WO2022034629A1 - Rotary encoder and control accuracy switching type servo control device using same - Google Patents

Rotary encoder and control accuracy switching type servo control device using same Download PDF

Info

Publication number
WO2022034629A1
WO2022034629A1 PCT/JP2020/030540 JP2020030540W WO2022034629A1 WO 2022034629 A1 WO2022034629 A1 WO 2022034629A1 JP 2020030540 W JP2020030540 W JP 2020030540W WO 2022034629 A1 WO2022034629 A1 WO 2022034629A1
Authority
WO
WIPO (PCT)
Prior art keywords
precision
signal
motor
medium
rotary encoder
Prior art date
Application number
PCT/JP2020/030540
Other languages
French (fr)
Japanese (ja)
Inventor
純一 多田
Original Assignee
株式会社五十嵐電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社五十嵐電機製作所 filed Critical 株式会社五十嵐電機製作所
Priority to PCT/JP2020/030540 priority Critical patent/WO2022034629A1/en
Priority to JP2021539605A priority patent/JP6945914B1/en
Publication of WO2022034629A1 publication Critical patent/WO2022034629A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a rotary encoder that outputs motor rotation / angle information to the outside as a digital signal, and a servo control device using the rotary encoder, and in particular, switches the accuracy of the motor control signal according to the rotation speed of the motor. It relates to a rotary encoder that generates information suitable for the above-mentioned, and a servo control device using the rotary encoder.
  • Patent Document 1 discloses a servo control device that can control a motor with high accuracy in a completely closed loop based on an output signal of a rotary encoder by using one MR sensor unit and a brushless DC servo motor. In such a servo control device, there is a problem that the motor does not follow the high-precision control signal at the time of high-speed rotation.
  • Patent Document 2 in a servo system in which a resolver is connected, the resolution of the RD converter is switched based on the motor speed, the resolution is set low when the motor speed exceeds a certain level, the responsiveness is improved, and the motor speed is constant. If the following is true, the invention is disclosed in which the resolution is set high and the positioning accuracy is improved.
  • Patent Document 3 discloses a detection device that switches a detection mode between a low-speed mode and a high-speed mode in a rotary encoder.
  • Patent Document 4 discloses an optical or magnetic encoder device having a power supply unit using a large Barkhausen jump.
  • the resolver and RD converter described in Patent Document 2 have a complicated structure and are expensive as compared with a rotary encoder using an MR sensor.
  • the rotary encoder described in Patent Document 3 intermittently drives a sensor element in order to reduce power consumption, and is not suitable for a servo control device such as a robot.
  • the magnetic sensor described in Patent Document 4 can supply an electric erne key for storing measured values when the supply of external power is lost.
  • the sensor targets four Hall elements with vertical elements (components), and a deflector that completely covers all Hall elements is placed between the Hall element and the large Barkhausen effect power generation module. .. Therefore, the composite magnetic wire is located at a position away from the permanent magnet axis, and is a large magnetic sensor having a long axial length.
  • One of the problems of the present invention is to have a function of solving the problem that the motor does not follow the control signal at high speed rotation while performing high precision position accuracy in the low speed rotation range, regardless of the type and application of the motor. It is an object of the present invention to provide a rotary encoder having abundant versatility to meet various needs, and a servo control device using the rotary encoder. Another object of the present invention is to provide a small and inexpensive rotary encoder and a servo control device using the rotary encoder while having a function of solving the problem that the motor does not follow the control signal at high speed rotation. be.
  • the rotary encoder It is a rotary encoder equipped with one MR sensor unit that outputs the rotation / angle information of the rotation axis of the motor and outputs the rotation / angle information of the motor to the outside as a digital signal.
  • the MR sensor unit is provided at a position on one surface side of a substrate fixed to the motor and facing the flat plate magnet, and one flat plate magnet fixed to the rotating shaft via a holder.
  • the MR sensor unit has a function of outputting a set of signals including an incremental signal and an absolute signal with respect to the rotation / angle of the rotating shaft, and the incremental signal and the absolute signal in the set of signals are The accuracy of rotation and angle of the rotation axis is different from each other, one is a medium accuracy signal and the other is a high accuracy signal.
  • the rotary encoder includes a medium- and high-precision absolute signal generation unit that generates medium-precision and high-precision absolute signals, and a medium- and high-precision incremental signal generation unit that generates medium-precision and high-precision incremental signals.
  • the medium / high precision absolute signal generation unit has a function of generating a medium precision absolute signal and a high precision absolute signal based on the set of signals.
  • the medium-high-precision incremental signal generation unit is characterized by having a function of generating a medium-precision incremental signal and a high-precision incremental signal based on the set of signals.
  • the present invention has a function of solving the problem that the motor does not follow the control signal at the time of high-speed rotation while performing high-precision position accuracy in the low-speed rotation range, and is various regardless of the type and application of the motor. It is possible to provide a rotary encoder and a servo control device using the rotary encoder, which are rich in versatility and can meet the needs of the above.
  • a motor driver that controls the rotation of the motor body based on the output of the rotary encoder is provided, and the motor is driven by any one set of motor control signals according to the initial setting conditions.
  • the motor driver acquires one of an absolute signal and an incremental signal as an encoder output as a signal for controlling the motor according to the type of the motor to which the rotary encoder is mounted.
  • the motor driver includes a control accuracy switching prediction / control unit and a motor drive signal generation unit, and the control accuracy switching prediction / control unit is the acquired incremental for motor control.
  • the timing of switching between the high-precision motor control signal and the medium-precision motor control signal in the signal or the absolute signal for motor control is predicted, and the motor drive signal generation unit is based on the operation command. It is characterized by generating a motor drive signal based on a high-precision motor control signal or the medium-precision motor control signal.
  • the present invention employs one general-purpose MR sensor unit having a small and inexpensive flat plate magnet, it is based on the output of this MR sensor unit and has medium accuracy and medium accuracy. Since it is possible to generate a highly accurate absolute drive signal or incremental drive signal, it is possible to provide a servo control device using a small and inexpensive rotary encoder.
  • FIG. 1 It is a figure which shows the structural example of the control accuracy switching type servo control apparatus which concerns on 1st Embodiment of this invention. It is a vertical sectional view which shows the structural example of the main part of the DC motor with a brush to which the servo control device of FIG. 1 is attached. It is a figure which shows the structural example of the magnetic circuit of the rotary encoder in the servo control device of 1st Example. It is a figure which shows the configuration example of the rotary encoder in 1st Example. It is a figure which shows an example of the input screen of the initial setting by a user interface in 1st Example. It is a figure which shows the flow of the process of a rotary encoder in 1st Example.
  • FIG. 12 is a diagram showing an example of the relationship between the power supply, the output signal of the rotary encoder, and the drive signal of the brushless DC motor when the power supply of the main battery is cut off from the normal state in the processing flow of FIG. It is a figure which shows the structural example of the stepping servo motor which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a diagram showing a configuration example of a control accuracy switching type servo control device 10 according to the first embodiment of the present invention.
  • the servo control device 10 includes a rotary encoder 100, a power supply 200, a motor driver 400, and a motor body 500.
  • the rotary encoder 100 is attached to a part of the motor body 500, and outputs rotation / angle information of the motor body 500 as a digital signal.
  • the rotary encoder 100 includes one MR sensor unit 110 that outputs information on the rotation and angle of the rotation shaft of the motor body 500, a batteryless compatible unit 120 that supplies power to the main battery 210, and the like, and a medium-precision and high-precision absolute.
  • Medium- and high-precision absolute signal generation unit 130 that generates signals
  • medium- and high-precision incremental signal generation unit 140 that generates medium- and high-precision incremental signals
  • encoder output control that controls encoder output according to preset conditions. It includes a unit 160, a non-volatile memory 180, a serial / parallel signal transmission / reception unit 190, and the like.
  • the batteryless compatible unit 120 functions as a power source 200 when the power of the main battery is lost, temporarily supplies power to the rotary encoder 100, and uses a motor according to the conditions initially set via the user interface 300. It has a function of generating information about the rotation of the main body 500 and recording it in the non-volatile memory 180.
  • the MR sensor unit 110 has, as its basic configuration, an incremental signal with medium accuracy (for example, 4K pulse / rotation) and an absolute signal with high accuracy (for example, 32K pulse / rotation) regarding the rotation / angle of the rotation axis of the motor. It has a function to output two systems of signals as absolute / incremental signals.
  • the medium- and high-precision absolute signal generation unit 130 has a function of generating a set of medium-precision and high-precision absolute signals based on a set of absolute / incremental signals of the MR sensor unit 110.
  • the medium- and high-precision incremental signal generation unit 140 has a function of generating a set of medium-precision and high-precision incremental signals based on a set of absolute / incremental signals of the MR sensor unit 110.
  • the combination of output signals of the MR sensor unit 110 is not limited to the above example, and may be appropriately set according to the application of the servo control device.
  • the absolute / incremental signal may be a signal of three systems of high accuracy, medium accuracy, and low accuracy having different accuracy.
  • the absolute / incremental signal may include, for example, an ultra-high precision signal of about 32 M pulse / rotation.
  • the relationship between high precision and medium precision, or each precision such as high precision, medium precision, and low precision is relative, and various motors to which the rotary encoder is mounted are mounted at low speed. Anything that can be optimally controlled in the rotation range and the high-speed rotation range, or in the low-speed rotation range, the medium-speed rotation range, and the high-speed rotation range may be used.
  • the encoder output control unit 160 generates output information of the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, and the medium / high precision incremental signal generation unit 140 according to the initial setting conditions set by the user interface 300. It has a function of recording in the non-volatile memory 180 and outputting these signals to the motor driver 400 according to preset conditions.
  • the user interface 300 can be realized by installing a dedicated application that executes a program having a predetermined function on a smartphone or a tablet terminal.
  • the user interface 300, the rotary encoder 100, and the motor driver 400 are configured to be able to communicate with each other via a communication network.
  • the power supply 200 provides the rotary encoder 100 and the motor driver 400 with a controlled predetermined, for example, 5V DC power supply via the power supply lines 230 and 240.
  • the power supply 200 includes a main battery 210 and a sub-battery 220 (see FIG. 4).
  • the sub-battery 220 stores electric power due to the large Barkhausen effect, and supplies electric power to the rotary encoder 100 when the power supply of the main battery 210 is lost.
  • the sub-battery 220 may be configured to supply power to the rotary encoder 100 even during normal operation. In either case, the power supply lines of the main battery 210 and the sub-battery 220 are configured as two electrically independent lines.
  • the serial / parallel signal transmission / reception unit 190 has a function of converting various information into a parallel signal or a serial signal and transmitting / receiving between the rotary encoder 100 and the motor driver 400.
  • A-phase / B-phase signals and Z-phase signals generated by parallel transmission processing are converted into transmission data (BUS) for serial transmission conforming to the serial transmission communication standard, and this BUS signal is used as a communication cable. Is transmitted to the motor driver 400 via.
  • the motor driver 400 includes an accuracy switching prediction / control unit 410, a motor drive signal generation unit 420, a batteryless mode compatible unit 430, a memory for recording an operation command 440, and the like.
  • the rotation of the motor body 500 is controlled based on the operation command 440 and the output of the rotary encoder 100. That is, the control accuracy switching prediction / control unit 410 predicts the timing of switching between the two high-precision and medium-precision signals output from the rotary encoder 100, and is based on the operation command, which is high-precision and medium-precision.
  • One of the signals of the system is supplied to the motor drive signal generation unit 420.
  • the motor drive signal generation unit 420 generates a motor drive signal based on one of two high-precision and medium-precision signals based on the output of the rotary encoder 100, the operation command 440, the load of the motor, and the like. Output to the motor driver. For example, a PWM signal for driving an inverter is generated to drive the motor 500.
  • the motor driver 400 may be realized by, for example, a microcomputer.
  • the batteryless mode compatible unit 430 has a function of controlling the output of the motor driver 400 at the time of restart after the power of the main battery 210 is lost according to the condition initially set via the user interface 300.
  • the user determines in advance which data to be adopted from the encoder output control unit 160 according to the type and specifications of the motor 500, and the memory of the batteryless mode compatible unit 430 via the user interface 300. Record in.
  • FPGA Field Programmable Gate Array
  • This FPGA is composed of an I / O unit, internal wiring, a logic circuit, a clock network, a memory, a multiplier and the like. Programs and the like that form the basis of logic circuits are recorded in an external EEPROM.
  • the internal configuration of the FPGA in other words, the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, the medium / high precision incremental signal generation unit 140, and the encoder output control unit 160 are described in the program. It can be changed flexibly by changing. Therefore, assuming a wide range of initial settings according to the type and application of the motor, batteryless compatible unit 120, medium / high precision absolute signal generation unit 130, medium / high precision incremental signal generation unit 140, and encoder. By enriching the functions of the output control unit 160, it is possible to meet various needs regardless of the type and application of the motor.
  • a batteryless compatible unit 120 a medium / high precision absolute signal generation unit 130, a medium / high precision incremental signal generation unit 140, and an encoder output control unit 160 may be used.
  • ASIC Application Specific Integrated Circuit
  • FIG. 2 is a vertical sectional view showing a configuration example of a main part of a brushed DC motor main body 500 to which the rotary encoder 100 of FIG. 1 is mounted.
  • a circular flat plate magnet 1110 of the MR sensor unit 110 is fixed to one end surface of the rotating shaft 510 of the brushed DC motor 500 via a magnet holder 1115.
  • a driven member is fixed to the other end of the rotating shaft 510.
  • the brushed DC motor 500 includes a field iron core 570 and a field coil wound around the field iron core 570 as a stator fixed inside the motor housing 520.
  • the rotor 560 integrally formed with the rotating shaft 510 is an 8-pole rotor having a rotor yoke and, for example, eight permanent magnets 562 fixed to the outer peripheral portion thereof.
  • the rotating shaft 510 is held by a pair of bearings 530 provided on the motor housing 520 and the end bracket 521.
  • a substrate 170 made of an insulating material on which a rotary encoder 100 is mounted is fixed to an end bracket 521 via a support pin 172.
  • An MR sensor unit 110 including a pair of MR sensors 1122 (1122A, 1122B) is installed on the substrate 170 at a position facing the magnet 1110.
  • Reference numeral 157 is a magnetic disk for magnetic shielding, which is fixed to the end bracket 521.
  • FIG. 3 is a diagram showing a configuration example of a magnetic circuit of the rotary encoder 100.
  • a circular flat plate magnet 1110 of the MR sensor unit 110 is fixed to the end surface of the rotating shaft 510 with the axis OO passing through the axis of the rotating shaft 510 as the center.
  • the flat plate magnet 1110 is a ferrite magnet having a diameter of, for example, 5.0 mm to 10.0 mm, and has a pair of single-magnetized NS magnetic poles.
  • a rare earth magnet such as a neodymium magnet or a samarium-cobalt magnet may be used instead of the ferrite magnet. Since the flat plate magnet becomes expensive, it causes an increase in the price of the rotary encoder, but it has an advantage that more electric power can be secured.
  • the printed circuit board 170 made of an electrically insulating and non-magnetic material is a double-sided substrate, and a pair of MR sensors 1122 are fixed on one surface of the printed circuit board 170 at a position facing the magnet 1110.
  • a large bulk Hausen effect power generation module 150 having a composite magnetic wire 152 and a coil 154 is fixed on the other surface of the printed circuit board 170 and at a position on the back surface of the MR sensor.
  • the composite magnetic wire 152 is arranged around the axis OO and in a direction orthogonal to the axis.
  • the large Barkhausen effect power generation module 150 there is a Weegand module composed of a combination of a Weegand wire and a coil.
  • the pair of MR sensors 1122 (1122A, 1122B) senses the magnetic flux ⁇ a of the flat plate magnet 1110 as the rotation shaft 510 rotates, and outputs a sine wave and a cosine wave.
  • the rotary encoder 100 is completely surrounded by a magnetic shield 1500, that is, a cup-shaped cover 522 made of a magnetic material and a disk 157 of the magnetic material, and is shielded so as not to be affected by an external magnetic field. ing.
  • the pair of MR sensors 1122 are configured to detect the angle of the horizontal magnetic field of the flat plate magnet 1110. Since the large bulkhausen effect power generation module 150 is arranged close to and parallel to the MR sensor, electric power is generated by the magnetic flux ⁇ b as the flat plate magnet 1110 rotates. It is necessary to secure a certain length, for example, about 2.0 mm to 4.0 mm, in consideration of the influence of deformation and vibration of the motor, for the gap between the flat plate magnet 1110 and the pair of MR sensors 1122. .. Further, the thickness dp of the substrate 170 needs to be, for example, about 0.80 mm to 1.00 mm in order to have rigidity to withstand vibration caused by rotation of the motor or the like.
  • the inventor of the present application manufactured a rotary encoder as the rotary encoder 100 shown in FIG. 3, which is a combination of a weegand module and a commercially available inexpensive ferrite magnet. Then, by experiment, by setting the distance between the weegand wire and the surface of the flat plate magnet in the OO direction of the axis to 10 mm or less, a power of 10 V or more for a predetermined period and a power of 15 V under appropriate conditions can be obtained. I confirmed that it was possible. To give a specific example of other experimental conditions, the magnet was made of strontium ferrite, had a diameter of 8.0 mm, had a thickness of 2.5 mm, and had a diameter of 5 mm in the coil of the Weegand module. ..
  • FIG. 4 shows the MR sensor unit 110, the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, the medium / high precision incremental signal generation unit 140, and the encoder output control unit 160 in the rotary encoder 100 of FIG. It is a figure which shows the specific configuration example.
  • the MR sensor unit 110 includes a pair of MR sensors 1122, a temperature sensor 1122C, and a sensor output processing circuit unit 1120.
  • mechanical angle
  • the resistance value in other words, the voltage of the output signal of the sensor fluctuates as a SIN wave and a COS wave, and a pulse signal for one cycle is output for each rotation of the rotation axis.
  • the sensor output processing circuit unit 1120 includes an AD converter 11123, an axis misalignment correction processing unit 1124, a sensor memory 1125 such as a RAM, an inverse tangential calculation processing unit 1126, an absolute signal generation unit 1127, and an incremental A-phase / B-phase signal generation unit 1128. And, the rotation direction determination unit 1129 is provided.
  • the sensor output processing circuit unit 1120 quantizes the analog signals of the SIN wave from the MR sensor 1122A and the COS wave from the MR sensor 1122B, and divides them into 4K pulses / rotation, for example, by intercalation processing of the electric angle. , A phase, B phase digital signal.
  • the MR sensor unit 110 may be realized by a microcomputer.
  • the MR sensor 1122 any element of a magnetoresistive effect element (MR: AMR, GMR, TMR, etc.) including GMR may be adopted.
  • the absolute signal generation unit 1127 generates absolute signal data indicating the absolute value of the rotation and angle (mechanical angle) of the motor based on the linear signal (see FIG. 7) output from the inverse tangent calculation processing unit 1126. It is held in the sensor memory 1125.
  • the incremental A-phase / B-phase signal generation unit 1128 generates incremental A-phase signal and B-phase signal pulse data based on the linear signal output from the inverse tangential arithmetic processing unit 1126, and the sensor. It is held in the memory 1125.
  • a Z signal is also generated in synchronization with the position of the angle 0 (origin) that appears for each rotation of the rotation axis (hereinafter referred to as A-phase, B-phase, and Z-phase signals).
  • the position of the origin (Z0) of the MR sensor 1122 is a specific position on the magnet 1110 fixed to the rotation axis of the motor, for example, a position corresponding to the time when the analog output value of the SIN wave is 0 (FIG. FIG. 7).
  • the rotation direction determination unit 1129 determines the rotation direction of the rotation axis from the phase relationship between the A phase and the B phase. These pieces of information are recorded as time-series data in the MR sensor data recording unit of the non-volatile memory 180.
  • the batteryless compatible unit 120 has a coil output current detection unit 1210, a coil output rectification / voltage control / storage unit 1220, and an angle information processing unit 1230.
  • the angle information processing unit 1230 includes a shaft rotation speed / rotation direction detection unit 1232, an initial setting unit 1234, a multi-rotation signal generation processing unit 1235, a batteryless mode determination unit 1236, and a batteryless mode information generation unit 1238.
  • the coil output current detection unit 1210 has a function of detecting the pulse current (coil pulse) generated in the large Bulkhausen effect power generation module only once every 180 degrees due to the rotation of the magnet 1110, and has the function of detecting the rotation of the shaft.
  • the number / rotation direction detection unit 1232 has a function of generating data on the rotation speed and rotation direction of the shaft, and in response to this, the multi-rotation signal generation processing unit 1235 has a function of generating multi-rotation information of the shaft.
  • the coil output rectification / voltage control / storage unit 1220 has a function of full-wave rectifying the pulse current, controlling the voltage to a predetermined reference voltage Vcc, for example, 5V, and storing the voltage in the sub-battery 220.
  • the batteryless mode determination unit 1236 detects the voltages of the main battery 210 and the sub-battery 220, and if the voltage of the main battery 210 is lower than the reference voltage Vcc, it determines that the mode is batteryless.
  • the batteryless mode information generation unit 1238 receives power from the sub-battery 220 based on the determination of the batteryless mode, generates predetermined information regarding the output of the rotary encoder 100 in the batteryless mode, and generates the non-volatile memory 180. Record in.
  • the medium- and high-precision absolute signal generation unit 130 includes a high-precision absolute signal generation unit 1310 and a medium-precision absolute signal generation unit 1320.
  • the medium- and high-precision incremental signal generation unit 140 includes a high-precision incremental signal generation unit 1410 and a medium-precision incremental signal generation unit 1420.
  • the encoder output control unit 160 includes a batteryless initial setting unit 1610, a power supply state determination unit 1620, a batteryless output generation unit 1630, and a normal output generation unit 1640.
  • the batteryless initial setting unit 1610 has a function of accepting the setting of the output condition of the rotary encoder 100 in the batteryless mode by the user via the user interface 300.
  • the batteryless output generation unit 1630 the output of the incremental value of, for example, 4K pulse / rotation from the MR sensor unit 110 and the large bulkhausen effect power generation module according to the initial setting conditions within the normal range of the power of the sub-battery 220.
  • the output of the 2 pulse / rotation pulse current generated in the above is generated as batteryless mode information and recorded in the non-volatile memory 180.
  • the normal time output generation unit 1640 controls the output of the rotary encoder 100 in the normal time when the battery power supply is normal, and this control is executed according to the conditions initialized by the user.
  • FIG. 5 is a diagram showing an example of input screens 3001 and 3002 for performing initial settings for the rotary encoder 100 and the motor driver 400 by the user interface 300.
  • the user can use the rotary encoder 100 as a batteryless compatible unit 120, a medium / high precision absolute signal generation unit 130, a medium / high precision incremental signal generation unit 140, an encoder output control unit 160, and a motor driver 400.
  • the output condition of the rotary encoder in the normal operation and the information to be recorded, the processing or the condition to be executed in the batteryless mode.
  • the following conditions are selected on the initial setting screen 3001 and set in the rotary encoder 100 and the motor driver 400.
  • What rpm is the precision switching rotation speed Ns of the motor that switches between high-precision signals and medium-precision signals?
  • What kind of accuracy (pulse / rotation) should the absolute signal and incremental signal be output with respect to high-precision signals and medium-precision signals?
  • In the case of an incremental signal the presence / absence of U, V, W phases and the number of pulses thereof.
  • Types and specifications of the motor to be driven are set on the initial setting screen 3002.
  • FIG. 6 is a diagram showing a processing flow of the rotary encoder 100 in the first embodiment.
  • the initial setting conditions regarding the function of the rotary encoder 100 set by the user interface 300 are acquired (S600).
  • S600 the initial setting conditions regarding the function of the rotary encoder 100 set by the user interface 300 are acquired.
  • a 32K pulse / rotation incremental signal and an absolute signal are set as the high-precision signal
  • a 4K pulse / rotation incremental signal and an absolute signal are set as the medium-precision signal.
  • the encoder output control unit 160 acquires the voltage value of the main battery 210 (S602), and determines whether or not the voltage of the main battery is normal.
  • the incremental A and B signals of medium accuracy that is, 4K pulse / rotation are obtained from the MR sensor unit (S606), and the absolute of high accuracy, that is, 32K pulse / rotation.
  • Acquire A, B, Z signals S608.
  • 4K pulse / rotation and 32K pulse / rotation incremental signals are generated from the phase information of the incremental signal and the angle information of the absolute signal and recorded in the non-volatile memory. (S610).
  • 4K pulse / rotation and 32K pulse / rotation absolute signals are generated from the angular information of the incremental signal and the phase information of the absolute signal and recorded in the non-volatile memory ( S612).
  • the relationship between the output of the MR sensor unit 110 and the outputs of the medium / high precision absolute signal generation unit 130 and the medium / high precision incremental signal generation unit 140 in S606 to S612 is described in more detail with reference to FIG. 7.
  • each A-phase / B-phase signal is then converted into a cumulative addition value for each rotation of the rotation axis (every 360 degrees), and an EEPROM address is added to obtain medium accuracy, that is, 4K.
  • a pulse / rotation incremental signal is generated (FIG. 7 (A)).
  • the incremental value of this 4K pulse / rotation is further divided into 32K pulses / rotation, combined with a Z-phase signal based on the origin Z0 of the rotation axis, and further given an EEPROM address. Highly accurate or 32K pulse / rotation absolute signal is generated (FIG. 7B).
  • the medium / high precision incremental signal generation unit 140 includes the phase information of the A and B phases included in the incremental signal of 4K pulse / rotation and the absolute signal of 32K pulse / rotation.
  • An incremental signal with high accuracy that is, a 32K pulse / rotation ((a2) in FIG. 7) is generated based on the angle information obtained.
  • the angle information included in the medium precision that is, the incremental signal of 4K pulse / rotation and the phase information of the A, B, Z phases included in the absolute signal of 32K pulse / rotation are obtained. Based on this, a medium precision or 4K pulse / rotation absolute signal is generated (FIG. 7 (b1)).
  • a medium precision incremental signal ((a1) in FIG. 7) and a high precision incremental signal ((a2) in FIG. 7) are generated, and the medium / high precision incremental signal is generated.
  • a medium-precision absolute signal ((b1) in FIG. 7) and a high-precision absolute signal ((b2) in FIG. 7) are generated.
  • data on the rotation speed and rotation direction of the shaft based on the pulse current is acquired from the batteryless compatible unit 120 and recorded in the non-volatile memory 180 (S614). That is, as shown in FIG. 7 as (C), the batteryless compatible unit 120 also generates a 2-pulse / rotation signal based on the output of the large Barkhausen effect power generation module 150.
  • the batteryless mode is started (S620).
  • the initially set predetermined measured rotation speed Cns is acquired (S622).
  • the incremental signal and the absolute signal are acquired from the MR sensor unit 110 (S624).
  • a 4K pulse / rotation incremental signal and an absolute signal are generated and recorded in the non-volatile memory (S626).
  • the rotation stop of the shaft 510 is determined based on the presence or absence of the output current of the coil (S628).
  • the measured rotation speed Cn of the rotation speed is acquired, and this Cn is compared with the predetermined measured rotation speed Cns (S632).
  • FIG. 8 is a diagram showing a configuration example of a drive circuit of the brushed DC servomotor 500 in the first embodiment.
  • the drive circuit of the DC motor includes a motor driver 400, a PWM drive circuit 450, and an H-bridge circuit in which four switching elements SW1 to SW4 composed of transistors are assembled in an H shape.
  • One end of the first switching element SW1 is connected to one brush 565A of the DC motor and the other end is connected to the DC power supply (Vcc), and one end of the second switching element SW2 is connected to the other brush 565B of the DC motor. It is connected and the other end is connected to a DC power supply (Vcc).
  • the control accuracy switching prediction / control unit 410 of the motor driver 400 includes a switching time prediction unit 412, a switching preparation control unit 414, and a switching execution unit 416.
  • the motor drive signal generation unit 420 includes a medium-precision drive signal generation unit 422 that generates an incremental motor control signal for high speed, and a high-precision drive signal generation unit 424 that generates an incremental motor control signal for low speed.
  • a PWM signal is generated based on the incremental motor control signal for low speed or high speed generated by the motor drive signal generation unit 420, and this PWM signal is input to the bases of the switching elements SW1 to SW4.
  • the rotation of the motor 500 is controlled.
  • the rotation speed of the brushed DC motor can be arbitrarily controlled by the duty ratio during the ON period of the PWM signal.
  • FIG. 9 is a diagram showing a processing flow of the driver 400 of the brushed DC motor 500 in the first embodiment.
  • the operation command data is acquired (S902).
  • the precision switching rotation speed Ns is set to ⁇ 40 rpm.
  • the batteryless mode information is acquired from the non-volatile memory (S904) and the motor is rotating in the batteryless mode (YES in S906)
  • the data of the motor rotation in the batteryless mode is acquired (S908) and the operation is performed.
  • the initial data of the command is corrected by the batteryless mode information (S909).
  • the high precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated and the 32K pulse / rotation is high.
  • a precision incremental drive signal is generated. That is, since the brushed DC motor 500 is driven by the incremental signal, the high-precision drive signal generation unit 424 acquires the high-precision incremental signal from the rotary encoder 100 (S910). Then, based on the operation command and the high-precision incremental signal generated by the encoder, a 32K pulse / rotation motor drive signal is generated, output to the PWM drive circuit 450, and the motor is controlled (S912).
  • the switching time prediction unit 412 acquires the motor rotation speed N (S914), and further predicts the switching time when the motor rotation speed exceeds the accuracy switching rotation speed Ns from the operation command and the motor rotation speed N. (S916). If the switching time is not near (NO in S918), it is determined whether or not the operation is finished, and if it is finished (YES in S920), the operation is stopped (S922). When it is determined that the switching time is near (YES in S918), for example, when the difference between the motor rotation speed and the accuracy switching rotation speed Ns is within 20 rpm and the command is such that the rotation speed increases toward the switching time.
  • the switching preparation control unit 414 enters the "control switching preparation” mode (S924), and in addition to the high-precision incremental signal generation unit 1410, the medium-precision incremental signal generation unit 1420 also starts operation, and the medium-precision 4K pulse / rotation Motor drive signal is generated.
  • the switching execution unit 416 outputs a medium-precision motor drive signal to the PWM drive circuit 450 to control the motor and stops the output of the high-precision motor drive signal. (S928).
  • the rotation speed of the motor becomes higher, the "preparation for switching control" mode is canceled, and the generation of the high-precision motor drive signal in the high-precision incremental signal generation unit 1410 is stopped.
  • the switching preparation control unit 414 and the switching execution unit 416 also perform control via the "control switching preparation" mode for switching from the medium-precision motor drive signal to the high-precision motor drive signal. That is, when the rotation speed of the motor becomes the precision switching rotation speed Ns or less, a high-precision motor drive signal is output to the PWM drive circuit 450 to control the motor, and the output of the medium-precision motor drive signal is stopped ( S930-S938-S912)
  • FIG. 10 is a diagram showing a specific example of accuracy switching of the motor drive signal in the first embodiment.
  • the switching preparation control unit 414 is in the “control switching preparation” mode, and the motor drive signal generation unit 420 generates a medium-precision drive signal.
  • Both the unit 422 and the high-precision drive signal generation unit 424 are activated to generate both a high-precision incremental drive signal of 32K pulse / rotation and a medium-precision incremental drive signal of 4K pulse / rotation.
  • the switching execution unit 416 When the motor rotation speed N is within ⁇ 40 rpm, the switching execution unit 416 outputs a high-precision PWM signal to the PWM drive circuit 450, and when the motor rotation speed N is other than ⁇ 40 rpm, the switching execution unit 416 Therefore, a medium-precision PWM signal is output to the PWM drive circuit 450.
  • the motor is controlled by the high-precision incremental drive signal in the low-speed rotation range, and the motor is controlled by the medium-precision incremental drive signal in the high-speed range. It is possible to solve the problem that the motor does not follow the control signal at high speed rotation while performing accuracy. Since the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit. , A small and inexpensive rotary encoder, and a servo control device using the same can be provided.
  • the rotary encoder and the motor driver have the initial setting function, the rotary is compact and versatile enough to meet various needs regardless of the type and application of the motor.
  • An encoder and a servo control device using the encoder can be provided.
  • FIG. 11 is a diagram showing a configuration example of the brushless DC servomotor according to the second embodiment.
  • the brushless DC motor 500 includes a field iron core 541 and a field coil 542 wound around the field iron core 541 as a stator fixed inside the motor housing 520.
  • the rotor 543 integrally formed with the rotating shaft 510 is an 8-pole rotor having a rotor yoke and, for example, eight permanent magnets fixed to the outer peripheral portion thereof.
  • the rotating shaft 510 is held by a pair of bearings 530 provided in the motor housing 520.
  • This brushless DC servomotor also includes a rotary encoder 100, a power supply 200, a user interface 300, and a motor driver 400 having the same configurations as those described in the first embodiment.
  • the brushless DC motor 500 has U1, U2, U3 field coils in series, V1, V2, V3 field coils in series, W1, W2, as a group of field coils of each phase constituting the stator.
  • the W3 coils are connected in series, respectively. One end of each of these three field coils is connected at a neutral point.
  • the motor drive signal generation unit 420 of the motor driver 400 has the operation command 440, the control signal generated based on the motor control signal (iu, iv, iw), and the A phase from the rotary encoder 100.
  • the inverter is driven based on the serial / parallel signals related to the B phase and the Z phase, and the operation of the brushless DC motor 500, for example, the sinusoidal drive is continued.
  • FIG. 12 is a diagram showing a processing flow of the driver 400 of the brushless DC motor 500 in the second embodiment.
  • the operation command data is acquired (S1202). Again, it is assumed that the precision switching rotation speed Ns is set to ⁇ 40 rpm.
  • batteryless mode information is acquired from the non-volatile memory, and necessary processing is performed (S1204 to S1209).
  • the high precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated and the 32K pulse / rotation is high. Precision Absolute drive signal is generated.
  • the high-precision drive signal generation unit 424 acquires the high-precision absolute signal from the rotary encoder 100 (S1210). Then, based on the operation command and the high-precision absolute signal generated by the encoder, a 32K pulse / rotation motor drive signal is generated, output to the PWM drive circuit, and the motor is controlled (S1212). When it is determined that the switching time is near (YES in S1218), the switching preparation control unit 414 enters the "control switching preparation" mode (S1224), and in addition to the high-precision absolute signal generation unit 1310, the medium-precision absolute signal generation The unit 1320 also starts operation.
  • the switching execution unit 416 When the switching time is reached (YES in S1226), the switching execution unit 416 outputs a medium-precision absolute drive signal to the motor driver to control the motor, and when the motor rotation speed becomes higher, " The "preparation for switching control” mode is canceled, and the generation of the high-precision motor drive signal in the high-precision absolute signal generation unit 1310 is stopped. Similarly, for switching from a medium-precision motor drive signal to a high-precision motor drive signal, control is performed via a "control switching preparation" mode (S1230 to S1238 to S1212).
  • FIG. 13 is a diagram showing a specific example of accuracy switching of the motor drive signal in the second embodiment.
  • the brushless DC motor is started with a high precision absolute drive signal of 32K pulse / rotation.
  • the switching preparation control unit 414 enters the "control switching preparation" mode, and the motor drive signal generation unit 420 and the medium precision drive signal generation unit 422 Both of the high-precision drive signal generation unit 424 are activated, and both a high-precision absolute drive signal of 32K pulse / rotation and a medium-precision absolute drive signal of 4K pulse / rotation are generated.
  • the PWM signal based on the medium-precision drive signal is output to the PWM drive circuit 450.
  • FIG. 14 is a diagram showing an example of the relationship between the output signals of the power supply 200 and the rotary encoder 100 and the drive signal of the brushless DC motor 500 when a power failure occurs during the operation of the brushless DC motor.
  • the encoder output is based on the 32K pulse / rotation A, B, Z absolute signals output from the MR sensor unit 110 and these signals.
  • the generated "(b1) motor drive signal" that is, a medium-precision and high-precision signal including each signal of Z phase, U phase, V phase, and W phase.
  • the rising edge of the first U-phase signal and the rising edge of the first A-phase signal are synchronized with the magnet origin position (Z 0 ), and further, every rotation of the rotating shaft 13 360 ° (mechanical angle).
  • a Z-phase signal is set in.
  • the output (b1) of the multi-rotation absolute signal is stopped, as shown in (a) power supply voltage of FIG.
  • the mode shifts to the batteryless mode, and based on the initial setting conditions, the number of pulses and the rotation direction from the coil output, or the absolute / absolute signal of the MR sensor unit. That signal is output as a medium precision signal.
  • the function of the pulse count / MR sensor is stopped.
  • the batteryless mode information when this power failure occurs is recorded in the non-volatile memory and acquired at the next operation start degree.
  • the motor is controlled by the high-precision drive signal in the low-speed range, and the motor is controlled by the medium-precision drive signal in the high-speed range. Therefore, high-precision position accuracy is performed in the low-speed rotation range. At the same time, it is possible to solve the problem that the motor does not follow the control signal during high-speed rotation. Since the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit.
  • a small and inexpensive rotary encoder, and a servo control device using the same can be provided. Further, since the rotary encoder and the motor driver have the initial setting function, the rotary is compact and versatile enough to meet various needs regardless of the type and application of the motor. An encoder and a servo control device using the encoder can be provided.
  • FIG. 15 is a diagram showing a configuration example of a stepping servomotor according to a third embodiment of the present invention.
  • This stepping servomotor includes a rotary encoder 100, a power supply 200, a user interface 300, and a motor driver 400 having the same configurations as those described in the first embodiment.
  • the motor 500 is a two-phase PM type stepping motor, and includes a rotor 580 integrated with a rotary shaft 510 and a stator core 592 housed in a motor housing 520.
  • the rotating shaft 510 is held by a pair of bearings 530 provided on the left and right end brackets 521 and 524.
  • the rotor 580 includes a rotor magnet 582.
  • the stator cores 592 are arranged at equal intervals in the circumferential direction and have pole teeth 595 facing the rotor 580, the first group salient pole (A phase salient pole) 594A and the second group salient pole (B phase). 16 salient poles consisting of 594B salient poles, a first phase stator coil (A phase stator coil) 596A and a second phase stator coil (for B phase) wound around these salient poles. It is equipped with a stator coil) 596B. Similar to the rotary encoder 100 of the first embodiment, the rotary encoder 100 includes one MR sensor unit 110, a batteryless compatible unit 120, a medium / high precision absolute signal generation unit 130, and a medium / high precision incremental signal generation unit 140.
  • It includes an encoder output control unit 160, a non-volatile memory 180, and a serial / parallel signal transmission / reception unit 190.
  • One flat plate magnet 1110 is fixed to one end of the rotating shaft 510.
  • a pair of MR sensors 1122A and 1122B and one large Barkhausen effect power generation module 150 are fixed at opposite positions on the substrate 170 fixed to the end bracket 521.
  • the high-precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated, and a high-precision incremental drive signal of 32K pulse / rotation is generated. That is, the stepping servomotor is driven by an incremental signal, like the brushed DC motor of the first embodiment. Therefore, the high-precision drive signal generation unit 424 acquires a high-precision incremental signal from the rotary encoder 100.
  • the motor drive signal generation unit of the driver 400 determines the motor control signal, that is, the phase count information of the drive waveform applied to the A-phase stator coil 596A and the B-phase stator coil 596B, and converts the phase count information into the PWM drive circuit. Send the corresponding PWM command value.
  • the PWM drive circuit applies a voltage to the A-phase stator coil 596A and the B-phase stator coil 596B of the stepping motor according to the PWM command value, whereby the rotor magnet 582 rotates.
  • the motor driver 400 of the stepping motor starts driving with an incremental high-precision drive signal of 32K pulse / rotation as described with reference to FIG. 10 with respect to the first embodiment. Then, when the rotation speed N of the motor is in the vicinity of the precision switching rotation speed Ns, the switching preparation control unit 414 is in the "control switching preparation" mode. Therefore, both the medium-precision drive signal generation unit 422 and the high-precision drive signal generation unit 424 of the motor drive signal generation unit 420 are activated, and the high-precision incremental drive signal of 32K pulse / rotation and the medium-precision incremental drive of 4K pulse / rotation are activated. Both signals are generated.
  • the switching execution unit 416 When the motor rotation speed N is within ⁇ 40 rpm, the switching execution unit 416 outputs a high-precision PWM signal to the PWM drive circuit, and when the motor rotation speed N is other than ⁇ 40 rpm, the switching execution unit 416 outputs the high-precision PWM signal. , Medium precision PWM signal is output to the PWM drive circuit.
  • the stepping motor is controlled by the high-precision drive signal in the low-speed range and the stepping motor is controlled by the medium-precision drive signal in the high-speed range, there is a problem that the stepping motor does not follow the control signal at the time of high-speed rotation. Can be resolved.
  • the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit. , Small and inexpensive rotary encoders, and stepping servomotors using the same can be provided.
  • the rotary encoder and the motor driver have the initial setting function, they are compact and versatile enough to meet various needs regardless of the type and application of the motor.
  • a rotary encoder and a stepping servomotor using the rotary encoder can be provided.
  • the present invention can be applied to various motors other than the types of motors described in the above examples.
  • it can be widely applied to various motors such as synchronous motors and induction motors. It can also be applied to a servo control device using these motors.
  • Servo control device 100 Rotary encoder 110 MR sensor unit 1110 Flat plate magnet 1122 MR sensor 120 Batteryless compatible unit 130 Medium / high precision absolute signal generation unit 1310 High precision absolute signal generation unit 1320 Medium precision absolute signal generation unit 140 Medium / high Precision incremental signal generation unit 1410 High precision incremental signal generation unit 1420 Medium precision incremental signal generation unit 150 Large bulk Hausen effect power generation module 152 Composite magnetic wire 154 Coil 157 Magnetic disk 160 Encoder output control unit 170 Board 180 Non-volatile memory 200 Power supply 210 Main battery 220 Sub battery 300 User interface 400 Motor driver 410 Control accuracy switching prediction / control unit 420 Motor drive signal generation unit 430 Batteryless mode compatible unit 440 Operation command 500 Motor body 510 Motor rotary shaft 520 Motor housing 530 Bearing

Abstract

The present invention solves a problem that, when high-accuracy position control is performed in a low-speed rotation range, a motor does not follow a control signal during a high-speed rotation. This rotary encoder is provided with an MR sensor unit. This MR sensor unit is provided with a function of outputting one set of signals comprising an incremental signal and an absolute signal having different accuracies regarding the rotation/angle of a rotary axis. The rotary encoder is provided with a function of generating high-accuracy and intermediate-accuracy absolute signals and high-accuracy and intermediate-accuracy incremental signals on the basis of the one set of signals and outputting these signals as a motor control absolute signal and a motor control incremental signal.

Description

ロータリーエンコーダ及びそれを用いた制御精度切替型サーボ制御装置Rotary encoder and control accuracy switching servo control device using it
 本発明は、モータの回転・角度情報をデジタル信号として外部に出力するロータリーエンコーダ、及びそれを用いたサーボ制御装置に係り、特に、モータの回転速度に応じてモータの制御信号の精度を切替えるのに適した情報を生成するロータリーエンコーダ、及びそれを用いたサーボ制御装置に関するものである。 The present invention relates to a rotary encoder that outputs motor rotation / angle information to the outside as a digital signal, and a servo control device using the rotary encoder, and in particular, switches the accuracy of the motor control signal according to the rotation speed of the motor. It relates to a rotary encoder that generates information suitable for the above-mentioned, and a servo control device using the rotary encoder.
 特許文献1には、1個のMRセンサユニット及びブラシレスDCサーボモータを用い、ロータリーエンコーダの出力信号に基づいてモータを完全閉ループで高精度に制御できる、サーボ制御装置が開示されている。このようなサーボ制御装置において、高速回転時にはモータが高精度の制御信号に追従しなくなるという課題がある。 Patent Document 1 discloses a servo control device that can control a motor with high accuracy in a completely closed loop based on an output signal of a rotary encoder by using one MR sensor unit and a brushless DC servo motor. In such a servo control device, there is a problem that the motor does not follow the high-precision control signal at the time of high-speed rotation.
 特許文献2には、レゾルバを連結したサーボシステムにおいて、モータ速度を基準として、RDコンバータの分解能を切り替え、モータ速度が一定以上になれば分解能を低く設定し、応答性を高め、モータ速度が一定以下になれば、分解能を高く設定し、位置決め精度を向上させる、発明が開示されている。
 特許文献3には、ロータリーエンコーダにおいて、検出モードを、低速モードと高速モードに切り替える検出装置が開示されている。
In Patent Document 2, in a servo system in which a resolver is connected, the resolution of the RD converter is switched based on the motor speed, the resolution is set low when the motor speed exceeds a certain level, the responsiveness is improved, and the motor speed is constant. If the following is true, the invention is disclosed in which the resolution is set high and the positioning accuracy is improved.
Patent Document 3 discloses a detection device that switches a detection mode between a low-speed mode and a high-speed mode in a rotary encoder.
 一方、ロータリーエンコーダでは、バッテリ電源が失われた時の対策も要求される。
 特許文献4には、大バルクハウゼンジャンプを利用した電力供給部を有する光学式若しくは磁気式のエンコーダ装置が開示されている。
On the other hand, rotary encoders are also required to take measures when battery power is lost.
Patent Document 4 discloses an optical or magnetic encoder device having a power supply unit using a large Barkhausen jump.
特許第6291149号公報Japanese Patent No. 6291149 特表2010-63218号公報Special Table 2010-63218 Gazette 特開2017-227457号公報Japanese Unexamined Patent Publication No. 2017-227457 特開2013-156255号公報Japanese Unexamined Patent Publication No. 2013-156255
 サーボ制御装置使用されるロータリーエンコーダには、モータの種類や用途に応じた種々の方式のものが知られている。
 特許文献2に記載のレゾルバやRDコンバータは、MRセンサを採用したロータリーエンコーダに比べて、構造が複雑であり、高価である。
 特許文献3に記載のロータリーエンコーダは、消費電力を削減するためにセンサ素子を間欠駆動するものであり、ロボット等のサーボ制御装置には適さない。
 特許文献4に記載の磁気センサは、外部電力の供給が失われた時に、測定値の保存のための電気エルネキーを供給できる。しかし、センサは、垂直要素(コンポーネント)を持つ4個のホール素子を対象としており、ホール素子と大バルクハウゼン効果発電モジュールの間に、全てのホール素子を完全に覆う偏向体が配置されている。そのため、複合磁性ワイヤは永久磁石軸から離れた位置にあり、軸方向の長さが長い大型の磁気センサとなっている。
Servo control device As the rotary encoder used, various types are known depending on the type and application of the motor.
The resolver and RD converter described in Patent Document 2 have a complicated structure and are expensive as compared with a rotary encoder using an MR sensor.
The rotary encoder described in Patent Document 3 intermittently drives a sensor element in order to reduce power consumption, and is not suitable for a servo control device such as a robot.
The magnetic sensor described in Patent Document 4 can supply an electric erne key for storing measured values when the supply of external power is lost. However, the sensor targets four Hall elements with vertical elements (components), and a deflector that completely covers all Hall elements is placed between the Hall element and the large Barkhausen effect power generation module. .. Therefore, the composite magnetic wire is located at a position away from the permanent magnet axis, and is a large magnetic sensor having a long axial length.
 本発明の1つの課題は、低速回転域では高精度の位置精度を行いながら高速回転時にモータが制御信号に追従しなくなるという課題を解消する機能を備えつつ、モータの種類や用途の如何に拘わらず種々のニーズに応えられる汎用性に富んだ、ロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することにある。
 本発明の他の課題は、高速回転時にモータが制御信号に追従しなくなるという課題を解消する機能を備えつつ、小型で安価な、ロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することにある。
One of the problems of the present invention is to have a function of solving the problem that the motor does not follow the control signal at high speed rotation while performing high precision position accuracy in the low speed rotation range, regardless of the type and application of the motor. It is an object of the present invention to provide a rotary encoder having abundant versatility to meet various needs, and a servo control device using the rotary encoder.
Another object of the present invention is to provide a small and inexpensive rotary encoder and a servo control device using the rotary encoder while having a function of solving the problem that the motor does not follow the control signal at high speed rotation. be.
 本発明の1つの態様によれば、ロータリーエンコーダは、
 モータの回転軸の回転・角度の情報を出力する1個のMRセンサユニットを備え、モータの回転・角度情報をデジタル信号として外部に出力するロータリーエンコーダであって、
 前記MRセンサユニットは、ホルダーを介して前記回転軸に固定される1個の平板状磁石と、前記モータに固定される基板の一方の面側でかつ前記平板状磁石に対向する位置に設けられた1対のMRセンサとを備え、
 前記MRセンサユニットは、前記回転軸の回転・角度に関して、インクリメンタル信号とアブソリュート信号を含む1組の信号を出力する機能を備えており、前記1組の信号における前記インクリメンタル信号と前記アブソリュート信号は、前記回転軸の回転・角度に関する精度が互いに異なっており、一方は中精度、他方は高精度の信号であり、
 前記ロータリーエンコーダは、中精度及び高精度のアブソリュート信号を生成する中・高精度アブソリュート信号生成ユニットと、中精度及び高精度のインクリメンタル信号を生成する中・高精度インクリメンタル信号生成ユニットとを備え、
 前記中・高精度アブソリュート信号生成ユニットは、前記1組の信号に基づき、中精度のアブソリュート信号及び高精度のアブソリュート信号を生成する機能を有し、
 前記中・高精度インクリメンタル信号生成ユニットは、前記1組の信号に基づき、中精度のインクリメンタル信号及び高精度のインクリメンタル信号を生成する機能を有していることを特徴とする。
According to one aspect of the invention, the rotary encoder
It is a rotary encoder equipped with one MR sensor unit that outputs the rotation / angle information of the rotation axis of the motor and outputs the rotation / angle information of the motor to the outside as a digital signal.
The MR sensor unit is provided at a position on one surface side of a substrate fixed to the motor and facing the flat plate magnet, and one flat plate magnet fixed to the rotating shaft via a holder. Equipped with a pair of MR sensors
The MR sensor unit has a function of outputting a set of signals including an incremental signal and an absolute signal with respect to the rotation / angle of the rotating shaft, and the incremental signal and the absolute signal in the set of signals are The accuracy of rotation and angle of the rotation axis is different from each other, one is a medium accuracy signal and the other is a high accuracy signal.
The rotary encoder includes a medium- and high-precision absolute signal generation unit that generates medium-precision and high-precision absolute signals, and a medium- and high-precision incremental signal generation unit that generates medium-precision and high-precision incremental signals.
The medium / high precision absolute signal generation unit has a function of generating a medium precision absolute signal and a high precision absolute signal based on the set of signals.
The medium-high-precision incremental signal generation unit is characterized by having a function of generating a medium-precision incremental signal and a high-precision incremental signal based on the set of signals.
 本発明によれば、低速回転域では高精度の位置精度を行いながら高速回転時にモータが制御信号に追従しなくなるという課題を解消する機能を備えつつ、モータの種類や用途の如何に拘わらず種々のニーズに応えられる汎用性に富んだ、ロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することができる。 According to the present invention, the present invention has a function of solving the problem that the motor does not follow the control signal at the time of high-speed rotation while performing high-precision position accuracy in the low-speed rotation range, and is various regardless of the type and application of the motor. It is possible to provide a rotary encoder and a servo control device using the rotary encoder, which are rich in versatility and can meet the needs of the above.
 本発明の他の態様によれば、ロータリーエンコーダの出力に基づいて、モータ本体の回転を制御するモータドライバを備え、初期設定条件に従って、前記いずれか1組のモータ制御用の信号によりモータを駆動するサーボ制御装置であって、前記モータドライバは、前記ロータリーエンコーダが装着されるモータの種類に応じて、前記モータ制御用の信号としてアブソリュート信号とインクリメンタル信号のいずれか一方の信号をエンコーダ出力として取得する機能を有しており、前記モータドライバは、制御精度切替予測・制御ユニット及びモータ駆動信号生成ユニットを備えており、前記制御精度切替予測・制御ユニットは、前記取得した前記モータ制御用のインクリメンタル信号若しくは前記モータ制御用のアブソリュート信号における、前記高精度のモータ制御用信号と前記中精度のモータ制御用信号を切り替えるタイミングを予測し、前記モータ駆動信号生成ユニットは、運転指令に基づき、前記高精度のモータ制御用信号若しくは前記中精度のモータ制御用信号に基づくモータ駆動信号を生成することを特徴とする。 According to another aspect of the present invention, a motor driver that controls the rotation of the motor body based on the output of the rotary encoder is provided, and the motor is driven by any one set of motor control signals according to the initial setting conditions. The motor driver acquires one of an absolute signal and an incremental signal as an encoder output as a signal for controlling the motor according to the type of the motor to which the rotary encoder is mounted. The motor driver includes a control accuracy switching prediction / control unit and a motor drive signal generation unit, and the control accuracy switching prediction / control unit is the acquired incremental for motor control. The timing of switching between the high-precision motor control signal and the medium-precision motor control signal in the signal or the absolute signal for motor control is predicted, and the motor drive signal generation unit is based on the operation command. It is characterized by generating a motor drive signal based on a high-precision motor control signal or the medium-precision motor control signal.
 この態様によれば、本発明は、小型で安価な平板状磁石を有する汎用型の1個のMRセンサユニットを採用しているにも拘わらず、このMRセンサユニットの出力に基づき、中精度及び高精度の、アブソリュート駆動信号若しくはインクリメンタル駆動信号を生成できるため、小型で、安価なロータリーエンコーダを用いたサーボ制御装置を提供することができる。 According to this aspect, although the present invention employs one general-purpose MR sensor unit having a small and inexpensive flat plate magnet, it is based on the output of this MR sensor unit and has medium accuracy and medium accuracy. Since it is possible to generate a highly accurate absolute drive signal or incremental drive signal, it is possible to provide a servo control device using a small and inexpensive rotary encoder.
本発明の第1の実施例に係る、制御精度切替型サーボ制御装置の構成例を示す図である。It is a figure which shows the structural example of the control accuracy switching type servo control apparatus which concerns on 1st Embodiment of this invention. 図1のサーボ制御装置が装着される、ブラシ付DCモータの主要部の構成例を示す縦断面図である。It is a vertical sectional view which shows the structural example of the main part of the DC motor with a brush to which the servo control device of FIG. 1 is attached. 第1の実施例のサーボ制御装置における、ロータリーエンコーダの磁気回路の構成例を示す図である。It is a figure which shows the structural example of the magnetic circuit of the rotary encoder in the servo control device of 1st Example. 第1の実施例における、ロータリーエンコーダの構成例を示す図である。It is a figure which shows the configuration example of the rotary encoder in 1st Example. 第1の実施例における、ユーザインタフェースによる初期設定の入力画面の一例を示す図である。It is a figure which shows an example of the input screen of the initial setting by a user interface in 1st Example. 第1の実施例における、ロータリーエンコーダの処理のフローを示す図である。It is a figure which shows the flow of the process of a rotary encoder in 1st Example. 第1の実施例における、MRセンサの出力とロータリーエンコーダの出力との関係の一例を示す図である。It is a figure which shows an example of the relationship between the output of an MR sensor and the output of a rotary encoder in the first embodiment. 第1の実施例における、ブラシ付きDCモータの制御回路及び駆動回路の構成例を示す図である。It is a figure which shows the structural example of the control circuit and the drive circuit of the brushed DC motor in 1st Example. 第1の実施例における、ブラシ付きDCモータの制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the brushed DC motor in 1st Example. 第1の実施例における、モータ駆動信号の制御精度の切替の具体的な例を示す図である。It is a figure which shows the specific example of the switching of the control accuracy of a motor drive signal in 1st Embodiment. 本発明の第2の実施例に係る、ブラシレスDCサーボモータの構成例を示す図である。It is a figure which shows the structural example of the brushless DC servomotor which concerns on the 2nd Embodiment of this invention. 第2の実施例における、ブラシレスDCモータの制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the brushless DC motor in the 2nd Example. 第2の実施例における、モータ駆動信号の制御精度の切替の具体的な例を示す図である。It is a figure which shows the specific example of the switching of the control accuracy of a motor drive signal in the 2nd Embodiment. 図12の処理フローにおける、主バッテリの電源が正常な状態から停電した場合の、電源とロータリーエンコーダの出力信号、及び、ブラシレスDCモータの駆動信号の関係の一例を示す図である。FIG. 12 is a diagram showing an example of the relationship between the power supply, the output signal of the rotary encoder, and the drive signal of the brushless DC motor when the power supply of the main battery is cut off from the normal state in the processing flow of FIG. 本発明の第3の実施例に係る、ステッピングサーボモータの構成例を示す図である。It is a figure which shows the structural example of the stepping servo motor which concerns on 3rd Embodiment of this invention.
 本発明の第1の実施例に係るサーボ制御装置を、図1~図10を参照しながら説明する。本発明は種々のタイプのモータに適用可能であるが、以下では、本発明をブラシ付きDCモータに適用した例について、説明する。
 図1は、本発明の第1の実施例に係る制御精度切替型サーボ制御装置10の構成例を示す図である。
 このサーボ制御装置10は、ロータリーエンコーダ100、電源200、モータドライバ400、及び、モータ本体500で構成されている。ロータリーエンコーダ100は、モータ本体500の一部に装着され、モータ本体500の回転・角度情報をデジタル信号として出力する。
 ロータリーエンコーダ100は、モータ本体500の回転軸の回転・角度の情報を出力する1個のMRセンサユニット110、主バッテリ210等に電力を供給するバッテリレス対応ユニット120、中精度及び高精度のアブソリュート信号を生成する中・高精度アブソリュート信号生成ユニット130、中精度及び高精度のインクリメンタル信号を生成する中・高精度インクリメンタル信号生成ユニット140、予め設定された条件に従ってエンコーダの出力を制御するエンコーダ出力制御ユニット160、不揮発性メモリ180、及び、シリアル/パラレル信号送受信ユニット190等を備えている。
The servo control device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 10. Although the present invention is applicable to various types of motors, an example of applying the present invention to a brushed DC motor will be described below.
FIG. 1 is a diagram showing a configuration example of a control accuracy switching type servo control device 10 according to the first embodiment of the present invention.
The servo control device 10 includes a rotary encoder 100, a power supply 200, a motor driver 400, and a motor body 500. The rotary encoder 100 is attached to a part of the motor body 500, and outputs rotation / angle information of the motor body 500 as a digital signal.
The rotary encoder 100 includes one MR sensor unit 110 that outputs information on the rotation and angle of the rotation shaft of the motor body 500, a batteryless compatible unit 120 that supplies power to the main battery 210, and the like, and a medium-precision and high-precision absolute. Medium- and high-precision absolute signal generation unit 130 that generates signals, medium- and high-precision incremental signal generation unit 140 that generates medium- and high-precision incremental signals, and encoder output control that controls encoder output according to preset conditions. It includes a unit 160, a non-volatile memory 180, a serial / parallel signal transmission / reception unit 190, and the like.
 バッテリレス対応ユニット120は、主バッテリの電源が失われた時に、電源200として機能し、ロータリーエンコーダ100に一時的に電力を供給すると共に、ユーザインタフェース300を介して初期設定された条件に従って、モータ本体500の回転に関する情報を生成し不揮発性メモリ180に記録する機能を有する。
 MRセンサユニット110は、その基本的な構成として、モータの回転軸の回転・角度に関して中精度(例えば、4Kパルス/回転)のインクリメンタル信号と高精度(例えば、32Kパルス/回転)のアブソリュート信号の2系統の信号を、アブソリュート/インクリメンタル信号として出力する機能を備えている。
 中・高精度アブソリュート信号生成ユニット130は、MRセンサユニット110の1組のアブソリュート/インクリメンタル信号に基づき、1組の中精度及び高精度のアブソリュート信号を生成する機能を有する。
 中・高精度インクリメンタル信号生成ユニット140は、MRセンサユニット110の1組のアブソリュート/インクリメンタル信号に基づき、1組の中精度及び高精度のインクリメンタル信号を生成する機能を有する。
 なお、MRセンサユニット110の出力信号の組合わせは、上記の例に限定されるものではなく、サーボ制御装置の用途に応じて、適宜、設定すればよい。例えば、アブソリュート/インクリメンタル信号を、精度の異なる高精度、中精度、低精度の3系統の信号としても良い。また、用途によっては、アブソリュート/インクリメンタル信号に、例えば、32Mパルス/回転程度の超高精度の信号が含まれていても良い。
 また、本発明において、高精度と中精度、あるいは、高精度、中精度、低精度等の各精度の関係は、相対的なものであり、ロータリーエンコーダの装着対象となる各種のモータを、低速回転域と高速回転域、あるいは、低速回転域、中速回転域、高速回転域において、各々、最適に制御できるものであればよい。
The batteryless compatible unit 120 functions as a power source 200 when the power of the main battery is lost, temporarily supplies power to the rotary encoder 100, and uses a motor according to the conditions initially set via the user interface 300. It has a function of generating information about the rotation of the main body 500 and recording it in the non-volatile memory 180.
The MR sensor unit 110 has, as its basic configuration, an incremental signal with medium accuracy (for example, 4K pulse / rotation) and an absolute signal with high accuracy (for example, 32K pulse / rotation) regarding the rotation / angle of the rotation axis of the motor. It has a function to output two systems of signals as absolute / incremental signals.
The medium- and high-precision absolute signal generation unit 130 has a function of generating a set of medium-precision and high-precision absolute signals based on a set of absolute / incremental signals of the MR sensor unit 110.
The medium- and high-precision incremental signal generation unit 140 has a function of generating a set of medium-precision and high-precision incremental signals based on a set of absolute / incremental signals of the MR sensor unit 110.
The combination of output signals of the MR sensor unit 110 is not limited to the above example, and may be appropriately set according to the application of the servo control device. For example, the absolute / incremental signal may be a signal of three systems of high accuracy, medium accuracy, and low accuracy having different accuracy. Further, depending on the application, the absolute / incremental signal may include, for example, an ultra-high precision signal of about 32 M pulse / rotation.
Further, in the present invention, the relationship between high precision and medium precision, or each precision such as high precision, medium precision, and low precision is relative, and various motors to which the rotary encoder is mounted are mounted at low speed. Anything that can be optimally controlled in the rotation range and the high-speed rotation range, or in the low-speed rotation range, the medium-speed rotation range, and the high-speed rotation range may be used.
 エンコーダ出力制御ユニット160は、ユーザインタフェース300により設定された初期設定条件に従って、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、及び中・高精度インクリメンタル信号生成ユニット140の出力情報を生成し不揮発性メモリ180に記録すると共に、予め設定された条件に従って、これらの信号をモータドライバ400へ出力する機能を備えている。
 ユーザインタフェース300は、スマートフォンやタブレット端末に、所定の機能を備えたプログラムを実行する、専用のアプリケーションをインストールすることで、実現できる。ユーザインタフェース300とロータリーエンコーダ100やモータドライバ400は、通信ネットワークを介して相互に通信可能に構成されている。
The encoder output control unit 160 generates output information of the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, and the medium / high precision incremental signal generation unit 140 according to the initial setting conditions set by the user interface 300. It has a function of recording in the non-volatile memory 180 and outputting these signals to the motor driver 400 according to preset conditions.
The user interface 300 can be realized by installing a dedicated application that executes a program having a predetermined function on a smartphone or a tablet terminal. The user interface 300, the rotary encoder 100, and the motor driver 400 are configured to be able to communicate with each other via a communication network.
 電源200は、ロータリーエンコーダ100やモータドライバ400に、電源ライン230,240を介して、制御された所定の、例えば5Vの直流電源を提供する。電源200は、主バッテリ210とサブバッテリ220で構成されている(図4参照)。サブバッテリ220は、大バルクハウゼン効果よる電力を蓄え、主バッテリ210の電源が失われた時に、ロータリーエンコーダ100に電力を供給する。サブバッテリ220で、通常運転時にもロータリーエンコーダ100に電力を供給するように構成しても良い。いずれの場合でも、主バッテリ210とサブバッテリ220の電源ラインは、電気的には独立した2系統のラインとして構成されている。 The power supply 200 provides the rotary encoder 100 and the motor driver 400 with a controlled predetermined, for example, 5V DC power supply via the power supply lines 230 and 240. The power supply 200 includes a main battery 210 and a sub-battery 220 (see FIG. 4). The sub-battery 220 stores electric power due to the large Barkhausen effect, and supplies electric power to the rotary encoder 100 when the power supply of the main battery 210 is lost. The sub-battery 220 may be configured to supply power to the rotary encoder 100 even during normal operation. In either case, the power supply lines of the main battery 210 and the sub-battery 220 are configured as two electrically independent lines.
 シリアル/パラレル信号送受信ユニット190は、ロータリーエンコーダ100とモータドライバ400の間で、各種の情報を、パラレル信号もしくはシリアル信号に変換し、送受信する機能を有している。例えば、パラレル伝送処理により生成されたA相・B相信号、及び、Z相信号が、シリアル伝送通信の規格に適合したシリアル伝送用の送信データ(BUS)に変換され、このBUS信号が通信ケーブルを介してモータドライバ400へ送信される。 The serial / parallel signal transmission / reception unit 190 has a function of converting various information into a parallel signal or a serial signal and transmitting / receiving between the rotary encoder 100 and the motor driver 400. For example, A-phase / B-phase signals and Z-phase signals generated by parallel transmission processing are converted into transmission data (BUS) for serial transmission conforming to the serial transmission communication standard, and this BUS signal is used as a communication cable. Is transmitted to the motor driver 400 via.
 モータドライバ400は、図1に示したように、御精度切替予測・制御ユニット410、モータ駆動信号生成ユニット420、バッテリレスモード対応ユニット430、及び、運転指令440を記録したメモリ等を備えており、運転指令440と、ロータリーエンコーダ100の出力に基づいて、モータ本体500の回転を制御する。
 すなわち、制御精度切替予測・制御ユニット410は、ロータリーエンコーダ100から出力される、高精度と中精度の2系統の信号を切り替えるタイミングを予測し、運転指令に基づいた、高精度と中精度の2系統の信号のいずれかの信号をモータ駆動信号生成ユニット420に供給する。モータ駆動信号生成ユニット420では、ロータリーエンコーダ100の出力、運転指令440、及び、モータの負荷等に基づき、高精度と中精度の2系統の信号のいずれかの信号によるモータ駆動信号を生成し、モータドライバに出力する。例えば、インバータ駆動用のPWM信号を生成して、モータ500を駆動する。モータドライバ400は、例えば、マイクロコンピュータで実現しても良い。
As shown in FIG. 1, the motor driver 400 includes an accuracy switching prediction / control unit 410, a motor drive signal generation unit 420, a batteryless mode compatible unit 430, a memory for recording an operation command 440, and the like. , The rotation of the motor body 500 is controlled based on the operation command 440 and the output of the rotary encoder 100.
That is, the control accuracy switching prediction / control unit 410 predicts the timing of switching between the two high-precision and medium-precision signals output from the rotary encoder 100, and is based on the operation command, which is high-precision and medium-precision. One of the signals of the system is supplied to the motor drive signal generation unit 420. The motor drive signal generation unit 420 generates a motor drive signal based on one of two high-precision and medium-precision signals based on the output of the rotary encoder 100, the operation command 440, the load of the motor, and the like. Output to the motor driver. For example, a PWM signal for driving an inverter is generated to drive the motor 500. The motor driver 400 may be realized by, for example, a microcomputer.
 バッテリレスモード対応ユニット430は、ユーザインタフェース300を介して初期設定された条件に従って、主バッテリ210の電源が失われた後の再起動時に、モータドライバ400の出力を制御する機能を有する。
 ユーザは、予め、モータ500の種類や仕様に応じて、エンコーダ出力制御ユニット160から送られてくるどのデータを採用するかを決定し、ユーザインタフェース300を介して、バッテリレスモード対応ユニット430のメモリに記録する。
The batteryless mode compatible unit 430 has a function of controlling the output of the motor driver 400 at the time of restart after the power of the main battery 210 is lost according to the condition initially set via the user interface 300.
The user determines in advance which data to be adopted from the encoder output control unit 160 according to the type and specifications of the motor 500, and the memory of the batteryless mode compatible unit 430 via the user interface 300. Record in.
 なお、図1に機能ブロックの形で示した、プログラムに基づいて動作する、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、エンコーダ出力制御ユニット160、シリアル/パラレル信号送受信ユニット190機能の一部又は全部は、FPGA(Field Programmable Gate Array)により構成されている。このFPGAは、I/O部、内部配線、論理回路、クロックネットワーク、メモリ、乗算器等で構成されている。論理回路の基になるプログラム等は外部のEEPROMに記録されている。
 FPGAの内部構成、換言すると、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、及びエンコーダ出力制御ユニット160の具体的な構成は、プログラムの記述の変更等で柔軟に変更できる。そのため、モータの種類や用途等に応じた、初期設定の内容を予め幅広く想定し、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、及びエンコーダ出力制御ユニット160が有する機能を豊富なものとすることで、モータの種類や用途の如何に拘わらず種々のニーズに応えることができる。
 なお、ロータリーエンコーダ100機能をさらに豊富する必要がある場合には、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、及びエンコーダ出力制御ユニット160を、ASIC(Application Specific Integrated Circuit)で構成しても良い。
The batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, the medium / high precision incremental signal generation unit 140, and the encoder output control unit, which are shown in the form of functional blocks in FIG. 1, and operate based on the program. 160, Part or all of the serial / parallel signal transmission / reception unit 190 functions are configured by FPGA (Field Programmable Gate Array). This FPGA is composed of an I / O unit, internal wiring, a logic circuit, a clock network, a memory, a multiplier and the like. Programs and the like that form the basis of logic circuits are recorded in an external EEPROM.
The internal configuration of the FPGA, in other words, the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, the medium / high precision incremental signal generation unit 140, and the encoder output control unit 160 are described in the program. It can be changed flexibly by changing. Therefore, assuming a wide range of initial settings according to the type and application of the motor, batteryless compatible unit 120, medium / high precision absolute signal generation unit 130, medium / high precision incremental signal generation unit 140, and encoder. By enriching the functions of the output control unit 160, it is possible to meet various needs regardless of the type and application of the motor.
If it is necessary to further enhance the rotary encoder 100 functions, a batteryless compatible unit 120, a medium / high precision absolute signal generation unit 130, a medium / high precision incremental signal generation unit 140, and an encoder output control unit 160 may be used. , ASIC (Application Specific Integrated Circuit) may be used.
 図2は、図1のロータリーエンコーダ100が装着されたブラシ付きDCモータ本体500の主要部の構成例を示す、縦断面図である。この例では、ブラシ付きDCモータ500の回転軸510の一方の端面に、MRセンサユニット110の円形の平板状磁石1110が磁石ホルダー1115を介して固定されている。なお、回転軸510の他方の端には、被駆動部材が固定される。
 ブラシ付きDCモータ500は、モータハウジング520の内部に固定されたステータとして、界磁鉄心570とこれに絶縁部材を介して巻かれた界磁コイルとを備えている。回転軸510と一体に形成されたロータ560は、ロータヨークと、その外周部に固定された例えば8個の永久磁石562を有する、8極のロータである。回転軸510は、モータハウジング520とエンドブラケット521に設けられた1対の軸受け530により保持されている。
 一方、磁性体からなるカップ状カバ-522の内側において、ロータリーエンコーダ100を搭載した絶縁材料からなる基板170が、支持ピン172を介してエンドブラケット521に固定されている。この基板170上の、磁石1110に対向する位置には、1対のMRセンサ1122(1122A,1122B)を含む、MRセンサユニット110が設置されている。157は、磁気シールド用の磁性体の円板であり、エンドブラケット521に固定されている。
FIG. 2 is a vertical sectional view showing a configuration example of a main part of a brushed DC motor main body 500 to which the rotary encoder 100 of FIG. 1 is mounted. In this example, a circular flat plate magnet 1110 of the MR sensor unit 110 is fixed to one end surface of the rotating shaft 510 of the brushed DC motor 500 via a magnet holder 1115. A driven member is fixed to the other end of the rotating shaft 510.
The brushed DC motor 500 includes a field iron core 570 and a field coil wound around the field iron core 570 as a stator fixed inside the motor housing 520. The rotor 560 integrally formed with the rotating shaft 510 is an 8-pole rotor having a rotor yoke and, for example, eight permanent magnets 562 fixed to the outer peripheral portion thereof. The rotating shaft 510 is held by a pair of bearings 530 provided on the motor housing 520 and the end bracket 521.
On the other hand, inside the cup-shaped cover 522 made of a magnetic material, a substrate 170 made of an insulating material on which a rotary encoder 100 is mounted is fixed to an end bracket 521 via a support pin 172. An MR sensor unit 110 including a pair of MR sensors 1122 (1122A, 1122B) is installed on the substrate 170 at a position facing the magnet 1110. Reference numeral 157 is a magnetic disk for magnetic shielding, which is fixed to the end bracket 521.
 図3は、ロータリーエンコーダ100の磁気回路の構成例を示す図である。
 回転軸510の軸芯を通る軸線O-Oを中心として、回転軸510の端面にMRセンサユニット110の円形の平板状磁石1110が固定されている。平板状磁石1110は、その直径が例えば5.0mm~10.0mmのフェライト磁石であり、単発着磁された一対のNSの磁極を有している。なお、小型の平板状磁石として、フェライト磁石の代わりに、ネオジム磁石やサマリウムコバルト磁石等の希土類磁石を採用しても良い。平板状磁石が高価になる分、ロータリーエンコーダの価格の上昇要因となるが、より多くの電力を確保できる利点がある。
FIG. 3 is a diagram showing a configuration example of a magnetic circuit of the rotary encoder 100.
A circular flat plate magnet 1110 of the MR sensor unit 110 is fixed to the end surface of the rotating shaft 510 with the axis OO passing through the axis of the rotating shaft 510 as the center. The flat plate magnet 1110 is a ferrite magnet having a diameter of, for example, 5.0 mm to 10.0 mm, and has a pair of single-magnetized NS magnetic poles. As the small flat plate magnet, a rare earth magnet such as a neodymium magnet or a samarium-cobalt magnet may be used instead of the ferrite magnet. Since the flat plate magnet becomes expensive, it causes an increase in the price of the rotary encoder, but it has an advantage that more electric power can be secured.
 一方、電気絶縁性かつ非磁性の材料からなるプリント基板170は両面基板であり、その一方の面上でかつ磁石1110に対向する位置に、1対のMRセンサ1122が固定されている。プリント基板170の他方の面上で、かつMRセンサの背面となる位置に、複合磁性ワイヤ152及びコイル154を有する大バルクハウゼン効果発電モジュール150が固定されている。複合磁性ワイヤ152は、軸線O-Oを中心とし、かつ、この軸線に直交する方向に配置されている。大バルクハウゼン効果発電モジュール150の具体的な例として、例えば、ウィーガンドワイヤとコイルの組み合わせからなる、ウィーガンドモジュールがある。 On the other hand, the printed circuit board 170 made of an electrically insulating and non-magnetic material is a double-sided substrate, and a pair of MR sensors 1122 are fixed on one surface of the printed circuit board 170 at a position facing the magnet 1110. A large bulk Hausen effect power generation module 150 having a composite magnetic wire 152 and a coil 154 is fixed on the other surface of the printed circuit board 170 and at a position on the back surface of the MR sensor. The composite magnetic wire 152 is arranged around the axis OO and in a direction orthogonal to the axis. As a specific example of the large Barkhausen effect power generation module 150, there is a Weegand module composed of a combination of a Weegand wire and a coil.
 1対のMRセンサ1122(1122A,1122B)は、回転軸510の回転に伴い平板状磁石1110の磁束Φaを感知してサイン波、コサイン波を出力する。
 ロータリーエンコーダ100は、磁気シールド1500、すなわち、磁性体からなるカップ状カバ-522と、磁性体の円板157とで完全に囲まれており、外部から加わる磁界の影響を受けないようにシールドされている。
The pair of MR sensors 1122 (1122A, 1122B) senses the magnetic flux Φa of the flat plate magnet 1110 as the rotation shaft 510 rotates, and outputs a sine wave and a cosine wave.
The rotary encoder 100 is completely surrounded by a magnetic shield 1500, that is, a cup-shaped cover 522 made of a magnetic material and a disk 157 of the magnetic material, and is shielded so as not to be affected by an external magnetic field. ing.
 1対のMRセンサ1122は、平板状磁石1110の水平磁場の角度を検知するように構成されている。大バルクハウゼン効果発電モジュール150は、MRセンサに近接して平行に配置されているので、平板状磁石1110の回転に伴い磁束Φbにより電力を発生させる。平板状磁石1110と1対のMRセンサ1122との間の空隙は、モータの変形や振動の影響を考慮して、ある程度の長さ、例えば2.0mm~4.0mm程度を確保する必要がある。また、モータの回転等に伴う振動に耐える剛性を持たせるために、基板170の厚みdpは、例えば、0.80mm~1.00mm程度が必要である。 The pair of MR sensors 1122 are configured to detect the angle of the horizontal magnetic field of the flat plate magnet 1110. Since the large bulkhausen effect power generation module 150 is arranged close to and parallel to the MR sensor, electric power is generated by the magnetic flux Φb as the flat plate magnet 1110 rotates. It is necessary to secure a certain length, for example, about 2.0 mm to 4.0 mm, in consideration of the influence of deformation and vibration of the motor, for the gap between the flat plate magnet 1110 and the pair of MR sensors 1122. .. Further, the thickness dp of the substrate 170 needs to be, for example, about 0.80 mm to 1.00 mm in order to have rigidity to withstand vibration caused by rotation of the motor or the like.
 本願の発明者は、図3に示したロータリーエンコーダ100として、ウィーガンドモジュールと市販の安価なフェライト磁石を組み合わせたロータリーエンコーダを製作した。そして、実験により、軸線O-O方向における、ウィーガンドワイヤと平板状磁石の表面との距離を10mm以下とすることにより、所定の期間、10V以上の電力、適切な条件では15Vの電力が得られることを確認した。なお、実験した他の条件の具体例をあげると、磁石は、材料がストロンチウムフェライト、直径が8.0mm、厚さが、2.5mmであり、ウィーガンドモジュールのコイルの直径は5mmであった。 The inventor of the present application manufactured a rotary encoder as the rotary encoder 100 shown in FIG. 3, which is a combination of a weegand module and a commercially available inexpensive ferrite magnet. Then, by experiment, by setting the distance between the weegand wire and the surface of the flat plate magnet in the OO direction of the axis to 10 mm or less, a power of 10 V or more for a predetermined period and a power of 15 V under appropriate conditions can be obtained. I confirmed that it was possible. To give a specific example of other experimental conditions, the magnet was made of strontium ferrite, had a diameter of 8.0 mm, had a thickness of 2.5 mm, and had a diameter of 5 mm in the coil of the Weegand module. ..
 図4は、図1のロータリーエンコーダ100における、MRセンサユニット110、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、及びエンコーダ出力制御ユニット160の具体的な構成例を示す図である。
 MRセンサユニット110は、1対のMRセンサ1122、温度センサ1122C、及び、センサ出力処理回路部1120を備えている。MRセンサユニット110では、モータの回転軸に固定された磁石1110が角度θ(機械角)だけ回転して各MRセンサに作用する磁界の向きが回転すると、この回転に対応してMRセンサの電気抵抗値、換言するとセンサの出力信号の電圧がSIN波、COS波として変動し、回転軸の1回転毎に、各々1周期分のパルス信号が出力される。センサ出力処理回路部1120は、AD変換器11123、軸ずれ補正処理部1124、RAM等のセンサメモリ1125、逆正接演算処理部1126、アブソリュート信号生成部1127、インクリメンタルA相・B相信号生成部1128、及び、回転方向判定部1129を備えている。センサ出力処理回路部1120では、MRセンサ1122AからのSIN波、MRセンサ1122BからのCOS波のアナログ信号を量子化し、電気角の内挿処理により、例えば4Kパルス/回転に、多分割し、各々、A相、B相のデジタル信号に変換する。MRセンサユニット110は、マイクロコンピュータで実現しても良い。
FIG. 4 shows the MR sensor unit 110, the batteryless compatible unit 120, the medium / high precision absolute signal generation unit 130, the medium / high precision incremental signal generation unit 140, and the encoder output control unit 160 in the rotary encoder 100 of FIG. It is a figure which shows the specific configuration example.
The MR sensor unit 110 includes a pair of MR sensors 1122, a temperature sensor 1122C, and a sensor output processing circuit unit 1120. In the MR sensor unit 110, when the magnet 1110 fixed to the rotation axis of the motor rotates by an angle θ (mechanical angle) and the direction of the magnetic field acting on each MR sensor rotates, the electricity of the MR sensor corresponds to this rotation. The resistance value, in other words, the voltage of the output signal of the sensor fluctuates as a SIN wave and a COS wave, and a pulse signal for one cycle is output for each rotation of the rotation axis. The sensor output processing circuit unit 1120 includes an AD converter 11123, an axis misalignment correction processing unit 1124, a sensor memory 1125 such as a RAM, an inverse tangential calculation processing unit 1126, an absolute signal generation unit 1127, and an incremental A-phase / B-phase signal generation unit 1128. And, the rotation direction determination unit 1129 is provided. The sensor output processing circuit unit 1120 quantizes the analog signals of the SIN wave from the MR sensor 1122A and the COS wave from the MR sensor 1122B, and divides them into 4K pulses / rotation, for example, by intercalation processing of the electric angle. , A phase, B phase digital signal. The MR sensor unit 110 may be realized by a microcomputer.
 大バルクハウゼン効果発電モジュール150の複合磁性ワイヤ152は、その中心線X-Xが、平板状磁石1110のNSの境界(=原点の位置Z0)を通る線Y-Yに対して、直交する関係になるようにして、基板170に固定される。
 なお、MRセンサ1122としては、GMRを含む磁気抵抗効果素子(MR:AMR、GMR、TMR等)のいずれの素子を採用しても良い。
The composite magnetic wire 152 of the large Barkhausen effect power generation module 150 has a relationship in which the center line XX is orthogonal to the line YY passing through the NS boundary (= origin position Z0) of the flat plate magnet 1110. It is fixed to the substrate 170 so as to be.
As the MR sensor 1122, any element of a magnetoresistive effect element (MR: AMR, GMR, TMR, etc.) including GMR may be adopted.
 アブソリュート信号生成部1127では、逆正接演算処理部1126から出力される直線状の信号(図7参照)を基に、モータの回転・角度(機械角)の絶対値を示すアブソリュート信号のデータが生成され、センサメモリ1125に保持される。インクリメンタルA相・B相信号生成部1128では、逆正接演算処理部1126から出力される直線状の信号を基に、インクリメンタル化されたA相信号及びB相信号のパルスのデータが生成され、センサメモリ1125に保持される。回転軸の1回転毎に現われる角度0(原点)の位置に同期して、Z信号も生成される(以下、A相・B相・Z相信号)。なお、MRセンサ1122の原点の位置(Z0)は、モータの回転軸に固定された磁石1110上の特定の位置、例えば、SIN波のアナログ出力値が0の時点に対応する位置である(図7参照)。回転方向判定部1129では、A相とB相の位相の関係から、回転軸の回転方向を判定する。これらの情報は、時系列データとして、不揮発性メモリ180のMRセンサデータ記録部に記録される。 The absolute signal generation unit 1127 generates absolute signal data indicating the absolute value of the rotation and angle (mechanical angle) of the motor based on the linear signal (see FIG. 7) output from the inverse tangent calculation processing unit 1126. It is held in the sensor memory 1125. The incremental A-phase / B-phase signal generation unit 1128 generates incremental A-phase signal and B-phase signal pulse data based on the linear signal output from the inverse tangential arithmetic processing unit 1126, and the sensor. It is held in the memory 1125. A Z signal is also generated in synchronization with the position of the angle 0 (origin) that appears for each rotation of the rotation axis (hereinafter referred to as A-phase, B-phase, and Z-phase signals). The position of the origin (Z0) of the MR sensor 1122 is a specific position on the magnet 1110 fixed to the rotation axis of the motor, for example, a position corresponding to the time when the analog output value of the SIN wave is 0 (FIG. FIG. 7). The rotation direction determination unit 1129 determines the rotation direction of the rotation axis from the phase relationship between the A phase and the B phase. These pieces of information are recorded as time-series data in the MR sensor data recording unit of the non-volatile memory 180.
 バッテリレス対応ユニット120は、コイル出力の電流検知部1210、コイル出力の整流・電圧制御・蓄電部1220、及び、角度情報処理部1230を有する。角度情報処理部1230は、軸の回転数・回転方向検出部1232、初期設定部1234、多回転信号生成処理部1235、バッテリレスモード判定部1236、及び、バッテリレスモード情報生成部1238を有する。 The batteryless compatible unit 120 has a coil output current detection unit 1210, a coil output rectification / voltage control / storage unit 1220, and an angle information processing unit 1230. The angle information processing unit 1230 includes a shaft rotation speed / rotation direction detection unit 1232, an initial setting unit 1234, a multi-rotation signal generation processing unit 1235, a batteryless mode determination unit 1236, and a batteryless mode information generation unit 1238.
 コイル出力の電流検知部1210は、磁石1110の回転に伴い180度毎に1回だけ、大バルクハウゼン効果発電モジュールで発生するパルス電流(コイルのパルス)を検知する機能を有し、軸の回転数・回転方向検出部1232で、軸の回転数及び回転方向のデータを生成し、これを受けて、多回転信号生成処理部1235において、軸の多回転情報を生成する機能を備えている。コイル出力の整流・電圧制御・蓄電部1220は、パルス電流を全波整流し、電圧を所定の基準電圧Vcc、例えば5Vに制御し、サブバッテリ220に蓄電する機能を有している。 The coil output current detection unit 1210 has a function of detecting the pulse current (coil pulse) generated in the large Bulkhausen effect power generation module only once every 180 degrees due to the rotation of the magnet 1110, and has the function of detecting the rotation of the shaft. The number / rotation direction detection unit 1232 has a function of generating data on the rotation speed and rotation direction of the shaft, and in response to this, the multi-rotation signal generation processing unit 1235 has a function of generating multi-rotation information of the shaft. The coil output rectification / voltage control / storage unit 1220 has a function of full-wave rectifying the pulse current, controlling the voltage to a predetermined reference voltage Vcc, for example, 5V, and storing the voltage in the sub-battery 220.
 バッテリレスモード判定部1236は、主バッテリ210及びサブバッテリ220の電圧を検知し、主バッテリ210の電圧が基準電圧Vccよりも低下した場合、バッテリレスモードと判定する。バッテリレスモード情報生成部1238は、バッテリレスモードの判定に基づき、サブバッテリ220から電力の供給を受けて、バッテリレスモード時におけるロータリーエンコーダ100の出力に関する所定の情報を生成し、不揮発性メモリ180に記録する。 The batteryless mode determination unit 1236 detects the voltages of the main battery 210 and the sub-battery 220, and if the voltage of the main battery 210 is lower than the reference voltage Vcc, it determines that the mode is batteryless. The batteryless mode information generation unit 1238 receives power from the sub-battery 220 based on the determination of the batteryless mode, generates predetermined information regarding the output of the rotary encoder 100 in the batteryless mode, and generates the non-volatile memory 180. Record in.
 中・高精度アブソリュート信号生成ユニット130は、高精度アブソリュート信号生成部1310と中精度アブソリュート信号生成部1320を備えている。
 中・高精度インクリメンタル信号生成ユニット140は、高精度インクリメンタル信号生成部1410と中精度インクリメンタル信号生成部1420を備えている。
The medium- and high-precision absolute signal generation unit 130 includes a high-precision absolute signal generation unit 1310 and a medium-precision absolute signal generation unit 1320.
The medium- and high-precision incremental signal generation unit 140 includes a high-precision incremental signal generation unit 1410 and a medium-precision incremental signal generation unit 1420.
 エンコーダ出力制御ユニット160は、バッテリレス時初期設定部1610、電源状態判定部1620、バッテリレス時出力生成部1630、及び、通常時出力生成部1640を備えている。
 バッテリレス時初期設定部1610は、ユーザインタフェース300を介して、ユーザによる、バッテリレスモード時におけるロータリーエンコーダ100の出力条件の設定を受け付ける機能を有する。
 バッテリレス時出力生成部1630では、サブバッテリ220の電力が正常な範囲内で、初期設定条件に従って、MRセンサユニット110からの例えば4Kパルス/回転のインクリメンタル値の出力と、大バルクハウゼン効果発電モジュールで発生する2パルス/回転のパルス電流の出力を、バッテリレスモード情報として生成し、不揮発性メモリ180に記録する。
 通常時出力生成部1640は、バッテリ電源が正常な通常時における、ロータリーエンコーダ100の出力を制御するものであり、この制御は、ユーザにより初期設定された条件に従って実行される。
The encoder output control unit 160 includes a batteryless initial setting unit 1610, a power supply state determination unit 1620, a batteryless output generation unit 1630, and a normal output generation unit 1640.
The batteryless initial setting unit 1610 has a function of accepting the setting of the output condition of the rotary encoder 100 in the batteryless mode by the user via the user interface 300.
In the batteryless output generation unit 1630, the output of the incremental value of, for example, 4K pulse / rotation from the MR sensor unit 110 and the large bulkhausen effect power generation module according to the initial setting conditions within the normal range of the power of the sub-battery 220. The output of the 2 pulse / rotation pulse current generated in the above is generated as batteryless mode information and recorded in the non-volatile memory 180.
The normal time output generation unit 1640 controls the output of the rotary encoder 100 in the normal time when the battery power supply is normal, and this control is executed according to the conditions initialized by the user.
 図5は、ユーザインタフェース300により、ロータリーエンコーダ100やモータドライバ400に対して初期設定を行うための、入力画面3001、3002の一例を示す図である。ユーザは、ユーザインタフェース300を介して、ロータリーエンコーダ100のバッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、エンコーダ出力制御ユニット160、及びモータドライバ400に対して、通常運転時におけるロータリーエンコーダの出力条件や、バッテリレスモード時において、記録すべき情報、処理あるいは実行すべき条件を設定できる。 FIG. 5 is a diagram showing an example of input screens 3001 and 3002 for performing initial settings for the rotary encoder 100 and the motor driver 400 by the user interface 300. Through the user interface 300, the user can use the rotary encoder 100 as a batteryless compatible unit 120, a medium / high precision absolute signal generation unit 130, a medium / high precision incremental signal generation unit 140, an encoder output control unit 160, and a motor driver 400. On the other hand, it is possible to set the output condition of the rotary encoder in the normal operation and the information to be recorded, the processing or the condition to be executed in the batteryless mode.
 例えば、通常運転モードに関して、初期設定画面3001により、以下のような条件を選択して、ロータリーエンコーダ100やモータドライバ400に設定する。
 (1)高精度信号と中精度信号等を切り替えるモータの精度切替回転数Nsは、何rpmか。
 (2)アブソリュート信号やインクリメンタル信号は、高精度信号と中精度信号等に関して、どのような精度(パルス/回転)で出力すべきか。
 (3)インクリメンタル信号の場合には、U,V,W相の有無とそのパルス数等。
 (4)駆動対象となるモータのタイプや仕様等。
 さらに、バッテリレスモードに関して、初期設定画面3002により、以下のようなものを設定する。
 (1)アブソリュート信号、インクリメンタル信号、及び、ウィーガンドモジュール信号は、各々、どのような条件(パルス/回転、回転方向)で出力すべきか。
 (2)インクリメンタル信号に関しては、U,V,W相の有無とそのパルス数等。
 (3)回転軸の角度情報を記録すべき記録期間の長さ。
 (4)再起動の条件はどのようにするか。
 ロータリーエンコーダ100やモータドライバ400に、このような、初期設定機能を付与することで、小型で安価な平板状磁石を有するMRセンサユニットを採用しつつ、バッテリレス時には、限られた電力を有効に活用し、次回モータが起動される際に必要・十分な情報を適切に記録できる。
For example, regarding the normal operation mode, the following conditions are selected on the initial setting screen 3001 and set in the rotary encoder 100 and the motor driver 400.
(1) What rpm is the precision switching rotation speed Ns of the motor that switches between high-precision signals and medium-precision signals?
(2) What kind of accuracy (pulse / rotation) should the absolute signal and incremental signal be output with respect to high-precision signals and medium-precision signals?
(3) In the case of an incremental signal, the presence / absence of U, V, W phases and the number of pulses thereof.
(4) Types and specifications of the motor to be driven.
Further, regarding the batteryless mode, the following items are set on the initial setting screen 3002.
(1) Under what conditions (pulse / rotation, rotation direction) should each of the absolute signal, the incremental signal, and the weegand module signal be output?
(2) Regarding the incremental signal, the presence / absence of U, V, W phases and the number of pulses thereof, etc.
(3) The length of the recording period in which the angle information of the rotating shaft should be recorded.
(4) What are the conditions for restarting?
By adding such an initial setting function to the rotary encoder 100 and the motor driver 400, while adopting an MR sensor unit having a small and inexpensive flat plate magnet, limited power can be effectively used when there is no battery. By utilizing it, it is possible to appropriately record necessary and sufficient information the next time the motor is started.
 図6は、第1の実施例における、ロータリーエンコーダ100の処理のフローを示す図である。
 最初に、ユーザインタフェース300により設定された、ロータリーエンコーダ100の機能に関する、初期設定条件を取得する(S600)。ここでは、高精度信号は、32Kパルス/回転のインクリメンタル信号とアブソリュート信号が設定され、中精度信号は、4Kパルス/回転のインクリメンタル信号とアブソリュート信号が設定されたものとする。また、バッテリレスモードでは、記録期間の長さCns=50回転まで、ロータリーエンコーダの動作状態を記録するように、初期設定されたものと仮定する。
 次に、エンコーダ出力制御ユニット160が、主バッテリ210の電圧値を取得し(S602)、主バッテリの電圧が正常か否かを判定する。主バッテリの電圧値が正常の場合(S604でYES)、MRセンサユニットから中精度すなわち4Kパルス/回転のインクリメンタルA,B信号を取得し(S606)、さらに、高精度すなわち32Kパルス/回転のアブソリュートA,B,Z信号を取得する(S608)。
 次に、中・高精度インクリメンタル信号生成ユニット140において、インクリメンタル信号の位相情報とアブソリュート信号の角度情報とから、4Kパルス/回転及び32Kパルス/回転のインクリメンタル信号を生成し、不揮発性メモリに記録する(S610)。さらに、中・高精度アブソリュート信号生成ユニット130において、インクリメンタル信号の角度情報とアブソリュート信号の位相情報とから、4Kパルス/回転及び32Kパルス/回転のアブソリュート信号を生成し、不揮発性メモリに記録する(S612)。
FIG. 6 is a diagram showing a processing flow of the rotary encoder 100 in the first embodiment.
First, the initial setting conditions regarding the function of the rotary encoder 100 set by the user interface 300 are acquired (S600). Here, it is assumed that a 32K pulse / rotation incremental signal and an absolute signal are set as the high-precision signal, and a 4K pulse / rotation incremental signal and an absolute signal are set as the medium-precision signal. Further, in the batteryless mode, it is assumed that the initial setting is made so as to record the operating state of the rotary encoder up to the length of the recording period Cns = 50 rotations.
Next, the encoder output control unit 160 acquires the voltage value of the main battery 210 (S602), and determines whether or not the voltage of the main battery is normal. When the voltage value of the main battery is normal (YES in S604), the incremental A and B signals of medium accuracy, that is, 4K pulse / rotation are obtained from the MR sensor unit (S606), and the absolute of high accuracy, that is, 32K pulse / rotation. Acquire A, B, Z signals (S608).
Next, in the medium- and high-precision incremental signal generation unit 140, 4K pulse / rotation and 32K pulse / rotation incremental signals are generated from the phase information of the incremental signal and the angle information of the absolute signal and recorded in the non-volatile memory. (S610). Further, in the medium / high precision absolute signal generation unit 130, 4K pulse / rotation and 32K pulse / rotation absolute signals are generated from the angular information of the incremental signal and the phase information of the absolute signal and recorded in the non-volatile memory ( S612).
 ここで、S606~S612における、MRセンサユニット110の出力と、中・高精度アブソリュート信号生成ユニット130及び中・高精度インクリメンタル信号生成ユニット140の出力の関係を、図7を参照して、より詳細に説明する。
 MRセンサユニット110では、A相、B相のデジタル信号から、逆正接演算の結果、回転軸の1回転毎の角度0(=360度)の位置に同期して、4Kパルス/回転のインクリメンタル値が直線状に増減を繰り返す直角三角形状の信号が生成される。そして、各A相・B相信号の累積加算値は、次に、回転軸の1回転毎(360度毎)の累積加算値に変換され、さらにEEPROMのアドレスが付与されて、中精度すなわち4Kパルス/回転のインクリメンタル信号が生成される(図7(A))。
 MRセンサユニット110では、この4Kパルス/回転のインクリメンタル値がさらに32Kパルス/回転に多分割され、これに回転軸の原点Z0を基準にしたZ相信号を組み合わせ、さらにEEPROMのアドレスが付与されて、高精度すなわち32Kパルス/回転のアブソリュート信号が生成される(図7(B))。
Here, the relationship between the output of the MR sensor unit 110 and the outputs of the medium / high precision absolute signal generation unit 130 and the medium / high precision incremental signal generation unit 140 in S606 to S612 is described in more detail with reference to FIG. 7. To explain to.
In the MR sensor unit 110, as a result of the inverse tangent calculation from the A-phase and B-phase digital signals, the incremental value of 4K pulse / rotation is synchronized with the position of the angle 0 (= 360 degrees) for each rotation of the rotation axis. Generates a right-angled triangular signal that repeats increasing and decreasing linearly. Then, the cumulative addition value of each A-phase / B-phase signal is then converted into a cumulative addition value for each rotation of the rotation axis (every 360 degrees), and an EEPROM address is added to obtain medium accuracy, that is, 4K. A pulse / rotation incremental signal is generated (FIG. 7 (A)).
In the MR sensor unit 110, the incremental value of this 4K pulse / rotation is further divided into 32K pulses / rotation, combined with a Z-phase signal based on the origin Z0 of the rotation axis, and further given an EEPROM address. Highly accurate or 32K pulse / rotation absolute signal is generated (FIG. 7B).
 ロータリーエンコーダ100では、これらの出力を基に、中・高精度インクリメンタル信号生成ユニット140において、4Kパルス/回転のインクリメンタル信号に含まれるA、B相の位相情報と32Kパルス/回転のアブソリュート信号に含まれる角度情報とに基づき、高精度すなわち32Kパルス/回転のインクリメンタル信号(図7の(a2))が生成される。また、中・高精度アブソリュート信号生成ユニット130において、中精度すなわち4Kパルス/回転のインクリメンタル信号に含まれる角度情報と32Kパルス/回転のアブソリュート信号に含まれるA,B,Z相の位相情報とに基づき、中精度すなわち4Kパルス/回転のアブソリュート信号が生成される(図7の(b1))。
 このようにして、中・高精度インクリメンタル信号生成ユニット140において、中精度のインクリメンタル信号(図7の(a1))と高精度のインクリメンタル信号(図7の(a2))が生成され、中・高精度アブソリュート信号生成ユニット130において、中精度のアブソリュート信号(図7の(b1))と高精度のアブソリュート信号(図7の(b2))とが生成される。
In the rotary encoder 100, based on these outputs, the medium / high precision incremental signal generation unit 140 includes the phase information of the A and B phases included in the incremental signal of 4K pulse / rotation and the absolute signal of 32K pulse / rotation. An incremental signal with high accuracy, that is, a 32K pulse / rotation ((a2) in FIG. 7) is generated based on the angle information obtained. Further, in the medium / high precision absolute signal generation unit 130, the angle information included in the medium precision, that is, the incremental signal of 4K pulse / rotation and the phase information of the A, B, Z phases included in the absolute signal of 32K pulse / rotation are obtained. Based on this, a medium precision or 4K pulse / rotation absolute signal is generated (FIG. 7 (b1)).
In this way, in the medium / high precision incremental signal generation unit 140, a medium precision incremental signal ((a1) in FIG. 7) and a high precision incremental signal ((a2) in FIG. 7) are generated, and the medium / high precision incremental signal is generated. In the precision absolute signal generation unit 130, a medium-precision absolute signal ((b1) in FIG. 7) and a high-precision absolute signal ((b2) in FIG. 7) are generated.
 図6に戻り、バッテリレス対応ユニット120から、パルス電流に基づく軸の回転数、回転方向のデータを取得して、不揮発性メモリ180に記録する(S614)。
 すなわち、図7に(C)として示したように、バッテリレス対応ユニット120では、大バルクハウゼン効果発電モジュール150の出力に基づく、2パルス/回転の信号も生成される。
Returning to FIG. 6, data on the rotation speed and rotation direction of the shaft based on the pulse current is acquired from the batteryless compatible unit 120 and recorded in the non-volatile memory 180 (S614).
That is, as shown in FIG. 7 as (C), the batteryless compatible unit 120 also generates a 2-pulse / rotation signal based on the output of the large Barkhausen effect power generation module 150.
 図6において、主バッテリの電圧値が異常である場合(S604でNO)は、バッテリレスモードを開始する(S620)。まず、初期設定された所定の計測回転数Cnsを取得する(S622)。次に、MRセンサユニット110から、インクリメンタル信号及びアブソリュート信号を取得する(S624)。そして、4Kパルス/回転のインクリメンタル信号及びアブソリュート信号を生成し、不揮発性メモリに記録する(S626)。さらに、コイルの出力電流の有無により、軸510の回転停止を判定する(S628)。軸510が回転を停止していない場合には、回転数の計測回転数Cnを取得し、このCnを所定の計測回転数Cnsと比較する(S632)。計測回転数Cnが所定の計測回転数Cns=50回転に達していたら、バッテリレスモード情報を作成し(S634)、その情報を不揮発性メモリ180に記録し(S636)、処理を終了する。軸510が回転停止していた場合(S630でYES)も、バッテリレスモード情報の作成(S634)に進む。軸510の回転数が所定の計測回転数Cnsに達していない場合(S632でNO)には、S624に戻る。 In FIG. 6, when the voltage value of the main battery is abnormal (NO in S604), the batteryless mode is started (S620). First, the initially set predetermined measured rotation speed Cns is acquired (S622). Next, the incremental signal and the absolute signal are acquired from the MR sensor unit 110 (S624). Then, a 4K pulse / rotation incremental signal and an absolute signal are generated and recorded in the non-volatile memory (S626). Further, the rotation stop of the shaft 510 is determined based on the presence or absence of the output current of the coil (S628). When the shaft 510 has not stopped rotating, the measured rotation speed Cn of the rotation speed is acquired, and this Cn is compared with the predetermined measured rotation speed Cns (S632). When the measured rotation speed Cn reaches a predetermined measured rotation speed Cns = 50 rotations, batteryless mode information is created (S634), the information is recorded in the non-volatile memory 180 (S636), and the process is terminated. Even when the shaft 510 has stopped rotating (YES in S630), the process proceeds to the creation of batteryless mode information (S634). If the rotation speed of the shaft 510 has not reached the predetermined measured rotation speed Cns (NO in S632), the process returns to S624.
 図8は、第1の実施例における、ブラシ付きDCサーボモータ500の駆動回路の構成例を示す図である。DCモータの駆動回路は、モータドライバ400と、PWM駆動回路450と、トランジスタから成る4つのスイッチング素子SW1~SW4をH形に組んだHブリッジ回路とを備えている。第1のスイッチング素子SW1は、一端が直流モータの一方のブラシ565Aに接続され他端が直流電源(Vcc)に接続され、第2のスイッチング素子SW2は、一端が直流モータの他方のブラシ565Bに接続され他端が直流電源(Vcc)に接続されている。第3のスイッチング素子SW3は、一端が直流モータの一方のブラシ565Aに接続され他端が接地され、第4のスイッチング素子SW4は、一端が直流モータの他方のブラシ565Bに接続され他端が接地されている。
 モータドライバ400の制御精度切替予測・制御ユニット410は、切替時点予測部412、切替準備制御部414、切替実行部416を備えている。モータ駆動信号生成ユニット420は、高速用のインクリメンタルモータ制御信号を生成する中精度駆動信号生成部422と、低速用のインクリメンタルモータ制御信号を生成する高精度駆動信号生成部424とを備えている。
 PWM駆動回路450では、モータ駆動信号生成ユニット420で生成された低速用若しくは高速用のインクリメンタルモータ制御信号に基づき、PWM信号が生成され、このPWM信号が各スイッチング素子SW1~SW4のベースに入力されて、モータ500の回転が制御される。ブラシ付きDCモータの回転速度は、PWM信号のオン期間のデューティ比により任意に制御できる。
FIG. 8 is a diagram showing a configuration example of a drive circuit of the brushed DC servomotor 500 in the first embodiment. The drive circuit of the DC motor includes a motor driver 400, a PWM drive circuit 450, and an H-bridge circuit in which four switching elements SW1 to SW4 composed of transistors are assembled in an H shape. One end of the first switching element SW1 is connected to one brush 565A of the DC motor and the other end is connected to the DC power supply (Vcc), and one end of the second switching element SW2 is connected to the other brush 565B of the DC motor. It is connected and the other end is connected to a DC power supply (Vcc). One end of the third switching element SW3 is connected to one brush 565A of the DC motor and the other end is grounded, and one end of the fourth switching element SW4 is connected to the other brush 565B of the DC motor and the other end is grounded. Has been done.
The control accuracy switching prediction / control unit 410 of the motor driver 400 includes a switching time prediction unit 412, a switching preparation control unit 414, and a switching execution unit 416. The motor drive signal generation unit 420 includes a medium-precision drive signal generation unit 422 that generates an incremental motor control signal for high speed, and a high-precision drive signal generation unit 424 that generates an incremental motor control signal for low speed.
In the PWM drive circuit 450, a PWM signal is generated based on the incremental motor control signal for low speed or high speed generated by the motor drive signal generation unit 420, and this PWM signal is input to the bases of the switching elements SW1 to SW4. The rotation of the motor 500 is controlled. The rotation speed of the brushed DC motor can be arbitrarily controlled by the duty ratio during the ON period of the PWM signal.
 次に、図9は、第1の実施例における、ブラシ付きDCモータ500のドライバ400の処理フローを示す図である。
 最初に、運転指令のデータを取得する(S902)。ここでは、精度切替回転数Nsは、±40rpmに設定されているものとする。不揮発性メモリから、バッテリレスモード情報を取得し(S904)、バッテリレスモード時にモータが回転していた場合(S906でYES)、バッテリレスモードにおけるモータの回転のデータを取得し(S908)、運転指令の初期データを、バッテリレスモード情報で補正する(S909)。
 運転指令の初期データが補正された後、若しくは、バッテリレスモード時にモータが回転していなかった場合、モータ駆動信号生成ユニット420の高精度駆動信号生成部424が起動され、32Kパルス/回転の高精度インクリメンタル駆動信号が生成される。すなわち、ブラシ付きDCモータ500はインクリメンタル信号で駆動されるので、高精度駆動信号生成部424が高精度のインクリメンタル信号を、ロータリーエンコーダ100から取得する(S910)。そして、運転指令とエンコーダで生成された高精度のインクリメンタル信号に基づき、32Kパルス/回転のモータ駆動信号を生成し、PWM駆動回路450へ出力し、モータを制御する(S912)。
Next, FIG. 9 is a diagram showing a processing flow of the driver 400 of the brushed DC motor 500 in the first embodiment.
First, the operation command data is acquired (S902). Here, it is assumed that the precision switching rotation speed Ns is set to ± 40 rpm. When the batteryless mode information is acquired from the non-volatile memory (S904) and the motor is rotating in the batteryless mode (YES in S906), the data of the motor rotation in the batteryless mode is acquired (S908) and the operation is performed. The initial data of the command is corrected by the batteryless mode information (S909).
After the initial data of the operation command is corrected, or when the motor is not rotating in the batteryless mode, the high precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated and the 32K pulse / rotation is high. A precision incremental drive signal is generated. That is, since the brushed DC motor 500 is driven by the incremental signal, the high-precision drive signal generation unit 424 acquires the high-precision incremental signal from the rotary encoder 100 (S910). Then, based on the operation command and the high-precision incremental signal generated by the encoder, a 32K pulse / rotation motor drive signal is generated, output to the PWM drive circuit 450, and the motor is controlled (S912).
 切替時点予測部412では、次に、モータの回転数Nを取得し(S914)、更に、運転指令とモータ回転数Nとから、モータの回転数が精度切替回転数Nsを超える切替時点を予測する(S916)。切替時点が近くない場合(S918でNO)、運転終了か否かを判定し、終了であれば(S920でYES)運転を停止する(S922)。
 切替時点が近いと判定された場合(S918でYES)、例えば、モータの回転数と精度切替回転数Nsとの差が20rpm以内でかつ回転数が切替時点に向かって増加する指令である場合、切替準備制御部414は、「制御の切替準備」モードとなり(S924)、高精度インクリメンタル信号生成部1410に加えて、中精度インクリメンタル信号生成部1420も動作を開始し、4Kパルス/回転の中精度のモータ駆動信号を生成する。切替時点に到達した場合(S926でYES)、切替実行部416では、中精度のモータ駆動信号をPWM駆動回路450へ出力してモータを制御すると共に、高精度のモータ駆動信号の出力を停止する(S928)。モータの回転数がさらに高くなった場合には、「制御の切替準備」モードが解除され、高精度インクリメンタル信号生成部1410における高精度のモータ駆動信号の生成は停止される。
 切替準備制御部414及び切替実行部416は、中精度のモータ駆動信号から高精度のモータ駆動信号への切替についても、同様に、「制御の切替準備」モードを介在させた制御を行う。すなわち、モータの回転数が精度切替回転数Ns以下になったら、高精度のモータ駆動信号をPWM駆動回路450へ出力してモータを制御すると共に、中精度のモータ駆動信号の出力を停止する(S930~S938~S912)
Next, the switching time prediction unit 412 acquires the motor rotation speed N (S914), and further predicts the switching time when the motor rotation speed exceeds the accuracy switching rotation speed Ns from the operation command and the motor rotation speed N. (S916). If the switching time is not near (NO in S918), it is determined whether or not the operation is finished, and if it is finished (YES in S920), the operation is stopped (S922).
When it is determined that the switching time is near (YES in S918), for example, when the difference between the motor rotation speed and the accuracy switching rotation speed Ns is within 20 rpm and the command is such that the rotation speed increases toward the switching time. The switching preparation control unit 414 enters the "control switching preparation" mode (S924), and in addition to the high-precision incremental signal generation unit 1410, the medium-precision incremental signal generation unit 1420 also starts operation, and the medium-precision 4K pulse / rotation Motor drive signal is generated. When the switching time is reached (YES in S926), the switching execution unit 416 outputs a medium-precision motor drive signal to the PWM drive circuit 450 to control the motor and stops the output of the high-precision motor drive signal. (S928). When the rotation speed of the motor becomes higher, the "preparation for switching control" mode is canceled, and the generation of the high-precision motor drive signal in the high-precision incremental signal generation unit 1410 is stopped.
The switching preparation control unit 414 and the switching execution unit 416 also perform control via the "control switching preparation" mode for switching from the medium-precision motor drive signal to the high-precision motor drive signal. That is, when the rotation speed of the motor becomes the precision switching rotation speed Ns or less, a high-precision motor drive signal is output to the PWM drive circuit 450 to control the motor, and the output of the medium-precision motor drive signal is stopped ( S930-S938-S912)
 図10は、第1の実施例における、モータ駆動信号の精度切替の具体的な例を示す図である。モータの回転数Nが、精度切替回転数Ns、ここでは±40rpmの近傍にある場合、切替準備制御部414が「制御の切替準備」モードとなり、モータ駆動信号生成ユニット420の中精度駆動信号生成部422と高精度駆動信号生成部424の双方が起動され、32Kパルス/回転の高精度インクリメンタル駆動信号と4Kパルス/回転の中精度インクリメンタル駆動信号の双方が生成される。
 そして、モータの回転数Nが±40rpm以内の場合、切替実行部416により、高精度のPWM信号がPWM駆動回路450へ出力され、モータの回転数Nが±40rpm以外の場合、切替実行部416により、中精度のPWM信号がPWM駆動回路450へ出力される。
FIG. 10 is a diagram showing a specific example of accuracy switching of the motor drive signal in the first embodiment. When the motor rotation speed N is in the vicinity of the precision switching rotation speed Ns, here ± 40 rpm, the switching preparation control unit 414 is in the “control switching preparation” mode, and the motor drive signal generation unit 420 generates a medium-precision drive signal. Both the unit 422 and the high-precision drive signal generation unit 424 are activated to generate both a high-precision incremental drive signal of 32K pulse / rotation and a medium-precision incremental drive signal of 4K pulse / rotation.
When the motor rotation speed N is within ± 40 rpm, the switching execution unit 416 outputs a high-precision PWM signal to the PWM drive circuit 450, and when the motor rotation speed N is other than ± 40 rpm, the switching execution unit 416 Therefore, a medium-precision PWM signal is output to the PWM drive circuit 450.
 このように、本実施例によれば、低速回転域では高精度インクリメンタル駆動信号でモータを制御し、高速域では中精度のインクリメンタル駆動信号でモータを制御するので、低速回転域では高精度の位置精度を行いつつ、高速回転時にモータが制御信号に追従しなくなるという課題を解消することができる。ロータリーエンコーダは、インクリメンタル/アブソリュート兼用のため、汎用性に富んでいる。また、小型で安価な平板状磁石を有する汎用型の1個のMRセンサユニットを採用しているにも拘わらず、MRセンサユニットの出力に基づき中精度駆動信号及び高精度駆動信号を生成できるため、小型で、安価なロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することができる。
 また、本実施例によれば、ロータリーエンコーダやモータドライバが初期設定機能を有しているので、モータの種類や用途の如何に拘わらず種々のニーズに応えられる小型で汎用性に富んだ、ロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することができる。
As described above, according to this embodiment, the motor is controlled by the high-precision incremental drive signal in the low-speed rotation range, and the motor is controlled by the medium-precision incremental drive signal in the high-speed range. It is possible to solve the problem that the motor does not follow the control signal at high speed rotation while performing accuracy. Since the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit. , A small and inexpensive rotary encoder, and a servo control device using the same can be provided.
Further, according to this embodiment, since the rotary encoder and the motor driver have the initial setting function, the rotary is compact and versatile enough to meet various needs regardless of the type and application of the motor. An encoder and a servo control device using the encoder can be provided.
 次に、本発明をブラシレスDCモータに適用した、第2の実施例について、図11~図14を参照しながら説明する。
 図11は、第2の実施例に係る、ブラシレスDCサーボモータの構成例を示す図である。ブラシレスDCモータ500は、モータハウジング520の内部に固定されたステータとして、界磁鉄心541とこれに絶縁部材を介して巻かれた界磁コイル542とを備えている。回転軸510と一体に形成されたロータ543は、ロータヨークと、その外周部に固定された例えば8個の永久磁石を有する、8極のロータである。回転軸510は、モータハウジング520に設けられた1対の軸受け530により保持されている。
 このブラシレスDCサーボモータも、第1の実施例で説明したものと同様の構成の、ロータリーエンコーダ100、電源200、ユーザインタフェース300、モータドライバ400を備えている。
 ブラシレスDCモータ500は、そのステータを構成する各相の界磁コイル群として、U1,U2,U3の界磁コイルが直列に、V1,V2,V3の界磁コイルが直列に、W1,W2,W3のコイルが直列に、各々結線されている。これらの3つの界磁コイル群は、各々の一端が中性点で接続されている。
Next, a second embodiment in which the present invention is applied to a brushless DC motor will be described with reference to FIGS. 11 to 14.
FIG. 11 is a diagram showing a configuration example of the brushless DC servomotor according to the second embodiment. The brushless DC motor 500 includes a field iron core 541 and a field coil 542 wound around the field iron core 541 as a stator fixed inside the motor housing 520. The rotor 543 integrally formed with the rotating shaft 510 is an 8-pole rotor having a rotor yoke and, for example, eight permanent magnets fixed to the outer peripheral portion thereof. The rotating shaft 510 is held by a pair of bearings 530 provided in the motor housing 520.
This brushless DC servomotor also includes a rotary encoder 100, a power supply 200, a user interface 300, and a motor driver 400 having the same configurations as those described in the first embodiment.
The brushless DC motor 500 has U1, U2, U3 field coils in series, V1, V2, V3 field coils in series, W1, W2, as a group of field coils of each phase constituting the stator. The W3 coils are connected in series, respectively. One end of each of these three field coils is connected at a neutral point.
 モータドライバ400のモータ駆動信号生成ユニット420は、通常運転モードにおいて、運転指令440と、モータ制御信号(iu, iv, iw)を基に生成された制御信号と、ロータリーエンコーダ100からのA相・B相・Z相に関するシリアル/パラレル信号に基づいて、インバータを駆動し、ブラシレスDCモータ500の運転、例えば正弦波駆動を継続する。 In the normal operation mode, the motor drive signal generation unit 420 of the motor driver 400 has the operation command 440, the control signal generated based on the motor control signal (iu, iv, iw), and the A phase from the rotary encoder 100. The inverter is driven based on the serial / parallel signals related to the B phase and the Z phase, and the operation of the brushless DC motor 500, for example, the sinusoidal drive is continued.
 次に、図12は、第2の実施例における、ブラシレスDCモータ500のドライバ400の処理フローを示す図である。
 最初に、運転指令のデータを取得する(S1202)。ここでも、精度切替回転数Nsは、±40rpmに設定されているものと仮定する。また、不揮発性メモリから、バッテリレスモード情報を取得し、必要な処理を行う(S1204~S1209)。
 運転指令の初期データが補正された後、若しくは、バッテリレスモード時にモータが回転していなかった場合、モータ駆動信号生成ユニット420の高精度駆動信号生成部424が起動され、32Kパルス/回転の高精度アブソリュート駆動信号が生成される。
 すなわち、ブラシレスDCモータ500はアブソリュート信号で駆動されるので、高精度駆動信号生成部424が高精度のアブソリュート信号を、ロータリーエンコーダ100から取得する(S1210)。そして、運転指令とエンコーダで生成された高精度のアブソリュート信号に基づき、32Kパルス/回転のモータ駆動信号を生成し、PWM駆動回路へ出力し、モータを制御する(S1212)。
 切替時点が近いと判定された場合(S1218でYES)、切替準備制御部414は、「制御の切替準備」モードとなり(S1224)、高精度アブソリュート信号生成部1310に加えて、中精度アブソリュート信号生成部1320も動作を開始する。切替時点に到達した場合(S1226でYES)、切替実行部416では、中精度のアブソリュート駆動信号をモータドライバへ出力してモータを制御し、モータの回転数がさらに高くなった場合には、「制御の切替準備」モードが解除され、高精度アブソリュート信号生成部1310における高精度のモータ駆動信号の生成は停止される。
 中精度のモータ駆動信号から高精度のモータ駆動信号への切替についても、同様に、「制御の切替準備」モードを介在させた制御を行う(S1230~S1238~S1212)
Next, FIG. 12 is a diagram showing a processing flow of the driver 400 of the brushless DC motor 500 in the second embodiment.
First, the operation command data is acquired (S1202). Again, it is assumed that the precision switching rotation speed Ns is set to ± 40 rpm. In addition, batteryless mode information is acquired from the non-volatile memory, and necessary processing is performed (S1204 to S1209).
After the initial data of the operation command is corrected, or when the motor is not rotating in the batteryless mode, the high precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated and the 32K pulse / rotation is high. Precision Absolute drive signal is generated.
That is, since the brushless DC motor 500 is driven by the absolute signal, the high-precision drive signal generation unit 424 acquires the high-precision absolute signal from the rotary encoder 100 (S1210). Then, based on the operation command and the high-precision absolute signal generated by the encoder, a 32K pulse / rotation motor drive signal is generated, output to the PWM drive circuit, and the motor is controlled (S1212).
When it is determined that the switching time is near (YES in S1218), the switching preparation control unit 414 enters the "control switching preparation" mode (S1224), and in addition to the high-precision absolute signal generation unit 1310, the medium-precision absolute signal generation The unit 1320 also starts operation. When the switching time is reached (YES in S1226), the switching execution unit 416 outputs a medium-precision absolute drive signal to the motor driver to control the motor, and when the motor rotation speed becomes higher, " The "preparation for switching control" mode is canceled, and the generation of the high-precision motor drive signal in the high-precision absolute signal generation unit 1310 is stopped.
Similarly, for switching from a medium-precision motor drive signal to a high-precision motor drive signal, control is performed via a "control switching preparation" mode (S1230 to S1238 to S1212).
 図13は、第2の実施例における、モータ駆動信号の精度切替の具体的な例を示す図である。ブラシレスDCモータは、32Kパルス/回転の高精度アブソリュート駆動信号で起動される。そして、モータの回転数Nが、精度切替回転数Nsの近傍にある場合、切替準備制御部414が「制御の切替準備」モードとなり、モータ駆動信号生成ユニット420の中精度駆動信号生成部422と高精度駆動信号生成部424の双方が起動され、32Kパルス/回転の高精度アブソリュート駆動信号と4Kパルス/回転の中精度のアブソリュート駆動信号の双方が生成される。そして、モータの回転数Nがさらに高くなると、中精度の駆動信号に基づくPWM信号がPWM駆動回路450へ出力される。 FIG. 13 is a diagram showing a specific example of accuracy switching of the motor drive signal in the second embodiment. The brushless DC motor is started with a high precision absolute drive signal of 32K pulse / rotation. When the motor rotation speed N is in the vicinity of the precision switching rotation speed Ns, the switching preparation control unit 414 enters the "control switching preparation" mode, and the motor drive signal generation unit 420 and the medium precision drive signal generation unit 422 Both of the high-precision drive signal generation unit 424 are activated, and both a high-precision absolute drive signal of 32K pulse / rotation and a medium-precision absolute drive signal of 4K pulse / rotation are generated. Then, when the rotation speed N of the motor becomes higher, the PWM signal based on the medium-precision drive signal is output to the PWM drive circuit 450.
 次に、図14は、ブラシレスDCモータの運転中に停電が発生した場合の、電源200とロータリーエンコーダ100の出力信号と、ブラシレスDCモータ500の駆動信号の関係の一例を示す図である。
 電源が正常な場合、図14の(b)に示したように、エンコーダ出力は、MRセンサユニット110から出力される32Kパルス/回転のA,B,Zアブソリュート信号と、これらの信号に基づいて生成される「(b1)モータ駆動信号」、すなわち、Z相、U相、V相、W相の各信号を含んだ、中精度・高精度信号となっている。この例では、最初のU相信号の立ち上がりと、最初のA相信号の立ち上がりが、マグネット原点位置(Z)に同期しており、さらに、回転軸13の1回転360°(機械角)毎に、Z相信号が設定されている。
 一方、停電が発生した場合、図14の(a)電源電圧に示したように、多回転アブソリュート信号の出力(b1)は停止される。「そして、(b2)パルスカウント/MRセンサ」として示すように、バッテリレスモードに移行し、初期設定条件に基づき、コイル出力からのパルス数と回転方向、MRセンサユニットのアブソリュート/アブソリュート信号のいずれかの信号が、中精度信号として出力される。さらに、計測回転数Cnが所定の計測回転数Cnsに達したら、パルスカウント/MRセンサの機能が停止する。
 この停電が発生した場合のバッテリレスモード情報は、不揮発性メモリに記録され、次回の運転開始度に取得される。
Next, FIG. 14 is a diagram showing an example of the relationship between the output signals of the power supply 200 and the rotary encoder 100 and the drive signal of the brushless DC motor 500 when a power failure occurs during the operation of the brushless DC motor.
When the power supply is normal, as shown in FIG. 14B, the encoder output is based on the 32K pulse / rotation A, B, Z absolute signals output from the MR sensor unit 110 and these signals. The generated "(b1) motor drive signal", that is, a medium-precision and high-precision signal including each signal of Z phase, U phase, V phase, and W phase. In this example, the rising edge of the first U-phase signal and the rising edge of the first A-phase signal are synchronized with the magnet origin position (Z 0 ), and further, every rotation of the rotating shaft 13 360 ° (mechanical angle). A Z-phase signal is set in.
On the other hand, when a power failure occurs, the output (b1) of the multi-rotation absolute signal is stopped, as shown in (a) power supply voltage of FIG. Then, as shown in "(b2) Pulse count / MR sensor", the mode shifts to the batteryless mode, and based on the initial setting conditions, the number of pulses and the rotation direction from the coil output, or the absolute / absolute signal of the MR sensor unit. That signal is output as a medium precision signal. Further, when the measured rotation speed Cn reaches a predetermined measured rotation speed Cns, the function of the pulse count / MR sensor is stopped.
The batteryless mode information when this power failure occurs is recorded in the non-volatile memory and acquired at the next operation start degree.
 このように、本実施例によれば、低速域では高精度駆動信号でモータを制御し、高速域では中精度の駆動信号でモータを制御するので、低速回転域では高精度の位置精度を行いつつ、高速回転時にモータが制御信号に追従しなくなるという課題を解消することができる。ロータリーエンコーダは、インクリメンタル/アブソリュート兼用のため、汎用性に富んでいる。また、小型で安価な平板状磁石を有する汎用型の1個のMRセンサユニットを採用しているにも拘わらず、MRセンサユニットの出力に基づき中精度駆動信号及び高精度駆動信号を生成できるため、小型で、安価なロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することができる。
 また、本実施例によれば、ロータリーエンコーダやモータドライバが初期設定機能を有しているので、モータの種類や用途の如何に拘わらず種々のニーズに応えられる小型で汎用性に富んだ、ロータリーエンコーダ、及びそれを用いたサーボ制御装置を提供することができる。
As described above, according to this embodiment, the motor is controlled by the high-precision drive signal in the low-speed range, and the motor is controlled by the medium-precision drive signal in the high-speed range. Therefore, high-precision position accuracy is performed in the low-speed rotation range. At the same time, it is possible to solve the problem that the motor does not follow the control signal during high-speed rotation. Since the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit. , A small and inexpensive rotary encoder, and a servo control device using the same can be provided.
Further, according to this embodiment, since the rotary encoder and the motor driver have the initial setting function, the rotary is compact and versatile enough to meet various needs regardless of the type and application of the motor. An encoder and a servo control device using the encoder can be provided.
 図15は、本発明の第3の実施例に係る、ステッピングサーボモータの構成例を示す図である。このステッピングサーボモータは、第1の実施例で説明したものと同様の構成の、ロータリーエンコーダ100、電源200、ユーザインタフェース300、及び、モータドライバ400を備えている。
 モータ500は、2相PM型ステッピングモータであり、回転軸510と一体のロータ580と、モータハウジング520内に収容されたステータコア592とを備えている。回転軸510は、左右のエンドブラケット521、524に設けられた1対の軸受け530により保持されている。ロータ580は、ロータ磁石582を備えている。ステータコア592は、円周方向に等角度間隔で配置され、ロータ580に対向する極歯595を有する、第1群の突極(A相用突極)594Aと第2群の突極(B相用突極)594Bからなる16個の突極と、これらの突極に巻回された、第1相のステータコイル(A相用ステータコイル)596Aと、第2相のステータコイル(B相用ステータコイル)596Bとを備えている。
 ロータリーエンコーダ100は、実施例1のロータリーエンコーダ100と同様に、1個のMRセンサユニット110、バッテリレス対応ユニット120、中・高精度アブソリュート信号生成ユニット130、中・高精度インクリメンタル信号生成ユニット140、エンコーダ出力制御ユニット160、不揮発性メモリ180、及び、シリアル/パラレル信号送受信ユニット190を備えている。回転軸510の一端に、1個の平板状磁石1110が固定されている。エンドブラケット521に固定された基板170上の対向する位置に、1対のMRセンサ1122A,1122Bや、1個の大バルクハウゼン効果発電モジュール150が固定されている。
FIG. 15 is a diagram showing a configuration example of a stepping servomotor according to a third embodiment of the present invention. This stepping servomotor includes a rotary encoder 100, a power supply 200, a user interface 300, and a motor driver 400 having the same configurations as those described in the first embodiment.
The motor 500 is a two-phase PM type stepping motor, and includes a rotor 580 integrated with a rotary shaft 510 and a stator core 592 housed in a motor housing 520. The rotating shaft 510 is held by a pair of bearings 530 provided on the left and right end brackets 521 and 524. The rotor 580 includes a rotor magnet 582. The stator cores 592 are arranged at equal intervals in the circumferential direction and have pole teeth 595 facing the rotor 580, the first group salient pole (A phase salient pole) 594A and the second group salient pole (B phase). 16 salient poles consisting of 594B salient poles, a first phase stator coil (A phase stator coil) 596A and a second phase stator coil (for B phase) wound around these salient poles. It is equipped with a stator coil) 596B.
Similar to the rotary encoder 100 of the first embodiment, the rotary encoder 100 includes one MR sensor unit 110, a batteryless compatible unit 120, a medium / high precision absolute signal generation unit 130, and a medium / high precision incremental signal generation unit 140. It includes an encoder output control unit 160, a non-volatile memory 180, and a serial / parallel signal transmission / reception unit 190. One flat plate magnet 1110 is fixed to one end of the rotating shaft 510. A pair of MR sensors 1122A and 1122B and one large Barkhausen effect power generation module 150 are fixed at opposite positions on the substrate 170 fixed to the end bracket 521.
 ステッピングサーボモータの起動に伴い、モータ駆動信号生成ユニット420の高精度駆動信号生成部424が起動され、32Kパルス/回転の高精度インクリメンタル駆動信号が生成される。すなわち、ステッピングサーボモータは、第1の実施例のブラシ付きDCモータと同様に、インクリメンタル信号で駆動される。そのため、高精度駆動信号生成部424は高精度のインクリメンタル信号を、ロータリーエンコーダ100から取得する。ドライバ400のモータ駆動信号生成ユニットは、モータ制御信号、すなわち、A相用ステータコイル596A、B相用ステータコイル596Bに印加する駆動波形の位相カウント情報を決定し、PWM駆動回路に位相カウント情報に対応するPWM指令値を送る。PWM駆動回路はこのPWM指令値に応じて、ステッピングモータのA相用ステータコイル596A、B相用ステータコイル596Bに電圧を印加し、これによってロータ磁石582が回転する。 With the activation of the stepping servomotor, the high-precision drive signal generation unit 424 of the motor drive signal generation unit 420 is activated, and a high-precision incremental drive signal of 32K pulse / rotation is generated. That is, the stepping servomotor is driven by an incremental signal, like the brushed DC motor of the first embodiment. Therefore, the high-precision drive signal generation unit 424 acquires a high-precision incremental signal from the rotary encoder 100. The motor drive signal generation unit of the driver 400 determines the motor control signal, that is, the phase count information of the drive waveform applied to the A-phase stator coil 596A and the B-phase stator coil 596B, and converts the phase count information into the PWM drive circuit. Send the corresponding PWM command value. The PWM drive circuit applies a voltage to the A-phase stator coil 596A and the B-phase stator coil 596B of the stepping motor according to the PWM command value, whereby the rotor magnet 582 rotates.
 ステッピングモータのモータドライバ400は、第1の実施例に関して図10を参照して説明したように、32Kパルス/回転のインクリメンタル高精度駆動信号で駆動を開始する。そして、モータの回転数Nが、精度切替回転数Nsの近傍にある場合、切替準備制御部414が「制御の切替準備」モードとなる。そのため、モータ駆動信号生成ユニット420の中精度駆動信号生成部422と高精度駆動信号生成部424の双方が起動され、32Kパルス/回転の高精度インクリメンタル駆動信号と4Kパルス/回転の中精度インクリメンタル駆動信号の双方が生成される。そして、モータの回転数Nが±40rpm以内の場合、切替実行部416により、高精度のPWM信号がPWM駆動回路へ出力され、モータの回転数Nが±40rpm以外の場合、切替実行部416により、中精度のPWM信号がPWM駆動回路へ出力される。 The motor driver 400 of the stepping motor starts driving with an incremental high-precision drive signal of 32K pulse / rotation as described with reference to FIG. 10 with respect to the first embodiment. Then, when the rotation speed N of the motor is in the vicinity of the precision switching rotation speed Ns, the switching preparation control unit 414 is in the "control switching preparation" mode. Therefore, both the medium-precision drive signal generation unit 422 and the high-precision drive signal generation unit 424 of the motor drive signal generation unit 420 are activated, and the high-precision incremental drive signal of 32K pulse / rotation and the medium-precision incremental drive of 4K pulse / rotation are activated. Both signals are generated. When the motor rotation speed N is within ± 40 rpm, the switching execution unit 416 outputs a high-precision PWM signal to the PWM drive circuit, and when the motor rotation speed N is other than ± 40 rpm, the switching execution unit 416 outputs the high-precision PWM signal. , Medium precision PWM signal is output to the PWM drive circuit.
 本実施例においても、低速域では高精度駆動信号でステッピングモータを制御し、高速域では中精度の駆動信号でステッピングモータを制御するので、高速回転時にステッピングモータが制御信号に追従しなくなるという課題を解消することができる。ロータリーエンコーダは、インクリメンタル/アブソリュート兼用のため、汎用性に富んでいる。また、小型で安価な平板状磁石を有する汎用型の1個のMRセンサユニットを採用しているにも拘わらず、MRセンサユニットの出力に基づき中精度駆動信号及び高精度駆動信号を生成できるため、小型で、安価なロータリーエンコーダ、及びそれを用いたステッピングサーボモータを提供することができる。
 また、本実施例によれば、ロータリーエンコーダやモータドライバが初期設定機能を有しているので、モータの種類や用途の如何に拘わらず種々のニーズに応えられる、小型で汎用性に富んだ、ロータリーエンコーダ、及びそれを用いたステッピングサーボモータを提供することができる。
Also in this embodiment, since the stepping motor is controlled by the high-precision drive signal in the low-speed range and the stepping motor is controlled by the medium-precision drive signal in the high-speed range, there is a problem that the stepping motor does not follow the control signal at the time of high-speed rotation. Can be resolved. Since the rotary encoder is used for both incremental and absolute, it is highly versatile. Further, despite the fact that one general-purpose MR sensor unit having a small and inexpensive flat plate magnet is adopted, a medium-precision drive signal and a high-precision drive signal can be generated based on the output of the MR sensor unit. , Small and inexpensive rotary encoders, and stepping servomotors using the same can be provided.
Further, according to this embodiment, since the rotary encoder and the motor driver have the initial setting function, they are compact and versatile enough to meet various needs regardless of the type and application of the motor. A rotary encoder and a stepping servomotor using the rotary encoder can be provided.
 本発明は、上記実施例で述べた種類のモータ以外の、種々のモータにも適用できる。例えば、同期型モータ、誘導モータ等、種々のモータに広く適用できる。また、これらのモータを用いたサーボ制御装置にも適用できる。 The present invention can be applied to various motors other than the types of motors described in the above examples. For example, it can be widely applied to various motors such as synchronous motors and induction motors. It can also be applied to a servo control device using these motors.
10  サーボ制御装置
100  ロータリーエンコーダ
110  MRセンサユニット
1110  平板状磁石
1122  MRセンサ
120  バッテリレス対応ユニット
130  中・高精度アブソリュート信号生成ユニット
1310  高精度アブソリュート信号生成部
1320  中精度アブソリュート信号生成部
140  中・高精度インクリメンタル信号生成ユニット
1410  高精度インクリメンタル信号生成部
1420  中精度インクリメンタル信号生成部
150  大バルクハウゼン効果発電モジュール
152  複合磁性ワイヤ
154  コイル
157  磁性体円板
160  エンコーダ出力制御ユニット
170  基板
180  不揮発性メモリ
200  電源
210  主バッテリ
220  サブバッテリ
300  ユーザインタフェース
400  モータドライバ
410  制御精度切替予測・制御ユニット
420  モータ駆動信号生成ユニット
430  バッテリレスモード対応ユニット
440  運転指令
500  モータ本体
510  モータの回転軸
520  モータハウジング
530 軸受
10 Servo control device 100 Rotary encoder 110 MR sensor unit 1110 Flat plate magnet 1122 MR sensor 120 Batteryless compatible unit 130 Medium / high precision absolute signal generation unit 1310 High precision absolute signal generation unit 1320 Medium precision absolute signal generation unit 140 Medium / high Precision incremental signal generation unit 1410 High precision incremental signal generation unit 1420 Medium precision incremental signal generation unit 150 Large bulk Hausen effect power generation module 152 Composite magnetic wire 154 Coil 157 Magnetic disk 160 Encoder output control unit 170 Board 180 Non-volatile memory 200 Power supply 210 Main battery 220 Sub battery 300 User interface 400 Motor driver 410 Control accuracy switching prediction / control unit 420 Motor drive signal generation unit 430 Batteryless mode compatible unit 440 Operation command 500 Motor body 510 Motor rotary shaft 520 Motor housing 530 Bearing

Claims (9)

  1.  モータの回転軸の回転・角度の情報を出力する1個のMRセンサユニットを備え、モータの回転・角度情報をデジタル信号として外部に出力するロータリーエンコーダであって、
     前記MRセンサユニットは、ホルダーを介して前記回転軸に固定される1個の平板状磁石と、前記モータに固定される基板の一方の面側でかつ前記平板状磁石に対向する位置に設けられた1対のMRセンサとを備え、
     前記MRセンサユニットは、前記回転軸の回転・角度に関して、インクリメンタル信号とアブソリュート信号を含む1組の信号を出力する機能を備えており、前記1組の信号における前記インクリメンタル信号と前記アブソリュート信号は、前記回転軸の回転・角度に関する精度が互いに異なっており、一方は中精度、他方は高精度の信号であり、
     前記ロータリーエンコーダは、中・高精度アブソリュート信号生成ユニットと、中・高精度インクリメンタル信号生成ユニットとを備え、
     前記中・高精度アブソリュート信号生成ユニットは、前記1組の信号に基づき、中精度のアブソリュート信号及び高精度のアブソリュート信号を生成する機能を有し、
     前記中・高精度インクリメンタル信号生成ユニットは、前記1組の信号に基づき、中精度のインクリメンタル信号及び高精度のインクリメンタル信号を生成する機能を有していることを特徴とするロータリーエンコーダ。
    It is a rotary encoder equipped with one MR sensor unit that outputs the rotation / angle information of the rotation axis of the motor and outputs the rotation / angle information of the motor to the outside as a digital signal.
    The MR sensor unit is provided at a position on one surface side of a substrate fixed to the motor and facing the flat plate magnet, and one flat plate magnet fixed to the rotating shaft via a holder. Equipped with a pair of MR sensors
    The MR sensor unit has a function of outputting a set of signals including an incremental signal and an absolute signal with respect to the rotation / angle of the rotating shaft, and the incremental signal and the absolute signal in the set of signals are The accuracy of rotation and angle of the rotation axis is different from each other, one is a medium accuracy signal and the other is a high accuracy signal.
    The rotary encoder includes a medium / high precision absolute signal generation unit and a medium / high precision incremental signal generation unit.
    The medium / high precision absolute signal generation unit has a function of generating a medium precision absolute signal and a high precision absolute signal based on the set of signals.
    The medium / high precision incremental signal generation unit is a rotary encoder having a function of generating a medium precision incremental signal and a high precision incremental signal based on the set of signals.
  2.  請求項1において、
     前記MRセンサユニットは、前記高精度のアブソリュート信号と、前記中精度のインクリメンタル信号の2系統の信号を出力する機能を備えており、
     前記中・高精度アブソリュート信号生成ユニットは、
     前記高精度のアブソリュート信号に含まれる角度情報と前記中精度のインクリメンタル信号に含まれる位相情報とに基づき、前記高精度のインクリメンタルA、B信号を生成する機能を備え、
     前記中・高精度インクリメンタル信号生成ユニットは、
     前記高精度のアブソリュート信号に含まれる位相情報と前記中精度のインクリメンタル信号に含まれる角度情報とに基づき、前記中精度のアブソリュートA、B、Z信号を生成する機能を備えていることを特徴とするロータリーエンコーダ。
    In claim 1,
    The MR sensor unit has a function of outputting two systems of the high-precision absolute signal and the medium-precision incremental signal.
    The medium / high precision absolute signal generation unit is
    It has a function to generate the high-precision incremental A and B signals based on the angle information included in the high-precision absolute signal and the phase information included in the medium-precision incremental signal.
    The medium- and high-precision incremental signal generation unit is
    It is characterized by having a function of generating the medium-precision absolute A, B, and Z signals based on the phase information included in the high-precision absolute signal and the angle information included in the medium-precision incremental signal. Rotary encoder.
  3.  請求項2において、
     前記中・高精度アブソリュート信号生成ユニットは、前記中精度のアブソリュートA、B、Z信号と、前記MRセンサユニットの出力に基づく前記高精度のアブソリュートA、B、Z信号とを出力する機能を備え、
     前記中・高精度インクリメンタル信号生成ユニットは、前記高精度のインクリメンタルA、B信号と、前記MRセンサユニットの出力に基づく前記中精度のインクリメンタルA、B信号とを出力する機能を備えていることを特徴とするロータリーエンコーダ。
    In claim 2,
    The medium / high precision absolute signal generation unit has a function of outputting the medium precision absolute A, B, Z signals and the high precision absolute A, B, Z signals based on the output of the MR sensor unit. ,
    The medium- and high-precision incremental signal generation unit has a function of outputting the high-precision incremental A and B signals and the medium-precision incremental A and B signals based on the output of the MR sensor unit. Characterized rotary encoder.
  4.  請求項1において、
     エンコーダ出力制御ユニットを備え、
     前記エンコーダ出力制御ユニットは、ユーザインタフェースにより設定された初期設定条件に従って、前記中・高精度アブソリュート信号生成ユニット、及び前記中・高精度インクリメンタル信号生成ユニッの出力情報を生成し不揮発性メモリに記録すると共に、予め設定された条件に従って、前記高精度のアブソリュート信号及び前記中精度のアブソリュート信号と、前記高精度のインクリメンタル信号及び前記中精度のインクリメンタル信号からなる2系統の信号を出力する機能を備えていることを特徴とするロータリーエンコーダ。
    In claim 1,
    Equipped with encoder output control unit
    The encoder output control unit generates output information of the medium / high precision absolute signal generation unit and the medium / high precision incremental signal generation unit according to the initial setting conditions set by the user interface, and records the output information in the non-volatile memory. In addition, it has a function to output two systems of signals including the high-precision absolute signal, the medium-precision absolute signal, the high-precision incremental signal, and the medium-precision incremental signal according to preset conditions. A rotary encoder characterized by being.
  5.  請求項4において、
     前記中・高精度アブソリュート信号生成ユニット、前記中・高精度インクリメンタル信号生成ユニット、及び前記エンコーダ出力制御ユニットは、FPGA若しくはASICにより構成されていることを特徴とするロータリーエンコーダ。
    In claim 4,
    The rotary encoder, wherein the medium / high precision absolute signal generation unit, the medium / high precision incremental signal generation unit, and the encoder output control unit are configured by FPGA or ASIC.
  6.  請求項4において、
     前記平板状磁石は、外径が5.0mm~10.0mmの磁石であり、単発着磁された一対のNSの磁極を有しており、
     前記基板の前記1対のMRセンサが固定されている面とは反対側の面上で、かつ前記MRセンサの背面となる位置に、複合磁性ワイヤ及びコイルを有する大バルクハウゼン効果発電モジュールが固定されており、
     前記大バルクハウゼン効果発電モジュールは、外部電力の供給が失われた時に前記ロータリーエンコーダに電力を供給する機能を有し、
     前記エンコーダ出力制御ユニットは、前記中精度のインクリメンタル信号と前記大バルクハウゼン効果発電モジュールで発生する2パルス/回転のパルス電流の出力を組み合わせて、バッテリレスモード情報を生成する機能を備えていることを特徴とするロータリーエンコーダ。
    In claim 4,
    The flat plate magnet is a magnet having an outer diameter of 5.0 mm to 10.0 mm, and has a pair of single-magnetized NS magnetic poles.
    A large Bulk Hausen effect power generation module having a composite magnetic wire and a coil is fixed on a surface of the substrate opposite to the surface on which the pair of MR sensors are fixed and on the back surface of the MR sensor. Has been
    The large Barkhausen effect power generation module has a function of supplying power to the rotary encoder when the supply of external power is lost.
    The encoder output control unit has a function of generating batteryless mode information by combining the medium-precision incremental signal and the output of a 2-pulse / rotation pulse current generated by the large-bulk Hausen effect power generation module. A rotary encoder featuring.
  7.  ロータリーエンコーダの出力に基づいて、モータ本体の回転を制御するモータドライバを備え、初期設定条件に従って、前記いずれか1組のモータ制御用の信号によりモータを駆動するサーボ制御装置であって、
     前記ロータリーエンコーダは、請求項1に記載の前記ロータリーエンコーダであり、
     前記モータドライバは、前記ロータリーエンコーダが装着されるモータの種類に応じて、前記モータ制御用の信号としてアブソリュート信号とインクリメンタル信号のいずれか一方の信号をエンコーダ出力として取得する機能を有しており、
     前記モータドライバは、制御精度切替予測・制御ユニット及びモータ駆動信号生成ユニットを備えており、
     前記制御精度切替予測・制御ユニットは、前記取得した前記モータ制御用のインクリメンタル信号若しくは前記モータ制御用のアブソリュート信号における、前記高精度のモータ制御用信号と前記中精度のモータ制御用信号を切り替えるタイミングを予測し、
     前記モータ駆動信号生成ユニットは、運転指令に基づき、前記高精度のモータ制御用信号若しくは前記中精度のモータ制御用信号に基づくモータ駆動信号を生成することを特徴とする制御精度切替型サーボ制御装置。
    A servo control device provided with a motor driver that controls the rotation of the motor body based on the output of the rotary encoder, and drives the motor by any one set of motor control signals according to the initial setting conditions.
    The rotary encoder is the rotary encoder according to claim 1.
    The motor driver has a function of acquiring either an absolute signal or an incremental signal as an encoder output as a signal for controlling the motor according to the type of the motor to which the rotary encoder is mounted.
    The motor driver includes a control accuracy switching prediction / control unit and a motor drive signal generation unit.
    The control accuracy switching prediction / control unit switches between the high-precision motor control signal and the medium-precision motor control signal in the acquired incremental signal for motor control or the absolute signal for motor control. Predict and
    The motor drive signal generation unit is a control accuracy switching type servo control device, characterized in that it generates a motor drive signal based on the high-precision motor control signal or the medium-precision motor control signal based on an operation command. ..
  8.  請求項7において、
     前記制御精度切替予測・制御ユニットは、前記モータの回転数Nを取得し、前記運転指令と前記モータの回転数Nとから、前記モータの回転数が精度切替回転数Nsを超える切替時点を予測し、前記切替時点が近いと判定された場合、制御の切替準備モードに移行し、
     前記モータ駆動信号生成ユニットでは、前記切替準備モードにおいて、前記高精度信号と前記中精度信号を同時に生成し、前記切替時点に到達した場合、前記モータ駆動信号の出力を切り替えることを特徴とする制御精度切替型サーボ制御装置。
    In claim 7,
    The control accuracy switching prediction / control unit acquires the rotation speed N of the motor, and predicts the switching time point at which the rotation speed of the motor exceeds the accuracy switching rotation speed Ns from the operation command and the rotation speed N of the motor. If it is determined that the switching time is near, the mode shifts to the control switching preparation mode.
    The motor drive signal generation unit simultaneously generates the high-precision signal and the medium-precision signal in the switching preparation mode, and when the switching time point is reached, the control is characterized in that the output of the motor drive signal is switched. Precision switching type servo control device.
  9.  請求項7において、
     前記ロータリーエンコーダ及び前記モータドライバは、ユーザインタフェースを介して、駆動対象となる前記モータのタイプや仕様を設定可能に構成されていることを特徴とする制御精度切替型サーボ制御装置。
    In claim 7,
    The rotary encoder and the motor driver are controlled precision switching servo control devices, wherein the type and specifications of the motor to be driven can be set via a user interface.
PCT/JP2020/030540 2020-08-11 2020-08-11 Rotary encoder and control accuracy switching type servo control device using same WO2022034629A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/030540 WO2022034629A1 (en) 2020-08-11 2020-08-11 Rotary encoder and control accuracy switching type servo control device using same
JP2021539605A JP6945914B1 (en) 2020-08-11 2020-08-11 Rotary encoder and control accuracy switching servo control device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030540 WO2022034629A1 (en) 2020-08-11 2020-08-11 Rotary encoder and control accuracy switching type servo control device using same

Publications (1)

Publication Number Publication Date
WO2022034629A1 true WO2022034629A1 (en) 2022-02-17

Family

ID=77915180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030540 WO2022034629A1 (en) 2020-08-11 2020-08-11 Rotary encoder and control accuracy switching type servo control device using same

Country Status (2)

Country Link
JP (1) JP6945914B1 (en)
WO (1) WO2022034629A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121415A (en) * 1982-01-14 1983-07-19 Nec Corp Position detector
JPH01153910A (en) * 1987-12-10 1989-06-16 Omron Tateisi Electron Co Speed and angle controller
JPH0545151A (en) * 1991-08-12 1993-02-23 Mitsutoyo Corp Displacement measuring device
JP2011021998A (en) * 2009-07-15 2011-02-03 Canon Inc Encoder signal processor
JP2018183031A (en) * 2017-10-23 2018-11-15 株式会社 五十嵐電機製作所 Controller of dc motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121415A (en) * 1982-01-14 1983-07-19 Nec Corp Position detector
JPH01153910A (en) * 1987-12-10 1989-06-16 Omron Tateisi Electron Co Speed and angle controller
JPH0545151A (en) * 1991-08-12 1993-02-23 Mitsutoyo Corp Displacement measuring device
JP2011021998A (en) * 2009-07-15 2011-02-03 Canon Inc Encoder signal processor
JP2018183031A (en) * 2017-10-23 2018-11-15 株式会社 五十嵐電機製作所 Controller of dc motor

Also Published As

Publication number Publication date
JP6945914B1 (en) 2021-10-06
JPWO2022034629A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP6438176B1 (en) DC motor control device
US10312839B2 (en) Brushless DC motor with control electronics motor assembly
JP4592435B2 (en) Small motor with encoder
JP6291149B1 (en) Brushless DC servo motor control device
US20040174162A1 (en) Angle position detection apparatus
EP3865828A1 (en) Multipurpose rotary encoder
JP6578499B1 (en) General-purpose rotary encoder and servo motor using the same
EP3982089A1 (en) Magnetic sensor system for motor control
JP6339307B1 (en) DC motor controller
JP2007132862A (en) Magnetic encoder
JP6966143B1 (en) Battery-less rotary encoder and servo control device using it
JP6412281B1 (en) Brushless DC servo motor control device
WO2022034629A1 (en) Rotary encoder and control accuracy switching type servo control device using same
JP2006074938A (en) Brushless motor
JP6803627B1 (en) General-purpose rotary encoder
US20190162560A1 (en) Brushless DC Motor and Method for Providing an Angle Signal
JP2012120423A (en) Motor
JP2010098887A (en) Brushless motor
WO2022185547A1 (en) Rotary encoder and servo control device using same
US20120112676A1 (en) Roatry position encoding method and unit
WO2013118161A1 (en) Electric motor
JP2004120933A (en) Brushless motor
JP2001078392A (en) Stepping motor with sensor
EP2427733B1 (en) Rotary position encoding method and unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539605

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949491

Country of ref document: EP

Kind code of ref document: A1