WO2022033608A1 - 风洞中飞行器模型驱动系统及性能测量方法 - Google Patents

风洞中飞行器模型驱动系统及性能测量方法 Download PDF

Info

Publication number
WO2022033608A1
WO2022033608A1 PCT/CN2021/123032 CN2021123032W WO2022033608A1 WO 2022033608 A1 WO2022033608 A1 WO 2022033608A1 CN 2021123032 W CN2021123032 W CN 2021123032W WO 2022033608 A1 WO2022033608 A1 WO 2022033608A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
wind tunnel
model
flight
control
Prior art date
Application number
PCT/CN2021/123032
Other languages
English (en)
French (fr)
Inventor
黄兴中
楼海烨
顾思践
陈李明
孙浩
陈庆江
Original Assignee
日照坤仑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日照坤仑智能科技有限公司 filed Critical 日照坤仑智能科技有限公司
Publication of WO2022033608A1 publication Critical patent/WO2022033608A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models

Definitions

  • the invention relates to the technical field of wind tunnel aerodynamics and wind tunnel flight dynamics (wind tunnel virtual flight) experiments, in particular to an aircraft model driving system in a wind tunnel and performance measurement of wind tunnel aerodynamics and wind tunnel virtual flight mechanics method.
  • High maneuverability, high agility and over-stall maneuvering are important indicators of modern high-performance military aircraft and tactical missiles.
  • the aircraft should have excellent large-angle variation range, angular velocity variation range and instantaneous angular acceleration, as well as stability and control capability in over-stall flight.
  • the longitudinal and lateral three-dimensional flow disturbances, severe nonlinearity and unsteady characteristics of the aircraft make the aerodynamics and aerodynamic performance of the aircraft very complex and difficult to use with computational aerodynamics or engineering calculations. method to obtain. Therefore, it is one of the necessary prerequisites to develop all-round, large-scale and high-speed dynamic test equipment and obtain the aerodynamic data of the aircraft model in the wind tunnel experiment.
  • the traditional design method of aircraft is to obtain the aerodynamic data of the aircraft by wind tunnel experiments or computational fluid dynamics, which are used to design the control system and the overall design of the aircraft.
  • the aerodynamics and aerodynamics of the aircraft are unsteady, nonlinear and cross-interference, so that the aerodynamic performance of the aircraft and the aerodynamic performance of the aircraft can no longer be matched. processed separately.
  • the aircraft produced by the traditional aircraft design method may not only be far from the actual performance, but may even be dangerous during the flight test.
  • wind tunnel aerodynamic test or wind tunnel virtual flight test. That is to say, as a wind tunnel test, if it can be divided into a low-level stage of wind-tunnel test (wind-tunnel aerodynamic test) and an advanced stage of wind-tunnel test (wind-tunnel flight dynamics test or wind-tunnel virtual flight test), The wind tunnel test must be able to perform both tests.
  • the so-called low-level stage of the wind tunnel test (wind tunnel aerodynamic test) is to develop all-round, large-scale and high-speed dynamic test equipment to obtain the wind tunnel test aerodynamic data of the aircraft model.
  • wind tunnel flight dynamics test or wind tunnel virtual flight test
  • This equipment and test method which integrates aerodynamics with flight dynamics and control systems, is an important means to improve the flight quality of the aircraft, reduce the risk of flight tests and shorten the development cycle of the aircraft.
  • the wind tunnel virtual flight test technology can also be used to directly give the aerodynamic data of the uncontrolled aircraft to verify the accuracy of the hardware and control program software of the control system of the controlled aircraft under flight conditions. speed, efficiency and reliability.
  • the model In order to achieve a complete wind tunnel flight dynamics test (wind tunnel virtual flight test), several requirements must be met: (a) the model must have complete degrees of freedom, that is, three degrees of freedom in angles and three linear displacement directions; (b) The range of motion in these degrees of freedom must be large enough to include the range of motion of the aircraft for maneuvering; (c) More importantly, the movement speed of the mechanism must be fast enough to reflect the movement speed of the aircraft in real time; (d) Dynamic data such as mass distribution and inertia of the real aircraft must be simulated in the corresponding flight dynamics analysis; (e) The control surfaces and control rates of the model should meet the speed ratio requirements of the real aircraft; (f) In order to perform high-speed For the wind tunnel test, the support stiffness of the model must be large enough; (g) For the versatility of the test, the test can be used for different types of tests (eg, different types of aircraft or missiles) without major changes in the mechanism.
  • the corresponding test equipment In short, in order to realize the "forced" wind tunnel virtual flight test in the wind tunnel, the corresponding test equipment must be able to provide a full range of freedom of motion; a sufficiently large range of motion parameters; The control movement speed must be as large as possible to meet the control requirements of aerodynamics. That is to say, the test equipment must have all-round, large-scale and high-speed performance, which is rarely provided by the existing technology.
  • the technical problem to be solved by the present invention is to provide an aircraft model driving system in a wind tunnel with omnidirectional, large-scale and high-speed performance, and a method for measuring the performance of wind tunnel aerodynamics and wind tunnel virtual flight mechanics.
  • the present invention provides the following technical solutions:
  • a driving system for an aircraft model in a wind tunnel comprising a strut device, a six-bar parallel mechanism and a linear guide, wherein:
  • the strut device is located at the rear of the aircraft model for supporting the aircraft model via a multi-component balance inside the model;
  • the support rod device includes a hollow tail rod main body and a rotatable rear tail rod extending from one end of the tail rod main body, and a roller for driving the rear tail rod to rotate is installed in the tail rod main body.
  • a rotation driving device and a roll measuring device for measuring the rotation angle of the rear tail strut;
  • the six-bar parallel mechanism includes six connecting rods, and both ends of each connecting rod are provided with universal hinges, and the universal hinge at the front end of the six-bar parallel mechanism is connected with the tail rod main body;
  • the linear guide rail is installed on the inner wall of the experimental section of the wind tunnel, and the universal hinge at the rear end of the six-bar parallel mechanism is connected with the slider of the linear guide rail.
  • a rolling locking device for locking the rear tail strut is also installed in the tail rod body.
  • the three connecting rods in the six-bar parallel mechanism are connected to the front part of the tail rod main body, and the other three connecting rods in the six-bar parallel mechanism are connected to the rear part of the tail rod main body .
  • the positions of the three connecting rods connected to the rear part of the tail rod main body on the tail rod main body are located directly behind the three connecting rods connected to the front part of the tail rod main body.
  • the front end connection points of the three connecting rods connected to the front part of the tail rod main body are located in the circumferential surface of the tail rod main body and evenly distributed, and the front ends of the three connecting rods connected to the rear part of the tail rod main body The connection points are also located within the circumference of the tailstock body and are evenly distributed.
  • linear guide rails there are six linear guide rails, and three linear guide rails are distributed on the inner walls on both sides of the wind tunnel experimental section.
  • the aircraft model has a control surface, and the rotation axis of the control surface extends to a front strut located at the front of the multi-component balance in the model, and a control motor is arranged in the front strut, and the control motor
  • the rotating shaft connected to the control surface is driven by a reduction gear, and the control motor is controlled by a control circuit outside the wind tunnel.
  • a method for measuring the performance of an aircraft model in a wind tunnel using the above-mentioned drive system includes:
  • a method for measuring the performance of an aircraft model in a wind tunnel using the above-mentioned drive system includes:
  • a method for measuring the performance of an aircraft model in a wind tunnel using the above-mentioned drive system includes:
  • the pilot can also be reflected into the closed loop, and then the result of the control law that the control surface is controlled by the control law can be obtained according to the above-mentioned discretization method.
  • the drive system of the present invention can simultaneously provide omnidirectional, large-scale, high-speed motion in six degrees of freedom in a wind tunnel, and has sufficient rigidity, strength and low interference, and can be used for measuring high maneuverability in high-speed wind tunnels high-speed aerodynamic performance of the aircraft for the flexibility and agility;
  • the drive system of the present invention through the combination change of the six-bar parallel mechanism and the roll drive and measurement device installed inside the tail boom body, the system can simultaneously provide model pitch, yaw and roll and their combined large-angle motion As well as three linear displacements and their combined motions (such as cone motion and three-period motion with rolling, nutation and precession at the same time), and measure the corresponding aerodynamic performance;
  • the present invention proposes a "forced" wind tunnel virtual flight test method to measure the aerodynamic performance of the model, namely the "forced" wind tunnel virtual flight test technology, which can not only directly give the flight power of the uncontrolled aircraft It can also verify the accuracy, efficiency and reliability of the hardware and control program software of the control system of the controlled aircraft under flight conditions.
  • FIG. 1 is a schematic diagram of the overall structure of an aircraft model drive system in a wind tunnel of the present invention
  • FIG. 2 is a schematic diagram of the aircraft model, the rolling drive and measuring device in the support rod device and the control surface mechanism of the aircraft model in the present invention
  • Figure 3a is a block diagram of an open-loop wind tunnel virtual flight test
  • Fig. 3b is the calculation block diagram of the open-loop control system without control law
  • Fig. 4a is a closed-loop aircraft model calculation block diagram with control law
  • Figure 4b is a schematic diagram of the closed-loop control law
  • Figure 5a is a schematic block diagram of a control engineer's closed-loop control law
  • Fig. 5b is the principle block diagram with control law of aerodynamicists
  • Fig. 6a is the schematic diagram of driving the model to do three-period motion
  • Fig. 6b is the schematic diagram of driving the model to do conical motion
  • FIG. 8 is a schematic diagram of the development process of the software, hardware and pilot response of the controlled aircraft control system in a closed loop
  • Fig. 9 is the movement time required for each rod to control the angle of attack change in the present invention.
  • FIG. 10 is a position diagram of the front and rear universal hinges of the six-bar parallel mechanism in the present invention.
  • the present invention provides an aircraft model drive system in a wind tunnel, as shown in Figures 1-2, comprising a strut device 103, a six-bar parallel mechanism 106 and a linear guide 112, wherein:
  • the strut device 103 is located at the rear of the aircraft model 101 for supporting the aircraft model 101 via the multi-component balance 102 inside the model;
  • the strut device 103 includes a hollow tail rod body 1031 and a rotatable rear tail rod 1032 extending from one end of the tail rod body 1031 (the rear tail rod 1032 can be supported in the tail rod body 1031 by the front and rear bearings 206 ) , the front end of the rear tail strut 1032 supports the aircraft model 101 through the multi-component balance 102 inside the model;
  • a roll driving device 207 for driving the rear tail rod 1032 to rotate and a roll measuring device 208 for measuring the rotation angle of the rear tail rod 1032 are installed in the tail rod main body 1031;
  • the rolling locking device 209 of the rear tail support rod 1032 is prevented to improve the firmness of the rear tail support rod 1032;
  • the six-bar parallel mechanism 106 includes six connecting rods, and both ends of each connecting rod are provided with universal hinges (specifically, spherical hinges). The radial position and azimuth of the connection can be adjusted as required;
  • the linear guide 112 is installed on the inner wall of the wind tunnel test section 109 (the specific upper and lower, front and rear positions can be changed according to the test requirements), and the universal hinge 108 at the rear end of the six-bar parallel mechanism 106 is connected to the slider of the linear guide 112 .
  • the position of the linear guide 112 on the side wall of the wind tunnel and the position of the front universal hinge on the tail boom body 1031 can be adjusted according to the requirements and particularities of the test to meet the best test requirements for comprehensive moving speed and stiffness.
  • the drive system of the present invention can simultaneously provide omnidirectional, large-scale, high-speed motion in six degrees of freedom in a wind tunnel, and has sufficient rigidity, strength and low interference, and can be used for measuring high maneuverability and agility in high-speed wind tunnels high-speed aerodynamic performance of the aircraft;
  • the cone motion mode of the aircraft model can be obtained
  • the drive system can simultaneously provide model pitch, yaw and roll and their combined large-angle motion, as well as front and rear, heave, and sideslip through the combination of six-bar parallel mechanism and the roll drive and measurement device installed in the tail boom body.
  • Three linear displacements and their combined motions (such as cone motion and three-period motion with simultaneous rolling, nutation, and precession), and measure the corresponding aerodynamic performance;
  • the drive system can not only measure the aerodynamic force of the model, but also can be used for the virtual flight of the aircraft model to realize the integrated research of aerodynamics and flight mechanics to evaluate its flight control quality.
  • the connecting rods of the six-bar parallel mechanism located in the wind tunnel are connected by universal hinges at both ends, and all the connecting rods are in the state of two-force rods, which can bear more force than the traditional cantilever beam.
  • the cross section is thinner to further reduce the blockage of the wind tunnel; as each strut and rear tail strut are behind the aircraft model, the strut interference will be less than that supported by the side struts.
  • the three connecting rods in the six-bar parallel mechanism 106 are connected to the front of the tail rod main body 1031 , and the other three connecting rods in the six-bar parallel mechanism 106 are connected to the tail rod main body 1031 the rear.
  • the positions of the three links connected to the rear of the tail rod main body 1031 on the tail rod main body 1031 are preferably located directly behind the three links connected to the front of the tail rod main body 1031 .
  • the front end connection points of the three connecting rods connected to the front of the tail rod main body 1031 can be located in the circumferential surface of the tail rod main body 1031 and evenly distributed, and the three connecting rods connected to the rear of the tail rod main body 1031 can be evenly distributed.
  • the connecting points of the front end of the connecting rod are also located in the circumferential surface of the tail rod body 1031 and are evenly distributed.
  • the number of linear guide rails 112 may be six, and three linear guide rails are distributed on the inner walls of both sides of the wind tunnel experimental section 109, so that one linear guide rail can drive and control one connecting rod.
  • the present invention can also be used for three-period motion and taper motion test.
  • the six-bar parallel mechanism drives the fuselage axis of the aircraft model to rotate around the axis of the wind tunnel, and at the same time, the motor in the strut device drives the model to rotate.
  • a three-period motion of the aircraft model is created (Fig. 6a, where ⁇ is the angle of attack and ⁇ is the angle of sideslip).
  • the six-bar parallel mechanism keeps the nutation angle unchanged, and only the precession angle changes, which causes the model to rotate around the axis of the wind tunnel. Coning motion (Fig. 6b, where is the cone angular velocity). What is more advantageous is that the nutation angle of the model can be easily adjusted by changing the nutation angle in the wind tunnel blowing test through the six-bar parallel mechanism.
  • the wind tunnel aerodynamic test that can carry out omnidirectional, large-scale, high-speed, small disturbance, high stiffness and precision wind tunnel aerodynamic test and the "forced" wind tunnel aerodynamic test with this equipment (that is, the drive system) are two aspects of the present invention.
  • a basic point that is, the motion space, kinematics and dynamic performance of the equipment, is introduced below.
  • the six-bar parallel mechanism used in this scheme is shown in Figure 1.
  • the slider moving pair (P) on the linear guide is connected with the connecting rod through the rear universal joint (U) or the spherical joint (S).
  • the front end of the connecting rod is connected by the front universal joint (U) and the strut device supporting the model ( Figure 2).
  • the topological structure of the above mechanism is characterized by 6-SOC ⁇ -P-S-U ⁇ PM
  • the whole mechanism is composed of six parallel moving pairs - universal hinge pair - parallel rod - universal hinge pair, namely 6-PUU mechanism.
  • the strut device and the linear guide are placed in the downstream direction;
  • the six gimbal joints in the front are fixed in two rows downstream of the tail rod body at the rear of the model. Therefore, the so-called front moving plane can be defined as a virtual plane;
  • the universal joint at the rear of the connecting rod is connected to the slider of the linear guide.
  • the position of these rear universal joints on the linear guide also changes with the orientation of the model, and they are not on the same plane, which can actually be defined as another virtual plane.
  • the above parallel mechanism has six degrees of freedom and six control quantities. Because of the parallel mechanism, the general inverse solution (calculating the position of the slide rail on the linear motion guide by inputting the motion parameters of the model) is relatively easy. After the geometric position and orientation of the model are given, the linear motion guide rail is obtained by inverse solution equation. Block position, and further analyze the motion space, kinematic and dynamic performance of the mechanism, as well as sensitivity, singularity and error analysis.
  • the model has three linear variables, three angular variables, which are six independent variables.
  • the slider position on the six linear motion guides is the dependent variable.
  • the upper and lower positions of the guide rail and the position of the universal hinge on the tail rod body are the parameters. Therefore, in the derivation of the following equations, six dependent variables (six slider positions on the guide rail) are obtained under the condition of given parameters according to the given position of the model.
  • the second basic point of the present invention that is, the basic point of conducting a "forced" wind tunnel flight dynamics test (wind tunnel virtual flight test) with this driving system will be described below.
  • the fast follow-up of the system is the key to the success of the test.
  • the time chain can be composed of the following parts: the time required for the aerodynamic measurement ( ⁇ t 1 ), the time required for the calculation of the flight dynamics equation and control law ( ⁇ t 2 ), and the time required for the parallel mechanism to be in place ( ⁇ t 3 ), ..., since the fast response time ( ⁇ t 3 ) of the mechanism is the longest time period, therefore, shortening the time required for the parallel mechanism to be in place ( ⁇ t 3 ) is one of the key points of the present invention.
  • the actual size of the case proposed by the present invention is shown in Figure 9, in order to simulate the controlled motion of the aircraft under the virtual flight test of the "forced" wind tunnel, the required parallel links of the parallel mechanism movement speed and range.
  • the maximum rod speed of the linear guide is selected to be 1 m/s
  • the calculation results show that in order to make the angle of attack from -30 degrees to +30 degrees, the time required for rod 1 to rod 6 is about 0.05 seconds, 0.12 seconds, and 0.06 seconds, respectively. , 0.14 seconds, 0.19 seconds and 0.09 seconds.
  • the angular velocity is in the range of 300 degrees/sec to 1200 degrees/sec. The angular velocity can be further increased if the rod speed is increased and the rod position is optimized. Therefore, the drive system proposed by the present invention is sufficient to meet the requirements of the "forced" wind tunnel virtual flight test on the operating speed of the mechanism.
  • the aircraft model needs to have a control surface and a corresponding deflection control mechanism.
  • the specific structure is as follows:
  • the aircraft model 101 has a control surface 201 (the embodiment shown in the figure is embodied as an elevator), and the rotation axis 202 of the control surface 201 extends to the front strut 203 at the front of the multi-component balance 102 inside the model.
  • a control motor 205 is arranged in the 203.
  • the control motor 205 drives the rotating shaft 202 connected to the control surface 201 through the reduction gear 204.
  • the control motor 205 is controlled by a control circuit outside the wind tunnel.
  • the "forced" wind tunnel virtual flight test can be further divided into two categories: open-loop wind tunnel virtual flight test (XN-1 type) and closed-loop wind tunnel virtual flight test.
  • the latter can be further divided into two cases where the model control surface is fixed and only the control law is added to the flight dynamics equation (XN-2 type) and the model control surface is controlled by the control law or man-machine control (XN-3). That is to say, wind tunnel virtual flight tests can be divided into three different forms and stages:
  • the performance measurement method of the aircraft model in the wind tunnel may include steps:
  • the multi-component balance (specifically, a six-component balance) inside the model measures the instantaneous aerodynamic force and aerodynamic moment;
  • the second type of "forced" wind tunnel virtual flight test is the closed-loop wind tunnel virtual flight test, which can be divided into two methods: control surface immobilization and control surface control ( Figure 4a, 4b and Figure 5a, 5b).
  • the performance measurement method of the aircraft model in the wind tunnel may include the following steps:
  • the multi-component balance (specifically, a six-component balance) inside the model measures the instantaneous aerodynamic force and aerodynamic moment;
  • the method for measuring the aerodynamic performance of the aircraft model in the wind tunnel may include the following steps:
  • the pilot reflection can also be integrated into the closed loop. Then, according to the above-mentioned discretization method, the result of the control law in which the control surface is controlled by the control law is obtained.
  • the key is to expand the transfer function module of the control system of the control surface to form an algorithm to realize the real-time control of the computer.
  • the present invention can be implemented by the following technical solutions, for example, for a linear steady-state system:
  • a and B are the matrix coefficients of the longitudinal dimensionless motion equation.
  • G, H, C, D are constant matrices of the longitudinal dimensionless motion equation
  • the extrapolation method can be used to obtain the new control surface position and motion parameter values through the extrapolation of the measured values of the previous several moments.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种风洞中飞行器模型驱动系统及性能测量方法,属于风洞空气动力学和飞行动力学实验技术领域,驱动系统包括支杆装置、六杆并联机构和直线导轨,支杆装置位于飞行器模型后部,经模型内部的多分量天平支持飞行器模型;支杆装置内安装有滚转驱动和测量装置;六杆并联机构包括六根连杆,每根连杆的两端设有万向铰链,前端的万向铰链与支杆装置相连;后端的万向铰链与直线导轨的滑块相连;直线导轨安装在风洞实验段内壁上。风洞中可同时提供全方位、大范围、高速率运动,并有足够刚度、强度和低干扰,可用于高速风洞中测量高机动性和敏捷性的飞行器的空气动力和虚拟飞行性能。

Description

风洞中飞行器模型驱动系统及性能测量方法 技术领域
本发明涉及风洞空气动力学和风洞飞行动力学(风洞虚拟飞行)实验技术领域,特别是指一种风洞中飞行器模型驱动系统及风洞空气动力学和风洞虚拟飞行力学性能测量方法。
背景技术
高机动、高敏捷和过失速机动是现代高性能军机和战术导弹的重要指标。为了实现这一要求,飞行器应具备极好的大角度的变化范围、角速度变化范围和瞬时角加速度,以及过失速飞行的稳定性和控制能力。在这些复杂的机动飞行中,飞行器纵、侧向三维流动干扰、严重的非线性和非定常特性使飞行器的空气动力学和飞行动力学性能变得非常复杂并难以用计算空气动力学或工程计算方法来求得。因此,在风洞实验中发展全方位、大范围和高速率的动态试验设备,取得飞行器模型的空气动力学数据是必要的前提之一。
取得机动飞行下的空气动力特性,尤其是非线性、非定常和有交叉干扰下的特性只是为飞行器设计提供了初始参数。传统的飞行器的设计方法都是由风洞实验或计算流体动力学求得飞行器的空气动力学数据,用以来进行控制系统设计和飞行器总体设计。但是,在大攻角、大机动的飞行过程中,飞行器的空气动力和飞行动力学上的非定常、非线性和交叉干扰,使飞行器的空气动力学性能与飞行器的飞行动力学性能不再可以分别处理。而用传统的飞行器的设计方法生产的飞行器不但可能与实际性能相差甚远,甚至在飞行试验中发生危险。
因此,要发展高机动性和敏捷性的飞行器,除了提高风洞空气动力学的测试能力外,还必须要发展风洞的飞行动力学试验,或风洞虚拟飞行试验。也就是说,作为风洞试验,如果说可以分为风洞试验的低级阶段(风洞空气动力学试验)和风洞试验的高级阶段(风洞飞行动力学试验或风洞虚拟飞行试验),风洞试验必须能进行这两种试验。
所谓风洞试验的低级阶段(风洞空气动力学试验),就是发展全方位、大范围和高速率的动态试验设备,以取得飞行器模型的风洞实验空气动力学数据。
所谓风洞试验的高级阶段(风洞飞行动力学试验或风洞虚拟飞行试验),就是在风洞中进行飞行器的飞行动力学特性、飞行控制系统和导航系统的综合试验。这种将空气动力学与飞行动力学和控制系统综合处理的设备和试验方法,是提供飞行器的飞行品质、降低飞行试验的风险和缩短飞行器研制周期的重要手段。风洞虚拟飞行试验技术除了提供飞行器的气动力数据外,还可以用来直接给出无控飞行器的飞行动力学数据,验证有控飞行器的控制系统的硬件和控制程序软件在飞行条件下的精准度、效率和可靠性。
为了实现完全的风洞飞行动力学试验(风洞虚拟飞行试验),有几个要求必须满足:(a)模型要有完全的自由度,即三个角度和三个线位移方向的自由度;(b)在这几个自由度上的活动范围必须足够大,足以包含飞行器机动飞行的活动范围;(c)更重要的是,机构的运动速度必须足够快,能实时反映飞行器的运动速度;(d)相应的飞行动力学分析中必须模拟真实的飞行器的质量分布和惯量等动力学数据;(e)模型的控制面和控制速率应该满足真实飞行器的速比要求;(f)为了进行高速风洞的试验,模型的支持刚度必须足够大;(g)为了试验的通用性,试验可以在机构改动不太大的情况下用于不同类型(例如飞机或导弹等不同类型)的试验。简言之,要在风洞中实现“强迫式”风洞虚拟飞行试验,要求相应的试验设备必须能提供全方位的运动自由度;足够 大的运动参数的变化范围;尤其是试验设备的可控运动速度必须尽可能大,以满足飞行动力学的控制要求。也就是说试验设备必须有全方位、大范围和高速率的性能,而这是现有技术鲜有能提供的。
发明内容
本发明要解决的技术问题是提供一种具有全方位、大范围和高速率性能的风洞中飞行器模型驱动系统及风洞空气动力学和风洞虚拟飞行力学性能测量方法。
为解决上述技术问题,本发明提供技术方案如下:
一方面,提供一种风洞中飞行器模型驱动系统,包括支杆装置、六杆并联机构和直线导轨,其中:
所述支杆装置位于所述飞行器模型的后部,用于经模型内部的多分量天平支持所述飞行器模型;
所述支杆装置包括中空的尾杆主体和从所述尾杆主体的一端伸出且可转动的后尾支杆,所述尾杆主体内安装有用于驱动所述后尾支杆转动的滚转驱动装置和用于测量所述后尾支杆转动角度的滚转测量装置;
所述六杆并联机构包括六根连杆,每根连杆的两端均设有万向铰链,所述六杆并联机构前端的万向铰链与所述尾杆主体相连;
所述直线导轨安装在风洞实验段内壁上,所述六杆并联机构后端的万向铰链与所述直线导轨的滑块相连。
根据本发明优选的,所述尾杆主体内还安装有用于锁止后尾支杆的滚转锁紧装置。
根据本发明优选的,所述六杆并联机构中的三根连杆连接在所述尾杆主体的前部,所述六杆并联机构中的另外三根连杆连接在所述尾杆主体的后部。
根据本发明优选的,连接在所述尾杆主体后部的三根连杆在尾杆主体上的位置位于连接在所述尾杆主体前部的三根连杆的正后方。
根据本发明优选的,连接在所述尾杆主体前部的三根连杆的前端连接点位于尾杆主体的圆周面内且均匀分布,连接在所述尾杆主体后部的三根连杆的前端连接点也位于尾杆主体的圆周面内且均匀分布。
根据本发明优选的,所述直线导轨为6根,风洞实验段的两侧内壁上各分布有3根直线导轨。
根据本发明优选的,所述飞行器模型具有控制面,所述控制面的转轴延伸至位于模型内多分量天平前部的前支杆,所述前支杆内设置有控制电机,所述控制电机经减速齿轮驱动连接所述控制面的转轴,所述控制电机由风洞外的控制电路控制。
另一方面,提供一种利用上述的驱动系统进行风洞中飞行器模型的性能测量方法,在开环风洞虚拟飞行试验中,所述方法包括:
(a)将飞行器模型支持在尾支杆上;
(b)飞行器模型的控制面偏转到一个固定的偏转角度;
(c)在飞行器模型的控制面偏转时,模型内部的六分量天平测得瞬时的气动力和气动力矩;
(d)在飞行器的动力学方程中使用的真实飞行器动力相似的数据,由飞行器的动力学方程计算模型的下一个微时段的运动位置和速度;
(e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
(f)如此反复继续,如果六杆机构的跟进速度足够快,给定的时间间隔又很小,就可以以这种离散化的局部拟线性方法得到飞行动力学的结果。
再一方面,提供一种利用上述的驱动系统进行风洞中飞行器模型的性能测量方法, 在控制面不动的闭环风洞虚拟飞行试验中,所述方法包括:
(a)将飞行器模型支持在支杆装置上;
(b)飞行器模型的控制面偏转到一个固定的偏转角度;
(c)在飞行器模型的控制面偏转时,模型内部的多分量天平测得瞬时的气动力和气动力矩;
(d)在飞行器的带有飞行控制律的飞行动力学方程中使用的真实飞行器动力相似的数据计算模型的下一个微步长时段的运动位置和速度;
(e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
(f)如此反复继续,如果六杆并联机构的跟进速度足够快,给定的时间间隔又很小,就可以以这种离散化的局部拟线性方法得到带有飞行控制律的飞行动力学的结果。
又一方面,提供一种利用上述的驱动系统进行风洞中飞行器模型的性能测量方法,在控制面受控的闭环风洞虚拟飞行试验中,所述方法包括:
(a)将飞行器模型支持在支杆装置上;
(b)由预定的飞行要求给出控制面的初始偏转参数;
(c)由测出的飞行器模型的空气动力和设计给定的飞行器的动力学参数算出带有飞行控制律的虚拟的飞行轨迹;
(d)将虚拟算出的飞行轨迹与要求的飞行轨迹进行比较,得到的偏差根据控制律的要求发出指令使控制面偏转;
(e)如在飞行训练系统中,也可将驾驶员反映接入闭环中,再按上述离散化方法得到控制面受控制律控制的有控制律的结果。
本发明具有以下有益效果:
(a)本发明的驱动系统,在风洞中可同时提供六个自由度上全方位、大范围、高速率运动,并有足够刚、强度和低干扰,可用于高速风洞中测量高机动性和敏捷性的飞行器的高速空气动力性能;
(b)本发明的驱动系统,通过六杆并联机构的组合变化和装在尾杆主体内部的滚转驱动和测量装置,系统可同时提供模型俯仰、偏航和滚转及其组合的大角度运动以及前后、沉浮、侧滑三个线位移及其组合的运动(例如锥动运动和同时带有滚动、章动和进动的三周期运动),并测量相应的空气动力学性能;
(c)本发明提出了“强迫式”风洞虚拟飞行试验方法来测量模型的飞行动力学性能,即“强迫式”风洞虚拟飞行试验技术,其不但可以直接给出无控飞行器的飞行动力学数据,还可以验证有控飞行器的控制系统的硬件和控制程序软件在飞行条件下的精准度、效率和可靠性。
附图说明
图1为本发明的风洞中飞行器模型驱动系统的整体结构示意图;
图2为本发明中飞行器模型、支杆装置内的滚转驱动和测量装置与飞行器模型控制面机构简图;
图3a为开环风洞虚拟飞行试验框图;
图3b为无控制律的开环控制系统计算框图;
图4a为闭环带控制律的飞行器模型计算框图;
图4b为闭环带控制律原理图;
图5a为控制工程师的闭环带控制律的原理框图;
图5b为飞行动力学家的带控制律的原理框图;
图6a为驱使模型作三周期运动的示意图;
图6b为驱使模型作锥动运动的示意图;
图7为坐标轴系的转换关系示意图;
图8为有控飞行器控制系统的软件、硬件以及驾驶员反应在闭环中的发展过程示意图;
图9为本发明中控制攻角变化各杆所需的移动时间;
图10为本发明中六杆并联机构前、后万向铰链的位置图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种风洞中飞行器模型驱动系统,如图1-2所示,包括支杆装置103、六杆并联机构106和直线导轨112,其中:
支杆装置103位于飞行器模型101的后部,用于经模型内部的多分量天平102支持飞行器模型101;
支杆装置103包括中空的尾杆主体1031和从尾杆主体1031的一端伸出且可转动的后尾支杆1032(后尾支杆1032具体可通过前后轴承206支承在尾杆主体1031内),后尾支杆1032的前端经模型内部的多分量天平102支持飞行器模型101;
尾杆主体1031内安装有用于驱动后尾支杆1032转动的滚转驱动装置207和用于测量后尾支杆1032转动角度的滚转测量装置208;尾杆主体1031内还可以安装有用于锁止后尾支杆1032的滚转锁紧装置209,以提高后尾支杆1032的牢固性;
六杆并联机构106包括六根连杆,每根连杆的两端均设有万向铰链(具体可以为球铰),六杆并联机构106前端的万向铰链107与尾杆主体1031相连,具体连接的径向位置和方位角可根据要求调整;
直线导轨112安装在风洞实验段109内壁上(具体的上下、前后位置可根据试验需要改变),六杆并联机构106后端的万向铰链108与直线导轨112的滑块相连。
直线导轨112在风洞侧壁上的位置和前万向铰链在尾杆主体1031上的位置可以根据试验的要求和特殊性加以调整,以满足综合移动速度和刚度等的最佳的试验要求。
本发明的驱动系统,在风洞中可同时提供六个自由度上全方位、大范围、高速率运动,并有足够刚、强度和低干扰,可用于高速风洞中测量高机动性和敏捷性的飞行器的高速空气动力性能;
该驱动系统如使滚动角速度和章动角速度同步,就可得到飞行器模型的锥动运动模态;
该驱动系统通过六杆并联机构的组合变化和装在尾杆主体内的滚转驱动和测量装置,可同时提供模型俯仰、偏航和滚转及其组合的大角度运动以及前后、沉浮、侧滑三个线位移及其组合的运动(例如锥动运动和同时带有滚动、章动和进动的三周期运动),并测量相应的空气动力学性能;
该驱动系统不但可测量模型的空气动力,也可用于飞行器模型的虚拟飞行,实现气动、飞行力学一体化研究以评估其飞控品质。
本发明中,位于风洞内的六杆并联机构的连杆由于其两端都由万向铰链连接,所有连杆都为二力杆状态,这种受力形式比传统的悬臂梁能承受更大的气动力和更高的刚度,从而使试验可以在高速,甚至在超音速下进行;模型也有更高的位置和姿态控制精度;而且在同样气动力作用下,各支杆可以比悬臂梁的截面更细,以进一步减少风洞堵塞度;加以各支杆和后尾支杆都在飞行器模型的后方,支杆干扰将比侧支杆支持的要小。
本发明中,为较为平稳的支持飞行器模型101,六杆并联机构106中的三根连杆 连接在尾杆主体1031的前部,六杆并联机构106中的另外三根连杆连接在尾杆主体1031的后部。并且,为减少气流扰动,连接在尾杆主体1031后部的三根连杆在尾杆主体1031上的位置优选位于连接在尾杆主体1031前部的三根连杆的正后方。另外,为方便进行控制和位置计算,连接在尾杆主体1031前部的三根连杆的前端连接点可以位于尾杆主体1031的圆周面内且均匀分布,连接在尾杆主体1031后部的三根连杆的前端连接点也位于尾杆主体1031的圆周面内且均匀分布。
直线导轨112具体可以为6根,风洞实验段109的两侧内壁上各分布有3根直线导轨,以实现一根直线导轨驱动控制一根连杆。
综上,本发明除了能进行大角度动态试验外,还可用以进行三周期运动和锥动试验。这时将六杆并联机构驱使飞行器模型的机身轴线绕风洞轴线作锥动旋转,与此同时支杆装置内的电机驱动模型旋转运动。这样,就造成了飞机模型的三周期运动(图6a,其中α为攻角,β为侧滑角)。当模型在支杆装置内的电机驱动下以与三周期运动中的转动角速度一样,六杆并联机构又保持章动角不变,只有进动角改变,这就造成了模型绕风洞轴线的锥动运动(图6b,其中
Figure PCTCN2021123032-appb-000001
为锥动角速度)。更为优越的是模型的锥动角可以通过六杆并联机构在风洞吹风试验中很容易地通过改变章动角加以调整。
能进行全方位、大范围、高速率、小干扰、高刚度和精度的风洞空气动力学试验和以此设备(即驱动系统)进行“强迫式”风洞飞行动力学试验是本发明的两个基本点。下面先对第一个基本点,即设备的运动空间、运动学和动力学性能等进行介绍。
本方案采用的六杆并联机构如图1所示:根据风洞试验的特点与要求,在风洞试验段侧壁的不同周向位置与风洞纵轴线平行安装有六条直线导轨。导轨的上下位置可根据使用要求加以调节。直线导轨上的滑块移动副(P)经后万向铰(U)或球铰(S)与连杆相连。连杆的前端由前万向铰(U)和支承模型的支杆装置相连(图2)。
上述机构的拓扑结构特征为6-SOC{-P-S-U}PM
前后两列万向铰副,每列三个万向铰副,互成120度:
这样,整个机构由六个并联的移动副—万向铰副—并联杆—万向铰副,即6—PUU机构组成。
上述机构的拓扑结构特征为:
运动副数:m=18;球面副(ms)6,万向铰副(mu)6,移动副(mp)6
构件数(n):14
支路数(n b):6
简单支路数(n bs):6
动平台POC(Mpa):Mpa=[t 3 r 3] T
POC集维数:6
独立回路数:v=5
独立位移方程数:30
自由度:6
局部自由度:6
过约束数:0
冗余度:0
驱动副:6个p副
BKC数目(nBKC):1
BKC耦合度:3
自由度类型:完全DOF
运动输入输出解耦数:不存在解耦性。
应该指出,上述并联机构是一种新型的并联机构,它的特点是:
为了减少风洞试验的堵塞度,支杆装置和直线导轨都是顺流向安放;
前面的六个万向铰是两列顺流向地固定在模型后部的尾杆主体上。因此,所谓的前面的动平面可定义为一虚拟平面;
连杆后部的万向铰连接在直线导轨的滑块上。这些后万向铰在直线导轨的位置也随模型的方位变化而变化,并且也不在同一个平面上,实际上也可定义为另一个虚拟平面。
上述并联机构,有六个自由度和六个控制量。由于对并联机构,一般反解(由模型的运动参数输入求直线运动导轨上滑轨位置)比较容易,下面在给定模型的几何位置和方位后,通过反解方程求得直线运动导轨上滑块位置,并进一步对机构的运动空间,运动学和动力学性能、以及灵敏度、奇异性和误差分析等进行分析。
模型有三个线性变量,三个角度变量,这是六个自变量。六根直线运动导轨上滑块位置是因变量。而导轨的上下位置,万向铰在尾杆主体上的位置是参变量。因此,在下述方程推导中,根据模型的给定位置在给定参变量的情况下求得六个因变量(导轨上六个滑块位置)。
为此,可以建立两个坐标系:与模型一起运动的动坐标系和固定在风洞试验段上的定坐标系(见图7,其中θ、ψ、γ分别为模型的俯仰角、偏航角和滚转角)。求反解问题的思路是:
先根据模型的位置和方位角(自变量,可为给定值或时间的任意函数)和前万向铰在尾杆主体上的位置(参变量),求出前万向铰在前面的动平面上的位置和方位角(中间变量)。
通过矩阵转换,求出前面动平面上的中间变量在后面风洞试验段定坐标系上的位置和方位角。
再在计入运动导轨在风洞中上下、左右的位置和连杆长度的情况下(均为参变量),求出移动直线运动导轨上滑块位置(因变量)。
下面对本发明的第二个基本点,即以此驱动系统进行“强迫式”风洞飞行动力学试验(风洞虚拟飞行试验)的基本点进行说明。
首先,为了保证闭环风洞虚拟飞行试验的成功,系统的快速跟随性是试验成功的关键。从时间链的分析来看,时间链可以有以下几部分组成:气动力测量所需时间(Δt 1),飞行动力学方程和控制律计算所需时间(Δt 2),并联机构到位所需时间(Δt 3),…,鉴于机构的快速相应时间(Δt 3)是需时最长的时间段,因此,缩短并联机构到位所需时间(Δt 3)是本发明的关键点之一。为了核实和说明这一点,对本发明提出的案例的实际尺寸,图9给出了在“强迫”式风洞虚拟飞行试验情况下,为模拟飞行器有控运动,并联机构的各并联连杆所需要的移动速度和范围。如选择直线导轨的最大杆速为1米/秒,计算结果表明,为使攻角从-30度到+30度,杆1到杆6分别需要的时间约为0.05秒,0.12秒,0.06秒,0.14秒,0.19秒和0.09秒。角速度在300度/秒到1200度/秒的范围。如果增加杆速和优化杆位置,角速度还可以再增加。因此,本发明提出的驱动系统足以满足“强迫”式风洞虚拟飞行试验对机构运行速度的要求。
为实现“强迫式”风洞虚拟飞行试验,飞行器模型需具有控制面和相应的偏转控制机构,具体来说结构如下:
如图2所示,飞行器模型101具有控制面201(图中所示实施例体现为升降舵),控制面201的转轴202延伸至模型内部多分量天平102前部的前支杆203,前支杆203内设置有控制电机205,控制电机205经减速齿轮204驱动连接控制面201的转轴202,控制电机205由风洞外的控制电路控制。
“强迫式”风洞虚拟飞行试验可以进一步分为开环风洞虚拟飞行试验(XN-1型)和闭环风洞虚拟飞行试验两类。而后者又可以进一步分为模型控制面固定仅在飞行动力学方程中加入控制律(XN-2型)和模型控制面受控制律或人机控制(XN-3)两种情形。也就是说,风洞虚拟飞行试验可以分成三种不同形式和阶段:
(a)选择几个固定的操纵面偏角,进行飞行轨迹对比研究,定性评估飞行动力学的影响(XN-1,图3a、3b);其中图3b中各方程分别如下:
Figure PCTCN2021123032-appb-000002
Figure PCTCN2021123032-appb-000003
Figure PCTCN2021123032-appb-000004
Figure PCTCN2021123032-appb-000005
(b)在风洞模型控制面固定的情况下,在模型的飞行动力学运动方程中加入飞行控制律模块,将测量参数与飞行器控制模块相结合形成虚拟飞行系统,研究控制律的影响(XN-2型,图4a、4b);
(c)在模型上加入控制面控制系统,实现实时控制(通过控制面控制系统或者驾驶员控制),以便更直接地验证有控飞行器的控制系统的硬件、驾驶员和控制程序软件在飞行条件下的精准度、效率和可靠性(XN-3型,图5a、5b)。
在开环风洞虚拟飞行试验中(XN-1,图3a、3b),风洞中飞行器模型的性能测量方法,可以包括步骤:
(a)将飞行器模型支持在支杆装置上;
(b)飞行器模型的控制面偏转到一个固定的偏转角度;
(c)在飞行器模型的控制面偏转时,模型内部的多分量天平(具体可以为六分量天平)测得瞬时的气动力和气动力矩;
(d)在飞行器的动力学方程中使用的真实飞行器动力相似(质量、质心、惯量矩等相似)的数据(而不需要模型去模拟真实飞行器动力相似)。由飞行器的动力学方程计算模型的下一个微步长时段(例如0.001秒)的运动位置和速度;
(e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
(f)如此反复继续,如果六杆并联机构的跟进速度足够快,给定的时间间隔(即微步长时段)又很小(例如0.001秒),就可以以这种离散化的局部拟线性方法得到飞 行动力学的结果。
“强迫式”风洞虚拟飞行试验的第二类即闭环风洞虚拟飞行试验,又可分为控制面不动和控制面受控两种方法(图4a、4b和图5a、5b)。
对控制面不动的闭环风洞虚拟飞行试验(XN-2,图4a、4b),飞行器模型的控制面不动,仅在飞行动力学方程中加入控制律,再按上述离散化方法得到有控制律的结果。实际上,控制面不动的闭环风洞虚拟飞行试验与控制面不动的开环风洞虚拟飞行试验的主要差别是前者在飞行动力学计算中加入了飞行控制律,并以其结果使飞行器模型达到新的模型方位。具体来说,在控制面不动的闭环风洞虚拟飞行试验中,风洞中飞行器模型的性能测量方法,可以包括步骤:
(a)将飞行器模型支持在支杆装置上;
(b)飞行器模型的控制面偏转到一个固定的偏转角度;
(c)在飞行器模型的控制面偏转时,模型内部的多分量天平(具体可以为六分量天平)测得瞬时的气动力和气动力矩;
(d)在飞行器的带有飞行控制律的飞行动力学方程中使用的真实飞行器动力相似(质量、质心、惯量矩等相似)的数据计算模型的下一个微步长时段(例如0.001秒)的运动位置和速度;
(e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
(f)如此反复继续,如果六杆并联机构的跟进速度足够快,给定的时间间隔(即微步长时段)又很小(例如0.001秒),就可以以这种离散化的局部拟线性方法得到带有飞行控制律的飞行动力学的结果。
对控制面受控制律控制的闭环风洞虚拟飞行试验(XN-3,图5a、5b,图8),风洞试验时,控制面受控制律的变化而变化角度,将控制软件、硬件或在飞行训练系统中的驾驶员反映接入闭环中。风洞中飞行器模型的飞行动力学性能测量方法,可以包括步骤:
(a)将飞行器模型支持在支杆装置上;
(b)由预定的飞行要求给出控制面的初始偏转参数;
(c)由测出的飞行器模型的空气动力和设计给定的飞行器的动力学参数(如质量,质心和惯量矩)算出带有飞行控制律的虚拟的飞行轨迹(飞行器的位置、方位和运动参数);
(d)将虚拟算出的飞行轨迹与要求的飞行轨迹进行比较,得到的偏差根据控制律的要求(例如PID—比例、积分、微分模块)发出指令使控制面(其机构如图2所示)偏转;
(e)如在飞行训练系统中,也可将驾驶员反映接入闭环中。再按上述离散化方法得到控制面受控制律控制的有控制律的结果。
这样,通过闭环风洞虚拟飞行试验,不但可以得到瞬时的非定常、非线性的空气动力数据,也可检查有控飞行器的控制系统的硬件和控制程序软件在飞行条件下的精准度、效率和可靠性;或者对训练中的飞行员的操作进行评估。
在闭环带控制律的“强迫式”风洞虚拟飞行试验中,其关键是将控制面的控制系统的传递函数模块展开,形成算法,实现计算机的实时控制。本发明可以通过以下技术方案来实现,例如,对于线性定常系统:
x(t)=AX+BU
y(t)=CX+DU
如基准运动为水平直线飞行,纵向小扰动方程组无因次矩阵表达式可写为:
Figure PCTCN2021123032-appb-000006
状态方程表达式
Figure PCTCN2021123032-appb-000007
式中:
Figure PCTCN2021123032-appb-000008
U=[Δδ c ΔP c] T
A,B为纵向无因次运动方程的矩阵系数。
其离散化方程为:
x(k+1)=GX(k)+HU(k)
y(k+1)=CX(k)+DU(k)    (k=0,1,2…)
式中,G,H,C,D为纵向无因次运动方程的常数矩阵,且
G=e AT
Figure PCTCN2021123032-appb-000009
这样,就可将连续系统状态空间方程离散化,通过计算机迭代和并联机构相应的跟踪,就可以得到闭环有控制律的试验结果。
如果给定的时间间隔很小,例如0.001秒,就可以利用外推法,通过前几个时刻的测算值外插求得新的控制面位置和运动参数值。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种风洞中飞行器模型驱动系统,其特征在于,包括支杆装置、六杆并联机构和直线导轨,其中:
    所述支杆装置位于所述飞行器模型的后部,用于经模型内部的多分量天平支持所述飞行器模型;
    所述支杆装置包括中空的尾杆主体和从所述尾杆主体的一端伸出且可转动的后尾支杆,所述尾杆主体内安装有用于驱动所述后尾支杆转动的滚转驱动装置和用于测量所述后尾支杆转动角度的滚转测量装置;
    所述六杆并联机构包括六根连杆,每根连杆的两端均设有万向铰链,所述六杆并联机构前端的万向铰链与所述尾杆主体相连;
    所述直线导轨安装在风洞实验段内壁上,所述六杆并联机构后端的万向铰链与所述直线导轨的滑块相连。
  2. 根据权利要求1所述的风洞中飞行器模型驱动系统,其特征在于,所述尾杆主体内还安装有用于锁止后尾支杆的滚转锁紧装置。
  3. 根据权利要求1所述的风洞中飞行器模型驱动系统,其特征在于,所述六杆并联机构中的三根连杆连接在所述尾杆主体的前部,所述六杆并联机构中的另外三根连杆连接在所述尾杆主体的后部。
  4. 根据权利要求3所述的风洞中飞行器模型驱动系统,其特征在于,连接在所述尾杆主体后部的三根连杆在尾杆主体上的位置位于连接在所述尾杆主体前部的三根连杆的正后方。
  5. 根据权利要求3所述的风洞中飞行器模型驱动系统,其特征在于,连接在所述尾杆主体前部的三根连杆的前端连接点位于尾杆主体的圆周面内且均匀分布,连接在所述尾杆主体后部的三根连杆的前端连接点也位于尾杆主体的圆周面内且均匀分布。
  6. 根据权利要求1-5中任一所述的风洞中飞行器模型驱动系统,其特征在于,所述直线导轨为6根,风洞实验段的两侧内壁上各分布有3根直线导轨。
  7. 根据权利要求1所述的风洞中飞行器模型驱动系统,其特征在于,所述飞行器模型具有控制面,所述控制面的转轴延伸至位于模型内多分量天平前部的前支杆,所述前支杆内设置有控制电机,所述控制电机经减速齿轮驱动连接所述控制面的转轴,所述控制电机由风洞外的控制电路控制。
  8. 利用权利要求7所述的驱动系统进行风洞中飞行器模型的性能测量方法,其特征在于,在开环风洞虚拟飞行试验中,所述方法包括:
    (a)将飞行器模型支持在尾支杆上;
    (b)飞行器模型的控制面偏转到一个固定的偏转角度;
    (c)在飞行器模型的控制面偏转时,模型内部的六分量天平测得瞬时的气动力和气动力矩;
    (d)在飞行器的动力学方程中使用的真实飞行器动力相似的数据,由飞行器的动力学方程计算模型的下一个微时段的运动位置和速度;
    (e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
    (f)如此反复继续,如果六杆机构的跟进速度足够快,给定的时间间隔又很小,就可以以这种离散化的局部拟线性方法得到飞行动力学的结果。
  9. 利用权利要求7所述的驱动系统进行风洞中飞行器模型的性能测量方法,其特征在于,在控制面不动的闭环风洞虚拟飞行试验中,所述方法包括:
    (a)将飞行器模型支持在支杆装置上;
    (b)飞行器模型的控制面偏转到一个固定的偏转角度;
    (c)在飞行器模型的控制面偏转时,模型内部的多分量天平测得瞬时的气动力和 气动力矩;
    (d)在飞行器的带有飞行控制律的飞行动力学方程中使用的真实飞行器动力相似的数据计算模型的下一个微步长时段的运动位置和速度;
    (e)将上述结果输入到六杆并联机构,使飞行器模型以求出的新速度移动到新的位置;
    (f)如此反复继续,如果六杆并联机构的跟进速度足够快,给定的时间间隔又很小,就可以以这种离散化的局部拟线性方法得到带有飞行控制律的飞行动力学的结果。
  10. 利用权利要求7所述的驱动系统进行风洞中飞行器模型的性能测量方法,其特征在于,在控制面受控的闭环风洞虚拟飞行试验中,所述方法包括:
    (a)将飞行器模型支持在支杆装置上;
    (b)由预定的飞行要求给出控制面的初始偏转参数;
    (c)由测出的飞行器模型的空气动力和设计给定的飞行器的动力学参数算出带有飞行控制律的虚拟的飞行轨迹;
    (d)将虚拟算出的飞行轨迹与要求的飞行轨迹进行比较,得到的偏差根据控制律的要求发出指令使控制面偏转;
    (e)如在飞行训练系统中,也可将驾驶员反映接入闭环中,再按上述离散化方法得到控制面受控制律控制的有控制律的结果。
PCT/CN2021/123032 2020-08-11 2021-10-11 风洞中飞行器模型驱动系统及性能测量方法 WO2022033608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010802116.2 2020-08-11
CN202010802116.2A CN111929023B (zh) 2020-08-11 2020-08-11 风洞中飞行器模型驱动系统及性能测量方法

Publications (1)

Publication Number Publication Date
WO2022033608A1 true WO2022033608A1 (zh) 2022-02-17

Family

ID=73311026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123032 WO2022033608A1 (zh) 2020-08-11 2021-10-11 风洞中飞行器模型驱动系统及性能测量方法

Country Status (2)

Country Link
CN (1) CN111929023B (zh)
WO (1) WO2022033608A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486167A (zh) * 2022-04-18 2022-05-13 中国空气动力研究与发展中心低速空气动力研究所 低速风洞模型尾撑地效试验地板槽口随动密封系统及方法
CN114563153A (zh) * 2022-04-28 2022-05-31 中国空气动力研究与发展中心超高速空气动力研究所 一种通过轨道加速气缸试验气体的超高速气动试验装置
CN114608794A (zh) * 2022-05-11 2022-06-10 中国航空工业集团公司哈尔滨空气动力研究所 一种模型风洞虚拟飞行试验气动力系数测量方法
CN114778064A (zh) * 2022-04-19 2022-07-22 厦门大学 用于旋成体飞行器模型风洞虚拟飞行试验的支撑装置和试验系统
CN114923657A (zh) * 2022-07-21 2022-08-19 中国空气动力研究与发展中心高速空气动力研究所 一种用于全机颤振风洞试验的垂杆绳索支撑系统
CN114993606A (zh) * 2022-05-31 2022-09-02 中国科学院力学研究所 一种非定常压力和气动力数据风洞试验结果处理方法
CN115077846A (zh) * 2022-07-28 2022-09-20 中国空气动力研究与发展中心高速空气动力研究所 一种大型风洞地面准备平台
CN115186376A (zh) * 2022-06-21 2022-10-14 中国航空工业集团公司哈尔滨空气动力研究所 一种小展弦比飞翼飞行器滚转力矩模型及其参数辨识方法
CN115508038A (zh) * 2022-08-30 2022-12-23 中国航天空气动力技术研究院 用于高速风洞超大攻角俯仰滚转双自由度运动的试验装置
CN115717981A (zh) * 2023-01-09 2023-02-28 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验中用于多喷管的驻室装置及使用方法
CN116062183A (zh) * 2023-03-22 2023-05-05 中国空气动力研究与发展中心设备设计与测试技术研究所 一种用于跨介质飞行器水空跨越试验的高速拖曳系统
CN116399543A (zh) * 2023-04-10 2023-07-07 四川省机械研究设计院(集团)有限公司 基于Hexaglide并联机构的六自由度风洞模型支撑系统及控制方法
CN116878819A (zh) * 2023-09-06 2023-10-13 中国人民解放军32806部队 一种飞行器气动特性风洞测试装置与方法
CN116933400A (zh) * 2023-09-13 2023-10-24 中国航空工业集团公司哈尔滨空气动力研究所 一种耦合不确定度的气动力矩模型的构建方法
CN117928879A (zh) * 2024-03-22 2024-04-26 中国空气动力研究与发展中心超高速空气动力研究所 可分段开合的大口径高超声速风洞试验舱及其使用方法
CN117928879B (zh) * 2024-03-22 2024-05-31 中国空气动力研究与发展中心超高速空气动力研究所 可分段开合的大口径高超声速风洞试验舱及其使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929023B (zh) * 2020-08-11 2021-08-06 日照坤仑智能科技有限公司 风洞中飞行器模型驱动系统及性能测量方法
CN112525474B (zh) * 2020-12-22 2021-08-17 中国空气动力研究与发展中心高速空气动力研究所 一种获得跨声速风洞堵塞干扰因子的方法
CN114112281A (zh) * 2021-07-28 2022-03-01 上海华模科技有限公司 一种空气动力学动导数解耦合测量的风洞试验装置
CN114441133B (zh) * 2021-12-28 2023-06-06 中国航天空气动力技术研究院 用于风洞试验攻角-双转轴机构的位姿标定方法及设备
CN115343012B (zh) * 2022-07-07 2023-04-07 中国航空工业集团公司哈尔滨空气动力研究所 一种非稳态大幅振荡试验方法
CN116380397B (zh) * 2023-05-31 2023-08-18 成都流体动力创新中心 一种基于磁浮飞行风洞的典型机动历程模拟试验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931222A (zh) * 2015-05-04 2015-09-23 中国航天空气动力技术研究院 机弹分离轨迹捕获试验系统
WO2020125109A1 (zh) * 2018-12-18 2020-06-25 大连理工大学 支杆尾撑式飞行器模型多维振动控制方法
CN111473949A (zh) * 2020-04-14 2020-07-31 日照坤仑智能科技有限公司 一种测量飞行器掉翼、滚摇和洗流时差的装置及方法
CN111929023A (zh) * 2020-08-11 2020-11-13 日照坤仑智能科技有限公司 风洞中飞行器模型驱动系统及性能测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002392A1 (de) * 2009-04-15 2010-11-04 Airbus Deutschland Gmbh System und Verfahren zur Bestimmung von lokalen Beschleunigungen, dynamischen Lastverteilungen und aerodynamischen Daten bei einem Luftfahrzeug
CN105784318B (zh) * 2016-03-04 2017-07-18 中国空气动力研究与发展中心低速空气动力研究所 一种低速风洞模型飞行实验系统及方法
CN106289708B (zh) * 2016-07-26 2018-08-07 中国航天空气动力技术研究院 用于捕获轨迹风洞试验的运动机构的位姿标定方法
CN110160730B (zh) * 2019-06-24 2021-10-29 日照坤仑智能科技有限公司 一种高速风洞中测试飞行器外挂物分离性能的装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931222A (zh) * 2015-05-04 2015-09-23 中国航天空气动力技术研究院 机弹分离轨迹捕获试验系统
WO2020125109A1 (zh) * 2018-12-18 2020-06-25 大连理工大学 支杆尾撑式飞行器模型多维振动控制方法
CN111473949A (zh) * 2020-04-14 2020-07-31 日照坤仑智能科技有限公司 一种测量飞行器掉翼、滚摇和洗流时差的装置及方法
CN111929023A (zh) * 2020-08-11 2020-11-13 日照坤仑智能科技有限公司 风洞中飞行器模型驱动系统及性能测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU ZHITAO, NIE BOWEN;GUO LINLIANG;ZHU MINGHONG: "Rapid Prototyping and Implementation of Flight Control System for Wind Tunnel Virtual Flight Test", ACTA AERODYNAMICA SINICA, vol. 35, no. 5, 31 October 2017 (2017-10-31), pages 700 - 707, XP055900820, ISSN: 0258-1825, DOI: 10.7638/kqdlxxb-2017.0026 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486167A (zh) * 2022-04-18 2022-05-13 中国空气动力研究与发展中心低速空气动力研究所 低速风洞模型尾撑地效试验地板槽口随动密封系统及方法
CN114486167B (zh) * 2022-04-18 2022-06-24 中国空气动力研究与发展中心低速空气动力研究所 低速风洞模型尾撑地效试验地板槽口随动密封系统及方法
CN114778064A (zh) * 2022-04-19 2022-07-22 厦门大学 用于旋成体飞行器模型风洞虚拟飞行试验的支撑装置和试验系统
CN114778064B (zh) * 2022-04-19 2024-06-04 厦门大学 用于旋成体飞行器模型风洞虚拟飞行试验的支撑装置和试验系统
CN114563153A (zh) * 2022-04-28 2022-05-31 中国空气动力研究与发展中心超高速空气动力研究所 一种通过轨道加速气缸试验气体的超高速气动试验装置
CN114563153B (zh) * 2022-04-28 2022-07-01 中国空气动力研究与发展中心超高速空气动力研究所 一种通过轨道加速气缸试验气体的超高速气动试验装置
CN114608794A (zh) * 2022-05-11 2022-06-10 中国航空工业集团公司哈尔滨空气动力研究所 一种模型风洞虚拟飞行试验气动力系数测量方法
CN114608794B (zh) * 2022-05-11 2022-07-19 中国航空工业集团公司哈尔滨空气动力研究所 一种模型风洞虚拟飞行试验气动力系数测量方法
CN114993606A (zh) * 2022-05-31 2022-09-02 中国科学院力学研究所 一种非定常压力和气动力数据风洞试验结果处理方法
CN114993606B (zh) * 2022-05-31 2023-03-21 中国科学院力学研究所 一种非定常压力和气动力数据风洞试验结果处理方法
CN115186376B (zh) * 2022-06-21 2022-12-20 中国航空工业集团公司哈尔滨空气动力研究所 一种小展弦比飞翼飞行器滚转力矩模型及其参数辨识方法
CN115186376A (zh) * 2022-06-21 2022-10-14 中国航空工业集团公司哈尔滨空气动力研究所 一种小展弦比飞翼飞行器滚转力矩模型及其参数辨识方法
CN114923657A (zh) * 2022-07-21 2022-08-19 中国空气动力研究与发展中心高速空气动力研究所 一种用于全机颤振风洞试验的垂杆绳索支撑系统
CN115077846A (zh) * 2022-07-28 2022-09-20 中国空气动力研究与发展中心高速空气动力研究所 一种大型风洞地面准备平台
CN115077846B (zh) * 2022-07-28 2022-10-28 中国空气动力研究与发展中心高速空气动力研究所 一种大型风洞地面准备平台
CN115508038A (zh) * 2022-08-30 2022-12-23 中国航天空气动力技术研究院 用于高速风洞超大攻角俯仰滚转双自由度运动的试验装置
CN115717981A (zh) * 2023-01-09 2023-02-28 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验中用于多喷管的驻室装置及使用方法
CN115717981B (zh) * 2023-01-09 2023-04-21 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验中用于多喷管的驻室装置及使用方法
CN116062183A (zh) * 2023-03-22 2023-05-05 中国空气动力研究与发展中心设备设计与测试技术研究所 一种用于跨介质飞行器水空跨越试验的高速拖曳系统
CN116399543B (zh) * 2023-04-10 2023-12-12 四川省机械研究设计院(集团)有限公司 基于Hexaglide并联机构的六自由度风洞模型支撑系统及控制方法
CN116399543A (zh) * 2023-04-10 2023-07-07 四川省机械研究设计院(集团)有限公司 基于Hexaglide并联机构的六自由度风洞模型支撑系统及控制方法
CN116878819A (zh) * 2023-09-06 2023-10-13 中国人民解放军32806部队 一种飞行器气动特性风洞测试装置与方法
CN116878819B (zh) * 2023-09-06 2024-02-06 中国人民解放军32806部队 一种飞行器气动特性风洞测试装置与方法
CN116933400B (zh) * 2023-09-13 2023-11-21 中国航空工业集团公司哈尔滨空气动力研究所 一种耦合不确定度的气动力矩模型的构建方法
CN116933400A (zh) * 2023-09-13 2023-10-24 中国航空工业集团公司哈尔滨空气动力研究所 一种耦合不确定度的气动力矩模型的构建方法
CN117928879A (zh) * 2024-03-22 2024-04-26 中国空气动力研究与发展中心超高速空气动力研究所 可分段开合的大口径高超声速风洞试验舱及其使用方法
CN117928879B (zh) * 2024-03-22 2024-05-31 中国空气动力研究与发展中心超高速空气动力研究所 可分段开合的大口径高超声速风洞试验舱及其使用方法

Also Published As

Publication number Publication date
CN111929023A (zh) 2020-11-13
CN111929023B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022033608A1 (zh) 风洞中飞行器模型驱动系统及性能测量方法
CN100565406C (zh) 一种基于四个定位器的飞机部件位姿调整系统及方法
US5866813A (en) Transportable three-dimensional calibration wind tunnel system, verification method of flight control system using said system and flight simulator using said system
CN111473949B (zh) 一种测量飞行器掉翼、滚摇和洗流时差的装置及方法
CN104931222A (zh) 机弹分离轨迹捕获试验系统
Guo et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system
CN109703768B (zh) 一种基于姿态/轨迹复合控制的软式空中加油对接方法
Bergmann et al. Experimental and numerical research on the aerodynamics of unsteady moving aircraft
Junquan et al. Virtual flight test techniques to predict a blended-wing-body aircraft in-flight departure characteristics
Wei et al. Research on a combinatorial control method for coaxial rotor aircraft based on sliding mode
CN111123700A (zh) 约束全程满足的高超声速飞行器绕障飞行最优控制系统
Li et al. Simulation method for wind tunnel based virtual flight testing
Zhu et al. Modeling and experimental study on orientation dynamics of a Mars rotorcraft with swashplate mechanism
CN115343949B (zh) 一种固定翼无人机跟踪制导律设计方法及验证平台
Qiao et al. Hardware-in-loop adaptive neural control for a tiltable V-tail morphing aircraft
Keller et al. Linearized Inflow and Interference Models from High Fidelity Free Wake Analysis for Modern Rotorcraft Configurations
Araujo-Estrada et al. Capturing nonlinear time-dependent aircraft dynamics using a wind tunnel manoeuvre rig
Tong et al. Dynamic response analysis under atmospheric disturbances for helicopters based on elastic blades
US20110040534A1 (en) Real-time simulation procedure for a helicopter rotor
Scott et al. SensorCraft Free-Flying Aeroservoelastic Model: Design and Fabrication
Landgrebe Overview of helicopter wake and airloads technology
Tai et al. Flight Dynamics Modeling and Aerodynamic Parameter Identification of Four-Degree-of-Freedom Virtual Flight Test
CN113138563B (zh) 多旋翼机控制器半实物仿真系统
Belatti et al. Quadrotor flight in constrained environments
Rein et al. Ground-based simulation of complex maneuvers of a delta-wing aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855658

Country of ref document: EP

Kind code of ref document: A1