WO2022034828A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2022034828A1
WO2022034828A1 PCT/JP2021/028665 JP2021028665W WO2022034828A1 WO 2022034828 A1 WO2022034828 A1 WO 2022034828A1 JP 2021028665 W JP2021028665 W JP 2021028665W WO 2022034828 A1 WO2022034828 A1 WO 2022034828A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
trench
semiconductor device
high concentration
trench structure
Prior art date
Application number
PCT/JP2021/028665
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 村▲崎▼
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022542811A priority Critical patent/JPWO2022034828A1/ja
Priority to CN202180056460.4A priority patent/CN116018689A/en
Priority to DE212021000185.8U priority patent/DE212021000185U1/en
Priority to US17/927,011 priority patent/US20230197799A1/en
Priority to DE112021002371.3T priority patent/DE112021002371T5/en
Publication of WO2022034828A1 publication Critical patent/WO2022034828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device including an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • Patent Document 1 discloses a semiconductor device including a trench-type IGBT.
  • This semiconductor device has a semiconductor layer having one surface and the other surface, a p-type semiconductor region formed on the surface layer portion of one main surface of the semiconductor layer, and n formed on the surface layer portion of the other main surface of the semiconductor layer. It includes a type semiconductor region and a high concentration region formed between a p-type semiconductor region and an n-type semiconductor region and having an n-type impurity concentration higher than that of the n-type semiconductor region.
  • One embodiment of the present invention provides a semiconductor device having a novel structure.
  • One embodiment of the present invention comprises a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and the drift region.
  • a second conductive type base region formed on the surface layer portion, and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
  • a plurality of trench structures including, a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and the second trench structure and the third trench structure in the semiconductor layer.
  • the first conductive type high concentration region formed in the region on the second main surface side with respect to the base region and not formed on the other side of the first region and the second region is included.
  • a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region.
  • a plurality of formed second conductive type base regions including a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
  • a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and a partition between the second trench structure and the third trench structure in the semiconductor layer.
  • a semiconductor device including a first conductive type high concentration region formed on a surface layer portion of the drift region so as to be connected to the base region from one direction along the first main surface.
  • FIG. 1 is a plan view showing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the structure of the first main surface of the semiconductor layer.
  • FIG. 3 is an enlarged view of the region III shown in FIG.
  • FIG. 4 is an enlarged view of the region IV shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. 4, and is a cross-sectional view showing a first embodiment example of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a second embodiment example of the semiconductor device shown in FIG.
  • FIG. 7 is a cross-sectional view showing a third embodiment example of the semiconductor device shown in FIG. FIG.
  • FIG. 8 is a cross-sectional view showing a fourth embodiment example of the semiconductor device shown in FIG.
  • FIG. 9 is a cross-sectional view showing the semiconductor device according to the second embodiment of the present invention together with the structure according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing a second embodiment example of the semiconductor device shown in FIG.
  • FIG. 11 is a cross-sectional view showing a third embodiment example of the semiconductor device shown in FIG.
  • FIG. 12 is a cross-sectional view showing a fourth embodiment example of the semiconductor device shown in FIG.
  • FIG. 13 is a plan view showing the internal structure of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV shown in FIG. FIG.
  • FIG. 15 is a cross-sectional view taken along the line XV-XV shown in FIG.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI shown in FIG.
  • FIG. 17 is a plan view showing the internal structure of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII shown in FIG.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX shown in FIG.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG.
  • FIG. 21 is a plan view showing the internal structure of the semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 1 is a plan view showing a semiconductor device 1 according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the structure of the first main surface 3 of the semiconductor layer 2.
  • the semiconductor device 1 is a semiconductor switching device (electronic component) provided with an IGBT (Insulated Gate Bipolar Transistor). With reference to FIGS. 1 and 2, the semiconductor device 1 includes a rectangular parallelepiped semiconductor layer 2. In this form (this embodiment), the semiconductor layer 2 is made of a Si single crystal.
  • the semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, 5D connecting the first main surface 3 and the second main surface 4. ing.
  • the semiconductor device 1 includes a rectangular parallelepiped semiconductor layer 2.
  • the semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, 5D connecting the first main surface 3 and the second main surface 4. ing.
  • the first main surface 3 and the second main surface 4 are formed in a rectangular shape in a plan view (hereinafter, simply referred to as “plan view”) viewed from their normal direction Z.
  • the side surface 5B and the side surface 5D extend along the first direction Y and face each other in the second direction X intersecting (specifically, orthogonally) the first direction Y.
  • the side surface 5A and the side surface 5C extend along the second direction X and face each other in the first direction Y.
  • the thickness of the semiconductor layer 2 may be 50 ⁇ m or more and 200 ⁇ m or less.
  • the semiconductor layer 2 includes an active region 6 and an outer region 7.
  • the active region 6 is a region in which the IGBT is formed.
  • the active region 6 is set in the central portion of the semiconductor layer 2 at intervals from the side surfaces 5A to 5D of the semiconductor layer 2 to the inner region in a plan view.
  • the active region 6 may be set in a square shape having four sides parallel to the side surfaces 5A to 5D of the semiconductor layer 2 in a plan view.
  • the outer region 7 is an region outside the active region 6.
  • the outer region 7 may extend in a strip shape along the peripheral edge of the active region 6 in a plan view.
  • the outer region 7 may extend in an annular shape (endless shape) surrounding the active region 6 in a plan view.
  • the active region 6 includes at least one IGBT region 8 formed at intervals in the first direction Y.
  • the active region 6 includes a plurality of rows of IGBT regions 8 in this form.
  • the plurality of IGBT regions 8 face each other in the first direction Y.
  • the IGBT region 8 is a region in which the IGBT is formed. As shown in FIGS. 1 and 2, the plurality of IGBT regions 8 may be formed in a rectangular shape in a plan view. Specifically, the plurality of IGBT regions 8 may be formed in a rectangular shape long in the first direction Y.
  • an emitter terminal electrode 9 (see the broken line portion in FIG. 1) is formed on the first main surface 3 (above).
  • the emitter terminal electrode 9 may contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, or aluminum-copper alloy.
  • the emitter terminal electrode 9 may have a single-layer structure containing any one of these conductive materials.
  • the emitter terminal electrode 9 may have a laminated structure in which at least two of these conductive materials are laminated in any order.
  • the emitter terminal electrode 9 is made of an aluminum-silicon-copper alloy in this form.
  • the emitter terminal electrode 9 transmits an emitter signal to the active region 6 (IGBT region 8).
  • the emitter potential may be a circuit reference potential that serves as a reference for circuit operation.
  • the circuit reference potential may be a ground potential or a potential exceeding the ground potential.
  • a gate terminal electrode 10 is formed on the first main surface 3 in the outer region 7.
  • the gate terminal electrode 10 is formed in a rectangular shape in a plan view.
  • the gate terminal electrode 10 transmits a gate potential (gate signal) to the active region 6 (IGBT region 8).
  • the arrangement position of the gate terminal electrode 10 is arbitrary.
  • the gate wiring 11 is electrically connected to the gate terminal electrode 10.
  • the gate terminal electrode 10 may contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, or aluminum-copper alloy.
  • the gate terminal electrode 10 may have a single-layer structure containing any one of these conductive materials.
  • the gate terminal electrode 10 may have a laminated structure in which at least two of these conductive materials are laminated in any order. In this embodiment, the gate terminal electrode 10 contains the same conductive material as the emitter terminal electrode 9.
  • the gate wiring 11 extends from the outer region 7 toward the active region 6.
  • the gate wiring 11 transmits the gate signal applied to the gate terminal electrode 10 to the active region 6 (IGBT region 8).
  • the gate wiring 11 includes an outer region 11a located in the outer region 7 and an inner region 11b located in the active region 6 and connected to the outer region 11a.
  • the outer region 11a is electrically connected to the gate terminal electrode 10.
  • the outer region 11a is selectively routed in the region on the side surface 5D side in the outer region 7.
  • a plurality of inner regions 11b are formed in the active region 6.
  • the plurality of inner regions 11b are formed at intervals in the first direction Y.
  • the plurality of inner regions 11b extend in a band shape in the second direction X.
  • the plurality of inner regions 11b extend from the region on the side surface 5D side to the region on the side surface 5B side in the outer region 7, respectively.
  • the plurality of inner regions 11b may cross the active region 6.
  • FIG. 3 is an enlarged view of the region III shown in FIG.
  • FIG. 4 is an enlarged view of the region IV shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG.
  • an n ⁇ type drift region 12 is formed inside the semiconductor layer 2. Specifically, the drift region 12 is formed in the entire area of the semiconductor layer 2.
  • the concentration of n-type impurities in the drift region 12 may be 1.0 ⁇ 10 13 cm -3 or more and 1.0 ⁇ 10 15 cm -3 or less.
  • the semiconductor layer 2 has a single-layer structure including an n - type semiconductor substrate 13.
  • the semiconductor substrate 13 may be a silicon FZ substrate formed by the FZ (Floating Zone) method or a silicon MCZ substrate formed by the MCZ (Magnetic Field applied Czochralski) method.
  • the drift region 12 is formed by the semiconductor substrate 13.
  • a collector terminal electrode 14 is formed on the second main surface 4 of the semiconductor layer 2.
  • the collector terminal electrode 14 is electrically connected to the second main surface 4.
  • the collector terminal electrode 14 is electrically connected to the IGBT region 8 (collector region 16 described later).
  • the collector terminal electrode 14 forms ohmic contact with the second main surface 4.
  • the collector terminal electrode 14 transmits a collector signal to the IGBT region 8.
  • the collector terminal electrode 14 may include at least one of a Ti layer, a Ni layer, an Au layer, an Ag layer and an Al layer.
  • the collector terminal electrode 14 may have a laminated structure in which at least two of a Ti layer, a Ni layer, an Au layer, an Ag layer and an Al layer are laminated in any manner.
  • An n-type buffer layer 15 is formed on the surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the buffer layer 15 may be formed over the entire surface layer portion of the second main surface 4.
  • the concentration of n-type impurities in the buffer layer 15 is higher than the concentration of n-type impurities in the drift region 12.
  • the concentration of n-type impurities in the buffer layer 15 may be 1.0 ⁇ 10 14 cm -3 or more and 1.0 ⁇ 10 17 cm -3 or less.
  • each IGBT region 8 includes a p-type collector region 16 formed on the surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the collector area 16 is exposed from the second main surface 4.
  • the collector region 16 may be formed over the entire surface layer portion of the second main surface 4.
  • the concentration of p-type impurities in the collector region 16 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • the collector region 16 forms ohmic contact with the collector terminal electrode 14.
  • each IGBT region 8 a p-type base region 41 is formed on the surface layer portion of the first main surface 3.
  • the concentration of p-type impurities in the base region 41 may be 1.0 ⁇ 10 17 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • Each IGBT region 8 includes a FET structure 21 formed on the first main surface 3 of the semiconductor layer 2.
  • Each IGBT region 8 includes, in this embodiment, a trench gate type FET structure 21.
  • the FET structure 21 includes a trench gate structure (first trench structure) 22 formed on the first main surface 3.
  • a gate signal (gate potential) is applied to the trench gate structure 22.
  • the trench gate structure 22 is shown by hatching.
  • a plurality of trench gate structures 22 are formed in the IGBT region 8 at intervals in the second direction X.
  • the distance between the two trench gate structures 22 adjacent to each other in the second direction X may be 1 ⁇ m or more and 20 ⁇ m or less.
  • Each trench gate structure 22 is formed in a band shape extending in the first direction Y in a plan view.
  • the plurality of trench gate structures 22 are formed in a striped shape as a whole in a plan view.
  • the plurality of trench gate structures 22 have one end in the first direction Y and the other end in the first direction Y.
  • the FET structure 21 further includes a first outer trench gate structure 23 and a second outer trench gate structure 24.
  • first outer trench gate structure 23 and the second outer trench gate structure 24 are shown by hatching.
  • the first outer trench gate structure 23 extends in the second direction X and is connected to one end of a plurality of trench gate structures 22.
  • the second outer trench gate structure 24 extends in the second direction X and is connected to the other end of the plurality of trench gate structures 22.
  • Each trench gate structure 22 includes a gate trench 31 (first trench), a gate insulating film (first insulating film) 32, and a gate electrode (first electrode) 33.
  • the gate trench 31 is formed on the first main surface 3 of the semiconductor layer 2.
  • the gate trench 31 includes a side wall and a bottom wall.
  • the side wall of the gate trench 31 may be formed perpendicular to the first main surface 3.
  • the side wall of the gate trench 31 may be inclined downward from the first main surface 3 toward the bottom wall.
  • the gate trench 31 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area.
  • the bottom wall of the gate trench 31 may be formed parallel to the first main surface 3.
  • the bottom wall of the gate trench 31 may be formed in a convex curved shape toward the second main surface 4.
  • the gate trench 31 penetrates the base region 41.
  • the bottom wall of the gate trench 31 is located below the bottom of the base region 41 in the normal direction Z.
  • the depth of the gate trench 31 may be 2 ⁇ m or more and 8 ⁇ m or less.
  • the width of the gate trench 31 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the gate insulating film 32 is formed in a film shape along the inner wall of the gate trench 31.
  • the gate insulating film 32 partitions the recess space in the gate trench 31.
  • the gate insulating film 32 includes a silicon oxide film in this form.
  • the gate insulating film 32 may include a silicon nitride film in place of or in addition to the silicon oxide film.
  • the gate electrode 33 is embedded in the gate trench 31 with the gate insulating film 32 interposed therebetween.
  • the gate electrode 33 is controlled by a gate signal (gate potential).
  • the gate electrode 33 may contain conductive polysilicon.
  • the gate electrode 33 is formed in a wall shape extending along the normal direction Z in a cross-sectional view.
  • the gate electrode 33 has an upper end portion located on the opening side of the gate trench 31.
  • the upper end of the gate electrode 33 is located on the bottom wall side of the gate trench 31 with respect to the first main surface 3.
  • the gate electrode 33 is electrically connected to the gate wiring 11 in a region (not shown).
  • the gate signal applied to the gate terminal electrode 10 is transmitted to the gate electrode 33 via the gate wiring 11.
  • Each IGBT region 8 includes a region separation structure 25 that partitions the FET structure 21 from other regions on the first main surface 3 of the semiconductor layer 2.
  • the region separation structure 25 is formed in a region adjacent to the FET structure 21 in the surface layer portion of the first main surface 3.
  • the region separation structure 25 is formed on both sides of the FET structure 21.
  • the region separation structure 25 is formed in a region between two adjacent FET structures 21. As a result, the plurality of FET structures 21 are separated by the region separation structure 25.
  • the region separation structure 25 is formed in a closed region partitioned by two adjacent trench gate structures 22, a first outer trench gate structure 23, and a second outer trench gate structure 24.
  • the region separation structure 25 includes a plurality of (three in the example of FIG. 3) separation trench structures extending in the first direction Y.
  • a plurality of separation trench structures 26 are shown by hatching.
  • the plurality of separation trench structures 26 are formed in the IGBT region 8 at intervals in the second direction X.
  • the plurality of separated trench structures 26 include a first separated trench structure 26A (second trench structure), a second separated trench structure 26B (third trench structure), and a third separated trench structure 26C (fourth trench structure). Structure) is included.
  • the first separation trench structure 26A is formed at a distance from one trench gate structure 22 on one side of the second direction X (on the right side of the paper in FIGS. 3 and 4).
  • the second separation trench structure 26B is formed at a distance from the first separation trench structure 26A on one side of the second direction X.
  • the third separation trench structure 26C is formed at a distance from the second separation trench structure 26B on one side of the second direction X.
  • the second separation trench structure 26B is sandwiched in the second direction X by the first separation trench structure 26A and the third separation trench structure 26C.
  • Each separation trench structure 26 is formed in a band shape extending in the first direction Y in a plan view.
  • the plurality of separation trench structures 26 are formed in a striped shape as a whole.
  • the plurality of separation trench structures 26 have one end in the first direction Y and the other end in the first direction Y.
  • the distance in the second direction X between the trench gate structure 22 and the separation trench structure 26 (first separation trench structure 26A) may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the distance in the second direction X between the two adjacent separation trench structures 26 may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the distance in the second direction X between the two adjacent separated trench structures 26 may be approximately equal to the distance in the second direction X between the trench gate structure 22 and the separated trench structure 26 (first separated trench structure 26A). preferable.
  • the region separation structure 25 further includes a first outer separation trench structure 27 and a second outer separation trench structure 28.
  • first outer separation trench structure 27 and the second outer separation trench structure 28 are shown by hatching.
  • the first outer separation trench structure 27 extends in the second direction X and is connected to one end of the plurality of separation trench structures 26.
  • the second outer separation trench structure 28 extends in the second direction X and is connected to the other end of the plurality of separation trench structures 26.
  • the first outer separation trench structure 27 and the second outer separation trench structure 28 have the same structure as the separation trench structure 26 except that the extending directions are different.
  • Each separation trench structure 26 includes a separation trench 36 (second trench, third trench), a separation insulating film 37 (second insulating film, third insulating film), and a separation electrode 38 (second electrode, third electrode). ..
  • the separation trench 36 is formed on the first main surface 3 of the semiconductor layer 2.
  • the separation trench 36 includes a side wall and a bottom wall. The side wall of the separation trench 36 may be formed perpendicular to the first main surface 3.
  • the side wall of the separation trench 36 may be inclined downward from the first main surface 3 toward the bottom wall.
  • the separation trench 36 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area.
  • the bottom wall of the separation trench 36 may be formed parallel to the first main surface 3.
  • the bottom wall of the separation trench 36 may be formed in a convex curved shape toward the second main surface 4.
  • the depth of the separation trench 36 may be 2 ⁇ m or more and 8 ⁇ m or less.
  • the width of the separation trench 36 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the width of the separation trench 36 is the width of the separation trench 36 in the second direction X.
  • the width of the separation trench 36 may be equal to the width of the gate trench 31.
  • the separation insulating film 37 is formed in a film shape along the inner wall of the separation trench 36.
  • the separation insulating film 37 partitions the recess space in the separation trench 36.
  • the separation insulating film 37 includes a silicon oxide film in this form.
  • the separation insulating film 37 may include a silicon nitride film in place of or in addition to the silicon oxide film.
  • the separation electrode 38 is embedded in the separation trench 36 with the separation insulating film 37 interposed therebetween.
  • the separation electrode 38 is electrically connected to the emitter terminal electrode 9 in a region (not shown). An emitter potential is applied to the separation electrode 38.
  • the separation electrode 38 may contain conductive polysilicon.
  • the separation electrode 38 is formed in a wall shape extending along the normal direction Z in a cross-sectional view.
  • the separation electrode 38 has an upper end portion located on the opening side of the separation trench 36.
  • the upper end of the separation electrode 38 is located on the bottom wall side of the separation trench 36 with respect to the first main surface 3.
  • the plurality of separated trench structures 26 partition the first region 29 from the trench gate structure 22 in the semiconductor layer 2 of the FET structure 21 in a cross-sectional view along the second direction X.
  • the first region 29 is formed on both sides of the trench gate structure 22.
  • the first region 29 is also a region where the FET structure 21 is formed. That is, each FET structure 21 includes, in this embodiment, two first regions 29 adjacent to each other in the first direction Y.
  • the first region 29 of one of the two first regions 29 is partitioned between the trench gate structure 22 and the first separation trench structure 26A.
  • the other first region 29 of the two first regions 29 is partitioned between the trench gate structure 22 and the third separation trench structure 26C.
  • the two first regions 29 are formed in a band shape extending along the trench gate structure 22 and the separation trench structure 26, respectively.
  • the plurality of separation trench structures 26 partition the second region 30 in the semiconductor layer 2 of the region separation structure 25 in a cross-sectional view along the second direction X.
  • the plurality of separation trench structures 26 partition the plurality of second regions 30 adjacent to each other in the first direction Y into the semiconductor layer 2.
  • Each region separation structure 25 includes, in this embodiment, two second regions 30 adjacent to each other in the first direction Y.
  • One side region 30A of the two second regions 30 (on the left side of the paper in FIG. 5) is partitioned between the first separation trench structure 26A and the second separation trench structure 26B.
  • the other side region 30B on the other side (right side of the paper in FIG. 5) of the two second regions 30 is partitioned between the second separation trench structure 26B and the third separation trench structure 26C.
  • the two second regions 30 are each formed in a band shape extending along the plurality of separation trench structures 26.
  • a plurality of (two in this embodiment) second regions 30 sandwich a plurality of (two in this embodiment) first regions 29, and the plurality of second regions 30 are plural.
  • the first region 29 and the second direction X are alternately arranged.
  • the plurality of first regions 29 and the plurality of second regions 30 are formed in a striped shape as a whole in a plan view.
  • an IE (Injection Enhanced) structure including the FET structure 21 and the region separation structure 25 is formed.
  • the plurality of FET structures 21 are separated in the second direction X by the region separation structure 25.
  • the region separation structure 25 limits the movement of holes injected into the semiconductor layer 2. That is, the holes bypass the region separation structure 25 and flow into the FET structure 21. As a result, holes are accumulated in the region immediately below the FET structure 21 in the semiconductor layer 2, and the density of holes is increased. As a result, the on-resistance and the on-voltage are reduced (IE effect).
  • an n + type emitter region 42 is formed on the surface layer portion of the base region 41.
  • the concentration of n-type impurities in the emitter region 42 is higher than the concentration of n-type impurities in the drift region 12.
  • the concentration of n-type impurities in the emitter region 42 may be 1.0 ⁇ 10 19 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • the emitter region 42 is formed on both sides of the trench gate structure 22.
  • the emitter region 42 is formed in a strip shape extending along the trench gate structure 22 in a plan view.
  • the emitter region 42 is exposed from the first main surface 3 and the side wall of the gate trench 31.
  • the bottom of the emitter region 42 is formed in the region between the top of the gate electrode 33 and the bottom of the base region 41 with respect to the normal direction Z.
  • a p + type contact region 43 is formed on the surface layer portion of the base region 41.
  • the p-type impurity concentration in the contact region 43 is higher than the p-type impurity concentration in the base region 41.
  • the concentration of p-type impurities in the contact region 43 may be 1.0 ⁇ 10 19 cm -3 or more and 1.0 ⁇ 10 20 cm -3 or less.
  • an n + type high concentration region 44 is formed in a region on the second main surface 4 side with respect to the base region 41.
  • the n-type impurity concentration in the high concentration region 44 is higher than the n-type impurity concentration in the drift region 12.
  • the concentration of n-type impurities in the high concentration region 44 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 17 cm -3 or less.
  • the high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 in the semiconductor layer 2 of the first region 29, and is not formed in the second region 30. That is, in the IGBT region 8, the high-concentration region 44 is formed in the first region 29 of the FET structure 21, and the high-concentration region 44 is not formed in the one-side region 30A and the other-side region 30B of the region separation structure 25.
  • the high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 so as to be connected to the base region 41 in the first region 29.
  • the high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the gate trench 31.
  • the high concentration region 44 is formed at a distance from the bottom wall of the gate trench 31 toward the base region 41.
  • the high concentration region 44 exposes a part of the side wall and the bottom wall of the gate trench 31.
  • the high concentration region 44 faces the gate electrode 33 with the gate insulating film 32 interposed therebetween on the side wall of the gate trench 31.
  • the high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the separation trench 36.
  • the high concentration region 44 is formed at a distance from the bottom wall of the separation trench 36 toward the base region 41.
  • the high concentration region 44 exposes a part of the side wall and the bottom wall of the separation trench 36.
  • the high concentration region 44 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
  • the high concentration region 44 is formed in a band shape extending in the second direction X along the trench structures 22 and 26 in a plan view. Both the top of the high concentration region 44 and the bottom of the high concentration region 44 are located above the center position in the depth direction of the trench structures 22 and 26 with respect to the normal direction Z, as shown in FIG. .. That is, the high concentration region 44 is formed shallower than the central position in the depth direction of the trench structures 22 and 26.
  • the high concentration region 44 may be formed deeper than the central position in the depth direction of the trench structures 22 and 26. It is preferable that the high concentration region 44 is formed shallower than the central position in the depth direction of the trench structures 22 and 26.
  • the high concentration region 44 is formed in at least one of the two first regions 29. The high concentration region 44 is formed in both of the two first regions 29 in this form.
  • the high concentration region 44 has an n-type offset compensation region 45 (a compensation region) containing p-type impurities and n-type impurities at the connection portion with the base region 41 in the first region 29.
  • “Offset compensation” is also referred to as “offset,” “compensation,” “carrier offset,” or “carrier compensation.”
  • the offset compensation region 45 is a region in which a part of the n-type impurities in the high concentration region 44 is offset compensated by a part of the p-type impurities in the base region 41 to form an n-type semiconductor region as a whole.
  • the n-type impurity concentration in the offset compensation region 45 is reduced from the n-type impurity concentration in the high concentration region 44 by the amount compensated by the p-type impurities in the base region 41.
  • the base region 41 includes a first portion 51 formed in a relatively shallow region in the first region 29, and a second portion 52 formed deeper than the first portion 51 in the second region 30.
  • the first portion 51 has a first depth D1.
  • the first portion 51 is a region thinned (shallowed) by the high concentration region 44 (offset compensation region 45) in the first region 29.
  • the second region 30 is a region that is not thinned (shallowed) by the high concentration region 44.
  • the second portion 52 has a second depth D2 that exceeds the first depth D1.
  • the high concentration region 44 functions as a carrier storage region that suppresses the carriers (holes) supplied to the semiconductor layer 2 from being pulled back (discharged) to the base region 41. As a result, holes are accumulated in the region directly below the FET structure 21 in the semiconductor layer 2. As a result, the on-resistance and the on-voltage can be reduced.
  • the base region 41 and the emitter region 42 face the gate electrode 33 with the gate insulating film 32 interposed therebetween.
  • the high concentration region 44 also faces the gate electrode 33 with the gate insulating film 32 interposed therebetween.
  • the FET structure 21 includes a channel region controlled by the trench gate structure 22 in the surface layer portion of the base region 41.
  • the channel region is formed in the base region 41 between the emitter region 42 and the drift region 12 (high concentration region 44).
  • the interlayer insulating layer 61 is formed on the first main surface 3.
  • the interlayer insulating layer 61 is formed in a film shape along the first main surface 3.
  • the interlayer insulating layer 61 may have a laminated structure including a plurality of insulating layers.
  • the interlayer insulating layer 61 may contain silicon oxide or silicon nitride.
  • the interlayer insulating layer 61 may contain at least one of NGS (Non-doped Silicate Glass), PSG (Phosphor Silicate Glass) and BPSG (Boron Phosphor Silicate Glass).
  • the thickness of the interlayer insulating layer 61 may be 0.1 ⁇ m or more and 2 ⁇ m or less.
  • a plurality of first emitter openings 62 are formed in the interlayer insulating layer 61 at positions corresponding to the contact region 43.
  • the plurality of first emitter openings 62 penetrate the interlayer insulating layer 61 up and down to expose the corresponding first regions 29, respectively.
  • the first contact electrode 63 is embedded in each of the plurality of first emitter openings 62.
  • the plurality of first contact electrodes 63 are electrically connected to the emitter region 42 and the contact region 43, respectively, in the corresponding first emitter opening 62.
  • the plurality of first contact electrodes 63 are electrically connected to the first region 29 in the FET structure 21 and are not connected to the one side region 30A and the other side region 30B of the second region 30 in the region separation structure 25. Therefore, the base region 41 (that is, the second portion 52) on the region separation structure 25 side is electrically formed in a floating state. That is, the base region 41 (that is, the second portion 52) on the region separation structure 25 side functions as a p-type floating region.
  • the first contact electrode 63 may have a laminated structure including a barrier electrode layer and a main electrode layer (not shown).
  • the barrier electrode layer is formed in a film shape along the inner wall of the first emitter opening 62.
  • the barrier electrode layer may have a single layer structure including a titanium layer or a titanium nitride layer.
  • the barrier electrode layer may have a laminated structure including a titanium layer and a titanium nitride layer, and in this case, the titanium nitride layer may be laminated on the titanium layer.
  • the main electrode layer is embedded in the first emitter opening 62 with the barrier electrode layer interposed therebetween.
  • the main electrode layer 93 may contain tungsten.
  • the above-mentioned emitter terminal electrode 9 and gate terminal electrode 10 are formed on the interlayer insulating layer 61. As shown in FIG. 5, the emitter terminal electrode 9 is electrically connected to the emitter region 42 and the contact region 43 via the first contact electrode 63 on the interlayer insulating layer 61. Further, although not shown, a plurality of contact electrodes for the separation electrode for electrically connecting the emitter terminal electrode 9 and the separation electrode 38 are provided. Although not shown, the interlayer insulating layer 61 is formed with emitter openings for a plurality of separation electrodes at positions corresponding to the separation electrodes 38. The contact electrode for the separation electrode is electrically connected to the corresponding separation electrode 38 via the emitter opening for the separation electrode.
  • a pad electrode may be formed on the emitter terminal electrode 9.
  • the pad electrode may include at least one of a nickel layer, a palladium layer and a gold layer.
  • the pad electrode may have a laminated electrode including a nickel layer, a palladium layer, and a gold layer laminated in this order from the emitter terminal electrode 9 side.
  • FIG. 6 is a cross-sectional view showing a second embodiment example of the semiconductor device 1.
  • FIG. 6 is a cross-sectional view corresponding to FIG.
  • the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted.
  • the emitter terminal electrode 9 is electrically connected to the base region 41 of the one side region 30A in addition to the base region 41 of the first region 29, and the other side region. It is a point that is not electrically connected to the base region 41 of 30B.
  • the base region 41 of the other side region 30B is electrically formed in a floating state.
  • the interlayer insulating layer 61 is formed with a second emitter opening 72 at a position corresponding to the base region 41 of the one-sided region 30A.
  • the second emitter opening 72 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the one-sided region 30A.
  • a second contact electrode 73 is embedded in the second emitter opening 72 of the interlayer insulating layer 61.
  • the second contact electrode 73 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 72.
  • the emitter terminal electrode 9 is electrically connected to the second contact electrode 73 on the interlayer insulating layer 61.
  • the second contact electrode 73 may have a laminated structure including a barrier electrode layer and a main electrode layer. In addition, a specific description of the second contact electrode 73 will be omitted.
  • FIG. 7 is a cross-sectional view showing a third embodiment example of the semiconductor device 1.
  • FIG. 7 is a cross-sectional view corresponding to FIG.
  • the same reference numerals as those in FIGS. 1 to 5 are attached to the portions common to the first embodiment, and specific description thereof will be omitted.
  • the difference between the third embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the other region 30B in addition to the base region 41 of the first region 29, and is one-sided region. It is a point that is not electrically connected to the base region 41 of 30A.
  • the base region 41 of the one side region 30A is electrically formed in a floating state.
  • the interlayer insulating layer 61 is formed with a third emitter opening 77 at a position corresponding to the base region 41 of the other side region 30B.
  • the third emitter opening 77 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the other side region 30B.
  • a third contact electrode 78 is embedded in the third emitter opening 77 of the interlayer insulating layer 61.
  • the third contact electrode 78 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 77.
  • the emitter terminal electrode 9 is electrically connected to the third contact electrode 78 on the interlayer insulating layer 61.
  • the third contact electrode 78 may have a laminated structure including a barrier electrode layer and a main electrode layer. In addition, a specific description of the third contact electrode 78 will be omitted.
  • FIG. 8 is a cross-sectional view showing a fourth embodiment example of the semiconductor device 1.
  • FIG. 8 is a cross-sectional view corresponding to FIG.
  • the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 7, and specific description thereof will be omitted.
  • the fourth embodiment differs from the first embodiment in that the emitter terminal electrode 9 is a base region 41 of one side region 30A and a base region 41 of the other side region 30B in addition to the base region 41 of the first region 29. It is a point that is electrically connected to both. That is, the semiconductor device 1 according to the fourth embodiment includes a second emitter opening 72 and a second contact electrode 73 (see FIG. 6), and a third emitter opening 77 and a third contact electrode 78 (see FIG. 7). ..
  • the second contact electrode 73 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 72.
  • the third contact electrode 78 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 77.
  • the emitter terminal electrode 9 is electrically connected to the second contact electrode 73 and the third contact electrode 78 on the interlayer insulating layer 61.
  • the collector-emitter voltage VCE is the voltage between the collector and the emitter of the IGBT.
  • the collector-emitter voltage VCE exceeds a predetermined value, the collector current saturates.
  • the region where the increase ratio of the collector current Ic is relatively small with respect to the increase ratio of the collector-emitter voltage VCE is defined as the saturation region.
  • the voltage value between the collector and the emitter when a specified voltage (for example, 15V) is applied between the gate and the emitter and a rated collector current is passed is defined as "saturation voltage VCE (sat)".
  • the values of the saturation voltage VCE (sat) between the collector and the emitter of the first to fourth embodiments are summarized in Table 1 below.
  • Table 1 below shows the values of the saturation voltage VCE (sat) when the rated collector current is 30 A.
  • Table 1 also shows the values of the saturation voltage VCE (sat) of the first to fourth reference examples.
  • the first to fourth reference examples correspond to the first to fourth morphological examples, respectively.
  • the first reference example has a structure in which the n + type high concentration region 44 is removed from the first form example.
  • the second to fourth reference examples have a structure in which the n + type high concentration region 44 is removed from the second to fourth morphological examples.
  • the minimum value (1.31 V) of the saturation voltage VCE (sat) is smaller than that of the reference example, and the maximum value (1. It can be seen that 52V) is larger than that of the reference example. Therefore, the voltage difference (0.21V) between the maximum value and the minimum value of the saturation voltage VCE (sat) is larger than that of the reference example.
  • the basic layout is not changed. The value of the saturation voltage VCE (sat) can be adjusted. As described above, according to this embodiment, it is possible to provide the semiconductor device 1 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
  • FIG. 9 is a cross-sectional view showing the semiconductor device 201 according to the second embodiment of the present invention together with the structure according to the first embodiment.
  • FIG. 9 is a cross-sectional view corresponding to FIG.
  • the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted.
  • the semiconductor device 201 according to the second embodiment has an IGBT region 208 instead of the IGBT region 8.
  • the difference between the IGBT region 208 and the IGBT region 8 according to the first embodiment is that the high concentration region 44 replaces the first region 29 with the second region 30 of the region separation structure 25 (the first embodiment). It is a point formed in at least one of the one-side region 30A and the other-side region 30B). In this embodiment, the high concentration region 44 is formed in both the one-sided region 30A and the other-sided region 30B.
  • the IGBT region 208 is common to the IGBT region 8 according to the first embodiment (example of the first embodiment).
  • the high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 in the semiconductor layer 2 of the second region 30, and is not formed in the first region 29. That is, in the IGBT region 208, the high concentration region 44 is formed in the one side region 30A and the other side region 30B of the region separation structure 25, and the high concentration region 44 is not formed in the first region 29 of the FET structure 21.
  • the high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 so as to be connected to the base region 41 in the second region 30.
  • the high concentration region 44 is formed in a band shape extending in the second direction X along the separation trench structure 26 in a plan view.
  • the high concentration region 44 is formed in the second region 30 at a depth position between the base region 41 and the bottom wall of the separation trench 36.
  • the high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the separation trench 36.
  • the high concentration region 44 is formed at a distance from the bottom wall of the separation trench 36 toward the base region 41.
  • the high concentration region 44 exposes a part of the side wall and the bottom wall of the separation trench 36.
  • the high concentration region 44 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
  • the high concentration region 44 is formed shallower than the central position in the depth direction of the separation trench structure 26.
  • the high concentration region 44 may be formed deeper than the central position in the depth direction of the separation trench structure 26. It is preferable that the high concentration region 44 is formed shallower than the central position in the depth direction of the separation trench structure 26.
  • the high concentration region 44 has an n-type offset compensation region 45 containing p-type impurities and n-type impurities at the connection portion with the base region 41 in the second region 30.
  • the base region 41 includes a first portion 51 formed in a relatively deep region in the first region 29, and a second portion 52 formed in a region shallower than the first portion 51 in the second region 30.
  • the first portion 51 has a first depth D11.
  • the first portion 51 is a region in the first region 29 that is not thinned (shallowed) by the high concentration region 44.
  • the second portion 52 has a second depth D12 that is less than the first depth D11.
  • the second portion 52 is a region thinned (shallowed) by the high concentration region 44 (offset compensation region 45) in the second region 30.
  • the plurality of first contact electrodes 63 are electrically connected to the first region 29 via the plurality of first emitter openings 62, and are not electrically connected to the second region 30.
  • the emitter terminal electrode 9 is electrically connected to the base region 41 of the first region 29 via the first contact electrode 63. Therefore, the base region 41 on the second region 30 side is electrically formed in a floating state. That is, in this embodiment, the high concentration region 44 is formed in the region directly below the base region 41 as a floating region in the second region 30.
  • FIG. 10 is a cross-sectional view showing a second embodiment example of the semiconductor device 201.
  • FIG. 10 is a cross-sectional view corresponding to FIG. In FIG. 10, the same reference numerals as those in FIG. 9 are attached to the parts common to the first embodiment, and specific description thereof will be omitted.
  • the difference between the second embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the one side region 30A in addition to the base region 41 of the first region 29, and the other side region. It is a point that is not connected to the base region 41 of 30B. That is, while the base region 41 of the one side region 30A is grounded to the emitter, the base region 41 of the other side region 30B is electrically formed in a floating state.
  • the interlayer insulating layer 61 is formed with a second emitter opening 272 at a position corresponding to the base region 41.
  • the second emitter opening 272 penetrates the interlayer insulating layer 61 up and down to expose only the base region 41 of the one-sided region 30A.
  • a second contact electrode 273 is embedded in the second emitter opening 272 of the interlayer insulating layer 61.
  • the second contact electrode 273 is electrically connected to the base region 41 of the one-sided region 30A within the second emitter opening 272.
  • the emitter terminal electrode 9 is electrically connected to the second contact electrode 273 on the interlayer insulating layer 61.
  • the second contact electrode 273 may have a laminated structure including a barrier electrode layer and a main electrode layer, similarly to the first contact electrode 63. In addition, a specific description of the second contact electrode 273 will be omitted.
  • FIG. 11 is a cross-sectional view showing a third embodiment example of the semiconductor device 201 according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view corresponding to FIG.
  • the parts common to the first embodiment are designated by the same reference numerals as those in FIG. 9, and specific description thereof will be omitted.
  • the difference between the third embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the other region 30B in addition to the base region 41 of the first region 29, and is one-sided region. It is a point that is not connected to the base region 41 of 30A. That is, while the base region 41 of the other side region 30B is grounded to the emitter, the base region 41 of the one side region 30A is electrically formed in a floating state.
  • the interlayer insulating layer 61 is formed with a third emitter opening 277 at a position corresponding to the base region 41 of the other side region 30B.
  • the third emitter opening 277 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the other side region 30B.
  • a third contact electrode 278 is embedded in the third emitter opening 277 of the interlayer insulating layer 61.
  • the third contact electrode 278 is electrically connected to the base region 41 of the other side region 30B in the third emitter opening 277.
  • the emitter terminal electrode 9 is electrically connected to the third contact electrode 278 on the interlayer insulating layer 61.
  • the third contact electrode 278 may have a laminated structure including a barrier electrode layer and a main electrode layer, similarly to the first contact electrode 63. In addition, a specific description of the third contact electrode 278 will be omitted.
  • FIG. 12 is a cross-sectional view showing a fourth embodiment example of the semiconductor device 201 according to the second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view corresponding to FIG. In FIG. 12, the parts common to the first embodiment are designated by the same reference numerals as those in FIG. 9, and specific description thereof will be omitted.
  • the fourth embodiment differs from the first embodiment in that the emitter terminal electrode 9 is a base region 41 of one side region 30A and a base region 41 of the other side region 30B in addition to the base region 41 of the first region 29. It is a point that is electrically connected to both. That is, the semiconductor device 201 according to the fourth embodiment includes a second emitter opening 272 and a second contact electrode 273 (see FIG. 10), and a third emitter opening 277 and a third contact electrode 278 (see FIG. 11). ..
  • the second contact electrode 273 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 272.
  • the third contact electrode 278 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 277.
  • the emitter terminal electrode 9 is electrically connected to the second contact electrode 273 and the third contact electrode 278 on the interlayer insulating layer 61.
  • Table 2 shows the values of the saturation voltage VCE (sat) when the rated collector current is 30 A.
  • the saturation voltage VCE (sat) value is larger than that of the reference example as a whole. Therefore, by changing the aspect of the semiconductor device 201 from the first reference example to the first to fourth embodiments (that is, introducing the high concentration region 44), the saturation voltage VCE (that is, the saturation voltage VCE (that is, the high concentration region 44 is introduced) without changing the basic layout is changed.
  • the value of sat) can be adjusted.
  • FIG. 13 is a plan view showing the internal structure of the semiconductor device 301 according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV shown in FIG.
  • FIG. 15 is a cross-sectional view taken along the line XV-XV shown in FIG.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI shown in FIG.
  • the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted.
  • the semiconductor device 301 according to the third embodiment has an IGBT region 308 instead of the IGBT region 8.
  • the difference between the IGBT region 308 and the IGBT region 8 according to the first embodiment is that a plurality of base regions 41 are formed in the first region 29 at intervals in the first direction Y, and a high concentration region.
  • the 344 is not connected to the base region 41 from the normal direction Z, but is connected to the base region 41 from the first direction Y along the first main surface 3.
  • the emitter region 42 and the contact region 43 are formed on the surface layer portion of the base region 41, respectively, and are not formed on the surface layer portion of the plurality of high concentration regions 344.
  • the IGBT region 308 is common to the IGBT region 8 according to the first embodiment (example of the first embodiment).
  • the high concentration region 344 corresponds to the above-mentioned high concentration region 44. That is, the high concentration region 344 has an n-type impurity concentration higher than that of the drift region 12.
  • the high concentration region 344 is formed on one side of the first region 29 and the second region 30, and is not formed on the other side. In this embodiment, the high concentration region 344 is formed in the first region 29 and not in the second region 30.
  • the high concentration region 344 is formed only in the first region 29 of the FET structure 21, and the high concentration region 344 is formed in the one side region 30A and the other side region 30B of the region separation structure 25. do not have.
  • a high concentration region 344 is formed in both of the two first regions 29.
  • a form in which the high-concentration region 344 is formed in only one of the two first regions 29 and the high-concentration region 344 is not formed in the other first region 29 may be adopted.
  • the high concentration region 344 is formed alternately in the base region 41 and the first direction Y in the first region 29.
  • a plurality of high-concentration regions 344 are alternately arranged in the plurality of base regions 41 and the first direction Y in a manner in which one base region 41 is sandwiched from the first direction Y in the first region 29. ..
  • the high concentration region 344 is connected to the base region 41 in the first region 29.
  • the high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the gate trench 31.
  • the high concentration region 344 is formed at intervals from the bottom wall of the gate trench 31 to the first main surface 3 side.
  • the high concentration region 344 exposes a part of the side wall and the bottom wall of the gate trench 31.
  • the high concentration region 344 faces the gate electrode 33 with the gate insulating film 32 interposed therebetween on the side wall of the gate trench 31.
  • the high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the separation trench 36.
  • the high concentration region 344 is formed at intervals from the bottom wall of the separation trench 36 to the first main surface 3 side.
  • the high concentration region 344 exposes a part of the side wall and the bottom wall of the separation trench 36.
  • the high concentration region 344 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
  • the high concentration region 344 is formed deeper than the base region 41.
  • the bottom of the high concentration region 344 may project toward the bottom of the base region 41 and cover the bottom of the base region 41.
  • the depth of the high concentration region 344 may be about the same as that of the base region 41, or may be shallower than the depth of the base region 341.
  • FIG. 17 is a plan view showing the internal structure of the semiconductor device 401 according to the fourth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII shown in FIG.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX shown in FIG.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG.
  • the parts common to the third embodiment are designated by the same reference numerals as those in FIGS. 17 to 20, and specific description thereof will be omitted.
  • the semiconductor device 401 according to the fourth embodiment has an IGBT region 408 instead of the IGBT region 308.
  • the difference between the IGBT region 408 and the IGBT region 8 according to the first embodiment is that the high concentration region 344 is formed in the second region 30 (one side region 30A and the other side region 30B) of the region separation structure 25. Is. Further, a high concentration region is not formed in the first region 29 of the FET structure 21.
  • the high concentration region 344 is connected to the base region 41 in the second region 30.
  • the high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the gate trench 31.
  • the high concentration region 344 is formed at intervals from the bottom wall of the separation trench 36 to the first main surface 3 side.
  • the high concentration region 344 exposes a part of the side wall and the bottom wall of the separation trench 36.
  • the high concentration region 344 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
  • the bottom of the high concentration region 344 is formed in the region between the first main surface 3 and the bottom wall of the separation trench 36 with respect to the normal direction Z. As shown in FIG. 20, the bottom portion of the high concentration region 344 is formed in a region between the bottom portion of the base region 41 and the second main surface 4 with respect to the normal direction Z. That is, the high concentration region 344 is formed deeper than the base region 41. As shown in FIG. 20, the bottom of the high concentration region 344 is located above the central position in the depth direction of the separation trench structure 26 with respect to the normal direction Z. That is, the high concentration region 344 is formed shallower than the central position in the depth direction of the separation trench structure 26.
  • a part of the high concentration region 344 may project in the second direction X and reach the region below the base region 41. Further, the depth of the high-concentration region 344 may be about the same as that of the base region 41, or the high-concentration region 344 may be formed shallower than the base region 41. As described above, according to this embodiment, it is possible to provide the semiconductor device 401 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
  • FIG. 21 is a plan view showing the internal structure of the semiconductor device 501 according to the fifth embodiment of the present invention.
  • the parts common to the third embodiment and the fourth embodiment are designated by the same reference numerals as those in FIGS. 13 to 20, and specific description thereof will be omitted.
  • the semiconductor device 501 according to the fifth embodiment has a structure in which the structure according to the third embodiment and the structure according to the fourth embodiment are combined. That is, in the semiconductor device 501, the high concentration region 344 is formed in both the first region 29 and the second region 30.
  • a plurality of base regions 41 are formed at intervals in the first direction Y.
  • a plurality of high-concentration regions 344 are formed at intervals in the first direction Y.
  • the plurality of high-concentration regions 344 are alternately arranged with the plurality of base regions 41.
  • a plurality of base regions 41 are formed at intervals in the first direction Y.
  • a plurality of high-concentration regions 344 are formed at intervals in the first direction Y.
  • the plurality of high-concentration regions 344 are alternately arranged with the plurality of base regions 41.
  • the plurality of base regions 41 on the second region 30 side are formed so as to be offset in the first direction Y with respect to the plurality of base regions 41 on the first region 29 side.
  • the plurality of base regions 41 on the second region 30 side may be displaced in the first direction Y so as not to face the second direction X with respect to the plurality of base regions 41 on the first region 29 side.
  • the plurality of base regions 41 on the second region 30 side face the plurality of high concentration regions 344 on the first region 29 side in the second direction X.
  • the plurality of high-concentration regions 344 on the second region 30 side face the plurality of base regions 41 on the first region 29 side in the second direction X.
  • the plurality of high-concentration regions 344 of the first region 29 face the plurality of base regions 41 of the second region 30 in the second direction X. Further, the plurality of base regions 41 of the first region 29 face the plurality of high concentration regions 344 of the second region 30 in the second direction X. As shown in FIG. 21, the high concentration region 344 may be formed in both of the two first regions 29 adjacent to each other. In the high concentration region 344, the high concentration region 344 may be formed only in one of the two first regions 29.
  • the high concentration region 344 of the first region 29 may face the base region 41 of the first region 29 in the second direction X.
  • the high concentration region 344 of the second region 30 may face the base region 41 of the second region 30 in the second direction X.
  • the semiconductor layer 2 has a laminated structure including a p-type semiconductor substrate and an n - type epitaxial layer formed on the semiconductor substrate instead of the n - type semiconductor substrate 13. You may be doing it.
  • the p-type semiconductor substrate corresponds to the collector region 16.
  • the n - type epitaxial layer corresponds to the drift region 12.
  • the p-type semiconductor substrate may be made of silicon.
  • the n - type epitaxial layer may be made of silicon.
  • the n - type epitaxial layer is formed by epitaxially growing silicon from the main surface of a p-type semiconductor substrate.
  • the first conductive type is n type and the second conductive type is p type has been described, but the first conductive type may be p type and the second conductive type may be n type.
  • the specific configuration in this case is obtained by replacing the n-type region with the p-type region and replacing the p-type region with the n-type region in the above description and the accompanying drawings.
  • a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region.
  • a plurality of trenches including a second conductive type base region and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
  • a semiconductor device including a first conductive type high-concentration region formed in a region on the second main surface side with respect to a base region and not formed on the other side of the first region and the second region.
  • the base region on the one side of the first region and the second region is formed shallower than the base region on the other side of the first region and the second region.
  • a first conductive type emitter region formed in a region along the first trench structure and defining the channel region with the drift region is further provided. Included, the semiconductor device according to A1 or A2.
  • A4 Any of A1 to A3, wherein the gate potential is applied to the first trench structure, the emitter potential is applied to the second trench structure, and the emitter potential is applied to the third trench structure.
  • a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region.
  • a plurality of trenches including a second conductive type base region and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
  • a semiconductor device including a first conductive type high-concentration region formed on a surface layer portion of the drift region so as to be connected to the base region from one direction along a main surface.
  • the base region is formed at a first depth in the thickness direction of the semiconductor layer from the first main surface, and the high concentration region is formed in the thickness direction of the semiconductor layer from the first main surface.
  • the semiconductor device according to A11 which is formed at a second depth exceeding the first depth.
  • A13 The semiconductor device according to A11 or A12, further including a first conductive type emitter region formed on the surface layer portion of the base region of the first region and defining the channel region with the drift region.
  • A14 Any of A11 to A13, wherein the gate potential is applied to the first trench structure, the emitter potential is applied to the second trench structure, and the emitter potential is applied to the third trench structure.
  • the plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned.
  • the plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned.
  • the plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned. 21 is partitioned in the crossing direction at intervals, and the high concentration region is formed in at least one of the plurality of the first regions and at least one of the plurality of the second regions.
  • the high concentration region of the first region faces the base region of the second region in the crossing direction, and the high concentration region of the second region meets the base region of the first region.
  • the semiconductor device according to A22 which faces the crossing direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

This semiconductor device includes: a semiconductor layer having a first main surface and a second main surface; a first-electroconductivity-type drift region formed inside the semiconductor layer; a second-electroconductivity-type base region formed on the surface layer part of the drift region; a plurality of trench structures including a first trench structure, a second trench structure, and a third trench structure, which are formed with gaps therebetween in the first main surface so as to penetrate the base region; a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer; a second region partitioned between the second trench structure and the third trench structure in the semiconductor layer; a channel region controlled by the first trench structure; and a first-electroconductivity-type high-concentration region having a higher concentration than the drift region, the high-concentration region being formed in a second-main-surface-side region with respect to the base region in either of the first region or the second region.

Description

半導体装置Semiconductor device
 この出願は、2020年8月11日に日本国特許庁に提出された特願2020-135971号に対応しており、この出願の全開示はここに引用により組み込まれる。本発明は、IGBT(Insulated Gate Bipolar Transistor)を備える半導体装置に関する。 This application corresponds to Japanese Patent Application No. 2020-135971 filed with the Japan Patent Office on August 11, 2020, and the entire disclosure of this application is incorporated herein by reference. The present invention relates to a semiconductor device including an IGBT (Insulated Gate Bipolar Transistor).
 特許文献1は、トレンチ型のIGBTを備えた半導体装置を開示している。この半導体装置は、一方面および他方面を有する半導体層と、半導体層の一方主面の表層部に形成されたp型の半導体領域と、半導体層の他方主面の表層部に形成されたn型の半導体領域と、p型の半導体領域およびn型半導体領域の間に形成され、n型の半導体領域よりも高いn型不純物濃度を有する高濃度領域とを含む。 Patent Document 1 discloses a semiconductor device including a trench-type IGBT. This semiconductor device has a semiconductor layer having one surface and the other surface, a p-type semiconductor region formed on the surface layer portion of one main surface of the semiconductor layer, and n formed on the surface layer portion of the other main surface of the semiconductor layer. It includes a type semiconductor region and a high concentration region formed between a p-type semiconductor region and an n-type semiconductor region and having an n-type impurity concentration higher than that of the n-type semiconductor region.
米国特許出願公開第2018/083131号明細書U.S. Patent Application Publication No. 2018/083131
 本発明の一実施形態は、新規な構造を有する半導体装置を提供する。 One embodiment of the present invention provides a semiconductor device having a novel structure.
 本発明の一実施形態は、一方側の第1主面および他方側の第2主面を有する半導体層と、前記半導体層内に形成された第1導電型のドリフト領域と、前記ドリフト領域の表層部に形成された第2導電型のベース領域と、前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、前記第1トレンチ構造によって制御されるチャネル領域と、前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域のいずれか一方側において前記ベース領域に対して前記第2主面側の領域に形成され、前記第1領域および前記第2領域の他方側には形成されない第1導電型の高濃度領域と、を含む、半導体装置を提供する。 One embodiment of the present invention comprises a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and the drift region. A second conductive type base region formed on the surface layer portion, and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region. A plurality of trench structures including, a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and the second trench structure and the third trench structure in the semiconductor layer. A second region partitioned between the two regions, a channel region controlled by the first trench structure, and a first conductive impurity concentration higher than the drift region, and either the first region or the second region. On one side, the first conductive type high concentration region formed in the region on the second main surface side with respect to the base region and not formed on the other side of the first region and the second region is included. , Provides semiconductor devices.
 一実施形態は、一方側の第1主面および他方側の第2主面を有する半導体層と、前記半導体層内に形成された第1導電型のドリフト領域と、前記ドリフト領域の表層部に形成された第2導電型のベース領域と、前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、前記第1トレンチ構造によって制御されるチャネル領域と、前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域の少なくとも一方側において前記第1主面に沿う一方方向から前記ベース領域に接続されるように前記ドリフト領域の表層部に形成された第1導電型の高濃度領域と、を含む、半導体装置を提供する。 In one embodiment, a semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region. A plurality of formed second conductive type base regions, including a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region. In the semiconductor layer, a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and a partition between the second trench structure and the third trench structure in the semiconductor layer. A second region, a channel region controlled by the first trench structure, and a first conductive impurity concentration higher than the drift region, in at least one of the first region and the second region. Provided is a semiconductor device including a first conductive type high concentration region formed on a surface layer portion of the drift region so as to be connected to the base region from one direction along the first main surface.
 上述のまたはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or yet other objectives, features and effects will be clarified by the description of the embodiments described below with reference to the accompanying drawings.
図1は、本発明の第1実施形態に係る半導体装置を示す平面図である。FIG. 1 is a plan view showing a semiconductor device according to the first embodiment of the present invention. 図2は、半導体層の第1主面の構造を示す平面図である。FIG. 2 is a plan view showing the structure of the first main surface of the semiconductor layer. 図3は、図2に示す領域IIIの拡大図である。FIG. 3 is an enlarged view of the region III shown in FIG. 図4は、図3に示す領域IVの拡大図である。FIG. 4 is an enlarged view of the region IV shown in FIG. 図5は、図4に示すV-V線に沿う断面図であって、本発明の第1実施形態に係る半導体装置の第1形態例を示す断面図である。FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. 4, and is a cross-sectional view showing a first embodiment example of the semiconductor device according to the first embodiment of the present invention. 図6は、図1に示す半導体装置の第2形態例を示す断面図である。FIG. 6 is a cross-sectional view showing a second embodiment example of the semiconductor device shown in FIG. 図7は、図1に示す半導体装置の第3形態例を示す断面図である。FIG. 7 is a cross-sectional view showing a third embodiment example of the semiconductor device shown in FIG. 図8は、図1に示す半導体装置の第4形態例を示す断面図である。FIG. 8 is a cross-sectional view showing a fourth embodiment example of the semiconductor device shown in FIG. 図9は、本発明の第2実施形態に係る半導体装置を第1形態例に係る構造と共に示す断面図である。FIG. 9 is a cross-sectional view showing the semiconductor device according to the second embodiment of the present invention together with the structure according to the first embodiment. 図10は、図9に示す半導体装置の第2形態例を示す断面図である。FIG. 10 is a cross-sectional view showing a second embodiment example of the semiconductor device shown in FIG. 図11は、図9に示す半導体装置の第3形態例を示す断面図である。FIG. 11 is a cross-sectional view showing a third embodiment example of the semiconductor device shown in FIG. 図12は、図9に示す半導体装置の第4形態例を示す断面図である。FIG. 12 is a cross-sectional view showing a fourth embodiment example of the semiconductor device shown in FIG. 図13は、本発明の第3実施形態に係る半導体装置の内部構造を示す平面図である。FIG. 13 is a plan view showing the internal structure of the semiconductor device according to the third embodiment of the present invention. 図14は、図13に示すXIV-XIV線に沿う断面図である。FIG. 14 is a cross-sectional view taken along the line XIV-XIV shown in FIG. 図15は、図13に示すXV-XV線に沿う断面図である。FIG. 15 is a cross-sectional view taken along the line XV-XV shown in FIG. 図16は、図13に示すXVI-XVI線に沿う断面図である。FIG. 16 is a cross-sectional view taken along the line XVI-XVI shown in FIG. 図17は、本発明の第4実施形態に係る半導体装置の内部構造を示す平面図である。FIG. 17 is a plan view showing the internal structure of the semiconductor device according to the fourth embodiment of the present invention. 図18は、図17に示すXVIII-XVIII線に沿う断面図である。FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII shown in FIG. 図19は、図17に示すXIX-XIX線に沿う断面図である。FIG. 19 is a cross-sectional view taken along the line XIX-XIX shown in FIG. 図20は、図17に示すXX-XX線に沿う断面図である。FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG. 図21は、本発明の第5実施形態に係る半導体装置の内部構造を示す平面図である。FIG. 21 is a plan view showing the internal structure of the semiconductor device according to the fifth embodiment of the present invention.
 図1は、本発明の第1実施形態に係る半導体装置1を示す平面図である。図2は、半導体層2の第1主面3の構造を示す平面図である。半導体装置1は、IGBT(Insulated Gate Bipolar Transistor)を備えた半導体スイッチング装置(電子部品)である。図1および図2を参照して、半導体装置1は、直方体形状の半導体層2を含む。半導体層2は、この形態(this embodiment)では、Si単結晶からなる。半導体層2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する側面5A,5B,5C,5Dを有している。 FIG. 1 is a plan view showing a semiconductor device 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the structure of the first main surface 3 of the semiconductor layer 2. The semiconductor device 1 is a semiconductor switching device (electronic component) provided with an IGBT (Insulated Gate Bipolar Transistor). With reference to FIGS. 1 and 2, the semiconductor device 1 includes a rectangular parallelepiped semiconductor layer 2. In this form (this embodiment), the semiconductor layer 2 is made of a Si single crystal. The semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, 5D connecting the first main surface 3 and the second main surface 4. ing.
 図1および図2を参照して、半導体装置1は、直方体形状の半導体層2を含む。半導体層2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する側面5A,5B,5C,5Dを有している。第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状に形成されている。側面5Bおよび側面5Dは、第1方向Yに沿って延び、第1方向Yに交差(具体的には直交)する第2方向Xに互いに対向している。側面5Aおよび側面5Cは、第2方向Xに沿って延び、第1方向Yに互いに対向している。半導体層2の厚さは、50μm以上200μm以下であってもよい。 With reference to FIGS. 1 and 2, the semiconductor device 1 includes a rectangular parallelepiped semiconductor layer 2. The semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, 5D connecting the first main surface 3 and the second main surface 4. ing. The first main surface 3 and the second main surface 4 are formed in a rectangular shape in a plan view (hereinafter, simply referred to as “plan view”) viewed from their normal direction Z. The side surface 5B and the side surface 5D extend along the first direction Y and face each other in the second direction X intersecting (specifically, orthogonally) the first direction Y. The side surface 5A and the side surface 5C extend along the second direction X and face each other in the first direction Y. The thickness of the semiconductor layer 2 may be 50 μm or more and 200 μm or less.
 半導体層2は、アクティブ領域6および外側領域7を含む。アクティブ領域6は、IGBTが形成された領域である。アクティブ領域6は、平面視において半導体層2の側面5A~5Dから内方領域に間隔を空けて半導体層2の中央部に設定されている。アクティブ領域6は、平面視において半導体層2の側面5A~5Dに平行な4辺を有する角形状に設定されていてもよい。 The semiconductor layer 2 includes an active region 6 and an outer region 7. The active region 6 is a region in which the IGBT is formed. The active region 6 is set in the central portion of the semiconductor layer 2 at intervals from the side surfaces 5A to 5D of the semiconductor layer 2 to the inner region in a plan view. The active region 6 may be set in a square shape having four sides parallel to the side surfaces 5A to 5D of the semiconductor layer 2 in a plan view.
 外側領域7は、アクティブ領域6の外側の領域である。外側領域7は、平面視においてアクティブ領域6の周縁に沿って帯状に延びていてもよい。外側領域7は、平面視においてアクティブ領域6を取り囲む環状(無端状)に延びていてもよい。アクティブ領域6は、第1方向Yに間隔を空けて形成された少なくとも1つのIGBT領域8を含む。アクティブ領域6は、この形態では、複数列のIGBT領域8を含む。複数のIGBT領域8は、第1方向Yに互いに対向している。IGBT領域8は、IGBTが形成された領域である。複数のIGBT領域8は、図1および図2に示すように、平面視において四角形状に形成されていてもよい。具体的には、複数のIGBT領域8は、第1方向Yに長い長方形状に形成されていてもよい。 The outer region 7 is an region outside the active region 6. The outer region 7 may extend in a strip shape along the peripheral edge of the active region 6 in a plan view. The outer region 7 may extend in an annular shape (endless shape) surrounding the active region 6 in a plan view. The active region 6 includes at least one IGBT region 8 formed at intervals in the first direction Y. The active region 6 includes a plurality of rows of IGBT regions 8 in this form. The plurality of IGBT regions 8 face each other in the first direction Y. The IGBT region 8 is a region in which the IGBT is formed. As shown in FIGS. 1 and 2, the plurality of IGBT regions 8 may be formed in a rectangular shape in a plan view. Specifically, the plurality of IGBT regions 8 may be formed in a rectangular shape long in the first direction Y.
 アクティブ領域6において第1主面3の上(above)には、エミッタ端子電極9(図1の破線部参照)が形成されている。エミッタ端子電極9は、アルミニウム、銅、アルミニウム-シリコン-銅合金、アルミニウム-シリコン合金、または、アルミニウム-銅合金のうちの少なくとも一種を含んでいてもよい。エミッタ端子電極9は、これらの導電材料のうちのいずれか一種を含む単層構造を有していてもよい。エミッタ端子電極9は、これらの導電材料のうちの少なくとも2種が任意の順序で積層された積層構造を有していてもよい。エミッタ端子電極9は、この形態では、アルミニウム-シリコン-銅合金からなる。 In the active region 6, an emitter terminal electrode 9 (see the broken line portion in FIG. 1) is formed on the first main surface 3 (above). The emitter terminal electrode 9 may contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, or aluminum-copper alloy. The emitter terminal electrode 9 may have a single-layer structure containing any one of these conductive materials. The emitter terminal electrode 9 may have a laminated structure in which at least two of these conductive materials are laminated in any order. The emitter terminal electrode 9 is made of an aluminum-silicon-copper alloy in this form.
 エミッタ端子電極9は、アクティブ領域6(IGBT領域8)にエミッタ信号を伝達する。エミッタ電位は、回路動作の基準となる回路基準電位であってもよい。回路基準電位は、接地電位であってもよいし、接地電位を超える電位であってもよい。外側領域7において第1主面3の上(above)には、ゲート端子電極10が形成されている。ゲート端子電極10は、平面視において四角形状に形成されている。ゲート端子電極10は、アクティブ領域6(IGBT領域8)にゲート電位(ゲート信号)を伝達する。ゲート端子電極10の配置位置は任意である。 The emitter terminal electrode 9 transmits an emitter signal to the active region 6 (IGBT region 8). The emitter potential may be a circuit reference potential that serves as a reference for circuit operation. The circuit reference potential may be a ground potential or a potential exceeding the ground potential. A gate terminal electrode 10 is formed on the first main surface 3 in the outer region 7. The gate terminal electrode 10 is formed in a rectangular shape in a plan view. The gate terminal electrode 10 transmits a gate potential (gate signal) to the active region 6 (IGBT region 8). The arrangement position of the gate terminal electrode 10 is arbitrary.
 ゲート端子電極10には、ゲート配線11が電気的に接続されている。ゲート端子電極10は、アルミニウム、銅、アルミニウム-シリコン-銅合金、アルミニウム-シリコン合金、または、アルミニウム-銅合金のうちの少なくとも一種を含んでいてもよい。ゲート端子電極10は、これらの導電材料のうちのいずれか一種を含む単層構造を有していてもよい。ゲート端子電極10は、これらの導電材料のうちの少なくとも2種が任意の順序で積層された積層構造を有していてもよい。ゲート端子電極10は、この形態では、エミッタ端子電極9と同一の導電材料を含む。 The gate wiring 11 is electrically connected to the gate terminal electrode 10. The gate terminal electrode 10 may contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, or aluminum-copper alloy. The gate terminal electrode 10 may have a single-layer structure containing any one of these conductive materials. The gate terminal electrode 10 may have a laminated structure in which at least two of these conductive materials are laminated in any order. In this embodiment, the gate terminal electrode 10 contains the same conductive material as the emitter terminal electrode 9.
 ゲート配線11は、外側領域7からアクティブ領域6に向けて延びている。ゲート配線11は、ゲート端子電極10に印加されたゲート信号をアクティブ領域6(IGBT領域8)に伝達する。ゲート配線11は、具体的には、外側領域7に位置する外側領域11a、およびアクティブ領域6に位置し、外側領域11aに連なる内側領域11bを含む。外側領域11aは、ゲート端子電極10に電気的に接続されている。外側領域11aは、この形態では、外側領域7における側面5D側の領域において選択的に引き回されている。 The gate wiring 11 extends from the outer region 7 toward the active region 6. The gate wiring 11 transmits the gate signal applied to the gate terminal electrode 10 to the active region 6 (IGBT region 8). Specifically, the gate wiring 11 includes an outer region 11a located in the outer region 7 and an inner region 11b located in the active region 6 and connected to the outer region 11a. The outer region 11a is electrically connected to the gate terminal electrode 10. In this embodiment, the outer region 11a is selectively routed in the region on the side surface 5D side in the outer region 7.
 内側領域11bは、アクティブ領域6に複数(図1および図2の例では4つ)形成されている。複数の内側領域11bは、第1方向Yに間隔を空けて形成されている。複数の内側領域11bは、第2方向Xに帯状に延びている。複数の内側領域11bは、外側領域7において側面5D側の領域から側面5B側の領域に向けてそれぞれ延びている。複数の内側領域11bは、アクティブ領域6を横切っていてもよい。 A plurality of inner regions 11b (four in the examples of FIGS. 1 and 2) are formed in the active region 6. The plurality of inner regions 11b are formed at intervals in the first direction Y. The plurality of inner regions 11b extend in a band shape in the second direction X. The plurality of inner regions 11b extend from the region on the side surface 5D side to the region on the side surface 5B side in the outer region 7, respectively. The plurality of inner regions 11b may cross the active region 6.
 ゲート端子電極10に印加されたゲート信号は、外側領域11aを介して内側領域11bに伝達される。これにより、内側領域11bを介してアクティブ領域6(IGBT領域8)にゲート信号が伝達される。図3は、図2に示す領域IIIの拡大図である。図4は、図3に示す領域IVの拡大図である。図5は、図4に示すV-V線に沿う断面図である。 The gate signal applied to the gate terminal electrode 10 is transmitted to the inner region 11b via the outer region 11a. As a result, the gate signal is transmitted to the active region 6 (IGBT region 8) via the inner region 11b. FIG. 3 is an enlarged view of the region III shown in FIG. FIG. 4 is an enlarged view of the region IV shown in FIG. FIG. 5 is a cross-sectional view taken along the line VV shown in FIG.
 図3~図5を参照して、半導体層2の内部には、n型のドリフト領域12が形成されている。ドリフト領域12は、具体的には、半導体層2の全域に形成されている。ドリフト領域12のn型不純物濃度は、1.0×1013cm-3以上1.0×1015cm-3以下であってもよい。半導体層2は、この形態では、n型の半導体基板13を含む単層構造を有している。半導体基板13は、FZ(Floating Zone)法を経て形成されたシリコン製のFZ基板や、MCZ(Magnetic Field applied Czochralski)法を経て形成されたシリコン製のMCZ基板であってもよい。ドリフト領域12は、半導体基板13によって形成されている。 With reference to FIGS. 3 to 5, an n− type drift region 12 is formed inside the semiconductor layer 2. Specifically, the drift region 12 is formed in the entire area of the semiconductor layer 2. The concentration of n-type impurities in the drift region 12 may be 1.0 × 10 13 cm -3 or more and 1.0 × 10 15 cm -3 or less. In this form, the semiconductor layer 2 has a single-layer structure including an n - type semiconductor substrate 13. The semiconductor substrate 13 may be a silicon FZ substrate formed by the FZ (Floating Zone) method or a silicon MCZ substrate formed by the MCZ (Magnetic Field applied Czochralski) method. The drift region 12 is formed by the semiconductor substrate 13.
 半導体層2の第2主面4の上(on)には、コレクタ端子電極14が形成されている。コレクタ端子電極14は、第2主面4に電気的に接続されている。コレクタ端子電極14は、具体的には、IGBT領域8(後述するコレクタ領域16)に電気的に接続されている。コレクタ端子電極14は、第2主面4との間でオーミック接触を形成している。コレクタ端子電極14は、IGBT領域8にコレクタ信号を伝達する。 A collector terminal electrode 14 is formed on the second main surface 4 of the semiconductor layer 2. The collector terminal electrode 14 is electrically connected to the second main surface 4. Specifically, the collector terminal electrode 14 is electrically connected to the IGBT region 8 (collector region 16 described later). The collector terminal electrode 14 forms ohmic contact with the second main surface 4. The collector terminal electrode 14 transmits a collector signal to the IGBT region 8.
 コレクタ端子電極14は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも1つを含んでいてもよい。コレクタ端子電極14は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも2つを任意の態様で積層させた積層構造を有していてもよい。半導体層2の第2主面4の表層部には、n型のバッファ層15が形成されている。バッファ層15は、第2主面4の表層部の全域に形成されていてもよい。バッファ層15のn型不純物濃度は、ドリフト領域12のn型不純物濃度よりも大きい。バッファ層15のn型不純物濃度は、1.0×1014cm-3以上1.0×1017cm-3以下であってもよい。 The collector terminal electrode 14 may include at least one of a Ti layer, a Ni layer, an Au layer, an Ag layer and an Al layer. The collector terminal electrode 14 may have a laminated structure in which at least two of a Ti layer, a Ni layer, an Au layer, an Ag layer and an Al layer are laminated in any manner. An n-type buffer layer 15 is formed on the surface layer portion of the second main surface 4 of the semiconductor layer 2. The buffer layer 15 may be formed over the entire surface layer portion of the second main surface 4. The concentration of n-type impurities in the buffer layer 15 is higher than the concentration of n-type impurities in the drift region 12. The concentration of n-type impurities in the buffer layer 15 may be 1.0 × 10 14 cm -3 or more and 1.0 × 10 17 cm -3 or less.
 図5に示すように、各IGBT領域8は、半導体層2の第2主面4の表層部に形成されたp型のコレクタ領域16を含む。コレクタ領域16は、第2主面4から露出している。コレクタ領域16は、第2主面4の表層部の全域に形成されていてもよい。コレクタ領域16のp型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。コレクタ領域16は、コレクタ端子電極14との間でオーミック接触を形成している。 As shown in FIG. 5, each IGBT region 8 includes a p-type collector region 16 formed on the surface layer portion of the second main surface 4 of the semiconductor layer 2. The collector area 16 is exposed from the second main surface 4. The collector region 16 may be formed over the entire surface layer portion of the second main surface 4. The concentration of p-type impurities in the collector region 16 may be 1.0 × 10 15 cm -3 or more and 1.0 × 10 18 cm -3 or less. The collector region 16 forms ohmic contact with the collector terminal electrode 14.
 各IGBT領域8において第1主面3の表層部には、p型のベース領域41が形成されている。ベース領域41のp型不純物濃度は、1.0×1017cm-3以上1.0×1018cm-3以下であってもよい。各IGBT領域8は、半導体層2の第1主面3に形成されたFET構造21を含む。各IGBT領域8は、この形態では、トレンチゲート型のFET構造21を含む。FET構造21は、具体的には、第1主面3に形成されたトレンチゲート構造(第1トレンチ構造)22を含む。トレンチゲート構造22には、ゲート信号(ゲート電位)が印加される。図3および図4では、トレンチゲート構造22がハッチングによって示されている。 In each IGBT region 8, a p-type base region 41 is formed on the surface layer portion of the first main surface 3. The concentration of p-type impurities in the base region 41 may be 1.0 × 10 17 cm -3 or more and 1.0 × 10 18 cm -3 or less. Each IGBT region 8 includes a FET structure 21 formed on the first main surface 3 of the semiconductor layer 2. Each IGBT region 8 includes, in this embodiment, a trench gate type FET structure 21. Specifically, the FET structure 21 includes a trench gate structure (first trench structure) 22 formed on the first main surface 3. A gate signal (gate potential) is applied to the trench gate structure 22. In FIGS. 3 and 4, the trench gate structure 22 is shown by hatching.
 トレンチゲート構造22は、IGBT領域8において第2方向Xに間隔を空けて複数形成されている。第2方向Xに互いに隣り合う2つのトレンチゲート構造22の間の距離は、1μm以上20μm以下であってもよい。各トレンチゲート構造22は、平面視において第1方向Yに延びる帯状に形成されている。複数のトレンチゲート構造22は、平面視において全体としてストライプ状に形成されている。複数のトレンチゲート構造22は、第1方向Yの一端部および第1方向Yの他端部を有している。 A plurality of trench gate structures 22 are formed in the IGBT region 8 at intervals in the second direction X. The distance between the two trench gate structures 22 adjacent to each other in the second direction X may be 1 μm or more and 20 μm or less. Each trench gate structure 22 is formed in a band shape extending in the first direction Y in a plan view. The plurality of trench gate structures 22 are formed in a striped shape as a whole in a plan view. The plurality of trench gate structures 22 have one end in the first direction Y and the other end in the first direction Y.
 FET構造21は、第1外側トレンチゲート構造23および第2外側トレンチゲート構造24をさらに含む。図3では、第1外側トレンチゲート構造23および第2外側トレンチゲート構造24がハッチングによって示されている。第1外側トレンチゲート構造23は、第2方向Xに延び、複数のトレンチゲート構造22の一端部に接続されている。第2外側トレンチゲート構造24は、第2方向Xに延び、複数のトレンチゲート構造22の他端部に接続されている。 The FET structure 21 further includes a first outer trench gate structure 23 and a second outer trench gate structure 24. In FIG. 3, the first outer trench gate structure 23 and the second outer trench gate structure 24 are shown by hatching. The first outer trench gate structure 23 extends in the second direction X and is connected to one end of a plurality of trench gate structures 22. The second outer trench gate structure 24 extends in the second direction X and is connected to the other end of the plurality of trench gate structures 22.
 第1外側トレンチゲート構造23および第2外側トレンチゲート構造24は、延びる方向が異なる点を除いて、トレンチゲート構造22と同一の構造を有している。以下では、主として、トレンチゲート構造22の構造について説明する。各トレンチゲート構造22は、ゲートトレンチ31(第1トレンチ)、ゲート絶縁膜(第1絶縁膜)32およびゲート電極(第1電極)33を含む。 The first outer trench gate structure 23 and the second outer trench gate structure 24 have the same structure as the trench gate structure 22 except that the extending directions are different. Hereinafter, the structure of the trench gate structure 22 will be mainly described. Each trench gate structure 22 includes a gate trench 31 (first trench), a gate insulating film (first insulating film) 32, and a gate electrode (first electrode) 33.
 ゲートトレンチ31は、半導体層2の第1主面3に形成されている。ゲートトレンチ31は、側壁および底壁を含む。ゲートトレンチ31の側壁は、第1主面3に対して垂直に形成されていてもよい。ゲートトレンチ31の側壁は、第1主面3から底壁に向かって下り傾斜していてもよい。ゲートトレンチ31は、開口側の開口面積が底面積よりも大きいテーパ形状に形成されていてもよい。ゲートトレンチ31の底壁は、第1主面3に対して平行に形成されていてもよい。ゲートトレンチ31の底壁は、第2主面4に向かう凸湾曲状に形成されていてもよい。 The gate trench 31 is formed on the first main surface 3 of the semiconductor layer 2. The gate trench 31 includes a side wall and a bottom wall. The side wall of the gate trench 31 may be formed perpendicular to the first main surface 3. The side wall of the gate trench 31 may be inclined downward from the first main surface 3 toward the bottom wall. The gate trench 31 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area. The bottom wall of the gate trench 31 may be formed parallel to the first main surface 3. The bottom wall of the gate trench 31 may be formed in a convex curved shape toward the second main surface 4.
 ゲートトレンチ31は、ベース領域41を貫通している。ゲートトレンチ31の底壁は、法線方向Zに関して、ベース領域41の底部よりも下方に位置している。ゲートトレンチ31の深さは、2μm以上8μm以下であってもよい。ゲートトレンチ31の幅は、0.5μm以上3μm以下であってもよい。ゲート絶縁膜32は、ゲートトレンチ31の内壁に沿って膜状に形成されている。ゲート絶縁膜32は、ゲートトレンチ31内においてリセス空間を区画している。ゲート絶縁膜32は、この形態では、シリコン酸化膜を含む。ゲート絶縁膜32は、シリコン酸化膜に代えてまたはこれに加えて、シリコン窒化膜を含んでいてもよい。 The gate trench 31 penetrates the base region 41. The bottom wall of the gate trench 31 is located below the bottom of the base region 41 in the normal direction Z. The depth of the gate trench 31 may be 2 μm or more and 8 μm or less. The width of the gate trench 31 may be 0.5 μm or more and 3 μm or less. The gate insulating film 32 is formed in a film shape along the inner wall of the gate trench 31. The gate insulating film 32 partitions the recess space in the gate trench 31. The gate insulating film 32 includes a silicon oxide film in this form. The gate insulating film 32 may include a silicon nitride film in place of or in addition to the silicon oxide film.
 ゲート電極33は、ゲート絶縁膜32を挟んでゲートトレンチ31に埋め込まれている。ゲート電極33は、ゲート信号(ゲート電位)によって制御される。ゲート電極33は、導電性ポリシリコンを含んでいてもよい。ゲート電極33は、断面視において法線方向Zに沿って延びる壁状に形成されている。ゲート電極33は、ゲートトレンチ31の開口側に位置する上端部を有している。ゲート電極33の上端部は、第1主面3に対してゲートトレンチ31の底壁側に位置している。ゲート電極33は、図示しない領域においてゲート配線11に電気的に接続される。ゲート端子電極10に印加されたゲート信号は、ゲート配線11を介してゲート電極33に伝達される。 The gate electrode 33 is embedded in the gate trench 31 with the gate insulating film 32 interposed therebetween. The gate electrode 33 is controlled by a gate signal (gate potential). The gate electrode 33 may contain conductive polysilicon. The gate electrode 33 is formed in a wall shape extending along the normal direction Z in a cross-sectional view. The gate electrode 33 has an upper end portion located on the opening side of the gate trench 31. The upper end of the gate electrode 33 is located on the bottom wall side of the gate trench 31 with respect to the first main surface 3. The gate electrode 33 is electrically connected to the gate wiring 11 in a region (not shown). The gate signal applied to the gate terminal electrode 10 is transmitted to the gate electrode 33 via the gate wiring 11.
 各IGBT領域8は、半導体層2の第1主面3においてFET構造21を他の領域から区画する領域分離構造25(region separation structure)を含む。領域分離構造25は、第1主面3の表層部においてFET構造21に隣り合う領域に形成されている。領域分離構造25は、FET構造21の両側に形成されている。領域分離構造25は、隣り合う2つのFET構造21の間の領域に形成されている。これにより、複数のFET構造21は、領域分離構造25によって分離されている。領域分離構造25は、隣り合う2つのトレンチゲート構造22、第1外側トレンチゲート構造23および第2外側トレンチゲート構造24によって区画された閉領域に形成されている。 Each IGBT region 8 includes a region separation structure 25 that partitions the FET structure 21 from other regions on the first main surface 3 of the semiconductor layer 2. The region separation structure 25 is formed in a region adjacent to the FET structure 21 in the surface layer portion of the first main surface 3. The region separation structure 25 is formed on both sides of the FET structure 21. The region separation structure 25 is formed in a region between two adjacent FET structures 21. As a result, the plurality of FET structures 21 are separated by the region separation structure 25. The region separation structure 25 is formed in a closed region partitioned by two adjacent trench gate structures 22, a first outer trench gate structure 23, and a second outer trench gate structure 24.
 領域分離構造25は、第1方向Yに延びる複数(図3の例では3つ)の分離トレンチ構造26を含む。図3および図4では、複数の分離トレンチ構造26がハッチングによって示されている。複数の分離トレンチ構造26は、IGBT領域8において第2方向Xに間隔を空けて形成されている。複数の分離トレンチ構造26は、この形態では、第1分離トレンチ構造26A(第2トレンチ構造)、第2分離トレンチ構造26B(第3トレンチ構造)、および、第3分離トレンチ構造26C(第4トレンチ構造)を含む。 The region separation structure 25 includes a plurality of (three in the example of FIG. 3) separation trench structures extending in the first direction Y. In FIGS. 3 and 4, a plurality of separation trench structures 26 are shown by hatching. The plurality of separation trench structures 26 are formed in the IGBT region 8 at intervals in the second direction X. In this form, the plurality of separated trench structures 26 include a first separated trench structure 26A (second trench structure), a second separated trench structure 26B (third trench structure), and a third separated trench structure 26C (fourth trench structure). Structure) is included.
 第1分離トレンチ構造26Aは、1つのトレンチゲート構造22から第2方向Xの一方側(図3および図4の紙面右側)に間隔を空けて形成されている。第2分離トレンチ構造26Bは、第1分離トレンチ構造26Aから第2方向Xの一方側に間隔を空けて形成されている。第3分離トレンチ構造26Cは、第2分離トレンチ構造26Bから第2方向Xの一方側に間隔を空けて形成されている。第2分離トレンチ構造26Bは、第1分離トレンチ構造26Aおよび第3分離トレンチ構造26Cによって第2方向Xに挟まれている。 The first separation trench structure 26A is formed at a distance from one trench gate structure 22 on one side of the second direction X (on the right side of the paper in FIGS. 3 and 4). The second separation trench structure 26B is formed at a distance from the first separation trench structure 26A on one side of the second direction X. The third separation trench structure 26C is formed at a distance from the second separation trench structure 26B on one side of the second direction X. The second separation trench structure 26B is sandwiched in the second direction X by the first separation trench structure 26A and the third separation trench structure 26C.
 各分離トレンチ構造26は、平面視において第1方向Yに延びる帯状に形成されている。複数の分離トレンチ構造26は、全体としてストライプ状に形成されている。複数の分離トレンチ構造26は、第1方向Yの一端部および第1方向Yの他端部を有している。トレンチゲート構造22および分離トレンチ構造26(第1分離トレンチ構造26A)の間の第2方向Xの距離は、0.5μm以上5μm以下であってもよい。隣り合う2つの分離トレンチ構造26の間の第2方向Xの距離は、0.5μm以上5μm以下であってもよい。隣り合う2つの分離トレンチ構造26の間の第2方向Xの距離は、トレンチゲート構造22および分離トレンチ構造26(第1分離トレンチ構造26A)の間の第2方向Xの距離とほぼ等しいことが好ましい。 Each separation trench structure 26 is formed in a band shape extending in the first direction Y in a plan view. The plurality of separation trench structures 26 are formed in a striped shape as a whole. The plurality of separation trench structures 26 have one end in the first direction Y and the other end in the first direction Y. The distance in the second direction X between the trench gate structure 22 and the separation trench structure 26 (first separation trench structure 26A) may be 0.5 μm or more and 5 μm or less. The distance in the second direction X between the two adjacent separation trench structures 26 may be 0.5 μm or more and 5 μm or less. The distance in the second direction X between the two adjacent separated trench structures 26 may be approximately equal to the distance in the second direction X between the trench gate structure 22 and the separated trench structure 26 (first separated trench structure 26A). preferable.
 領域分離構造25は、第1外側分離トレンチ構造27および第2外側分離トレンチ構造28をさらに含む。図3では、第1外側分離トレンチ構造27および第2外側分離トレンチ構造28がハッチングによって示されている。第1外側分離トレンチ構造27は、第2方向Xに延び、複数の分離トレンチ構造26の一端部に接続されている。第2外側分離トレンチ構造28は、第2方向Xに延び、複数の分離トレンチ構造26の他端部に接続されている。 The region separation structure 25 further includes a first outer separation trench structure 27 and a second outer separation trench structure 28. In FIG. 3, the first outer separation trench structure 27 and the second outer separation trench structure 28 are shown by hatching. The first outer separation trench structure 27 extends in the second direction X and is connected to one end of the plurality of separation trench structures 26. The second outer separation trench structure 28 extends in the second direction X and is connected to the other end of the plurality of separation trench structures 26.
 第1外側分離トレンチ構造27および第2外側分離トレンチ構造28は、延びる方向が異なる点を除いて、分離トレンチ構造26と同一の構造を有している。以下では、主として、分離トレンチ構造26の構造について説明する。各分離トレンチ構造26は、分離トレンチ36(第2トレンチ、第3トレンチ)、分離絶縁膜37(第2絶縁膜、第3絶縁膜)および分離電極38(第2電極、第3電極)を含む。分離トレンチ36は、半導体層2の第1主面3に形成されている。分離トレンチ36は、側壁および底壁を含む。分離トレンチ36の側壁は、第1主面3に対して垂直に形成されていてもよい。 The first outer separation trench structure 27 and the second outer separation trench structure 28 have the same structure as the separation trench structure 26 except that the extending directions are different. Hereinafter, the structure of the separation trench structure 26 will be mainly described. Each separation trench structure 26 includes a separation trench 36 (second trench, third trench), a separation insulating film 37 (second insulating film, third insulating film), and a separation electrode 38 (second electrode, third electrode). .. The separation trench 36 is formed on the first main surface 3 of the semiconductor layer 2. The separation trench 36 includes a side wall and a bottom wall. The side wall of the separation trench 36 may be formed perpendicular to the first main surface 3.
 分離トレンチ36の側壁は、第1主面3から底壁に向かって下り傾斜していてもよい。分離トレンチ36は、開口側の開口面積が底面積よりも大きいテーパ形状に形成されていてもよい。分離トレンチ36の底壁は、第1主面3に対して平行に形成されていてもよい。分離トレンチ36の底壁は、第2主面4に向かって凸湾曲状に形成されていてもよい。分離トレンチ36の深さは、2μm以上8μm以下であってもよい。分離トレンチ36の幅は、0.5μm以上3μm以下であってもよい。分離トレンチ36の幅は、分離トレンチ36の第2方向Xの幅である。分離トレンチ36の幅は、ゲートトレンチ31の幅と等しくてもよい。 The side wall of the separation trench 36 may be inclined downward from the first main surface 3 toward the bottom wall. The separation trench 36 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area. The bottom wall of the separation trench 36 may be formed parallel to the first main surface 3. The bottom wall of the separation trench 36 may be formed in a convex curved shape toward the second main surface 4. The depth of the separation trench 36 may be 2 μm or more and 8 μm or less. The width of the separation trench 36 may be 0.5 μm or more and 3 μm or less. The width of the separation trench 36 is the width of the separation trench 36 in the second direction X. The width of the separation trench 36 may be equal to the width of the gate trench 31.
 分離絶縁膜37は、分離トレンチ36の内壁に沿って膜状に形成されている。分離絶縁膜37は、分離トレンチ36内においてリセス空間を区画している。分離絶縁膜37は、この形態では、シリコン酸化膜を含む。分離絶縁膜37は、シリコン酸化膜に代えてまたはこれに加えて、シリコン窒化膜を含んでいてもよい。分離電極38は、分離絶縁膜37を挟んで分離トレンチ36に埋め込まれている。分離電極38は、図示しない領域においてエミッタ端子電極9に電気的に接続される。分離電極38には、エミッタ電位が付与される。分離電極38は、導電性ポリシリコンを含んでいてもよい。 The separation insulating film 37 is formed in a film shape along the inner wall of the separation trench 36. The separation insulating film 37 partitions the recess space in the separation trench 36. The separation insulating film 37 includes a silicon oxide film in this form. The separation insulating film 37 may include a silicon nitride film in place of or in addition to the silicon oxide film. The separation electrode 38 is embedded in the separation trench 36 with the separation insulating film 37 interposed therebetween. The separation electrode 38 is electrically connected to the emitter terminal electrode 9 in a region (not shown). An emitter potential is applied to the separation electrode 38. The separation electrode 38 may contain conductive polysilicon.
 分離電極38は、断面視において法線方向Zに沿って延びる壁状に形成されている。分離電極38は、分離トレンチ36の開口側に位置する上端部を有している。分離電極38の上端部は、第1主面3に対して分離トレンチ36の底壁側に位置している。複数の分離トレンチ構造26は、第2方向Xに沿う断面視において、FET構造21の半導体層2においてトレンチゲート構造22との間で第1領域29を区画している。第1領域29は、トレンチゲート構造22の両側に形成されている。第1領域29は、FET構造21が形成された領域でもある。つまり、各FET構造21は、この形態では、第1方向Yに隣り合う2つの第1領域29を含む。 The separation electrode 38 is formed in a wall shape extending along the normal direction Z in a cross-sectional view. The separation electrode 38 has an upper end portion located on the opening side of the separation trench 36. The upper end of the separation electrode 38 is located on the bottom wall side of the separation trench 36 with respect to the first main surface 3. The plurality of separated trench structures 26 partition the first region 29 from the trench gate structure 22 in the semiconductor layer 2 of the FET structure 21 in a cross-sectional view along the second direction X. The first region 29 is formed on both sides of the trench gate structure 22. The first region 29 is also a region where the FET structure 21 is formed. That is, each FET structure 21 includes, in this embodiment, two first regions 29 adjacent to each other in the first direction Y.
 2つの第1領域29のうち一方の第1領域29は、トレンチゲート構造22および第1分離トレンチ構造26Aの間に区画されている。2つの第1領域29のうち他方の第1領域29は、トレンチゲート構造22および第3分離トレンチ構造26Cの間に区画されている。2つの第1領域29は、トレンチゲート構造22および分離トレンチ構造26に沿って延びる帯状にそれぞれ形成されている。 The first region 29 of one of the two first regions 29 is partitioned between the trench gate structure 22 and the first separation trench structure 26A. The other first region 29 of the two first regions 29 is partitioned between the trench gate structure 22 and the third separation trench structure 26C. The two first regions 29 are formed in a band shape extending along the trench gate structure 22 and the separation trench structure 26, respectively.
 複数の分離トレンチ構造26は、第2方向Xに沿う断面視において、領域分離構造25の半導体層2において第2領域30を区画している。この形態では、複数の分離トレンチ構造26が、第1方向Yに隣り合う複数の第2領域30を半導体層2に区画している。各領域分離構造25は、この形態では、第1方向Yに隣り合う2つの第2領域30を含んでいる。 The plurality of separation trench structures 26 partition the second region 30 in the semiconductor layer 2 of the region separation structure 25 in a cross-sectional view along the second direction X. In this embodiment, the plurality of separation trench structures 26 partition the plurality of second regions 30 adjacent to each other in the first direction Y into the semiconductor layer 2. Each region separation structure 25 includes, in this embodiment, two second regions 30 adjacent to each other in the first direction Y.
 2つの第2領域30のうち一方側(図5の紙面左側)の一方側領域30Aは、第1分離トレンチ構造26Aおよび第2分離トレンチ構造26Bの間に区画されている。2つの第2領域30のうち他方側(図5の紙面右側)の他方側領域30Bは、第2分離トレンチ構造26Bおよび第3分離トレンチ構造26Cの間に区画されている。2つの第2領域30は、複数の分離トレンチ構造26に沿って延びる帯状にそれぞれ形成されている。 One side region 30A of the two second regions 30 (on the left side of the paper in FIG. 5) is partitioned between the first separation trench structure 26A and the second separation trench structure 26B. The other side region 30B on the other side (right side of the paper in FIG. 5) of the two second regions 30 is partitioned between the second separation trench structure 26B and the third separation trench structure 26C. The two second regions 30 are each formed in a band shape extending along the plurality of separation trench structures 26.
 この形態では、IGBT領域8において、複数(この形態では2つ)の第2領域30が複数(この形態では2つ)の第1領域29を挟み込む態様で、複数の第2領域30が複数の第1領域29と第2方向Xに交互に配列されている。複数の第1領域29および複数の第2領域30は、平面視において全体としてストライプ状に形成されている。IGBT領域8では、FET構造21および領域分離構造25を含むIE(Injection Enhanced:キャリア注入促進)構造が形成されている。IE構造では、複数のFET構造21が領域分離構造25によって第2方向Xに離間される。 In this embodiment, in the IGBT region 8, a plurality of (two in this embodiment) second regions 30 sandwich a plurality of (two in this embodiment) first regions 29, and the plurality of second regions 30 are plural. The first region 29 and the second direction X are alternately arranged. The plurality of first regions 29 and the plurality of second regions 30 are formed in a striped shape as a whole in a plan view. In the IGBT region 8, an IE (Injection Enhanced) structure including the FET structure 21 and the region separation structure 25 is formed. In the IE structure, the plurality of FET structures 21 are separated in the second direction X by the region separation structure 25.
 領域分離構造25は、半導体層2に注入された正孔の移動を制限する。すなわち、正孔は、領域分離構造25を迂回してFET構造21に流れ込む。これにより、半導体層2においてFET構造21の直下の領域に正孔が蓄積され、正孔の密度が高められる。その結果、オン抵抗の低減およびオン電圧の低減が図られる(IE効果)。FET構造21においてベース領域41の表層部には、n型のエミッタ領域42が形成されている。エミッタ領域42のn型不純物濃度は、ドリフト領域12のn型不純物濃度よりも大きい。エミッタ領域42のn型不純物濃度は、1.0×1019cm-3以上1.0×1021cm-3以下であってもよい。 The region separation structure 25 limits the movement of holes injected into the semiconductor layer 2. That is, the holes bypass the region separation structure 25 and flow into the FET structure 21. As a result, holes are accumulated in the region immediately below the FET structure 21 in the semiconductor layer 2, and the density of holes is increased. As a result, the on-resistance and the on-voltage are reduced (IE effect). In the FET structure 21, an n + type emitter region 42 is formed on the surface layer portion of the base region 41. The concentration of n-type impurities in the emitter region 42 is higher than the concentration of n-type impurities in the drift region 12. The concentration of n-type impurities in the emitter region 42 may be 1.0 × 10 19 cm -3 or more and 1.0 × 10 21 cm -3 or less.
 エミッタ領域42は、トレンチゲート構造22の両側に形成されている。エミッタ領域42は、平面視においてトレンチゲート構造22に沿って延びる帯状に形成されている。エミッタ領域42は、第1主面3およびゲートトレンチ31の側壁から露出している。エミッタ領域42の底部は、法線方向Zに関して、ゲート電極33の上端部およびベース領域41の底部の間の領域に形成されている。 The emitter region 42 is formed on both sides of the trench gate structure 22. The emitter region 42 is formed in a strip shape extending along the trench gate structure 22 in a plan view. The emitter region 42 is exposed from the first main surface 3 and the side wall of the gate trench 31. The bottom of the emitter region 42 is formed in the region between the top of the gate electrode 33 and the bottom of the base region 41 with respect to the normal direction Z.
 各第1領域29には、ベース領域41の表層部に、p型のコンタクト領域43が形成されている。コンタクト領域43のp型不純物濃度は、ベース領域41のp型不純物濃度よりも大きい。コンタクト領域43のp型不純物濃度は、1.0×1019cm-3以上1.0×1020cm-3以下であってもよい。半導体層2においてベース領域41に対して第2主面4側の領域に、n型の高濃度領域44が形成されている。高濃度領域44のn型不純物濃度は、ドリフト領域12のn型不純物濃度よりも大きい。高濃度領域44のn型不純物濃度は、1.0×1015cm-3以上1.0×1017cm-3以下であってもよい。 In each first region 29, a p + type contact region 43 is formed on the surface layer portion of the base region 41. The p-type impurity concentration in the contact region 43 is higher than the p-type impurity concentration in the base region 41. The concentration of p-type impurities in the contact region 43 may be 1.0 × 10 19 cm -3 or more and 1.0 × 10 20 cm -3 or less. In the semiconductor layer 2, an n + type high concentration region 44 is formed in a region on the second main surface 4 side with respect to the base region 41. The n-type impurity concentration in the high concentration region 44 is higher than the n-type impurity concentration in the drift region 12. The concentration of n-type impurities in the high concentration region 44 may be 1.0 × 10 15 cm -3 or more and 1.0 × 10 17 cm -3 or less.
 高濃度領域44は、第1領域29の半導体層2においてベース領域41に対して第2主面4側の領域に形成され、第2領域30には形成されていない。すなわち、IGBT領域8では、FET構造21の第1領域29に高濃度領域44が形成され、領域分離構造25の一方側領域30Aおよび他方側領域30Bには高濃度領域44は形成されていない。高濃度領域44は、第1領域29においてベース領域41に接続されるようにベース領域41に対して第2主面4側の領域に形成されている。 The high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 in the semiconductor layer 2 of the first region 29, and is not formed in the second region 30. That is, in the IGBT region 8, the high-concentration region 44 is formed in the first region 29 of the FET structure 21, and the high-concentration region 44 is not formed in the one-side region 30A and the other-side region 30B of the region separation structure 25. The high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 so as to be connected to the base region 41 in the first region 29.
 高濃度領域44は、ベース領域41およびゲートトレンチ31の底壁の間の深さ位置に形成されている。高濃度領域44は、ゲートトレンチ31の底壁からベース領域41側に間隔を空けて形成されている。高濃度領域44は、ゲートトレンチ31の側壁の一部および底壁を露出させている。高濃度領域44は、ゲートトレンチ31の側壁においてゲート絶縁膜32を挟んでゲート電極33に対向している。 The high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the gate trench 31. The high concentration region 44 is formed at a distance from the bottom wall of the gate trench 31 toward the base region 41. The high concentration region 44 exposes a part of the side wall and the bottom wall of the gate trench 31. The high concentration region 44 faces the gate electrode 33 with the gate insulating film 32 interposed therebetween on the side wall of the gate trench 31.
 高濃度領域44は、ベース領域41および分離トレンチ36の底壁の間の深さ位置に形成されている。高濃度領域44は、分離トレンチ36の底壁からベース領域41側に間隔を空けて形成されている。高濃度領域44は、分離トレンチ36の側壁の一部および底壁を露出させている。高濃度領域44は、分離トレンチ36の側壁において分離絶縁膜37を挟んで分離電極38に対向している。 The high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the separation trench 36. The high concentration region 44 is formed at a distance from the bottom wall of the separation trench 36 toward the base region 41. The high concentration region 44 exposes a part of the side wall and the bottom wall of the separation trench 36. The high concentration region 44 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
 高濃度領域44は、平面視においてトレンチ構造22、26に沿って第2方向Xに延びる帯状に形成されている。高濃度領域44の上部および高濃度領域44の底部の双方が、図5に示すように、法線方向Zに関して、トレンチ構造22、26の深さ方向の中央位置よりも上方に位置している。すなわち、高濃度領域44は、トレンチ構造22、26の深さ方向の中央位置よりも浅く形成されている。 The high concentration region 44 is formed in a band shape extending in the second direction X along the trench structures 22 and 26 in a plan view. Both the top of the high concentration region 44 and the bottom of the high concentration region 44 are located above the center position in the depth direction of the trench structures 22 and 26 with respect to the normal direction Z, as shown in FIG. .. That is, the high concentration region 44 is formed shallower than the central position in the depth direction of the trench structures 22 and 26.
 高濃度領域44が、トレンチ構造22、26の深さ方向の中央位置よりも深く形成されていてもよい。高濃度領域44が、トレンチ構造22、26の深さ方向の中央位置よりも浅く形成されていることが好ましい。高濃度領域44は、2つの第1領域29の少なくとも一方に形成されている。高濃度領域44は、この形態では、2つの第1領域29の双方に形成されている。 The high concentration region 44 may be formed deeper than the central position in the depth direction of the trench structures 22 and 26. It is preferable that the high concentration region 44 is formed shallower than the central position in the depth direction of the trench structures 22 and 26. The high concentration region 44 is formed in at least one of the two first regions 29. The high concentration region 44 is formed in both of the two first regions 29 in this form.
 高濃度領域44は、第1領域29においてベース領域41との接続部においてp型不純物およびn型不純物を含むn型の相殺補償領域45(a compensation region)を有している。「相殺補償」は、「相殺」、「補償」、「キャリア相殺」または「キャリア補償」とも称される。相殺補償領域45は、高濃度領域44のn型不純物の一部がベース領域41のp型不純物の一部によって相殺補償され、全体としてn型の半導体領域をなす領域である。相殺補償領域45のn型不純物濃度は、高濃度領域44のn型不純物濃度からベース領域41のp型不純物によって相殺補償された分だけ低下している。 The high concentration region 44 has an n-type offset compensation region 45 (a compensation region) containing p-type impurities and n-type impurities at the connection portion with the base region 41 in the first region 29. "Offset compensation" is also referred to as "offset," "compensation," "carrier offset," or "carrier compensation." The offset compensation region 45 is a region in which a part of the n-type impurities in the high concentration region 44 is offset compensated by a part of the p-type impurities in the base region 41 to form an n-type semiconductor region as a whole. The n-type impurity concentration in the offset compensation region 45 is reduced from the n-type impurity concentration in the high concentration region 44 by the amount compensated by the p-type impurities in the base region 41.
 換言すると、ベース領域41の底部側のp型不純物濃度は、高濃度領域44のn型不純物濃度によって相殺補償された分だけ低下している。ベース領域41は、第1領域29において比較的浅い領域に形成された第1部分51、および、第2領域30において第1部分51よりも深く形成された第2部分52を含む。第1部分51は、第1深さD1を有している。第1部分51は、第1領域29において高濃度領域44(相殺補償領域45)によって薄膜化(浅化)された領域である。第2領域30において高濃度領域44によって薄膜化(浅化)されない領域である。第2部分52は、第1深さD1を超える第2深さD2を有している。 In other words, the p-type impurity concentration on the bottom side of the base region 41 is reduced by the amount compensated for by the n-type impurity concentration in the high concentration region 44. The base region 41 includes a first portion 51 formed in a relatively shallow region in the first region 29, and a second portion 52 formed deeper than the first portion 51 in the second region 30. The first portion 51 has a first depth D1. The first portion 51 is a region thinned (shallowed) by the high concentration region 44 (offset compensation region 45) in the first region 29. The second region 30 is a region that is not thinned (shallowed) by the high concentration region 44. The second portion 52 has a second depth D2 that exceeds the first depth D1.
 高濃度領域44は、半導体層2に供給されたキャリア(正孔)がベース領域41に引き戻される(排出される)のを抑制するキャリアストレージ領域として機能する。これにより、半導体層2においてFET構造21の直下の領域に正孔が蓄積される。その結果、オン抵抗の低減およびオン電圧の低減が図られる。このように、第1領域29では、ベース領域41およびエミッタ領域42が、ゲート絶縁膜32を挟んでゲート電極33に対向している。この形態では、高濃度領域44も、ゲート絶縁膜32を挟んでゲート電極33に対向している。 The high concentration region 44 functions as a carrier storage region that suppresses the carriers (holes) supplied to the semiconductor layer 2 from being pulled back (discharged) to the base region 41. As a result, holes are accumulated in the region directly below the FET structure 21 in the semiconductor layer 2. As a result, the on-resistance and the on-voltage can be reduced. As described above, in the first region 29, the base region 41 and the emitter region 42 face the gate electrode 33 with the gate insulating film 32 interposed therebetween. In this embodiment, the high concentration region 44 also faces the gate electrode 33 with the gate insulating film 32 interposed therebetween.
 FET構造21は、ベース領域41の表層部において、トレンチゲート構造22によって制御されるチャネル領域を含む。チャネル領域は、ベース領域41においてエミッタ領域42およびドリフト領域12(高濃度領域44)の間の領域に形成される。IGBT領域8において、第1主面3の上には、層間絶縁層61が形成されている。層間絶縁層61は、第1主面3に沿って膜状に形成されている。層間絶縁層61は、複数の絶縁層を含む積層構造を有していてもよい。層間絶縁層61は、酸化シリコンまたは窒化シリコンを含んでいてもよい。層間絶縁層61は、NGS(Non-doped Silicate Glass)、PSG(Phosphor Silicate Glass)およびBPSG(Boron Phosphor Silicate Glass)のうちの少なくとも1種を含んでいてもよい。層間絶縁層61の厚さは、0.1μm以上2μm以下であってもよい。 The FET structure 21 includes a channel region controlled by the trench gate structure 22 in the surface layer portion of the base region 41. The channel region is formed in the base region 41 between the emitter region 42 and the drift region 12 (high concentration region 44). In the IGBT region 8, the interlayer insulating layer 61 is formed on the first main surface 3. The interlayer insulating layer 61 is formed in a film shape along the first main surface 3. The interlayer insulating layer 61 may have a laminated structure including a plurality of insulating layers. The interlayer insulating layer 61 may contain silicon oxide or silicon nitride. The interlayer insulating layer 61 may contain at least one of NGS (Non-doped Silicate Glass), PSG (Phosphor Silicate Glass) and BPSG (Boron Phosphor Silicate Glass). The thickness of the interlayer insulating layer 61 may be 0.1 μm or more and 2 μm or less.
 図5に示すように、層間絶縁層61には、コンタクト領域43に対応する位置に複数の第1エミッタ開口62が形成されている。複数の第1エミッタ開口62は、層間絶縁層61を上下に貫通して、対応する第1領域29をそれぞれ露出させている。図5に示すように、複数の第1エミッタ開口62には、第1コンタクト電極63がそれぞれ埋め込まれている。複数の第1コンタクト電極63は、対応する第1エミッタ開口62内においてエミッタ領域42およびコンタクト領域43にそれぞれ電気的に接続されている。 As shown in FIG. 5, a plurality of first emitter openings 62 are formed in the interlayer insulating layer 61 at positions corresponding to the contact region 43. The plurality of first emitter openings 62 penetrate the interlayer insulating layer 61 up and down to expose the corresponding first regions 29, respectively. As shown in FIG. 5, the first contact electrode 63 is embedded in each of the plurality of first emitter openings 62. The plurality of first contact electrodes 63 are electrically connected to the emitter region 42 and the contact region 43, respectively, in the corresponding first emitter opening 62.
 複数の第1コンタクト電極63は、FET構造21において第1領域29に電気的に接続され、領域分離構造25において第2領域30の一方側領域30Aおよび他方側領域30Bには接続されていない。そのため、領域分離構造25側のベース領域41(すなわち、第2部分52)は、電気的に浮遊状態に形成されている。すなわち、領域分離構造25側のベース領域41(すなわち、第2部分52)は、p型のフローティング領域として機能する。 The plurality of first contact electrodes 63 are electrically connected to the first region 29 in the FET structure 21 and are not connected to the one side region 30A and the other side region 30B of the second region 30 in the region separation structure 25. Therefore, the base region 41 (that is, the second portion 52) on the region separation structure 25 side is electrically formed in a floating state. That is, the base region 41 (that is, the second portion 52) on the region separation structure 25 side functions as a p-type floating region.
 第1コンタクト電極63は、図示しないバリア電極層および主電極層を含む積層構造を有していてもよい。バリア電極層は、第1エミッタ開口62の内壁に沿って膜状に形成されている。バリア電極層は、チタン層または窒化チタン層を含む単層構造を有していてもよい。バリア電極層は、チタン層および窒化チタン層を含む積層構造を有していてもよく、この場合、窒化チタン層は、チタン層の上に積層されていてもよい。主電極層は、バリア電極層を挟んで第1エミッタ開口62に埋め込まれている。主電極層93は、タングステンを含んでいてもよい。 The first contact electrode 63 may have a laminated structure including a barrier electrode layer and a main electrode layer (not shown). The barrier electrode layer is formed in a film shape along the inner wall of the first emitter opening 62. The barrier electrode layer may have a single layer structure including a titanium layer or a titanium nitride layer. The barrier electrode layer may have a laminated structure including a titanium layer and a titanium nitride layer, and in this case, the titanium nitride layer may be laminated on the titanium layer. The main electrode layer is embedded in the first emitter opening 62 with the barrier electrode layer interposed therebetween. The main electrode layer 93 may contain tungsten.
 層間絶縁層61の上には、前述のエミッタ端子電極9およびゲート端子電極10が形成されている。図5に示すように、エミッタ端子電極9は、層間絶縁層61の上において第1コンタクト電極63を介してエミッタ領域42およびコンタクト領域43に電気的に接続されている。また、図示を省略するが、エミッタ端子電極9と分離電極38とを電気的に接続する分離電極用の複数のコンタクト電極が設けられている。図示を省略するが、層間絶縁層61には、分離電極38に対応する位置に複数の分離電極用のエミッタ開口が形成されている。分離電極用のコンタクト電極は、分離電極用のエミッタ開口を介して、対応する分離電極38にそれぞれ電気的に接続されている。 The above-mentioned emitter terminal electrode 9 and gate terminal electrode 10 are formed on the interlayer insulating layer 61. As shown in FIG. 5, the emitter terminal electrode 9 is electrically connected to the emitter region 42 and the contact region 43 via the first contact electrode 63 on the interlayer insulating layer 61. Further, although not shown, a plurality of contact electrodes for the separation electrode for electrically connecting the emitter terminal electrode 9 and the separation electrode 38 are provided. Although not shown, the interlayer insulating layer 61 is formed with emitter openings for a plurality of separation electrodes at positions corresponding to the separation electrodes 38. The contact electrode for the separation electrode is electrically connected to the corresponding separation electrode 38 via the emitter opening for the separation electrode.
 エミッタ端子電極9の上には、パッド電極が形成されていてもよい。パッド電極は、ニッケル層、パラジウム層および金層のうちの少なくとも1つを含んでいてもよい。パッド電極は、エミッタ端子電極9側からこの順に積層されたニッケル層、パラジウム層および金層を含む積層電極を有していてもよい。 A pad electrode may be formed on the emitter terminal electrode 9. The pad electrode may include at least one of a nickel layer, a palladium layer and a gold layer. The pad electrode may have a laminated electrode including a nickel layer, a palladium layer, and a gold layer laminated in this order from the emitter terminal electrode 9 side.
 図6は、半導体装置1の第2形態例を示す断面図である。図6は、図5に対応する断面図である。図6では、第1形態例に共通する部分に図1~図5と同一の参照符号を付し、具体的な説明は省略される。 FIG. 6 is a cross-sectional view showing a second embodiment example of the semiconductor device 1. FIG. 6 is a cross-sectional view corresponding to FIG. In FIG. 6, the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted.
 第2形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて一方側領域30Aのベース領域41に電気的に接続され、他方側領域30Bのベース領域41に電気的に接続されていない点である。他方側領域30Bのベース領域41は、電気的に浮遊状態に形成されている。具体的には、層間絶縁層61には、一方側領域30Aのベース領域41に対応する位置に第2エミッタ開口72が形成されている。第2エミッタ開口72は、層間絶縁層61を上下に貫通して、一方側領域30Aのベース領域41を露出させている。 The difference between the second embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the one side region 30A in addition to the base region 41 of the first region 29, and the other side region. It is a point that is not electrically connected to the base region 41 of 30B. The base region 41 of the other side region 30B is electrically formed in a floating state. Specifically, the interlayer insulating layer 61 is formed with a second emitter opening 72 at a position corresponding to the base region 41 of the one-sided region 30A. The second emitter opening 72 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the one-sided region 30A.
 層間絶縁層61の第2エミッタ開口72には、第2コンタクト電極73が埋め込まれている。第2コンタクト電極73は、第2エミッタ開口72を介して一方側領域30Aのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第2コンタクト電極73に電気的に接続されている。第2コンタクト電極73は、第1コンタクト電極63と同様に、バリア電極層および主電極層を含む積層構造を有していてもよい。その他、第2コンタクト電極73についての具体的な説明は省略される。 A second contact electrode 73 is embedded in the second emitter opening 72 of the interlayer insulating layer 61. The second contact electrode 73 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 72. The emitter terminal electrode 9 is electrically connected to the second contact electrode 73 on the interlayer insulating layer 61. Like the first contact electrode 63, the second contact electrode 73 may have a laminated structure including a barrier electrode layer and a main electrode layer. In addition, a specific description of the second contact electrode 73 will be omitted.
 図7は、半導体装置1の第3形態例を示す断面図である。図7は、図5に対応する断面図である。図7では、第1形態例に共通する部分に図1~図5と同一の参照符号を付し、具体的な説明は省略される。第3形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて他方側領域30Bのベース領域41に電気的に接続され、一方側領域30Aのベース領域41に電気的に接続されていない点である。一方側領域30Aのベース領域41は、電気的に浮遊状態に形成されている。 FIG. 7 is a cross-sectional view showing a third embodiment example of the semiconductor device 1. FIG. 7 is a cross-sectional view corresponding to FIG. In FIG. 7, the same reference numerals as those in FIGS. 1 to 5 are attached to the portions common to the first embodiment, and specific description thereof will be omitted. The difference between the third embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the other region 30B in addition to the base region 41 of the first region 29, and is one-sided region. It is a point that is not electrically connected to the base region 41 of 30A. The base region 41 of the one side region 30A is electrically formed in a floating state.
 具体的には、層間絶縁層61には、他方側領域30Bのベース領域41に対応する位置に第3エミッタ開口77が形成されている。第3エミッタ開口77は、層間絶縁層61を上下に貫通して、他方側領域30Bのベース領域41を露出させている。層間絶縁層61の第3エミッタ開口77には、第3コンタクト電極78が埋め込まれている。第3コンタクト電極78は、第3エミッタ開口77を介して他方側領域30Bのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第3コンタクト電極78に電気的に接続されている。第3コンタクト電極78は、第1コンタクト電極63と同様に、バリア電極層および主電極層を含む積層構造を有していてもよい。その他、第3コンタクト電極78についての具体的な説明は省略される。 Specifically, the interlayer insulating layer 61 is formed with a third emitter opening 77 at a position corresponding to the base region 41 of the other side region 30B. The third emitter opening 77 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the other side region 30B. A third contact electrode 78 is embedded in the third emitter opening 77 of the interlayer insulating layer 61. The third contact electrode 78 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 77. The emitter terminal electrode 9 is electrically connected to the third contact electrode 78 on the interlayer insulating layer 61. Like the first contact electrode 63, the third contact electrode 78 may have a laminated structure including a barrier electrode layer and a main electrode layer. In addition, a specific description of the third contact electrode 78 will be omitted.
 図8は、半導体装置1の第4形態例を示す断面図である。図8は、図5に対応する断面図である。図8では、第1形態例に共通する部分に図1~図7と同一の参照符号を付し、具体的な説明は省略される。第4形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて一方側領域30Aのベース領域41および他方側領域30Bのベース領域41の双方に電気的に接続されている点である。つまり、第4形態例に係る半導体装置1は、第2エミッタ開口72および第2コンタクト電極73(図6参照)、ならびに、第3エミッタ開口77および第3コンタクト電極78(図7参照)を含む。 FIG. 8 is a cross-sectional view showing a fourth embodiment example of the semiconductor device 1. FIG. 8 is a cross-sectional view corresponding to FIG. In FIG. 8, the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 7, and specific description thereof will be omitted. The fourth embodiment differs from the first embodiment in that the emitter terminal electrode 9 is a base region 41 of one side region 30A and a base region 41 of the other side region 30B in addition to the base region 41 of the first region 29. It is a point that is electrically connected to both. That is, the semiconductor device 1 according to the fourth embodiment includes a second emitter opening 72 and a second contact electrode 73 (see FIG. 6), and a third emitter opening 77 and a third contact electrode 78 (see FIG. 7). ..
 第2コンタクト電極73は、第2エミッタ開口72を介して一方側領域30Aのベース領域41に電気的に接続されている。第3コンタクト電極78は、第3エミッタ開口77介して他方側領域30Bのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第2コンタクト電極73および第3コンタクト電極78に電気的に接続されている。 The second contact electrode 73 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 72. The third contact electrode 78 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 77. The emitter terminal electrode 9 is electrically connected to the second contact electrode 73 and the third contact electrode 78 on the interlayer insulating layer 61.
 IGBTでは、コレクタ-エミッタ間電圧VCEを増加させた場合、コレクタ-エミッタ間電圧VCEの増大に伴って、コレクタ電流は単調増加する。コレクタ-エミッタ間電圧VCEは、IGBTのコレクタ-エミッタ間の電圧である。コレクタ-エミッタ間電圧VCEが所定値を超えると、コレクタ電流は飽和する。コレクタ-エミッタ間電圧VCEの増加割合に対してコレクタ電流Icの増加割合が比較的小さい領域を飽和領域とする。ゲート-エミッタ間に指定の電圧(たとえば15V)を印加し、かつ定格のコレクタ電流を流したときのコレクタ-エミッタ間の電圧値を「飽和電圧VCE(sat)」とする。 In the IGBT, when the collector-emitter voltage VCE is increased, the collector current monotonically increases as the collector-emitter voltage VCE increases. The collector-emitter voltage VCE is the voltage between the collector and the emitter of the IGBT. When the collector-emitter voltage VCE exceeds a predetermined value, the collector current saturates. The region where the increase ratio of the collector current Ic is relatively small with respect to the increase ratio of the collector-emitter voltage VCE is defined as the saturation region. The voltage value between the collector and the emitter when a specified voltage (for example, 15V) is applied between the gate and the emitter and a rated collector current is passed is defined as "saturation voltage VCE (sat)".
 第1~第4形態例のコレクタ-エミッタ間の飽和電圧VCE(sat)の値は、以下の表1にそれぞれ纏められる。以下の表1には、定格のコレクタ電流が30Aであるときの飽和電圧VCE(sat)の値が示されている。表1には、第1~第4参考例の飽和電圧VCE(sat)の値も示されている。第1~第4参考例は、第1~第4形態例にそれぞれ対応している。第1参考例は、具体的には、第1形態例からn型の高濃度領域44が取り除かれた構造を有している。第2~第4参考例は、同様に、第2~第4形態例からn型の高濃度領域44が取り除かれた構造をそれぞれ有している。 The values of the saturation voltage VCE (sat) between the collector and the emitter of the first to fourth embodiments are summarized in Table 1 below. Table 1 below shows the values of the saturation voltage VCE (sat) when the rated collector current is 30 A. Table 1 also shows the values of the saturation voltage VCE (sat) of the first to fourth reference examples. The first to fourth reference examples correspond to the first to fourth morphological examples, respectively. Specifically, the first reference example has a structure in which the n + type high concentration region 44 is removed from the first form example. Similarly, the second to fourth reference examples have a structure in which the n + type high concentration region 44 is removed from the second to fourth morphological examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、第1実施形態の半導体装置1においては、飽和電圧VCE(sat)の最小値(1.31V)が参考例に比べて小さく、かつ飽和電圧VCE(sat)の最大値(1.52V)が参考例に比べて大きいことがわかる。そのため、飽和電圧VCE(sat)の最大値と最小値との電圧差(0.21V)が参考例に比べて大きい。以上により、半導体装置1の態様を、第1~第4参考例から第1~第4形態例に変更(つまり高濃度領域44を導入)することにより、基本的なレイアウトを変更することなく、飽和電圧VCE(sat)の値を調整できる。以上、この形態によれば、新規な構造によって飽和電圧VCE(sat)が調整された構造を有する半導体装置1を提供できる。 From Table 1, in the semiconductor device 1 of the first embodiment, the minimum value (1.31 V) of the saturation voltage VCE (sat) is smaller than that of the reference example, and the maximum value (1. It can be seen that 52V) is larger than that of the reference example. Therefore, the voltage difference (0.21V) between the maximum value and the minimum value of the saturation voltage VCE (sat) is larger than that of the reference example. As described above, by changing the aspect of the semiconductor device 1 from the first to fourth reference examples to the first to fourth embodiments (that is, introducing the high concentration region 44), the basic layout is not changed. The value of the saturation voltage VCE (sat) can be adjusted. As described above, according to this embodiment, it is possible to provide the semiconductor device 1 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
 図9は、本発明の第2実施形態に係る半導体装置201を、第1形態例に係る構造と共に示す断面図である。図9は、図5に対応する断面図である。図9において第1実施形態に共通する部分に図1~図5と同一の参照符号を付し、具体的な説明は省略される。第2実施形態に係る半導体装置201は、IGBT領域8に代えて、IGBT領域208を有している。 FIG. 9 is a cross-sectional view showing the semiconductor device 201 according to the second embodiment of the present invention together with the structure according to the first embodiment. FIG. 9 is a cross-sectional view corresponding to FIG. In FIG. 9, the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted. The semiconductor device 201 according to the second embodiment has an IGBT region 208 instead of the IGBT region 8.
 IGBT領域208が第1実施形態(の第1形態例)に係るIGBT領域8と相違する点は、高濃度領域44が、第1領域29に代えて、領域分離構造25の第2領域30(一方側領域30Aおよび他方側領域30Bのうちの少なくとも一方)に形成されている点である。この形態では、高濃度領域44が、一方側領域30Aおよび他方側領域30Bの双方に形成されている。その他の点において、IGBT領域208は、第1実施形態(の第1形態例)に係るIGBT領域8と共通している。 The difference between the IGBT region 208 and the IGBT region 8 according to the first embodiment (example of the first embodiment) is that the high concentration region 44 replaces the first region 29 with the second region 30 of the region separation structure 25 (the first embodiment). It is a point formed in at least one of the one-side region 30A and the other-side region 30B). In this embodiment, the high concentration region 44 is formed in both the one-sided region 30A and the other-sided region 30B. In other respects, the IGBT region 208 is common to the IGBT region 8 according to the first embodiment (example of the first embodiment).
 高濃度領域44は、第2領域30の半導体層2においてベース領域41に対して第2主面4側の領域に形成され、第1領域29には形成されていない。すなわち、IGBT領域208では、領域分離構造25の一方側領域30Aおよび他方側領域30Bに高濃度領域44が形成され、FET構造21の第1領域29には高濃度領域44が形成されていない。高濃度領域44は、第2領域30においてベース領域41に接続されるようにベース領域41に対して第2主面4側の領域に形成されている。 The high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 in the semiconductor layer 2 of the second region 30, and is not formed in the first region 29. That is, in the IGBT region 208, the high concentration region 44 is formed in the one side region 30A and the other side region 30B of the region separation structure 25, and the high concentration region 44 is not formed in the first region 29 of the FET structure 21. The high concentration region 44 is formed in the region on the second main surface 4 side with respect to the base region 41 so as to be connected to the base region 41 in the second region 30.
 高濃度領域44は、平面視において分離トレンチ構造26に沿って第2方向Xに延びる帯状に形成されている。高濃度領域44は、第2領域30においてベース領域41および分離トレンチ36の底壁の間の深さ位置に形成されている。高濃度領域44は、ベース領域41および分離トレンチ36の底壁の間の深さ位置に形成されている。高濃度領域44は、分離トレンチ36の底壁からベース領域41側に間隔を空けて形成されている。高濃度領域44は、分離トレンチ36の側壁の一部および底壁を露出させている。高濃度領域44は、分離トレンチ36の側壁において分離絶縁膜37を挟んで分離電極38に対向している。 The high concentration region 44 is formed in a band shape extending in the second direction X along the separation trench structure 26 in a plan view. The high concentration region 44 is formed in the second region 30 at a depth position between the base region 41 and the bottom wall of the separation trench 36. The high concentration region 44 is formed at a depth position between the base region 41 and the bottom wall of the separation trench 36. The high concentration region 44 is formed at a distance from the bottom wall of the separation trench 36 toward the base region 41. The high concentration region 44 exposes a part of the side wall and the bottom wall of the separation trench 36. The high concentration region 44 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
 高濃度領域44が、分離トレンチ構造26の深さ方向の中央位置よりも浅く形成されている。高濃度領域44が、分離トレンチ構造26の深さ方向の中央位置よりも深く形成されていてもよい。高濃度領域44が、分離トレンチ構造26の深さ方向の中央位置よりも浅く形成されていることが好ましい。高濃度領域44は、第2領域30においてベース領域41との接続部においてp型不純物およびn型不純物を含むn型の相殺補償領域45を有している。 The high concentration region 44 is formed shallower than the central position in the depth direction of the separation trench structure 26. The high concentration region 44 may be formed deeper than the central position in the depth direction of the separation trench structure 26. It is preferable that the high concentration region 44 is formed shallower than the central position in the depth direction of the separation trench structure 26. The high concentration region 44 has an n-type offset compensation region 45 containing p-type impurities and n-type impurities at the connection portion with the base region 41 in the second region 30.
 ベース領域41は、第1領域29において比較的深い領域に形成された第1部分51、および、第2領域30において第1部分51よりも浅い領域に形成された第2部分52を含む。第1部分51は、第1深さD11を有している。第1部分51は、第1領域29において高濃度領域44によって薄膜化(浅化)されない領域である。第2部分52は、第1深さD11未満の第2深さD12を有している。第2部分52は、第2領域30において高濃度領域44(相殺補償領域45)によって薄膜化(浅化)された領域である。 The base region 41 includes a first portion 51 formed in a relatively deep region in the first region 29, and a second portion 52 formed in a region shallower than the first portion 51 in the second region 30. The first portion 51 has a first depth D11. The first portion 51 is a region in the first region 29 that is not thinned (shallowed) by the high concentration region 44. The second portion 52 has a second depth D12 that is less than the first depth D11. The second portion 52 is a region thinned (shallowed) by the high concentration region 44 (offset compensation region 45) in the second region 30.
 複数の第1コンタクト電極63は、複数の第1エミッタ開口62を介して第1領域29にそれぞれ電気的に接続され、第2領域30には電気的には接続されていない。エミッタ端子電極9は、第1コンタクト電極63を介して第1領域29のベース領域41に電気的に接続されている。したがって、第2領域30側のベース領域41は、それぞれ電気的に浮遊状態に形成されている。つまり、高濃度領域44は、この形態では、第2領域30においてフローティング領域としてのベース領域41の直下の領域に形成されている。 The plurality of first contact electrodes 63 are electrically connected to the first region 29 via the plurality of first emitter openings 62, and are not electrically connected to the second region 30. The emitter terminal electrode 9 is electrically connected to the base region 41 of the first region 29 via the first contact electrode 63. Therefore, the base region 41 on the second region 30 side is electrically formed in a floating state. That is, in this embodiment, the high concentration region 44 is formed in the region directly below the base region 41 as a floating region in the second region 30.
 図10は、半導体装置201の第2形態例を示す断面図である。図10は、図5に対応する断面図である。図10において第1形態例に共通する部分に図9と同一の参照符号を付し、具体的な説明は省略される。第2形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて一方側領域30Aのベース領域41に電気的に接続され、他方側領域30Bのベース領域41には接続されていない点である。つまり、一方側領域30Aのベース領域41がエミッタ接地されている一方、他方側領域30Bのベース領域41は電気的に浮遊状態に形成されている。 FIG. 10 is a cross-sectional view showing a second embodiment example of the semiconductor device 201. FIG. 10 is a cross-sectional view corresponding to FIG. In FIG. 10, the same reference numerals as those in FIG. 9 are attached to the parts common to the first embodiment, and specific description thereof will be omitted. The difference between the second embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the one side region 30A in addition to the base region 41 of the first region 29, and the other side region. It is a point that is not connected to the base region 41 of 30B. That is, while the base region 41 of the one side region 30A is grounded to the emitter, the base region 41 of the other side region 30B is electrically formed in a floating state.
 具体的には、層間絶縁層61には、ベース領域41に対応する位置に第2エミッタ開口272が形成されている。第2エミッタ開口272は、層間絶縁層61を上下に貫通して、一方側領域30Aのベース領域41のみを露出させている。層間絶縁層61の第2エミッタ開口272には、第2コンタクト電極273が埋め込まれている。第2コンタクト電極273は、第2エミッタ開口272内において一方側領域30Aのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第2コンタクト電極273に電気的に接続されている。第2コンタクト電極273は、第1コンタクト電極63と同様に、バリア電極層および主電極層を含む積層構造を有していてもよい。その他、第2コンタクト電極273についての具体的な説明は省略される。 Specifically, the interlayer insulating layer 61 is formed with a second emitter opening 272 at a position corresponding to the base region 41. The second emitter opening 272 penetrates the interlayer insulating layer 61 up and down to expose only the base region 41 of the one-sided region 30A. A second contact electrode 273 is embedded in the second emitter opening 272 of the interlayer insulating layer 61. The second contact electrode 273 is electrically connected to the base region 41 of the one-sided region 30A within the second emitter opening 272. The emitter terminal electrode 9 is electrically connected to the second contact electrode 273 on the interlayer insulating layer 61. The second contact electrode 273 may have a laminated structure including a barrier electrode layer and a main electrode layer, similarly to the first contact electrode 63. In addition, a specific description of the second contact electrode 273 will be omitted.
 図11は、本発明の第2実施形態に係る半導体装置201の第3形態例を示す断面図である。図11は、図5に対応する断面図である。図11において第1形態例に共通する部分に図9と同一の参照符号を付し、具体的な説明は省略される。第3形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて他方側領域30Bのベース領域41に電気的に接続され、一方側領域30Aのベース領域41には接続されていない点である。つまり、他方側領域30Bのベース領域41がエミッタ接地されている一方、一方側領域30Aのベース領域41は電気的に浮遊状態に形成されている。 FIG. 11 is a cross-sectional view showing a third embodiment example of the semiconductor device 201 according to the second embodiment of the present invention. FIG. 11 is a cross-sectional view corresponding to FIG. In FIG. 11, the parts common to the first embodiment are designated by the same reference numerals as those in FIG. 9, and specific description thereof will be omitted. The difference between the third embodiment and the first embodiment is that the emitter terminal electrode 9 is electrically connected to the base region 41 of the other region 30B in addition to the base region 41 of the first region 29, and is one-sided region. It is a point that is not connected to the base region 41 of 30A. That is, while the base region 41 of the other side region 30B is grounded to the emitter, the base region 41 of the one side region 30A is electrically formed in a floating state.
 具体的には、層間絶縁層61には、他方側領域30Bのベース領域41に対応する位置に第3エミッタ開口277が形成されている。第3エミッタ開口277は、層間絶縁層61を上下に貫通して、他方側領域30Bのベース領域41を露出させている。層間絶縁層61の第3エミッタ開口277には、第3コンタクト電極278が埋め込まれている。第3コンタクト電極278は、第3エミッタ開口277内において他方側領域30Bのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第3コンタクト電極278に電気的に接続されている。第3コンタクト電極278は、第1コンタクト電極63と同様に、バリア電極層および主電極層を含む積層構造を有していてもよい。その他、第3コンタクト電極278についての具体的な説明は省略される。 Specifically, the interlayer insulating layer 61 is formed with a third emitter opening 277 at a position corresponding to the base region 41 of the other side region 30B. The third emitter opening 277 penetrates the interlayer insulating layer 61 up and down to expose the base region 41 of the other side region 30B. A third contact electrode 278 is embedded in the third emitter opening 277 of the interlayer insulating layer 61. The third contact electrode 278 is electrically connected to the base region 41 of the other side region 30B in the third emitter opening 277. The emitter terminal electrode 9 is electrically connected to the third contact electrode 278 on the interlayer insulating layer 61. The third contact electrode 278 may have a laminated structure including a barrier electrode layer and a main electrode layer, similarly to the first contact electrode 63. In addition, a specific description of the third contact electrode 278 will be omitted.
 図12は、本発明の第2実施形態に係る半導体装置201の第4形態例を示す断面図である。図12は、図5に対応する断面図である。図12において第1形態例に共通する部分に図9と同一の参照符号を付し、具体的な説明は省略される。第4形態例が第1形態例と相違する点は、エミッタ端子電極9が、第1領域29のベース領域41に加えて一方側領域30Aのベース領域41および他方側領域30Bのベース領域41の双方に電気的に接続されている点である。つまり、第4形態例に係る半導体装置201は、第2エミッタ開口272および第2コンタクト電極273(図10参照)、ならびに、第3エミッタ開口277および第3コンタクト電極278(図11参照)を含む。 FIG. 12 is a cross-sectional view showing a fourth embodiment example of the semiconductor device 201 according to the second embodiment of the present invention. FIG. 12 is a cross-sectional view corresponding to FIG. In FIG. 12, the parts common to the first embodiment are designated by the same reference numerals as those in FIG. 9, and specific description thereof will be omitted. The fourth embodiment differs from the first embodiment in that the emitter terminal electrode 9 is a base region 41 of one side region 30A and a base region 41 of the other side region 30B in addition to the base region 41 of the first region 29. It is a point that is electrically connected to both. That is, the semiconductor device 201 according to the fourth embodiment includes a second emitter opening 272 and a second contact electrode 273 (see FIG. 10), and a third emitter opening 277 and a third contact electrode 278 (see FIG. 11). ..
 第2コンタクト電極273は、第2エミッタ開口272を介して一方側領域30Aのベース領域41に電気的に接続されている。第3コンタクト電極278は、第3エミッタ開口277を介して他方側領域30Bのベース領域41に電気的に接続されている。エミッタ端子電極9は、層間絶縁層61の上において第2コンタクト電極273および第3コンタクト電極278に電気的に接続されている。 The second contact electrode 273 is electrically connected to the base region 41 of the one-sided region 30A via the second emitter opening 272. The third contact electrode 278 is electrically connected to the base region 41 of the other side region 30B via the third emitter opening 277. The emitter terminal electrode 9 is electrically connected to the second contact electrode 273 and the third contact electrode 278 on the interlayer insulating layer 61.
 第2実施形態の第1~4形態例における飽和電圧VCE(sat)の値は、下記の表2に示される。以下の表2には、定格のコレクタ電流が30Aであるときの飽和電圧VCE(sat)の値が示されている。 The values of the saturation voltage VCE (sat) in the first to fourth embodiments of the second embodiment are shown in Table 2 below. Table 2 below shows the values of the saturation voltage VCE (sat) when the rated collector current is 30 A.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、第2実施形態においては、全体的に、飽和電圧VCE(sat)値が参考例に比べて大きいことがわかる。したがって、半導体装置201の態様を、第1参考例から第1~第4形態例に変更(つまり高濃度領域44を導入)することにより、基本的なレイアウトを変更することなく、飽和電圧VCE(sat)の値を調整できる。以上、この形態によれば、新規な構造によって飽和電圧VCE(sat)が調整された構造を有する半導体装置201を提供できる。 From Table 2, it can be seen that in the second embodiment, the saturation voltage VCE (sat) value is larger than that of the reference example as a whole. Therefore, by changing the aspect of the semiconductor device 201 from the first reference example to the first to fourth embodiments (that is, introducing the high concentration region 44), the saturation voltage VCE (that is, the saturation voltage VCE (that is, the high concentration region 44 is introduced) without changing the basic layout is changed. The value of sat) can be adjusted. As described above, according to this embodiment, it is possible to provide the semiconductor device 201 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
 図13は、本発明の第3実施形態に係る半導体装置301の内部構造を示す平面図である。図14は、図13に示すXIV-XIV線に沿う断面図である。図15は、図13に示すXV-XV線に沿う断面図である。図16は、図15に示すXVI-XVI線に沿う断面図である。図13~図16において第1実施形態に共通する部分に図1~図5と同一の参照符号を付し、具体的な説明は省略される。 FIG. 13 is a plan view showing the internal structure of the semiconductor device 301 according to the third embodiment of the present invention. FIG. 14 is a cross-sectional view taken along the line XIV-XIV shown in FIG. FIG. 15 is a cross-sectional view taken along the line XV-XV shown in FIG. FIG. 16 is a cross-sectional view taken along the line XVI-XVI shown in FIG. In FIGS. 13 to 16, the parts common to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 5, and specific description thereof will be omitted.
 図13~図16を参照して、第3実施形態に係る半導体装置301は、IGBT領域8に代えて、IGBT領域308を有している。IGBT領域308が第1実施形態に係るIGBT領域8と相違する点は、第1領域29において複数のベース領域41が第1方向Yに間隔を空けて形成されている点、および、高濃度領域344が、ベース領域41に対し法線方向Zから接続されるのではなく、ベース領域41に対し、第1主面3に沿う第1方向Yから接続される点である。このような構造において、エミッタ領域42およびコンタクト領域43は、ベース領域41の表層部にそれぞれ形成され、複数の高濃度領域344の表層部には形成されていない。その他の点において、IGBT領域308は、第1実施形態(の第1形態例)に係るIGBT領域8と共通している。 With reference to FIGS. 13 to 16, the semiconductor device 301 according to the third embodiment has an IGBT region 308 instead of the IGBT region 8. The difference between the IGBT region 308 and the IGBT region 8 according to the first embodiment is that a plurality of base regions 41 are formed in the first region 29 at intervals in the first direction Y, and a high concentration region. The point is that the 344 is not connected to the base region 41 from the normal direction Z, but is connected to the base region 41 from the first direction Y along the first main surface 3. In such a structure, the emitter region 42 and the contact region 43 are formed on the surface layer portion of the base region 41, respectively, and are not formed on the surface layer portion of the plurality of high concentration regions 344. In other respects, the IGBT region 308 is common to the IGBT region 8 according to the first embodiment (example of the first embodiment).
 高濃度領域344は、前述の高濃度領域44に相当する。つまり、高濃度領域344は、ドリフト領域12よりも高いn型不純物濃度を有している。高濃度領域344は、第1領域29および第2領域30のいずれか一方側に形成され、他方側には形成されない。この形態では、高濃度領域344が第1領域29に形成され、第2領域30には形成されていない。 The high concentration region 344 corresponds to the above-mentioned high concentration region 44. That is, the high concentration region 344 has an n-type impurity concentration higher than that of the drift region 12. The high concentration region 344 is formed on one side of the first region 29 and the second region 30, and is not formed on the other side. In this embodiment, the high concentration region 344 is formed in the first region 29 and not in the second region 30.
 すなわち、IGBT領域308では、FET構造21の第1領域29のみに高濃度領域344が形成され、領域分離構造25の一方側領域30Aおよび他方側領域30Bには、高濃度領域344が形成されていない。この形態では、2つの第1領域29の双方に高濃度領域344が形成されている。むろん、2つの第1領域29のうちのいずれか一方のみに高濃度領域344が形成され、他方の第1領域29に高濃度領域344が形成されていない形態が採用されてもよい。 That is, in the IGBT region 308, the high concentration region 344 is formed only in the first region 29 of the FET structure 21, and the high concentration region 344 is formed in the one side region 30A and the other side region 30B of the region separation structure 25. do not have. In this form, a high concentration region 344 is formed in both of the two first regions 29. Of course, a form in which the high-concentration region 344 is formed in only one of the two first regions 29 and the high-concentration region 344 is not formed in the other first region 29 may be adopted.
 高濃度領域344は、第1領域29においてベース領域41と第1方向Yに交互に形成されている。この形態では、複数の高濃度領域344が、第1領域29において、1つのベース領域41を第1方向Yから挟み込む態様で、複数のベース領域41と第1方向Yに交互に配列されている。高濃度領域344は、第1領域29においてベース領域41に接続されている。 The high concentration region 344 is formed alternately in the base region 41 and the first direction Y in the first region 29. In this embodiment, a plurality of high-concentration regions 344 are alternately arranged in the plurality of base regions 41 and the first direction Y in a manner in which one base region 41 is sandwiched from the first direction Y in the first region 29. .. The high concentration region 344 is connected to the base region 41 in the first region 29.
 高濃度領域344は、第1主面3およびゲートトレンチ31の底壁の間の深さ位置に形成されている。高濃度領域344は、ゲートトレンチ31の底壁から第1主面3側に間隔を空けて形成されている。高濃度領域344は、ゲートトレンチ31の側壁の一部および底壁を露出させている。高濃度領域344は、ゲートトレンチ31の側壁においてゲート絶縁膜32を挟んでゲート電極33に対向している。 The high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the gate trench 31. The high concentration region 344 is formed at intervals from the bottom wall of the gate trench 31 to the first main surface 3 side. The high concentration region 344 exposes a part of the side wall and the bottom wall of the gate trench 31. The high concentration region 344 faces the gate electrode 33 with the gate insulating film 32 interposed therebetween on the side wall of the gate trench 31.
 高濃度領域344は、第1主面3および分離トレンチ36の底壁の間の深さ位置に形成されている。高濃度領域344は、分離トレンチ36の底壁から第1主面3側に間隔を空けて形成されている。高濃度領域344は、分離トレンチ36の側壁の一部および底壁を露出させている。高濃度領域344は、分離トレンチ36の側壁において分離絶縁膜37を挟んで分離電極38に対向している。 The high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the separation trench 36. The high concentration region 344 is formed at intervals from the bottom wall of the separation trench 36 to the first main surface 3 side. The high concentration region 344 exposes a part of the side wall and the bottom wall of the separation trench 36. The high concentration region 344 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
 高濃度領域344は、ベース領域41よりも深く形成されている。高濃度領域344の底部は、ベース領域41の底部側に張り出し、ベース領域41の底部を被覆していてもよい。高濃度領域344の深さは、ベース領域41と同程度であってもよいし、ベース領域341の深さよりも浅くてもよい。以上、この形態によれば、新規な構造によって飽和電圧VCE(sat)が調整された構造を有する半導体装置301を提供できる。 The high concentration region 344 is formed deeper than the base region 41. The bottom of the high concentration region 344 may project toward the bottom of the base region 41 and cover the bottom of the base region 41. The depth of the high concentration region 344 may be about the same as that of the base region 41, or may be shallower than the depth of the base region 341. As described above, according to this embodiment, it is possible to provide the semiconductor device 301 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
 図17は、本発明の第4実施形態に係る半導体装置401の内部構造を示す平面図である。図18は、図17に示すXVIII-XVIII線に沿う断面図である。図19は、図17に示すXIX-XIX線に沿う断面図である。図20は、図17に示すXX-XX線に沿う断面図である。図17~図20において第3実施形態に共通する部分に図17~図20と同一の参照符号を付し、具体的な説明は省略される。 FIG. 17 is a plan view showing the internal structure of the semiconductor device 401 according to the fourth embodiment of the present invention. FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII shown in FIG. FIG. 19 is a cross-sectional view taken along the line XIX-XIX shown in FIG. FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG. In FIGS. 17 to 20, the parts common to the third embodiment are designated by the same reference numerals as those in FIGS. 17 to 20, and specific description thereof will be omitted.
 第4実施形態に係る半導体装置401は、IGBT領域308に代えて、IGBT領域408を有している。IGBT領域408が第1実施形態に係るIGBT領域8と相違する点は、高濃度領域344が、領域分離構造25の第2領域30(一方側領域30Aおよび他方側領域30B)に形成される点である。そして、FET構造21の第1領域29に高濃度領域が形成されない。 The semiconductor device 401 according to the fourth embodiment has an IGBT region 408 instead of the IGBT region 308. The difference between the IGBT region 408 and the IGBT region 8 according to the first embodiment is that the high concentration region 344 is formed in the second region 30 (one side region 30A and the other side region 30B) of the region separation structure 25. Is. Further, a high concentration region is not formed in the first region 29 of the FET structure 21.
 高濃度領域344は、第2領域30においてベース領域41に接続されている。高濃度領域344は、第1主面3およびゲートトレンチ31の底壁の間の深さ位置に形成されている。高濃度領域344は、分離トレンチ36の底壁から第1主面3側に間隔を空けて形成されている。高濃度領域344は、分離トレンチ36の側壁の一部および底壁を露出させている。高濃度領域344は、分離トレンチ36の側壁において分離絶縁膜37を挟んで分離電極38に対向している。 The high concentration region 344 is connected to the base region 41 in the second region 30. The high concentration region 344 is formed at a depth position between the first main surface 3 and the bottom wall of the gate trench 31. The high concentration region 344 is formed at intervals from the bottom wall of the separation trench 36 to the first main surface 3 side. The high concentration region 344 exposes a part of the side wall and the bottom wall of the separation trench 36. The high concentration region 344 faces the separation electrode 38 with the separation insulating film 37 interposed therebetween on the side wall of the separation trench 36.
 高濃度領域344の底部は、法線方向Zに関して、第1主面3および分離トレンチ36の底壁の間の領域に形成されている。高濃度領域344の底部は、図20に示すように、法線方向Zに関して、ベース領域41の底部と第2主面4との間の領域に形成されている。すなわち、高濃度領域344は、ベース領域41よりも深く形成されている。高濃度領域344の底部が、図20に示すように、法線方向Zに関して、分離トレンチ構造26の深さ方向の中央位置よりも上方に位置している。すなわち、高濃度領域344は、分離トレンチ構造26の深さ方向の中央位置よりも浅く形成されている。 The bottom of the high concentration region 344 is formed in the region between the first main surface 3 and the bottom wall of the separation trench 36 with respect to the normal direction Z. As shown in FIG. 20, the bottom portion of the high concentration region 344 is formed in a region between the bottom portion of the base region 41 and the second main surface 4 with respect to the normal direction Z. That is, the high concentration region 344 is formed deeper than the base region 41. As shown in FIG. 20, the bottom of the high concentration region 344 is located above the central position in the depth direction of the separation trench structure 26 with respect to the normal direction Z. That is, the high concentration region 344 is formed shallower than the central position in the depth direction of the separation trench structure 26.
 また、高濃度領域344の底部において、図20に示すように、高濃度領域344の一部が第2方向Xに張り出し、ベース領域41の下方の領域に達していてもよい。また、高濃度領域344の深さがベース領域41と同程度であってもよいし、高濃度領域344がベース領域41よりも浅く形成されていてもよい。以上、この形態によれば、新規な構造によって飽和電圧VCE(sat)が調整された構造を有する半導体装置401を提供できる。 Further, at the bottom of the high concentration region 344, as shown in FIG. 20, a part of the high concentration region 344 may project in the second direction X and reach the region below the base region 41. Further, the depth of the high-concentration region 344 may be about the same as that of the base region 41, or the high-concentration region 344 may be formed shallower than the base region 41. As described above, according to this embodiment, it is possible to provide the semiconductor device 401 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
 図21は、本発明の第5実施形態に係る半導体装置501の内部構造を示す平面図である。図21において第3実施形態および第4実施形態に共通する部分に図13~図20と同一の参照符号を付し、具体的な説明は省略される。第5実施形態に係る半導体装置501は、第3実施形態に係る構造および第4実施形態に係る構造が組み合わされた構造を有している。つまり、半導体装置501では、第1領域29および第2領域30の双方に高濃度領域344が形成されている。 FIG. 21 is a plan view showing the internal structure of the semiconductor device 501 according to the fifth embodiment of the present invention. In FIG. 21, the parts common to the third embodiment and the fourth embodiment are designated by the same reference numerals as those in FIGS. 13 to 20, and specific description thereof will be omitted. The semiconductor device 501 according to the fifth embodiment has a structure in which the structure according to the third embodiment and the structure according to the fourth embodiment are combined. That is, in the semiconductor device 501, the high concentration region 344 is formed in both the first region 29 and the second region 30.
 第1領域29側において、複数のベース領域41が第1方向Yに間隔を空けて形成されている。第1領域29側において、複数の高濃度領域344が第1方向Yに間隔を空けて形成されている。第1領域29側において、複数の高濃度領域344は、複数のベース領域41と交互に配置されている。第2領域30側において、複数のベース領域41が第1方向Yに間隔を空けて形成されている。第2領域30側において、複数の高濃度領域344が第1方向Yに間隔を空けて形成されている。第2領域30側において、複数の高濃度領域344は、複数のベース領域41と交互に配置されている。 On the first region 29 side, a plurality of base regions 41 are formed at intervals in the first direction Y. On the first region 29 side, a plurality of high-concentration regions 344 are formed at intervals in the first direction Y. On the first region 29 side, the plurality of high-concentration regions 344 are alternately arranged with the plurality of base regions 41. On the second region 30 side, a plurality of base regions 41 are formed at intervals in the first direction Y. On the second region 30 side, a plurality of high-concentration regions 344 are formed at intervals in the first direction Y. On the second region 30 side, the plurality of high-concentration regions 344 are alternately arranged with the plurality of base regions 41.
 第2領域30側の複数のベース領域41は、第1領域29側の複数のベース領域41に対して第1方向Yにずれて形成されている。第2領域30側の複数のベース領域41は、第1領域29側の複数のベース領域41に第2方向Xに対向しないように第1方向Yにずれていてもよい。第2領域30側の複数のベース領域41は、第1領域29側の複数の高濃度領域344に第2方向Xに対向している。第2領域30側の複数の高濃度領域344は、第1領域29側の複数のベース領域41に第2方向Xに対向している。 The plurality of base regions 41 on the second region 30 side are formed so as to be offset in the first direction Y with respect to the plurality of base regions 41 on the first region 29 side. The plurality of base regions 41 on the second region 30 side may be displaced in the first direction Y so as not to face the second direction X with respect to the plurality of base regions 41 on the first region 29 side. The plurality of base regions 41 on the second region 30 side face the plurality of high concentration regions 344 on the first region 29 side in the second direction X. The plurality of high-concentration regions 344 on the second region 30 side face the plurality of base regions 41 on the first region 29 side in the second direction X.
 見方を変えれば、第1領域29の複数の高濃度領域344が、第2領域30の複数のベース領域41に第2方向Xに対向している。また、第1領域29の複数のベース領域41が、第2領域30の複数の高濃度領域344に第2方向Xに対向している。高濃度領域344は、図21に示すように、互いに隣り合う2つの第1領域29の双方に形成されてもよい。高濃度領域344は、2つの第1領域29のうち一方にのみ高濃度領域344が形成されてもよい。 From a different point of view, the plurality of high-concentration regions 344 of the first region 29 face the plurality of base regions 41 of the second region 30 in the second direction X. Further, the plurality of base regions 41 of the first region 29 face the plurality of high concentration regions 344 of the second region 30 in the second direction X. As shown in FIG. 21, the high concentration region 344 may be formed in both of the two first regions 29 adjacent to each other. In the high concentration region 344, the high concentration region 344 may be formed only in one of the two first regions 29.
 また、この形態において、第1領域29の高濃度領域344が、第1領域29のベース領域41に第2方向Xに対向していてもよい。そして、第2領域30の高濃度領域344が、第2領域30のベース領域41に第2方向Xに対向していてもよい。以上、この形態によれば、新規な構造によって飽和電圧VCE(sat)が調整された構造を有する半導体装置501を提供できる。 Further, in this embodiment, the high concentration region 344 of the first region 29 may face the base region 41 of the first region 29 in the second direction X. Then, the high concentration region 344 of the second region 30 may face the base region 41 of the second region 30 in the second direction X. As described above, according to this embodiment, it is possible to provide a semiconductor device 501 having a structure in which the saturation voltage VCE (sat) is adjusted by a novel structure.
 本発明はさらに他の形態で実施することもできる。前述の各実施形態において、半導体層2は、n型の半導体基板13に代えて、p型の半導体基板と、半導体基板の上に形成されたn型エピタキシャル層とを含む積層構造を有していてもよい。この場合、p型の半導体基板が、コレクタ領域16に対応する。また、n型のエピタキシャル層が、ドリフト領域12に対応する。この場合、p型の半導体基板は、シリコン製であってもよい。n型のエピタキシャル層は、シリコン製であってもよい。n型のエピタキシャル層は、p型の半導体基板の主面からシリコンをエピタキシャル成長して形成される。 The present invention can also be implemented in still other embodiments. In each of the above-described embodiments, the semiconductor layer 2 has a laminated structure including a p-type semiconductor substrate and an n - type epitaxial layer formed on the semiconductor substrate instead of the n - type semiconductor substrate 13. You may be doing it. In this case, the p-type semiconductor substrate corresponds to the collector region 16. Further, the n - type epitaxial layer corresponds to the drift region 12. In this case, the p-type semiconductor substrate may be made of silicon. The n - type epitaxial layer may be made of silicon. The n - type epitaxial layer is formed by epitaxially growing silicon from the main surface of a p-type semiconductor substrate.
 前述の実施形態では、第1導電型がn型、第2導電型がp型の例について説明したが、第1導電型がp型、第2導電型がn型であってもよい。この場合の具体的な構成は、前述の説明および添付図面において、n型領域をp型領域に置き換え、p型領域をn型領域に置き換えることによって得られる。 In the above-described embodiment, the example in which the first conductive type is n type and the second conductive type is p type has been described, but the first conductive type may be p type and the second conductive type may be n type. The specific configuration in this case is obtained by replacing the n-type region with the p-type region and replacing the p-type region with the n-type region in the above description and the accompanying drawings.
 以下、この明細書および図面から抽出される特徴例が示される。以下では、新規な構造を有する半導体装置が提供される。 Hereinafter, feature examples extracted from this specification and drawings are shown. In the following, a semiconductor device having a novel structure is provided.
 [A1]一方側の第1主面および他方側の第2主面を有する半導体層と、前記半導体層内に形成された第1導電型のドリフト領域と、前記ドリフト領域の表層部に形成された第2導電型のベース領域と、前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、前記第1トレンチ構造によって制御されるチャネル領域と、前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域のいずれか一方側において前記ベース領域に対して前記第2主面側の領域に形成され、前記第1領域および前記第2領域の他方側には形成されない第1導電型の高濃度領域と、を含む、半導体装置。 [A1] A semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region. A plurality of trenches including a second conductive type base region and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region. The structure, a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and a partition between the second trench structure and the third trench structure in the semiconductor layer. The second region, the channel region controlled by the first trench structure, and the first conductive type impurity concentration higher than the drift region, and the said on either side of the first region or the second region. A semiconductor device including a first conductive type high-concentration region formed in a region on the second main surface side with respect to a base region and not formed on the other side of the first region and the second region.
 [A2]前記第1領域および前記第2領域の前記一方側における前記ベース領域が、前記第1領域および前記第2領域の前記他方側における前記ベース領域よりも浅く形成されている、A1に記載の半導体装置。 [A2] Described in A1, the base region on the one side of the first region and the second region is formed shallower than the base region on the other side of the first region and the second region. Semiconductor device.
 [A3]前記第1領域の前記ベース領域の表層部において、前記第1トレンチ構造に沿う領域に形成され、前記ドリフト領域との間で前記チャネル領域を画定する第1導電型のエミッタ領域をさらに含む、A1またはA2に記載の半導体装置。 [A3] In the surface layer portion of the base region of the first region, a first conductive type emitter region formed in a region along the first trench structure and defining the channel region with the drift region is further provided. Included, the semiconductor device according to A1 or A2.
 [A4]前記第1トレンチ構造に、ゲート電位が印加され、前記第2トレンチ構造に、エミッタ電位が印加され、前記第3トレンチ構造に、前記エミッタ電位が印加される、A1~A3のいずれか一つに記載の半導体装置。 [A4] Any of A1 to A3, wherein the gate potential is applied to the first trench structure, the emitter potential is applied to the second trench structure, and the emitter potential is applied to the third trench structure. The semiconductor device described in one.
 [A5]前記第1主面の上において前記第1領域に電気的に接続された電極をさらに含む、A1~A4のいずれか一つに記載の半導体装置。 [A5] The semiconductor device according to any one of A1 to A4, further including an electrode electrically connected to the first region on the first main surface.
 [A6]前記高濃度領域が、前記複数のトレンチ構造の深さ方向の中央位置よりも浅く形成されている、A1~A5のいずれか一つに記載の半導体装置。 [A6] The semiconductor device according to any one of A1 to A5, wherein the high concentration region is formed shallower than the central position in the depth direction of the plurality of trench structures.
 [A7]前記高濃度領域が、前記複数のトレンチ構造の深さ方向の中央位置よりも深く形成されている、A1~A5のいずれか一つに記載の半導体装置。 [A7] The semiconductor device according to any one of A1 to A5, wherein the high concentration region is formed deeper than the central position in the depth direction of the plurality of trench structures.
 [A8]前記複数のトレンチ構造が、平面視において一方方向に帯状に延びており、前記高濃度領域が、平面視において前記一方方向に延びている、A1~A7のいずれか一つに記載の半導体装置。 [A8] The one according to any one of A1 to A7, wherein the plurality of trench structures extend in a band shape in one direction in a plan view, and the high concentration region extends in the one direction in a plan view. Semiconductor device.
 [A9]前記高濃度領域が、前記第1領域に形成され、前記第2領域には形成されない、A1~A8のいずれか一つに記載の半導体装置。 [A9] The semiconductor device according to any one of A1 to A8, wherein the high concentration region is formed in the first region and is not formed in the second region.
 [A10]前記高濃度領域が、前記第2領域に形成され、前記第1領域には形成されない、A1~A8のいずれか一つに記載の半導体装置。 [A10] The semiconductor device according to any one of A1 to A8, wherein the high concentration region is formed in the second region and is not formed in the first region.
 [A11]一方側の第1主面および他方側の第2主面を有する半導体層と、前記半導体層内に形成された第1導電型のドリフト領域と、前記ドリフト領域の表層部に形成された第2導電型のベース領域と、前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、前記第1トレンチ構造によって制御されるチャネル領域と、前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域の少なくとも一方側において前記第1主面に沿う一方方向から前記ベース領域に接続されるように前記ドリフト領域の表層部に形成された第1導電型の高濃度領域と、を含む、半導体装置。 [A11] A semiconductor layer having a first main surface on one side and a second main surface on the other side, a first conductive type drift region formed in the semiconductor layer, and a surface layer portion of the drift region. A plurality of trenches including a second conductive type base region and a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region. The structure, a first region partitioned between the first trench structure and the second trench structure in the semiconductor layer, and a partition between the second trench structure and the third trench structure in the semiconductor layer. The second region, the channel region controlled by the first trench structure, and the first conductive type impurity concentration higher than the drift region, and the first region and the second region on at least one side thereof. 1. A semiconductor device including a first conductive type high-concentration region formed on a surface layer portion of the drift region so as to be connected to the base region from one direction along a main surface.
 [A12]前記ベース領域は、前記第1主面から前記半導体層の厚さ方向に第1深さで形成され、前記高濃度領域は、前記第1主面から前記半導体層の厚さ方向に前記第1深さを超える第2深さで形成されている、A11に記載の半導体装置。 [A12] The base region is formed at a first depth in the thickness direction of the semiconductor layer from the first main surface, and the high concentration region is formed in the thickness direction of the semiconductor layer from the first main surface. The semiconductor device according to A11, which is formed at a second depth exceeding the first depth.
 [A13]前記第1領域の前記ベース領域の表層部に形成され、前記ドリフト領域との間で前記チャネル領域を画定する第1導電型のエミッタ領域さらに含む、A11またはA12に記載の半導体装置。 [A13] The semiconductor device according to A11 or A12, further including a first conductive type emitter region formed on the surface layer portion of the base region of the first region and defining the channel region with the drift region.
 [A14]前記第1トレンチ構造に、ゲート電位が印加され、前記第2トレンチ構造に、エミッタ電位が印加され、前記第3トレンチ構造に、前記エミッタ電位が印加される、A11~A13のいずれか一つに記載の半導体装置。 [A14] Any of A11 to A13, wherein the gate potential is applied to the first trench structure, the emitter potential is applied to the second trench structure, and the emitter potential is applied to the third trench structure. The semiconductor device described in one.
 [A15]前記第1主面の上において前記第1領域に電気的に接続された電極をさらに含む、A11~A14のいずれか一つに記載の半導体装置。 [A15] The semiconductor device according to any one of A11 to A14, further including an electrode electrically connected to the first region on the first main surface.
 [A16]前記高濃度領域が、前記ベース領域と前記一方方向に交互に配置されている、A11~A15のいずれか一つに記載の半導体装置。 [A16] The semiconductor device according to any one of A11 to A15, wherein the high concentration region is alternately arranged in the base region and the one direction.
 [A17]前記高濃度領域が、前記第1領域に形成され、前記第2領域には形成されない、A11~A16のいずれか一つに記載の半導体装置。 [A17] The semiconductor device according to any one of A11 to A16, wherein the high concentration region is formed in the first region and is not formed in the second region.
 [A18]前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、複数の前記第2領域が、前記交差方向に間隔を空けて区画され、前記高濃度領域が、前記複数の前記第1領域の少なくとも一つに形成されている、A17に記載の半導体装置。 [A18] The plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned. The semiconductor device according to A17, wherein the high-concentration region is formed at least one of the plurality of the first regions, which are partitioned at intervals in the crossing direction.
 [A19]前記高濃度領域が、前記第2領域に形成され、前記第1領域には形成されない、A11~A16のいずれか一つに記載の半導体装置。 [A19] The semiconductor device according to any one of A11 to A16, wherein the high concentration region is formed in the second region and is not formed in the first region.
 [A20]前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、複数の前記第2領域が、前記交差方向に間隔を空けて区画され、前記高濃度領域が、前記複数の前記第2領域の少なくとも一つに形成されている、A19に記載の半導体装置。 [A20] The plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned. The semiconductor device according to A19, wherein the high concentration region is formed at least one of the plurality of the second regions, which are partitioned at intervals in the crossing direction.
 [A21]前記高濃度領域が、前記第1領域および前記第2領域の双方に形成されている、A11~A16のいずれか一つに記載の半導体装置。 [A21] The semiconductor device according to any one of A11 to A16, wherein the high concentration region is formed in both the first region and the second region.
 [A22]前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、複数の前記第2領域が、前記交差方向に間隔を空けて区画され、前記高濃度領域が、前記複数の前記第1領域の少なくとも一つ、および前記複数の前記第2領域の少なくとも一つに形成されている、A21に記載の半導体装置。 [A22] The plurality of trench structures are formed in a band shape extending in one direction, and the plurality of first regions are partitioned at intervals in the crossing direction intersecting the one direction, and the plurality of second regions are partitioned. 21 is partitioned in the crossing direction at intervals, and the high concentration region is formed in at least one of the plurality of the first regions and at least one of the plurality of the second regions. The semiconductor device described in.
 [A23]前記第1領域の前記高濃度領域が、前記第2領域の前記ベース領域と前記交差方向に対向し、前記第2領域の前記高濃度領域が、前記第1領域の前記ベース領域と前記交差方向に対向している、A22に記載の半導体装置。 [A23] The high concentration region of the first region faces the base region of the second region in the crossing direction, and the high concentration region of the second region meets the base region of the first region. The semiconductor device according to A22, which faces the crossing direction.
 実施形態について詳細に説明してきたが、これらは技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によって限定される。 Although the embodiments have been described in detail, these are merely specific examples used to clarify the technical contents, and the present invention should not be construed as being limited to these specific examples. The scope of is limited by the scope of the attached claims.
1   半導体装置
2   半導体層
3   第1主面
4   第2主面
12  ドリフト領域
22  トレンチゲート構造(第1トレンチ構造)
26  分離トレンチ構造(第2トレンチ構造、第3トレンチ構造)
26A 第1分離トレンチ構造(第2トレンチ構造)
26B 第2分離トレンチ構造(第3トレンチ構造)
29  第1領域
30  第2領域
41  ベース領域
44  高濃度領域
201  半導体装置
301  半導体装置
344  高濃度領域
401  半導体装置
501  半導体装置
1 Semiconductor device 2 Semiconductor layer 3 First main surface 4 Second main surface 12 Drift region 22 Trench gate structure (first trench structure)
26 Separate trench structure (second trench structure, third trench structure)
26A 1st separation trench structure (2nd trench structure)
26B 2nd separation trench structure (3rd trench structure)
29 1st region 30 2nd region 41 Base region 44 High concentration region 201 Semiconductor device 301 Semiconductor device 344 High concentration region 401 Semiconductor device 501 Semiconductor device

Claims (20)

  1.  一方側の第1主面および他方側の第2主面を有する半導体層と、
     前記半導体層内に形成された第1導電型のドリフト領域と、
     前記ドリフト領域の表層部に形成された第2導電型のベース領域と、
     前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、
     前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、
     前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、
     前記第1トレンチ構造によって制御されるチャネル領域と、
     前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域のいずれか一方側において前記ベース領域に対して前記第2主面側の領域に形成され、前記第1領域および前記第2領域の他方側には形成されない第1導電型の高濃度領域と、を含む、半導体装置。
    A semiconductor layer having a first main surface on one side and a second main surface on the other side,
    The first conductive type drift region formed in the semiconductor layer and
    The second conductive type base region formed on the surface layer of the drift region and
    A plurality of trench structures including a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
    A first region partitioned between the first trench structure and the second trench structure in the semiconductor layer,
    A second region partitioned between the second trench structure and the third trench structure in the semiconductor layer,
    The channel region controlled by the first trench structure and
    It has a higher concentration of first conductive impurities than the drift region, and is formed in the region on the second main surface side with respect to the base region on either one of the first region and the second region. A semiconductor device comprising a first region and a first conductive type high concentration region that is not formed on the other side of the second region.
  2.  前記第1領域および前記第2領域の前記一方側における前記ベース領域が、前記第1領域および前記第2領域の前記他方側における前記ベース領域よりも浅く形成されている、請求項1に記載の半導体装置。 The first aspect of the present invention, wherein the base region on one side of the first region and the second region is formed shallower than the base region on the other side of the first region and the second region. Semiconductor device.
  3.  前記第1領域の前記ベース領域の表層部において、前記第1トレンチ構造に沿う領域に形成され、前記ドリフト領域との間で前記チャネル領域を画定する第1導電型のエミッタ領域をさらに含む、請求項1または2に記載の半導体装置。 Claimed to further include a first conductive type emitter region formed in a region along the first trench structure and defining the channel region with the drift region in the surface layer portion of the base region of the first region. Item 2. The semiconductor device according to Item 1 or 2.
  4.  前記第1トレンチ構造に、ゲート電位が印加され、
     前記第2トレンチ構造に、エミッタ電位が印加され、
     前記第3トレンチ構造に、前記エミッタ電位が印加される、請求項1~3のいずれか一項に記載の半導体装置。
    A gate potential is applied to the first trench structure,
    An emitter potential is applied to the second trench structure,
    The semiconductor device according to any one of claims 1 to 3, wherein the emitter potential is applied to the third trench structure.
  5.  前記高濃度領域が、前記複数のトレンチ構造の深さ方向の中央位置よりも浅く形成されている、請求項1~4のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the high concentration region is formed shallower than the central position in the depth direction of the plurality of trench structures.
  6.  前記高濃度領域が、前記複数のトレンチ構造の深さ方向の中央位置よりも深く形成されている、請求項1~4のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the high concentration region is formed deeper than the central position in the depth direction of the plurality of trench structures.
  7.  前記高濃度領域が、前記第1領域に形成され、前記第2領域には形成されない、請求項1~6のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the high concentration region is formed in the first region and is not formed in the second region.
  8.  前記高濃度領域が、前記第2領域に形成され、前記第1領域には形成されない、請求項1~6のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the high concentration region is formed in the second region and is not formed in the first region.
  9.  前記第1主面の上において前記第1領域に電気的に接続された電極をさらに含む、請求項1~8のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 8, further comprising an electrode electrically connected to the first region on the first main surface.
  10.  一方側の第1主面および他方側の第2主面を有する半導体層と、
     前記半導体層内に形成された第1導電型のドリフト領域と、
     前記ドリフト領域の表層部に形成された第2導電型のベース領域と、
     前記ベース領域を貫通するように前記第1主面に間隔を空けて形成された第1トレンチ構造、第2トレンチ構造および第3トレンチ構造を含む複数のトレンチ構造と、
     前記半導体層において前記第1トレンチ構造および前記第2トレンチ構造の間に区画された第1領域と、
     前記半導体層において前記第2トレンチ構造および前記第3トレンチ構造の間に区画された第2領域と、
     前記第1トレンチ構造によって制御されるチャネル領域と、
     前記ドリフト領域よりも高い第1導電型不純物濃度を有し、前記第1領域および前記第2領域の少なくとも一方側において前記第1主面に沿う一方方向から前記ベース領域に接続されるように前記ドリフト領域の表層部に形成された第1導電型の高濃度領域と、を含む、半導体装置。
    A semiconductor layer having a first main surface on one side and a second main surface on the other side,
    The first conductive type drift region formed in the semiconductor layer and
    The second conductive type base region formed on the surface layer of the drift region and
    A plurality of trench structures including a first trench structure, a second trench structure, and a third trench structure formed at intervals on the first main surface so as to penetrate the base region.
    A first region partitioned between the first trench structure and the second trench structure in the semiconductor layer,
    A second region partitioned between the second trench structure and the third trench structure in the semiconductor layer,
    The channel region controlled by the first trench structure and
    The said, having a higher concentration of first conductive impurities than the drift region, and being connected to the base region from one direction along the first main surface on at least one side of the first region and the second region. A semiconductor device including a first conductive type high-concentration region formed on a surface layer portion of a drift region.
  11.  前記ベース領域は、前記第1主面から前記半導体層の厚さ方向に第1深さで形成され、
     前記高濃度領域は、前記第1主面から前記半導体層の厚さ方向に前記第1深さを超える第2深さで形成されている、請求項10に記載の半導体装置。
    The base region is formed at a first depth in the thickness direction of the semiconductor layer from the first main surface.
    The semiconductor device according to claim 10, wherein the high concentration region is formed at a second depth exceeding the first depth in the thickness direction of the semiconductor layer from the first main surface.
  12.  前記第1領域の前記ベース領域の表層部に形成され、前記ドリフト領域との間で前記チャネル領域を画定する第1導電型のエミッタ領域さらに含む、請求項10または11に記載の半導体装置。 The semiconductor device according to claim 10 or 11, further comprising a first conductive type emitter region formed on the surface layer portion of the base region of the first region and defining the channel region with the drift region.
  13.  前記第1トレンチ構造に、ゲート電位が印加され、
     前記第2トレンチ構造に、エミッタ電位が印加され、
     前記第3トレンチ構造に、前記エミッタ電位が印加される、請求項10~12のいずれか一項に記載の半導体装置。
    A gate potential is applied to the first trench structure,
    An emitter potential is applied to the second trench structure,
    The semiconductor device according to any one of claims 10 to 12, wherein the emitter potential is applied to the third trench structure.
  14.  前記高濃度領域が、前記ベース領域と前記一方方向に交互に配置されている、請求項10~13のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 10 to 13, wherein the high concentration region is alternately arranged in the base region and the one direction.
  15.  前記高濃度領域が、前記第1領域に形成され、前記第2領域には形成されない、請求項10~14のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 10 to 14, wherein the high concentration region is formed in the first region and is not formed in the second region.
  16.  前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、
     複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、
     複数の前記第2領域が、前記交差方向に間隔を空けて区画され、
     前記高濃度領域が、前記複数の前記第1領域の少なくとも一つに形成されている、請求項15に記載の半導体装置。
    The plurality of trench structures are formed in a band shape extending in one direction.
    A plurality of the first regions are partitioned at intervals in the intersecting directions intersecting the one direction.
    A plurality of the second regions are partitioned in the crossing direction at intervals.
    The semiconductor device according to claim 15, wherein the high concentration region is formed in at least one of the plurality of the first regions.
  17.  前記高濃度領域が、前記第2領域に形成され、前記第1領域には形成されない、請求項10~14のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 10 to 14, wherein the high concentration region is formed in the second region and is not formed in the first region.
  18.  前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、
     複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、
     複数の前記第2領域が、前記交差方向に間隔を空けて区画され、
     前記高濃度領域が、前記複数の前記第2領域の少なくとも一つに形成されている、請求項17に記載の半導体装置。
    The plurality of trench structures are formed in a band shape extending in one direction.
    A plurality of the first regions are partitioned at intervals in the intersecting directions intersecting the one direction.
    A plurality of the second regions are partitioned in the crossing direction at intervals.
    The semiconductor device according to claim 17, wherein the high concentration region is formed in at least one of the plurality of the second regions.
  19.  前記高濃度領域が、前記第1領域および前記第2領域の双方に形成されている、請求項10~14のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 10 to 14, wherein the high concentration region is formed in both the first region and the second region.
  20.  前記複数のトレンチ構造が、前記一方方向に延びる帯状に形成され、
     複数の前記第1領域が、前記一方方向に交差する交差方向に間隔を空けて区画され、
     複数の前記第2領域が、前記交差方向に間隔を空けて区画され、
     前記高濃度領域が、前記複数の前記第1領域の少なくとも一つ、および前記複数の前記第2領域の少なくとも一つに形成されている、請求項19に記載の半導体装置。
    The plurality of trench structures are formed in a band shape extending in one direction.
    A plurality of the first regions are partitioned at intervals in the intersecting directions intersecting the one direction.
    A plurality of the second regions are partitioned in the crossing direction at intervals.
    19. The semiconductor device according to claim 19, wherein the high concentration region is formed in at least one of the plurality of the first regions and at least one of the plurality of the second regions.
PCT/JP2021/028665 2020-08-11 2021-08-02 Semiconductor device WO2022034828A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022542811A JPWO2022034828A1 (en) 2020-08-11 2021-08-02
CN202180056460.4A CN116018689A (en) 2020-08-11 2021-08-02 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
DE212021000185.8U DE212021000185U1 (en) 2020-08-11 2021-08-02 semiconductor device
US17/927,011 US20230197799A1 (en) 2020-08-11 2021-08-02 Semiconductor device
DE112021002371.3T DE112021002371T5 (en) 2020-08-11 2021-08-02 SEMICONDUCTOR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020135971 2020-08-11
JP2020-135971 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022034828A1 true WO2022034828A1 (en) 2022-02-17

Family

ID=80247856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028665 WO2022034828A1 (en) 2020-08-11 2021-08-02 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2022034828A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153112A (en) * 2002-10-31 2004-05-27 Toshiba Corp Power semiconductor device
JP2013140885A (en) * 2012-01-05 2013-07-18 Renesas Electronics Corp Ie type trench gate igbt
JP2016063072A (en) * 2014-09-18 2016-04-25 富士電機株式会社 Semiconductor device manufacturing method
JP2019110297A (en) * 2017-12-14 2019-07-04 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト Semiconductor device with barrier region
WO2019230851A1 (en) * 2018-05-30 2019-12-05 ローム株式会社 Semiconductor device
JP2020098881A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153112A (en) * 2002-10-31 2004-05-27 Toshiba Corp Power semiconductor device
JP2013140885A (en) * 2012-01-05 2013-07-18 Renesas Electronics Corp Ie type trench gate igbt
JP2016063072A (en) * 2014-09-18 2016-04-25 富士電機株式会社 Semiconductor device manufacturing method
JP2019110297A (en) * 2017-12-14 2019-07-04 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト Semiconductor device with barrier region
WO2019230851A1 (en) * 2018-05-30 2019-12-05 ローム株式会社 Semiconductor device
JP2020098881A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7692240B2 (en) Insulated gate semiconductor device
US10121887B2 (en) Insulated gate semiconductor device and method
JP2003224273A (en) Semiconductor device
JP7207463B2 (en) semiconductor equipment
JP7353925B2 (en) semiconductor equipment
US20210367071A1 (en) Semiconductor device
JP4122113B2 (en) High breakdown strength field effect transistor
WO2022034828A1 (en) Semiconductor device
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
JP7507756B2 (en) Semiconductor Device
WO2021060085A1 (en) Semiconductor device
US11177360B2 (en) Semiconductor device
US20230197799A1 (en) Semiconductor device
WO2024195460A1 (en) Semiconductor device
WO2023203894A1 (en) Semiconductor device
JP5753114B2 (en) diode
WO2023157422A1 (en) Semiconductor device
US20240154007A1 (en) Semiconductor device
WO2024101006A1 (en) Semiconductor device
WO2022202009A1 (en) Semiconductor device
WO2023223589A1 (en) Semiconductor chip
WO2023223590A1 (en) Semiconductor chip
US20240178305A1 (en) Semiconductor device
US20230335626A1 (en) Semiconductor device
WO2023223588A1 (en) Semiconductor chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542811

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21855907

Country of ref document: EP

Kind code of ref document: A1