WO2013118161A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2013118161A1
WO2013118161A1 PCT/JP2012/000781 JP2012000781W WO2013118161A1 WO 2013118161 A1 WO2013118161 A1 WO 2013118161A1 JP 2012000781 W JP2012000781 W JP 2012000781W WO 2013118161 A1 WO2013118161 A1 WO 2013118161A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
target
holding member
electric motor
elastic
Prior art date
Application number
PCT/JP2012/000781
Other languages
French (fr)
Japanese (ja)
Inventor
弘文 土井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/000781 priority Critical patent/WO2013118161A1/en
Priority to JP2013557226A priority patent/JP5627804B2/en
Publication of WO2013118161A1 publication Critical patent/WO2013118161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a sensor holding member used in an electric motor including a sensor for controlling the rotational speed.
  • a general three-phase synchronous AC motor creates a magnetic pole in the rotor by a permanent magnet of the stator, and creates a magnetic pole in the stator teeth by a coil disposed between the stator teeth of the stator.
  • the energization direction of the three-phase coils arranged between the stator teeth is switched by a power distribution plate (bus bar), and is switched between the S pole and the N pole.
  • This motor has a structure that controls the rotational speed by reading the rotational position of the target that rotates integrally with the shaft by means of a sensor installed on the outer periphery of the shaft, and Hall sensors that detect the position by magnetic force change are widely used. .
  • a sensor holding member there is, for example, Patent Document 1.
  • a concave portion is formed in the sensor, and a flexible support piece that can be elastically bent is formed on a support ring fixed to the outer periphery of the shaft, and between the support ring and the flexible support piece. The sensor is pushed in, and the convex portion of the flexible support piece is engaged with the concave portion of the sensor in a snap-fit manner.
  • the target in a motor that rotates at high speed, the target must be firmly fixed, and it is difficult to use a magnet as the target. Therefore, by using a large sensor in which a bias magnet is integrated with the Hall sensor, a magnetic material such as iron can be used for the target. Since the bias magnet-integrated sensor is increased in size, strength is required for the fixing method.
  • the sensor 102 was fixed by pouring the filler 101 into the member 100.
  • the holding member 100 is attached to a substrate 104 on the outer periphery of a shaft (not shown), and one target 103 is attached to a shaft (not shown).
  • the holding member 100 must be formed in a box shape so that the filler 101 does not leak out, the holding member 100 is interposed between the target 103 and the sensor 102, and the distance between the target 103 and the sensor 102. There was also a problem that L was far away.
  • This invention has been made to solve the above-described problems, and aims to hold a sensor without using a filler.
  • the electric motor of the present invention has a target that rotates integrally with the shaft, a sensor that is held at a position facing the target, detects the rotational position of the target, and a plurality of elastically deformable elastic holding portions, and the elastic holding portion And a holding member that presses the outer surface of the sensor from a plurality of directions and holds the sensor by elastic force.
  • the filler can be eliminated by holding the sensor by the elastic force of the holding member, and the efficiency of assembly can be improved.
  • the target-facing surface of the sensor can be opened, and the distance between the sensor and the target can be shortened.
  • FIG. 3 is an enlarged external perspective view of the holding member according to the first embodiment.
  • the holding member of Embodiment 1 is shown
  • Fig.4 (a) is a top view
  • FIG.4 (b) is sectional drawing cut
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along the line BB, showing a state in which the holding member of Embodiment 1 holds the sensor.
  • FIG. 3 is an enlarged view of an elastic holding portion of the holding member according to the first embodiment.
  • FIG. 6 is an external perspective view showing a modification of the holding member according to the first embodiment.
  • 8 shows a holding member for an electric motor according to Embodiment 2 of the present invention, in which FIG. 8 (a) is a plan view and FIG. 8 (b) is a cross-sectional view taken along line CC.
  • 9A and 9B show a conventional sensor holding structure, in which FIG. 9A is a plan view and FIG. 9B is a cross-sectional view taken along the line DD.
  • FIG. 1 An electric motor 1 shown in FIG. 1 constitutes a three-phase AC synchronous motor that rotates at high speed, and mainly includes a cylindrical housing 2, a stator portion 3 fixed inside the housing 2, and a rotor that rotates a shaft 4. Part 5 and bus bar part (distribution part) 6 arranged on one end face side of stator part 3.
  • FIG. 2 the top view of the stator part 3 and the rotor part 5 seen from the bus-bar part 6 side is shown. However, the housing 2 and the coil 12 are not shown.
  • the rotor part 5 is configured by laminating electromagnetic steel plates, and has two protrusions protruding outward in the circumferential direction at intervals of 180 degrees, and the protrusions are shifted by 90 degrees in the axial direction of the shaft 4 ( Projections 5a, 5b).
  • the shaft 4 is rotatably supported by bearings 7 and 8 fixed to the housing 2.
  • the rotor part 5 is fixed to the shaft 4, and the rotational force generated in the rotor part 5 is externally output by rotating the shaft 4 integrally with the rotor part 5.
  • the electric motor 1 When the electric motor 1 is applied to an automobile turbocharger, an electric compressor, and the like, the shaft 4 is connected to a rotating shaft of a turbine (so-called impeller), and the electric motor 1 rotationally drives the turbine.
  • the stator unit 3 includes two stator cores 9 and 10 and a magnet 11 disposed between the stator cores 9 and 10.
  • Each of the stator cores 9 and 10 is configured by laminating electromagnetic steel plates in the axial direction of the shaft 4.
  • Each of the stator cores 9 and 10 is formed with a plurality of teeth 9a and 10a protruding from the outside toward the central shaft 4 side, and one U-shaped pair of teeth 9a and 10a overlapping in the axial direction of the shaft 4 is formed.
  • the coil 12 is attached.
  • each coil 12 attached to each tooth 9a, 10a penetrates the bus bar portion 6 and protrudes toward the inverter board 13 side, and the copper plate coil 14 (U phase, V phase, W phase) of the bus bar portion 6 It is connected to the.
  • the copper plate coil 14 is a conductive member molded on the bus bar portion 6.
  • the copper plate coil 14 is annularly arranged along the circumferential direction of the shaft 4 and has an end connected to the inverter board 13.
  • the inverter board 13 converts an external power source (not shown) into an alternating current, and sequentially switches the three phases of the copper plate coil 14 such as the U phase, the V phase, and the W phase based on the position signal input from the sensor 16. Current is passed through 14.
  • the inverter board 13 is attached to the inside of the cover housing 19 and covered with the cover 20.
  • the magnetic flux generated by the magnet 11 magnetized in the axial direction flows out from the teeth 10a of the stator core 10 arranged on the N-pole side of the magnet 11 to the protrusion 5b of the rotor portion 5, and advances through the rotor portion 5 in the axial direction. It becomes a field magnetic flux which comes out from the protrusion 5a on the pole side and flows into the teeth 9a of the stator core 9 arranged on the S pole side of the rotor part 5.
  • the magnetic field force of the magnet 11 acts on the rotor part 5, so that the protrusion 5 b of the rotor part 5 facing the N pole side of the magnet 11 is magnetized to the N pole, and the S pole of the magnet 11.
  • the projecting part 5a of the rotor part 5 facing the side is magnetized to the S pole.
  • a sensor 16 and a target 17 are used for rotation control of the rotor unit 5.
  • One end portion of the shaft 4 protrudes from one end face of the stator portion 3 to the inner circumferential space of the bus bar portion 6, and a target 17 is fixed to the protruding tip by a screw 18.
  • the target 17 is a magnetic material such as iron.
  • the other sensor 16 is a Hall sensor with a built-in bias magnet, and is held by a holding member 15 formed at a position facing the target 17 in the inner space of the bus bar portion 6.
  • the magnetic field generated by the bias magnet changes according to the displacement of the target 17 as the shaft 4 rotates, and the Hall sensor detects the change in the magnetic field and outputs a position signal indicating the rotational position of the shaft 4.
  • FIG. 3 is an enlarged external perspective view of the holding member 15, FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along the line AA.
  • 5A is a plan view showing a state in which the holding member 15 holds the sensor 16
  • FIG. 5B is a cross-sectional view taken along the line BB.
  • the rectangular parallelepiped sensor 16 has a target facing surface 16 a facing the target 17 and a terminal 16 b for electrical connection to the inverter board 13.
  • the holding member 15 is formed of a resin material, and elastic holding portions 21 to 23 that generate an elastic force for holding the sensor 16 and contact portions 24 to 27 that contact the sensor 16 protrude from the bottom surface. ing.
  • a terminal hole 28 through which the terminal 16b passes is formed on the bottom surface.
  • the upper surface of the holding member 15 is open, and the sensor 16 is inserted from the open end while the elastic holding portions 21 to 23 are elastically deformed and expanded. Note that the elastic holding portions 21 to 23 project in three directions excluding the direction facing the target 17 so as not to cover the target facing surface 16a of the sensor 16.
  • FIG. 6 shows an enlarged view of the elastic holding portion 21.
  • a claw 21a is formed at the tip of the elastic holding part 21, and a tapered surface 21b is formed at the lower part of the claw 21a.
  • the axial component force F1 that presses the sensor 16 toward the bottom surface side and the lateral component force that moves the sensor 16 toward the center side. F2 can be obtained simultaneously.
  • the sensor 16 that has received the lateral component force F ⁇ b> 2 from the claw 21 a of the elastic holding portion 21 is pressed against the abutting portions 26 and 27 that are provided on the opposite side of the elastic holding portion 21, and the elastic holding portion 21. And the abutting portions 26 and 27. Further, since the axial component force F ⁇ b> 1 is received from the tapered surface 21 b, the sensor 16 does not come out to the open top end of the holding member 15.
  • the elastic holding portions 22 and 23 form claws and a tapered surface to simultaneously generate the axial component force F1 and the lateral component force F2.
  • the sensor 16 is sandwiched between the elastic holding part 22 and the opposing contact parts 24 and 27, and the sensor 16 is sandwiched between the elastic holding part 23 and the opposing contact parts 24 and 25.
  • the senor 16 can be securely held by the elastic force of the elastic holding portions 21 to 23. Further, the sensor 16 is applied to each tapered surface to absorb the dimensional variation of the sensor 16, and the position is held by pressing.
  • the elastic holding portions 21 to 23 on the holding member 15 and holding the sensor 16 by its elasticity, it is not necessary to use a filler as in the prior art described above. Therefore, it is not necessary to form the holding member 15 in a box shape so that the filler does not leak out. Accordingly, the target facing surface 16a of the sensor 16 can be opened by opening the target facing surface of the holding member 15, and the distance between the sensor 16 and the target 17 can be shortened.
  • the contact parts 24 and 27 are required so that the sensor 16 may not fall out from the target facing surface opening of the holding member 15, the contact parts 25 and 26 may be omitted.
  • the holding member 15 by forming the holding member 15 with a resin material, it can be formed integrally with the bus bar portion 6 made of the same resin material. Since the sensor 16 can be held without adding the holding member 15, the assemblability is improved. 1 and 3, the holding member 15 has a shape protruding from the inner peripheral surface of the bus bar portion 6, but is not limited thereto.
  • a recess 6a may be formed on the inner peripheral surface of the bus bar portion 6 as shown in FIG. 7, and the holding member 15 may be formed so as to be accommodated in the recess 6a, or a part of the holding member 15 may be accommodated in the recess 6a. You may form so that the remaining part may protrude.
  • the holding member 15 may be formed alone. In this case, for example, as shown in FIG. 4 and FIG. 5, an adhesive portion 29 having a shape protruding outward from the bottom surface of the holding member 15 is formed, and an adhesive is applied.
  • the holding member 15 is bonded and fixed to ().
  • a board dedicated to the sensor 16 is added during this period.
  • the holding member 15 may be attached to the substrate. Thereby, the terminal 16b can be shortened and the vibration resistance can be improved.
  • the holding member 15 is not limited to the bus bar portion 6 and the inverter board 13 (or the board dedicated to the sensor 16), but may be attached to the housing 2 or the like.
  • the electric motor 1 includes the target 17 that rotates integrally with the shaft 4, the sensor 16 that is held at a position facing the target 17 and detects the rotational position of the target 17, and elastic deformation.
  • a plurality of possible elastic holding portions 21 to 23, and the elastic holding portions 21 to 23 press the outer surface of the sensor 16 from a plurality of directions, and the holding member 15 holds the sensor 16 by elastic force. Configured. For this reason, it becomes possible to abolish the filler by holding the sensor 16 by the elastic force of the holding member 15, and the assembly efficiency can be improved.
  • the elastic holding portions 21 to 23 are formed on the surface excluding the target facing surface 16a of the sensor 16, and the holding member 15 is thus formed.
  • the target-facing surface can be configured to open. Thereby, the distance between a sensor and a target can be shortened.
  • each of the elastic holding portions 21 to 23 is configured to have a tapered surface at a portion that presses the outer surface of the sensor 16. For this reason, the sensor 16 can be fixed by causing the component force F1 in the axial direction that presses the sensor 16 to the bottom side and the component force F2 in the lateral direction that moves the sensor 16 toward the center simultaneously.
  • the holding member 15 is made of a resin material, and this holding member 15 is opposed to the target 17 on the inner peripheral side of the bus bar portion 6 also made of the resin material. It comprised so that it might comprise integrally in a position. For this reason, it is not necessary to install the holding member 15 when assembling the electric motor 1, and the assemblability is improved.
  • the holding member 15 may be configured to be attached to the inverter board 13 or a board dedicated to the bus bar portion 6, and in this case, the terminal 16 b of the sensor 16 can be shortened, so that vibration resistance can be improved. is there.
  • FIG. FIG. 8A is a plan view of the holding member 15 extracted from the electric motor 1 according to Embodiment 2
  • FIG. 8B is a cross-sectional view cut along the CC line.
  • the holding member 15 is formed of a resin material in the first embodiment
  • a part of the holding member 15 is formed of a metal plate in the second embodiment. 8 that are the same as or equivalent to those in FIGS. 1 to 7 are given the same reference numerals, and descriptions thereof are omitted.
  • the elastic holding portions 21 to 23 are made of a metal plate.
  • the elastic holding portions 21 to 23 of the metal plate can hold the sensor 16 with the elastic force generated in the metal plate even when the elastic holding portions 21 to 23 of the resin material exceed the allowable stress of the resin in size.
  • the elastic holding portions 21 to 23 of the metal plate are integrated with the resin material 30 by insert molding, or integrated with screws or screws for electrical insulation.
  • the metal plate elastic holding portions 21 to 23 may be directly screwed or screwed to the inverter board 13 (or the board dedicated to the sensor 16), or the metal plate elastic holding portions 21 to 23 may be connected to the bus bar portion 6. And may be integrally molded.
  • resin parts or metal plate contact portions 24 and 27 are formed so that the sensor 16 does not fall out of the target-facing surface opening of the holding member 15.
  • the contact portions 25 and 26 may be formed in the same manner as in the first embodiment.
  • the elastic holding portions 21 to 23 are made of metal plates, a large-sized sensor 16 can be held and the versatility of the holding member 15 is improved.
  • the holding member 15 has been described by taking the rectangular parallelepiped sensor 16 as an example, but it goes without saying that the sensor 16 having a shape other than the rectangular parallelepiped can be held.
  • the sensor 16 having a shape other than the rectangular parallelepiped can be held.
  • the taper surfaces of the elastic holding portions 21 to 23 can be applied to the outer surface of the sensor 16 and held by elastic force.
  • the Hall sensor which incorporated the bias magnet was mentioned as an example as the sensor 16, a Hall sensor single-piece
  • the electric motor according to the present invention presses the outer surface of the sensor from a plurality of directions with a plurality of elastic holding portions and holds the sensor by elastic force. Suitable for use.

Abstract

A holding member (15) has elastic holding sections (21-23) in three directions except where a target-facing surface (16a) of a sensor (16) is present. The outer surfaces of the sensor (16) are pressed by the elastic holding sections (21-23) so that the sensor is held by means of an elastic force.

Description

電動機Electric motor
 この発明は、回転数制御のためのセンサを備えた電動機に用いる、当該センサの保持部材に関する。 The present invention relates to a sensor holding member used in an electric motor including a sensor for controlling the rotational speed.
 一般的な3相シンクロナス交流モータは、固定子の永久磁石により回転子に磁極を作り出し、固定子のステータティース間に配置されたコイルによりステータティースに磁極を作り出す。ステータティース間に配置された3相のコイルは配電板(バスバー)により通電方向が切り替えられ、S極とN極に切り替わる。3相のコイルの通電方向を順次切り替えることにより、各ステータティースの極性が回転移動していき、磁気作用により回転子が回転する。 A general three-phase synchronous AC motor creates a magnetic pole in the rotor by a permanent magnet of the stator, and creates a magnetic pole in the stator teeth by a coil disposed between the stator teeth of the stator. The energization direction of the three-phase coils arranged between the stator teeth is switched by a power distribution plate (bus bar), and is switched between the S pole and the N pole. By sequentially switching the energizing directions of the three-phase coils, the polarity of each stator tooth is rotated and the rotor is rotated by a magnetic action.
 本モータは、シャフト外周に設置されたセンサにより、シャフトと一体に回転するターゲットの回転位置を読み取って回転数制御を行う構造であり、磁力変化により位置を検出するホールセンサが広く使用されている。センサの保持部材としては、例えば特許文献1がある。この特許文献1では、センサに凹部を形成すると共に、シャフト外周に固定された支持環体には弾性的に撓み得る可撓支持片を形成し、この支持環体と可撓支持片との間にセンサを押し込み、センサの凹部に可撓支持片の凸部をスナップフィット形態で係合させている。 This motor has a structure that controls the rotational speed by reading the rotational position of the target that rotates integrally with the shaft by means of a sensor installed on the outer periphery of the shaft, and Hall sensors that detect the position by magnetic force change are widely used. . As a sensor holding member, there is, for example, Patent Document 1. In this Patent Document 1, a concave portion is formed in the sensor, and a flexible support piece that can be elastically bent is formed on a support ring fixed to the outer periphery of the shaft, and between the support ring and the flexible support piece. The sensor is pushed in, and the convex portion of the flexible support piece is engaged with the concave portion of the sensor in a snap-fit manner.
 他方、高速回転するモータでは、ターゲットは強固に固定されなければならず、ターゲットとしてマグネットを使用することが困難である。そこで、ホールセンサにバイアスマグネットが一体化された大型なセンサを使用することにより、ターゲットに鉄などの磁性体を使用できるよう構成されている。バイアスマグネット一体センサが大型化することにより、その固定方法にも強度が要求されるため、例えば図9(a)の平面図および図9(b)の断面図に示すように、箱型の保持部材100に充填剤101を流し込んでセンサ102を固定していた。この保持部材100は、不図示のシャフト外周の基板104に取り付けられ、一方のターゲット103は不図示のシャフトに取り付けられる。 On the other hand, in a motor that rotates at high speed, the target must be firmly fixed, and it is difficult to use a magnet as the target. Therefore, by using a large sensor in which a bias magnet is integrated with the Hall sensor, a magnetic material such as iron can be used for the target. Since the bias magnet-integrated sensor is increased in size, strength is required for the fixing method. For example, as shown in the plan view of FIG. 9A and the cross-sectional view of FIG. The sensor 102 was fixed by pouring the filler 101 into the member 100. The holding member 100 is attached to a substrate 104 on the outer periphery of a shaft (not shown), and one target 103 is attached to a shaft (not shown).
特開2000-221204号公報JP 2000-221204 A
 上記特許文献1の保持構造の場合、センサに凹部を形成する必要があるため、汎用性が乏しいという課題があった。また、凹凸の係合一箇所でセンサを保持する構造のため、大型のセンサでは強度不足が懸念される。 In the case of the holding structure of the above-mentioned Patent Document 1, there is a problem that versatility is poor because it is necessary to form a recess in the sensor. In addition, since the sensor is held at one place of the concave and convex portions, there is a concern that the strength of the large sensor is insufficient.
 他方、充填剤101を使用する場合は、その硬化に時間を要し、かつ、充填剤101の種類によっては加熱する必要があるものも有り、組み立て時間がかかり効率が悪いという課題があった。また、充填剤101が漏れ出ないように保持部材100を箱型に形成しなければならず、ターゲット103とセンサ102の間に保持部材100が介在し、ターゲット103とセンサ102との間の距離Lが遠くなるという課題もあった。 On the other hand, when the filler 101 is used, it takes a long time to cure, and depending on the type of the filler 101, there are some cases where heating is required, and there is a problem that the assembly time is long and the efficiency is low. Further, the holding member 100 must be formed in a box shape so that the filler 101 does not leak out, the holding member 100 is interposed between the target 103 and the sensor 102, and the distance between the target 103 and the sensor 102. There was also a problem that L was far away.
 この発明は、上記のような課題を解決するためになされたもので、充填剤を使用せずにセンサを保持することを目的とする。 This invention has been made to solve the above-described problems, and aims to hold a sensor without using a filler.
 この発明の電動機は、シャフトと一体に回転するターゲットと、ターゲットに対向する位置に保持され、ターゲットの回転位置を検出するセンサと、弾性変形可能な弾性保持部を複数有し、当該弾性保持部でセンサの外表面を複数の方向から押圧し、弾性力によりセンサを保持する保持部材とを備えるものである。 The electric motor of the present invention has a target that rotates integrally with the shaft, a sensor that is held at a position facing the target, detects the rotational position of the target, and a plurality of elastically deformable elastic holding portions, and the elastic holding portion And a holding member that presses the outer surface of the sensor from a plurality of directions and holds the sensor by elastic force.
 この発明によれば、保持部材の弾性力によりセンサを保持することで充填剤の廃止が可能となり、組み立ての効率を向上することができる。また、充填剤が漏れ出ないように保持部材を箱型に形成する必要がないので、センサのターゲット対向面を開口することができ、センサとターゲットの間の距離を短くすることができる。 According to the present invention, the filler can be eliminated by holding the sensor by the elastic force of the holding member, and the efficiency of assembly can be improved. In addition, since it is not necessary to form the holding member in a box shape so that the filler does not leak out, the target-facing surface of the sensor can be opened, and the distance between the sensor and the target can be shortened.
この発明の実施の形態1に係る電動機の構成を示す断面図である。It is sectional drawing which shows the structure of the electric motor which concerns on Embodiment 1 of this invention. 実施の形態1に係る電動機の回転動作を説明する図である。It is a figure explaining rotation operation of the electric motor concerning Embodiment 1. FIG. 実施の形態1の保持部材を拡大した外観斜視図である。FIG. 3 is an enlarged external perspective view of the holding member according to the first embodiment. 実施の形態1の保持部材を示し、図4(a)は平面図、図4(b)はAA線に沿って切断した断面図である。The holding member of Embodiment 1 is shown, Fig.4 (a) is a top view, FIG.4 (b) is sectional drawing cut | disconnected along the AA line. 実施の形態1の保持部材がセンサを保持した状態を示し、図5(a)は平面図、図5(b)はBB線に沿って切断した断面図である。FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line BB, showing a state in which the holding member of Embodiment 1 holds the sensor. 実施の形態1の保持部材の弾性保持部を拡大した図である。FIG. 3 is an enlarged view of an elastic holding portion of the holding member according to the first embodiment. 実施の形態1の保持部材の変形例を示す外観斜視図である。FIG. 6 is an external perspective view showing a modification of the holding member according to the first embodiment. この発明の実施の形態2に係る電動機の保持部材を示し、図8(a)は平面図、図8(b)はCC線に沿って切断した断面図である。8 shows a holding member for an electric motor according to Embodiment 2 of the present invention, in which FIG. 8 (a) is a plan view and FIG. 8 (b) is a cross-sectional view taken along line CC. 従来のセンサ保持構造を示し、図9(a)は平面図、図9(b)はDD線に沿って切断した断面図である。9A and 9B show a conventional sensor holding structure, in which FIG. 9A is a plan view and FIG. 9B is a cross-sectional view taken along the line DD.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示す電動機1は、高速回転する3相交流シンクロナスモータを構成し、主に、円筒状のハウジング2と、ハウジング2の内部に固定されたステータ部3と、シャフト4を回転させるロータ部5と、ステータ部3の一方端面側に配置されたバスバー部(配電部)6とを備える。図2に、バスバー部6側から見たステータ部3とロータ部5の平面図を示す。ただし、ハウジング2およびコイル12等は図示を省略する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
An electric motor 1 shown in FIG. 1 constitutes a three-phase AC synchronous motor that rotates at high speed, and mainly includes a cylindrical housing 2, a stator portion 3 fixed inside the housing 2, and a rotor that rotates a shaft 4. Part 5 and bus bar part (distribution part) 6 arranged on one end face side of stator part 3. In FIG. 2, the top view of the stator part 3 and the rotor part 5 seen from the bus-bar part 6 side is shown. However, the housing 2 and the coil 12 are not shown.
 ロータ部5は電磁鋼板を積層して構成され、周方向外側に突出する突部を180度間隔に2箇所形成し、シャフト4の軸方向の途中で突部を90度ずらした状態にする(突部5a,5b)。シャフト4は、ハウジング2に固定された軸受け7,8によって回転自在に支持されている。このシャフト4にロータ部5が固定され、ロータ部5と一体にシャフト4を回転させることにより、ロータ部5に発生した回転力を外部出力する。電動機1を自動車用ターボチャージャおよび電動コンプレッサ等に適用する場合、シャフト4をタービン(いわゆるインペラ)の回転軸に連結して、電動機1によりタービンを回転駆動する。 The rotor part 5 is configured by laminating electromagnetic steel plates, and has two protrusions protruding outward in the circumferential direction at intervals of 180 degrees, and the protrusions are shifted by 90 degrees in the axial direction of the shaft 4 ( Projections 5a, 5b). The shaft 4 is rotatably supported by bearings 7 and 8 fixed to the housing 2. The rotor part 5 is fixed to the shaft 4, and the rotational force generated in the rotor part 5 is externally output by rotating the shaft 4 integrally with the rotor part 5. When the electric motor 1 is applied to an automobile turbocharger, an electric compressor, and the like, the shaft 4 is connected to a rotating shaft of a turbine (so-called impeller), and the electric motor 1 rotationally drives the turbine.
 ステータ部3は、2個のステータコア9,10と、このステータコア9,10の間に配置されたマグネット11とから構成される。ステータコア9,10はそれぞれ、電磁鋼板をシャフト4の軸方向に積層して構成する。このステータコア9,10それぞれには、外側から中央のシャフト4側へ突出するティース9a,10aが複数形成され、シャフト4の軸方向に重なる1組のティース9a,10aに1個のU字状のコイル12が装着される。 The stator unit 3 includes two stator cores 9 and 10 and a magnet 11 disposed between the stator cores 9 and 10. Each of the stator cores 9 and 10 is configured by laminating electromagnetic steel plates in the axial direction of the shaft 4. Each of the stator cores 9 and 10 is formed with a plurality of teeth 9a and 10a protruding from the outside toward the central shaft 4 side, and one U-shaped pair of teeth 9a and 10a overlapping in the axial direction of the shaft 4 is formed. The coil 12 is attached.
 各ティース9a,10aに装着された各コイル12の一端部は、バスバー部6を貫通してインバータ基板13側へ突出しており、バスバー部6の銅板コイル14(U相、V相、W相)に接続されている。この銅板コイル14はバスバー部6にモールドされた導電部材であって、シャフト4の周方向に沿って環状に配置されて端部がインバータ基板13に接続されている。インバータ基板13は、外部電源(不図示)を交流電流に変換し、センサ16から入力される位置信号に基づいて銅板コイル14のU相、V相、W相の3相を順次切り替えて銅板コイル14に電流を流す。
 このインバータ基板13は、カバーハウジング19の内部に取り付けられ、カバー20に被覆されている。
One end of each coil 12 attached to each tooth 9a, 10a penetrates the bus bar portion 6 and protrudes toward the inverter board 13 side, and the copper plate coil 14 (U phase, V phase, W phase) of the bus bar portion 6 It is connected to the. The copper plate coil 14 is a conductive member molded on the bus bar portion 6. The copper plate coil 14 is annularly arranged along the circumferential direction of the shaft 4 and has an end connected to the inverter board 13. The inverter board 13 converts an external power source (not shown) into an alternating current, and sequentially switches the three phases of the copper plate coil 14 such as the U phase, the V phase, and the W phase based on the position signal input from the sensor 16. Current is passed through 14.
The inverter board 13 is attached to the inside of the cover housing 19 and covered with the cover 20.
 ここで、電動機1の動作概略を説明する。
 軸方向に着磁されたマグネット11による磁束は、マグネット11のN極側に配置されたステータコア10のティース10aからロータ部5の突部5bへ流れ出て、ロータ部5を軸方向に進んでS極側にある突部5aから出て、ロータ部5のS極側に配置されたステータコア9のティース9aへ流れ入る界磁磁束となる。このように、マグネット11の界磁磁気力がロータ部5に作用することで、マグネット11のN極側に対面するロータ部5の突部5bをN極に着磁し、マグネット11のS極側に対面するロータ部5の突部5aをS極に着磁する。バスバー部6の銅板コイル14を経由してU字のコイル12に電流が流れると、流れた電流の向きに応じてステータコア9,10の各ティース9a,10aが着磁して回転磁界が生じ、トルクが発生する。コイル12に流す電流の向きを順次切り替えることにより、図2(a)~図2(c)のように各ティース9a,10aのNS各極性が回転移動していき、磁気作用によりロータ部5が回転する。
Here, an outline of the operation of the electric motor 1 will be described.
The magnetic flux generated by the magnet 11 magnetized in the axial direction flows out from the teeth 10a of the stator core 10 arranged on the N-pole side of the magnet 11 to the protrusion 5b of the rotor portion 5, and advances through the rotor portion 5 in the axial direction. It becomes a field magnetic flux which comes out from the protrusion 5a on the pole side and flows into the teeth 9a of the stator core 9 arranged on the S pole side of the rotor part 5. In this way, the magnetic field force of the magnet 11 acts on the rotor part 5, so that the protrusion 5 b of the rotor part 5 facing the N pole side of the magnet 11 is magnetized to the N pole, and the S pole of the magnet 11. The projecting part 5a of the rotor part 5 facing the side is magnetized to the S pole. When a current flows through the U-shaped coil 12 via the copper plate coil 14 of the bus bar portion 6, the teeth 9 a and 10 a of the stator cores 9 and 10 are magnetized according to the direction of the flowing current to generate a rotating magnetic field, Torque is generated. By sequentially switching the direction of the current flowing through the coil 12, the NS polarities of the teeth 9a and 10a rotate and move as shown in FIGS. 2 (a) to 2 (c). Rotate.
 この電動機1では、ロータ部5の回転制御のために、センサ16およびターゲット17を使用する。シャフト4の一端部は、ステータ部3の一方端面からバスバー部6の内周側空間へ突出し、この突出した先端にターゲット17がネジ18によって固定されている。ターゲット17は鉄などの磁性材とする。他方のセンサ16はバイアスマグネットを内蔵したホールセンサであり、バスバー部6の内周側空間であってターゲット17に対向する位置に形成された保持部材15により保持されている。バイアスマグネットの発生する磁界が、シャフト4の回転に伴うターゲット17の変位に応じて変化し、ホールセンサがその磁界の変化を検出して、シャフト4の回転位置を示す位置信号を出力する。 In this electric motor 1, a sensor 16 and a target 17 are used for rotation control of the rotor unit 5. One end portion of the shaft 4 protrudes from one end face of the stator portion 3 to the inner circumferential space of the bus bar portion 6, and a target 17 is fixed to the protruding tip by a screw 18. The target 17 is a magnetic material such as iron. The other sensor 16 is a Hall sensor with a built-in bias magnet, and is held by a holding member 15 formed at a position facing the target 17 in the inner space of the bus bar portion 6. The magnetic field generated by the bias magnet changes according to the displacement of the target 17 as the shaft 4 rotates, and the Hall sensor detects the change in the magnetic field and outputs a position signal indicating the rotational position of the shaft 4.
 ここで、保持部材15の詳細を説明する。
 図3は保持部材15を拡大した外観斜視図、図4(a)は平面図、図4(b)はAA線に沿って切断した断面図である。図5(a)は、保持部材15がセンサ16を保持した状態を示す平面図、図5(b)はBB線に沿って切断した断面図である。直方体状のセンサ16は、ターゲット17に向き合うターゲット対向面16aと、インバータ基板13に電気的接続するための端子16bとを有している。
Here, details of the holding member 15 will be described.
3 is an enlarged external perspective view of the holding member 15, FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along the line AA. 5A is a plan view showing a state in which the holding member 15 holds the sensor 16, and FIG. 5B is a cross-sectional view taken along the line BB. The rectangular parallelepiped sensor 16 has a target facing surface 16 a facing the target 17 and a terminal 16 b for electrical connection to the inverter board 13.
 保持部材15は、樹脂材で形成されており、センサ16を保持するための弾性力を発生する弾性保持部21~23と、センサ16に当接する当て部24~27とが底面に突設されている。また、この底面には端子16bを貫通させる端子穴28が形成されている。保持部材15の上面は開放されており、この開放端から、弾性保持部21~23を弾性変形させて押し広げながらセンサ16を挿入する。なお、センサ16のターゲット対向面16aを被覆しないように、弾性保持部21~23を、ターゲット17に向き合う方向を除く3方向に突設する。 The holding member 15 is formed of a resin material, and elastic holding portions 21 to 23 that generate an elastic force for holding the sensor 16 and contact portions 24 to 27 that contact the sensor 16 protrude from the bottom surface. ing. In addition, a terminal hole 28 through which the terminal 16b passes is formed on the bottom surface. The upper surface of the holding member 15 is open, and the sensor 16 is inserted from the open end while the elastic holding portions 21 to 23 are elastically deformed and expanded. Note that the elastic holding portions 21 to 23 project in three directions excluding the direction facing the target 17 so as not to cover the target facing surface 16a of the sensor 16.
 図6に、弾性保持部21の拡大図を示す。弾性保持部21の先端には爪21aが形成され、爪21aの下部にはテーパ面21bが形成されている。センサ16の上端部外表面に爪21aを係止してテーパ面21bを当てることにより、センサ16を底面側へ押さえる軸方向の分力F1と、センサ16を中央側に寄せる横方向の分力F2とを同時に得ることができる。弾性保持部21の爪21aから横方向の分力F2を受けたセンサ16は、弾性保持部21の対向側に突設された当て部26,27に押し当てられた状態となり、弾性保持部21と当て部26,27とで挟持される。また、テーパ面21bから軸方向の分力F1を受けているため、センサ16が保持部材15の上面開放端へ抜けることもない。 FIG. 6 shows an enlarged view of the elastic holding portion 21. A claw 21a is formed at the tip of the elastic holding part 21, and a tapered surface 21b is formed at the lower part of the claw 21a. By engaging the claw 21a with the outer surface of the upper end portion of the sensor 16 and applying the tapered surface 21b, the axial component force F1 that presses the sensor 16 toward the bottom surface side and the lateral component force that moves the sensor 16 toward the center side. F2 can be obtained simultaneously. The sensor 16 that has received the lateral component force F <b> 2 from the claw 21 a of the elastic holding portion 21 is pressed against the abutting portions 26 and 27 that are provided on the opposite side of the elastic holding portion 21, and the elastic holding portion 21. And the abutting portions 26 and 27. Further, since the axial component force F <b> 1 is received from the tapered surface 21 b, the sensor 16 does not come out to the open top end of the holding member 15.
 弾性保持部22,23も同様に爪およびテーパ面を形成して、軸方向の分力F1および横方向の分力F2を同時に生じさせる。そして、弾性保持部22とその対向側の当て部24,27とでセンサ16を挟持すると共に、弾性保持部23とその対向側の当て部24,25とでセンサ16を挟持する。 Similarly, the elastic holding portions 22 and 23 form claws and a tapered surface to simultaneously generate the axial component force F1 and the lateral component force F2. The sensor 16 is sandwiched between the elastic holding part 22 and the opposing contact parts 24 and 27, and the sensor 16 is sandwiched between the elastic holding part 23 and the opposing contact parts 24 and 25.
 これにより、弾性保持部21~23の弾性力によりセンサ16を確実に保持できる。また、センサ16を各テーパ面に当てることでセンサ16の寸法ばらつきを吸収し、かつ、押さえ付けることで位置を保持している。 Thereby, the sensor 16 can be securely held by the elastic force of the elastic holding portions 21 to 23. Further, the sensor 16 is applied to each tapered surface to absorb the dimensional variation of the sensor 16, and the position is held by pressing.
 また、保持部材15に弾性保持部21~23を形成し、その弾性によりセンサ16を保持することにより、先立って説明した従来例のように充填剤を使用する必要がない。そのため、充填剤が漏れ出ないように保持部材15を箱型に形成する必要もない。よって、保持部材15のターゲット対向面を開口してセンサ16のターゲット対向面16aを開放することができるようになり、センサ16とターゲット17の間の距離を短くすることが可能となる。 Further, by forming the elastic holding portions 21 to 23 on the holding member 15 and holding the sensor 16 by its elasticity, it is not necessary to use a filler as in the prior art described above. Therefore, it is not necessary to form the holding member 15 in a box shape so that the filler does not leak out. Accordingly, the target facing surface 16a of the sensor 16 can be opened by opening the target facing surface of the holding member 15, and the distance between the sensor 16 and the target 17 can be shortened.
 なお、保持部材15のターゲット対向面開口からセンサ16が抜け落ちないよう、当て部24,27は必要であるが、当て部25,26は省略しても構わない。 In addition, although the contact parts 24 and 27 are required so that the sensor 16 may not fall out from the target facing surface opening of the holding member 15, the contact parts 25 and 26 may be omitted.
 また、保持部材15を樹脂材で形成することにより、同じ樹脂材のバスバー部6と一体で形成することが可能となる。保持部材15を追加することなくセンサ16を保持できるので、組み立て性が向上する。
 なお、図1および図3では、保持部材15を、バスバー部6の内周面から突出した形状にしたが、これに限定されるものではない。例えば図7のようにバスバー部6の内周面に凹部6aを形成して、この凹部6aに収まるように保持部材15を形成してもよいし、保持部材15の一部が凹部6aに収まり残りの部分が突出するように形成してもよい。
Further, by forming the holding member 15 with a resin material, it can be formed integrally with the bus bar portion 6 made of the same resin material. Since the sensor 16 can be held without adding the holding member 15, the assemblability is improved.
1 and 3, the holding member 15 has a shape protruding from the inner peripheral surface of the bus bar portion 6, but is not limited thereto. For example, a recess 6a may be formed on the inner peripheral surface of the bus bar portion 6 as shown in FIG. 7, and the holding member 15 may be formed so as to be accommodated in the recess 6a, or a part of the holding member 15 may be accommodated in the recess 6a. You may form so that the remaining part may protrude.
 あるいは、保持部材15を単独で形成してもよい。この場合、例えば図4および図5のように保持部材15の底面から外側へ突出した形状の接着部29を形成して、接着剤を塗布するなどし、インバータ基板13(またはセンサ16専用の基板)に保持部材15を接着固定する。
 また例えば、図1のようにインバータ基板13とセンサ16の間の距離が遠く、センサ16の端子16bが長くなり耐振性に懸念があるような場合には、この間にセンサ16専用の基板を追加し、保持部材15をこの基板に取り付けてもよい。これにより、端子16bを短くすることができ、耐振性の向上が可能である。
 また、保持部材15を、バスバー部6およびインバータ基板13(またはセンサ16専用の基板)に限らず、ハウジング2等に取り付けてもよい。
Alternatively, the holding member 15 may be formed alone. In this case, for example, as shown in FIG. 4 and FIG. 5, an adhesive portion 29 having a shape protruding outward from the bottom surface of the holding member 15 is formed, and an adhesive is applied. The holding member 15 is bonded and fixed to ().
In addition, for example, when the distance between the inverter board 13 and the sensor 16 is long as shown in FIG. 1 and the terminal 16b of the sensor 16 becomes long and there is a concern about vibration resistance, a board dedicated to the sensor 16 is added during this period. The holding member 15 may be attached to the substrate. Thereby, the terminal 16b can be shortened and the vibration resistance can be improved.
Further, the holding member 15 is not limited to the bus bar portion 6 and the inverter board 13 (or the board dedicated to the sensor 16), but may be attached to the housing 2 or the like.
 以上より、実施の形態1によれば、電動機1は、シャフト4と一体に回転するターゲット17と、ターゲット17に対向する位置に保持されてターゲット17の回転位置を検出するセンサ16と、弾性変形可能な複数の弾性保持部21~23を有し、これら弾性保持部21~23でセンサ16の外表面を複数の方向から押圧し、弾性力によりセンサ16を保持する保持部材15とを備えるように構成した。このため、保持部材15の弾性力によりセンサ16を保持することで充填剤の廃止が可能となり、組み立ての効率を向上することができる。
 また、充填剤を漏れ出ないように保持部材15を箱型に形成する必要がないので、弾性保持部21~23を、センサ16のターゲット対向面16aを除く面に形成して、保持部材15のターゲット対向面を開口するように構成することができる。これにより、センサとターゲットの間の距離を短くすることができる。
As described above, according to the first embodiment, the electric motor 1 includes the target 17 that rotates integrally with the shaft 4, the sensor 16 that is held at a position facing the target 17 and detects the rotational position of the target 17, and elastic deformation. A plurality of possible elastic holding portions 21 to 23, and the elastic holding portions 21 to 23 press the outer surface of the sensor 16 from a plurality of directions, and the holding member 15 holds the sensor 16 by elastic force. Configured. For this reason, it becomes possible to abolish the filler by holding the sensor 16 by the elastic force of the holding member 15, and the assembly efficiency can be improved.
Further, since it is not necessary to form the holding member 15 in a box shape so that the filler does not leak out, the elastic holding portions 21 to 23 are formed on the surface excluding the target facing surface 16a of the sensor 16, and the holding member 15 is thus formed. The target-facing surface can be configured to open. Thereby, the distance between a sensor and a target can be shortened.
 また、実施の形態1によれば、弾性保持部21~23それぞれに、センサ16の外表面を押圧する部位にテーパ面を形成するように構成した。このため、センサ16を底面側へ押さえる軸方向の分力F1と、センサ16を中央側に寄せる横方向の分力F2とを同時に作用させて、センサ16を固定することができる。 Further, according to the first embodiment, each of the elastic holding portions 21 to 23 is configured to have a tapered surface at a portion that presses the outer surface of the sensor 16. For this reason, the sensor 16 can be fixed by causing the component force F1 in the axial direction that presses the sensor 16 to the bottom side and the component force F2 in the lateral direction that moves the sensor 16 toward the center simultaneously.
 また、実施の形態1によれば、保持部材15を樹脂材で構成することとし、この保持部材15を、同じく樹脂材で構成されるバスバー部6の内周側であってターゲット17に対向する位置に一体的に構成するように構成した。このため、電動機1を組み立てる際に保持部材15を設置する必要がなくなり、組み立て性が向上する。
 あるいは、保持部材15をインバータ基板13またはバスバー部6専用の基板に取り付けるように構成してもよく、この場合にはセンサ16の端子16bを短くすることができるので、耐振性の向上が可能である。
Further, according to the first embodiment, the holding member 15 is made of a resin material, and this holding member 15 is opposed to the target 17 on the inner peripheral side of the bus bar portion 6 also made of the resin material. It comprised so that it might comprise integrally in a position. For this reason, it is not necessary to install the holding member 15 when assembling the electric motor 1, and the assemblability is improved.
Alternatively, the holding member 15 may be configured to be attached to the inverter board 13 or a board dedicated to the bus bar portion 6, and in this case, the terminal 16 b of the sensor 16 can be shortened, so that vibration resistance can be improved. is there.
実施の形態2.
 図8(a)は、実施の形態2に係る電動機1のうち、保持部材15を抜粋した平面図、図8(b)はCC線に沿って切断した断面図である。上記実施の形態1では保持部材15を樹脂材で形成したが、本実施の形態2では保持部材15の一部を金属板により形成する。なお、図8において図1~図7と同一または相当の部分については同一の符号を付し説明を省略する。
Embodiment 2. FIG.
FIG. 8A is a plan view of the holding member 15 extracted from the electric motor 1 according to Embodiment 2, and FIG. 8B is a cross-sectional view cut along the CC line. Although the holding member 15 is formed of a resin material in the first embodiment, a part of the holding member 15 is formed of a metal plate in the second embodiment. 8 that are the same as or equivalent to those in FIGS. 1 to 7 are given the same reference numerals, and descriptions thereof are omitted.
 図8に示す保持部材15は、弾性保持部21~23を金属板により構成している。金属板の弾性保持部21~23は、樹脂材の弾性保持部21~23がサイズ的に樹脂の許容応力を超えるような場合でも、金属板に生じる弾性力でセンサ16を保持できる。
 なお、金属板の弾性保持部21~23は、電気的絶縁のため、樹脂材30にインサート成形して一体化したり、ネジ止めまたはビス止め等により一体化したりする。あるいは、金属板の弾性保持部21~23を直接インバータ基板13(またはセンサ16専用の基板)にネジ止めまたはビス止め等してもよいし、金属板の弾性保持部21~23をバスバー部6と一体成形してもよい。
In the holding member 15 shown in FIG. 8, the elastic holding portions 21 to 23 are made of a metal plate. The elastic holding portions 21 to 23 of the metal plate can hold the sensor 16 with the elastic force generated in the metal plate even when the elastic holding portions 21 to 23 of the resin material exceed the allowable stress of the resin in size.
Note that the elastic holding portions 21 to 23 of the metal plate are integrated with the resin material 30 by insert molding, or integrated with screws or screws for electrical insulation. Alternatively, the metal plate elastic holding portions 21 to 23 may be directly screwed or screwed to the inverter board 13 (or the board dedicated to the sensor 16), or the metal plate elastic holding portions 21 to 23 may be connected to the bus bar portion 6. And may be integrally molded.
 また、保持部材15のターゲット対向面開口からセンサ16が抜け落ちないよう、樹脂材または金属板の当て部24,27を形成している。加えて、上記実施の形態1と同様に当て部25,26(図3等に示す)を形成してもよい。 Also, resin parts or metal plate contact portions 24 and 27 are formed so that the sensor 16 does not fall out of the target-facing surface opening of the holding member 15. In addition, the contact portions 25 and 26 (shown in FIG. 3 and the like) may be formed in the same manner as in the first embodiment.
 以上より、実施の形態2によれば、弾性保持部21~23を金属板で構成するようにしたので、大きいサイズのセンサ16も保持できるようになり、保持部材15の汎用性が向上する。 As described above, according to the second embodiment, since the elastic holding portions 21 to 23 are made of metal plates, a large-sized sensor 16 can be held and the versatility of the holding member 15 is improved.
 なお、上記実施の形態1,2では直方体状のセンサ16を例に保持部材15を説明したが、直方体以外の形状のセンサ16を保持可能であることは言うまでもない。例えばセンサ16の上面が曲面の場合にも、弾性保持部21~23のテーパ面をセンサ16の外表面に当てて弾性力により保持可能である。
 また、センサ16としてバイアスマグネットを内蔵したホールセンサを例に挙げたが、ホールセンサ単体であってもよい。
In the first and second embodiments, the holding member 15 has been described by taking the rectangular parallelepiped sensor 16 as an example, but it goes without saying that the sensor 16 having a shape other than the rectangular parallelepiped can be held. For example, even if the upper surface of the sensor 16 is a curved surface, the taper surfaces of the elastic holding portions 21 to 23 can be applied to the outer surface of the sensor 16 and held by elastic force.
Moreover, although the Hall sensor which incorporated the bias magnet was mentioned as an example as the sensor 16, a Hall sensor single-piece | unit may be sufficient.
 上記以外にも、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In addition to the above, within the scope of the invention, the invention of the present application can be freely combined with each embodiment, modified any component of each embodiment, or omitted any component in each embodiment. Is possible.
 以上のように、この発明に係る電動機は、複数の弾性保持部でセンサの外表面を複数の方向から押圧し、弾性力によりセンサを保持するようにしたので、高速回転で動作する電動機などに用いるのに適している。 As described above, the electric motor according to the present invention presses the outer surface of the sensor from a plurality of directions with a plurality of elastic holding portions and holds the sensor by elastic force. Suitable for use.
 1 電動機、2 ハウジング、3 ステータ部、4 シャフト、5 ロータ部、5a,5b 突部、6 バスバー部、6a 凹部、7,8 軸受け、9,10 ステータコア、9a,10a ティース、11 マグネット、12 コイル、13 インバータ基板、14 銅板コイル、15 保持部材、16 センサ、17 ターゲット、18 ネジ、19 カバーハウジング、20 カバー、21~23 弾性保持部、21a 爪、21b テーパ面、24~27 当て部、28 端子穴、29 接着部、30 樹脂材、100 保持部材、101 充填剤、102 センサ、103 ターゲット、104 基板。 1 electric motor, 2 housing, 3 stator portion, 4 shaft, 5 rotor portion, 5a, 5b protrusion, 6 bus bar portion, 6a recess, 7, 8 bearing, 9, 10 stator core, 9a, 10a teeth, 11 magnet, 12 coil , 13 inverter board, 14 copper plate coil, 15 holding member, 16 sensor, 17 target, 18 screw, 19 cover housing, 20 cover, 21-23 elastic holding part, 21a claw, 21b tapered surface, 24-27 contact part, 28 Terminal hole, 29 bonding part, 30 resin material, 100 holding member, 101 filler, 102 sensor, 103 target, 104 substrate.

Claims (7)

  1.  シャフトと一体に回転するターゲットと、
     前記ターゲットに対向する位置に保持され、前記ターゲットの回転位置を検出するセンサと、
     弾性変形可能な弾性保持部を複数有し、当該弾性保持部で前記センサの外表面を複数の方向から押圧し、弾性力により前記センサを保持する保持部材とを備える電動機。
    A target that rotates integrally with the shaft;
    A sensor that is held at a position facing the target and detects a rotational position of the target;
    An electric motor comprising a plurality of elastic holding portions that can be elastically deformed, a holding member that presses the outer surface of the sensor from a plurality of directions with the elastic holding portions and holds the sensor by elastic force.
  2.  前記弾性保持部は、前記センサのターゲット対向面を除く面に形成され、前記保持部材のターゲット対向面が開口していることを特徴とする請求項1記載の電動機。 2. The electric motor according to claim 1, wherein the elastic holding portion is formed on a surface excluding the target facing surface of the sensor, and the target facing surface of the holding member is opened.
  3.  前記弾性保持部は、前記センサの外表面を押圧する部位にテーパ面が形成されていることを特徴とする請求項1記載の電動機。 2. The electric motor according to claim 1, wherein the elastic holding portion is formed with a tapered surface at a portion pressing the outer surface of the sensor.
  4.  前記保持部材は、樹脂材で構成されていることを特徴とする請求項1記載の電動機。 The electric motor according to claim 1, wherein the holding member is made of a resin material.
  5.  コイルに配電する導電部材を樹脂材でモールドして成り、前記ターゲットと前記シャフトの外周側に設置された配電部を備え、
     前記保持部材は、前記配電部の内周側であって前記ターゲットに対向する位置に、前記配電部と一体的に構成されていることを特徴とする請求項4記載の電動機。
    A conductive member that distributes power to the coil is molded with a resin material, and includes a power distribution unit installed on the outer peripheral side of the target and the shaft,
    5. The electric motor according to claim 4, wherein the holding member is configured integrally with the power distribution unit at a position facing an inner peripheral side of the power distribution unit and facing the target.
  6.  前記保持部材は、基板に取り付けられていることを特徴とする請求項1記載の電動機。 The electric motor according to claim 1, wherein the holding member is attached to a substrate.
  7.  前記弾性保持部は、金属板で構成されていることを特徴とする請求項1記載の電動機。 The electric motor according to claim 1, wherein the elastic holding portion is made of a metal plate.
PCT/JP2012/000781 2012-02-06 2012-02-06 Electric motor WO2013118161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/000781 WO2013118161A1 (en) 2012-02-06 2012-02-06 Electric motor
JP2013557226A JP5627804B2 (en) 2012-02-06 2012-02-06 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000781 WO2013118161A1 (en) 2012-02-06 2012-02-06 Electric motor

Publications (1)

Publication Number Publication Date
WO2013118161A1 true WO2013118161A1 (en) 2013-08-15

Family

ID=48946985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000781 WO2013118161A1 (en) 2012-02-06 2012-02-06 Electric motor

Country Status (2)

Country Link
JP (1) JP5627804B2 (en)
WO (1) WO2013118161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998799B2 (en) 2015-11-18 2021-05-04 ZF Automotive UK Limited Position sensor assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119554A (en) * 1988-10-27 1990-05-07 Mitsubishi Electric Corp Detector for motor
JPH07280589A (en) * 1994-04-08 1995-10-27 Sankyo Seiki Mfg Co Ltd Rotation detector
JP2002257585A (en) * 2001-03-06 2002-09-11 Asmo Co Ltd Motor actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119554A (en) * 1988-10-27 1990-05-07 Mitsubishi Electric Corp Detector for motor
JPH07280589A (en) * 1994-04-08 1995-10-27 Sankyo Seiki Mfg Co Ltd Rotation detector
JP2002257585A (en) * 2001-03-06 2002-09-11 Asmo Co Ltd Motor actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998799B2 (en) 2015-11-18 2021-05-04 ZF Automotive UK Limited Position sensor assembly

Also Published As

Publication number Publication date
JPWO2013118161A1 (en) 2015-05-11
JP5627804B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5850263B2 (en) Drive device
EP1780870B1 (en) Magnet fixing structure for electric rotating machine
JP5333657B2 (en) Apparatus for adjoining temperature detection element
WO2007080888A1 (en) Rotating machine
JP2014187828A (en) Rotor for motor, brushless motor, method of manufacturing rotor for motor
JP6457920B2 (en) Electric motor and electric power steering apparatus
WO2005018071A1 (en) Synchronous motor
JP5791800B2 (en) Electric motor
JP5595135B2 (en) Two-phase hybrid rotating electric machine
JP5627804B2 (en) Electric motor
JP2023515761A (en) motor
JP7406546B2 (en) motor
JP2013198369A (en) Electric motor
JP2014236531A (en) Motor
JP2021505114A (en) Rotor and motor equipped with it
JP6966143B1 (en) Battery-less rotary encoder and servo control device using it
JP6302691B2 (en) Rotating electric machine
JP5538660B2 (en) Rotating electric machine
JP2022500987A (en) motor
JP4592724B2 (en) motor
WO2022034629A1 (en) Rotary encoder and control accuracy switching type servo control device using same
JP6071850B2 (en) Electric motor
JP2013005491A (en) Linear actuator
JP7336508B2 (en) Rotor and motor equipped with the same
KR102510261B1 (en) Rotor and motor having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868084

Country of ref document: EP

Kind code of ref document: A1