WO2022034948A1 - Ice maker, refrigerator and control method therefor - Google Patents

Ice maker, refrigerator and control method therefor Download PDF

Info

Publication number
WO2022034948A1
WO2022034948A1 PCT/KR2020/010927 KR2020010927W WO2022034948A1 WO 2022034948 A1 WO2022034948 A1 WO 2022034948A1 KR 2020010927 W KR2020010927 W KR 2020010927W WO 2022034948 A1 WO2022034948 A1 WO 2022034948A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
time
temperature
motor
making
Prior art date
Application number
PCT/KR2020/010927
Other languages
French (fr)
Korean (ko)
Inventor
지준동
신계영
임동혁
Original Assignee
주식회사 대창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대창 filed Critical 주식회사 대창
Priority to PCT/KR2020/010927 priority Critical patent/WO2022034948A1/en
Publication of WO2022034948A1 publication Critical patent/WO2022034948A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an ice maker, a refrigerator, and a method for controlling the same.
  • a refrigerator is a home appliance for storing food in a low temperature state, and includes at least one of a refrigerating chamber storing food in a refrigerated state and a freezing chamber storing food in a frozen state.
  • the refrigerator may supply cold air to at least one of the refrigerating chamber and the freezing chamber by using a refrigeration cycle in which a refrigerant circulates through a compressor, a condenser, an expansion mechanism, and an evaporator.
  • An ice maker is provided in at least one of the refrigerating compartment and the freezing compartment, and an ice maker is installed in the ice maker.
  • the ice maker is a device that receives ice-making water and produces ice.
  • the ice maker includes an ice tray having an ice making groove. After the ice-making water is supplied to the ice-making grooves, ice may be generated by freezing the ice-making water supplied to the ice-making grooves.
  • the intercooling type ice making method is a method of supplying cold air heat-exchanged with an evaporator of a refrigerator to the ice making chamber, which is a space in which the ice tray is disposed, and freezing the ice water supplied to the ice making groove by the cold air.
  • the refrigerant that has passed through the expansion mechanism of the refrigerator is supplied to a device, a cooling device, and a cooling unit installed inside the ice tray, and the ice water supplied to the ice making groove is frozen by the refrigerant.
  • the method of icing the ice in the ice-making groove includes a twist method of twisting the ice tray to transfer the ice fixed to the ice-making groove, and the ice heater installed in the ice tray heats up and adheres to the ice-making groove.
  • Republic of Korea Patent Publication No. 10-1439460 (published on Sept. 12, 2014) (hereinafter referred to as 'prior art') discloses an ejector type 'ice machine'.
  • an ice maker as in the prior art, after about 50 minutes passes after ice-making water is supplied to the ice-making groove of the ice tray, the ice-making water in the ice-making groove is changed to ice. Accordingly, in the prior art ice maker, after about 50 minutes have elapsed after the ice-making water is supplied to the ice-making groove, the ice-removing is started in the ice-making groove.
  • 1 is a graph showing an ice-making time according to an operating rate of a refrigerator.
  • the ice making time is longer than when the operating rate is high. That is, when the operating rate of the refrigerator is high, the ice-making time is a, but when the operating rate of the refrigerator is low, the ice-making time is b.
  • the existing ice maker has only one ice-breaking start time, and thus does not effectively respond to various conditions of the refrigerator.
  • An object to be solved by the present invention is an ice maker capable of efficiently removing ice at the time when ice is completed in an ice-making groove of an ice tray regardless of the size (capacity), operating rate, ambient temperature, and cooling capacity of the refrigerator, and the refrigerator. and to provide a method for controlling the same.
  • an ice maker includes an ice tray having an ice making groove formed therein, an icing motor driving the ice to move from the ice making groove, a casing to which the icing motor is mounted, and a motor of an ice maker provided in a refrigerator or ice maker.
  • control unit applies a forced delay time before starting ice after water supply, and after the forced delay time, if the ice-making condition set according to the combination of the ice-making time and the ice-making temperature is satisfied, the ice motor or the ice heater is operated make it work
  • the present invention can be controlled according to two or more set times, two or more set temperatures, and combinations thereof for the ice start point.
  • the ice maker according to the present invention includes an ice tray, an ice motor, and a control unit. These components may be included in a swallowing machine or a refrigerator.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the control unit controls the divergence motor.
  • the controller operates the icing motor or the icing heater at the calculated ice-diving start time using the time elapsed after the ice-making water is supplied to the ice-making groove and the temperature of the refrigerator storage compartment or the ice tray.
  • the ice maker according to the present invention includes an ice tray, an ice motor, and a control unit.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the control unit controls the divergence motor.
  • the control unit operates the icing motor or the icing heater at the starting time of the ice making or the heating start time calculated by using the accumulated ice making time or the accumulated time below a predetermined temperature.
  • the ice maker according to the present invention includes an ice tray, an ice motor, and a control unit.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the control unit controls the divergence motor.
  • a set temperature of a time that follows in time from among a plurality of start points of ice is set to be higher than a set temperature of a time that precedes in time among the plurality of start points of ice.
  • the ice maker according to the present invention includes an ice tray and an ice motor.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the icing motor is controlled by a refrigerator controller provided in the refrigerator.
  • the refrigerator control unit operates the icing motor or the icing heater at the time of starting ice or heating start time calculated using the time elapsed after the ice-making water is supplied to the ice-making groove and the temperature of the ice tray unit.
  • the ice maker according to the present invention includes an ice tray, an ice motor, and an ice maker control unit.
  • the ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the ice maker controller receives an ice signal from a refrigerator controller provided in the refrigerator to control the ice motor.
  • the ice maker controller operates the icing motor or the icing heater at a plurality of ice moving start times or a plurality of heating start times.
  • the ice maker according to the present invention includes an ice tray, an ice motor, a temperature detection unit, a capacitive sensor, and a control unit.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the temperature detection unit detects a temperature around the temperature detection unit.
  • the capacitance sensor senses the capacitance of the ice-making groove.
  • the control unit controls the divergence motor.
  • the controller operates the icing motor or the icing heater at the calculated ice-diving start time or heating start time using the accumulated ice-making time, the temperature of the temperature detection unit, and the capacitance of the capacitive sensor.
  • the ice maker according to the present invention includes an ice tray, an ice motor, a temperature detection unit, and a control unit.
  • An ice-making groove is formed in the ice tray.
  • the icing motor drives the ice to be iced in the ice making groove.
  • the temperature detection unit detects a temperature of the temperature detection unit.
  • the control unit controls the divergence motor.
  • the control unit operates the icing motor or the icing heater at the time of starting ice or the start of heating, calculated by using the temperature detected by the temperature detection unit over time, or the slope of the temperature graph, and the accumulated ice-making time.
  • the ice maker has a forced icing delay time after water supply. Accordingly, the icing delay or the accumulation of the ice maker time improves the freezing accuracy by setting the temperature below a specific temperature, such as 0 degrees.
  • the controller determines that the refrigerator has a high operating rate and sets the temperature sensed by the temperature detector to the first The first set time below the -1 set temperature may be determined as the operating time of the ice heater or the ice motor.
  • the control unit is a second set time that lags in time from the first set time Afterwards, when the temperature sensed by the temperature detection unit is higher than the first set temperature, the second set time may be determined as an operation time of the ice heater or the ice motor.
  • the controller is configured to, when the temperature detected by the temperature detection unit is equal to or less than the first set temperature, after a third set time which lags in time from the second set time , when the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature, the third set time may be determined as an operation time of the ice heater or the ice motor.
  • An ice maker control method is a control method for an ice maker including an ice tray and a temperature detection unit.
  • An ice-making groove is formed in the ice tray.
  • the temperature detection unit detects a temperature around the temperature detection unit.
  • the method for controlling an ice maker according to the present invention is composed of a water supply step, an ice making step, and a step of determining the operation time of the ice heater or the ice motor.
  • ice making water is supplied to the ice making groove.
  • the ice making water is made of ice.
  • an operation time of the ice heater or the ice motor is determined using the time elapsed after the ice-making water is supplied and the temperature sensed by the temperature detection unit.
  • a plurality of operation times of the ice heater or the ice motor are determined.
  • the determining of the operating time of the icing heater or the icing motor may include the determining of the operating time of the first icing heater or the icing motor and the determining of the operating timing of the second icing heater or the icing motor.
  • the first ice heater or ice motor operation time determination step after a first set time after the water supply step, if the temperature detected by the temperature detecting unit is less than or equal to the first set temperature, it is determined that the refrigerator has a high operating rate and the temperature detecting unit is detected When one temperature is equal to or less than the 1-1 set temperature, the first set time may be determined as the operating time of the ice heater or the ice motor.
  • the second set time after the first set time after the water supply step, when the temperature sensed by the temperature detection unit is higher than the first set temperature, it lags in time than the first set time
  • the second set time when the temperature sensed by the temperature detection unit is higher than the first set temperature, the second set time may be determined as the operation time of the ice heater or the ice motor.
  • the step of determining the operating time of the ice heater or the ice motor may further include the step of determining the operating time of the third ice heater or the ice motor.
  • the third ice heater or ice motor operation time determination step after the second set time after the water supply step, when the temperature detected by the temperature detection unit is less than or equal to the first set temperature, the second set time lags in time
  • the third set time when the temperature sensed by the temperature detection unit is equal to or less than a second set temperature higher than the first set temperature, the third set time may be determined as an operation time of the ice heater or the ice motor.
  • the ice maker according to the present invention includes an ice tray, a temperature detection unit, a capacitive sensor, and a control unit.
  • An ice-making groove is formed in the ice tray.
  • the temperature detection unit detects a temperature around the temperature detection unit.
  • the capacitance sensor senses the capacitance of the ice-making groove.
  • the control unit determines the operating time of the ice heater or the ice motor by using the elapsed time since the ice making water is supplied to the ice making groove, the temperature detected by the temperature detection unit, and the capacitance detected by the capacitive sensor. .
  • the control unit determines the operating time of the ice heater or the ice motor according to the rising temperature in a plurality of stages. That is, the control unit according to the present invention determines the operating time of the ice heater or the ice motor by calculating the capacitance, temperature, and time as a comprehensive combination.
  • the control unit After a first set time after the ice-making water is supplied to the ice-making groove, the control unit operates if the temperature detected by the temperature detection unit is equal to or less than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set electrostatic capacity It is determined that the refrigerator has a high rate, and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature, and the first set time may be determined as the operating time of the ice heater or the ice motor.
  • the control unit is a second set time that lags in time from the first set time Afterwards, if the temperature detected by the temperature detection unit is higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the second set time is set to the operating time of the ice heater or the ice motor can be determined as
  • the controller is configured to, when the temperature detected by the temperature detection unit is equal to or less than the first set temperature, after a third set time which lags in time from the second set time , when the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the third set time is set to the ice heater or the It can be determined by the operating time of the ice motor.
  • An ice maker includes an ice tray having an ice making groove formed therein, an ice motor driving the ice to be removed from the ice making groove, and a control unit controlling the ice motor, wherein the control unit delays the ice making time forcibly, After the delay time has elapsed, the ice motor or the ice heater may be operated according to the time point of the ice temperature as compared with the preset delay time.
  • An ice maker includes an ice tray having an ice making groove formed therein, an ice motor driving to cause ice to be iced in the ice making groove, and a controller controlling the ice motor, wherein the controller includes an ice-making accumulation time or accumulation of less than a predetermined temperature. It is calculated using time, but when the temperature is above a certain temperature, the accumulated time is excluded, or the accumulated time is newly calculated or added to the existing accumulated time to operate the ice motor or the ice heater at the time of starting ice or heating start time. there is.
  • the method for controlling an ice maker according to the present invention is a control method for an ice maker including an ice tray, a temperature detection unit, and a capacitive sensor.
  • An ice-making groove is formed in the ice tray.
  • the temperature detection unit detects a temperature around the temperature detection unit.
  • the capacitance sensor senses the capacitance of the ice-making groove.
  • the method for controlling an ice maker according to the present invention is composed of a water supply step, an ice making step, and a step of determining the operation time of the ice heater or the ice motor.
  • ice making water is supplied to the ice making groove.
  • the ice making water is made of ice.
  • the ice heater or the ice motor determines the operating time of the ice motor.
  • the operating time of the ice heater or the ice motor is determined according to the rising temperature in a plurality of steps.
  • the determining of the operating time of the icing heater or the icing motor may include the determining of the operating time of the first icing heater or the icing motor and the determining of the operating timing of the second icing heater or the icing motor.
  • the first ice heater or ice motor operation time determination step after a first set time after the water supply step, the temperature detected by the temperature detection unit is less than or equal to the first set temperature, and the capacitance detected by the capacitive sensor is the set power failure If the capacity is greater than the capacity, it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature, and the first set time may be determined as the operating time of the ice heater or the ice motor.
  • the second ice heater or ice motor operation time determination step after the first set time after the water supply step, when the temperature sensed by the temperature detection unit is higher than the first set temperature, it lags in time than the first set time
  • the second set time is set to the ice heater or the It can be determined by the operating time of the ice motor.
  • the step of determining the operating time of the ice heater or the ice motor may further include the step of determining the operating time of the third ice heater or the ice motor.
  • the third ice heater or ice motor operation time determination step after the second set time after the water supply step, when the temperature detected by the temperature detection unit is less than or equal to the first set temperature, the second set time lags in time After the third set time, if the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the third set time is It may be determined by the operating time of the ice heater or the ice motor.
  • the method for controlling an ice maker is a method for controlling an ice maker comprising an ice tray having an ice making groove formed thereon and a temperature detecting unit sensing a surrounding temperature, the water supplying step of supplying ice making water to the ice making groove, and ice making the ice making water
  • the ice making step and the ice making time are forcibly delayed, but after the preset delay time has elapsed, the ice heater or the ice motor operation time determination step is compared with the preset delay time to determine the operating time of the ice heater or the ice motor according to the ice temperature time Including, in the step of determining the operation time of the ice heater or the ice motor, a plurality of operation points of the ice heater or the ice motor may be determined.
  • the method for controlling an ice maker is a method for controlling an ice maker comprising an ice tray having an ice making groove formed thereon and a temperature detecting unit sensing a surrounding temperature, the water supplying step of supplying ice making water to the ice making groove, and ice making the ice making water It is calculated using the ice making step and the accumulated ice making time or the accumulated time below a certain temperature, but when the temperature is higher than the predetermined temperature, the accumulated time is excluded, or the accumulated time is newly calculated or the accumulated time is added to the existing accumulated time to calculate an ice heater or an ice motor and determining an operating time of an ice heater or an ice motor to determine an operation time of the icing heater or an ice motor.
  • the ice maker according to the present invention may further include an ice heater.
  • the refrigerator according to the present invention includes the ice maker.
  • the operating time of the ice heater or the ice motor is provided with a plurality of operating points, regardless of the size (capacity), operation rate, ambient temperature and cooling capacity of the refrigerator, the above There is an effect of efficiently removing the ice at a point in time when ice is completed in the ice making groove of the ice tray among a plurality of operation points.
  • 1 is a graph showing an ice-making time according to an operating rate of a refrigerator
  • FIG. 2 is a perspective view illustrating a refrigerator in which an ice maker according to a first embodiment of the present invention is installed;
  • FIG. 3 is a perspective view schematically showing an ice maker according to a first embodiment of the present invention.
  • FIG. 4 is a control block diagram of an ice maker according to a first embodiment of the present invention.
  • FIG. 5 is a view schematically showing an ice maker according to a second embodiment of the present invention.
  • FIG. 6 is a control block diagram of an ice maker according to a second embodiment of the present invention.
  • FIG. 7 is an operation diagram of an ice maker according to a second embodiment of the present invention.
  • FIG. 8 is a view showing the start time of ice removal according to time and temperature after ice-making water is supplied to the ice-making groove of the ice tray;
  • FIG. 9 is a flowchart according to a control method of an ice maker according to an embodiment of the present invention.
  • FIG. 10 is a detailed flowchart of the ice transfer start time determination step shown in FIG. 9;
  • FIG. 11 is a control block diagram of an ice maker according to another embodiment of the present invention.
  • FIG. 12 is a detailed flowchart of an ice removal start time determination step in a method for controlling an ice maker according to another embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a refrigerator in which an ice maker according to a first embodiment of the present invention is installed.
  • the ice maker 100 may be installed in a storage compartment of the refrigerator 1 .
  • the refrigerator 1 may include a cabinet having a rectangular cylinder shape forming the storage compartment with an open front, and a door disposed in front of the cabinet to open and close the open front of the storage compartment.
  • the storage chamber may be formed of a plurality of storage chambers partitioned by a barrier therein, and the door may be provided as a plurality of doors for opening and closing the plurality of storage chambers.
  • the storage compartment may include at least one of a refrigerating compartment and a freezing compartment.
  • An ice maker 100 may be installed in the storage room.
  • the ice maker 100 may make ice.
  • An ice box may be disposed under the ice maker 100 in the storage compartment. The ice completed in the ice maker 100 may be removed and stored in the ice box.
  • the ice makers 100 and 200 may be largely divided into two types according to a method of transferring the ice completed in the ice making groove of the ice tray from the ice making groove. That is, the ice makers 100 and 200 include an ejector-type ice maker 100 including an ejector 120 as shown in FIGS. 3 and 4, and a twist-type ice maker as shown in FIGS. 5 to 7 ( 200) may be included.
  • the refrigerator with a high operating rate may have a higher operating rate as the cooling performance is lower, and may have a higher operating rate due to a high ambient temperature. rate can be high.
  • a refrigerator with a low operating rate may have a low operating rate due to high cooling performance, and may have a low operating rate due to a low ambient temperature.
  • FIG. 3 is a perspective view schematically showing the ice maker according to the first embodiment of the present invention
  • FIG. 4 is a control block diagram of the ice maker according to the first embodiment of the present invention.
  • the ice maker 100 may include an ice tray 110 , an ejector 120 , and a control box 130 .
  • An ice-making groove 115 may be formed in the upper surface of the ice tray 110 .
  • the ice making groove 115 may be a space that becomes ice after the ice making water is filled.
  • the ice-making grooves 115 may be formed of a plurality of ice-making grooves 115 spaced apart from each other in the longitudinal direction of the ice tray 110 .
  • a part of the upper surface of the ice tray 110 is concave and a part of the lower surface of the ice tray 110 is convex. This can be
  • Ice making water may be supplied to the ice making groove 115 from a water supply device installed on one side of the ice tray 110 .
  • the ice-making water supplied to the ice-making groove 115 exchanges heat with the cold air in the storage compartment of the refrigerator 1 to generate ice ( 4) can be
  • the ice tray 110 may be horizontally protruded from one side of the control box 130 .
  • the ice tray 110 may be formed to be elongated in a horizontal direction.
  • a slit into which one end of the ice tray 110 in the longitudinal direction is inserted may be formed on one side of the control box 130 .
  • One end in the longitudinal direction of the ice tray 110 may be inserted into the slit formed on one side of the control box 130 to be coupled to the control box 130 .
  • the ejector 120 may separate the ice made in the ice making groove 115 from the ice making groove 115 . After ice is made from the ice making groove 115 of the ice tray 110 , the ejector 120 may remove the ice in the ice making groove 115 from the ice making groove 115 .
  • the ejector 120 may be formed with a long axis disposed in the horizontal direction on one side of the control box 130 .
  • the ejector 120 may be disposed to be spaced upward from the ice tray 110 .
  • An ejection pin 125 may be protruded from the circumferential surface of the ejector 120 .
  • the eject pin 125 may be formed to protrude in a radial direction of the ejector 120 .
  • the end of the eject pin 125 is inserted into the ice-making groove 115 , so that ice in the ice-making groove 115 can be removed from the ice-making groove 115 .
  • the eject pin 125 may push the ice in the ice-making groove 115 to release the ice from the ice-making groove 115 .
  • the ejection pins 125 may be formed of a plurality of ejector pins 125 spaced apart from each other in the longitudinal direction of the ejector 120 .
  • the number of eject pins 125 may be the same as the number of ice-making grooves 115 formed in the ice tray 110 .
  • the plurality of eject pins 125 may be disposed at positions corresponding to the plurality of ice-making grooves 115 .
  • ice made in the ice making groove 115 of the ice tray 110 may be disposed while being fixed to the ice making groove 115 . Accordingly, when the eject pin 125 removes ice made from the ice-making groove 115 from the ice-making groove 115 , the ice may not be easily removed from the ice-making groove 115 .
  • the lower surface of the ice tray 110 may allow the ice to be easily removed from the ice-making groove 115 .
  • An ice heater 113 may be installed there.
  • the ice heater 113 may generate heat before the eject pin 125 transfers the ice made in the ice making groove 115 into the ice in the ice making groove 15 .
  • the ice heater 113 may supply heat to the ice-making groove 115 to slightly melt the ice in the ice-making groove 115 .
  • the ice heater 113 may slightly melt the ice in the ice making groove 115 so that the ice made in the ice making groove 115 can be easily removed by the eject pin 125 .
  • a control unit 131 may be disposed inside the control box 130 .
  • an icing motor 135 for rotating the ejector 120 in the circumferential direction of the ejector 120 may be disposed inside the control box 130 .
  • the ice heater 113 and the ice motor 135 may be controlled by the controller 131 .
  • the controller 131 may control the ice heater 113 to generate heat to slightly melt the ice adhering to the ice making groove 115 . Thereafter, the controller 131 controls the icing motor 135 so that the icing motor 135 rotates the ejector 120 , so that the eject pin 125 moves the ice from the ice-making groove 115 .
  • the rotating shaft of the icing motor 135 may be coupled to the ejector 120 through a coupler.
  • the ejector 120 may extend in the direction of the rotation axis of the icing motor 135 .
  • the ejector 120 may be disposed on the same axis as the rotation shaft of the icing motor 135 .
  • the rotating shaft of the icing motor 135 is connected to the ejector 120 through a plurality of gears, so that the rotational force of the rotating shaft of the icing motor 135 may be transmitted to the ejector 120 through the plurality of gears.
  • the ejector 120 may be disposed on an axis different from the rotation axis of the icing motor 135 .
  • the ice heater 113 may be formed as a U-shaped tube that is heated by hot gas flowing through the inside of the ice heater 113 .
  • the controller 131 may control the hot gas valve to supply or block the hot gas into the ice heater 113 so that the hot gas is supplied or blocked into the ice heater 113 .
  • the ice heater 113 may be formed of a hot wire or a planar heater that is heated by electricity input to the ice heater 113 .
  • the control unit 131 may control a current supply switch that supplies or cuts off the electricity to the ice heater 113 so that the electricity is supplied or cut off to the ice heater 113 .
  • control unit 131 may be provided in the ice maker 100 , may be provided in the refrigerator 1 , or may be provided in both the ice maker 100 and the refrigerator 1 . That is, the controller 131 may be provided in at least one of the refrigerator 1 and the ice maker 100 .
  • the controller 131 may include a refrigerator controller provided in the refrigerator 1 and an ice machine controller provided in the ice maker 100 .
  • the ice maker 100 may be operated by receiving a control signal from the refrigerator controller, or may be operated through a control signal from the ice maker controller.
  • the ice maker control unit may receive an ice signal from the refrigerator control unit to control the ice icing motor 135 . Control power of the ice maker control unit may be supplied from the refrigerator control unit.
  • the ice maker 100 may further include a temperature detection unit 161 .
  • the temperature detection unit 161 may include all sensing means capable of sensing the surrounding temperature, and may be a temperature sensor or infrared rays.
  • the temperature detection unit 161 may be installed on the ice tray 61 .
  • the temperature detection unit 161 may be installed to be exposed to the ice tray 110 .
  • the temperature detection unit 161 may detect a surrounding temperature, and the temperature detected by the temperature detection unit 161 may be input to the control unit 131 .
  • the controller 131 may control at least one of the ice heater 113 and the ice motor 135 by using the temperature input from the temperature detection unit 161 .
  • the control unit 131 sets the set time for the ice in the ice-making groove 115. can be determined as the start time of divergence for divergence.
  • the control unit 131 determines that the ice-making water in the ice-making groove 115 has changed to complete ice, and sets the set time to start the ice-diving. time can be determined.
  • the ice maker may start the ice divergence in the ice making groove 115 at the set time. That is, when the control unit 131 determines the set time as the start time of the ice moving, the ice heater 113 is heated so that the ice in the ice making groove 115 of the ice tray 110 is slightly melted, and then the ice motor ( By controlling 135 , the ejector 120 may be rotated so that the eject pin 125 may remove the ice in the ice making groove 115 .
  • FIG. 5 is a view schematically showing an ice maker according to a second embodiment of the present invention
  • FIG. 6 is a control block diagram of the ice maker according to the second embodiment of the present invention
  • FIG. 7 is an ice maker according to a second embodiment of the present invention. is the working diagram of
  • the same names are given to the same objects as in the above-described first embodiment, and detailed descriptions thereof are omitted, and only different points will be described.
  • the ice maker 200 according to the second embodiment of the present invention does not include the ejector 120 and the ice heater 113 of the first embodiment described above.
  • the ice maker 200 may include an ice tray 210 and a control box 230 .
  • An ice-making groove 215 may be formed in the ice tray 210 .
  • An icing motor 235 and a plurality of gears 240 may be installed in the control box 230 .
  • the plurality of gears 240 may include a driving gear 241 and a driven gear 242 .
  • the driving gear 241 may transmit the driving force of the icing motor 235 to the driven gear 242 .
  • the driving gear 241 may include a plurality of gears.
  • the rotation shaft coupled to the center of the driven gear 242 may be coupled to one side of the ice tray 210 .
  • the other side of the ice tray 210 may be fixed to the structure of the ice maker 200 . Therefore, when the icing motor 230 is driven, the plurality of gears 240 are rotated by the driving force of the icing motor 230 , and accordingly, the ice tray 210 is rotated and twisted, so that the ice in the ice-making groove 215 is rotated. Ice may be removed from the ice-making groove 215 .
  • a temperature detection unit 261 may be installed in the ice tray 210 , and a control unit 231 may be installed in the control box 230 .
  • the temperature detected by the temperature detection unit 261 may be input to the control unit 231, and the control unit 261 calculates the start time of the ice transfer using the temperature detected by the temperature detection unit 261, and at the start time of the ice transfer
  • the ice motor 235 may be operated.
  • the controller 131 may control the ice heater 113 and the ice motor 135 at the start time of ice drift, and in the second embodiment, the controller 231 controls the start time of ice drift.
  • the divergence motor 135 can be controlled.
  • the first embodiment and the second embodiment may have in common that each of the ice moving motors 135 and 235 is controlled by the respective controllers 131 and 231 at the time of starting the ice moving. That is, in the first embodiment, the icing motor 135 can rotate the ejector 120 so that the eject pin 125 transfers ice from the ice-making groove 115 of the ice tray 110 at the start of the ice-moving. In the second embodiment, the icing motor 235 rotates the ice tray 210 to twist the ice tray 210 so that ice moves from the ice-making groove 215 of the ice tray 210 at the start of the ice-diving. can do it
  • the icing motor 135 of the first embodiment is driven so that ice is iced in the ice making groove 115 of the ice tray 110 at the start of the ice removal
  • the icing motor 235 of the second embodiment is driven at the start of the ice removal.
  • the ice tray 210 may have a common feature of being driven so that the ice is transferred from the ice-making groove 215 of the ice tray 210 .
  • control unit 131 may operate the icing motor 135 at a plurality of ice divergence start timings, and may operate the icing heater 113 at a plurality of heating start timings.
  • controller 231 may operate the divergence motor 235 at a plurality of ice divergence start timings.
  • the ice maker 100 when the ice-making water supplied to the ice-making groove 115 of the ice tray 110 is in a state of complete ice, the ice maker 100 must be removed from the ice-making groove 115 by the ejection pin 125 .
  • the operating rate of the refrigeration cycle of the refrigerator 1 may be different depending on the temperature of the refrigerator 1 and the cooling capacity may be different depending on the size (capacity) of the refrigerator 1, the ice making groove 115 ), it cannot be concluded that the ice-making water has completely turned into ice just because a certain time has elapsed after the ice-making water was supplied.
  • the ice maker according to the first embodiment of the present invention may operate at least one of the ice heater 113 and the ice motor 135 at a plurality of ice moving start times.
  • the controller 131 may operate the ice heater 113 or the ice motor 135 at a plurality of ice drift start times.
  • the controller 131 controls the ice heater at a plurality of ice-moving start times calculated by using the elapsed time after the ice-making water is supplied to the ice-making groove 115 and the temperature of the storage compartment of the refrigerator 1 or the temperature of the ice tray 110 . 113 or the divergence motor 135 may be operated.
  • the controller 131 may operate the icing heater 113 or the icing motor 135 at a plurality of ice removal start times calculated using the accumulated ice making time or the accumulated time below a predetermined temperature.
  • the control unit 131 may set a set temperature of a temporally following time among a plurality of ice-diving start times to be higher than a set temperature of a temporally preceding time among the plurality of ice-dividing start times.
  • the ice heater 113 and the ice motor 135 may be controlled by a refrigerator controller provided in the refrigerator 1 .
  • the refrigerator controller operates the icing heater 113 or the icing motor 135 at a plurality of ice-diving start times calculated using the elapsed time after the ice-making water is supplied to the ice-making groove 115 and the temperature of the ice tray 110 . can do it
  • the ice maker controller may receive an ice signal from the refrigerator controller provided in the refrigerator 1 to control the ice heater 113 and the ice motor 135 .
  • the controller 131 may operate the icing heater 113 or the icing motor 135 at the start time of ice divergence corresponding to the set temperature input by the user through the input unit.
  • the input unit may be provided as a button type or a touch type.
  • the input unit may be installed in the ice maker 100 or installed in the refrigerator 1 .
  • the input unit may be installed on the door of the refrigerator 1 .
  • the user may input the set temperature for adjusting the plurality of ice-diving start times through the input unit.
  • control unit 131 may force the ice-diving heater 113 or the ice-diving motor 135 to operate after a set time.
  • the controller 131 may accumulate and link the time between the water supply function and the drifting function.
  • the controller 131 may control the cumulative linkage of the time between the drifting and the next drifting.
  • the control unit 131 is a capacitance
  • the water supply can be controlled using the sensor 162 (refer to FIG. 11 ).
  • the control circuit of the ice maker control unit may be electrically connected to the control circuit of the refrigerator control unit.
  • the controller 131 may operate the ice heater 113 and the ice motor 135 at the time of ice start that is calculated using the accumulated ice making time, the temperature of the temperature detection unit 161 and the capacitance of the capacitive sensor 162 . there is.
  • the controller 131 may operate the icing heater 113 and the icing motor 135 at the start time of ice removal calculated using the slope of the temperature graph sensed by the temperature detection unit 161 over time and the accumulated ice making time. .
  • the control unit 131 may control the ice-dividing start time according to the rising temperature in a plurality of stages. That is, the control unit 131 according to the present invention can determine the operating time of the ice heater 113 and the ice motor 135 by calculating the capacitance, temperature, and time as a comprehensive combination.
  • the ice start time, the first ice start time, the second ice start time, the third ice start time, and the fourth ice start time point have the same meaning as the operating time of the ice heater 113 or the ice motor 135. there is. That is, in the case of the ice maker 100 of the first embodiment, the ice-dividing start time, the first ice-dividing start time, the second ice-dividing start time, the third ice-dividing start time, and the fourth ice-dividing start time are the ice heaters ( 113) may have the same meaning as the operation time.
  • the ice-dividing start time, the first ice-dividing start time, the second ice-diverging start time, the third ice-dividing start time, and the fourth ice-dividing start time are determined by an ice motor ( 135) may be the time to operate.
  • FIG. 8 is a view showing the start time of ice removal according to time and temperature after ice-making water is supplied to the ice-making groove of the ice tray.
  • the controller 131 may determine the temperature sensed by the temperature detector 161 after a first set time T1 after the ice making water is supplied from the water supply device to the ice making groove 115 . If the temperature detected by the temperature detection unit 161 after the first set time T1 is equal to or less than the first set temperature Z, the controller 131 determines that the refrigerator has a high operating rate and sets the temperature detected by the temperature detection unit to the second setting.
  • the first set time T1 below the 1-1 set temperature may be determined as the first ice drift start time.
  • the first set time T1 may be 50 minutes
  • the first set temperature Z may be -9 degrees Celsius.
  • the control unit 131 controls the ice-making groove 115 to make ice.
  • the ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
  • control unit 131 determines that the temperature detected by the temperature detection unit 161 determined after the first set time T1 after the ice making water is supplied from the water supply device to the ice making groove 115 is the first set temperature (Z). If higher, the temperature detected by the temperature detection unit 161 may be re-determined after a second set time T2 that is temporally later than the first set time T1. If the temperature detected by the temperature detection unit 161 after the second set time T2 is higher than the first set temperature Z, the controller 131 sets the second set time T2 as a second ice drift start time.
  • the second set time T2 is a time 10 to 20 minutes later than the first set time T1, which is 50 minutes, from 60 minutes to 60 minutes after the ice making water is supplied from the water supply device to the ice making groove 115 . It may be 70 minutes, and the temperature C2 higher than the first set temperature Z may be -7 degrees Celsius. That is, when it is determined that the ice-making water is not completely frozen 50 minutes after the ice-making water is supplied to the ice-making groove 115 from the water supply device, which is the first ice-moving start time, the control unit 131 determines the first ice-moving start time.
  • the temperature detected by the temperature detection unit 161 is determined again, and when the temperature detected by the temperature detection unit 161 is higher than -9°C, the ice-making water in the ice-making groove 115 is completely changed to ice. As a result, ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
  • the temperature detected by the temperature detection unit 161 determined after the second set time T2 after the ice making water is supplied from the water supply device to the ice making groove 115 is less than or equal to the first set temperature
  • the temperature sensed by the temperature detection unit 161 may be determined again. If the temperature detected by the temperature detection unit 161 after the third set time T3 is less than or equal to the second set temperature C, the control unit 131 determines the third set time T3 as the third ice-diving start time.
  • the third set time T3 is a time 10 minutes to 20 minutes later than the second set time T2, and may be 70 minutes to 90 minutes after the ice making water is supplied from the water supply device to the ice making groove 115.
  • the second set temperature (C) is a temperature higher than the first set temperature (Z) may be -5 °C.
  • the controller 131 determines that the ice-making water is not completely iced 60 to 70 minutes after the ice-making water is supplied to the ice-making groove 115 from the water supply device, which is the time when the second ice-diving starts, the second ice After 10 to 20 minutes from the start time, the temperature detected by the temperature detection unit 161 is determined again, and if the temperature detected by the temperature detection unit 161 is -5°C or less, the ice-making water in the ice-making groove 115 is completely ice. When it is determined that the ice has changed, the ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
  • control unit 131 forcibly delays the ice making time, but after a preset delay time has elapsed, compared with the preset delay time, the ice motor or the ice heater is operated according to the time of the ice temperature,
  • the control unit 131 calculates using the accumulated ice-making time or the accumulated time below a certain temperature, but when the temperature is above the predetermined temperature, the accumulated time is excluded, the accumulated time is newly calculated, or the accumulated time is calculated in addition to the existing accumulated time to start the ice removal or It may be configured to operate the ice motor or the ice heater at the time of starting heating.
  • FIG. 9 is a flowchart illustrating a method for controlling an ice maker according to an embodiment of the present invention.
  • the method for controlling an ice maker may include a water supply step ( S1000 ), an ice making step ( S2000 ), and an ice removal start time determination step ( S3000 ).
  • ice-making water may be supplied to the ice-making grooves 115 of the ice tray 110 .
  • ice making step ( S2000 ) ice making water supplied to the ice making groove 115 of the ice tray 110 may be made ice.
  • ice removal start time determination step ( S3000 ) a time point at which ice is removed from the ice making groove 115 may be determined.
  • FIG. 10 is a detailed flowchart of the step of determining an ice transfer start time shown in FIG. 9 .
  • the method for controlling the ice maker according to the embodiment of the present invention will be described in connection with the operation of the ice maker according to the embodiment of the present invention.
  • the controller 131 detects the time elapsed after the ice-making water is supplied to the ice-making groove 115 and the temperature detection unit 161 detects it. Using one temperature, it is possible to determine an ice-dividing start time point for ice-removing in the ice-making groove 115 .
  • the controller 131 may determine the ice-diverging start time according to the rising temperature in a plurality of stages.
  • the ice-diving start time determination step (S3000) includes the first ice-diving start time determination step (S3), the second ice-diving start time determination step (S5), the third ice-diving start time determination step (S7), and the fourth ice transfer start time determination step ( S9) may be included.
  • a temperature input step (S1) may be performed.
  • the temperature detection unit 161 may detect a temperature around the temperature detection unit 161 , and the temperature detected by the temperature detection unit 161 may be input to the control unit 131 .
  • a first temperature determination step ( S2 ) may be performed.
  • the control unit 131 may determine whether the temperature detected by the temperature detection unit 161 after the water supply step S1000 is equal to or less than a preset temperature A.
  • the first temperature determination step (S2) if the temperature detected by the temperature detection unit 161 is equal to or less than the preset temperature (A), it may be determined whether the first set time (T1) has elapsed (S4).
  • the first set time (T1) elapse determination step (S4) if the temperature detected by the temperature detection unit 161 is below the preset temperature (B), it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is At the first set temperature (Z) or less or at the 1-1 set temperature (Z-1), the first ice-diving start time determining step (S3) or the second ice moving start time determination step (S5) may be performed.
  • the controller 131 sets the first set time T1 or the first set time T1-1 to start the first ice transfer. It may be determined as the time point S3 or the second ice transfer start time point S5.
  • the controller 131 may determine the second set time (T2) as the third ice divergence start time (S7).
  • the third set time (T3) elapsed determination step (S8) is in progress, and it can be determined whether the temperature is below the preset temperature D.
  • the third set time (T3) elapse determination step (S8) if the preset temperature (D) or less, the temperature detected by the temperature detection unit is the preset temperature (D) and the fourth ice divergence start time determining step (S9) can be performed there is.
  • the controller 131 may determine the third set time (T3) as the fourth ice divergence start time (S9).
  • the fourth ice moving start time may be a time point at which at least one of the ice heater 113 and the ice motor 135 is forcibly operated.
  • the process may return to the fourth temperature determination step S9 .
  • FIG. 11 is a control block diagram of an ice maker according to another embodiment of the present invention.
  • the same reference numerals are assigned to the same elements as those of the above-described embodiment, and detailed descriptions thereof will be omitted, and only different points will be described.
  • the ice maker according to another embodiment of the present invention may further include a capacitive sensor 162 compared to the above-described embodiment.
  • the capacitance sensor 162 may detect the capacitance of the ice making groove 115 .
  • the controller 131 may determine whether the ice-making water supplied to the ice-making groove 115 has become completely ice by using the capacitance input from the capacitive sensor 162 .
  • the capacitance of the ice-making groove 115 is proportional to the dielectric constant of the object accommodated in the ice-making groove 115 .
  • the permittivity of water is 80 and the permittivity of ice is 100, when the ice-making water supplied to the ice-making grooves 115 becomes complete ice, the capacitance increases compared to the case in which the ice-making water is not frozen.
  • the control unit 131 may set the capacitance of the ice making groove 115 when the ice making water in the ice making groove 115 becomes completely ice.
  • the controller 131 may compare the capacitance input from the capacitive sensor 162 with the set capacitance to determine whether the ice-making water supplied to the ice-making groove 115 has completely turned into ice. When the capacitance input from the capacitive sensor 162 is equal to or greater than the set capacitance, the controller 131 may determine that the ice-making water supplied to the ice-making groove 115 has become completely ice.
  • the control unit 131 After determining whether the ice-making water supplied to the ice-making groove 115 has become completely ice, the control unit 131 compares the capacitance input from the capacitive sensor 162 with the set capacitance, as in the above-described embodiment, It is judged again whether the ice-making water supplied to 115) has turned into complete ice. Ice can be started in the ice making groove 115 .
  • the controller 131 uses the time elapsed after the ice making water is supplied to the ice making groove 115 , the temperature sensed by the temperature detector 161 , and the capacitance sensed by the capacitive sensor 162 to make ice. It is possible to determine an ice-diving start time point for ice-removing from the groove 115 .
  • the controller 131 may determine the start time of the ice drifting according to the rising temperature in a plurality of stages.
  • the control unit 131 determines the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 after the first set time T1 after the ice making water is supplied to the ice making groove 15 . can do.
  • the control unit 131 determines that the temperature detected by the temperature detection unit 161 after the first set time T1 is equal to or less than the first set temperature Z, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature Z-1, and the first set time T1 may be determined as the first ice moving start time.
  • the temperature detected by the temperature detection unit 161 determined after the first set time T1 after the ice making water is supplied to the ice making groove 115 is higher than the first set temperature Z
  • the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 may be determined again.
  • the control unit 131 determines that the temperature detected by the temperature detection unit 161 after the second set time T2 is higher than the first set temperature Z and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the second set time T2 may be determined as the second ice divergence start time.
  • control unit 131 controls the ice-making groove 115 to be supplied with ice-making water, and when the temperature detected by the temperature detection unit 161 determined after the second set time T2 is equal to or less than the first set temperature Z, the After the third set time T3 , the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 may be determined again.
  • the control unit 31 determines that the temperature detected by the temperature detection unit 161 after the third set time T3 is equal to or less than the second set temperature C, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the third set time T3 may be determined as the third ice divergence start time.
  • FIG. 12 is a detailed flowchart of an ice removal start time determination step in a method for controlling an ice maker according to another embodiment of the present invention.
  • a method for controlling an ice maker according to another embodiment of the present invention will be described in connection with the operation of the ice maker according to another embodiment of the present invention.
  • the controller 131 controls the time elapsed after the ice making water is supplied to the ice making groove 115 , and the temperature detection unit 161 . ) and the capacitance sensed by the capacitive sensor 162 , it is possible to determine an ice-diverging start time for icing ice in the ice-making groove 115 .
  • the controller 131 may determine the ice-dividing start time according to the rising temperature in a plurality of stages.
  • the ice-diving start time determination step ( S3000 ) may include a first ice-diving start time determination step ( S30 ), a second ice-diving start time determination step ( S50 ), and a third ice transfer start time determination step ( S70 ).
  • the temperature and capacitance input step (S10) may be performed.
  • the temperature detection unit 161 may detect the surrounding temperature
  • the capacitance sensor 162 may detect the capacitance of the ice-making groove 115 .
  • the temperature sensed by the temperature detector 161 and the capacitance sensed by the capacitive sensor 162 may be input to the controller 131 .
  • a first temperature and capacitance determination step ( S20 ) may be performed.
  • the controller 131 determines that the temperature detected by the temperature detection unit 161 is the first set temperature (Z) after the first set time (T1) after the water supply step (S1000). ) or less, it can be determined whether the capacitance detected by the capacitance sensor 162 is equal to or greater than the set capacitance.
  • the temperature detected by the temperature detection unit 161 is equal to or less than the first set temperature Z, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, it is determined that the refrigerator has a high operating rate, and the temperature detected by the temperature detection unit is below the 1-1 set temperature (Z-1), and the first ice-dividing start time determining step ( S30 ) may be performed.
  • the controller 131 may determine the first set time T1 as the first ice divergence start time.
  • the second temperature and capacitance determination step (S40) when the temperature detected by the temperature detection unit 161 is higher than the first set temperature (Z), the second temperature and capacitance determination step (S40) is performed can be In the second temperature and capacitance determination step (S40), the controller 131 determines that after the second set time T2, the temperature detected by the temperature detection unit 161 is higher than the first set temperature Z, and the capacitance It may be determined whether the capacitance detected by the sensor 162 is equal to or greater than the set capacitance.
  • the second temperature and capacitance determination step (S40) may be performed.
  • the controller 131 may determine the second set time T2 as the second ice divergence start time.
  • the third temperature and capacitance determination step (S60) when the temperature detected by the temperature detection unit 161 is equal to or less than the first set temperature (Z), the third temperature and capacitance determination step (S60) will be performed can In the third temperature and capacitance determination step (S60), the controller 131 determines that after the third set time T3, the temperature detected by the temperature detection unit 161 is equal to or less than the second set temperature C, and the capacitance It may be determined whether the capacitance detected by the sensor 162 is equal to or greater than the set capacitance.
  • the third temperature and capacitance determination step (S60) the temperature detected by the temperature detection unit 161 is equal to or less than the second set temperature C, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the third ice transfer start time determination step ( S70 ) may be performed.
  • the controller 131 may determine the third set time T3 as the third ice divergence start time.
  • the third set time (T3) follows the third set time (T3).
  • the set time may be determined as the fourth ice divergence start time.
  • the fourth ice moving start time may be a time point at which at least one of the ice heater 113 and the ice motor 135 is forcibly operated.
  • the operating points of the ice heater 113 or the ice motors 135 and 235 (T1, T2, T3) Since the plurality of operating time points (T1, T2, T3) are provided, the ice is among the plurality of operating points (T1, T2, T3) regardless of the size (capacity), operating rate, ambient temperature, and cooling capacity of the refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

Provided are an ice maker, a refrigerator and a control method therefor, enabling the efficient separation of ice from ice making grooves in an ice tray at the time point when the ice making is completed, regardless of the size (capacity), operation rate, surrounding temperature and cooling capacity of a refrigerator. To this end, the ice maker, according to the present invention, comprises: an ice tray having ice making grooves formed therein; an ice separating motor driven so that ice is separated from the ice making grooves; a temperature detection unit; and a control unit for controlling the ice separating motor, wherein the control unit operates the ice separating motor or an ice separating heater at an ice separation starting time point or a heating starting time point calculated using temperatures detected according to time by the temperature detection unit, or a cumulative ice making time.

Description

제빙기, 냉장고 및 그 제어방법Ice maker, refrigerator and control method therefor
본 발명은 제빙기, 냉장고 및 그 제어방법에 관한 것이다.The present invention relates to an ice maker, a refrigerator, and a method for controlling the same.
일반적으로 냉장고는 음식물을 저온 상태로 보관하기 위한 가전기기로서, 음식을 냉장 상태로 보관하는 냉장실과, 음식물을 냉동 상태로 보관하는 냉동실 중 적어도 하나를 구비한다.BACKGROUND ART In general, a refrigerator is a home appliance for storing food in a low temperature state, and includes at least one of a refrigerating chamber storing food in a refrigerated state and a freezing chamber storing food in a frozen state.
상기 냉장고는 압축기, 응축기, 팽창기구 및 증발기를 냉매가 순환하는 냉동사이클을 이용하여 상기 냉장실 및 상기 냉동실 중 적어도 하나로 냉기를 공급할 수 있다.The refrigerator may supply cold air to at least one of the refrigerating chamber and the freezing chamber by using a refrigeration cycle in which a refrigerant circulates through a compressor, a condenser, an expansion mechanism, and an evaporator.
그리고, 상기 냉장실 및 상기 냉동실 중 적어도 하나에는 제빙실이 구비되고, 상기 제빙실에는 제빙기가 설치된다.An ice maker is provided in at least one of the refrigerating compartment and the freezing compartment, and an ice maker is installed in the ice maker.
상기 제빙기는 제빙수를 공급받아 얼음을 제조하는 기능을 수행하는 장치이다.The ice maker is a device that receives ice-making water and produces ice.
상기 제빙기는 제빙홈이 형성된 아이스 트레이를 포함한다. 상기 제빙홈에 제빙수가 공급된 후 상기 제빙홈에 공급된 제빙수를 얼려서 얼음이 생성될 수 있다.The ice maker includes an ice tray having an ice making groove. After the ice-making water is supplied to the ice-making grooves, ice may be generated by freezing the ice-making water supplied to the ice-making grooves.
상기 제빙홈으로 공급된 제빙수를 얼리는 방식은 간냉식 제빙방식과 직냉식 제빙방식이 있다.There are two types of methods for freezing the ice-making water supplied to the ice-making grooves: an intercooling type ice making method and a direct cooling type ice making method.
상기 간냉식 제빙방식은 상기 아이스 트레이가 배치된 공간인 상기 제빙실에 냉장고의 증발기와 열교환된 냉기를 공급하여서, 상기 냉기에 의해 상기 제빙홈에 공급된 제빙수를 얼리는 방식이다.The intercooling type ice making method is a method of supplying cold air heat-exchanged with an evaporator of a refrigerator to the ice making chamber, which is a space in which the ice tray is disposed, and freezing the ice water supplied to the ice making groove by the cold air.
상기 직냉식 제빙방식은 상기 아이스 트레이의 내부에 설치된 디바이스, 냉각장치 및 냉각부에 냉장고의 팽창기구를 통과한 냉매를 공급하여서, 상기 냉매에 의해 상기 제빙홈에 공급된 제빙수를 얼리는 방식이다.In the direct cooling type ice making method, the refrigerant that has passed through the expansion mechanism of the refrigerator is supplied to a device, a cooling device, and a cooling unit installed inside the ice tray, and the ice water supplied to the ice making groove is frozen by the refrigerant.
한편, 상기 제빙홈에서 얼음의 제빙이 완료되면, 이빙수단을 통해 상기 제빙홈에서 얼음을 이빙하여 아이스 박스에 저장한다.On the other hand, when the ice making in the ice making groove is completed, ice is transferred from the ice making groove through an ice icing means and stored in an ice box.
상기 제빙홈에서 얼음을 이빙하는 방식은, 상기 아이스 트레이를 비틀어서 상기 제빙홈에 고착된 얼음을 이빙시키는 트위스트(twist) 방식과, 상기 아이스 트레이에 설치된 이빙히터가 발열하여 상기 제빙홈에 고착된 얼음을 살짝 녹인 후 이젝터로 상기 제빙홈에서 얼음을 밀어내는 이젝터 방식이 있다.The method of icing the ice in the ice-making groove includes a twist method of twisting the ice tray to transfer the ice fixed to the ice-making groove, and the ice heater installed in the ice tray heats up and adheres to the ice-making groove. There is an ejector method in which ice is slightly melted and then the ice is pushed out of the ice making groove with an ejector.
대한민국 등록특허공보 제10-1439460호(2014.09.12. 공고일)(이하, '종래 기술'이라 함)에는 이젝터 방식의 '제빙기'가 개시되어 있다.Republic of Korea Patent Publication No. 10-1439460 (published on Sept. 12, 2014) (hereinafter referred to as 'prior art') discloses an ejector type 'ice machine'.
상기 종래 기술과 같은 제빙기는, 상기 아이스 트레이의 제빙홈에 제빙수가 급수된 후, 대략 50분 정도의 시간이 흐르면 상기 제빙홈 내의 제빙수는 얼음으로 변한다. 따라서, 상기 종래 기술의 제빙기는 상기 제빙홈에 제빙수가 급수된 후 대략 50분 정도의 시간이 흐른 후 상기 제빙홈에서 이빙을 시작하게 된다.In an ice maker as in the prior art, after about 50 minutes passes after ice-making water is supplied to the ice-making groove of the ice tray, the ice-making water in the ice-making groove is changed to ice. Accordingly, in the prior art ice maker, after about 50 minutes have elapsed after the ice-making water is supplied to the ice-making groove, the ice-removing is started in the ice-making groove.
도 1은 냉장고의 운전율에 따른 제빙시간을 나타내는 그래프이다.1 is a graph showing an ice-making time according to an operating rate of a refrigerator.
도 1을 참조하면, 냉장고의 운전율이 낮은 경우에는 운전율이 높은 경우에 비해, 제빙시간이 긴 것을 알 수 있다. 즉, 냉장고의 운전율이 높은 경우에는 제빙시간이 a만큼 소요되지만, 냉장고의 운전율이 낮은 경우에는 제빙시간이 b만큼 소요된다.Referring to FIG. 1 , it can be seen that when the operating rate of the refrigerator is low, the ice making time is longer than when the operating rate is high. That is, when the operating rate of the refrigerator is high, the ice-making time is a, but when the operating rate of the refrigerator is low, the ice-making time is b.
즉, 냉장고 주위 온도가 낮으면 상기 냉동사이클의 운전율이 낮아져서 상기 냉동사이클이 작동안하는 시간이 늘어나게 되므로, 이 경우 상기 제빙기는 이빙이 많이 늦어지게 되거나 이빙온도(대략 -8도씨)에 도달하지 못하게 되어 얼음이 만들어지지 못하게 되는 문제점이 있었다.That is, when the ambient temperature of the refrigerator is low, the operating rate of the refrigeration cycle is lowered, and the time during which the refrigeration cycle is not in operation increases. There was a problem that the ice could not be made because it was not possible.
또한, 냉장고가 작으면 냉각능력이 모자라 제빙기의 이빙온도에 이르지 못하여 제빙능력이 낮아지게 되는 문제점이 있었다.In addition, when the refrigerator is small, the cooling capacity is insufficient, and the ice making temperature of the ice maker cannot be reached, thereby lowering the ice making capacity.
또한, 냉장고의 설정온도(강, 중, 약)가 높으면 저용량 냉장고의 경우 제빙기의 이빙온도에 도달하는 시간이 많이 늦어지거나 도달되지 못하게 되어 제빙량이 현저하게 적어지게 되는 문제점이 있었다.In addition, when the set temperature (strong, medium, or weak) of the refrigerator is high, in the case of a low-capacity refrigerator, the time to reach the ice-making temperature of the ice maker is greatly delayed or cannot be reached, so that the amount of ice is significantly reduced.
이와 같이, 냉장고의 상황은 다양한데 비하여 기존의 제빙기는 이빙개시 시점이 하나로 세팅되어 있어 냉장고의 다양한 조건에 대하여 효율적인 대응이 되지 않고 있는 실정이다.As described above, while the situation of the refrigerator is diverse, the existing ice maker has only one ice-breaking start time, and thus does not effectively respond to various conditions of the refrigerator.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
대한민국 등록특허공보 제10-1439460호(2014.09.12. 공고일)Republic of Korea Patent Publication No. 10-1439460 (2014.09.12. Announcement date)
본 발명이 해결하려는 과제는, 냉장고의 사이즈(용량), 운전율, 주위온도 및 냉각능력에 상관없이 아이스 트레이의 제빙홈에서 얼음이 완성된 시점에 상기 얼음을 효율적으로 이빙할 수 있는 제빙기, 냉장고 및 그 제어방법을 제공하는 것이다.An object to be solved by the present invention is an ice maker capable of efficiently removing ice at the time when ice is completed in an ice-making groove of an ice tray regardless of the size (capacity), operating rate, ambient temperature, and cooling capacity of the refrigerator, and the refrigerator. and to provide a method for controlling the same.
본 발명의 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 달성하기 위하여, 본 발명에 따른 제빙기는 제빙홈이 형성된 아이스 트레이, 상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터, 상기 이빙모터가 장착되는 케이싱 및 냉장고 또는 제빙기에 구비된 제빙기의 모터 제어부 또는 히터 제어부를 포함하고, 상기 제어부는 급수 후 이빙개시 전 강제 지연시간이 적용되며 상기 강제 지연시간 이후에 제빙시간과 제빙온도의 조합에 따라 설정된 이빙조건을 만족하면 상기 이빙모터 또는 이빙히터를 동작시킨다. 즉, 본 발명은 이빙개시 포인트가 2 이상의 설정된 시간, 2 이상의 설정된 온도 및 이들의 조합에 따라 제어될 수 있다.In order to achieve the above object, an ice maker according to the present invention includes an ice tray having an ice making groove formed therein, an icing motor driving the ice to move from the ice making groove, a casing to which the icing motor is mounted, and a motor of an ice maker provided in a refrigerator or ice maker. a control unit or a heater control unit, wherein the control unit applies a forced delay time before starting ice after water supply, and after the forced delay time, if the ice-making condition set according to the combination of the ice-making time and the ice-making temperature is satisfied, the ice motor or the ice heater is operated make it work That is, the present invention can be controlled according to two or more set times, two or more set temperatures, and combinations thereof for the ice start point.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터 및 제어부로 구성된다. 이러한 구성들은 제비기 또는 냉장고에 포함될 수 있다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 제어부는 상기 이빙모터를 제어한다. 상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 냉장고 저장실의 온도 또는 상기 아이스 트레이의 온도를 이용하여, 산출한 이빙개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray, an ice motor, and a control unit. These components may be included in a swallowing machine or a refrigerator. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The control unit controls the divergence motor. The controller operates the icing motor or the icing heater at the calculated ice-diving start time using the time elapsed after the ice-making water is supplied to the ice-making groove and the temperature of the refrigerator storage compartment or the ice tray.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터 및 제어부로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 제어부는 상기 이빙모터를 제어한다. 상기 제어부는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray, an ice motor, and a control unit. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The control unit controls the divergence motor. The control unit operates the icing motor or the icing heater at the starting time of the ice making or the heating start time calculated by using the accumulated ice making time or the accumulated time below a predetermined temperature.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터 및 제어부로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 제어부는 상기 이빙모터를 제어한다. 상기 제어부에는 복수개의 이빙개시 시점 중 시간적으로 후행하는 시점의 이빙 설정온도가, 상기 복수개의 이빙개시 시점 중 시간적으로 선행하는 시점의 설정온도보다 높게 설정된다.The ice maker according to the present invention includes an ice tray, an ice motor, and a control unit. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The control unit controls the divergence motor. In the control unit, a set temperature of a time that follows in time from among a plurality of start points of ice is set to be higher than a set temperature of a time that precedes in time among the plurality of start points of ice.
본 발명에 따른 제빙기는 아이스 트레이 및 이빙모터로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 이빙모터는 냉장고에 구비된 냉장고 제어부에 의해 제어된다. 상기 냉장고 제어부는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 상기 아이스 트레이부의 온도를 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray and an ice motor. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The icing motor is controlled by a refrigerator controller provided in the refrigerator. The refrigerator control unit operates the icing motor or the icing heater at the time of starting ice or heating start time calculated using the time elapsed after the ice-making water is supplied to the ice-making groove and the temperature of the ice tray unit.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터 및 제빙기 제어부로 구성된다. 상기 아이스 트레이에는 상기 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 제빙기 제어부는 냉장고에 구비된 냉장고 제어부로부터 이빙신호를 전달받아 상기 이빙모터를 제어한다. 상기 제빙기 제어부는 복수개의 이빙개시 시점 또는 복수개의 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray, an ice motor, and an ice maker control unit. The ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The ice maker controller receives an ice signal from a refrigerator controller provided in the refrigerator to control the ice motor. The ice maker controller operates the icing motor or the icing heater at a plurality of ice moving start times or a plurality of heating start times.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터, 온도검출부, 정전용량센서 및 제어부로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 온도검출부는 상기 온도검출부 주변의 온도를 감지한다. 상기 정전용량센서는 상기 제빙홈의 정전용량을 감지한다. 상기 제어부는 상기 이빙모터를 제어한다. 상기 제어부는 제빙누적시간, 상기 온도검출부의 온도 및 상기 정전용량센서의 정전용량을 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray, an ice motor, a temperature detection unit, a capacitive sensor, and a control unit. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The temperature detection unit detects a temperature around the temperature detection unit. The capacitance sensor senses the capacitance of the ice-making groove. The control unit controls the divergence motor. The controller operates the icing motor or the icing heater at the calculated ice-diving start time or heating start time using the accumulated ice-making time, the temperature of the temperature detection unit, and the capacitance of the capacitive sensor.
본 발명에 따른 제빙기는 아이스 트레이, 이빙모터, 온도검출부 및 제어부로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 이빙모터는 상기 제빙홈에서 얼음이 이빙되도록 구동한다. 상기 온도검출부는 상기 온도검출부 온도를 감지한다. 상기 제어부는 상기 이빙모터를 제어한다. 상기 제어부는 상기 온도검출부가 시간에 따라 감지한 온도, 또는 온도 그래프의 기울기와, 제빙누적시간을 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킨다.The ice maker according to the present invention includes an ice tray, an ice motor, a temperature detection unit, and a control unit. An ice-making groove is formed in the ice tray. The icing motor drives the ice to be iced in the ice making groove. The temperature detection unit detects a temperature of the temperature detection unit. The control unit controls the divergence motor. The control unit operates the icing motor or the icing heater at the time of starting ice or the start of heating, calculated by using the temperature detected by the temperature detection unit over time, or the slope of the temperature graph, and the accumulated ice-making time.
제빙기는 급수후 강제 이빙 지연시간을 갖는다, 이에 따라, 이빙지연 또는 제빙시간 누적은 0도 등의 특정 온도 이하온도를 설정하여 결빙 정확도를 향상시킨다.The ice maker has a forced icing delay time after water supply. Accordingly, the icing delay or the accumulation of the ice maker time improves the freezing accuracy by setting the temperature below a specific temperature, such as 0 degrees.
상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다. 상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높으면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.When the temperature detected by the temperature detection unit is equal to or less than the first set temperature after a first set time after the ice making water is supplied to the ice making groove, the controller determines that the refrigerator has a high operating rate and sets the temperature sensed by the temperature detector to the first The first set time below the -1 set temperature may be determined as the operating time of the ice heater or the ice motor. When the temperature detected by the temperature detection unit is higher than the first set temperature after the first set time after the ice making water is supplied to the ice making groove, the control unit is a second set time that lags in time from the first set time Afterwards, when the temperature sensed by the temperature detection unit is higher than the first set temperature, the second set time may be determined as an operation time of the ice heater or the ice motor.
상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.After the second set time after the ice-making water is supplied to the ice-making groove, the controller is configured to, when the temperature detected by the temperature detection unit is equal to or less than the first set temperature, after a third set time which lags in time from the second set time , when the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature, the third set time may be determined as an operation time of the ice heater or the ice motor.
본 발명에 따른 제빙기의 제어방법은 아이스 트레이 및 온도검출부를 포함하는 제빙기의 제어방법이다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 온도검출부는 상기 온도검출부 주변의 온도를 감지한다. 본 발명에 따른 제빙기의 제어방법은 급수단계, 제빙단계 및 이빙히터 또는 이빙모터 작동시점 결정단계로 구성된다. 상기 급수단계에서는 상기 제빙홈에 제빙수가 급수된다. 상기 제빙단계에서는 상기 제빙수를 제빙한다. 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 제빙수가 급수된 후 경과된 시간과, 상기 온도검출부가 감지한 온도를 이용하여, 이빙히터 또는 이빙모터의 작동 시점을 결정한다. 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수개가 결정된다.An ice maker control method according to the present invention is a control method for an ice maker including an ice tray and a temperature detection unit. An ice-making groove is formed in the ice tray. The temperature detection unit detects a temperature around the temperature detection unit. The method for controlling an ice maker according to the present invention is composed of a water supply step, an ice making step, and a step of determining the operation time of the ice heater or the ice motor. In the water supply step, ice making water is supplied to the ice making groove. In the ice making step, the ice making water is made of ice. In the determining the operation time of the ice heater or the ice motor, an operation time of the ice heater or the ice motor is determined using the time elapsed after the ice-making water is supplied and the temperature sensed by the temperature detection unit. In the determining operation timing of the ice heater or the ice motor, a plurality of operation times of the ice heater or the ice motor are determined.
상기 이빙히터 또는 상기 이빙모터 작동시점 결정단계는 제1 이빙히터 또는 이빙모터 작동시점 결정단계 및 제2 이빙히터 또는 이빙모터 작동시점 결정단계로 구성될 수 있다. 상기 제1 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다. 상기 제2 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높으면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.The determining of the operating time of the icing heater or the icing motor may include the determining of the operating time of the first icing heater or the icing motor and the determining of the operating timing of the second icing heater or the icing motor. In the first ice heater or ice motor operation time determination step, after a first set time after the water supply step, if the temperature detected by the temperature detecting unit is less than or equal to the first set temperature, it is determined that the refrigerator has a high operating rate and the temperature detecting unit is detected When one temperature is equal to or less than the 1-1 set temperature, the first set time may be determined as the operating time of the ice heater or the ice motor. In the second ice heater or ice motor operation time determination step, after the first set time after the water supply step, when the temperature sensed by the temperature detection unit is higher than the first set temperature, it lags in time than the first set time After the second set time, when the temperature sensed by the temperature detection unit is higher than the first set temperature, the second set time may be determined as the operation time of the ice heater or the ice motor.
상기 이빙히터 또는 이빙모터 작동시점 결정단계는 제3 이빙히터 또는 이빙모터 작동시점 결정단계가 더 구성될 수 있다. 상기 제3 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.The step of determining the operating time of the ice heater or the ice motor may further include the step of determining the operating time of the third ice heater or the ice motor. In the third ice heater or ice motor operation time determination step, after the second set time after the water supply step, when the temperature detected by the temperature detection unit is less than or equal to the first set temperature, the second set time lags in time After the third set time, when the temperature sensed by the temperature detection unit is equal to or less than a second set temperature higher than the first set temperature, the third set time may be determined as an operation time of the ice heater or the ice motor.
본 발명에 따른 제빙기는 아이스 트레이, 온도검출부, 정전용량센서 및 제어부로 구성된다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 온도검출부는 상기 온도검출부 주변의 온도를 감지한다. 상기 정전용량센서는 상기 제빙홈의 정전용량을 감지한다. 상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 상기 온도검출부가 감지한 온도와, 상기 정전용량센서가 감지한 정전용량을 이용하여, 이빙히터 또는 이빙모터의 작동시점을 결정한다. 상기 제어부는 상기 이빙히터 또는 상기 이빙모터의 작동시점을 복수의 단계별로 상승온도에 따라 결정한다. 즉, 본 발명에 따른 상기 제어부는 이빙히터 또는 상기 이빙모터의 작동시점을 상기 정전용량, 온도 및 시간을 종합적인 조합으로 계산하여 결정한다.The ice maker according to the present invention includes an ice tray, a temperature detection unit, a capacitive sensor, and a control unit. An ice-making groove is formed in the ice tray. The temperature detection unit detects a temperature around the temperature detection unit. The capacitance sensor senses the capacitance of the ice-making groove. The control unit determines the operating time of the ice heater or the ice motor by using the elapsed time since the ice making water is supplied to the ice making groove, the temperature detected by the temperature detection unit, and the capacitance detected by the capacitive sensor. . The control unit determines the operating time of the ice heater or the ice motor according to the rising temperature in a plurality of stages. That is, the control unit according to the present invention determines the operating time of the ice heater or the ice motor by calculating the capacitance, temperature, and time as a comprehensive combination.
상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다. 상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.After a first set time after the ice-making water is supplied to the ice-making groove, the control unit operates if the temperature detected by the temperature detection unit is equal to or less than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set electrostatic capacity It is determined that the refrigerator has a high rate, and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature, and the first set time may be determined as the operating time of the ice heater or the ice motor. When the temperature detected by the temperature detection unit is higher than the first set temperature after the first set time after the ice making water is supplied to the ice making groove, the control unit is a second set time that lags in time from the first set time Afterwards, if the temperature detected by the temperature detection unit is higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the second set time is set to the operating time of the ice heater or the ice motor can be determined as
상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.After the second set time after the ice-making water is supplied to the ice-making groove, the controller is configured to, when the temperature detected by the temperature detection unit is equal to or less than the first set temperature, after a third set time which lags in time from the second set time , when the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the third set time is set to the ice heater or the It can be determined by the operating time of the ice motor.
본 발명에 따른 제빙기는 제빙홈이 형성된 아이스 트레이, 상기 제빙홈에서 얼음이 이빙 되도록 구동하는 이빙모터 및 상기 이빙모터를 제어하는 제어부;를 포함하고, 상기 제어부는 제빙 시간을 강제 지연하되, 기 설정된 지연시간 경과 후 상기 기 설정된 지연시간과 비교하여 이빙 온도 시점에 따라 상기 이빙모터 또는 이빙히터를 동작시킬 수 있다.An ice maker according to the present invention includes an ice tray having an ice making groove formed therein, an ice motor driving the ice to be removed from the ice making groove, and a control unit controlling the ice motor, wherein the control unit delays the ice making time forcibly, After the delay time has elapsed, the ice motor or the ice heater may be operated according to the time point of the ice temperature as compared with the preset delay time.
본 발명에 따른 제빙기는 제빙홈이 형성된 아이스 트레이, 상기 제빙홈에서 얼음이 이빙 되도록 구동하는 이빙모터 및 상기 이빙모터를 제어하는 제어부;를 포함하고, 상기 제어부는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출하되, 상기 일정온도 이상시 상기 누적시간을 제외하거나 신규로 누적시간을 산출 또는 기존 누적시간에 추가 산출하여 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시킬 수 있다.An ice maker according to the present invention includes an ice tray having an ice making groove formed therein, an ice motor driving to cause ice to be iced in the ice making groove, and a controller controlling the ice motor, wherein the controller includes an ice-making accumulation time or accumulation of less than a predetermined temperature. It is calculated using time, but when the temperature is above a certain temperature, the accumulated time is excluded, or the accumulated time is newly calculated or added to the existing accumulated time to operate the ice motor or the ice heater at the time of starting ice or heating start time. there is.
본 발명에 따른 제빙기의 제어방법은 아이스 트레이, 온도검출부 및 정전용량센서를 포함하는 제빙기의 제어방법이다. 상기 아이스 트레이에는 제빙홈이 형성된다. 상기 온도검출부는 상기 온도검출부 주변의 온도를 감지한다. 상기 정전용량센서는 상기 제빙홈의 정전용량을 감지한다. 본 발명에 따른 제빙기의 제어방법은 급수단계, 제빙단계 및 이빙히터 또는 이빙모터 작동시점 결정단계로 구성된다. 상기 급수단계에서는 상기 제빙홈에 제빙수가 급수된다. 상기 제빙단계에서는 상기 제빙수를 제빙한다. 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 상기 온도검출부가 감지한 온도와, 상기 정전용량센서가 감지한 정전용량을 이용하여, 이빙히터 또는 이빙모터의 작동시점을 결정한다. 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수의 단계별로 상승온도에 따라 결정된다.The method for controlling an ice maker according to the present invention is a control method for an ice maker including an ice tray, a temperature detection unit, and a capacitive sensor. An ice-making groove is formed in the ice tray. The temperature detection unit detects a temperature around the temperature detection unit. The capacitance sensor senses the capacitance of the ice-making groove. The method for controlling an ice maker according to the present invention is composed of a water supply step, an ice making step, and a step of determining the operation time of the ice heater or the ice motor. In the water supply step, ice making water is supplied to the ice making groove. In the ice making step, the ice making water is made of ice. In the step of determining the operating time of the ice heater or the ice motor, the ice heater or It determines the operating time of the ice motor. In the step of determining the operating time of the ice heater or the ice motor, the operating time of the ice heater or the ice motor is determined according to the rising temperature in a plurality of steps.
상기 이빙히터 또는 이빙모터 작동시점 결정단계는 제1 이빙히터 또는 이빙모터 작동시점 결정단계 및 제2 이빙히터 또는 이빙모터 작동시점 결정단계로 구성될 수 있다. 상기 제1 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다. 상기 제2 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다. The determining of the operating time of the icing heater or the icing motor may include the determining of the operating time of the first icing heater or the icing motor and the determining of the operating timing of the second icing heater or the icing motor. In the first ice heater or ice motor operation time determination step, after a first set time after the water supply step, the temperature detected by the temperature detection unit is less than or equal to the first set temperature, and the capacitance detected by the capacitive sensor is the set power failure If the capacity is greater than the capacity, it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature, and the first set time may be determined as the operating time of the ice heater or the ice motor. In the second ice heater or ice motor operation time determination step, after the first set time after the water supply step, when the temperature sensed by the temperature detection unit is higher than the first set temperature, it lags in time than the first set time After a second set time, when the temperature detected by the temperature detection unit is higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitive capacity, the second set time is set to the ice heater or the It can be determined by the operating time of the ice motor.
상기 이빙히터 또는 이빙모터 작동시점 결정단계는 제3 이빙히터 또는 이빙모터 작동시점 결정단계가 더 구성될 수 있다. 상기 제3 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 급수단계 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이고 상기 정전용량센서가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정할 수 있다.The step of determining the operating time of the ice heater or the ice motor may further include the step of determining the operating time of the third ice heater or the ice motor. In the third ice heater or ice motor operation time determination step, after the second set time after the water supply step, when the temperature detected by the temperature detection unit is less than or equal to the first set temperature, the second set time lags in time After the third set time, if the temperature detected by the temperature detection unit is less than or equal to a second set temperature higher than the first set temperature and the capacitance detected by the capacitive sensor is equal to or greater than the set capacitance, the third set time is It may be determined by the operating time of the ice heater or the ice motor.
본 발명에 따른 제빙기의 제어방법은 제빙홈이 형성된 아이스 트레이 및 주변의 온도를 감지하는 온도검출부를 포함하는 제빙기의 제어방법에 있어서, 상기 제빙홈에 제빙수가 급수되는 급수단계, 상기 제빙수를 제빙하는 제빙단계 및 제빙 시간을 강제 지연하되, 기 설정된 지연시간 경과 후 상기 기 설정된 지연시간과 비교하여 이빙 온도 시점에 따라 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계를 포함하고, 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수개가 결정될 수 있다.The method for controlling an ice maker according to the present invention is a method for controlling an ice maker comprising an ice tray having an ice making groove formed thereon and a temperature detecting unit sensing a surrounding temperature, the water supplying step of supplying ice making water to the ice making groove, and ice making the ice making water The ice making step and the ice making time are forcibly delayed, but after the preset delay time has elapsed, the ice heater or the ice motor operation time determination step is compared with the preset delay time to determine the operating time of the ice heater or the ice motor according to the ice temperature time Including, in the step of determining the operation time of the ice heater or the ice motor, a plurality of operation points of the ice heater or the ice motor may be determined.
본 발명에 따른 제빙기의 제어방법은 제빙홈이 형성된 아이스 트레이 및 주변의 온도를 감지하는 온도검출부를 포함하는 제빙기의 제어방법에 있어서, 상기 제빙홈에 제빙수가 급수되는 급수단계, 상기 제빙수를 제빙하는 제빙단계 및 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출하되, 상기 일정온도 이상시 상기 누적시간을 제외하거나 신규로 누적시간을 산출 또는 기존 누적시간에 추가 산출하여 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계를 포함하고, 상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수개가 결정될 수 있다.The method for controlling an ice maker according to the present invention is a method for controlling an ice maker comprising an ice tray having an ice making groove formed thereon and a temperature detecting unit sensing a surrounding temperature, the water supplying step of supplying ice making water to the ice making groove, and ice making the ice making water It is calculated using the ice making step and the accumulated ice making time or the accumulated time below a certain temperature, but when the temperature is higher than the predetermined temperature, the accumulated time is excluded, or the accumulated time is newly calculated or the accumulated time is added to the existing accumulated time to calculate an ice heater or an ice motor and determining an operating time of an ice heater or an ice motor to determine an operation time of the icing heater or an ice motor.
또, 본 발명에 따른 상기 제빙기는 이빙히터를 더 포함할 수 있다.In addition, the ice maker according to the present invention may further include an ice heater.
본 발명에 따른 냉장고는 상기 제빙기를 포함한다.The refrigerator according to the present invention includes the ice maker.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.
본 발명에 따른 제빙기, 냉장고 및 그 제어방법은, 이빙히터 또는 이빙모터 작동시점이 복수개의 작동시점으로 구비되기 때문에, 냉장고의 사이즈(용량), 운전율, 주위온도 및 냉각능력에 상관없이, 상기 복수개의 작동시점 중에서 상기 아이스 트레이의 제빙홈에서 얼음이 완성된 시점에 상기 얼음을 효율적으로 이빙할 수 있는 효과가 있다.In the ice maker, refrigerator, and control method thereof according to the present invention, since the operating time of the ice heater or the ice motor is provided with a plurality of operating points, regardless of the size (capacity), operation rate, ambient temperature and cooling capacity of the refrigerator, the above There is an effect of efficiently removing the ice at a point in time when ice is completed in the ice making groove of the ice tray among a plurality of operation points.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 냉장고의 운전율에 따른 제빙시간을 나타내는 그래프,1 is a graph showing an ice-making time according to an operating rate of a refrigerator;
도 2는 본 발명의 제1 실시예에 의한 제빙기가 설치되는 냉장고를 나타내는 사시도,2 is a perspective view illustrating a refrigerator in which an ice maker according to a first embodiment of the present invention is installed;
도 3은 본 발명의 제1 실시예에 의한 제빙기를 개략적으로 나타내는 사시도,3 is a perspective view schematically showing an ice maker according to a first embodiment of the present invention;
도 4는 본 발명의 제1 실시예에 의한 제빙기의 제어 블록도,4 is a control block diagram of an ice maker according to a first embodiment of the present invention;
도 5는 본 발명의 제2 실시예에 의한 제빙기를 개략적으로 나타내는 도면,5 is a view schematically showing an ice maker according to a second embodiment of the present invention;
도 6은 본 발명의 제2 실시예에 의한 제빙기의 제어 블록도,6 is a control block diagram of an ice maker according to a second embodiment of the present invention;
도 7은 본 발명의 제2 실시예에 의한 제빙기의 작동도,7 is an operation diagram of an ice maker according to a second embodiment of the present invention;
도 8은 아이스 트레이의 제빙홈에 제빙수가 급수된 후 시간과 온도에 따른 이빙개시 시점을 나타내는 도면,FIG. 8 is a view showing the start time of ice removal according to time and temperature after ice-making water is supplied to the ice-making groove of the ice tray;
도 9는 본 발명의 실시예에 의한 제빙기의 제어방법에 따른 순서도,9 is a flowchart according to a control method of an ice maker according to an embodiment of the present invention;
도 10은 도 9에 도시된 이빙개시 시점 결정단계의 구체적인 순서도,10 is a detailed flowchart of the ice transfer start time determination step shown in FIG. 9;
도 11은 본 발명의 다른 실시예에 의한 제빙기의 제어 블록도,11 is a control block diagram of an ice maker according to another embodiment of the present invention;
도 12는 본 발명의 다른 실시예에 의한 제빙기의 제어방법에서 이빙개시 시점 결정단계의 구체적인 순서도이다.12 is a detailed flowchart of an ice removal start time determination step in a method for controlling an ice maker according to another embodiment of the present invention.
이하, 본 발명의 실시예들에 의한 제빙기, 냉장고 및 그 제어방법을 도면들을 참고하여 설명하도록 한다.Hereinafter, an ice maker, a refrigerator, and a method for controlling the same according to embodiments of the present invention will be described with reference to the drawings.
도 2는 본 발명의 제1 실시예에 의한 제빙기가 설치되는 냉장고를 나타내는 사시도이다.2 is a perspective view illustrating a refrigerator in which an ice maker according to a first embodiment of the present invention is installed.
도 2를 참조하면, 본 발명의 제1 실시예에 의한 제빙기(100)는 냉장고(1)의 저장실에 설치될 수 있다.Referring to FIG. 2 , the ice maker 100 according to the first embodiment of the present invention may be installed in a storage compartment of the refrigerator 1 .
냉장고(1)는 전면이 개방된 상기 저장실을 형성하는 사각통 형상의 캐비닛과, 상기 캐비닛에 전방에 배치되어, 상기 저장실의 개방된 전면을 개폐하는 도어를 포함할 수 있다.The refrigerator 1 may include a cabinet having a rectangular cylinder shape forming the storage compartment with an open front, and a door disposed in front of the cabinet to open and close the open front of the storage compartment.
상기 저장실은 내부에 베리어에 의해 구획된 복수개의 저장실로 형성될 수 있으며, 상기 도어는 상기 복수개의 저장실을 개폐하는 복수개의 도어로 구비될 수 있다.The storage chamber may be formed of a plurality of storage chambers partitioned by a barrier therein, and the door may be provided as a plurality of doors for opening and closing the plurality of storage chambers.
상기 저장실은 냉장실 및 냉동실 중 적어도 하나를 포함할 수 있다. 상기 저장실에는 제빙기(100)가 설치될 수 있다. 제빙기(100)는 얼음을 제빙할 수 있다. 상기 저장실에는 상기 제빙기(100)의 하측에 아이스 박스가 배치될 수 있다. 상기 제빙기(100)에서 완성된 얼음은 이빙되어 상기 아이스 박스 내에 저장될 수 있다.The storage compartment may include at least one of a refrigerating compartment and a freezing compartment. An ice maker 100 may be installed in the storage room. The ice maker 100 may make ice. An ice box may be disposed under the ice maker 100 in the storage compartment. The ice completed in the ice maker 100 may be removed and stored in the ice box.
한편, 제빙기(100, 200)는, 아이스 트레이의 제빙홈에서 완성된 얼음을 상기 제빙홈으로부터 이빙시키는 방식에 따라 크게 두가지로 구분될 수 있다. 즉, 제빙기(100, 200)는 도 3 및 도 4에 도시된 바와 같이 이젝터(120)를 포함하는 이젝터 타입의 제빙기(100)와, 도 5 내지 도 7에 도시된 바와 같이 트위스트 타입의 제빙기(200)를 포함할 수 있다.On the other hand, the ice makers 100 and 200 may be largely divided into two types according to a method of transferring the ice completed in the ice making groove of the ice tray from the ice making groove. That is, the ice makers 100 and 200 include an ejector-type ice maker 100 including an ejector 120 as shown in FIGS. 3 and 4, and a twist-type ice maker as shown in FIGS. 5 to 7 ( 200) may be included.
여기서, 도 1에 도시된 바와 같이, 본 발명에 따른 운전율이 높은 냉장고는 냉각 성능이 낮을수록 운전율이 높을 수 있고, 주위 온도가 높아서 운전율이 높을 수 있으며, 내부에 저장식품이 많아도 운전율이 높을 수 있다. 반대로, 운전율이 낮은 냉장고는 냉각 성능이 높아서 운전율이 낮을 수 있고, 주위 온도가 낮아서 운전율이 낮을 수 있다.Here, as shown in FIG. 1 , the refrigerator with a high operating rate according to the present invention may have a higher operating rate as the cooling performance is lower, and may have a higher operating rate due to a high ambient temperature. rate can be high. Conversely, a refrigerator with a low operating rate may have a low operating rate due to high cooling performance, and may have a low operating rate due to a low ambient temperature.
도 3은 본 발명의 제1 실시예에 의한 제빙기를 개략적으로 나타내는 사시도, 도 4는 본 발명의 제1 실시예에 의한 제빙기의 제어 블록도이다.3 is a perspective view schematically showing the ice maker according to the first embodiment of the present invention, and FIG. 4 is a control block diagram of the ice maker according to the first embodiment of the present invention.
도 3 및 도 4를 참조하면, 본 발명의 제1 실시예에 의한 제빙기(100)는, 아이스 트레이(110)와, 이젝터(120)와, 제어박스(130)를 포함할 수 있다.3 and 4 , the ice maker 100 according to the first embodiment of the present invention may include an ice tray 110 , an ejector 120 , and a control box 130 .
아이스 트레이(110)의 상면에는 제빙홈(115)이 형성될 수 있다. 제빙홈(115)은 제빙수가 채워진 후 얼음이 되는 공간일 수 있다. 제빙홈(115)은 아이스 트레이(110)의 길이방향으로 따라 서로 이격된 복수개의 제빙홈(115)으로 형성될 수 있다.An ice-making groove 115 may be formed in the upper surface of the ice tray 110 . The ice making groove 115 may be a space that becomes ice after the ice making water is filled. The ice-making grooves 115 may be formed of a plurality of ice-making grooves 115 spaced apart from each other in the longitudinal direction of the ice tray 110 .
아이스 트레이(110)의 상면 일부가 오목하고 아이스 트레이(110)의 하면 일부는 볼록하게, 아이스 트레이(110)를 프레스 또는 다이케스팅 가공하면, 아이스 트레이(110)의 오목한 상면 일부는 제빙홈(115)이 될 수 있다.A part of the upper surface of the ice tray 110 is concave and a part of the lower surface of the ice tray 110 is convex. this can be
제빙홈(115)에는 아이스 트레이(110)의 일측에 설치된 급수장치로부터 제빙수가 공급될 수 있다.Ice making water may be supplied to the ice making groove 115 from a water supply device installed on one side of the ice tray 110 .
제빙홈(115)에 상기 제빙수가 공급된 후, 냉장고(1)의 저장실에 냉기가 공급되면, 상기 제빙홈(115)으로 공급된 제빙수는 냉장고(1)의 저장실의 냉기와 열교환되어서 얼음(4)이 될 수 있다.After the ice-making water is supplied to the ice-making groove 115 and cold air is supplied to the storage compartment of the refrigerator 1, the ice-making water supplied to the ice-making groove 115 exchanges heat with the cold air in the storage compartment of the refrigerator 1 to generate ice ( 4) can be
아이스 트레이(110)는 제어박스(130)의 일측에 수평방향으로 돌출 배치될 수 있다. 아이스 트레이(110)는 수평방향으로 길게 형성될 수 있다. 제어박스(130)의 일측에는 아이스 트레이(110)의 길이방향의 일단이 삽입되는 슬릿이 형성될 수 있다. 아이스 트레이(110)의 길이방향의 일단은 제어박스(130)의 일측에 형성된 상기 슬릿으로 삽입되어 제어박스(130)에 결합될 수 있다.The ice tray 110 may be horizontally protruded from one side of the control box 130 . The ice tray 110 may be formed to be elongated in a horizontal direction. A slit into which one end of the ice tray 110 in the longitudinal direction is inserted may be formed on one side of the control box 130 . One end in the longitudinal direction of the ice tray 110 may be inserted into the slit formed on one side of the control box 130 to be coupled to the control box 130 .
이젝터(120)는 제빙홈(115)에서 제빙된 얼음을 제빙홈(115)으로부터 분리시킬 수 있다. 아이스 트레이(110)의 제빙홈(115)에서 얼음이 제빙된 후, 이젝터(120)는 제빙홈(115)에 있는 얼음을 제빙홈(115)에서 이빙시킬 수 있다.The ejector 120 may separate the ice made in the ice making groove 115 from the ice making groove 115 . After ice is made from the ice making groove 115 of the ice tray 110 , the ejector 120 may remove the ice in the ice making groove 115 from the ice making groove 115 .
이젝터(120)는 제어박스(130)의 일측에 수평방향으로 배치되는 긴 축으로 형성될 수 있다. 이젝터(120)는 아이스 트레이(110)로부터 상측으로 이격되어 배치될 수 있다.The ejector 120 may be formed with a long axis disposed in the horizontal direction on one side of the control box 130 . The ejector 120 may be disposed to be spaced upward from the ice tray 110 .
이젝터(120)의 둘레면에는 이젝트 핀(125)이 돌출 형성될 수 있다. 이젝트 핀(125)은 이젝터(120)의 반경방향으로 돌출 형성될 수 있다. 이젝터(120)가 둘레방향으로 회전될 때, 이젝트 핀(125)의 끝단은 제빙홈(115)으로 삽입되어서, 제빙홈(115)에 있는 얼음을 제빙홈(115)으로부터 이빙시킬 수 있다. 이젝트 핀(125)은 제빙홈(115)에 있는 얼음을 밀어서 제빙홈(115)으로부터 이빙시킬 수 있다.An ejection pin 125 may be protruded from the circumferential surface of the ejector 120 . The eject pin 125 may be formed to protrude in a radial direction of the ejector 120 . When the ejector 120 is rotated in the circumferential direction, the end of the eject pin 125 is inserted into the ice-making groove 115 , so that ice in the ice-making groove 115 can be removed from the ice-making groove 115 . The eject pin 125 may push the ice in the ice-making groove 115 to release the ice from the ice-making groove 115 .
이젝트 핀(125)은 이젝터(120)의 길이방향을 따라 서로 이격된 복수개의 이젝트 핀(125)으로 형성될 수 있다. 이젝트 핀(125)은 아이스 트레이(110)에 형성된 제빙홈(115)의 개수와 동일한 개수로 형성될 수 있다. 복수개의 이젝트 핀(125)은 복수개의 제빙홈(115)과 대응되는 위치에 배치될 수 있다.The ejection pins 125 may be formed of a plurality of ejector pins 125 spaced apart from each other in the longitudinal direction of the ejector 120 . The number of eject pins 125 may be the same as the number of ice-making grooves 115 formed in the ice tray 110 . The plurality of eject pins 125 may be disposed at positions corresponding to the plurality of ice-making grooves 115 .
한편, 아이스 트레이(110)의 제빙홈(115)에서 제빙된 얼음은 제빙홈(115)에 고착된 상태로 배치될 수 있다. 따라서, 이젝트 핀(125)이 제빙홈(115)에서 제빙된 얼음을 제빙홈(115)에서 이빙시킬 때, 상기 얼음이 제빙홈(115)으로부터 쉽게 이빙되지 않을 수 있다.Meanwhile, ice made in the ice making groove 115 of the ice tray 110 may be disposed while being fixed to the ice making groove 115 . Accordingly, when the eject pin 125 removes ice made from the ice-making groove 115 from the ice-making groove 115 , the ice may not be easily removed from the ice-making groove 115 .
이젝트 핀(125)이 제빙홈(115)에서 제빙된 얼음을 제빙홈(115)에서 이빙시킬 때, 상기 얼음이 제빙홈(115)으로부터 쉽게 이빙될 수 있도록 하기 위해, 아이스 트레이(110)의 하면에는 이빙히터(113)가 설치될 수 있다.When the eject pin 125 transfers ice made from the ice-making groove 115 to the ice-making groove 115 , the lower surface of the ice tray 110 may allow the ice to be easily removed from the ice-making groove 115 . An ice heater 113 may be installed there.
이빙히터(113)는 이젝트 핀(125)이 제빙홈(115)에서 제빙된 얼음을 제빙홈(15)에서 이빙시키기 전에 발열될 수 있다. 이빙히터(113)는 제빙홈(115)에 열을 공급하여 제빙홈(115)에 있는 얼음을 살짝 녹일 수 있다. 이빙히터(113)는 제빙홈(115)에 있는 얼음을 살짝 녹여서, 제빙홈(115)에서 제빙된 얼음이 이젝트 핀(125)에 의해 쉽게 이빙될 수 있도록 할 수 있다.The ice heater 113 may generate heat before the eject pin 125 transfers the ice made in the ice making groove 115 into the ice in the ice making groove 15 . The ice heater 113 may supply heat to the ice-making groove 115 to slightly melt the ice in the ice-making groove 115 . The ice heater 113 may slightly melt the ice in the ice making groove 115 so that the ice made in the ice making groove 115 can be easily removed by the eject pin 125 .
제어박스(130) 내부에는 제어부(131)가 배치될 수 있다. 또한, 제어박스(130)의 내부에는 이젝터(120)를 이젝터(120)의 둘레방향으로 회전시키는 이빙모터(135)가 배치될 수 있다. 이빙히터(113) 및 이빙모터(135)는 제어부(131)에 의해 제어될 수 있다.A control unit 131 may be disposed inside the control box 130 . In addition, an icing motor 135 for rotating the ejector 120 in the circumferential direction of the ejector 120 may be disposed inside the control box 130 . The ice heater 113 and the ice motor 135 may be controlled by the controller 131 .
제어부(131)는 제빙홈(115)에서 얼음이 제빙된 후에, 이빙히터(113)를 발열되도록 제어하여서, 제빙홈(115)에 고착되어 있는 얼음을 살짝 녹일 수 있다. 이후에, 제어부(131)는 이빙모터(135)를 제어하여 이빙모터(135)가 이젝터(120)를 회전시키도록 하여서, 이젝트 핀(125)이 제빙홈(115)에서 얼음을 이빙시키도록 할 수 있다.After the ice is made in the ice making groove 115 , the controller 131 may control the ice heater 113 to generate heat to slightly melt the ice adhering to the ice making groove 115 . Thereafter, the controller 131 controls the icing motor 135 so that the icing motor 135 rotates the ejector 120 , so that the eject pin 125 moves the ice from the ice-making groove 115 . can
이빙모터(135)의 회전축은 이젝터(120)와 커플러를 통해 결합될 수 있다. 이젝터(120)는 이빙모터(135)의 회전축 방향으로 연장될 수 있다. 이 경우, 이젝터(120)는 이빙모터(135)의 회전축과 동축상에 배치될 수 있다. 또한, 이빙모터(135)의 회전축은 복수개의 기어를 통해 이젝터(120)와 연결되어서, 이빙모터(135)의 회전축의 회전력은 상기 복수개의 기어를 통해 상기 이젝터(120)로 전달될 수도 있다. 이 경우, 이젝터(120)는 이빙모터(135)의 회전축과 상이한 축상에 배치될 수 있다.The rotating shaft of the icing motor 135 may be coupled to the ejector 120 through a coupler. The ejector 120 may extend in the direction of the rotation axis of the icing motor 135 . In this case, the ejector 120 may be disposed on the same axis as the rotation shaft of the icing motor 135 . Also, the rotating shaft of the icing motor 135 is connected to the ejector 120 through a plurality of gears, so that the rotational force of the rotating shaft of the icing motor 135 may be transmitted to the ejector 120 through the plurality of gears. In this case, the ejector 120 may be disposed on an axis different from the rotation axis of the icing motor 135 .
이빙히터(113)는 이빙히터(113)의 내부를 흐르는 핫가스에 의해 발열되는 U형 관으로 형성될 수 있다. 이 경우, 제어부(131)는 이빙히터(113) 내로 상기 핫가스를 공급하거나 차단하는 핫가스밸브를 제어하여서, 이빙히터(113)의 내부로 핫가스가 공급되거나 차단되도록 할 수 있다.The ice heater 113 may be formed as a U-shaped tube that is heated by hot gas flowing through the inside of the ice heater 113 . In this case, the controller 131 may control the hot gas valve to supply or block the hot gas into the ice heater 113 so that the hot gas is supplied or blocked into the ice heater 113 .
또는, 이빙히터(113)는 이빙히터(113)로 입력되는 전기에 의해 발열되는 열선 또는 면상히터로 형성될 수도 있다. 이 경우, 제어부(131)는 이빙히터(113)로 상기 전기를 공급하거나 차단하는 전류공급스위치를 제어하여서, 이빙히터로 상기 전기가 공급되거나 차단되도록 할 수 있다.Alternatively, the ice heater 113 may be formed of a hot wire or a planar heater that is heated by electricity input to the ice heater 113 . In this case, the control unit 131 may control a current supply switch that supplies or cuts off the electricity to the ice heater 113 so that the electricity is supplied or cut off to the ice heater 113 .
한편, 제어부(131)는 제빙기(100)에 구비될 수도 있고, 냉장고(1)에 구비될 수도 있으며, 제빙기(100) 및 냉장고(1)에 모두 구비될 수도 있다. 즉, 제어부(131)는 냉장고(1) 및 제빙기(100) 중 적어도 하나에 구비될 수 있다. 제어부(131)는 냉장고(1)에 구비된 냉장고 제어부와, 제빙기(100)에 구비된 제빙기 제어부를 포함할 수 있다. 제빙기(100)는 상기 냉장고 제어부로부터 제어신호를 전달받아 동작될 수도 있고, 상기 제빙기 제어부로부터 제어신호를 통해 동작될 수도 있다. 상기 제빙기 제어부는 상기 냉장고 제어부로부터 이빙신호를 전달받아 이빙모터(135)를 제어할 수 있다. 상기 제빙기 제어부의 제어전원은 상기 냉장고 제어부로부터 공급될 수 있다.Meanwhile, the control unit 131 may be provided in the ice maker 100 , may be provided in the refrigerator 1 , or may be provided in both the ice maker 100 and the refrigerator 1 . That is, the controller 131 may be provided in at least one of the refrigerator 1 and the ice maker 100 . The controller 131 may include a refrigerator controller provided in the refrigerator 1 and an ice machine controller provided in the ice maker 100 . The ice maker 100 may be operated by receiving a control signal from the refrigerator controller, or may be operated through a control signal from the ice maker controller. The ice maker control unit may receive an ice signal from the refrigerator control unit to control the ice icing motor 135 . Control power of the ice maker control unit may be supplied from the refrigerator control unit.
제빙기(100)는 온도검출부(161)를 더 포함할 수 있다. 온도검출부(161)는 주변의 온도를 감지할 수 있는 모든 감지수단을 포함할 수 있으며, 온도센서 또는 적외선일 수 있다. 온도검출부(161)는 아이스 트레이(61)에 설치될 수 있다. 온도검출부(161)는 아이스 트레이(110)에 노출되게 설치될 수 있다. 온도검출부(161)는 주변의 온도를 감지할 수 있고, 온도검출부(161)가 감지한 온도는 제어부(131)로 입력될 수 있다. 제어부(131)는 온도검출부(161)로부터 입력되는 온도를 이용하여 이빙히터(113) 및 이빙모터(135) 중 적어도 하나를 제어할 수 있다.The ice maker 100 may further include a temperature detection unit 161 . The temperature detection unit 161 may include all sensing means capable of sensing the surrounding temperature, and may be a temperature sensor or infrared rays. The temperature detection unit 161 may be installed on the ice tray 61 . The temperature detection unit 161 may be installed to be exposed to the ice tray 110 . The temperature detection unit 161 may detect a surrounding temperature, and the temperature detected by the temperature detection unit 161 may be input to the control unit 131 . The controller 131 may control at least one of the ice heater 113 and the ice motor 135 by using the temperature input from the temperature detection unit 161 .
제어부(131)는 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 설정시간 후에, 온도검출부(161)가 감지한 온도가 설정온도 이하이면, 상기 설정시간을 제빙홈(115)에서 얼음을 이빙하는 이빙개시 시점으로 결정할 수 있다.After a set time after the ice-making water is supplied from the water supply device to the ice-making groove 115, if the temperature detected by the temperature detection unit 161 is less than or equal to the set temperature, the control unit 131 sets the set time for the ice in the ice-making groove 115. can be determined as the start time of divergence for divergence.
즉, 제어부(131)는 상기 설정시간 후에 온도검출부(161)가 감지한 온도가 상기 설정온도 이하이면, 제빙홈(115)의 제빙수가 완전한 얼음으로 변했다고 판단하여서, 상기 설정시간을 상기 이빙개시 시점으로 결정할 수 있다.That is, if the temperature detected by the temperature detection unit 161 after the set time is equal to or less than the set temperature, the control unit 131 determines that the ice-making water in the ice-making groove 115 has changed to complete ice, and sets the set time to start the ice-diving. time can be determined.
제어부(131) 상기 설정시간을 상기 이빙개시 시점으로 결정하면, 상기 설정시간에 제빙홈(115)에서 이빙을 시작할 수 있다. 즉, 제어부(131)는 상기 설정시간을 상기 이빙개시 시점으로 결정하면, 이빙히터(113)가 발열되어 아이스 트레이(110)의 제빙홈(115) 내의 얼음이 살짝 녹도록 한 후, 이빙모터(135)를 제어하여 이젝터(120)가 회전되어 이젝트 핀(125)이 제빙홈(115) 내의 얼음을 이빙하도록 할 수 있다.When the control unit 131 determines the set time as the start time of the ice divergence, the ice maker may start the ice divergence in the ice making groove 115 at the set time. That is, when the control unit 131 determines the set time as the start time of the ice moving, the ice heater 113 is heated so that the ice in the ice making groove 115 of the ice tray 110 is slightly melted, and then the ice motor ( By controlling 135 , the ejector 120 may be rotated so that the eject pin 125 may remove the ice in the ice making groove 115 .
도 5는 본 발명의 제2 실시예에 의한 제빙기를 개략적으로 나타내는 도면, 도 6은 본 발명의 제2 실시예에 의한 제빙기의 제어 블록도, 도 7은 본 발명의 제2 실시예에 의한 제빙기의 작동도이다. 여기서는, 전술한 제1 실시예와 동일한 것에 대해 동일한 명칭을 부여하여, 그에 대한 자세한 설명은 생략하고, 다른 점만을 설명하기로 한다.5 is a view schematically showing an ice maker according to a second embodiment of the present invention, FIG. 6 is a control block diagram of the ice maker according to the second embodiment of the present invention, and FIG. 7 is an ice maker according to a second embodiment of the present invention. is the working diagram of Here, the same names are given to the same objects as in the above-described first embodiment, and detailed descriptions thereof are omitted, and only different points will be described.
도 5 내지 도 7을 참조하면, 본 발명의 제2 실시예에 의한 제빙기(200)는, 전술한 제1 실시예의 이젝터(120) 및 이빙히터(113)를 구비하지 않는다.5 to 7 , the ice maker 200 according to the second embodiment of the present invention does not include the ejector 120 and the ice heater 113 of the first embodiment described above.
즉, 본 발명의 제2 실시예에 의한 제빙기(200)는 아이스 트레이(210) 및 제어박스(230)를 포함할 수 있다.That is, the ice maker 200 according to the second embodiment of the present invention may include an ice tray 210 and a control box 230 .
아이스 트레이(210)에는 제빙홈(215)이 형성될 수 있다.An ice-making groove 215 may be formed in the ice tray 210 .
제어박스(230) 내에는 이빙모터(235) 및 복수개 기어(240)가 설치될 수 있다. 복수개의 기어(240)는 구동기어(241) 및 종동기어(242)를 포함할 수 있다. 구동기어(241)는 이빙모터(235)의 구동력을 종동기어(242)로 전달할 수 있다. 구동기어(241)는 복수개의 기어로 구성될 수 있다. 종동기어(242)의 중심에 결합된 회전축은 아이스 트레이(210)의 일측에 결합될 수 있다.An icing motor 235 and a plurality of gears 240 may be installed in the control box 230 . The plurality of gears 240 may include a driving gear 241 and a driven gear 242 . The driving gear 241 may transmit the driving force of the icing motor 235 to the driven gear 242 . The driving gear 241 may include a plurality of gears. The rotation shaft coupled to the center of the driven gear 242 may be coupled to one side of the ice tray 210 .
아이스 트레이(210)의 타측은 제빙기(200)의 구조물에 고정될 수 있다. 따라서 이빙모터(230)가 구동되는 경우 이빙모터(230)의 구동력에 의해 복수개의 기어(240)이 회전되고, 이에 따라 아이스 트레이(210)는 회전되어 트위스트 되어서, 제빙홈(215)에 있는 얼음이 제빙홈(215)으로부터 이빙될 수 있다.The other side of the ice tray 210 may be fixed to the structure of the ice maker 200 . Therefore, when the icing motor 230 is driven, the plurality of gears 240 are rotated by the driving force of the icing motor 230 , and accordingly, the ice tray 210 is rotated and twisted, so that the ice in the ice-making groove 215 is rotated. Ice may be removed from the ice-making groove 215 .
아이스 트레이(210)에는 온도검출부(261)가 설치될 수 있고, 제어박스(230)의 내부에는 제어부(231)가 설치될 수 있다. 온도검출부(261)가 감지한 온도는 제어부(231)로 입력될 수 있고, 제어부(261)를 온도검출부(261)가 감지한 온도를 이용하여 상기 이빙개시 시점을 산출하여서, 상기 이빙개시 시점에 이빙모터(235)를 동작시킬 수 있다.A temperature detection unit 261 may be installed in the ice tray 210 , and a control unit 231 may be installed in the control box 230 . The temperature detected by the temperature detection unit 261 may be input to the control unit 231, and the control unit 261 calculates the start time of the ice transfer using the temperature detected by the temperature detection unit 261, and at the start time of the ice transfer The ice motor 235 may be operated.
상기와 같이, 상기 제1 실시예에서 제어부(131)는 이빙개시 시점에 이빙히터(113) 및 이빙모터(135)를 제어할 수 있고, 상기 제2 실시예에서 제어부(231)는 이빙개시 시점에 이빙모터(135)를 제어할 수 있다.As described above, in the first embodiment, the controller 131 may control the ice heater 113 and the ice motor 135 at the start time of ice drift, and in the second embodiment, the controller 231 controls the start time of ice drift. The divergence motor 135 can be controlled.
상기 제1 실시예 및 상기 제2 실시예는 상기 이빙개시 시점에 각각의 이빙모터(135, 235)가 각각의 제어부(131, 231)에 의해 제어된다는 공통점을 가질 수 있다. 즉, 제1 실시예에서는 상기 이빙개시 시점에 이젝트 핀(125)이 아이스 트레이(110)의 제빙홈(115)에서 얼음을 이빙시키도록, 이빙모터(135)가 이젝터(120)를 회전시킬 수 있고, 제2 실시예에서는 상기 이빙개시 시점에 아이스 트레이(210)의 제빙홈(215)에서 얼음이 이빙되도록, 이빙모터(235)가 아이스 트레이(210)를 회전시켜서 아이스 트레이(210)를 트위스트 시킬 수 있다.The first embodiment and the second embodiment may have in common that each of the ice moving motors 135 and 235 is controlled by the respective controllers 131 and 231 at the time of starting the ice moving. That is, in the first embodiment, the icing motor 135 can rotate the ejector 120 so that the eject pin 125 transfers ice from the ice-making groove 115 of the ice tray 110 at the start of the ice-moving. In the second embodiment, the icing motor 235 rotates the ice tray 210 to twist the ice tray 210 so that ice moves from the ice-making groove 215 of the ice tray 210 at the start of the ice-diving. can do it
상기 제1 실시예의 이빙모터(135)는 상기 이빙개시 시점에 아이스 트레이(110)의 제빙홈(115)에서 얼음이 이빙되도록 구동되고, 상기 제2 실시예의 이빙모터(235)는 상기 이빙개시 시점에 아이스 트레이(210)의 제빙홈(215)에서 얼음이 이빙되도록 구동된다는 공통점을 가질 수 있다.The icing motor 135 of the first embodiment is driven so that ice is iced in the ice making groove 115 of the ice tray 110 at the start of the ice removal, and the icing motor 235 of the second embodiment is driven at the start of the ice removal. The ice tray 210 may have a common feature of being driven so that the ice is transferred from the ice-making groove 215 of the ice tray 210 .
상기 제1 실시예에서 제어부(131)는 복수개의 이빙개시 시점에 이빙모터(135)를 동작시킬 수 있고, 복수개의 히팅개시 시점에 이빙히터(113)를 동작시킬 수 있다. 또한, 상기 제2 실시예에서 제어부(231)는 복수개의 이빙개시 시점에 이빙모터(235)를 동작시킬 수 있다. 이하, 설명에서는 상기 제1 실시예만을 예로 들어 설명하기로 한다.In the first embodiment, the control unit 131 may operate the icing motor 135 at a plurality of ice divergence start timings, and may operate the icing heater 113 at a plurality of heating start timings. In addition, in the second embodiment, the controller 231 may operate the divergence motor 235 at a plurality of ice divergence start timings. Hereinafter, only the first embodiment will be described as an example in the description.
제빙기(100)는 아이스 트레이(110)의 제빙홈(115)에 공급된 제빙수가 완전한 얼음이 된 상태일 때 이젝트 핀(125)에 의해 제빙홈(115)으로부터 이빙되어야 한다. 그런데, 냉장고(1)의 온도에 따라 냉장고(1)의 냉동사이클의 운전율이 상이할 수 있고, 냉장고(1)의 크기(용량)에 따라 냉각능력이 상이할 수 있기 때문에, 제빙홈(115)에 제빙수가 급수된 후 특정시간이 지났다고 하여 상기 제빙수가 완전한 얼음이 되었다고 단정할 수는 없다.In the ice maker 100 , when the ice-making water supplied to the ice-making groove 115 of the ice tray 110 is in a state of complete ice, the ice maker 100 must be removed from the ice-making groove 115 by the ejection pin 125 . However, since the operating rate of the refrigeration cycle of the refrigerator 1 may be different depending on the temperature of the refrigerator 1 and the cooling capacity may be different depending on the size (capacity) of the refrigerator 1, the ice making groove 115 ), it cannot be concluded that the ice-making water has completely turned into ice just because a certain time has elapsed after the ice-making water was supplied.
따라서, 아이스 트레이(110)의 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 된 상태일 때, 상기 얼음을 제빙홈(115)에서 이빙시키기 위해, 본 발명의 제1 실시예에 의한 제빙기(100)는 복수개의 이빙개시 시점에 이빙히터(113) 및 이빙모터(135) 중 적어도 하나를 동작시킬 수 있다.Therefore, when the ice-making water supplied to the ice-making grooves 115 of the ice tray 110 is in a state of complete ice, the ice maker according to the first embodiment of the present invention ( 100) may operate at least one of the ice heater 113 and the ice motor 135 at a plurality of ice moving start times.
제어부(131)는 복수개의 이빙개시 시점에 이빙히터(113) 또는 이빙모터(135)를 동작시킬 수 있다.The controller 131 may operate the ice heater 113 or the ice motor 135 at a plurality of ice drift start times.
제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 경과된 시간과, 냉장고(1) 저장실의 온도 또는 아이스 트레이(110)의 온도를 이용하여, 산출한 복수개의 이빙개시 시점에 이빙히터(113) 또는 이빙모터(135)를 동작시킬 수 있다.The controller 131 controls the ice heater at a plurality of ice-moving start times calculated by using the elapsed time after the ice-making water is supplied to the ice-making groove 115 and the temperature of the storage compartment of the refrigerator 1 or the temperature of the ice tray 110 . 113 or the divergence motor 135 may be operated.
제어부(131)는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출한 복수개의 이빙개시 시점에 이빙히터(113) 또는 이빙모터(135)를 동작시킬 수 있다.The controller 131 may operate the icing heater 113 or the icing motor 135 at a plurality of ice removal start times calculated using the accumulated ice making time or the accumulated time below a predetermined temperature.
제어부(131)에는 복수개의 이빙개시 시점 중 시간적으로 후행하는 시점의 설정온도가, 상기 복수개의 이빙개시 시점 중 시간적으로 선행하는 시점의 설정온도보다 높게 설정될 수 있다.The control unit 131 may set a set temperature of a temporally following time among a plurality of ice-diving start times to be higher than a set temperature of a temporally preceding time among the plurality of ice-dividing start times.
이빙히터(113) 및 이빙모터(135)는 냉장고(1)에 구비된 냉장고 제어부에 의해 제어될 수 있다. 상기 냉장고 제어부는 제빙홈(115)에 제빙수가 급수된 후 경과된 시간과 아이스 트레이(110)의 온도를 이용하여 산출한 복수개의 이빙개시 시점에 이빙히터(113) 또는 이빙모터(135)를 동작시킬 수 있다.The ice heater 113 and the ice motor 135 may be controlled by a refrigerator controller provided in the refrigerator 1 . The refrigerator controller operates the icing heater 113 or the icing motor 135 at a plurality of ice-diving start times calculated using the elapsed time after the ice-making water is supplied to the ice-making groove 115 and the temperature of the ice tray 110 . can do it
상기 제빙기 제어부는 냉장고(1)에 구비된 냉장고 제어부로부터 이빙신호를 전달받아 이빙히터(113) 및 상기 이빙모터(135)를 제어할 수 있다.The ice maker controller may receive an ice signal from the refrigerator controller provided in the refrigerator 1 to control the ice heater 113 and the ice motor 135 .
제어부(131)는 입력부를 통해 사용자에 의해 입력된 설정온도에 대응하는 이빙개시 시점에 이빙히터(113) 또는 이빙모터(135)를 동작시킬 수 있다. 상기 입력부는 버튼타입 또는 터치타입으로 구비될 수 있다. 상기 입력부는 제빙기(100)에 설치될 수도 있고, 냉장고(1)에 설치될 수도 있다. 상기 입력부는 냉장고(1)의 도어에 설치될 수 있다. 사용자는 상기 입력부를 통해 상기 복수개의 이빙개시 시점을 조절하기 위한 상기 설정온도를 입력할 수 있다.The controller 131 may operate the icing heater 113 or the icing motor 135 at the start time of ice divergence corresponding to the set temperature input by the user through the input unit. The input unit may be provided as a button type or a touch type. The input unit may be installed in the ice maker 100 or installed in the refrigerator 1 . The input unit may be installed on the door of the refrigerator 1 . The user may input the set temperature for adjusting the plurality of ice-diving start times through the input unit.
제어부(131)는 복수개의 이빙개시 시점이 경과되면, 설정시간 후에 이빙히터(113) 또는 이빙모터(135)를 강제 동작시킬 수 있다.When a plurality of ice-diving start times have elapsed, the control unit 131 may force the ice-diving heater 113 or the ice-diving motor 135 to operate after a set time.
제어부(131)는 급수 기능과 이빙 기능 사이의 시간을 누적 연계 제어할 수 있다.The controller 131 may accumulate and link the time between the water supply function and the drifting function.
제어부(131)는 이빙과 다음 이빙 사이의 시간을 누적 연계 제어할 수 있다.The controller 131 may control the cumulative linkage of the time between the drifting and the next drifting.
제어부(131)는 정전용량The control unit 131 is a capacitance
센서(162; 도 11 참조)를 이용하여 급수 제어할 수 있다.The water supply can be controlled using the sensor 162 (refer to FIG. 11 ).
상기 제빙기 제어부의 제어회로는 상기 냉장고 제어부의 제어회로와 전기적으로 접속될 수 있다.The control circuit of the ice maker control unit may be electrically connected to the control circuit of the refrigerator control unit.
제어부(131)는 제빙누적시간, 온도검출부(161)의 온도 및 정전용량센서(162)의 정전용량을 이용하여 산출한 이빙개시 시점에 이빙히터(113) 및 이빙모터(135)를 동작시킬 수 있다.The controller 131 may operate the ice heater 113 and the ice motor 135 at the time of ice start that is calculated using the accumulated ice making time, the temperature of the temperature detection unit 161 and the capacitance of the capacitive sensor 162 . there is.
제어부(131)는 온도검출부(161)가 시간에 따라 감지한 온도 그래프의 기울기와, 제빙누적시간을 이용하여 산출한 이빙개시 시점에 이빙히터(113) 및 이빙모터(135)를 동작시킬 수 있다.The controller 131 may operate the icing heater 113 and the icing motor 135 at the start time of ice removal calculated using the slope of the temperature graph sensed by the temperature detection unit 161 over time and the accumulated ice making time. .
제어부(131)는 상기 이빙개시 시점을 복수의 단계별로 상승온도에 따라 제어할 수 있다. 즉, 본 발명에 따른 상기 제어부(131)는 이빙히터(113) 및 이빙모터(135)의 작동시점을 상기 정전용량, 온도 및 시간을 종합적인 조합으로 산출하여 결정할 수 있다.The control unit 131 may control the ice-dividing start time according to the rising temperature in a plurality of stages. That is, the control unit 131 according to the present invention can determine the operating time of the ice heater 113 and the ice motor 135 by calculating the capacitance, temperature, and time as a comprehensive combination.
이하 설명에서, 이빙개시 시점, 제1 이빙개시 시점, 제2 이빙개시 시점, 제3 이빙개시 시점 및 제4 이빙개시 시점은 이빙히터(113) 또는 이빙모터(135) 작동 시점과 동일한 의미일 수 있다. 즉, 상기 제1 실시예의 제빙기(100)의 경우, 상기 이빙개시 시점, 상기 제1 이빙개시 시점, 상기 제2 이빙개시 시점, 상기 제3 이빙개시 시점 및 상기 제4 이빙개시 시점은 이빙히터(113) 동작 시점과 동일한 의미일 수 있다. 또한, 상기 제2 실시예의 제빙기(200)의 경우, 상기 이빙개시 시점, 상기 제1 이빙개시 시점, 상기 제2 이빙개시 시점, 상기 제3 이빙개시 시점 및 상기 제4 이빙개시 시점은 이빙모터(135)를 동작시키는 시점일 수 있다.In the following description, the ice start time, the first ice start time, the second ice start time, the third ice start time, and the fourth ice start time point have the same meaning as the operating time of the ice heater 113 or the ice motor 135. there is. That is, in the case of the ice maker 100 of the first embodiment, the ice-dividing start time, the first ice-dividing start time, the second ice-dividing start time, the third ice-dividing start time, and the fourth ice-dividing start time are the ice heaters ( 113) may have the same meaning as the operation time. In addition, in the case of the ice maker 200 of the second embodiment, the ice-dividing start time, the first ice-dividing start time, the second ice-diverging start time, the third ice-dividing start time, and the fourth ice-dividing start time are determined by an ice motor ( 135) may be the time to operate.
도 8은 아이스 트레이의 제빙홈에 제빙수가 급수된 후 시간과 온도에 따른 이빙개시 시점을 나타내는 도면이다.FIG. 8 is a view showing the start time of ice removal according to time and temperature after ice-making water is supplied to the ice-making groove of the ice tray.
도 8을 참조하면, 제어부(131)는 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 제1 설정시간(T1) 후에, 온도검출부(161)가 감지한 온도를 판단할 수 있다. 제어부(131)는 상기 제1 설정시간(T1) 후에 온도검출부(161)가 감지한 온도가 제1 설정온도(Z) 이하이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간(T1)을 제1 이빙개시 시점으로 결정할 수 있다. 여기서, 상기 제1 설정시간(T1)은 50분일 수 있고, 상기 제1 설정온도(Z)는 -9도씨일 수 있다. 즉, 제어부(131)는 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 50분 후에, 온도검출부(161)가 감지한 온도가 -9도씨 이하이면, 제빙홈(115)의 제빙수가 완전한 얼음으로 변했다고 판단하여, 이빙히터(113) 및 이빙모터(135)를 제어하여 제빙홈(115)에서 이빙을 시작할 수 있다.Referring to FIG. 8 , the controller 131 may determine the temperature sensed by the temperature detector 161 after a first set time T1 after the ice making water is supplied from the water supply device to the ice making groove 115 . If the temperature detected by the temperature detection unit 161 after the first set time T1 is equal to or less than the first set temperature Z, the controller 131 determines that the refrigerator has a high operating rate and sets the temperature detected by the temperature detection unit to the second setting. The first set time T1 below the 1-1 set temperature may be determined as the first ice drift start time. Here, the first set time T1 may be 50 minutes, and the first set temperature Z may be -9 degrees Celsius. That is, when the temperature detected by the temperature detection unit 161 is -9 degrees Celsius or less 50 minutes after the ice-making water is supplied from the water supply device to the ice-making groove 115, the control unit 131 controls the ice-making groove 115 to make ice. When it is determined that the number has changed to complete ice, the ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
또한, 제어부(131)는 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 상기 제1 설정시간(T1) 후에 판단한 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높은 경우, 상기 제1 설정시간(T1)보다 시간적으로 후행하는 제2 설정시간(T2) 후에, 온도검출부(161)가 감지한 온도를 다시 판단할 수 있다. 제어부(131)는 상기 제2 설정시간(T2) 후에 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높으면, 상기 제2 설정시간(T2)을 제2 이빙개시 시점으로 결정할 수 있다. 여기서, 상기 제2 설정시간(T2)은 상기 제1 설정시간(T1)인 50분보다 10분~20분 후행하는 시간으로서 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 60분~70분일 수 있고, 상기 제1 설정온도(Z)보다 높은 온도(C2)는 -7도씨일 수 있다. 즉, 제어부(131)는 상기 제1 이빙개시 시점인 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 50분 후에 상기 제빙수가 완전한 얼음이 되지 않았다고 판단되는 경우, 상기 제1 이빙개시 시점으로부터 10분~20분 후에 온도검출부(161)가 감지한 온도를 다시 판단하여서, 온도검출부(161)가 감지한 온도가 -9도씨보다 높으면 제빙홈(115)의 제빙수가 완전한 얼음으로 변했다고 결정하여, 이빙히터(113) 및 이빙모터(135)를 제어하여 제빙홈(115)에서 이빙을 시작할 수 있다.In addition, the control unit 131 determines that the temperature detected by the temperature detection unit 161 determined after the first set time T1 after the ice making water is supplied from the water supply device to the ice making groove 115 is the first set temperature (Z). If higher, the temperature detected by the temperature detection unit 161 may be re-determined after a second set time T2 that is temporally later than the first set time T1. If the temperature detected by the temperature detection unit 161 after the second set time T2 is higher than the first set temperature Z, the controller 131 sets the second set time T2 as a second ice drift start time. can decide Here, the second set time T2 is a time 10 to 20 minutes later than the first set time T1, which is 50 minutes, from 60 minutes to 60 minutes after the ice making water is supplied from the water supply device to the ice making groove 115 . It may be 70 minutes, and the temperature C2 higher than the first set temperature Z may be -7 degrees Celsius. That is, when it is determined that the ice-making water is not completely frozen 50 minutes after the ice-making water is supplied to the ice-making groove 115 from the water supply device, which is the first ice-moving start time, the control unit 131 determines the first ice-moving start time. After 10 to 20 minutes, the temperature detected by the temperature detection unit 161 is determined again, and when the temperature detected by the temperature detection unit 161 is higher than -9°C, the ice-making water in the ice-making groove 115 is completely changed to ice. As a result, ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
또한, 제어부(131)는 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 상기 제2 설정시간(T2) 후에 판단한 온도검출부(161)가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간(T2)보다 시간적으로 후행하는 제3 설정시간(T3) 후에, 온도검출부(161)가 감지한 온도를 다시 판단할 수 있다. 제어부(131)는 상기 제3 설정시간(T3) 후에 온도검출부(161)가 감지한 온도가 제2 설정온도(C) 이하이면, 상기 제3 설정시간(T3)을 제3 이빙개시 시점으로 결정할 수 있다. 여기서, 상기 제3 설정시간(T3)은 상기 제2 설정시간(T2)보다 10분~20분 후행하는 시간으로서 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 70분~90분일 수 있고, 상기 제2 설정온도(C)는 상기 제1 설정온도(Z)보다 높은 온도로서 -5도씨일 수 있다. 즉, 제어부(131)는 상기 제2 이빙개시 시점인 상기 급수장치로부터 제빙홈(115)에 제빙수가 급수된 후 60~70분 후에 상기 제빙수가 완전한 얼음이 되지 않았다고 판단되는 경우, 상기 제2 이빙개시 시점으로부터 10분~20분 후에 온도검출부(161)가 감지한 온도를 다시 판단하여서, 온도검출부(161)가 감지한 온도가 -5도씨 이하이면 제빙홈(115)의 제빙수가 완전한 얼음으로 변했다고 결정하여, 이빙히터(113) 및 이빙모터(135)를 제어하여 제빙홈(115)에서 이빙을 시작할 수 있다.In addition, when the temperature detected by the temperature detection unit 161 determined after the second set time T2 after the ice making water is supplied from the water supply device to the ice making groove 115 is less than or equal to the first set temperature, After a third set time T3 that is temporally later than the second set time T2, the temperature sensed by the temperature detection unit 161 may be determined again. If the temperature detected by the temperature detection unit 161 after the third set time T3 is less than or equal to the second set temperature C, the control unit 131 determines the third set time T3 as the third ice-diving start time. can Here, the third set time T3 is a time 10 minutes to 20 minutes later than the second set time T2, and may be 70 minutes to 90 minutes after the ice making water is supplied from the water supply device to the ice making groove 115. And, the second set temperature (C) is a temperature higher than the first set temperature (Z) may be -5 °C. That is, when the controller 131 determines that the ice-making water is not completely iced 60 to 70 minutes after the ice-making water is supplied to the ice-making groove 115 from the water supply device, which is the time when the second ice-diving starts, the second ice After 10 to 20 minutes from the start time, the temperature detected by the temperature detection unit 161 is determined again, and if the temperature detected by the temperature detection unit 161 is -5°C or less, the ice-making water in the ice-making groove 115 is completely ice. When it is determined that the ice has changed, the ice can be started in the ice making groove 115 by controlling the ice heater 113 and the ice motor 135 .
또한, 경우에 따라서, 제어부(131)는 제빙 시간을 강제 지연하되, 기 설정된 지연시간 경과 후 상기 기 설정된 지연시간과 비교하여 이빙 온도 시점에 따라 상기 이빙모터 또는 이빙히터를 동작시키도록 수행되거나, 제어부(131)는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출하되, 상기 일정온도 이상시 상기 누적시간을 제외하거나 신규로 누적시간을 산출 또는 기존 누적시간에 추가 산출하여 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키도록 구성될 수 있다.In addition, in some cases, the control unit 131 forcibly delays the ice making time, but after a preset delay time has elapsed, compared with the preset delay time, the ice motor or the ice heater is operated according to the time of the ice temperature, The control unit 131 calculates using the accumulated ice-making time or the accumulated time below a certain temperature, but when the temperature is above the predetermined temperature, the accumulated time is excluded, the accumulated time is newly calculated, or the accumulated time is calculated in addition to the existing accumulated time to start the ice removal or It may be configured to operate the ice motor or the ice heater at the time of starting heating.
도 9는 본 발명의 실시예에 의한 제빙기의 제어방법에 따른 순서도이다.9 is a flowchart illustrating a method for controlling an ice maker according to an embodiment of the present invention.
도 9를 참조하면, 본 발명의 실시예에 의한 제빙기의 제어방법은 급수단계(S1000), 제빙단계(S2000) 및 이빙개시 시점 결정단계(S3000)를 포함할 수 있다. 급수단계(S1000)에서는 아이스 트레이(110)의 제빙홈(115)에 제빙수가 급수될 수 있다. 제빙단계(S2000)에서는 아이스 트레이(110)의 제빙홈(115)에 급수된 제빙수를 제빙할 수 있다. 이빙개시 시점 결정단계(S3000)에서는 제빙홈(115)에서 얼음을 이빙하는 시점을 결정할 수 있다.Referring to FIG. 9 , the method for controlling an ice maker according to an embodiment of the present invention may include a water supply step ( S1000 ), an ice making step ( S2000 ), and an ice removal start time determination step ( S3000 ). In the water supply step ( S1000 ), ice-making water may be supplied to the ice-making grooves 115 of the ice tray 110 . In the ice making step ( S2000 ), ice making water supplied to the ice making groove 115 of the ice tray 110 may be made ice. In the ice removal start time determination step ( S3000 ), a time point at which ice is removed from the ice making groove 115 may be determined.
도 10은 도 9에 도시된 이빙개시 시점 결정단계의 구체적인 순서도이다. 여기서는, 본 발명의 실시예에 의한 제빙기의 제어방법을, 본 발명의 실시예에 의한 제빙기의 동작과 결부시켜 설명하기로 한다.FIG. 10 is a detailed flowchart of the step of determining an ice transfer start time shown in FIG. 9 . Here, the method for controlling the ice maker according to the embodiment of the present invention will be described in connection with the operation of the ice maker according to the embodiment of the present invention.
도 4와, 도 8 내지 도 10을 참조하면, 이빙개시 시점 결정단계(S3000)에서 제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 경과된 시간과, 온도검출부(161)가 감지한 온도를 이용하여, 제빙홈(115)에서 얼음을 이빙하는 이빙개시 시점을 결정할 수 있다.4 and 8 to 10 , in the step of determining the starting time of ice removal ( S3000 ), the controller 131 detects the time elapsed after the ice-making water is supplied to the ice-making groove 115 and the temperature detection unit 161 detects it. Using one temperature, it is possible to determine an ice-dividing start time point for ice-removing in the ice-making groove 115 .
상기 이빙개시 시점 결정단계(S3000)에서는 제어부(131)는 상기 이빙개시 시점이 복수의 단계별로 상승온도에 따라 결정할 수 있다. 이빙개시 시점 결정단계(S3000)는 제1 이빙개시 시점 결정단계(S3), 제2 이빙개시 시점 결정단계(S5), 제3 이빙개시 시점 결정단계(S7) 및 제4 이빙개시 시점 결정단계(S9)를 포함할 수 있다.In the ice-diving start time determining step (S3000), the controller 131 may determine the ice-diverging start time according to the rising temperature in a plurality of stages. The ice-diving start time determination step (S3000) includes the first ice-diving start time determination step (S3), the second ice-diving start time determination step (S5), the third ice-diving start time determination step (S7), and the fourth ice transfer start time determination step ( S9) may be included.
급수단계(S1000) 단계 후, 온도 입력 단계(S1)가 수행될 수 있다. 온도 입력 단계(S1)에서 온도검출부(161)는 온도검출부(161) 주변의 온도를 감지할 수 있고, 온도검출부(161)가 감지한 온도는 제어부(131)로 입력될 수 있다.After the water supply step (S1000), a temperature input step (S1) may be performed. In the temperature input step S1 , the temperature detection unit 161 may detect a temperature around the temperature detection unit 161 , and the temperature detected by the temperature detection unit 161 may be input to the control unit 131 .
온도 입력 단계(S1) 후, 제1 온도 판단 단계(S2)가 수행될 수 있다. 제1 온도 판단 단계(S2)에서 제어부(131)는 급수단계(S1000) 후 온도검출부(161)가 감지한 온도가 기 설정된 온도(A) 이하인지 판단할 수 있다.After the temperature input step ( S1 ), a first temperature determination step ( S2 ) may be performed. In the first temperature determination step S2 , the control unit 131 may determine whether the temperature detected by the temperature detection unit 161 after the water supply step S1000 is equal to or less than a preset temperature A.
제1 온도 판단 단계(S2) 결과, 온도검출부(161)가 감지한 온도가 상기 기 설정된 온도(A) 이하이면, 제1 설정시간(T1) 경과 여부를 판단할 수 있다(S4). 또, 제1 설정시간(T1) 경과 판단 단계(S4) 결과, 온도검출부(161)가 감지한 온도가 기 설정된 온도(B) 이하이면 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1 설정온도(Z) 이하 또는 제1-1 설정온도(Z-1)로 제1 이빙개시 시점 결정단계(S3) 또는 제2 이빙개시 시점 결정단계(S5)가 수행될 수 있다. 제1 이빙개시 시점 결정단계(S3) 또는 제2 이빙개시 시점 결정단계(S5)에서 제어부(131)는 상기 제1 설정시간(T1) 또는 제1 설정시간(T1-1)을 제1 이빙개시 시점(S3) 또는 제2 이빙개시 시점(S5)으로 결정할 수 있다.As a result of the first temperature determination step (S2), if the temperature detected by the temperature detection unit 161 is equal to or less than the preset temperature (A), it may be determined whether the first set time (T1) has elapsed (S4). In addition, as a result of the first set time (T1) elapse determination step (S4), if the temperature detected by the temperature detection unit 161 is below the preset temperature (B), it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is At the first set temperature (Z) or less or at the 1-1 set temperature (Z-1), the first ice-diving start time determining step (S3) or the second ice moving start time determination step (S5) may be performed. In the first ice transfer start time determination step S3 or the second ice transfer start time determination step S5 , the controller 131 sets the first set time T1 or the first set time T1-1 to start the first ice transfer. It may be determined as the time point S3 or the second ice transfer start time point S5.
제1 설정시간(T1) 경과 판단 단계(S4) 결과, 온도검출부(161)가 감지한 온도가 상기 기 설정된 온도(B) 보다 높으면, 제2 설정시간(T2) 경과 판단 단계(S6)가 진행되고 기 설정된 온도(C) 이하인지 판단할 수 있다. 제2 설정시간(T2) 경과 판단 단계(S6) 결과, 기 설정된 온도(C) 이하이면 온도검출부가 감지한 온도가 제3 설정온도(B) 제3 이빙개시 시점 결정단계(S7)가 수행될 수 있다. 제3 이빙개시 시점 결정단계(S7)에서 제어부(131)는 상기 제2 설정시간(T2)을 제3 이빙개시 시점으로 결정(S7)할 수 있다.As a result of the first set time (T1) elapsed determination step (S4), if the temperature detected by the temperature detection unit 161 is higher than the set temperature (B), the second set time (T2) elapsed determination step (S6) proceeds and it can be determined whether it is below a preset temperature (C). As a result of the second set time (T2) elapsed determination step (S6), if the temperature detected by the temperature detection unit is equal to or less than the preset temperature (C), the third set temperature (B) the third ice start time determining step (S7) is to be performed can In the third ice divergence start time determining step (S7), the controller 131 may determine the second set time (T2) as the third ice divergence start time (S7).
또한, 제2 설정시간(T2) 경과 판단 단계(S4) 결과, 온도검출부(161)가 감지한 온도가 상기 기 설정된 온도(C) 보다 높으면, 제3 설정시간(T3) 경과 판단 단계(S8)가 진행되고, 기 설정된 온도(D) 이하인지 판단할 수 있다. 제3 설정시간(T3) 경과 판단 단계(S8) 결과, 기 설정된 온도(D) 이하이면 온도검출부가 감지한 온도가 기 설정온도(D) 제4 이빙개시 시점 결정단계(S9)가 수행될 수 있다. 제4 이빙개시 시점 결정단계(S9)에서 제어부(131)는 상기 제3 설정시간(T3)을 제4 이빙개시 시점으로 결정(S9)할 수 있다. 상기 제4 이빙개시 시점은 이빙히터(113) 및 이빙모터(135) 중 적어도 하나를 강제 동작시키는 시점일 수 있다.In addition, as a result of the second set time (T2) elapsed determination step (S4), if the temperature detected by the temperature detection unit 161 is higher than the preset temperature (C), the third set time (T3) elapsed determination step (S8) is in progress, and it can be determined whether the temperature is below the preset temperature D. As a result of the third set time (T3) elapse determination step (S8), if the preset temperature (D) or less, the temperature detected by the temperature detection unit is the preset temperature (D) and the fourth ice divergence start time determining step (S9) can be performed there is. In the fourth ice divergence start time determination step (S9), the controller 131 may determine the third set time (T3) as the fourth ice divergence start time (S9). The fourth ice moving start time may be a time point at which at least one of the ice heater 113 and the ice motor 135 is forcibly operated.
한편, 제4 온도 판단 단계(S9) 결과, 온도검출부(161)가 감지한 온도가 상기 기 설정온도(D)보다 높은 경우, 제4 온도 판단 단계(S9)로 리턴될 수 있다.Meanwhile, as a result of the fourth temperature determination step S9 , when the temperature sensed by the temperature detection unit 161 is higher than the preset temperature D, the process may return to the fourth temperature determination step S9 .
도 11은 본 발명의 다른 실시예에 의한 제빙기의 제어 블록도이다. 여기서는, 전술한 실시예와 동일한 것에 대해 동일한 도면부호를 부여하여, 그에 대한 자세한 설명은 생략하고, 다른 점만을 설명하기로 한다.11 is a control block diagram of an ice maker according to another embodiment of the present invention. Here, the same reference numerals are assigned to the same elements as those of the above-described embodiment, and detailed descriptions thereof will be omitted, and only different points will be described.
도 11을 참조하면, 본 발명의 다른 실시예에 의한 제빙기는 전술한 실시예에 비해, 정전용량센서(162)를 더 포함할 수 있다.Referring to FIG. 11 , the ice maker according to another embodiment of the present invention may further include a capacitive sensor 162 compared to the above-described embodiment.
정전용량센서(162)는 제빙홈(115)의 정전용량을 감지할 수 있다. 제어부(131)는 정전용량센서(162)로부터 입력되는 상기 정전용량을 이용하여, 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되었는지 판단할 수 있다.The capacitance sensor 162 may detect the capacitance of the ice making groove 115 . The controller 131 may determine whether the ice-making water supplied to the ice-making groove 115 has become completely ice by using the capacitance input from the capacitive sensor 162 .
즉, 제빙홈(115)의 정전용량은 제빙홈(115)에 수용되는 대상의 유전율에 비례한다. 통상적으로 물의 유전율은 80이고, 얼음의 유전율은 100이기 때문에, 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되면, 상기 제빙수가 얼지 않은 경우에 비해 정전용량이 증가한다. 제어부(131)에는 제빙홈(115) 내의 제빙수가 완전한 얼음이 되었을 때의 제빙홈(115)의 정전용량이 설정될 수 있다. 제어부(131)는 정전용량센서(162)로부터 입력되는 정전용량을 설정정전용량과 비교하여서, 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되었는지 판단할 수 있다. 제어부(131)는 정전용량센서(162)로부터 입력되는 정전용량이 설정정전용량 이상이면, 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되었다고 판단할 수 있다.That is, the capacitance of the ice-making groove 115 is proportional to the dielectric constant of the object accommodated in the ice-making groove 115 . In general, since the permittivity of water is 80 and the permittivity of ice is 100, when the ice-making water supplied to the ice-making grooves 115 becomes complete ice, the capacitance increases compared to the case in which the ice-making water is not frozen. The control unit 131 may set the capacitance of the ice making groove 115 when the ice making water in the ice making groove 115 becomes completely ice. The controller 131 may compare the capacitance input from the capacitive sensor 162 with the set capacitance to determine whether the ice-making water supplied to the ice-making groove 115 has completely turned into ice. When the capacitance input from the capacitive sensor 162 is equal to or greater than the set capacitance, the controller 131 may determine that the ice-making water supplied to the ice-making groove 115 has become completely ice.
제어부(131)는 전술한 실시예처럼 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되었는지 판단한 후, 정전용량센서(162)로부터 입력되는 정전용량을 상기 설정정전용량과 비교하여서, 제빙홈(115)에 급수된 제빙수가 완전한 얼음이 되었는지 재판단하여서, 재판단 결과 제빙홈(115)에서 급수된 제빙수가 완전한 얼음이 되었다고 판단되는 경우, 이빙히터(113) 및 이빙모터(135)를 제어하여 제빙홈(115)에서 이빙을 시작할 수 있다.After determining whether the ice-making water supplied to the ice-making groove 115 has become completely ice, the control unit 131 compares the capacitance input from the capacitive sensor 162 with the set capacitance, as in the above-described embodiment, It is judged again whether the ice-making water supplied to 115) has turned into complete ice. Ice can be started in the ice making groove 115 .
즉, 제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 경과된 시간과, 온도검출부(161)가 감지한 온도와, 정전용량센서(162)가 감지한 정전용량을 이용하여, 제빙홈(115)에서 얼음을 이빙하는 이빙개시 시점을 결정할 수 있다.That is, the controller 131 uses the time elapsed after the ice making water is supplied to the ice making groove 115 , the temperature sensed by the temperature detector 161 , and the capacitance sensed by the capacitive sensor 162 to make ice. It is possible to determine an ice-diving start time point for ice-removing from the groove 115 .
제어부(131)는 상기 이빙개시 시점을 복수의 단계별로 상승온도에 따라 결정할 수 있다.The controller 131 may determine the start time of the ice drifting according to the rising temperature in a plurality of stages.
즉, 제어부(131)는 제빙홈(15)에 제빙수가 급수된 후 상기 제1 설정시간(T1) 후에 온도검출부(161)가 감지한 온도와 정전용량센서(162)가 감지한 정전용량을 판단할 수 있다. 제어부(131)는 상기 제1 설정시간(T1) 후에 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z) 이하이고 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도(Z-1) 이하로 상기 제1 설정시간(T1)을 제1 이빙개시 시점으로 결정할 수 있다.That is, the control unit 131 determines the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 after the first set time T1 after the ice making water is supplied to the ice making groove 15 . can do. The control unit 131 determines that the temperature detected by the temperature detection unit 161 after the first set time T1 is equal to or less than the first set temperature Z, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detection unit is equal to or less than the 1-1 set temperature Z-1, and the first set time T1 may be determined as the first ice moving start time.
또한, 제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 상기 제1 설정시간(T1) 후에 판단한 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높은 경우, 상기 제2 설정시간(T2) 후에 온도검출부(161)가 감지한 온도와 정전용량센서(162)가 감지한 정전용량을 다시 판단할 수 있다. 제어부(131)는 상기 제2 설정시간(T2) 후에 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높고 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제2 설정시간(T2)을 제2 이빙개시 시점으로 결정할 수 있다.In addition, when the temperature detected by the temperature detection unit 161 determined after the first set time T1 after the ice making water is supplied to the ice making groove 115 is higher than the first set temperature Z, After the second set time T2 , the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 may be determined again. The control unit 131 determines that the temperature detected by the temperature detection unit 161 after the second set time T2 is higher than the first set temperature Z and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the second set time T2 may be determined as the second ice divergence start time.
또한, 제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 상기 제2 설정시간(T2) 후에 판단한 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z) 이하인 경우, 상기 제3 설정시간(T3) 후에 온도검출부(161)가 감지한 온도와 정전용량센서(162)가 감지한 정전용량을 다시 판단할 수 있다. 제어부(31)는 상기 제3 설정시간(T3) 후에 온도검출부(161)가 감지한 온도가 상기 제2 설정온도(C) 이하이고 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 상기 제3 설정시간(T3)을 제3 이빙개시 시점으로 결정할 수 있다.In addition, the control unit 131 controls the ice-making groove 115 to be supplied with ice-making water, and when the temperature detected by the temperature detection unit 161 determined after the second set time T2 is equal to or less than the first set temperature Z, the After the third set time T3 , the temperature detected by the temperature detection unit 161 and the capacitance detected by the capacitive sensor 162 may be determined again. The control unit 31 determines that the temperature detected by the temperature detection unit 161 after the third set time T3 is equal to or less than the second set temperature C, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the third set time T3 may be determined as the third ice divergence start time.
도 12는 본 발명의 다른 실시예에 의한 제빙기의 제어방법에서 이빙개시 시점 결정단계의 구체적인 순서도이다. 여기서는, 본 발명의 다른 실시예에 의한 제빙기의 제어방법을, 본 발명의 다른 실시예에 의한 제빙기의 동작과 결부시켜 설명하기로 한다.12 is a detailed flowchart of an ice removal start time determination step in a method for controlling an ice maker according to another embodiment of the present invention. Here, a method for controlling an ice maker according to another embodiment of the present invention will be described in connection with the operation of the ice maker according to another embodiment of the present invention.
도 8 및 도 9와, 도 11 및 도 12를 참조하면, 이빙개시 시점 결정단계(S3000)에서 제어부(131)는 제빙홈(115)에 제빙수가 급수된 후 경과된 시간과, 온도검출부(161)가 감지한 온도와, 정전용량센서(162)가 감지한 정전용량을 이용하여, 제빙홈(115)에서 얼음을 이빙하는 이빙개시 시점을 결정할 수 있다.Referring to FIGS. 8 and 9 and 11 and 12 , in the step of determining the start time of ice removal ( S3000 ), the controller 131 controls the time elapsed after the ice making water is supplied to the ice making groove 115 , and the temperature detection unit 161 . ) and the capacitance sensed by the capacitive sensor 162 , it is possible to determine an ice-diverging start time for icing ice in the ice-making groove 115 .
상기 이빙개시 시점 결정단계(S3000)에서 제어부(131)는 상기 이빙개시 시점이 복수의 단계별로 상승온도에 따라 결정할 수 있다. 이빙개시 시점 결정단계(S3000)는 제1 이빙개시 시점 결정단계(S30), 제2 이빙개시 시점 결정단계(S50) 및 제3 이빙개시 시점 결정단계(S70)를 포함할 수 있다.In the ice-diving start time determining step ( S3000 ), the controller 131 may determine the ice-dividing start time according to the rising temperature in a plurality of stages. The ice-diving start time determination step ( S3000 ) may include a first ice-diving start time determination step ( S30 ), a second ice-diving start time determination step ( S50 ), and a third ice transfer start time determination step ( S70 ).
급수단계(S1000) 단계 후, 온도 및 정전용량 입력 단계(S10)가 수행될 수 있다. 온도 및 정전용량 입력 단계(S10)에서 온도검출부(161)는 주변의 온도를 감지할 수 있고, 정전용량센서(162)는 제빙홈(115)의 정전용량을 감지할 수 있다. 온도검출부(161)가 감지한 온도와 정전용량센서(162)가 감지한 정전용량은 제어부(131)로 입력될 수 있다.After the water supply step (S1000), the temperature and capacitance input step (S10) may be performed. In the temperature and capacitance input step ( S10 ), the temperature detection unit 161 may detect the surrounding temperature, and the capacitance sensor 162 may detect the capacitance of the ice-making groove 115 . The temperature sensed by the temperature detector 161 and the capacitance sensed by the capacitive sensor 162 may be input to the controller 131 .
온도 및 정전용량 입력 단계(S1) 후, 제1 온도 및 정전용량 판단 단계(S20)가 수행될 수 있다. 제1 온도 및 정전용량 판단 단계(S20)에서 제어부(131)는 급수단계(S1000) 후 상기 제1 설정시간(T1) 후에, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z) 이하이고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상인지 판단할 수 있다.After the temperature and capacitance input step ( S1 ), a first temperature and capacitance determination step ( S20 ) may be performed. In the first temperature and capacitance determination step (S20), the controller 131 determines that the temperature detected by the temperature detection unit 161 is the first set temperature (Z) after the first set time (T1) after the water supply step (S1000). ) or less, it can be determined whether the capacitance detected by the capacitance sensor 162 is equal to or greater than the set capacitance.
제1 온도 및 정전용량 판단 단계(S20) 결과, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z) 이하이고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 운전율이 높은 냉장고로 판단하여 온도검출부가 감지한 온도가 제1-1 설정온도(Z-1) 이하로 제1 이빙개시 시점 결정단계(S30)가 수행될 수 있다. 제1 이빙개시 시점 결정단계(S30)에서 제어부(131)는 상기 제1 설정시간(T1)을 제1 이빙개시 시점으로 결정할 수 있다.As a result of the first temperature and capacitance determination step (S20), the temperature detected by the temperature detection unit 161 is equal to or less than the first set temperature Z, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, it is determined that the refrigerator has a high operating rate, and the temperature detected by the temperature detection unit is below the 1-1 set temperature (Z-1), and the first ice-dividing start time determining step ( S30 ) may be performed. In the first ice divergence start time determination step S30 , the controller 131 may determine the first set time T1 as the first ice divergence start time.
또한, 제1 온도 및 정전용량 판단 단계(S20) 결과, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높은 경우, 제2 온도 및 정전용량 판단 단계(S40)가 수행될 수 있다. 제2 온도 및 정전용량 판단 단계(S40)에서 제어부(131)는 상기 제2 설정시간(T2) 후에, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상인지 판단할 수 있다.In addition, as a result of the first temperature and capacitance determination step (S20), when the temperature detected by the temperature detection unit 161 is higher than the first set temperature (Z), the second temperature and capacitance determination step (S40) is performed can be In the second temperature and capacitance determination step (S40), the controller 131 determines that after the second set time T2, the temperature detected by the temperature detection unit 161 is higher than the first set temperature Z, and the capacitance It may be determined whether the capacitance detected by the sensor 162 is equal to or greater than the set capacitance.
제2 온도 및 정전용량 판단 단계(S40) 결과, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z)보다 높고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 제2 이빙개시 시점 결정단계(S50)가 수행될 수 있다. 제2 이빙개시 시점 결정단계(S50)에서 제어부(131)는 상기 제2 설정시간(T2)을 제2 이빙개시 시점으로 결정할 수 있다.As a result of the second temperature and capacitance determination step (S40), the temperature detected by the temperature detection unit 161 is higher than the first set temperature Z, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the second ice transfer start time determination step ( S50 ) may be performed. In the second ice divergence start time determination step S50 , the controller 131 may determine the second set time T2 as the second ice divergence start time.
또한, 제2 온도 및 정전용량 판단 단계(S40) 결과, 온도검출부(161)가 감지한 온도가 상기 제1 설정온도(Z) 이하인 경우, 제3 온도 및 정전용량 판단 단계(S60)가 수행될 수 있다. 제3 온도 및 정전용량 판단 단계(S60)에서 제어부(131)는 상기 제3 설정시간(T3) 후에, 온도검출부(161)가 감지한 온도가 상기 제2 설정온도(C) 이하이고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상인지 판단할 수 있다.In addition, as a result of the second temperature and capacitance determination step (S40), when the temperature detected by the temperature detection unit 161 is equal to or less than the first set temperature (Z), the third temperature and capacitance determination step (S60) will be performed can In the third temperature and capacitance determination step (S60), the controller 131 determines that after the third set time T3, the temperature detected by the temperature detection unit 161 is equal to or less than the second set temperature C, and the capacitance It may be determined whether the capacitance detected by the sensor 162 is equal to or greater than the set capacitance.
제3 온도 및 정전용량 판단 단계(S60) 결과, 온도검출부(161)가 감지한 온도가 상기 제2 설정온도(C) 이하이고, 정전용량센서(162)가 감지한 정전용량이 상기 설정정전용량 이상이면, 제3 이빙개시 시점 결정단계(S70)가 수행될 수 있다. 제3 이빙개시 시점 결정단계(S70)에서 제어부(131)는 상기 제3 설정시간(T3)을 제3 이빙개시 시점으로 결정할 수 있다.As a result of the third temperature and capacitance determination step (S60), the temperature detected by the temperature detection unit 161 is equal to or less than the second set temperature C, and the capacitance detected by the capacitive sensor 162 is the set capacitance If this is the case, the third ice transfer start time determination step ( S70 ) may be performed. In the third ice divergence start time determining step S70 , the controller 131 may determine the third set time T3 as the third ice divergence start time.
한편, 제3 온도 및 정전용량 판단 단계(S60) 결과, 온도검출부(161)가 감지한 온도가 상기 제2 설정온도(C)보다 높은 경우, 온도 및 정전용량 입력 단계(S10)로 로직이 리턴될 수 있다.On the other hand, as a result of the third temperature and capacitance determination step (S60), when the temperature detected by the temperature detection unit 161 is higher than the second set temperature (C), the logic returns to the temperature and capacitance input step (S10) can be
또는, 제3 온도 및 정전용량 판단 단계(S60) 결과, 온도검출부(161)가 감지한 온도가 상기 제2 설정온도(C)보다 높은 경우, 제3 설정시간(T3)보다 시간적으로 후행하는 제4 설정시간을 제4 이빙개시 시점으로 결정할 수 있다. 상기 제4 이빙개시 시점은 이빙히터(113) 및 이빙모터(135) 중 적어도 하나를 강제 동작시키는 시점일 수 있다.Alternatively, as a result of the third temperature and capacitance determination step (S60), when the temperature detected by the temperature detection unit 161 is higher than the second set temperature (C), the third set time (T3) follows the third set time (T3). 4 The set time may be determined as the fourth ice divergence start time. The fourth ice moving start time may be a time point at which at least one of the ice heater 113 and the ice motor 135 is forcibly operated.
상기와 같이, 본 발명의 실시예들에 의한 제빙기(100), 냉장고(1) 및 그 제어방법은, 이빙히터(113) 또는 이빙모터(135, 235)의 작동시점(T1, T2, T3)이 복수개의 작동시점(T1, T2, T3)으로 구비되기 때문에, 냉장고의 사이즈(용량), 운전율, 주위온도 및 냉각능력에 상관없이, 상기 복수개의 작동시점(T1, T2, T3) 중에서 아이스 트레이(110, 210)의 제빙홈(115, 215)에서 얼음이 완성된 시점에 상기 얼음을 효율적으로 이빙할 수 있다.As described above, in the ice maker 100, the refrigerator 1, and the control method thereof according to the embodiments of the present invention, the operating points of the ice heater 113 or the ice motors 135 and 235 (T1, T2, T3) Since the plurality of operating time points (T1, T2, T3) are provided, the ice is among the plurality of operating points (T1, T2, T3) regardless of the size (capacity), operating rate, ambient temperature, and cooling capacity of the refrigerator. When the ice is completed in the ice making grooves 115 and 215 of the trays 110 and 210, the ice can be efficiently removed.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential features thereof. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
1 : 냉장고 100, 200 : 제빙기1: refrigerator 100, 200: ice machine
110, 210 : 아이스 트레이 115, 215 : 제빙홈110, 210: ice tray 115, 215: ice making groove
131, 231 : 제어부 135, 235 : 이빙모터131, 231: control unit 135, 235: ice motor
161, 261 : 온도검출부 162 : 정전용량센서161, 261: temperature detection unit 162: capacitive sensor

Claims (17)

  1. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터;an icing motor driving the ice to be iced in the ice making groove;
    상기 이빙모터가 장착되는 케이싱;a casing to which the icing motor is mounted;
    냉장고 또는 제빙기에 구비된 제빙기의 모터 제어부 또는 히터 제어부;를 포함하고,Including; a motor control unit or a heater control unit of the ice maker provided in the refrigerator or ice maker;
    상기 제어부는 급수 후 이빙개시 전 강제 지연시간이 적용되며 상기 강제 지연시간 이후에 제빙시간과 제빙온도의 조합이 설정된 이빙조건을 만족하면 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The controller operates the icing motor or the icing heater when a forced delay time is applied after water supply and before the start of ice removal, and after the forced delay time, the combination of the ice-making time and the ice-making temperature satisfies the set ice-making conditions.
  2. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터; 및an icing motor driving the ice to be iced in the ice making groove; and
    상기 이빙모터를 제어하는 제어부;를 제빙기 또는 냉장고에 포함하고,A control unit for controlling the ice-making motor is included in an ice maker or a refrigerator,
    상기 제어부는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 냉장고 저장실의 온도 또는 상기 아이스 트레이부의 온도를 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The controller operates the icing motor or the ice heater at the time of starting ice or heating start time calculated using the elapsed time after the ice-making water is supplied to the ice-making groove and the temperature of the refrigerator storage compartment or the ice tray unit. ice machine.
  3. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터; 및an icing motor driving the ice to be iced in the ice making groove; and
    상기 이빙모터를 제어하는 제어부;를 제빙기 또는 냉장고에 포함하고,A control unit for controlling the ice-making motor is included in an ice maker or a refrigerator,
    상기 제어부는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The controller operates the icing motor or the icing heater at the start time of ice removal or heating start time calculated using the accumulated ice making time or the accumulated time below a predetermined temperature.
  4. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터; 및an icing motor driving the ice to be iced in the ice making groove; and
    상기 이빙모터를 제어하는 제어부;를 포함하고,Including; a control unit for controlling the divergence motor;
    상기 제어부에는 복수개의 이빙개시 시점 중 시간적으로 후행하는 시점의 이빙 설정온도가, 상기 복수개의 이빙개시 시점 중 시간적으로 선행하는 시점의 설정온도보다 높게 설정되는 제빙기.In the controller, an ice set temperature at a temporally following time among a plurality of ice removal start times is set to be higher than a set temperature at a temporally preceding point in time among the plurality of ice removal start times.
  5. 제빙홈이 형성된 아이스 트레이; 및an ice tray having an ice making groove; and
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터;를 포함하고,and an icing motor for driving the ice to be iced in the ice making groove; and
    상기 이빙모터는 냉장고에 구비된 냉장고 제어부에 의해 제어되고,The icing motor is controlled by a refrigerator controller provided in the refrigerator,
    상기 냉장고 제어부는 상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 상기 아이스 트레이부의 온도를 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The refrigerator controller operates the icing motor or the icing heater at a time of starting ice or a starting time of heating, which is calculated using a time elapsed after the ice-making water is supplied to the ice-making groove and the temperature of the ice tray unit.
  6. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터;an icing motor driving the ice to be iced in the ice making groove;
    주변의 온도를 감지하는 온도검출부;a temperature detection unit for sensing the surrounding temperature;
    상기 제빙홈의 정전용량을 감지하는 정전용량센서; 및a capacitive sensor sensing the capacitance of the ice-making groove; and
    상기 이빙모터를 제어하는 제어부;를 포함하고,Including; a control unit for controlling the divergence motor;
    상기 제어부는 제빙누적시간, 상기 정전용량센서의 정전용량을 이용하여, 산출한 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The control unit operates the icing motor or the ice heater at the time of starting ice or the start of heating, calculated using the accumulated ice making time and the capacitance of the capacitive sensor.
  7. 청구항 1 항 내지 6 항 중 어느 한 항에 있어서,7. The method according to any one of claims 1 to 6,
    상기 제어부는,The control unit is
    상기 제빙홈에 제빙수가 급수된 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이면, 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하고,After a first set time after the ice making water is supplied to the ice making groove, if the temperature detected by the temperature detecting unit is equal to or less than the first set temperature, the temperature detected by the temperature detecting unit is lower than the 1-1 set temperature for the first set time is determined as the operating time of the ice heater or the ice motor,
    상기 제빙홈에 제빙수가 급수된 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높으면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하는 제빙기.After the first set time after the ice making water is supplied to the ice making groove, when the temperature detected by the temperature detection unit is higher than the first set temperature, after a second set time that lags in time from the first set time, the When the temperature detected by the temperature detection unit is higher than the first set temperature, the ice maker determines the second set time as an operation time of the ice heater or the ice motor.
  8. 청구항 7에 있어서,8. The method of claim 7,
    상기 제어부는,The control unit is
    상기 제빙홈에 제빙수가 급수된 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하는 제빙기.After the second set time after the ice making water is supplied to the ice making groove, when the temperature sensed by the temperature detection unit is equal to or less than the first set temperature, after a third set time that lags in time from the second set time, the temperature When the temperature detected by the detector is equal to or less than a second set temperature higher than the first set temperature, the ice maker determines the third set time as an operation time of the ice heater or the ice motor.
  9. 제빙홈이 형성된 아이스 트레이; 및an ice tray having an ice making groove; and
    주변의 온도를 감지하는 온도검출부를 포함하는 제빙기의 제어방법에 있어서,A control method of an ice maker comprising a temperature detection unit for sensing ambient temperature, the method comprising:
    상기 제빙홈에 제빙수가 급수되는 급수단계;a water supply step of supplying ice making water to the ice making groove;
    상기 제빙수를 제빙하는 제빙단계; 및an ice making step of making the ice making water; and
    상기 제빙수가 급수된 후 경과된 시간과, 상기 온도검출부가 감지한 온도를 이용하여, 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계;an icing heater or icing motor operating time determining step of determining an operating time of an icing heater or an icing motor using the time elapsed after the ice-making water is supplied and the temperature sensed by the temperature detection unit;
    를 포함하는 제빙기의 제어방법.A control method of an ice maker comprising a.
  10. 청구항 9에 있어서,10. The method of claim 9,
    상기 이빙히터 또는 이빙모터 작동시점 결정단계는,The step of determining the operating time of the ice heater or the ice motor is,
    상기 급수단계 후 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 제1 설정온도 이하이면, 운전율이 높은 냉장고로 판단하여 상기 온도검출부가 감지한 온도가 제1-1 설정온도 이하로 상기 제1 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하는 제1 이빙히터 또는 이빙모터 작동시점 결정단계와,After the first set time after the water supply step, if the temperature detected by the temperature detection unit is equal to or less than the first set temperature, it is determined that the refrigerator has a high operating rate and the temperature detected by the temperature detecting unit is lower than the 1-1 set temperature. A first ice heater or ice motor operation time determining step of determining a first set time as an operation time of the ice heater or the ice motor;
    상기 급수단계 후 상기 제1 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 경우, 상기 제1 설정시간보다 시간적으로 후행하는 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높으면, 상기 제2 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하는 제2 이빙히터 또는 이빙모터 작동시점 결정단계를 포함하는 제빙기의 제어방법.After the first set time after the water supply step, when the temperature detected by the temperature detecting unit is higher than the first set temperature, after a second set time that follows the first set time in time, the temperature detecting unit detects and determining an operating time of a second icing heater or an icing motor when the temperature is higher than the first set temperature, determining the second set time as an operating time of the icing heater or the icing motor.
  11. 청구항 10에 있어서,11. The method of claim 10,
    상기 이빙히터 또는 이빙모터 작동시점 결정단계는,The step of determining the operating time of the ice heater or the ice motor is,
    상기 급수단계 후 상기 제2 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도 이하인 경우, 상기 제2 설정시간보다 시간적으로 후행하는 제3 설정시간 후에, 상기 온도검출부가 감지한 온도가 상기 제1 설정온도보다 높은 제2 설정온도 이하이면, 상기 제3 설정시간을 상기 이빙히터 또는 상기 이빙모터의 작동시점으로 결정하는 제3 이빙히터 또는 이빙모터 작동시점 결정단계를 더 포함하는 제빙기의 제어방법.After the second set time after the water supply step, when the temperature sensed by the temperature detecting unit is equal to or less than the first set temperature, the temperature detected by the temperature detecting unit after a third set time that lags in time from the second set time is less than or equal to a second set temperature higher than the first set temperature, determining the third set time as the operating time of the ice heater or the ice motor. control method.
  12. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터; 및an icing motor driving the ice to be iced in the ice making groove; and
    상기 이빙모터를 제어하는 제어부;를 포함하고,Including; a control unit for controlling the divergence motor;
    상기 제어부는 제빙 시간을 강제 지연하되, 기 설정된 지연시간 경과 후 비교하여 이빙 온도 시점에 따라 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The control unit forcibly delays the ice making time, but compares it after a preset delay time has elapsed and operates the ice motor or the ice heater according to the time point of the ice temperature.
  13. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    상기 제빙홈에서 얼음이 이빙되도록 구동하는 이빙모터; 및an icing motor driving the ice to be iced in the ice making groove; and
    상기 이빙모터를 제어하는 제어부;를 포함하고,Including; a control unit for controlling the divergence motor;
    상기 제어부는 제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출하되, 상기 일정온도 이상시 상기 누적시간을 제외하거나 신규로 누적시간을 산출 또는 기존 누적시간에 추가 산출하여 이빙개시 시점 또는 히팅개시 시점에 상기 이빙모터 또는 이빙히터를 동작시키는 제빙기.The control unit calculates using the accumulated ice-making time or the accumulated time below a certain temperature, but when the temperature is higher than the predetermined temperature, the accumulated time is excluded, or the accumulated time is newly calculated or additionally calculated to the existing accumulated time to start ice removal or heating An ice maker operating the ice motor or the ice heater at a point in time.
  14. 제빙홈이 형성된 아이스 트레이;an ice tray having an ice making groove;
    주변의 온도를 감지하는 온도검출부;a temperature detection unit for sensing the surrounding temperature;
    상기 제빙홈의 정전용량을 감지하는 정전용량센서;를 포함하는 제빙기의 제어방법에 있어서,In the control method of an ice maker comprising; a capacitance sensor for sensing the capacitance of the ice making groove,
    상기 제빙홈에 제빙수가 급수되는 급수단계;a water supply step of supplying ice making water to the ice making groove;
    상기 제빙수를 제빙하는 제빙단계; 및an ice making step of making the ice making water; and
    상기 제빙홈에 제빙수가 급수된 후 경과된 시간과, 상기 온도검출부가 감지한 온도와, 상기 정전용량센서가 감지한 정전용량을 이용하여, 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계;를 포함하고,An ice heater that determines an operation time of an ice heater or an ice motor using the time elapsed after the ice-making water is supplied to the ice-making groove, the temperature detected by the temperature detection unit, and the capacitance detected by the capacitive sensor; or Including; determining the timing of the operation of the ice motor;
    상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수의 단계별로 상승온도에 따라 결정되는 제빙기의 제어방법.In the step of determining the operating time of the ice heater or the ice motor, the operating time of the ice heater or the ice motor is determined according to the rising temperature in a plurality of steps.
  15. 제빙홈이 형성된 아이스 트레이; 및an ice tray having an ice making groove; and
    온도검출부를 포함하는 제빙기의 제어방법에 있어서,A method for controlling an ice maker including a temperature detection unit, the method comprising:
    상기 제빙홈에 제빙수가 급수되는 급수단계;a water supply step of supplying ice making water to the ice making groove;
    상기 제빙수를 제빙하는 제빙단계; 및an ice making step of making the ice making water; and
    제빙 시간을 강제 지연하되, 기 설정된 지연시간 경과 후 비교하여 이빙 온도 시점에 따라 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계;를 포함하고,The ice-making time is forcibly delayed, but an ice heater or an ice motor operation time determination step of determining the operation time of the ice heater or the ice motor according to the time of the ice temperature by comparing after a preset delay time has elapsed;
    상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수의 단계별로 상승온도에 따라 결정되는 제빙기의 제어방법.In the step of determining the operating time of the ice heater or the ice motor, the operating time of the ice heater or the ice motor is determined according to the rising temperature in a plurality of steps.
  16. 제빙홈이 형성된 아이스 트레이; 및an ice tray having an ice making groove; and
    온도검출부를 포함하는 제빙기의 제어방법에 있어서,A method for controlling an ice maker including a temperature detection unit, the method comprising:
    상기 제빙홈에 제빙수가 급수되는 급수단계;a water supply step of supplying ice making water to the ice making groove;
    상기 제빙수를 제빙하는 제빙단계; 및an ice making step of making the ice making water; and
    제빙 누적시간 또는 일정온도 이하의 누적시간을 이용하여 산출하되, 상기 일정온도 이상시 상기 누적시간을 제외하거나 신규로 누적시간을 산출 또는 기존 누적시간에 추가 산출하여 이빙히터 또는 이빙모터의 작동시점을 결정하는 이빙히터 또는 이빙모터 작동시점 결정단계;를 포함하고,It is calculated using the accumulated ice making time or the accumulated time below a certain temperature, but when the temperature is above the predetermined temperature, the accumulated time is excluded, or the accumulated time is newly calculated or the accumulated time is calculated in addition to the existing accumulated time to determine the operating time of the ice heater or the ice motor Including; determining the operating time of the ice heater or the ice motor to determine
    상기 이빙히터 또는 이빙모터 작동시점 결정단계에서는 상기 이빙히터 또는 상기 이빙모터의 작동시점이 복수의 단계별로 상승온도에 따라 결정되는 제빙기의 제어방법.In the step of determining the operating time of the ice heater or the ice motor, the operating time of the ice heater or the ice motor is determined according to the rising temperature in a plurality of steps.
  17. 청구항 1 내지 청구항 8과 청구항 12 내지 청구항 13 중 어느 한 항의 제빙기를 포함하는 냉장고.A refrigerator comprising the ice maker of any one of claims 1 to 8 and 12 to 13.
PCT/KR2020/010927 2020-08-14 2020-08-14 Ice maker, refrigerator and control method therefor WO2022034948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/010927 WO2022034948A1 (en) 2020-08-14 2020-08-14 Ice maker, refrigerator and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/010927 WO2022034948A1 (en) 2020-08-14 2020-08-14 Ice maker, refrigerator and control method therefor

Publications (1)

Publication Number Publication Date
WO2022034948A1 true WO2022034948A1 (en) 2022-02-17

Family

ID=80247956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010927 WO2022034948A1 (en) 2020-08-14 2020-08-14 Ice maker, refrigerator and control method therefor

Country Status (1)

Country Link
WO (1) WO2022034948A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990004812A (en) * 1997-06-30 1999-01-25 배순훈 How to control the operation of the automatic ice maker in the refrigerator
KR20060124338A (en) * 2005-05-31 2006-12-05 삼성전자주식회사 Refrigerator and full ice-making method thereof
KR20090096788A (en) * 2008-03-10 2009-09-15 엘지전자 주식회사 Method for estimating completion of ice-making for an ice making assembly of refrigerator
KR20090128906A (en) * 2008-06-11 2009-12-16 엘지전자 주식회사 Ice maker controlling method of refrigerator
US20180142934A1 (en) * 2016-11-18 2018-05-24 Haier Us Appliance Solutions, Inc. Ice making method and system for refrigerator appliance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990004812A (en) * 1997-06-30 1999-01-25 배순훈 How to control the operation of the automatic ice maker in the refrigerator
KR20060124338A (en) * 2005-05-31 2006-12-05 삼성전자주식회사 Refrigerator and full ice-making method thereof
KR20090096788A (en) * 2008-03-10 2009-09-15 엘지전자 주식회사 Method for estimating completion of ice-making for an ice making assembly of refrigerator
KR20090128906A (en) * 2008-06-11 2009-12-16 엘지전자 주식회사 Ice maker controlling method of refrigerator
US20180142934A1 (en) * 2016-11-18 2018-05-24 Haier Us Appliance Solutions, Inc. Ice making method and system for refrigerator appliance

Similar Documents

Publication Publication Date Title
WO2019172532A1 (en) Refrigerator and controlling method thereof
WO2018088839A1 (en) Refrigerator and method for controlling refrigerator
WO2018088845A1 (en) Refrigerator and control method of refrigerator
WO2009128647A2 (en) Ice-full state detecting apparatus and refrigerator having the same
WO2017105079A1 (en) Refrigerator
WO2017164712A1 (en) Refrigerator and control method therefor
WO2016117942A1 (en) Refrigerator and method for controlling the same
WO2017039234A1 (en) Refrigerator
WO2010120049A1 (en) Refrigerator
WO2015069006A1 (en) Refrigerator
EP3338041A1 (en) Refrigerator
EP2494287A2 (en) Ice maker for refrigerator and refrigerator having the same
WO2019143087A1 (en) Ice maker
WO2017164710A1 (en) Control method for refrigerator
WO2010120091A2 (en) Refrigerator control technology
EP2427707A1 (en) Heater for refrigerator and refrigerator including the same
WO2022034948A1 (en) Ice maker, refrigerator and control method therefor
WO2019194453A1 (en) Water purifier and method for controlling the same
WO2020130402A1 (en) Refrigerator
WO2019045306A1 (en) Refrigerator and control method therefor
WO2020027596A1 (en) Method for controlling refrigerator
WO2022124568A1 (en) Refrigerator
WO2012039569A2 (en) Method for controlling an icemaker for a refrigerator
WO2019164115A1 (en) Refrigerator and controlling method for the same
EP3638967A1 (en) Refrigerator and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949580

Country of ref document: EP

Kind code of ref document: A1