WO2022035088A1 - Plasma catalyst reactor for removing harmful gas and method of treating harmful gas by using same - Google Patents

Plasma catalyst reactor for removing harmful gas and method of treating harmful gas by using same Download PDF

Info

Publication number
WO2022035088A1
WO2022035088A1 PCT/KR2021/009678 KR2021009678W WO2022035088A1 WO 2022035088 A1 WO2022035088 A1 WO 2022035088A1 KR 2021009678 W KR2021009678 W KR 2021009678W WO 2022035088 A1 WO2022035088 A1 WO 2022035088A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
high voltage
voltage electrode
harmful gas
carrier
Prior art date
Application number
PCT/KR2021/009678
Other languages
French (fr)
Korean (ko)
Inventor
허일정
김상준
이진희
장태선
정윤호
김수민
김영진
목영선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022035088A1 publication Critical patent/WO2022035088A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J35/56
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Definitions

  • the present invention relates to a plasma catalyst reactor for removing harmful gases and a method for treating harmful gases using the same. It relates to a plasma catalytic reactor for use and a method for treating harmful gases using the same.
  • Incineration, catalyst, adsorption, or biological treatment methods are used to treat such harmful gases, but there are problems such as high cost for treatment or poor treatment efficiency.
  • Toxic gas treatment method using low-temperature plasma catalyst is a method that many studies are being conducted to improve the existing high-cost treatment method.
  • a harmful gas treatment catalyst is inserted between two opposite electrodes and the It is a technology that supplies a voltage to generate a discharge composed of electrons, ions, and radicals, and at the same time treats harmful gases using a catalyst for treating harmful gases.
  • the charging layer It can be divided into a Packed Bed) discharge method and a Dielectric Barrier Discharge (DBD) method.
  • a packed bed discharge type plasma catalyst reactor is a plasma catalyst reactor in which a pellet catalyst is filled between both electrodes, and most studies of plasma catalyst reactors are being conducted based on the packed bed method.
  • Noxious gas treatment using a catalytic reaction inevitably requires contact between the noxious gas and the catalyst. Accordingly, in the packed bed discharge type plasma catalyst reactor, the distance between the high voltage electrode and the ground electrode increases as much as the distance the catalyst is filled, and a large amount of high energy must be consumed to stably generate plasma. As a result, there are problems in the generation of nitrogen oxides and a large amount of ozone from the air, as well as the problem that the concentration of harmful gas to be treated is limited depending on the amount of catalyst, which is not practical. The reactor had to be coupled, and there was a problem in that the operating cost was increased due to the high pressure drop across the packed bed.
  • a dielectric barrier type plasma catalytic reactor that generates plasma of a uniform volume by inserting one or more dielectrics between a high voltage electrode and a ground electrode has recently been developed.
  • the dielectric applied to the dielectric barrier type plasma catalytic reactor is made of quartz, ceramic, etc. and can be easily cracked due to thermal shock or mechanical shock. There was a problem.
  • non-patent document 0003 disclosing a two-step plasma catalyst system for nitrogen oxide treatment a part of NO is oxidized to NO 2 by various oxidative species generated through plasma discharge, and the optimal The NO/NO 2 ratio of is provided to the downstream catalytic reactor.
  • various oxygen-containing hydrocarbons having excellent reducing ability are formed by plasma discharge, thereby improving low-temperature catalytic activity.
  • plasma generates various reactive species (radicals, ozone, etc.), but active reactive species other than ozone have a very short lifespan, making it difficult to apply them in a wide space.
  • the height is 5 cm or more and the width (diameter) is 9 cm or more.
  • the width is 9 cm or more.
  • the main object of the present invention is to solve the above problems, and to provide a plasma catalytic reactor for removing harmful gases and a method for treating harmful gases using the same, which can obtain maximum energy saving effect and large-capacity harmful gas treatment efficiency at low cost .
  • a perforated plate-shaped high voltage electrode a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying an AC voltage to the high voltage electrode, wherein the AC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas to the plasma region It provides a plasma catalyst reactor for removing harmful gases, characterized in that introduced and discharged.
  • a perforated plate-shaped high voltage electrode a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported; a monolith guard unit disposed between the high voltage electrode and the monolith carrier to prevent arc generation; and a power supply unit for applying a voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas is introduced into the plasma region It provides a plasma catalytic reactor for removing harmful gas, characterized in that discharged.
  • a high voltage electrode in the shape of a perforated plate; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying a positive (+) polarity DC voltage to the high voltage electrode, wherein a DC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas It provides a plasma catalyst reactor for removing harmful gas, characterized in that introduced into the plasma region and discharged.
  • the monolithic carrier may have a width of 9 cm or more and/or a height of 5 cm or more.
  • the ground electrode is spaced apart from the monolith carrier by 2 mm or less, and may be characterized in that it is positioned behind the monolith carrier through which harmful gases are discharged.
  • the high voltage electrode is spaced apart from the monolith carrier by 1 mm to 10 mm, and may be characterized in that it is positioned in front of the monolith carrier into which noxious gas is introduced.
  • the monolith carrier may have a honeycomb shape
  • the monolith guard part may have a honeycomb shape
  • the monolith guard unit may be characterized as a monolith having an electrical resistance of 16 M ⁇ or more.
  • the harmful gas is at least one selected from the group consisting of odor, volatile organic compounds, nitrogen compounds, sulfur oxides, fluorine compounds, chlorine compounds, cyanide compounds, carbon monoxide, carbon dioxide and dioxins. can be done with
  • the plasma catalytic reactor may be characterized in that two or more monolithic carriers are arranged in series.
  • Another embodiment of the present invention provides a noxious gas treatment method, characterized in that the noxious gas is treated using the plasma catalyst reactor for removing the noxious gas, and the relative humidity in the noxious gas is less than 100 vol%.
  • a pre-humidified metal-supported monolithic carrier to a plasma catalytic reactor to stably generate a corona discharge-based atmospheric low-temperature plasma inside the monolithic carrier, without the use of a monolithic carrier customized to a size for plasma catalysis
  • a monolithic carrier customized to a size for plasma catalysis Commercially available monolithic carrier can be applied, and a large amount of harmful gas can be effectively treated using plasma reaction and catalyst without pressure drop of the catalyst, and the maximum voltage applied to the driving electrode is lowered for reactor operation efficiency and stability can be improved at the same time.
  • the plasma catalytic reactor according to the present invention can receive the reaction energy required for the treatment of harmful gases using the catalyst from the low-temperature plasma, so there is an effect that harmful gas treatment is possible without the need for additional heating or energy supply for the catalytic reaction.
  • FIG. 1 is a schematic perspective view of a plasma catalytic reactor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 1 .
  • FIG. 3 is a schematic perspective view of a plasma catalytic reactor according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 3 .
  • FIG. 5 is a schematic experimental setup diagram for measuring the performance of a plasma catalytic reactor according to an embodiment of the present invention.
  • Example 6 is a photograph of plasma generation in the plasma catalytic reactor of Example 1 (a) and the plasma catalytic reactor of Comparative Example 10 (b) of the present invention.
  • FIG. 7 is a graph showing the results of measuring the discharge power over time in the plasma catalyst reactor according to Examples 1 to 7 of the present invention.
  • FIG. 9 is a graph showing the results of measuring the discharge power over time in the plasma catalyst reactor according to Comparative Examples 8 and 9 of the present invention.
  • Example 10 is a graph showing the results of measuring the toluene concentration for each hour after treatment in the plasma catalytic reactor according to Example 8 and Comparative Example 12 of the present invention, (a) is a measurement of the toluene concentration change and adsorption capacity at the outlet for 250 minutes It is a graph, and (b) is the change in toluene concentration at the outlet for 700 minutes.
  • 11 is a graph showing the result of measuring the discharge power for each voltage in the plasma catalyst reactor according to Examples 9 to 12 of the present invention.
  • FIG. 12 is a graph showing the result of measuring the discharge power for each voltage in the plasma catalytic reactor according to the presence or absence of the monolith guard unit of the present invention.
  • the present invention in one aspect, a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a humidified monolithic carrier positioned between the high voltage electrode and the ground electrode and containing a catalytically active metal; and a power supply unit for applying an alternating voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolithic carrier humidified by corona discharge, and harmful gas is generated in the plasma region
  • a plasma catalytic reactor for removing harmful gas, characterized in that it is injected and discharged.
  • the present invention provides a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported; a monolith guard unit disposed between the high voltage electrode and the monolith carrier to prevent arc generation; and a power supply unit for applying a voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas is introduced into the plasma region It relates to a plasma catalytic reactor for removing harmful gas, characterized in that it is discharged.
  • a perforated plate-shaped high-voltage electrode a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying a positive (+) polarity DC voltage to the high voltage electrode, wherein a DC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas
  • a plasma catalyst reactor for removing harmful gases, characterized in that introduced into the plasma region and discharged.
  • FIG. 1 is a schematic perspective view illustrating a plasma catalytic reactor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 1
  • FIG. 3 is a plasma catalyst according to another embodiment of the present invention. It is a schematic perspective view illustrating a reactor
  • FIG. 4 is a cross-sectional view of the plasma catalyst reactor shown in FIG. 3 .
  • the plasma catalytic reactor 100 is used to remove harmful gases by being installed in various mechanical devices and mechanical facilities that generate harmful gases such as automobiles, plants, and power plants.
  • the harmful gas can be applied without limitation as long as it is a gas harmful to the human body, and may be a volatile organic compound, a nitrogen-based compound, a sulfur oxide, a fluorine compound, a chlorine compound, a cyanide compound, carbon monoxide, carbon dioxide, a dioxin, an odor, and the like.
  • the plasma catalytic reactor 100 includes a monolithic carrier 110 on which a catalytically active metal is supported to remove harmful gases by passing harmful gases therein, the monolith It includes a high voltage electrode 120 positioned in front of the carrier 110 and a ground electrode 130 positioned in the rear of the monolith carrier.
  • the front side of the monolithic carrier means the side through which noxious gas is introduced
  • the rear side of the monolithic carrier refers to the side through which the noxious gas exits.
  • the monolithic carrier, the high voltage electrode, and the ground electrode may be surrounded by the housing 140 .
  • the housing 140 is connected to a pipe for discharging noxious gas among the aforementioned mechanical devices or mechanical equipment, and provides a space through which the noxious gas flows, and on the other hand, the chamber may be formed of a pipe itself. That is, the above-described high voltage electrode 120 , the monolithic carrier 110 , and the ground electrode 130 may be installed inside the pipe through which the harmful gas flows.
  • the housing 140 may be formed of an insulating material, or an insulating layer may be formed in a region surrounding the high voltage electrode, the monolithic carrier, and the ground electrode in the pipe.
  • the monolith carrier 110 includes a catalytically active metal (not shown) supported on its surface by a known method such as coating, impregnation, and ion exchange, and in order to reduce pressure loss during injection and discharge of harmful gases. It may be formed in various shapes having a channel structure open in the direction of both ends, and may preferably be a honeycomb shape having a honeycomb-shaped channel. In this case, in the specification, the height of the monolith carrier is referred to as the length of the axis connecting both open ends in a straight line, and the length perpendicular to the height is referred to as the width (diameter).
  • the monolith carrier 110 can be applied without limitation as long as it is a material applicable to a typical catalyst carrier for removing harmful gases, but in terms of hygroscopicity, plasma resistance and heat resistance ZrO 2 , Al 2 O 3 , zeolite, alumina nitride Inorganic such as , mullite, steatite, forsterite, cordierite, magnesium titanate, barium titanate, SiC, Si 3 N 4 , Si-SiC, mica, glass, etc. It can be a material.
  • inorganic materials such as alumina and glass
  • they have dielectric constants of 10 and 5
  • they have a high dielectric constant of 40 to 50. can be applied and a structure that is easy to generate plasma by corona discharge can be made.
  • the monolith carrier according to the present invention contains moisture on the surface and inside the monolith carrier so that corona discharge is easily generated inside the monolith carrier channel.
  • the plasma catalytic reactor to which the conventional monolithic carrier is applied has an advantage in that it can process harmful gases without pressure loss compared to the plasma catalytic reactor to which the pellet-shaped carrier is applied. Since only the carrier can be applied, the processing capacity of harmful gas is small, and there is a problem in that no plasma is generated inside the monolith carrier, so there is a problem that the harmful gas treatment efficiency is lowered.
  • the plasma catalytic reactor according to the present invention can easily generate and propagate plasma along the open channel of the monolith carrier by pre-containing moisture on the surface of the monolith carrier, the inside of the channel, etc., and thus has a width of 9 cm or more, and a height Plasma can be easily generated even on a commercial monolithic carrier that forms a long straight channel of 5 cm or more, and it has a fast response speed to the voltage application of the monolith. Since the catalytic reaction can be performed at the same time, a large amount of harmful gas can be easily processed without pressure loss.
  • the humidification of the monolithic carrier according to the present invention can be applied without limitation as long as it is a method capable of retaining moisture on the surface of the monolithic carrier.
  • the monolithic carrier on which the active catalyst metal is supported is exposed to water vapor, humid air, etc. for a predetermined period of time. It can contain moisture inside and on the surface.
  • the moisture content contained in the monolith carrier may be 0.001 wt% or more based on the total weight of the water-containing monolith carrier, the relative humidity at the operating temperature of the plasma catalytic reactor is less than 100%, the moisture content before water droplets are formed on the monolith carrier can If the moisture content contained in the monolith carrier is less than 0.001 wt% based on the total weight of the water-containing monolith carrier, the surface conductivity of the monolith channel is low and plasma is weak. There is a problem that sparks or arcs are generated due to too high surface conductivity.
  • the catalytically active metal supported on the monolithic carrier is a metal activated by the energy of the discharge, and can be applied without limitation depending on the type of harmful gas to be removed.
  • gold Au
  • silver Ag
  • platinum Pt
  • palladium Pd
  • rhodium Rh
  • iridium Ir
  • ruthenium Ru
  • rhenium Re
  • osmium Os
  • La lanthanum
  • the harmful gas is carbon monoxide or a volatile organic compound
  • it may be platinum that can promote an oxidation reaction
  • nitrogen oxide it may be ruthenium or rhodium that can promote a reduction reaction.
  • the monolithic carrier includes a metal such as manganese (Mn), copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), titanium (Ti) or cobalt (Co) to improve conductivity. It may further be added together with more than one catalytically active metal.
  • a metal such as manganese (Mn), copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), titanium (Ti) or cobalt (Co) to improve conductivity. It may further be added together with more than one catalytically active metal.
  • the content of the catalytically active metal and metal supported on the monolithic carrier may be variously set depending on the reactor structure, the driving voltage, the type and density of the harmful gas, etc., but preferably with respect to the total weight of the catalytically active metal and the metal-supported monolithic carrier,
  • the supported amount may be 0.1 wt% to 45 wt%, more preferably 0.1 wt% to 30 wt%.
  • the loading amount in the above range may be effective in treating harmful gases without sparks or arcs.
  • the catalytically active metal and the metal supported on the monolithic carrier act as a floating ground electrode on the surface of the monolithic carrier, thereby promoting plasma generation by corona discharge.
  • two or more monolithic carriers may be arranged in series.
  • the types of catalytically active metals supported on the two or more monolithic carriers may be the same or different, so that the treatment efficiency of harmful gases may be improved or different types of harmful gases may be treated simultaneously.
  • the position and size of the two or more monolithic carriers may be set in various ways depending on the structure of the reactor, the driving voltage, the type and density of the harmful gas, and the like.
  • a monolith guard unit 160 is provided between the high voltage electrode 120 and the monolith carrier 110 to prevent spark or arc generation.
  • plasma generation can be stably performed.
  • the monolith guard unit 160 is a monolith having an electrical resistance of 16 M ⁇ or more, and the electrical resistance of the monolith is 16 M ⁇ or more. and the shape may be a monolith having the same honeycomb shape as the monolith carrier.
  • the position and size of the monolith guard part may be set in various ways depending on the reactor structure, driving voltage, the type and density of harmful gas, and the like.
  • the high voltage electrode 120 and the ground electrode 130 are respectively disposed at a predetermined distance (dh and dg) from the monolith carrier 110 in front and rear of the monolith carrier 110 .
  • a high-voltage electrode, a monolithic carrier, and a ground electrode are sequentially positioned along the direction of the harmful gas.
  • the gap dh between the high voltage electrode 120 and the monolithic carrier 110 (the gap between the guard part 160 and the high voltage electrode 120 when the guard part is present) is 1 mm to 10 mm, preferably 2 mm ⁇ 6 mm. If the gap (dh) with the high voltage electrode is less than 1 mm, there is a problem that harmful gases are not uniformly introduced into all monolith carrier channels. This may cause a problem in that plasma cannot be generated .
  • the distance dg between the ground electrode 130 and the monolithic carrier 110 may be 2 mm or less, preferably 1 mm or less. If the distance between the ground electrode and the monolithic carrier exceeds 2 mm, the high voltage electrode and the ground electrode move away from each other, resulting in an increase in breakdown voltage and thus a decrease in discharge power.
  • the high voltage electrode 120 and the ground electrode 130 have a predetermined thickness because harmful gas must pass therein, and one or more openings 121 and 131 may be formed.
  • the high voltage front and ground electrode may be in the form of a perforated plate having one or more openings through which harmful gases can pass smoothly while maintaining an effective electrode area.
  • the high voltage electrode 120 is connected to the power supply unit 150, and the power supply unit 150 is electrically connected to a control unit (not shown) to control the magnitude and application time of the voltage applied to the high voltage electrode.
  • the applied voltage of the power supply may be variously changed according to the reactor configuration and driving conditions, and may preferably be 5 kV to 40 kV in terms of energy efficiency.
  • the AC voltage applied to the high voltage electrode from the power supply is a sinusoidal or pulsed high voltage with a frequency range of 50 Hz to 100 kHz
  • the power consumption for plasma maintenance is small compared to the conventional radio frequency and inductively coupled plasma method, and the reactor configuration This is simple, and the discharge stability is high, so that a uniform plasma can be generated.
  • the power supply may apply a positive (+) polarity DC voltage to the high voltage electrode for uniform plasma generation in the monolith.
  • the high voltage electrode receives a high voltage from the power supply for a predetermined period of time in the initial stage of driving the plasma catalyst reactor, that is, in a low temperature region before the monolith carrier is sufficiently heated. Plasma is then generated at the potential difference between the high voltage electrode and the monolithic carrier in the gap between the high voltage electrode and the monolithic carrier. That is, plasma is generated in the portion where the harmful gas is injected based on the monolith carrier.
  • the plasma catalytic reactor according to the present invention decomposes harmful gases into harmless gases by using a plasma reaction in a low temperature region at the initial stage of startup.
  • the catalytic reaction occurs even in the low-temperature region at the beginning of the start-up, but since the decomposition efficiency is not sufficient, it assists the plasma catalyst function to decompose harmful gases with high efficiency.
  • the plasma catalytic reactor maintains a low electric field inside the monolith carrier when a high voltage is applied to the high voltage electrode, dielectric heating and resistance heating of the carrier occur simultaneously by this electric field.
  • the plasma catalytic reactor according to the present invention can heat the catalytically active metal supported on the monolithic support by using dielectric heating and resistance heating, so that the time at which the catalytically active metal is activated can be advanced. As a result, it is possible to effectively remove harmful gases by increasing catalyst efficiency.
  • the reactor configuration can be simplified, and plasma can be generated at a low voltage in the entire region of the monolith carrier, thereby improving reactor operation efficiency and stability at the same time.
  • the present invention relates to a harmful gas treatment method characterized in that the harmful gas is treated using the plasma catalytic reactor for removing the harmful gas described above.
  • the harmful gas treatment method comprises the steps of (a) preparing a reaction by introducing a harmful gas into the plasma catalytic reactor; and (b) when the harmful gas flows into the plasma catalytic reactor, a high voltage is applied to the high voltage electrode and the ground electrode to generate plasma inside the monolithic carrier between the two electrodes, and the harmful gas is treated using a plasma reaction and a catalytic reaction including;
  • the noxious gas introduced into the plasma catalyst reactor in step (a) may be injected at a flow rate of 10 L/min to 200 L/min based on the monolithic carrier having a width of 9 cm and a height of 5 cm. If the flow rate of harmful gas is less than 10 L/min, ions and electrons generated from the high voltage electrode cannot move quickly to the ground electrode, so a problem may occur that the discharge power is lowered, and if it exceeds 200 L/min Because the residence time of the gas is short, there may be a problem that the harmful gas cannot react properly.
  • the harmful gas injected into the plasma catalyst reactor in step (a) may be introduced into the reactor by containing water vapor to supplement the monolith carrier moisture and promote plasma generation.
  • the relative humidity of the harmful gas may be less than 100% at the plasma catalytic reactor operating temperature. Noxious gas containing moisture in the above range may humidify the inside and the surface of the channel of the monolith carrier to maintain surface conductivity.
  • the plasma catalytic reactor according to the present invention can perform corona discharge with a discharge power of 5 W or more, preferably 30 W to 100 W inside the monolith carrier even under a low applied voltage condition, so that it is custom-sized for a plasma catalytic reaction. It is possible to apply a commercially available monolithic carrier without the use of a monolithic carrier, and it is possible to effectively treat a large amount of harmful gas by using a plasma reaction and a catalyst without a pressure drop of the catalyst, and at the same time, the maximum voltage applied to the driving electrode By reducing the size, the efficiency and stability of the reactor operation can be improved at the same time.
  • the plasma catalytic reactor according to the present invention can receive the reaction energy required for the treatment of harmful gases using a catalyst from low-temperature plasma, so that the treatment of harmful gases is possible without the need for additional heating or energy supply for the catalytic reaction. there is.
  • a plasma catalytic reactor as shown in FIG. 1 was manufactured, and the performance of the plasma catalytic reactor was measured through the experimental setup of FIG. 3 .
  • the monolithic carrier applied to the plasma catalytic reactor is a commercial cordierite monolith having a width (diameter) of 93 mm, a height of 50 mm, and 300 cells per square inch (cpsi), by Ceracomb Co., Ltd., Korea.
  • Cobalt (CO) 0.1 wt%, palladium (Pd) 0.03 wt%, platinum (Pt) 0.07 wt%, and lanthanum (La) 0.03 wt% were supported on the monolith carrier by an impregnation method with respect to the total weight of the monolith carrier
  • a monolithic carrier on which a catalytically active metal was supported was prepared.
  • the monolithic carrier on which the catalytically active metal was supported was exposed to air containing 2.2% H 2 O for 30 minutes to humidify to obtain a monolithic carrier having a moisture content of 0.082 wt%.
  • the high voltage electrode and the ground electrode used a stainless steel perforated plate with 168 holes with a diameter of 3 mm was used, the high voltage electrode and the monolith carrier were arranged at a distance of 2 mm, and the ground electrode was placed in contact with the monolith carrier.
  • Air containing 2.1% H 2 O in absolute humidity
  • a plasma catalytic reactor was manufactured in the same manner as in Example 1, but the plasma catalytic reactor was manufactured and driven under the conditions shown in Table 1 below.
  • a plasma catalytic reactor was manufactured in the same manner as in Example 1, but a plasma catalytic reactor was manufactured and driven under the conditions shown in Table 1 below. At this time, the dry monolith carrier of Comparative Example 8 was first dried in an oven at 110 ° C., and then immediately placed in the reactor. In Comparative Example 11, a high voltage was applied except for the monolith carrier in the plasma catalyst reactor of Example 1.
  • a plasma catalytic reactor was manufactured and operated in the same plasma catalytic reactor as in Example 12, except that the high voltage electrode and the monolithic carrier were disposed at a distance of 2 mm without a guard, and the ground electrode was positioned so as to be in contact with the monolithic carrier.
  • the supply gas was supplied to the reactor by a gas pump whose flow was controlled by a ball flowmeter (RMA-25-SSV, Dwyer, USA), and the amount and temperature of water vapor in the supply gas were measured with a hygrometer (TES-1370 NDIR CO2 Meter, TES Electrical Electronic) Corp.), AC corona plasma was driven by AC high voltage, and was boosted to 400 Hz AC voltage of a frequency converter (Samdong Power Co., Ltd.) by a high-frequency transformer (Taehwa Electric, Seoul).
  • TES-1370 NDIR CO2 Meter TES Electrical Electronic Corp.
  • Example 8 15 ppm of toluene was supplied to the plasma catalyst reactor of Example 8 and Comparative Example 12 at 60 L/min, and the concentration of toluene discharged from the plasma catalyst reactor was measured for each hour, and the results are shown in FIG. 10 .
  • the toloene removal amount was measured by generating plasma after toluene was saturated because the exact removal amount could not be analyzed before the toluene was saturated, and the energy density was calculated by dividing the power by the flow rate.
  • Comparative Example 12 was saturated with toluene faster than Example 8, and as shown in the figure inserted in FIG. 8(a), the adsorption capacity of Comparative Example 12 Silver was 1.3 ⁇ mol/g, whereas the adsorption capacity of Example 8 was 6.6 ⁇ mol/g, indicating that the adsorption capacity of Example 8 was 5 times greater than that of Comparative Example 12.
  • Example 8 the maximum transmitted power and energy density of Example 8 were 58 W and 58 J/L, respectively, whereas the maximum transmitted power and energy density of Comparative Example 12 were 35 W and 35 W, respectively. It was found to be J/L.

Abstract

The present invention relates to a plasma catalyst reactor for removing harmful gas, and a method of treating harmful gas by using same, and more specifically, to a plasma catalyst reactor for removing harmful gas, and to a method of treating harmful gas by using same, which can achieve a maximum energy-saving effect and large-volume harmful gas processing efficiency at a low cost, by applying a humidified metal-loaded monolithic substrate to the plasma catalyst reactor, thereby stably generating an atmospheric-pressure low-temperature plasma based on corona discharge within the monolithic substrate.

Description

유해가스 제거용 플라즈마 촉매 반응기 및 이를 이용한 유해가스 처리 방법Plasma catalyst reactor for removing harmful gas and method for treating harmful gas using the same
본 발명은 유해가스 제거용 플라즈마 촉매 반응기 및 이를 이용한 유해가스 처리 방법에 관한 것으로, 보다 상세하게는 대기압 저온 플라즈마 반응과 허니컴 모노리스 담체에 함유된 촉매를 동시에 이용하여 유해가스를 처리하는, 유해가스 제거용 플라즈마 촉매 반응기 및 이를 이용한 유해가스 처리 방법에 관한 것이다.The present invention relates to a plasma catalyst reactor for removing harmful gases and a method for treating harmful gases using the same. It relates to a plasma catalytic reactor for use and a method for treating harmful gases using the same.
일반적으로 산업 현장이나 일상생활에서 배출되어지는 악취, 휘발성 유기화합물(VOC), 과불화화합물(PFC, CFC), 염소 및 시안 화합물, 다이옥신, NOx, SOx 등은 인체에 매우 위험할 뿐 아니라, 지구환경을 오염시켜 생태계를 파괴시킬 수 있어 전 세계적으로 그 배출규제를 강화하고 있다.In general, odors, volatile organic compounds (VOC), perfluorinated compounds (PFC, CFC), chlorine and cyanide compounds, dioxins, NO x , SO x emitted from industrial sites or daily life are very dangerous to the human body as well as However, since it can pollute the global environment and destroy the ecosystem, the emission regulations are being strengthened worldwide.
이와 같은 유해가스를 처리하기 위해 소각, 촉매, 흡착 또는 생물학적 처리 방법 등이 사용되고 있으나, 처리를 위한 비용이 높게 들거나 처리효율이 높지 못하다는 등의 문제점들이 있었다.Incineration, catalyst, adsorption, or biological treatment methods are used to treat such harmful gases, but there are problems such as high cost for treatment or poor treatment efficiency.
저온 플라즈마 촉매를 이용한 유해가스 처리방법은 기존의 고비용 처리방법을 개선하기 위하여 많은 연구가 시행되고 있는 방법이며, 기본적으로 두 개의 마주보는 전극 사이에 유해가스 처리용 촉매를 삽입하고 전극에 수만 볼트의 전압을 공급시켜 전자 및 이온과 라디칼로 구성되는 방전을 발생시킴과 동시에 유해가스 처리용 촉매를 이용하여 유해가스를 처리하는 기술이다.Toxic gas treatment method using low-temperature plasma catalyst is a method that many studies are being conducted to improve the existing high-cost treatment method. Basically, a harmful gas treatment catalyst is inserted between two opposite electrodes and the It is a technology that supplies a voltage to generate a discharge composed of electrons, ions, and radicals, and at the same time treats harmful gases using a catalyst for treating harmful gases.
플라즈마를 발생시키기 위한 전극의 모양은 기본적으로 침 대 침, 침 대 평판, 평판 대 평판, 평판 대 선 방법이 있으며, 아크 방전에 다다르지 않고 안정적인 플라즈마 방전을 위한 배리어의 설계방식에 따라 충전층(Packed Bed) 방전 방식과 유전체 장벽 방전(Dielectric Barrier Discharge, DBD) 방식으로 나눌 수 있다.There are basically bed-needle, bed-plate, flat-to-plate, and flat-to-wire methods in the shape of electrodes for generating plasma, and depending on the barrier design method for stable plasma discharge without reaching arc discharge, the charging layer ( It can be divided into a Packed Bed) discharge method and a Dielectric Barrier Discharge (DBD) method.
충전층(Packed Bed) 방전 방식의 플라즈마 촉매 반응기는 양 전극 사이에 펠릿 촉매가 충진된 플라즈마 촉매 반응기로, 플라즈마 촉매 반응기의 대부분의 연구가 충진층 방식을 기초로 연구가 진행되고 있다.A packed bed discharge type plasma catalyst reactor is a plasma catalyst reactor in which a pellet catalyst is filled between both electrodes, and most studies of plasma catalyst reactors are being conducted based on the packed bed method.
촉매 반응을 이용한 유해가스 처리는 필연적으로 유해가스와 촉매가 접촉할 필요가 있다. 이에 충전층 방전 방식의 플라즈마 촉매 반응기 역시 촉매가 충진된 거리만큼 고전압 전극과 접지 전극 사이의 거리는 멀어지게 되며, 플라즈마를 안정적으로 발생시키기 위해서는 다량의 고에너지가 소비되어야 한다. 그 결과 공기로부터 질소 산화물 및 다량의 오존의 발생 문제들이 존재할 뿐만 아니라, 처리될 유해가스의 농도가 촉매의 양에 따라 제한되는 문제가 존재하여 실용적이지 못하고, 처리용량을 증가시키기 위해서는 다수의 충전층 반응기를 결합하여야 하며, 충전층을 가로지르는 높은 압력 강하로 인해 운영비용이 증가되는 문제점이 있었다.Noxious gas treatment using a catalytic reaction inevitably requires contact between the noxious gas and the catalyst. Accordingly, in the packed bed discharge type plasma catalyst reactor, the distance between the high voltage electrode and the ground electrode increases as much as the distance the catalyst is filled, and a large amount of high energy must be consumed to stably generate plasma. As a result, there are problems in the generation of nitrogen oxides and a large amount of ozone from the air, as well as the problem that the concentration of harmful gas to be treated is limited depending on the amount of catalyst, which is not practical. The reactor had to be coupled, and there was a problem in that the operating cost was increased due to the high pressure drop across the packed bed.
이러한 충전층 방전 방식의 플라즈마 촉매 반응기의 단점을 극복하고자, 최근 고전압 전극과 접지 전극 사이에 한개 이상의 유전체를 삽입하여 균일한 부피의 플라즈마를 발생시키는 유전체 장벽 방식의 플라즈마 촉매 반응기가 개발되고 있으나, 유전체 장벽 방식의 플라즈마 촉매 반응기의 경우에는 유전체 장벽 방식의 플라즈마 촉매 반응기에 적용되고 있는 유전체가 석영, 세라믹 등으로 이루어져 열 충격 또는 기계적 충격으로 인해 쉽게 균열될 수 있으며, 균열이 발생하면 반응기 작동이 불가능해지는 문제점이 있었다.In order to overcome the shortcomings of such a packed-bed discharge type plasma catalytic reactor, a dielectric barrier type plasma catalytic reactor that generates plasma of a uniform volume by inserting one or more dielectrics between a high voltage electrode and a ground electrode has recently been developed. In the case of a barrier type plasma catalytic reactor, the dielectric applied to the dielectric barrier type plasma catalytic reactor is made of quartz, ceramic, etc. and can be easily cracked due to thermal shock or mechanical shock. There was a problem.
한편, 현재 허니컴 모노리스 담체를 이용한 종래의 플라즈마 촉매 연구는 대부분 플라즈마 반응기와 촉매 반응기를 직렬로 연결하거나, 플라즈마와 촉매 반응기를 서로 엇갈려 배치하는 등의 수준에 머무는 실정이다[한국등록특허 제0543529호(공고일 : 2006.01.31), 한국공개특허 제2007-0001387호(공개일 : 2007.01.04), Plasma Catalysis: Fundamentals and Applications, Springer International Publishing, Cham, 2019, 21-46, Plasma Chem. Plasma Process, 36, 45-72, J. Adv. Oxid. Technol., 2003, 158].On the other hand, the current research on conventional plasma catalyst using a honeycomb monolithic carrier mostly stays at the level of connecting a plasma reactor and a catalyst reactor in series or arranging a plasma and a catalyst reactor alternately [Korea Patent No. 0543529 (Korean Patent No. 0543529) Publication date: January 31, 2006), Korean Patent Application Laid-Open No. 2007-0001387 (published on January 4, 2007), Plasma Catalysis: Fundamentals and Applications, Springer International Publishing, Cham, 2019, 21-46, Plasma Chem. Plasma Process, 36, 45-72, J. Adv. Oxid. Technol., 2003, 158].
일 예로, 질소 산화물 처리를 위한 2 단계 플라즈마 촉매 시스템을 개시하고 있는 비특허문헌 0003를 살펴보면, NO의 일부는 플라즈마 방전을 통해 생성된 다양한 산화 종(oxidative species)에 의해 NO2로 산화되며, 최적의 NO/NO2 비는 후단의 촉매 반응기에 제공된다. 또한 질소 산화물의 환원제로서 탄화수소를 사용하는 경우에는 플라즈마 방전에 의해 환원 능력이 우수한 다양한 함산소 탄화수소가 형성되어 저온 촉매 활성이 향상된다. 이때, 플라즈마는 다양한 반응종(reactive species)(라디칼, 오존 등)이 생성되지만, 오존 이외의 활성 반응종은 수명이 매우 짧아 넓은 공간 적용이 어렵다.As an example, looking at non-patent document 0003 disclosing a two-step plasma catalyst system for nitrogen oxide treatment, a part of NO is oxidized to NO 2 by various oxidative species generated through plasma discharge, and the optimal The NO/NO 2 ratio of is provided to the downstream catalytic reactor. In addition, when hydrocarbons are used as a reducing agent for nitrogen oxides, various oxygen-containing hydrocarbons having excellent reducing ability are formed by plasma discharge, thereby improving low-temperature catalytic activity. At this time, plasma generates various reactive species (radicals, ozone, etc.), but active reactive species other than ozone have a very short lifespan, making it difficult to apply them in a wide space.
그러므로 이러한 2 단계 플라즈마 촉매 시스템에서는 촉매 반응기에 도달하기 전에 수명이 짧은 반응성 화학 종은 사라지게 되고 촉매 반응에 직접적으로 관여하지 못하므로, 촉매 반응에 대해 플라즈마의 기여를 최대화하기 위해서는 플라즈마가 촉매와 직접 접촉해야 한다. 다시 말해, 플라즈마가 촉매에 직접적으로 영향을 줄 수 있도록 모노리스 담체 내부에서 플라즈마를 생성하는 것이 바람직하다.Therefore, in these two-stage plasma catalyst systems, short-lived reactive species disappear before reaching the catalytic reactor and are not directly involved in the catalytic reaction. Should be. In other words, it is desirable to generate the plasma inside the monolith carrier so that the plasma can directly affect the catalyst.
그러나 상업적으로 제조된 허니컴 모노리스 담체의 경우에는 높이가 5 cm 이상 및 폭(직경)이 9 cm 이상으로, 플라즈마 촉매 반응기의 두 전극 사이에 상업용 모노리스를 배치하려면 두 전극 사이의 거리가 멀어지게 되어 안정적으로 모노리스 내부에 저온 플라즈마를 생성하기 어려운 문제점이 있었다.However, in the case of a commercially manufactured honeycomb monolith carrier, the height is 5 cm or more and the width (diameter) is 9 cm or more. As a result, there was a problem in that it was difficult to generate a low-temperature plasma inside the monolith.
본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로서, 저비용으로 최대한의 에너지 절약 효과와 대용량 유해가스 처리효율을 얻을 수 있는 유해가스 제거용 플라즈마 촉매 반응기 및 이를 이용한 유해가스 처리 방법을 제공하는데 있다.The main object of the present invention is to solve the above problems, and to provide a plasma catalytic reactor for removing harmful gases and a method for treating harmful gases using the same, which can obtain maximum energy saving effect and large-capacity harmful gas treatment efficiency at low cost .
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고 수분을 함유하는, 촉매활성 금속이 담지된 모노리스 담체; 및 상기 고전압 전극에 교류 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 교류 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기를 제공한다.In order to achieve the above object, an embodiment of the present invention, a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying an AC voltage to the high voltage electrode, wherein the AC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas to the plasma region It provides a plasma catalyst reactor for removing harmful gases, characterized in that introduced and discharged.
본 발명의 다른 구현예는, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고 촉매활성 금속이 담지된 모노리스 담체; 상기 고전압 전극과 모노리스 담체 사이에 배치되어 아크 발생을 방지하는 모노리스 가드부; 및 상기 고전압 전극에 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기를 제공한다.Another embodiment of the present invention, a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported; a monolith guard unit disposed between the high voltage electrode and the monolith carrier to prevent arc generation; and a power supply unit for applying a voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas is introduced into the plasma region It provides a plasma catalytic reactor for removing harmful gas, characterized in that discharged.
본 발명의 또 다른 구현예는, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고 수분을 함유하는, 촉매활성 금속이 담지된 모노리스 담체; 및 상기 고전압 전극에 양(+)극성 직류 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 직류 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기를 제공한다. Another embodiment of the present invention, a high voltage electrode in the shape of a perforated plate; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying a positive (+) polarity DC voltage to the high voltage electrode, wherein a DC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas It provides a plasma catalyst reactor for removing harmful gas, characterized in that introduced into the plasma region and discharged.
본 발명의 바람직한 구현예에서, 상기 모노리스 담체는 폭이 9 cm 이상 및/또는 높이가 5 cm 이상인 것을 특징으로 할 수 있다. In a preferred embodiment of the present invention, the monolithic carrier may have a width of 9 cm or more and/or a height of 5 cm or more.
본 발명의 바람직한 구현예에서, 상기 접지 전극은 모노리스 담체로부터 2 mm 이하로 이격되어 있고, 유해가스가 배출되는 모노리스 담체 후방에 위치하는 것을 특징으로 할 수 있다. In a preferred embodiment of the present invention, the ground electrode is spaced apart from the monolith carrier by 2 mm or less, and may be characterized in that it is positioned behind the monolith carrier through which harmful gases are discharged.
본 발명의 바람직한 구현예에서, 상기 고전압 전극은 모노리스 담체로부터 1 mm ~ 10 mm로 이격되어 있고, 유해가스가 도입되는 모노리스 담체 전방에 위치하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the high voltage electrode is spaced apart from the monolith carrier by 1 mm to 10 mm, and may be characterized in that it is positioned in front of the monolith carrier into which noxious gas is introduced.
본 발명의 바람직한 구현예에서, 상기 모노리스 담체는 허니컴 형상이고, 상기 모노리스 가드부는 허니컴 형상인 것을 특징으로 할 수 있다. In a preferred embodiment of the present invention, the monolith carrier may have a honeycomb shape, and the monolith guard part may have a honeycomb shape.
본 발명의 바람직한 구현예에서, 상기 모노리스 가드부는 전기저항이 16 MΩ 이상인 모노리스인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the monolith guard unit may be characterized as a monolith having an electrical resistance of 16 MΩ or more.
본 발명의 바람직한 구현예에서, 상기 유해가스는 악취, 휘발성 유기화합물, 질소계 화합물, 황산화물, 불소 화합물, 염소 화합물, 시안 화합물, 일산화탄소, 이산화탄소 및 다이옥신으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the harmful gas is at least one selected from the group consisting of odor, volatile organic compounds, nitrogen compounds, sulfur oxides, fluorine compounds, chlorine compounds, cyanide compounds, carbon monoxide, carbon dioxide and dioxins. can be done with
본 발명의 바람직한 구현예에서, 상기 플라즈마 촉매 반응기는 두개 이상의 모노리스 담체가 직렬로 배치되어 있는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the plasma catalytic reactor may be characterized in that two or more monolithic carriers are arranged in series.
본 발명의 또 다른 구현예는 상기 유해가스 제거용 플라즈마 촉매 반응기를 이용하여 유해가스를 처리하되, 상기 유해가스 내의 상대습도는 100 vol% 미만인 것을 특징으로 하는 유해가스 처리 방법을 제공한다.Another embodiment of the present invention provides a noxious gas treatment method, characterized in that the noxious gas is treated using the plasma catalyst reactor for removing the noxious gas, and the relative humidity in the noxious gas is less than 100 vol%.
본 발명에 따르면, 플라즈마 촉매 반응기에 미리 가습된 금속 담지 모노리스 담체를 적용하여 모노리스 담체 내부에 코로나 방전 기반 대기압 저온 플라즈마를 안정적으로 생성시킴으로써, 플라즈마 촉매 반응을 위한 크기로 맞춤 제작된 모노리스 담체의 사용 없이 상업적으로 판매되고 있는 상용 모노리스 담체의 적용이 가능하고, 촉매의 압력 강하 없이 플라즈마 반응과 촉매를 이용하여 대용량의 유해가스를 효과적으로 처리할 수 있는 동시에 구동 전극에 인가되는 최대 전압의 크기를 낮추어 반응기 운전의 효율과 안정성을 동시에 향상시킬 수 있다. 또한, 인가 전압에 대한 빠른 응답이 가능하여 촉매의 효율성을 높일 수 있다.According to the present invention, by applying a pre-humidified metal-supported monolithic carrier to a plasma catalytic reactor to stably generate a corona discharge-based atmospheric low-temperature plasma inside the monolithic carrier, without the use of a monolithic carrier customized to a size for plasma catalysis Commercially available monolithic carrier can be applied, and a large amount of harmful gas can be effectively treated using plasma reaction and catalyst without pressure drop of the catalyst, and the maximum voltage applied to the driving electrode is lowered for reactor operation efficiency and stability can be improved at the same time. In addition, it is possible to quickly respond to the applied voltage, thereby increasing the efficiency of the catalyst.
또한, 본 발명에 따른 플라즈마 촉매 반응기는 촉매를 이용한 유해가스 처리시에 필요한 반응에너지를 저온 플라즈마로부터 공급 받을 수 있어 촉매 반응을 위한 추가적인 가열이나 에너지 공급의 필요 없이 유해가스 처리가 가능한 효과가 있다.In addition, the plasma catalytic reactor according to the present invention can receive the reaction energy required for the treatment of harmful gases using the catalyst from the low-temperature plasma, so there is an effect that harmful gas treatment is possible without the need for additional heating or energy supply for the catalytic reaction.
도 1은 본 발명의 일 실시예에 따른 플라즈마 촉매 반응기의 개략적인 사시도이다.1 is a schematic perspective view of a plasma catalytic reactor according to an embodiment of the present invention.
도 2는 도 1에 도시한 플라즈마 촉매 반응기의 단면도이다.FIG. 2 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 1 .
도 3은 본 발명의 다른 실시예에 따른 플라즈마 촉매 반응기의 개략적인 사시도이다.3 is a schematic perspective view of a plasma catalytic reactor according to another embodiment of the present invention.
도 4는 도 3에 도시한 플라즈마 촉매 반응기의 단면도이다. FIG. 4 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 3 .
도 5는 본 발명의 일 실시예에 따른 플라즈마 촉매 반응기의 성능 측정을 위한 개략적인 실험 설정 다이아그램이다.5 is a schematic experimental setup diagram for measuring the performance of a plasma catalytic reactor according to an embodiment of the present invention.
도 6은 본 발명의 실시예 1(a)의 플라즈마 촉매 반응기 및 비교예 10(b)의 플라즈마 촉매 반응기에서 플라즈마 발생을 촬영한 사진이다.6 is a photograph of plasma generation in the plasma catalytic reactor of Example 1 (a) and the plasma catalytic reactor of Comparative Example 10 (b) of the present invention.
도 7은 본 발명의 실시예 1 내지 실시예 7에 따른 플라즈마 촉매 반응기에서의 시간별 방전전력을 측정한 결과 그래프이다.7 is a graph showing the results of measuring the discharge power over time in the plasma catalyst reactor according to Examples 1 to 7 of the present invention.
도 8은 본 발명의 비교예 1 내지 비교예 7에 따른 플라즈마 촉매 반응기에서의 시간별 방전전력을 측정한 결과 그래프이다.8 is a graph showing the result of measuring the discharge power over time in the plasma catalyst reactor according to Comparative Examples 1 to 7 of the present invention.
도 9는 본 발명의 비교예 8 및 비교예 9에 따른 플라즈마 촉매 반응기에서의 시간별 방전전력을 측정한 결과 그래프이다.9 is a graph showing the results of measuring the discharge power over time in the plasma catalyst reactor according to Comparative Examples 8 and 9 of the present invention.
도 10은 본 발명의 실시예 8 및 비교예 12에 따른 플라즈마 촉매 반응기에서 처리 후 시간별 톨루엔 농도를 측정한 결과 그래프로, (a)는 250분 동안의 배출구에서의 톨루엔 농도 변화 및 흡착용량을 측정한 그래프이고, (b)는 700분 동안의 배출구에서의 톨루엔 농도 변화이다.10 is a graph showing the results of measuring the toluene concentration for each hour after treatment in the plasma catalytic reactor according to Example 8 and Comparative Example 12 of the present invention, (a) is a measurement of the toluene concentration change and adsorption capacity at the outlet for 250 minutes It is a graph, and (b) is the change in toluene concentration at the outlet for 700 minutes.
도 11은 본 발명의 실시예 9 내지 12에 따른 플라즈마 촉매 반응기에서의 전압별 방전전력을 측정한 결과 그래프이다. 11 is a graph showing the result of measuring the discharge power for each voltage in the plasma catalyst reactor according to Examples 9 to 12 of the present invention.
도 12는 본 발명의 모노리스 가드부 장착 유무에 따른 플라즈마 촉매 반응기에서의 전압별 방전전력을 측정한 결과 그래프이다. 12 is a graph showing the result of measuring the discharge power for each voltage in the plasma catalytic reactor according to the presence or absence of the monolith guard unit of the present invention.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함 하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "include" or "have" are intended to designate that the features, components, etc. described in the specification are present, and one or more other features or components may not be present or may be added. Doesn't mean there isn't.
본 발명은 일 관점에서, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고, 촉매활성 금속을 함유하는 가습된 모노리스 담체; 및 상기 고전압 전극에 교류 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 가습된 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 주입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기에 관한 것이다. The present invention, in one aspect, a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a humidified monolithic carrier positioned between the high voltage electrode and the ground electrode and containing a catalytically active metal; and a power supply unit for applying an alternating voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolithic carrier humidified by corona discharge, and harmful gas is generated in the plasma region It relates to a plasma catalytic reactor for removing harmful gas, characterized in that it is injected and discharged.
본 발명은 다른 관점에서, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고 촉매활성 금속이 담지된 모노리스 담체; 상기 고전압 전극과 모노리스 담체 사이에 배치되어 아크 발생을 방지하는 모노리스 가드부; 및 상기 고전압 전극에 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기에 관한 것이다.In another aspect, the present invention provides a perforated plate-shaped high voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported; a monolith guard unit disposed between the high voltage electrode and the monolith carrier to prevent arc generation; and a power supply unit for applying a voltage to the high voltage electrode, wherein a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas is introduced into the plasma region It relates to a plasma catalytic reactor for removing harmful gas, characterized in that it is discharged.
본 발명은 또 다른 관점에서, 타공판 형상의 고전압 전극; 상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극; 상기 고전압 전극 및 접지 전극 사이에 위치하고 수분을 함유하는, 촉매활성 금속이 담지된 모노리스 담체; 및 상기 고전압 전극에 양(+)극성 직류 전압을 인가하는 전원공급부;를 포함하고, 상기 전원공급부에 의해 고전압 전극에 직류 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기에 관한 것이다.In another aspect, the present invention, a perforated plate-shaped high-voltage electrode; a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode; a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and a power supply unit for applying a positive (+) polarity DC voltage to the high voltage electrode, wherein a DC voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and harmful gas It relates to a plasma catalyst reactor for removing harmful gases, characterized in that introduced into the plasma region and discharged.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
도 1은 본 발명의 일 실시예에 따른 플라즈마 촉매 반응기를 예시하는 개략적인 사시도이고, 도 2는 도 1에 도시한 플라즈마 촉매 반응기의 단면도이며, 도 3은 본 발명의 다른 실시예에 따른 플라즈마 촉매 반응기를 예시하는 개략적인 사시도이고, 도 4는 도 3에 도시한 플라즈마 촉매 반응기의 단면도이다.1 is a schematic perspective view illustrating a plasma catalytic reactor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the plasma catalytic reactor shown in FIG. 1 , and FIG. 3 is a plasma catalyst according to another embodiment of the present invention. It is a schematic perspective view illustrating a reactor, and FIG. 4 is a cross-sectional view of the plasma catalyst reactor shown in FIG. 3 .
본 발명에 따른 플라즈마 촉매 반응기(100)는 자동차, 플랜트, 발전소 등 유해가스를 발생시키는 여러 기계 장치, 기계 설비 등에 장착되어 유해가스를 제거하는데 사용된다. 이때, 상기 유해가스는 인체에 유해한 가스이면 제한 없이 적용 가능하고, 휘발성 유기화합물, 질소계 화합물, 황산화물, 불소 화합물, 염소 화합물, 시안 화합물, 일산화탄소, 이산화탄소, 다이옥신, 악취 등일 수 있다. The plasma catalytic reactor 100 according to the present invention is used to remove harmful gases by being installed in various mechanical devices and mechanical facilities that generate harmful gases such as automobiles, plants, and power plants. In this case, the harmful gas can be applied without limitation as long as it is a gas harmful to the human body, and may be a volatile organic compound, a nitrogen-based compound, a sulfur oxide, a fluorine compound, a chlorine compound, a cyanide compound, carbon monoxide, carbon dioxide, a dioxin, an odor, and the like.
도 1 내지 도 4를 참고하면, 본 발명의 일 실시예에 따른 플라즈마 촉매 반응기(100)는 내부로 유해가스를 통과시켜 유해가스를 제거하는 촉매활성 금속이 담지된 모노리스 담체(110), 상기 모노리스 담체(110)의 전방에 위치하는 고전압 전극(120)과, 상기 모노리스 담체의 후방에 위치하는 접지 전극(130)을 포함한다. 여기서 모노리스 담체의 전방은 유해가스가 도입되는 측을 의미하고, 모노리스 담체의 후방은 유해가스가 빠져나가는 측을 의미한다.1 to 4, the plasma catalytic reactor 100 according to an embodiment of the present invention includes a monolithic carrier 110 on which a catalytically active metal is supported to remove harmful gases by passing harmful gases therein, the monolith It includes a high voltage electrode 120 positioned in front of the carrier 110 and a ground electrode 130 positioned in the rear of the monolith carrier. Here, the front side of the monolithic carrier means the side through which noxious gas is introduced, and the rear side of the monolithic carrier refers to the side through which the noxious gas exits.
상기 모노리스 담체, 고전압 전극 및 접지 전극은 하우징(140)으로 둘러싸일 수 있다. 상기 하우징(140)은 전술한 기계 장치 또는 기계 설비 중 유해가스를 내보내는 배관에 연결 설치되며, 내부로 유해가스가 흐르는 공간을 제공하고, 다른 한편으로 챔버는 배관 자체로도 이루어질 수 있다. 즉, 유해가스가 흐르는 배관 내부에 전술한 고전압 전극(120), 모노리스 담체(110) 및 접지 전극(130)이 설치될 수 있다. 이 경우 하우징(140)은 절연 물질로 형성되거나, 배관 내부 중 고전압 전극, 모노리스 담체 및 접지 전극을 둘러싸는 영역에 절연층이 형성될 수 있다.The monolithic carrier, the high voltage electrode, and the ground electrode may be surrounded by the housing 140 . The housing 140 is connected to a pipe for discharging noxious gas among the aforementioned mechanical devices or mechanical equipment, and provides a space through which the noxious gas flows, and on the other hand, the chamber may be formed of a pipe itself. That is, the above-described high voltage electrode 120 , the monolithic carrier 110 , and the ground electrode 130 may be installed inside the pipe through which the harmful gas flows. In this case, the housing 140 may be formed of an insulating material, or an insulating layer may be formed in a region surrounding the high voltage electrode, the monolithic carrier, and the ground electrode in the pipe.
상기 모노리스(monolith) 담체(110)는 그 표면에 코팅, 함침, 이온 교환법 등의 공지의 방법으로 담지된 촉매활성 금속(미도시)을 포함하고, 유해가스의 주입 및 배출시 압력 손실을 줄이기 위해 양단부 방향으로 개방된 채널 구조를 가지는 다양한 형상으로 이루어질 수 있으며, 바람직하게는 벌집 모양의 채널을 구비한 허니컴 형상일 수 있다. 이때, 명세서상에서 모노리스 담체의 높이는 개방된 양 단부를 일직선으로 연결하는 축의 길이를 높이라고 하고, 높이의 수직한 길이를 폭(직경)이라고 한다.The monolith carrier 110 includes a catalytically active metal (not shown) supported on its surface by a known method such as coating, impregnation, and ion exchange, and in order to reduce pressure loss during injection and discharge of harmful gases. It may be formed in various shapes having a channel structure open in the direction of both ends, and may preferably be a honeycomb shape having a honeycomb-shaped channel. In this case, in the specification, the height of the monolith carrier is referred to as the length of the axis connecting both open ends in a straight line, and the length perpendicular to the height is referred to as the width (diameter).
상기 모노리스 담체(110)는 통상의 유해가스 제거용 촉매 담체에 적용할 수 있는 재료이면 제한 없이 적용 가능하나, 흡습성, 플라즈마 내성 및 열 내성의 측면에서 ZrO2, Al2O3, 제올라이트, 알루미나 질화물, 멀라이트(mullite), 스테아타이트(steatite), 포스테라이트(forsterite), 코디에라이트(cordierite), 티탄산 마그네슘, 티탄산 바륨, SiC, Si3N4, Si-SiC, 운모, 유리 등과 같은 무기 재료일 수 있다. The monolith carrier 110 can be applied without limitation as long as it is a material applicable to a typical catalyst carrier for removing harmful gases, but in terms of hygroscopicity, plasma resistance and heat resistance ZrO 2 , Al 2 O 3 , zeolite, alumina nitride Inorganic such as , mullite, steatite, forsterite, cordierite, magnesium titanate, barium titanate, SiC, Si 3 N 4 , Si-SiC, mica, glass, etc. It can be a material.
이러한 알루미나, 유리 등의 무기 재료의 경우, 10 및 5의 유전 상수를 가지는데 수분을 함유하는 무기 재료의 경우에는 40 내지 50의 높은 유전율을 갖기 때문에 전극 주변에 근접하는 경우 무기 재료 주변에 높은 전기장을 인가할 수 있고 코로나 방전에 의한 플라즈마를 발생시키기 쉬운 구조를 만들 수 있다.In the case of such inorganic materials such as alumina and glass, they have dielectric constants of 10 and 5, but in the case of inorganic materials containing moisture, they have a high dielectric constant of 40 to 50. can be applied and a structure that is easy to generate plasma by corona discharge can be made.
또한, 본 발명에 따른 모노리스 담체는 모노리스 담체 채널 내부에 코로나 방전이 용이하게 생성되도록 모노리스 담체 표면 및 내부에 수분을 함유한다.In addition, the monolith carrier according to the present invention contains moisture on the surface and inside the monolith carrier so that corona discharge is easily generated inside the monolith carrier channel.
종래 모노리스 담체가 적용된 플라즈마 촉매 반응기는 펠렛 형상의 담체가 적용된 플라즈마 촉매 반응기에 비해 압력손실 없이 유해가스를 처리할 수 있는 이점이 있으나, 두 전극간에 플라즈마가 형성될 수 있는 거리 만큼의 크기가 작은 모노리스 담체만을 적용할 수 있어 유해가스의 처리 용량이 작을 뿐만 아니라, 모노리스 담체 내부에는 플라즈마가 발생되지 않아 유해가스 처리효율이 떨어지는 문제가 있어 실제로 현장에 적용하는데 한계가 있었다.The plasma catalytic reactor to which the conventional monolithic carrier is applied has an advantage in that it can process harmful gases without pressure loss compared to the plasma catalytic reactor to which the pellet-shaped carrier is applied. Since only the carrier can be applied, the processing capacity of harmful gas is small, and there is a problem in that no plasma is generated inside the monolith carrier, so there is a problem that the harmful gas treatment efficiency is lowered.
이에, 본 발명에 따른 플라즈마 촉매 반응기는 모노리스 담체 표면, 채널 내부 등에 미리 수분을 포함되게 함으로써, 모노리스 담체의 개방된 채널을 따라 플라즈마를 쉽게 생성 및 전파할 수 있어, 폭이 9 cm 이상이며, 높이가 5 cm 이상의 긴 스트레이트 채널을 이루는 상업용 모노리스 담체에서도 플라즈마를 용이하게 생성시킬 수 있고, 모노리스의 전압 인가에 대한 빠른 응답속도를 가지며, 상업용 모노리스 담체를 플라즈마 촉매 반응기에 적용시킬 수 있게됨으로써 플라즈마 반응과 촉매 반응을 동시에 수행할 수 있어 압력손실 없이 대용량의 유해가스를 용이하게 처리할 수 있다.Accordingly, the plasma catalytic reactor according to the present invention can easily generate and propagate plasma along the open channel of the monolith carrier by pre-containing moisture on the surface of the monolith carrier, the inside of the channel, etc., and thus has a width of 9 cm or more, and a height Plasma can be easily generated even on a commercial monolithic carrier that forms a long straight channel of 5 cm or more, and it has a fast response speed to the voltage application of the monolith. Since the catalytic reaction can be performed at the same time, a large amount of harmful gas can be easily processed without pressure loss.
본 발명에 따른 모노리스 담체의 가습은 모노리스 담체 표면에 수분을 머금을 수 있는 방법이면 제한 없이 적용 가능하고, 바람직하게는 활성촉매 금속이 담지된 모노리스 담체를 소정 시간 동안 수증기, 습윤 공기 등에 노출시켜 채널 내부 및 표면에 수분을 함유시킬 수 있다. The humidification of the monolithic carrier according to the present invention can be applied without limitation as long as it is a method capable of retaining moisture on the surface of the monolithic carrier. Preferably, the monolithic carrier on which the active catalyst metal is supported is exposed to water vapor, humid air, etc. for a predetermined period of time. It can contain moisture inside and on the surface.
상기 모노리스 담체에 함유된 수분 함량은 수분 함유 모노리스 담체 총 중량에 대하여 0.001 wt% 이상일 수 있고, 플라즈마 촉매 반응기의 작동 온도에서 상대습도가 100 % 미만으로, 모노리스 담체에 물방울이 형성되기 전의 수분 함량일 수 있다. 만일 모노리스 담체에 함유된 수분 함량이 수분 함유 모노리스 담체 총 중량에 대하여, 0.001 wt% 미만일 경우, 모노리스 채널의 표면 전도성이 낮아 플라즈마가 미약하고, 반대로 모노리스 담체에 물방울이 맺힐 정도의 수분 함량은 모노리스 채널의 표면 전도성이 너무 높아져 스파크나 아크가 발생되는 문제가 있다. The moisture content contained in the monolith carrier may be 0.001 wt% or more based on the total weight of the water-containing monolith carrier, the relative humidity at the operating temperature of the plasma catalytic reactor is less than 100%, the moisture content before water droplets are formed on the monolith carrier can If the moisture content contained in the monolith carrier is less than 0.001 wt% based on the total weight of the water-containing monolith carrier, the surface conductivity of the monolith channel is low and plasma is weak. There is a problem that sparks or arcs are generated due to too high surface conductivity.
또한, 상기 모노리스 담체에 담지되는 촉매활성 금속은 방전의 에너지에 의해 활성화되는 금속으로, 제거하는 유해가스 종류에 따라 제한 없이 적용할 수 있으며, 일 예로 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 이리듐(Ir), 루테늄(Ru), 레늄(Re), 오스뮴(Os), 란타늄(La) 등의 1종 이상일 수 있다. 예를 들어 유해가스가 일산화탄소, 휘발성 유기화합물일 경우, 산화 반응을 촉진시킬 수 있는 백금 등일 수 있고, 질소산화물일 경우에는 환원 반응을 촉진시킬 수 있는 루테늄, 로듐 등일 수 있다.In addition, the catalytically active metal supported on the monolithic carrier is a metal activated by the energy of the discharge, and can be applied without limitation depending on the type of harmful gas to be removed. For example, gold (Au), silver (Ag), platinum ( Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), rhenium (Re), osmium (Os), lanthanum (La), etc. may be at least one type. For example, when the harmful gas is carbon monoxide or a volatile organic compound, it may be platinum that can promote an oxidation reaction, and in the case of nitrogen oxide, it may be ruthenium or rhodium that can promote a reduction reaction.
또한, 상기 모노리스 담체는 도전성을 향상시키기 위해 망간(Mn), 구리(Cu), 니켈(Ni), 아연(Zn), 철 (Fe), 티타늄(Ti) 혹은 코발트(Co) 등의 금속을 1종 이상 촉매활성 금속과 함께 추가로 첨가할 수 있다.In addition, the monolithic carrier includes a metal such as manganese (Mn), copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), titanium (Ti) or cobalt (Co) to improve conductivity. It may further be added together with more than one catalytically active metal.
상기 모노리스 담체에 담지되는 촉매활성 금속 및 금속 함량은 반응기 구조, 구동 전압, 유해가스의 종류와 밀도 등에 따라 다양하게 설정될 수 있으나, 바람직하게는 촉매활성 금속 및 금속 담지 모노리스 담체 총 중량에 대하여, 담지량이 0.1 wt% 내지 45 wt%, 더욱 바람직하게는 0.1 wt% 내지 30 wt%일 수 있다. 상기 범위의 담지량은 스파크나 아크 발생 없이 유해가스 처리에 효율적일 수 있다.The content of the catalytically active metal and metal supported on the monolithic carrier may be variously set depending on the reactor structure, the driving voltage, the type and density of the harmful gas, etc., but preferably with respect to the total weight of the catalytically active metal and the metal-supported monolithic carrier, The supported amount may be 0.1 wt% to 45 wt%, more preferably 0.1 wt% to 30 wt%. The loading amount in the above range may be effective in treating harmful gases without sparks or arcs.
이와 같이 상기 모노리스 담체에 담지된 촉매활성 금속과 금속은 모노리스 담체 표면에서 부동 접지(floating ground) 전극 역할을 수행하여 코로나 방전에 의한 플라즈마 생성을 촉진시킬 수 있다.As such, the catalytically active metal and the metal supported on the monolithic carrier act as a floating ground electrode on the surface of the monolithic carrier, thereby promoting plasma generation by corona discharge.
한편, 본 발명에 따른 플라즈마 촉매 반응기는 두개 이상 모노리스 담체가 직렬 배치될 수 있다. 이때, 상기 두 개 이상 모노리스 담체에 담지되는 촉매활성 금속 종류는 동일하거나 상이할 수 있어, 유해가스의 처리효율을 높이거나, 종류가 다른 유해가스를 동시에 처리할 수 있다. 상기 두개 이상의 모노리스 담체의 위치 및 크기는 반응기 구조, 구동 전압, 유해가스의 종류와 밀도 등에 따라 다양하게 설정될 수 있다.Meanwhile, in the plasma catalytic reactor according to the present invention, two or more monolithic carriers may be arranged in series. In this case, the types of catalytically active metals supported on the two or more monolithic carriers may be the same or different, so that the treatment efficiency of harmful gases may be improved or different types of harmful gases may be treated simultaneously. The position and size of the two or more monolithic carriers may be set in various ways depending on the structure of the reactor, the driving voltage, the type and density of the harmful gas, and the like.
또한, 본 발명에 따른 플라즈마 촉매 반응기는 모노리스 담체에 담지되는 촉매활성 금속이 함량이 많거나, 또는 전도성이 높은 촉매활성 금속을 적용한 경우, 구체적으로 모노리스 담체의 전기전항이 15 MΩ 이하인 경우에는 모노리스 담체가 도체 역할을 수행하여 스파크 발생으로 인해 정상적인 코로나 방전 플라즈마 발생이 불가능하므로, 이러한 경우에는 고전압 전극(120)과 모노리스 담체(110) 사이에 모노리스 가드부(160)를 구비하여 스파크나 아크 발생을 방지하여 플라즈마 생성을 안정적으로 수행할 수 있다.In addition, in the plasma catalytic reactor according to the present invention, when the content of the catalytically active metal supported on the monolithic carrier is high, or when a catalytically active metal with high conductivity is applied, specifically, when the electric potential of the monolithic carrier is 15 MΩ or less, the monolithic carrier Since normal corona discharge plasma generation is impossible due to spark generation by performing the role of a conductor, in this case, a monolith guard unit 160 is provided between the high voltage electrode 120 and the monolith carrier 110 to prevent spark or arc generation. Thus, plasma generation can be stably performed.
상기 모노리스 가드부(160)는 전기저항이 16 MΩ 이상인 모노리스로, 모노리스의 전기저항이 16 MΩ 이상으로 촉매활성 금속 등의 전도성 물질이 담지되거나, 또는 촉매활성 금속 등이 담지되지 않은 더미 모노리스일 수 있으며, 그 형상은 모노리스 담체와 동일 허니컴 형상의 모노리스일 수 있다.The monolith guard unit 160 is a monolith having an electrical resistance of 16 MΩ or more, and the electrical resistance of the monolith is 16 MΩ or more. and the shape may be a monolith having the same honeycomb shape as the monolith carrier.
이때, 상기 모노리스 가드부(160)는 압력손실을 방지하기 위해 유해가스 통과되는 채널이 모노리스 담체의 채널과 연결되도록 배치될 수 있고, 상기 모노리스 담체와 모노리스 가드부는 접촉(ds=0)되어 있는 것으로, 만일 모노리스 가드부와 모노리스 담체와의 간격이 있으면 항복전압(breakdown voltage)이 증가되고 이에 따라 방전전력이 감소될 수 있다.At this time, the monolith guard unit 160 may be arranged such that a channel through which harmful gas passes is connected to the channel of the monolith carrier to prevent pressure loss, and the monolith carrier and the monolith guard unit are in contact (ds = 0). , if there is a gap between the monolith guard part and the monolith carrier, the breakdown voltage may increase and thus the discharge power may be reduced.
또한, 상기 모노리스 가드부의 위치 및 크기는 반응기 구조, 구동 전압, 유해가스의 종류와 밀도 등에 따라 다양하게 설정될 수 있다.In addition, the position and size of the monolith guard part may be set in various ways depending on the reactor structure, driving voltage, the type and density of harmful gas, and the like.
상기 고전압 전극(120) 및 접지 전극(130)은 모노리스 담체(110)의 전방 및 후방에서 모노리스 담체(110)로부터 일정 간격(dh 및 dg)을 두고 각각 배치된다. 유해가스 진행 방향을 따라 고전압 전극, 모노리스 담체 및 접지 전극이 순서대로 위치한다. The high voltage electrode 120 and the ground electrode 130 are respectively disposed at a predetermined distance (dh and dg) from the monolith carrier 110 in front and rear of the monolith carrier 110 . A high-voltage electrode, a monolithic carrier, and a ground electrode are sequentially positioned along the direction of the harmful gas.
이때, 상기 고전압 전극(120)과 모노리스 담체(110)와의 간격(dh)(가드부가 존재할 때는 가드부(160)과 고전압 전극(120)의 간격)은 1 mm ~ 10 mm, 바람직하게는 2 mm ~ 6 mm일 수 있다. 만일 고전압 전극과의 간격(dh)가 1 mm 미만이면, 모든 모노리스 담체 채널에 유해가스가 균일하게 유입되지 않는 문제가 발생되고, 10 mm를 초과하면 항복전압(breakdown voltage)의 증가로 방전전력이 감소되어 플라즈마가 생성되지 못하는 문제가 발생될 수 있다 . In this case, the gap dh between the high voltage electrode 120 and the monolithic carrier 110 (the gap between the guard part 160 and the high voltage electrode 120 when the guard part is present) is 1 mm to 10 mm, preferably 2 mm ~ 6 mm. If the gap (dh) with the high voltage electrode is less than 1 mm, there is a problem that harmful gases are not uniformly introduced into all monolith carrier channels. This may cause a problem in that plasma cannot be generated .
또한, 접지 전극(130)과 모노리스 담체(110)와의 간격(dg)은 2 mm 이하, 바람직하게는 1 mm 이하일 수 있다. 만일 접지 전극과 모노리스 담체와의 간격이 2 mm를 초과하면 고전압 전극과 접지 전극이 멀어져 항복전압(breakdown voltage)이 증가되고 이에 따라 방전전력이 감소된다.In addition, the distance dg between the ground electrode 130 and the monolithic carrier 110 may be 2 mm or less, preferably 1 mm or less. If the distance between the ground electrode and the monolithic carrier exceeds 2 mm, the high voltage electrode and the ground electrode move away from each other, resulting in an increase in breakdown voltage and thus a decrease in discharge power.
상기 고전압 전극(120)과 접지 전극(130)은 내부로 유해가스를 통과시켜야 하므로 일정 두께를 가지고, 하나 이상의 개구부(121, 131)가 형성될 수 있다. 이때, 상기 고전압 전과 접지 전극은 유효 전극 면적을 유지하면서 유해가스를 원활하게 통과시킬 수 있는 하나 이상의 개구부가 형성된 타공판 형상일 수 있다. The high voltage electrode 120 and the ground electrode 130 have a predetermined thickness because harmful gas must pass therein, and one or more openings 121 and 131 may be formed. In this case, the high voltage front and ground electrode may be in the form of a perforated plate having one or more openings through which harmful gases can pass smoothly while maintaining an effective electrode area.
상기 고전압 전극(120)은 전원공급부(150)와 연결되고, 전원공급부(150)는 도시되지 않은 제어부 전기적으로 연결되어 고전압 전극으로 인가되는 전압의 크기와 인가 시간 등을 조절한다.The high voltage electrode 120 is connected to the power supply unit 150, and the power supply unit 150 is electrically connected to a control unit (not shown) to control the magnitude and application time of the voltage applied to the high voltage electrode.
상기 전원공급부의 인가 전압은 반응기 구성과 구동 조건에 따라 다양하게 변할 수 있으며, 에너지 효율 측면에서 바람직하게는 5 kV 내지 40 kV일 수 있다.The applied voltage of the power supply may be variously changed according to the reactor configuration and driving conditions, and may preferably be 5 kV to 40 kV in terms of energy efficiency.
상기 전원공급부에서 고전압 전극에 인가되는 교류 전압은 50 Hz 내지 100 kHz 주파수 내역의 정현파 또는 펄스형 고전압이므로 종래의 무선주파수와 유도성 결합 플라즈마 방식과 비교할 때 플라즈마 유지를 위한 전력 소모가 작고, 반응기 구성이 간단하며, 방전 안정성이 높아 균일한 플라즈마를 발생시킬 수 있다. Since the AC voltage applied to the high voltage electrode from the power supply is a sinusoidal or pulsed high voltage with a frequency range of 50 Hz to 100 kHz, the power consumption for plasma maintenance is small compared to the conventional radio frequency and inductively coupled plasma method, and the reactor configuration This is simple, and the discharge stability is high, so that a uniform plasma can be generated.
또한, 전원공급부에서는 고전압 전극에 모노리스내 균일한 플라즈마 발생을 위해 양(+)극성 직류 전압을 인가할 수 있다.In addition, the power supply may apply a positive (+) polarity DC voltage to the high voltage electrode for uniform plasma generation in the monolith.
상기 고전압 전극은 플라즈마 촉매 반응기의 구동 초기 과정, 즉 모노리스 담체가 충분히 가열되기 이전의 저온 영역에서 전원공급부로부터 고전압을 일정 시간 인가받는다. 그러면 고전압 전극과 모노리스 담체 사이의 간격에서 고전압 전극과 모노리스 담체의 전위차에 플라즈마가 생성된다. 즉, 모노리스 담체를 기준으로 유해가스가 주입되는 부분에 플라즈마가 생성된다.The high voltage electrode receives a high voltage from the power supply for a predetermined period of time in the initial stage of driving the plasma catalyst reactor, that is, in a low temperature region before the monolith carrier is sufficiently heated. Plasma is then generated at the potential difference between the high voltage electrode and the monolithic carrier in the gap between the high voltage electrode and the monolithic carrier. That is, plasma is generated in the portion where the harmful gas is injected based on the monolith carrier.
본 발명에 따른 플라즈마 촉매 반응기는 시동 초기의 저온 영역에서 플라즈마 반응을 이용하여 유해가스를 무해한 가스로 분해시킨다. 물론 시동 초기의 저온 영역에서도 촉매 반응이 일어나지만, 분해 효율이 충분하지 않으므로 플라즈마 촉매 기능을 보조하여 유해가스를 높은 효율로 분해시킨다.The plasma catalytic reactor according to the present invention decomposes harmful gases into harmless gases by using a plasma reaction in a low temperature region at the initial stage of startup. Of course, the catalytic reaction occurs even in the low-temperature region at the beginning of the start-up, but since the decomposition efficiency is not sufficient, it assists the plasma catalyst function to decompose harmful gases with high efficiency.
또한, 상기 플라즈마 촉매 반응기는 고전압 전극에 고전압이 인가될 때 모노리스 담체 내부는 낮은 전기장을 유지하므로, 이 전기장에 의해 담체의 유전 가열과 저항 가열이 동시에 발생한다. In addition, since the plasma catalytic reactor maintains a low electric field inside the monolith carrier when a high voltage is applied to the high voltage electrode, dielectric heating and resistance heating of the carrier occur simultaneously by this electric field.
따라서, 본 발명에 따른 플라즈마 촉매 반응기는 유전 가열과 저항 가열을 이용하여 모노리스 담체에 담지된 촉매활성 금속을 가열시킬 수 있으므로, 촉매활성 금속이 활성화되는 시점을 앞당길 수 있다. 그 결과 촉매 효율을 높여 유해가스를 효과적으로 제거할 수 있다. 또한, 별도의 온도 상승 장치를 필요하지 않으므로 반응기 구성을 간소화할 수 있고, 모노리스 담체 전체 영역에 낮은 전압으로 플라즈마를 발생시킬 수 있어 반응기 운전 효율과 안정성을 동시에 향상시킬 수 있다. Therefore, the plasma catalytic reactor according to the present invention can heat the catalytically active metal supported on the monolithic support by using dielectric heating and resistance heating, so that the time at which the catalytically active metal is activated can be advanced. As a result, it is possible to effectively remove harmful gases by increasing catalyst efficiency. In addition, since a separate temperature raising device is not required, the reactor configuration can be simplified, and plasma can be generated at a low voltage in the entire region of the monolith carrier, thereby improving reactor operation efficiency and stability at the same time.
본 발명은 또 다른 관점에서 전술된 유해가스 제거용 플라즈마 촉매 반응기를 이용하여 유해가스를 처리하는 것을 특징으로 하는 유해가스 처리 방법에 관한 것이다.In another aspect, the present invention relates to a harmful gas treatment method characterized in that the harmful gas is treated using the plasma catalytic reactor for removing the harmful gas described above.
본 발명에 따른 유해가스 처리방법은 (a) 상기 플라즈마 촉매 반응기 내부로 유해가스를 도입시켜 반응을 준비하는 단계; 및 (b) 상기 유해가스가 플라즈마 촉매 반응기 내부로 유입되면, 고전압 전극 및 접지 전극에 고전압을 인가하여 두 전극사이의 모노리스 담체 내부에 플라즈마를 생성시켜 플라즈마 반응과 촉매 반응을 이용하여 유해가스를 처리하는 단계;를 포함한다.The harmful gas treatment method according to the present invention comprises the steps of (a) preparing a reaction by introducing a harmful gas into the plasma catalytic reactor; and (b) when the harmful gas flows into the plasma catalytic reactor, a high voltage is applied to the high voltage electrode and the ground electrode to generate plasma inside the monolithic carrier between the two electrodes, and the harmful gas is treated using a plasma reaction and a catalytic reaction including;
상기 (a) 단계에서 플라즈마 촉매 반응기로 도입되는 유해가스는 폭이 9 cm이고, 높이가 5 cm인 모노리스 담체를 기준으로 10 L/min ~ 200 L/min의 유량으로 주입할 수 있다. 만일, 유해가스의 유량이 10 L/min 미만일 경우, 고전압 전극에서 생성되는 이온과 전자가 접지 전극으로 빠르게 이동하지 못하여 방전 전력이 낮아지는 문제가 발생될 수 있고, 200 L/min를 초과할 경우에는 기체의 체류시간이 짧아 유해가스가 제대로 반응하지 못하는 문제가 발생될 수 있다.The noxious gas introduced into the plasma catalyst reactor in step (a) may be injected at a flow rate of 10 L/min to 200 L/min based on the monolithic carrier having a width of 9 cm and a height of 5 cm. If the flow rate of harmful gas is less than 10 L/min, ions and electrons generated from the high voltage electrode cannot move quickly to the ground electrode, so a problem may occur that the discharge power is lowered, and if it exceeds 200 L/min Because the residence time of the gas is short, there may be a problem that the harmful gas cannot react properly.
또한, 상기 (a) 단계에서 플라즈마 촉매 반응기로 주입되는 유해가스는 모노리스 담체 수분을 보충하고, 플라즈마 생성을 촉진시키기 위해 수증기를 함유시켜 반응기 내부로 유입시킬 수 있다. 이때, 유해가스의 상대습도가 플라즈마 촉매 반응기 작동 온도에서 100 % 미만일 수 있다. 상기 범위의 수분을 함유하는 유해가스는 모노리스 담체의 채널 내부 및 표면을 가습시켜 표면 전도성을 유지시킬 수 있다. In addition, the harmful gas injected into the plasma catalyst reactor in step (a) may be introduced into the reactor by containing water vapor to supplement the monolith carrier moisture and promote plasma generation. In this case, the relative humidity of the harmful gas may be less than 100% at the plasma catalytic reactor operating temperature. Noxious gas containing moisture in the above range may humidify the inside and the surface of the channel of the monolith carrier to maintain surface conductivity.
본 발명에 따른 상기 플라즈마 촉매 반응기는 낮은 인가 전압 조건에서도 모노리스 담체 내부에 5 W 이상, 바람직하게 30 W 내지 100 W의 방전 전력으로 코로나 방전을 수행할 수 있어 플라즈마 촉매 반응을 위한 맞춤 크기로 제작된 모노리스 담체의 사용 없이 상업적으로 판매되고 있는 상용 모노리스 담체의 적용이 가능하고, 촉매의 압력 강하 없이 플라즈마 반응과 촉매를 이용하여 대용량의 유해가스를 효과적으로 처리할 수 있는 동시에 구동 전극에 인가되는 최대 전압의 크기를 낮추어 반응기 운전의 효율과 안정성을 동시에 향상시킬 수 있다.The plasma catalytic reactor according to the present invention can perform corona discharge with a discharge power of 5 W or more, preferably 30 W to 100 W inside the monolith carrier even under a low applied voltage condition, so that it is custom-sized for a plasma catalytic reaction. It is possible to apply a commercially available monolithic carrier without the use of a monolithic carrier, and it is possible to effectively treat a large amount of harmful gas by using a plasma reaction and a catalyst without a pressure drop of the catalyst, and at the same time, the maximum voltage applied to the driving electrode By reducing the size, the efficiency and stability of the reactor operation can be improved at the same time.
또한, 본 발명에 따른 상기 플라즈마 촉매 반응기는 촉매를 이용한 유해가스 처리시에 필요한 반응에너지를 저온 플라즈마로부터 공급 받을 수 있어 촉매 반응을 위한 추가적인 가열이나 에너지 공급의 필요 없이 유해가스의 처리가 가능한 효과가 있다.In addition, the plasma catalytic reactor according to the present invention can receive the reaction energy required for the treatment of harmful gases using a catalyst from low-temperature plasma, so that the treatment of harmful gases is possible without the need for additional heating or energy supply for the catalytic reaction. there is.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.
<실시예 1><Example 1>
도 1에 도시된 바와 같은 플라즈마 촉매 반응기를 제작하고, 도 3의 실험 설정을 통해 플라즈마 촉매 반응기의 성능을 측정하였다. 상기 플라즈마 촉매 반응기에 적용된 모노리스 담체는 폭(직경)이 93 mm이고, 높이가 50 mm이며, 제곱 인치(cpsi)당 300셀의 상용 코디어라이트 모노리스로, 한국 세라콤(Ceracomb Co., Ltd)에서 구매하였고, 상기 모노리스 담체에 모노리스 담체 총 중량에 대하여 코발트(CO) 0.1 wt%, 팔라듐(Pd) 0.03 wt%, 백금(Pt) 0.07 wt%, 란타늄(La) 0.03 wt%로 함침법으로 담지시켜 촉매활성 금속이 담지된 모노리스 담체를 제조하였다. 한편, 상기 촉매활성 금속이 담지된 모노리스 담체를 가습하기 위해 2.2 % H2O이 함유된 공기에 30 분동안 노출시켜 함수율이 0.082 wt%인 모노리스 담체를 수득하였다. 한편, 고전압 전극 및 접지 전극은 3 mm 직경의 168 개의 구멍이 형성된 스테인레스 스틸 타공판을 사용하였으며, 고전압 전극과 모노리스 담체와의 간격은 2 mm로 배치하고, 접지 전극은 모노리스 담체에 접촉되도록 위치시켰다. 상기 반응기 내부로 공기(절대습도 2.1 % H2O 함유)를 75 L/min 유량으로 공급하였으며, 2.5 kV의 전압을 고전압 전극에 인가시켜 플라즈마 촉매 반응기를 제작 및 구동하였다.A plasma catalytic reactor as shown in FIG. 1 was manufactured, and the performance of the plasma catalytic reactor was measured through the experimental setup of FIG. 3 . The monolithic carrier applied to the plasma catalytic reactor is a commercial cordierite monolith having a width (diameter) of 93 mm, a height of 50 mm, and 300 cells per square inch (cpsi), by Ceracomb Co., Ltd., Korea. Cobalt (CO) 0.1 wt%, palladium (Pd) 0.03 wt%, platinum (Pt) 0.07 wt%, and lanthanum (La) 0.03 wt% were supported on the monolith carrier by an impregnation method with respect to the total weight of the monolith carrier Thus, a monolithic carrier on which a catalytically active metal was supported was prepared. Meanwhile, the monolithic carrier on which the catalytically active metal was supported was exposed to air containing 2.2% H 2 O for 30 minutes to humidify to obtain a monolithic carrier having a moisture content of 0.082 wt%. On the other hand, the high voltage electrode and the ground electrode used a stainless steel perforated plate with 168 holes with a diameter of 3 mm was used, the high voltage electrode and the monolith carrier were arranged at a distance of 2 mm, and the ground electrode was placed in contact with the monolith carrier. Air (containing 2.1% H 2 O in absolute humidity) was supplied into the reactor at a flow rate of 75 L/min, and a voltage of 2.5 kV was applied to the high voltage electrode to fabricate and drive a plasma catalyst reactor.
<실시예 2 내지 12><Examples 2 to 12>
실시예 1과 동일한 방법으로 플라즈마 촉매 반응기를 제작하되, 하기 표 1에 기재된 조건으로 플라즈마 촉매 반응기를 제작 및 구동하였다.A plasma catalytic reactor was manufactured in the same manner as in Example 1, but the plasma catalytic reactor was manufactured and driven under the conditions shown in Table 1 below.
<비교예 1 내지 12><Comparative Examples 1 to 12>
실시예 1과 동일한 방법으로 플라즈마 촉매 반응기를 제작하되, 하기 표 1에 기재된 조건으로 플라즈마 촉매 반응기를 제작하고, 구동하였다. 이때, 비교예 8의 건조 모노리스 담체는 110 ℃의 오븐에서 먼저 건조시킨 다음, 즉시 반응기에 배치하였고, 비교예 11에서는 실시예 1의 플라즈마 촉매 반응기에서 모노리스 담체를 제외하고 고전압을 인가시켰다.A plasma catalytic reactor was manufactured in the same manner as in Example 1, but a plasma catalytic reactor was manufactured and driven under the conditions shown in Table 1 below. At this time, the dry monolith carrier of Comparative Example 8 was first dried in an oven at 110 ° C., and then immediately placed in the reactor. In Comparative Example 11, a high voltage was applied except for the monolith carrier in the plasma catalyst reactor of Example 1.
Figure PCTKR2021009678-appb-I000001
Figure PCTKR2021009678-appb-I000001
<실시예 13><Example 13>
실시예 1과 동일한 방법으로 플라즈마 촉매 반응기를 제작하되, 모노리스 담체 크기를 폭(직경)이 21 mm이고, 높이 31 mm인 상용 코디어라이트 모노리스를 적용하였고, 상기 반응기 내부로 공기(절대습도 3.04 % H2O 함유)를 30000 hr-1(GHSV) 유량으로 공급하여 플라즈마 촉매 반응기를 제작 및 구동하였다. 이때, 가드부는 상기 고전압 전극과 모노리스 담체 사이에 이격된 공간(ds=0) 없이 장착시켰으며, 상기 가드부의 크기는 폭(직경)이 21 mm이고, 높이가 10 mm인 활성촉매 금속이 담지되지 않은 상용 코디어라이트 모노리스를 사용하였다.A plasma catalyst reactor was manufactured in the same manner as in Example 1, but a commercial cordierite monolith having a monolith carrier size of 21 mm in width (diameter) and 31 mm in height was applied, and air (absolute humidity 3.04%) was introduced into the reactor. H 2 O) was supplied at a flow rate of 30000 hr -1 (GHSV) to fabricate and drive a plasma catalyst reactor. At this time, the guard part was mounted without a space (ds = 0) spaced apart between the high voltage electrode and the monolith carrier, and the size of the guard part was 21 mm in width (diameter) and 10 mm in height. Active catalyst metal was not supported. A non-commercial cordierite monolith was used.
<비교예 13><Comparative Example 13>
실시예 12와 동일한 플라즈마 촉매 반응기로 제작하되, 가드부의 장착 없이 고전압 전극과 모노리스 담체와의 간격은 2 mm로 배치하고, 접지 전극은 모노리스 담체에 접촉되도록 위치시켜 플라즈마 촉매 반응기를 제작하고 구동하였다.A plasma catalytic reactor was manufactured and operated in the same plasma catalytic reactor as in Example 12, except that the high voltage electrode and the monolithic carrier were disposed at a distance of 2 mm without a guard, and the ground electrode was positioned so as to be in contact with the monolithic carrier.
<실험예 1: 시간 변화에 따른 방전전력 측정><Experimental Example 1: Measurement of discharge power according to time change>
공급가스는 ball flowmeter (RMA-25-SSV, Dwyer, USA)에 의해 유량이 조절된 가스 펌프에 의해 반응기로 공급되었으며 공급가스의 수증기의 양과 온도는 습도계(TES-1370 NDIR CO2 Meter, TES Electrical Electronic Corp.)로 측정하였고, AC 코로나 플라즈마는 AC 고전압에 의해 구동되었으며, 고주파 변압기(태화 전기, 서울)에 의해 주파수 변환기[삼동 파워(주)]의 400 Hz AC 전압으로 승압시켰다. 전기적 특성은 디지털 오실로스코프(Tektronix, DPO 3034, four channels, 300 MHz, 2.5 GS/s, USA), a 1000:1 고전압 프로브(Tektronix, P6015A, USA) 및 전류 모니터 (Pearson Electronics, 2100, USA)로 측정하였다. 모노리스 담체 내부에서 측정된 방전 전력은 하기 식 1로 표시되는 순간 전압 및 전류의 적분에 의해 산출하여 실시예 1 내지 7 및 비교예 1 내지 9에서 측정된 시간 변화에 따른 방전전력을 도 7 내지 9에 나타내었고, 실시예 1의 플라즈마 촉매 반응기 및 비교예 11의 플라즈마 촉매 반응기의 방전 이미지를 디지털 카메라(Canon EOS 7D, focal length 50mm, ISO-200, Exposure time: 30sec, F-stop: f/3.2)로 촬영하여 도 6에 나타내었다. The supply gas was supplied to the reactor by a gas pump whose flow was controlled by a ball flowmeter (RMA-25-SSV, Dwyer, USA), and the amount and temperature of water vapor in the supply gas were measured with a hygrometer (TES-1370 NDIR CO2 Meter, TES Electrical Electronic) Corp.), AC corona plasma was driven by AC high voltage, and was boosted to 400 Hz AC voltage of a frequency converter (Samdong Power Co., Ltd.) by a high-frequency transformer (Taehwa Electric, Seoul). Electrical characteristics were measured with a digital oscilloscope (Tektronix, DPO 3034, four channels, 300 MHz, 2.5 GS/s, USA), a 1000:1 high voltage probe (Tektronix, P6015A, USA), and a current monitor (Pearson Electronics, 2100, USA). measured. The discharge power measured inside the monolith carrier is calculated by the integration of the instantaneous voltage and current expressed by the following Equation 1, and the discharge power according to the time change measured in Examples 1 to 7 and Comparative Examples 1 to 9 is shown in FIGS. 7 to 9 As shown in, discharge images of the plasma catalyst reactor of Example 1 and the plasma catalyst reactor of Comparative Example 11 were captured with a digital camera (Canon EOS 7D, focal length 50mm, ISO-200, Exposure time: 30sec, F-stop: f/3.2 ) was taken and shown in FIG. 6 .
Figure PCTKR2021009678-appb-I000002
Figure PCTKR2021009678-appb-I000002
도 6(a)에 나타난 바와 같이, 실시예 1의 플라즈마 촉매 반응기의 경우 플라즈마가 반응기 전체적으로 생성되는 것을 확인할 수 있는 반면, 도 6(b)에 나타난 바와 같이 비교예 11의 플라즈마 촉매 반응기 경우에는 플라즈마 생성이 고전압 전극 측에만 생성되는 것으로 나타났다.As shown in FIG. 6( a ), in the case of the plasma catalytic reactor of Example 1, it can be confirmed that plasma is generated throughout the reactor, while in the case of the plasma catalytic reactor of Comparative Example 11 as shown in FIG. 6( b ), plasma It has been shown that the generation is generated only on the high voltage electrode side.
또한, 도 7 내지 9에 나타난 바와 같이, 실시예 1 내지 7의 플라즈마 촉매 반응기의 경우 비교예 1 내지 9에 비해 동일 조건에서 방전 전력이 확연히 큰 것으로 나타났으며, 특히 비교예 10의 경우에는 플라즈마가 발생되지 않았다. 이는 실시예 1 내지 7의 경우, 모노리스 담체 채널 표면상의 물 분자 및 촉매활성 금속이 부동 접지 역할을 수행하여 비교예 1 내지 10에 비해 방전 전력을 증가시키는 것으로, 이 결과를 토대로 모노리스 담체 내부에서도 원활하게 코로나 방전에 의한 플라즈마를 생성시킴을 확인할 수 있었다.In addition, as shown in FIGS. 7 to 9 , in the case of the plasma catalytic reactors of Examples 1 to 7, the discharge power was significantly higher under the same conditions than those of Comparative Examples 1 to 9, and in particular, in the case of Comparative Example 10, the plasma did not occur. In the case of Examples 1 to 7, water molecules and catalytically active metal on the surface of the monolith carrier channel act as a floating ground to increase the discharge power compared to Comparative Examples 1 to 10. Based on this result, it is also smoothly inside the monolith carrier It was confirmed that plasma was generated by corona discharge.
<실험예 2: 톨루엔 제거성능 측정><Experimental Example 2: Measurement of Toluene Removal Performance>
실시예 8 및 비교예 12의 플라즈마 촉매 반응기로 톨루엔 15 ppm을 60 L/min으로 공급하여 플라즈마 촉매 반응기에서 배출되는 톨루엔 농도를 시간별로 측정하고, 그 결과를 도 10에 나타내었다. 이때, 톨로엔 제거량은 톨루엔이 포화되기 전에는 정확한 제거량을 분석할 수 없으므로 톨루엔이 포화된 후 플라즈마를 발생시켜 측정하였고, 에너지 밀도는 전력을 유량으로 나누어 산출하였다. 15 ppm of toluene was supplied to the plasma catalyst reactor of Example 8 and Comparative Example 12 at 60 L/min, and the concentration of toluene discharged from the plasma catalyst reactor was measured for each hour, and the results are shown in FIG. 10 . At this time, the toloene removal amount was measured by generating plasma after toluene was saturated because the exact removal amount could not be analyzed before the toluene was saturated, and the energy density was calculated by dividing the power by the flow rate.
도 8(a)에 나타난 바와 같이, 비교예 12의 경우 실시예 8에 비해 더 빨리 톨루엔으로 포화되는 것으로 나타났으며, 도 8(a)에 삽입된 그림에 나타난 바와 같이 비교예 12의 흡착용량은 1.3 ㎛ol/g인 반면, 실시예 8의 흡착용량은 6.6 ㎛ol/g으로, 실시예 8의 흡착능력이 비교예 12에 비해 5배 더 큰 것으로 나타났다.As shown in FIG. 8(a), Comparative Example 12 was saturated with toluene faster than Example 8, and as shown in the figure inserted in FIG. 8(a), the adsorption capacity of Comparative Example 12 Silver was 1.3 μmol/g, whereas the adsorption capacity of Example 8 was 6.6 μmol/g, indicating that the adsorption capacity of Example 8 was 5 times greater than that of Comparative Example 12.
또한, 도 8(b)에 나타난 바와 같이, 실시예 8의 최대 전달 전력과 에너지 밀도는 각각 58 W와 58 J/L인 반면, 비교예 12의 최대 전달전력과 에너지 밀도는 각각 35 W와 35 J/L인 것으로 나타났다. In addition, as shown in FIG. 8(b), the maximum transmitted power and energy density of Example 8 were 58 W and 58 J/L, respectively, whereas the maximum transmitted power and energy density of Comparative Example 12 were 35 W and 35 W, respectively. It was found to be J/L.
<실험예 3: 직류 고전압에 따른 방전전력 측정><Experimental Example 3: Measurement of discharge power according to DC high voltage>
직류 고전압에 따른 방전을 측정하기 위해 실시예 9 내지 12와 같이 고전압 전극에 양(+)극성 직류(DC) 고전압을 인가하여 방전전력을 측정하였다.In order to measure the discharge according to the DC high voltage, as in Examples 9 to 12, a positive (+) polarity direct current (DC) high voltage was applied to the high voltage electrode to measure the discharge power.
그 결과, 도 11에 나타난 바와 같이 인가 전압이 높아질수록 방전전력이 커지는 것으로 나타남에 따라 모노리스 담체내 균일한 플라즈마가 형성됨을 확인할 수 있었다.As a result, as shown in FIG. 11 , as the applied voltage increased, the discharging power increased, confirming that a uniform plasma was formed in the monolithic carrier.
<실험예 4: 가드부 장착에 따른 방전전력 측정><Experimental Example 4: Measurement of Discharge Power by Guard Mounting>
가드부 장착에 따른 플라즈마 방전 여부를 확인하기 위해 실시예 13 및 비교예 13의 플라즈마 촉매 반응기에 10 kV, 12 kV, 13 kV, 14 kV, 15 kV 및 16 kV 의 전압을 고전압 전극에 인가시켜 방전전력을 측정하고, 그 결과를 도 12에 나타내었다. In order to check whether or not plasma discharge occurs according to the installation of the guard, voltages of 10 kV, 12 kV, 13 kV, 14 kV, 15 kV and 16 kV are applied to the plasma catalyst reactor of Example 13 and Comparative Example 13 to the high voltage electrode to discharge Power was measured, and the results are shown in FIG. 12 .
도 12에 나타난 바와 같이, 비교예 13과 같이 가드부가 장착되지 반응기의 경우에는 스파크가 발생되어 방전전력을 측정하지 못한 반면, 실시예 13과 같이 가드부가 장착된 반응기의 경우에는 안정적으로 모노리스 담체내 균일하게 플라즈마가 형성됨을 확인할 수 있었고, 인가 전압에 따라 방전전력이 커짐을 확인할 수 있었다.As shown in FIG. 12, in the case of the reactor equipped with a guard unit as in Comparative Example 13, sparks were generated and the discharge power could not be measured, whereas in the case of the reactor equipped with a guard unit as in Example 13, it was stably in the monolithic carrier. It was confirmed that the plasma was uniformly formed, and it was confirmed that the discharge power increased according to the applied voltage.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and it is possible to carry out various modifications within the scope of the claims, the detailed description of the invention, and the accompanying drawings, and this is also the present invention. It is natural to fall within the scope of

Claims (11)

  1. 타공판 형상의 고전압 전극;A perforated plate-shaped high-voltage electrode;
    상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극;a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode;
    상기 고전압 전극 및 접지 전극 사이에 위치하고 수분을 함유하는, 촉매활성 금속이 담지된 모노리스 담체; 및a monolithic carrier on which a catalytically active metal is supported, which is located between the high voltage electrode and the ground electrode and contains moisture; and
    상기 고전압 전극에 교류 전압을 인가하는 전원공급부;를 포함하고, Including; a power supply for applying an alternating voltage to the high voltage electrode;
    상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.A plasma catalyst reactor for removing harmful gases, characterized in that a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and the harmful gas is introduced into the plasma region and discharged.
  2. 타공판 형상의 고전압 전극;A perforated plate-shaped high-voltage electrode;
    상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극;a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode;
    상기 고전압 전극 및 접지 전극 사이에 위치하고 촉매활성 금속이 담지된 모노리스 담체; a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported;
    상기 고전압 전극과 모노리스 담체 사이에 배치되어 아크 발생을 방지하는 모노리스 가드부; 및a monolith guard unit disposed between the high voltage electrode and the monolith carrier to prevent arc generation; and
    상기 고전압 전극에 전압을 인가하는 전원공급부;를 포함하고, Including; a power supply for applying a voltage to the high voltage electrode;
    상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.A plasma catalyst reactor for removing harmful gases, characterized in that a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and the harmful gas is introduced into the plasma region and discharged.
  3. 타공판 형상의 고전압 전극;A perforated plate-shaped high-voltage electrode;
    상기 고전압 전극과 이격되어 마주하며 위치하는 타공판 형상의 접지 전극;a perforated plate-shaped ground electrode positioned to face and spaced apart from the high voltage electrode;
    상기 고전압 전극 및 접지 전극 사이에 위치하고 촉매활성 금속이 담지된 모노리스 담체; 및a monolithic carrier positioned between the high voltage electrode and the ground electrode and on which a catalytically active metal is supported; and
    상기 고전압 전극에 양(+)극성 직류 전압을 인가하는 전원공급부;를 포함하고, Including; a power supply for applying a positive (+) polarity DC voltage to the high voltage electrode;
    상기 전원공급부에 의해 고전압 전극에 전압이 인가되어 코로나 방전에 의해 모노리스 담체 내부에 플라즈마를 생성시키고, 유해가스가 상기 플라즈마 영역으로 도입되어 배출되는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.A plasma catalyst reactor for removing harmful gases, characterized in that a voltage is applied to the high voltage electrode by the power supply unit to generate plasma inside the monolith carrier by corona discharge, and the harmful gas is introduced into the plasma region and discharged.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 모노리스 담체는 폭이 9 cm 이상 및/또는 높이가 5 cm 이상인 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The monolithic carrier is a plasma catalyst reactor for removing harmful gases, characterized in that the width is 9 cm or more and / or the height is 5 cm or more.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 모노리스 가드부는 전기저항이 16 MΩ 이상인 모노리스인 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The monolith guard unit is a plasma catalyst reactor for removing harmful gases, characterized in that the monolith having an electrical resistance of 16 MΩ or more.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 접지 전극은 모노리스 담체로부터 2 mm 이하로 이격되어 있고, 유해가스가 배출되는 모노리스 담체 후방에 위치하는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The ground electrode is spaced apart from the monolith carrier by 2 mm or less, and is located behind the monolith carrier from which the harmful gas is discharged.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 고전압 전극은 모노리스 담체로부터 1 mm ~ 10 mm로 이격되어 있고, 유해가스가 도입되는 모노리스 담체 전방에 위치하는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The high voltage electrode is spaced apart from the monolith carrier by 1 mm to 10 mm, and is positioned in front of the monolith carrier into which the harmful gas is introduced.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 모노리스 담체는 허니컴 형상인 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The monolithic carrier is a plasma catalyst reactor for removing harmful gases, characterized in that the honeycomb shape.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 유해가스는 휘발성 유기화합물, 질소계 화합물, 황산화물, 불소 화합물, 염소 화합물, 시안 화합물, 일산화탄소, 이산화탄소 및 다이옥신으로 구성된 군에서 선택되는 1종 이상이며, 상기 유해가스에는 수분이 함유된 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The harmful gas is at least one selected from the group consisting of volatile organic compounds, nitrogen compounds, sulfur oxides, fluorine compounds, chlorine compounds, cyanide compounds, carbon monoxide, carbon dioxide and dioxins, and the harmful gas contains moisture Plasma catalytic reactor for removing harmful gas.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 플라즈마 촉매 반응기는 두개 이상의 모노리스 담체가 직렬로 배치되어 있는 것을 특징으로 하는 유해가스 제거용 플라즈마 촉매 반응기.The plasma catalytic reactor is a plasma catalytic reactor for removing harmful gases, characterized in that two or more monolithic carriers are arranged in series.
  11. 제1항 내지 제3항 중 어느 한 항의 유해가스 제거용 플라즈마 촉매 반응기를 이용하여 유해가스를 처리하되, 상기 유해가스 내의 상대습도는 100 vol% 미만인 것을 특징으로 하는 유해가스 처리 방법.Noxious gas treatment method using the plasma catalyst reactor for removing harmful gas according to any one of claims 1 to 3, wherein the relative humidity in the noxious gas is less than 100 vol%.
PCT/KR2021/009678 2020-08-11 2021-07-27 Plasma catalyst reactor for removing harmful gas and method of treating harmful gas by using same WO2022035088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0100575 2020-08-11
KR1020200100575A KR102411341B1 (en) 2020-08-11 2020-08-11 Plasma Catalytic Rector for Removing Hazadous Gases and Removing Method of Hazadous Gases Using the Same

Publications (1)

Publication Number Publication Date
WO2022035088A1 true WO2022035088A1 (en) 2022-02-17

Family

ID=80246799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009678 WO2022035088A1 (en) 2020-08-11 2021-07-27 Plasma catalyst reactor for removing harmful gas and method of treating harmful gas by using same

Country Status (2)

Country Link
KR (1) KR102411341B1 (en)
WO (1) WO2022035088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033965B1 (en) * 2022-05-18 2023-07-17 Univ Cas Low-temperature plasma device for treating dioxin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054483A (en) * 2000-12-28 2002-07-08 김덕중 Apparatus for purifying waste gas
KR100347593B1 (en) * 1999-05-20 2002-08-07 사단법인 고등기술연구원 연구조합 Exhaust gas purifier of internal combustion engine
US20060051273A1 (en) * 2004-09-07 2006-03-09 Son Geon S Method for removing soot of combustion exhaust gas
KR101182356B1 (en) * 2012-04-27 2012-09-20 한국기계연구원 Plasma-catalytic reactor for removal of hazadous gases and removing method of hazadous gases using the same
KR101845664B1 (en) * 2017-05-12 2018-04-04 이성 Equipment for processing volatile organic compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200278523Y1 (en) * 2002-03-14 2002-06-14 (주)네오포텍 NOx Reduction System using Photocatalyst Reactor
KR200308228Y1 (en) * 2002-08-06 2003-03-26 (주)네오포텍 Emitting electrodes to prohibit arc discharges on photocatalyst reactor
KR100543529B1 (en) 2003-04-29 2006-01-31 국방과학연구소 Air filtration system and method of the same
KR20070001387A (en) 2005-06-29 2007-01-04 주식회사 엘지화학 Plasma and photocatalysis hybrid system for eliminating volatile organic compounds and a bad smell
KR101416711B1 (en) * 2012-05-29 2014-07-14 제주대학교 산학협력단 Device of treating hazardous air pollutant using dielectric barrier discharge plasma reactor with graphene oxide photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347593B1 (en) * 1999-05-20 2002-08-07 사단법인 고등기술연구원 연구조합 Exhaust gas purifier of internal combustion engine
KR20020054483A (en) * 2000-12-28 2002-07-08 김덕중 Apparatus for purifying waste gas
US20060051273A1 (en) * 2004-09-07 2006-03-09 Son Geon S Method for removing soot of combustion exhaust gas
KR101182356B1 (en) * 2012-04-27 2012-09-20 한국기계연구원 Plasma-catalytic reactor for removal of hazadous gases and removing method of hazadous gases using the same
KR101845664B1 (en) * 2017-05-12 2018-04-04 이성 Equipment for processing volatile organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033965B1 (en) * 2022-05-18 2023-07-17 Univ Cas Low-temperature plasma device for treating dioxin

Also Published As

Publication number Publication date
KR20220020072A (en) 2022-02-18
KR102411341B1 (en) 2022-06-20

Similar Documents

Publication Publication Date Title
Du et al. Decomposition of toluene in a gliding arc discharge plasma reactor
WO2017171151A1 (en) Ductless air purification apparatus for purifying and treating volatile organic compounds and fine dusts
JPWO2007077897A1 (en) Dust collector electrode and dust collector
CN107413175B (en) Method and device for purifying indoor volatile organic compounds through high-efficiency low-energy-consumption secondary-pollution-free low-temperature plasma concerted catalysis
WO2022035088A1 (en) Plasma catalyst reactor for removing harmful gas and method of treating harmful gas by using same
KR101237496B1 (en) Plasma deodorizer for waste water treatment
CN108465354A (en) Low-temperature plasma synergistic is catalyzed reaction member and i.e. VOCs processing units and method based on the reaction member
CN108043182B (en) Discharge basic unit adopting multi-dielectric barrier, reactor and waste gas treatment method
CN111530281A (en) Method and equipment for removing ammonia gas through low-temperature plasma concerted catalysis
KR100543529B1 (en) Air filtration system and method of the same
JP3632579B2 (en) Air purification device
KR20020024572A (en) Air pollutant gas(Odor, VOC, PFC, Dioxin, Toxic gas) treating system with multiple plate nonthermal plasma reactor
KR100949303B1 (en) High efficiency plasma reactor and stench removal system using it
CN108325351B (en) Electromagnetic induction coupling double-medium low-temperature plasma gas purification device
US20060119278A1 (en) Gas decomposition apparatus and gas treatment cartridge
JP4828693B2 (en) Ultra-short pulse high voltage applied gas purification method
JP4235580B2 (en) Dielectric
KR20110012997A (en) High efficiency plasma reactor and volatile organic compounds removal system using it
WO2019124623A1 (en) Plasma wire having carbon-based coating layer, and dust collector using same
KR100875882B1 (en) Exhaust gas treatment system
KR101174137B1 (en) A device treating air pollutants with plasma
KR20110038418A (en) The cold plasma reaction apparatus for the volatile organic compound or an offensive odor disposal
CN218235209U (en) Electric field device and VOCs gas treatment device
KR20070001387A (en) Plasma and photocatalysis hybrid system for eliminating volatile organic compounds and a bad smell
CN208911781U (en) Low-temperature plasma synergistic is catalyzed reaction member and the VOCs processing unit based on the reaction member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21856094

Country of ref document: EP

Kind code of ref document: A1