perovskite thin film, poly-trilamine (PTAA, EM index) hole transport materials (HTMs) were spin-coated, followed by thermal evaporation of an Au counter electrode. ) was deposited by the method.
페로브스카이트 광전 소자는 ~20%의 제어된 상대 습도 하에서 대기 분위기에서 제조되었다.Perovskite optoelectronic devices were fabricated in an atmospheric atmosphere under a controlled relative humidity of ∼20%.
[실시예 2] : 10초(10s)[Example 2]: 10 seconds (10s)
0.25M CsPbI3 전구체 용액을 10초 동안 분무한 것을 제외하면 실시예 1과 동일한 방법으로 제조되었다.It was prepared in the same manner as in Example 1, except that 0.25M CsPbI 3 precursor solution was sprayed for 10 seconds.
[실시예 3] : 15초(15s)[Example 3]: 15 seconds (15s)
0.25M CsPbI3 전구체 용액을 15초 동안 분무한 것을 제외하면 실시예 1과 동일한 방법으로 제조되었다.It was prepared in the same manner as in Example 1, except that 0.25M CsPbI 3 precursor solution was sprayed for 15 seconds.
[실시예 4] : 20초(20s)[Example 4]: 20 seconds (20s)
0.25M CsPbI3 전구체 용액을 20초 동안 분무한 것을 제외하면 실시예 1과 동일한 방법으로 제조되었다.It was prepared in the same manner as in Example 1, except that 0.25M CsPbI 3 precursor solution was sprayed for 20 seconds.
도 4 내지 도 11은 스프레이 코팅 시간에 따른 광활성층의 모폴로지 변화(Morphology variations) 변화 특성을 도시한 것이다.4 to 11 show the characteristics of change in morphology variations of the photoactive layer according to the spray coating time.
도 4는 5초 동안 스프레이 코팅을 진행(실시예 1)하여 제조된 광활성층의 단면 주사전자현미경(Scanning electron microscopy, SEM) 이미지이고, 도 5는 표면 주사전자현미경 이미지를 도시한 것이다.4 is a cross-sectional scanning electron microscopy (SEM) image of a photoactive layer prepared by spray coating for 5 seconds (Example 1), and FIG. 5 shows a surface scanning electron microscope image.
도 6은 10초 동안 스프레이 코팅을 진행(실시예 2)하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 7은 표면 주사전자현미경 이미지를 도시한 것이다.6 is a cross-sectional scanning electron microscope image of the photoactive layer prepared by spray coating for 10 seconds (Example 2), and FIG. 7 is a surface scanning electron microscope image.
도 8은 15초 동안 스프레이 코팅을 진행(실시예 3)하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 9는 표면 주사전자현미경 이미지를 도시한 것이다.8 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 15 seconds (Example 3), and FIG. 9 is a surface scanning electron microscope image.
도 10은 20초 동안 스프레이 코팅을 진행(실시예 4)하여 제조된 광활성층의 단면 주사전자현미경 이미지이고, 도 11은 표면 주사전자현미경 이미지를 도시한 것이다.10 is a cross-sectional scanning electron microscope image of a photoactive layer prepared by spray coating for 20 seconds (Example 4), and FIG. 11 is a surface scanning electron microscope image.
도 4, 도 6, 도 8 및 도 10을 참조하면, 스프레이 코팅 시간이 증가함에 따라, 깊이 방향으로 조성 경사를 갖는 광활성층의 두께가 ~490nm에서 ~500nm로 증가되는 것을 알 수 있다.4, 6, 8 and 10, as the spray coating time increases, it can be seen that the thickness of the photoactive layer having a composition gradient in the depth direction increases from ~490 nm to ~500 nm.
도 4, 도 7, 도 9 및 도 11을 참조하면, 스프레이 코팅 시간이 길어짐에 따라 평균 페로브스카이트 입자의 크기가 점차 감소되는 것을 알 수 있다.4, 7, 9 and 11, it can be seen that the size of the average perovskite particles gradually decreases as the spray coating time increases.
도 12 내지 도 21은 스프레이 코팅 시간에 따른 광활성층의 깊이 프로파일(Depth profiles)을 특성을 도시한 것이다.12 to 21 show the characteristics of the depth profile (Depth profiles) of the photoactive layer according to the spray coating time.
도 12는 스프레이 코팅 시간에 따른 광활성층의 관통 깊이의 스침 입사 X선 회절(Grazing incidence X-ray diffraction, GIXRD) 그래프를 도시한 것이다.12 shows a grazing incidence X-ray diffraction (GIXRD) graph of the penetration depth of the photoactive layer according to the spray coating time.
도 12를 참조하면, 침투 깊이에 따라, 광활성층이 CsPbI3.00, CsPbI2.75Br0.25, CsPbI2.50Br0.05, CsPbI2.25Br0.75 및 CsPbI2.00Br1 로, I 및 Br의 조성이 변화되어, 깊이 방향으로 조성 경사를 갖는 것을 알 수 있다.12 , according to the penetration depth, the photoactive layer is CsPbI 3.00 , CsPbI 2.75 Br 0.25 , CsPbI 2.50 Br 0.05 , CsPbI 2.25 Br 0.75 and CsPbI 2.00 Br 1 , and the composition of I and Br is changed in the depth direction. It can be seen that the composition has a gradient.
도 13은 5초 동안 스프레이 코팅을 진행(실시예 1)하여 제조된 광활성층의 스침 입사 X선 회절 그래프를 도시한 것이고, 도 14는 10초 동한 스프레이 코팅을 진행(실시예 2)한 그래프이고, 도 15는 15초 동안 스프레이 코팅을 진행(실시예 3)한 그래프이고, 도 16은 20초 동안 스프레이 코팅을 진행(실시예 4)한 그래프이다.13 is a grazing incidence X-ray diffraction graph of a photoactive layer prepared by spray coating for 5 seconds (Example 1), and FIG. 14 is a graph showing spray coating for 10 seconds (Example 2). , FIG. 15 is a graph showing spray coating for 15 seconds (Example 3), and FIG. 16 is a graph showing spray coating for 20 seconds (Example 4).
도 13 내지 도 16을 참조하면, (200) CsPbI3의 (200) 피크 위치는 28.69°이고, CsPbI2Br의 (200) 피크 위치는 29.55°이나, 스침 입사각이 증가함에 따라 (200) 피크 위치가 점진적으로 증가되는 것을 알 수 있다.13 to 16 , the (200) peak position of (200) CsPbI 3 is 28.69°, and the (200) peak position of CsPbI 2 Br is 29.55°, but as the grazing incidence angle increases, the (200) peak position is It can be seen that is gradually increased.
즉, 스침 입사각에 의한 단일 (200) 피크 위치가 점진적으로 이동(gradual shift)되는 것으로 보아, CsPbI3 전구체 용액을 CsPbI2Br 막 상에 스프레이 코팅을 함에 따라, CsPbI3-xBrx이 형성되는 것을 알 수 있다.That is, as it is seen that the single (200) peak position is gradually shifted by the grazing incident angle, as the CsPbI 3 precursor solution is spray-coated on the CsPbI 2 Br film, CsPbI 3-x Br x is formed. it can be seen that
또한, 스프레이 코팅 시간이 증가함에 따라 0.1° 스침 입사각을 갖는 (200) 피크 위치가 매우 이동되었고, 이를 통해, CsPbI3-xBrx의 I 함량이 CsPbI3-xBrx의 상단 표면 근처에서 점차 증가되는 것을 알 수 있다.In addition, as the spray coating time increased, the (200) peak position with 0.1° grazing incidence angle shifted significantly, through which the I content of CsPbI 3-x Br x gradually decreased near the top surface of CsPbI 3-x Br x . can be seen to increase.
도 17은 스프레이 코팅 시간에 따른 광활성층의 (200) 피크 위치의 깊이 프로파일을 도시한 그래프이고, 도 18은 Br/Pb 조성비(y)와 (200) 피크 위치(x) 사이의 상관관계를 도시한 그래프이며, 도 19는 스프레이 코팅 시간에 따른 광활성층의 조성 깊이 프로파일(Compositional depth profiles)을 도시한 그래프이다. 17 is a graph showing the depth profile of the (200) peak position of the photoactive layer according to the spray coating time, and FIG. 18 shows the correlation between the Br/Pb composition ratio (y) and the (200) peak position (x) It is a graph, and FIG. 19 is a graph showing compositional depth profiles of the photoactive layer according to spray coating time.
Br/Pb 조성비(y)와 (200) 피크 위치(x) 사이의 상관 관계는 하기 식 1로 표시될 수 있다.The correlation between the Br/Pb composition ratio (y) and the (200) peak position (x) may be expressed by Equation 1 below.
[식 1][Equation 1]
y=0.83x+28.071y=0.83x+28.071
도 17 내지 도 19를 참조하면, 스프레이 코팅 시간이 증가됨에 따라 CsPbI3의 유입이 증가되어, 광활성층은 상부 표면에 I이 풍부한 CsPbI3-xBrx이 형성되는 것을 알 수 있다.17 to 19 , as the spray coating time increases, the inflow of CsPbI 3 increases, and it can be seen that CsPbI 3-x Br x rich in I is formed on the upper surface of the photoactive layer.
이 때, 15초 동안 스프레이 진행(실시예 3)되면, CsPbI3-xBrx의 상부 표면은 CsPbI3 층이 형성되는 것을 알 수 있다.At this time, when spraying proceeds for 15 seconds (Example 3), it can be seen that the CsPbI 3 layer is formed on the upper surface of CsPbI 3-x Br x .
도 20은 스프레이 코팅 시간에 따른 광활성층의 전자 밴드 갭(electronic bandgap, Eg)의 깊이 프로파일을 도시한 그래프이고, 도 21은 스프레이 코팅 시간에 따른 광활성층의 최소 전도대(conduction band minimum, CBM) 및 최대 가전자대(valence band maximum, VBM)의 깊이 프로파일을 도시한 그래프이다.20 is a graph showing the depth profile of the electronic bandgap (Eg) of the photoactive layer according to the spray coating time, and FIG. 21 is the minimum conduction band (CBM) of the photoactive layer according to the spray coating time and It is a graph showing the depth profile of the maximum valence band (VBM).
도 20 및 도 21을 참조하면, 스프레이 코팅 시간이 5초에서 20초로 증가됨에 따라 평균 캐리어 수명이 증가되는 것을 알 수 있다.20 and 21 , it can be seen that the average carrier life is increased as the spray coating time is increased from 5 seconds to 20 seconds.
보다 구체적으로, 금속할라이드 페로브스카이트 화합물은 I의 함량이 많아질수록 밴드갭이 줄어들게 되고, 엑시톤 바인딩 에너지가 줄어들게 되어, 발광 수명이 증가하게 될 수 있다.More specifically, in the metal halide perovskite compound, as the content of I increases, the band gap may decrease, and the exciton binding energy may decrease, so that the emission lifetime may be increased.
마찬가지로, 스프레이 코팅 시간이 증가함에 따라, I의 함량이 많아져서 엑시톤 바인딩 에너지의 감소로 인해 발광 수명이 줄어듦과 함께, I의 함량이 많아짐에 따라 페로브스카이트 광활성층에서 생성된 전자-정공 쌍이 더 쉽게 분리가 일어나므로 발광 수명이 짧아질 수 있다.Similarly, as the spray coating time increases, the amount of I increases and the emission lifetime decreases due to the decrease of the exciton binding energy. As the content of I increases, the electron-hole pairs generated in the perovskite photoactive layer become Separation occurs more easily, which may shorten the luminescence lifetime.
도 22 내지 도 32는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 장치 성능(Device performance) 특성을 도시한 그래프이다.22 to 32 are graphs illustrating device performance characteristics of a perovskite optoelectronic device according to an embodiment of the present invention.
도 22는 15초 동안 스프레이 코팅을 진행(실시예 3)하여 제조된 광활성층을 포함하는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 주사전자현미경 이미지를 도시한 것이다.22 shows a scanning electron microscope image of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds (Example 3).
도 22를 참조하면, 본 발명의 실시예에 따른 페로브스카이트 광전 소자(FTO/bl-TiO2/graded CsPbI3-xBrx/PTAA/Au)가 잘 형성된 것을 알 수 있다.Referring to FIG. 22 , it can be seen that a perovskite photoelectric device (FTO/bl-TiO 2 /graded CsPbI 3-x Br x /PTAA/Au) according to an embodiment of the present invention is well formed.
도 23은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 흡수 스펙트럼(Absorption spectra)을 도시한 그래프이고, 도 24는 외부 양자 효율 스펙트럼(EQE spectra)을 도시한 그래프이며, 도 25는 개방전압(Voc)을 도시한 그래프이고, 도 26은 단락전류밀도(Jsc)를 도시한 그래프이며, 도 27은 충전인자(FF)를 도시한 그래프이고, 도 28은 에너지 전환 효율(PCE)을 도시한 그래프이다.23 is a graph showing an absorption spectrum of a perovskite photoelectric device according to an embodiment of the present invention, FIG. 24 is a graph showing an external quantum efficiency spectrum (EQE spectra), and FIG. 25 is an open It is a graph showing the voltage (Voc), Fig. 26 is a graph showing the short circuit current density (Jsc), Fig. 27 is a graph showing the charging factor (FF), and Fig. 28 is a graph showing the energy conversion efficiency (PCE) It is one graph.
표 1은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 전기적 및 광학적 특성을 도시한 표이다.Table 1 is a table showing the electrical and optical characteristics of the perovskite optoelectronic device according to an embodiment of the present invention.
[표 1][Table 1]
Figure PCTKR2021010692-appb-I000001
Figure PCTKR2021010692-appb-I000001
도 23을 참조하면, CsPbI3 전구체 용액의 스프레이 코팅 시간이 증가함에 따라 I가 풍부한 CsPbI3-xBrx 가 형성되어 흡수 파장이 적색 이동(red-shifted)되는 것을 알 수 있다.Referring to FIG. 23 , as the spray coating time of the CsPbI 3 precursor solution increases, I-rich CsPbI 3-x Br x is formed and the absorption wavelength is red-shifted.
보다 구체적으로, 금속 할라이드 페로브스카이트에서 X가 Cl → Br → I 로 감에 따라서 격자 크기가 커지게 되기 때문에, 흡수 파장이 점점 장파장인 적색으로 이동하게 될 수 있다.More specifically, since the lattice size increases as X goes from Cl → Br → I in the metal halide perovskite, the absorption wavelength may gradually shift to red, which is a longer wavelength.
도 24 내지 도 27 및 표 1을 참조하면, 스프레이 코팅 시간이 길어짐에 따라, 개방 전압은 감소되는 반면 단락전류밀도는 향상되어 장파장에 대한 광 흡수가 증가되는 것을 알 수 있다.24 to 27 and Table 1, it can be seen that as the spray coating time increases, the open circuit voltage is decreased while the short circuit current density is improved, so that light absorption for a long wavelength is increased.
보다 구체적으로, 스프레이 코팅 시간이 길어질수록, I의 함량이 늘어나므로 흡수 파장이 점점 장파장으로 늘어나게 되어 광 흡수량이 늘어나게 되어 생성되는 전류밀도의 양이 증가하게 될 수 있다.More specifically, as the spray coating time increases, the content of I increases, so that the absorption wavelength gradually increases to a longer wavelength, so that the amount of light absorption increases, thereby increasing the amount of generated current density.
또한, 충전 인자는 15초 동안 스프레이 코팅을 진행하였을 때 최대 값을 갖고, 결과적으로 1-태양 조건에서 14.63±1.07%의 에너지 전환 효율을 갖는 것을 알 수 있다.In addition, the filling factor has a maximum value when spray coating is performed for 15 seconds, and as a result, it can be seen that it has an energy conversion efficiency of 14.63±1.07% under 1-sun conditions.
도 29는 5초 동안 스프레이 코팅을 진행(실시예 1)하여 제조된 광활성층을 포함하는 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 전류밀도-전압 곡선(J-V curves)을 도시한 그래프이고, 도 30은 10초 동안 스프레이 코팅을 진행(실시예 2)한 그래프이고, 도 31은 15초동안 스프레이 코팅을 진행(실시예 3)한 그래프이며, 도 32는 20초 동안 스프레이 코팅을 진행(실시예 4)한 그래프이다.29 is a graph showing current density-voltage curves (JV curves) of a perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 5 seconds (Example 1) 30 is a graph in which spray coating is performed for 10 seconds (Example 2), FIG. 31 is a graph in which spray coating is performed for 15 seconds (Example 3), and FIG. 32 is spray coating in progress for 20 seconds. (Example 4) It is a graph.
도 29 내지 도 32 및 표 1을 참조하면, 15초 동안 스프레이 코팅을 진행(실시예 3)하여 제조된 광활성층을 포함하는 본 발명의 실시예에 따른 페로브스카이트 광전 소자는 순방향 스캔의 경우 16.45%, 역방향 스캔의 경우 16.81%의 높은 에너지 전환 효율 및 충전 입자를 나타내는 것을 알 수 있다.29 to 32 and Table 1, the perovskite photoelectric device according to an embodiment of the present invention including a photoactive layer prepared by spray coating for 15 seconds (Example 3) in the case of forward scan It can be seen that 16.45%, high energy conversion efficiency of 16.81% for the reverse scan and charged particles.
도 33 내지 도 36은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 서브 모듈 및 장기 안정성 특성을 도시한 그래프이다.33 to 36 are graphs illustrating sub-modules and long-term stability characteristics of a perovskite optoelectronic device according to an embodiment of the present invention.
도 33은 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 서브 모듈을 도시한 이미지이고, 도 34는 서브 모듈의 광전류-전압(I-V) 곡선을 도시한 그래피이며, 도 35는 초기 단계(early stage; 0초 내지 60초)에서의 서브 모듈의 안정화된 전력 출력(Stabilized power output)을 도시한 그래프이고, 도 36은 캡슐화되지 않은 서브 모듈의 실온 및 질소(N2) 분위기의 1-태양 조명(1-sun illumination) 하에서 장기간 태양광 흡수 안정성 시험(Long-term light-soaking stability test) 결과를 도시한 그래프이며, 도 37은 1000시간의 안정성 시험 동안의 광전류-전압 곡선을 도시한 그래프이다.33 is an image showing a sub-module of a perovskite optoelectronic device according to an embodiment of the present invention, FIG. 34 is a graph showing a photocurrent-voltage (IV) curve of the sub-module, and FIG. 35 is an initial stage ( It is a graph showing the stabilized power output of the sub-module in the early stage; 0 to 60 sec. It is a graph showing the results of a long-term light-soaking stability test under (1-sun illumination), and FIG. 37 is a graph showing a photocurrent-voltage curve during a stability test for 1000 hours.
본 발명의 실시예에 따른 페로브스카이트 광전 소자의 장기 안정성을 확인하기 위하여 도 33과 같이 8X14cm2의 대면적 페로브스카이트 광전 소자를 제조하였다,In order to confirm the long-term stability of the perovskite optoelectronic device according to an embodiment of the present invention, a large-area perovskite optoelectronic device of 8X14cm 2 was prepared as shown in FIG. 33,
도 33의 서부 모듈은 직렬 연결된 7개의 서브 셀로 구성되어 있다.The western module of FIG. 33 is composed of 7 sub-cells connected in series.
도 34를 참조하면, 개방전압은 7.64V를 나타내고, 전류밀도는 281.12mA를 나타내며, 충전인자는 13.82%를 나타내는 것을 알 수 있다.Referring to FIG. 34 , it can be seen that the open circuit voltage is 7.64V, the current density is 281.12mA, and the charging factor is 13.82%.
도 35 내지 도 37을 참조하면, 1-태양 조명 하에서 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 서브 모듈은 안정화된 전력 출력을 나타내고, 연속적인 광 흡수 하에서 장기 안정성을 갖는 것을 알 수 있다.35 to 37 , it can be seen that the sub-module of the perovskite optoelectronic device according to the embodiment of the present invention under 1-sun illumination shows a stabilized power output and has long-term stability under continuous light absorption. there is.
또한, 본 발명의 실시예에 따른 페로브스카이트 광전 소자의 서브 모듈의 에너지 전환 효율은 12.54%로 초기 단계의 페로브스카이트 광전 소자와 비교하여 ~09.3%만 저하되는 것을 알 수 있다.In addition, it can be seen that the energy conversion efficiency of the sub-module of the perovskite optoelectronic device according to the embodiment of the present invention is 12.54%, which is reduced by only ~09.3% compared to the perovskite optoelectronic device of the initial stage.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited to the above embodiments, and various modifications and variations from these descriptions can be made by those skilled in the art to which the present invention pertains. This is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the following claims as well as the claims and equivalents.

Claims (18)

  1. 제1 전극 상에 전자수송층을 형성하는 단계;forming an electron transport layer on the first electrode;
    상기 전자수송층 상에 스프레이 코팅(orthogonal spray coating)으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계;forming a photoactive layer including a perovskite compound on the electron transport layer by spray coating (orthogonal spray coating);
    상기 페로브스카이트 화합물을 포함하는 광활성층 상에 정공수송층을 형성하는 단계; 및forming a hole transport layer on the photoactive layer containing the perovskite compound; and
    상기 정공수송층 상에 제2 전극을 형성하는 단계;forming a second electrode on the hole transport layer;
    를 포함하고,including,
    상기 페로브스카이트 화합물을 포함하는 광활성층은, 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The photoactive layer comprising the perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that it has a composition gradient (Graded) in the depth direction from the hole transport layer to the electron transport layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 연속적으로 밴드 구조 경사가 형성되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The photoactive layer comprising the perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that the band structure gradient is formed continuously in the depth direction from the hole transport layer to the electron transport layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 내부에 적어도 하나 이상의 전기장이 형성되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The photoactive layer comprising the perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that at least one electric field is formed therein.
  4. 제1항에 있어서, The method of claim 1,
    상기 페로브스카이트 화합물은 하기 화학식 1로 표현되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that represented by the following formula (1).
    [화학식 1][Formula 1]
    AaMmXcAaMmXc
    (상기 화학식 1에서, A는 1가의 양이온이고, M은 2가 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=c이며, a, b, c는 자연수이다.)(In Formula 1, when A is a monovalent cation, M is a divalent or trivalent metal cation, X is a monovalent anion, and M is a divalent metal cation, a+2b=c, M is a trivalent metal For positive ions, a+3b=c, and a, b, and c are natural numbers.)
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 페로브스카이트 화합물은 하기 화학식 2로 표현되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that represented by the following formula (2).
    [화학식 2][Formula 2]
    AM'X'(3-m)X"m AM'X' (3-m) X" m
    (상기 화학식 2에서, A는 1가의 양이온이고, M'는 2가의 금속 양이온이며, X' 및 X"은 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
  6. 제1항에 있어서, The method of claim 1,
    상기 페로브스카이트 화합물은 적어도 둘 이상의 1가 음이온을 포함하고, 상기 깊이 방향으로 상기 적어도 둘 이상의 1가 음이온의 조성비가 변화되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The perovskite compound includes at least two or more monovalent anions, and the composition ratio of the at least two or more monovalent anions is changed in the depth direction.
  7. 제1항에 있어서,The method of claim 1,
    상기 전자수송층 상에 스프레이 코팅으로 페로브스카이트 화합물을 포함하는 광활성층을 형성하는 단계는,Forming a photoactive layer comprising a perovskite compound by spray coating on the electron transport layer,
    상기 전자수송층 상에 제1 페로브스카이트 화합물을 코팅하는 단계; 및coating a first perovskite compound on the electron transport layer; and
    상기 코팅된 제1 페로브스카이트 화합물 상에 제2 페로브스카이트 화합물을 코팅하는 단계;coating a second perovskite compound on the coated first perovskite compound;
    를 포함하는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.A method of manufacturing a perovskite photoelectric device comprising a.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 전자수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높고,In the photoactive layer comprising the perovskite compound in contact with the electron transport layer, the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound,
    상기 정공수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높은 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.In the photoactive layer including the perovskite compound in contact with the hole transport layer, the concentration of the second perovskite compound is higher than that of the first perovskite compound. Method of manufacturing a perovskite photoelectric device .
  9. 제7항에 있어서,8. The method of claim 7,
    상기 제2 페로브스카이트 화합물의 코팅 시간은 0.5초 내지 200초인 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.The second coating time of the perovskite compound is a method of manufacturing a perovskite photoelectric device, characterized in that 0.5 seconds to 200 seconds.
  10. 제7항에 있어서,8. The method of claim 7,
    상기 제2 페로브스카이트 화합물의 코팅 시간에 따라 상기 페로브스카이트 화합물의 평균 직경이 조절되는 것을 포함하는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법.Method of manufacturing a perovskite photoelectric device, characterized in that it comprises adjusting the average diameter of the perovskite compound according to the coating time of the second perovskite compound.
  11. 제7항에 있어서, 8. The method of claim 7,
    상기 제1 페로브스카이트 화합물은 하기 화학식 3로 표현되고, 상기 제2 페로브스카이트 화합물은 하기 화학식 4로 표현되는 것을 특징으로 하는 페로브스카이트 광전 소자의 제조 방법의 제조 방법.The first perovskite compound is represented by the following formula (3), the second perovskite compound is a method of manufacturing a method of manufacturing a perovskite photoelectric device, characterized in that represented by the following formula (4).
    [화학식 3][Formula 3]
    AM'X'2X"AM'X' 2X "
    [화학식 4][Formula 4]
    AM'X'3 AM'X' 3
    (상기 화학식 3 및 4에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이다.)(In Formulas 3 and 4, A is a monovalent cation, M' is a divalent metal cation, and X' and X" are monovalent anions.)
  12. 제1 전극;a first electrode;
    상기 제1 전극 상에 형성되는 전자수송층;an electron transport layer formed on the first electrode;
    상기 전자수송층 상에 스프레이 코팅(orthogonal spray coating)으로 형성되고, 페로브스카이트 화합물을 포함하는 광활성층;a photoactive layer formed by orthogonal spray coating on the electron transport layer and including a perovskite compound;
    상기 페로브스카이트 화합물을 포함하는 광활성층 상에 형성되는 정공수송층; 및a hole transport layer formed on the photoactive layer including the perovskite compound; and
    상기 정공수송층 상에 형성되는 제2 전극을 포함하고,and a second electrode formed on the hole transport layer,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 조성 경사(Graded)를 갖는 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer comprising the perovskite compound is a perovskite photoelectric device, characterized in that it has a composition gradient in the depth direction from the hole transport layer to the electron transport layer.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 상기 정공수송층에서 상기 전자수송층으로의 깊이 방향으로 연속적으로 밴드 구조 경사가 형성되는 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer including the perovskite compound is a perovskite photoelectric device, characterized in that the band structure gradient is formed continuously in the depth direction from the hole transport layer to the electron transport layer.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 내부에 적어도 하나 이상의 전기장이 형성되는 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer comprising the perovskite compound is a perovskite photoelectric device, characterized in that at least one electric field is formed therein.
  15. 제12항에 있어서, 13. The method of claim 12,
    상기 광활성층은 페로브스카이트 화합물은 하기 화학식 1로 표현되는 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer is a perovskite compound is a perovskite photoelectric device, characterized in that represented by the following formula (1).
    [화학식 1][Formula 1]
    AaMmXcAaMmXc
    (상기 화학식 1에서, A는 1가의 양이온이고, M은 2가 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=c이며, a, b, c는 자연수이다.)(In Formula 1, when A is a monovalent cation, M is a divalent or trivalent metal cation, X is a monovalent anion, and M is a divalent metal cation, a+2b=c, M is a trivalent metal For positive ions, a+3b=c, and a, b, and c are natural numbers.)
  16. 제15항에 있어서, 16. The method of claim 15,
    상기 광활성층은 페로브스카이트 화합물은 하기 화학식 2로 표현되는 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer is a perovskite compound is a perovskite photoelectric device, characterized in that represented by the following formula (2).
    [화학식 2][Formula 2]
    AM'X'(3-m)X"m AM'X' (3-m) X" m
    (상기 화학식 2에서, A는 1가의 양이온이고, M'은 2가의 금속 양이온이며, X' 및 X"는 1가의 음이온이고, m은 0≤m≤1이다.)(In Formula 2, A is a monovalent cation, M' is a divalent metal cation, X' and X" are monovalent anions, and m is 0≤m≤1.)
  17. 제12항에 있어서, 13. The method of claim 12,
    상기 페로브스카이트 화합물은 적어도 둘 이상의 1가 음이온을 포함하고, 상기 깊이 방향으로 상기 적어도 둘 이상의 1가 음이온의 조성비가 변화되는 것을 특징으로 하는 페로브스카이트 광전 소자.The perovskite compound includes at least two or more monovalent anions, and a perovskite photoelectric device, characterized in that the composition ratio of the at least two or more monovalent anions is changed in the depth direction.
  18. 제12항에 있어서,13. The method of claim 12,
    상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물 및 제2 페로브스카이트 화합물을 포함하고,The photoactive layer comprising the perovskite compound comprises a first perovskite compound and a second perovskite compound,
    상기 전자수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제1 페로브스카이트 화합물의 농도가 제2 페로브스카이트 화합물의 농도보다 높으며,In the photoactive layer comprising the perovskite compound in contact with the electron transport layer, the concentration of the first perovskite compound is higher than the concentration of the second perovskite compound,
    상기 정공수송층과 접촉하는 상기 페로브스카이트 화합물을 포함하는 광활성층은 제2 페로브스카이트 화합물의 농도가 제1 페로브스카이트 화합물보다 높은 것을 특징으로 하는 페로브스카이트 광전 소자.The photoactive layer including the perovskite compound in contact with the hole transport layer is a perovskite photoelectric device, characterized in that the concentration of the second perovskite compound is higher than that of the first perovskite compound.
PCT/KR2021/010692 2020-08-11 2021-08-11 Method for preparing perovskite optoelectronic device and perovskite optoelectronic device prepared thereby WO2022035239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0100792 2020-08-11
KR1020200100792A KR102300107B1 (en) 2020-08-11 2020-08-11 Methods of perovskite optoelectronic device and perovskite optoelectronic device prepared thereby

Publications (1)

Publication Number Publication Date
WO2022035239A1 true WO2022035239A1 (en) 2022-02-17

Family

ID=77777469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010692 WO2022035239A1 (en) 2020-08-11 2021-08-11 Method for preparing perovskite optoelectronic device and perovskite optoelectronic device prepared thereby

Country Status (2)

Country Link
KR (1) KR102300107B1 (en)
WO (1) WO2022035239A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230130200A (en) 2022-03-02 2023-09-12 한화솔루션 주식회사 Manufacturing method of highly purified cesium halide and Perovskite complex materials
CN116190491B (en) * 2023-02-24 2024-01-16 浙江大学 Pure inorganic lead halide perovskite heterojunction, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023007A (en) * 2009-08-28 2011-03-08 삼성전자주식회사 Thin film solar cell and method of manufacturing the same
KR101998021B1 (en) * 2018-03-14 2019-07-08 군산대학교산학협력단 Perovskite Solar Cells And The Fabrication Method Of The Same
KR20190091822A (en) * 2018-01-29 2019-08-07 고려대학교 산학협력단 Halide solid solution through pressure applied low temperature diffusion and device thereof
JP2019145621A (en) * 2018-02-19 2019-08-29 公立大学法人 滋賀県立大学 Solar cell and method for manufacturing the same
KR102129200B1 (en) * 2019-03-08 2020-07-02 서울대학교산학협력단 Light-emitting device having multi-layered perovskite light-emitting layer and Method of fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431128B (en) 2015-01-08 2020-12-25 韩国化学研究院 Method for manufacturing device comprising organic and inorganic hybrid perovskite compound film and device comprising organic and inorganic hybrid perovskite compound film
KR102506443B1 (en) 2017-03-17 2023-03-07 삼성전자주식회사 Photoelectric conversion device including perovskite compound and imaging device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023007A (en) * 2009-08-28 2011-03-08 삼성전자주식회사 Thin film solar cell and method of manufacturing the same
KR20190091822A (en) * 2018-01-29 2019-08-07 고려대학교 산학협력단 Halide solid solution through pressure applied low temperature diffusion and device thereof
JP2019145621A (en) * 2018-02-19 2019-08-29 公立大学法人 滋賀県立大学 Solar cell and method for manufacturing the same
KR101998021B1 (en) * 2018-03-14 2019-07-08 군산대학교산학협력단 Perovskite Solar Cells And The Fabrication Method Of The Same
KR102129200B1 (en) * 2019-03-08 2020-07-02 서울대학교산학협력단 Light-emitting device having multi-layered perovskite light-emitting layer and Method of fabricating the same

Also Published As

Publication number Publication date
KR102300107B1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2018021794A1 (en) Method for preparing highly efficient perovskite compound film and solar cell comprising same
WO2014109604A1 (en) Inorganic-organic hybrid solar cell having durability and high performance
WO2014109610A1 (en) Method for manufacturing high-efficiency inorganic-organic hybrid solar cell
WO2017209384A1 (en) Organic electronic element and method for manufacturing same
WO2015163679A1 (en) Organic-inorganic hybrid solar cell
WO2022035239A1 (en) Method for preparing perovskite optoelectronic device and perovskite optoelectronic device prepared thereby
WO2011102673A2 (en) All-solid-state heterojunction solar cell
WO2011102677A2 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
WO2018216880A1 (en) Heterocyclic compound and organic electronic device comprising same
WO2014200309A1 (en) Organic photovoltaic cell and method for manufacturing same
WO2015167284A1 (en) Organic solar cell and manufacturing method therefor
WO2014119962A1 (en) Novel polymer material for hightly efficient organic thin-film solar cell, and organic thin-film solar cell using same
WO2016171465A2 (en) Heterocyclic compound and organic solar cell comprising same
WO2016148456A1 (en) Metal oxide thin film of three-dimensional nano ripple structure, method for preparing same, and organic photovoltaic cell comprising same
WO2015167285A1 (en) Solar cell and manufacturing method therefor
WO2015167225A1 (en) Organic solar cell and manufacturing method therefor
WO2021118238A1 (en) Novel polymer and organic electronic device using same
WO2015163658A1 (en) Stacked organic solar cell
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2021107645A1 (en) Perovskite photoelectric element, and method for producing same
WO2019221386A1 (en) Heterocyclic compound and organic electronic device comprising same
WO2015037966A1 (en) Copolymer and organic solar cell comprising same
WO2021025519A1 (en) Perovskite photoelectric element and method for manufacturing same
WO2018066826A1 (en) Active layer composition showing high efficiency over long period, and organic solar cell comprising same
WO2018164353A1 (en) Polymer and organic solar cell comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21856245

Country of ref document: EP

Kind code of ref document: A1