WO2022033440A1 - 完好性保护方法和系统 - Google Patents

完好性保护方法和系统 Download PDF

Info

Publication number
WO2022033440A1
WO2022033440A1 PCT/CN2021/111599 CN2021111599W WO2022033440A1 WO 2022033440 A1 WO2022033440 A1 WO 2022033440A1 CN 2021111599 W CN2021111599 W CN 2021111599W WO 2022033440 A1 WO2022033440 A1 WO 2022033440A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
integrity
integrity protection
positioning
Prior art date
Application number
PCT/CN2021/111599
Other languages
English (en)
French (fr)
Inventor
王媛媛
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022033440A1 publication Critical patent/WO2022033440A1/zh
Priority to US18/107,499 priority Critical patent/US20230188995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/104Location integrity, e.g. secure geotagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to an integrity protection method and system.
  • the embodiments of the present application provide an integrity protection method and system, which can solve the problem of low positioning reliability in a mobile communication system.
  • an integrity protection method includes: an integrity protection system calculates first information; an integrity check is performed by using the first information to determine a reliability degree of a target system; wherein, The first information is calculated according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, and target risk tolerance; the target system includes the first communication device and the second communication device.
  • an integrity protection system including: a computing module for computing first information; an integrity checking module for performing integrity checking by using the first information to determine the integrity of the target system. Reliability degree; wherein, the first information is calculated according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, target risk tolerance; the target system includes the first communication device. a communication device and the second communication device.
  • an integrity protection system comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the method according to the first aspect when executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the When executed by the processor, the method as described in the first aspect is implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • the integrity protection system calculates the first information, and performs an integrity check based on the first information to determine the reliability of the target system, where the target system includes a first communication device and a second communication device.
  • One piece of information is calculated and obtained according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, and target risk tolerance.
  • This embodiment implements the integrity protection function in the mobile communication system, which can improve the positioning reliability of the mobile communication system, improve the security of positioning applications, and make the application scenarios of wireless communication more extensive.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an integrity protection method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an integrity protection method according to a specific embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an integrity protection method according to another specific embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an integrity protection method according to yet another specific embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an integrity protection system according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th generation ). Generation, 6G) communication system.
  • 6th generation 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. In the application embodiments, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides an integrity protection method 200, and the method includes the following steps.
  • S202 The integrity protection system calculates the first information.
  • the integrity protection system performs integrity check through the first information to determine the reliability of the target system; the first information is calculated according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device sample data, target risk tolerance.
  • the integrity protection system mentioned in the various embodiments of this application may be a sub-module/sub-device/sub-device in the first communication device; it may also be a sub-module/sub-device/sub-device in the second communication device; and It may be a module/device/device that is independent of the first communication device and the second communication device and can be communicatively connected to the first communication device and the second communication device. It can be understood that the above-mentioned integrity protection system may be installed in both the first communication device and the second communication device.
  • the first communication device may be a terminal or a network-side device; similarly, the second communication device may be a terminal or a network-side device.
  • the first communication device may be a terminal or a network-side device; similarly, the second communication device may be a terminal or a network-side device.
  • the first communication device is a terminal or a network-side device; similarly, the second communication device may be a terminal or a network-side device.
  • Subsequent embodiments mainly use the first communication device as a The terminal, the second communication device is a network side device is introduced as an example, in this scenario, the terminal can realize its own positioning through the network side device, this embodiment does not limit the specific positioning method, for example, the time of arrival (Time of arrival) Arrival, TOA) positioning method.
  • the time of arrival Time of arrival
  • TOA time of arrival
  • the above-mentioned target system may be a positioning system composed of a first communication device and a second communication device. Therefore, the target system includes the first communication device and the second communication device. It can be understood that, in addition to realizing the positioning of the first communication device or the second communication device, the above target system can also realize other functions, such as measuring the moving speed of the first communication device or the second communication device; correcting/synchronizing the first communication device The clock information of the communication device or the second communication device, etc.
  • the above-mentioned first information may be error information; the above-mentioned sampling data may be data that can cause/cause positioning errors, for example, including clock synchronization information, system correction information, interference conditions, occlusion conditions, refraction conditions, and the like.
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the integrity protection system is set in the terminal.
  • the network-side device provides the terminal with sampled data, where the sampled data includes positioning assistance data, etc., and may specifically include the above-mentioned data that can cause/induce a positioning error.
  • the terminal After receiving the sampling data from the network side device, the terminal provides the sampling data to the integrity protection system, and the integrity protection system calculates the first information according to the sampling data, target risk tolerance, etc.
  • the first information Specifically, it may be the location integrity protection level corresponding to the obtained location information.
  • the integrity protection system issues an alarm to remind the user that the current location information is unreliable.
  • the target risk tolerance mentioned above may be provided by the terminal; may also be provided by the network side device; may also be provided by other applications, or may be a preconfigured value.
  • the target risk tolerance is usually a fixed value, for example, the target risk tolerance is: 99.9999% safety, or 0.0000000001 risk.
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the integrity protection system may also be set in the network-side device.
  • the network-side device realizes its own positioning according to the terminal
  • the terminal can provide sampling data to the network-side device
  • the network-side device performs integrity protection on its own location information through the integrity protection system.
  • the integrity protection system calculates the first information, and performs an integrity check based on the first information to determine the reliability of the target system, where the target system includes a first communication device and a second communication device.
  • the first information is calculated and obtained according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, and target risk tolerance.
  • This embodiment implements the integrity protection function in the mobile communication system, which can improve the positioning reliability of the mobile communication system, improve the security of positioning applications, and make the application scenarios of wireless communication more extensive.
  • the first information mentioned in Embodiment 200 may be used to indicate at least one of the following:
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the integrity protection system is set in the terminal.
  • the network side device provides sample data to the terminal.
  • the terminal may receive sampled data from multiple network-side devices for positioning itself, and at the same time, for calculating the first information through the integrity protection system, and determining the reliability of the positioning system.
  • the integrity protection system can use the first information to indicate whether there is abnormal data in the sampled data, and then the abnormal data can be eliminated in the subsequent positioning process to improve the reliability of positioning.
  • the integrity protection system may indicate whether the first communication device fails through the first information.
  • the first information indicates that an error occurs in the terminal itself, and alarm information is sent in time.
  • the integrity protection system can detect the positioning error of the terminal itself, thereby further improving the reliability of positioning.
  • the integrity protection system can use the first information to indicate whether the second communication device is faulty, for example, indicating a faulty network-side device, etc., and then can eliminate the faulty network-side device ( That is, the faulty network-side device is no longer used for positioning), and the reliability of the positioning is improved.
  • the integrity protection system may use the first information to indicate whether the target system is faulty.
  • the first information indicates that the positioning system formed by the terminal and the network-side device is faulty, and alarm information is sent out in time to further improve the reliability of positioning.
  • the above target system can also realize other functions, such as measuring the moving speed of the first communication device or the second communication device; correction/synchronization Clock information of the first communication device or the second communication device, etc. Therefore, the first information mentioned in the various embodiments of this application is used to perform integrity protection on at least one of the following: position information, speed information, and clock information of the first communication device.
  • the first communication device may be The terminal
  • the second communication device may be a network side device.
  • the first information mentioned in the above embodiment is used to perform integrity protection on the location information, and the above embodiment further includes the following step: the integrity protection system receives second information, and the second information includes at least one of the following : 1) Positioning assistance data; 2) Positioning integrity risk; 3) Positioning integrity protection level; 4) Positioning integrity risk alarm level; 5) Positioning integrity risk event reporting time; 6) Positioning integrity protection threshold; 7 ) Positioning accuracy requirements; 8) Integrity index requirements.
  • the receiving of the second information by the integrity protection system includes: the integrity protection system receives the second information in at least one of the following ways: 1) receiving through paging signaling; 2) receiving through IP data packets ; 3) Receive through positioning protocol; 4) Receive through broadcast.
  • the first communication device may be a terminal
  • the second communication device may be a network-side device
  • the integrity protection system is set in the terminal
  • the network-side device sends the second communication device to the terminal through at least one of the above four methods. information.
  • the integrity protection system can also issue an alarm to remind the user that the current location information is unreliable under the condition that the positioning integrity protection level is greater than the positioning integrity risk alarm level.
  • the positioning integrity protection level and the positioning integrity risk alarm level mentioned in the above embodiment there are the following four providing methods: 1) The positioning integrity protection level is provided by the first communication device. , the positioning integrity risk warning level is provided by the second communication device; or 2) the positioning integrity protection level is provided by the second communication device, and the positioning integrity risk warning level is the provided by the first communication device; or 3) the positioning integrity protection level is provided by the first communication device, and the positioning integrity risk alarm level is provided by the first communication device; 4) the positioning The integrity protection level is provided by the second communication device, and the location integrity risk alarm level is provided by the second communication device.
  • the first information mentioned in each of the foregoing embodiments is used to perform integrity protection on the location information of the first communication device, and the integrity check is performed by using the first information to determine the target system
  • the reliability degree of the target system includes: performing integrity check through the first information and at least one of the following to determine the reliability degree of the target system: orbit information and map information of the first communication device.
  • the data analysis and correction process of the integrity protection system can be combined with the track information and/or map information of the terminal (such as channel information, railway track map, AutoNavi map, etc.) for comprehensive comparison, so as to improve the integrity protection accuracy of location information.
  • the track information and/or map information of the terminal such as channel information, railway track map, AutoNavi map, etc.
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the integrity protection system is set in the terminal.
  • the network-side device provides the terminal with sampled data, where the sampled data includes positioning assistance data and the like, and may specifically be the above-mentioned data that can cause/induce a positioning error.
  • the first communication device may also send third information to the second network-side device, where the third information includes at least one of the following:
  • Integrity protection information used by the integrity protection system may also be referred to as a verification method used by the integrity protection system.
  • the first information after verification may also include location information, speed information, or clock information of the terminal, etc., and the integrity protection system may verify/correct the first information to provide more accurate first information.
  • the terminal issues an alarm when the positioning integrity protection level is greater than the positioning integrity risk alarm level. Therefore, the alarm information may include the positioning integrity protection level, the positioning integrity risk alarm level, the alarm time, and the alarm corresponding to the alarm level. location information (that is, the location information may be inaccurate), etc.
  • the terminal can report the uncorrected location information to the network-side equipment, and the network-side equipment is provided with an integrity protection system, and the integrity protection system of the network-side equipment corrects the above-mentioned location information, and provides the above-mentioned first Three messages to the terminal.
  • the integrity protection system provided by each embodiment of the present application is not limited to the terminal verifying its own location information, and there are also integrity protection systems on the network side device and the location server side to check the integrity of the received data.
  • Protect Specifically, there are the following situations: the terminal corrects the network side equipment; the network side equipment corrects the terminal; the terminal corrects other terminals; the network system 1 corrects the network system 2 .
  • the verification method used by the integrity protection system includes at least one of the following: first-order Markov process; error model; two-dimensional inverse normal distribution; Bayesian statistical method; least squares method; Kalman Filtering; Neyman-Pearson Theorem.
  • the integrity check information used by the integrity protection system mentioned in 5) above may include at least one of the following: 1) positioning assistance data; 2) positioning integrity risk; 3) positioning integrity protection 4) Positioning integrity risk alarm level; 5) Positioning integrity risk event reporting time; 6) Positioning integrity protection threshold; 7) Positioning accuracy requirements; 8) Integrity index requirements.
  • the verification method used by the integrity protection system includes a Bayesian statistical method.
  • the integrity protection system includes a Bayesian prediction model, and the Bayesian prediction model uses a Bayesian prediction model.
  • Bayesian statistics not only use model information and data information, but also make full use of prior information.
  • the location information can be input into the Bayesian model first, and the reliability of the location information can be evaluated. After obtaining the location integrity protection level corresponding to the location information is greater than the location integrity In the case of the risk alarm level, an alarm can also be issued; when the location integrity protection level corresponding to the location information is obtained is less than or equal to the location integrity risk alarm level, the Bayesian model is returned for iterative analysis. It can be understood that the larger the data volume of the sampled data, the more accurate the obtained result (such as position information).
  • the system when the location data is detected by the integrity protection system and it is found that the single data does not meet the integrity check, the system alarms. For example, in the location area located by a user, most or most of the positioning of other users is concentrated in a certain range, and the location data of this user's positioning exceeds this range, it is considered that this user's positioning data error is relatively large.
  • the above-mentioned alarm information is notified to the terminal via the integrity protection system, and is reported to the network side or the positioning application server by the terminal.
  • the first communication device and the second communication device mentioned in the foregoing embodiments satisfy one of the following: 1) the first communication device is a terminal, and the second communication device is a network side device; 2) The first communication device is a network side device, and the second communication device is a terminal; 3) The first communication device is a terminal, and the second communication device is a terminal; 4) The first communication device is a network side device, the second communication device is a network side device.
  • the network side equipment mentioned above includes at least one of the following: a wireless access network side; an authentication management function (AuthenticationManagementFunction, AMF); a location management function (Location Management Function, LMF); a positioning server; Navigation Satellite System, GNSS) correction system; Integrity correction system, such as Receiver Autonomous Integrity Monitoring (RAIM) system.
  • AMF authentication management function
  • LMF Location Management Function
  • GNSS Navigation Satellite System
  • Integrity correction system such as Receiver Autonomous Integrity Monitoring (RAIM) system.
  • RAIM Receiver Autonomous Integrity Monitoring
  • At least two network side devices can realize the intercommunication of integrity capability, and the intercommunication manner includes at least one of the following: 1) interface signaling intercommunication; 2) data server sharing.
  • the data server sharing mentioned above may mean that by establishing a data server, all the network side devices mentioned above can be set up on the data server interface, and data sharing can be performed by directly reading data. In this way, permissions can also be set for the access module (such as all the network-side devices mentioned above), including but not limited to at least one of the following: read-only; writable; partially read-only; partially writable.
  • the terminal is further configured to report the integrity capability of the terminal to the network side device in at least one of the following ways: 1) reporting through signaling; 2) reporting through IP data packets; 3) through positioning Protocol report.
  • the network-side device is further configured to notify the terminal of the integrity capability of the network-side device in at least one of the following manners: 1) informing through paging signaling; 2) informing through IP data packets; 3) Notify by positioning protocol; 4) Notify by broadcasting.
  • integrity capabilities mentioned in the various embodiments of this specification may include: low integrity requirements (low); high integrity requirements (high,); medium integrity requirements (medium); no integrity requirements. Four types.
  • the network-side device is further configured to notify the terminal of error information of the network-side device through signaling or broadcasting, so that the terminal can fully consider the error information when positioning.
  • this embodiment includes the following steps.
  • Step 1 The UE acquires the integrity capability.
  • an integrity protection system is set in the UE.
  • Step 2 The UE reports its integrity capability to the LMF through the positioning protocol.
  • Step 3 The positioning process is initiated.
  • the location server may send a location service request to the LMF, so as to realize the location of the UE.
  • Step 4 The LMF sends the positioning assistance data to the UE, and at the same time, it can also carry the integrity capability supported by the LMF.
  • Step 5 The UE performs positioning measurement to obtain positioning information (or location information).
  • Step 6 The UE stack (stack) sends the positioning information with precision to the UE application.
  • Step 7 The integrity protection system corrects the positioning information.
  • the integrity protection system in this embodiment can refer to the RAIM in FIG. 3 .
  • Step 8 The integrity protection system provides the corrected positioning information (that is, the data that has been fully preserved) to the UE stack.
  • Step 9 The UE stack sends the guaranteed data to the LMF.
  • the UE stack sends the guaranteed data to the LMF.
  • Step 10 The LMF sends the above-mentioned guaranteed data to the positioning server.
  • Step 11 The above-mentioned integrity protection system may also exist on the positioning server. Therefore, the location information of a single UE can also be checked through the integrity protection system, and the location information of multiple UEs can also be counted.
  • This embodiment is similar to the first embodiment.
  • it is not the UE and the network side device that performs positioning, but the UE and the UE.
  • the positioning accuracy of a single UE is determined by sampling a large amount of positioning information between UEs and UEs.
  • the UE1 in the second embodiment is equivalent to the UE in the first embodiment
  • the UE2 in the second embodiment is equivalent to the network side device in the first embodiment
  • the network side device includes an LMF and a positioning server.
  • this embodiment includes the following steps.
  • the difference between the third embodiment and the first embodiment starts from step 6.
  • the measured positioning information in this embodiment is not checked for integrity on the UE side, but is reported by the UE to the network side equipment, and the network The side device performs the integrity check, and then sends the check result back to the UE.
  • steps 1 to 5 of this embodiment refer to Embodiment 1, and the following will be introduced from step 6.
  • Step 6 The UE stack sends precise positioning information to the LMF.
  • Step 7 The LMF sends the above-mentioned positioning information with precision to the positioning server.
  • the integrity protection system in this embodiment may refer to the RAIM in FIG. 4 , which is located on the side of the positioning server.
  • Step 8 The integrity protection system corrects the positioning information.
  • Step 9 The positioning server provides the corrected data (which may be the corrected positioning information) to the UE application.
  • Step 10 The UE application provides the corrected data to the UE stack.
  • Step 11 The UE may also have the above-mentioned integrity protection system. Therefore, the above-mentioned corrected data can also be corrected again to improve the accuracy of the positioning information.
  • this embodiment includes the following steps.
  • Step 1 gNB sends its own error information to LMF.
  • Step 2 When the UE is positioning, the LMF sends the positioning assistance data carrying the above error information to the UE, so that the UE can fully consider the error information when positioning.
  • the LMF sends the positioning assistance data carrying the above error information to the gNB, and then the gNB forwards it to the UE, so that the terminal can fully consider the positioning assistance data when positioning. the error message.
  • Step 5 The UE performs positioning measurement.
  • the execution body may be an integrity protection system, or a control module in the integrity protection system for executing the integrity protection method.
  • the integrity protection method provided by the embodiment of the present application is described by taking the integrity protection method performed by the integrity protection system as an example.
  • FIG. 6 is a schematic structural diagram of an integrity protection system according to an embodiment of the present application.
  • the integrity protection system 600 includes: a calculation module 602, which can be used to calculate the first information; an integrity check module 604, which uses Integrity check is performed through the first information to determine the reliability of the target system; wherein, the first information is calculated according to at least one of the following: the sampled data of the first communication device, the second communication sampling data of the device, target risk tolerance; the target system includes the first communication device and the second communication device.
  • the integrity protection system calculates the first information, and performs an integrity check based on the first information to determine the reliability of the target system, where the target system includes a first communication device and a second communication device.
  • One piece of information is calculated and obtained according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, and target risk tolerance.
  • This embodiment implements the integrity protection function in the mobile communication system, which can improve the positioning reliability of the mobile communication system, improve the security of positioning applications, and make the application scenarios of wireless communication more extensive.
  • the first information is used to indicate at least one of the following: whether abnormal data exists in the sampled data; whether the first communication device is faulty; whether the second communication device is faulty failure; whether the target system has failed.
  • the first information is used to perform integrity protection on at least one of the following: location information, speed information, and clock information of the first communication device.
  • the first information is used to perform integrity protection on the location information
  • the system 600 further includes: a receiving module, configured to receive second information, where the second information includes the following At least one of: positioning assistance data; positioning integrity risk; positioning integrity protection level; positioning integrity risk alarm level; positioning integrity risk event reporting time; positioning integrity protection threshold; positioning accuracy requirements; integrity index requirements.
  • the receiving module is configured to receive the second information in at least one of the following ways: receiving through paging signaling; receiving through IP data packets; receiving through positioning protocol; through broadcasting way to receive.
  • the integrity verification module 604 is further configured to: issue an alarm when the location integrity protection level is greater than the location integrity risk alarm level.
  • the first information is used to perform integrity protection on the location information
  • the integrity checking module 604 is configured to: perform the first information and at least one of the following Integrity check to determine the reliability of the target system: track information and map information of the first communication device.
  • the system 600 further includes: a sending module, configured to send third information to the second network side device, where the third information includes at least one of the following: the first information ; the integrity protection information used by the integrity protection system; the first information after verification; alarm information; the integrity verification information used by the integrity protection system.
  • a sending module configured to send third information to the second network side device, where the third information includes at least one of the following: the first information ; the integrity protection information used by the integrity protection system; the first information after verification; alarm information; the integrity verification information used by the integrity protection system.
  • the verification method used by the integrity protection system 600 includes at least one of the following: a first-order Markov process; an error model; a two-dimensional inverse normal distribution; a Bayesian statistical method; Least Squares; Kalman Filter; Neyman-Pearson Theorem.
  • the first communication device and the second communication device satisfy one of the following: the first communication device is a terminal, and the second communication device is a network-side device; the first communication device is a network-side device; A communication device is a network-side device, and the second communication device is a terminal; the first communication device is a terminal, and the second communication device is a terminal; the first communication device is a network-side device, and the second communication device is a terminal.
  • the communication device is a network side device.
  • the terminal is further configured to report the integrity capability of the terminal to the network side device in at least one of the following ways: reporting through signaling; reporting through IP data packets; report.
  • the network-side device is further configured to notify the terminal of the integrity capability of the network-side device in at least one of the following ways: informing through paging signaling; informing through IP data packets ; Notify by positioning protocol; Notify by broadcasting.
  • the network-side device is further configured to notify the terminal of the error information of the network-side device by means of signaling or broadcasting.
  • the integrity protection system in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the integrity protection system in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the integrity protection system provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 5 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 700, including a processor 701, a memory 702, a program or instruction stored in the memory 702 and executable on the processor 701,
  • a communication device 700 including a processor 701, a memory 702, a program or instruction stored in the memory 702 and executable on the processor 701
  • the communication device 700 is a terminal
  • the program or instruction is executed by the processor 701
  • each process of the above-mentioned embodiment of the integrity protection method can be implemented, and the same technical effect can be achieved.
  • the communication device 700 is a network side device, when the program or instruction is executed by the processor 701, each process of the above-mentioned integrity protection method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810 and other components .
  • the terminal 800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 801 receives the downlink data from the network side device, and then processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 810.
  • the processor 810 is configured to calculate first information; perform integrity check through the first information to determine the reliability degree of the target system; wherein the first information is calculated according to at least one of the following: the first Sampled data of a communication device, sampled data of a second communication device, and target risk tolerance; the target system includes the first communication device and the second communication device.
  • the integrity protection system of the terminal calculates the first information, and performs an integrity check based on the first information to determine the reliability of the target system, where the target system includes a first communication device and a second communication device , the first information is calculated and obtained according to at least one of the following: sampling data of the first communication device, sampling data of the second communication device, and target risk tolerance.
  • This embodiment implements the integrity protection function in the mobile communication system, which can improve the positioning reliability of the mobile communication system, improve the security of positioning applications, and make the application scenarios of wireless communication more extensive.
  • the terminal provided by the embodiment of the present application implements each process of the above-mentioned integrity protection method embodiment during execution, and can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the network device 900 includes: an antenna 91 , a radio frequency device 92 , and a baseband device 93 .
  • the antenna 91 is connected to the radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 93 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 93 .
  • the baseband apparatus 93 includes a processor 94 and a memory 95 .
  • the baseband device 93 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 9 , one of the chips is, for example, the processor 94 , which is connected to the memory 95 to call the program in the memory 95 and execute the The network devices shown in the above method embodiments operate.
  • the baseband device 93 may further include a network interface 96 for exchanging information with the radio frequency device 92, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored on the memory 95 and executable on the processor 94, and the processor 94 invokes the instructions or programs in the memory 95 to execute the modules shown in FIG. 6 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned integrity protection method embodiment can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned embodiment of the integrity protection method and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-volatile memory, and the computer program product is executed by at least one processor to implement each process of the above integrity protection method embodiments , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application further provides a communication device, which is configured to perform each process of the above-mentioned integrity protection method embodiment, and can achieve the same technical effect, which is not repeated here to avoid repetition.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Abstract

本申请实施例公开了一种完好性保护方法和系统,能够解决移动通信系统中定位可靠性低的问题,该方法包括:完好性保护系统计算第一信息;通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。

Description

完好性保护方法和系统
交叉引用
本申请要求在2020年8月11日在中国提交的申请号为202010803299.X、发明名称为“完好性保护方法和系统”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种完好性保护方法和系统。
背景技术
随着5G定位技术的快速发展,在公路收费,车联网,甚至航空领域都在试图引入5G定位技术作为定位的主要手段。然而,目前的移动通信系统并没有提供完好性(integrity)保护功能,容易造成定位可靠性低的问题。
发明内容
本申请实施例提供一种完好性保护方法和系统,能够解决移动通信系统中定位可靠性低的问题。
第一方面,提供了一种完好性保护方法,所述方法包括:完好性保护系统计算第一信息;通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。
第二方面,提供了一种完好性保护系统,包括:计算模块,用于计算第一信息;完好性校验模块,用于通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度; 所述目标系统包括所述第一通信设备和所述第二通信设备。
第三方面,提供了一种完好性保护系统,该完好性保护系统包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面所述的方法。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,完好性保护系统计算第一信息,并通过第一信息进行完好性校验以确定目标系统的可靠性程度,该目标系统包括第一通信设备和第二通信设备,第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度。该实施例在移动通信系统实现完好性保护功能,可以提升移动通信系统的定位可靠性,提高定位应用的安全性,使得无线通信的应用场景更加广泛。
附图说明
图1是根据本申请一个实施例的无线通信系统的框图;
图2是根据本申请一个实施例的完好性保护方法的示意性流程图;
图3是根据本申请一个具体实施例的完好性保护方法的示意性流程图;
图4是根据本申请另一个具体实施例的完好性保护方法的示意性流程图;
图5是根据本申请再一个具体实施例的完好性保护方法的示意性流程图;
图6是根据本申请一个实施例的完好性保护系统的结构示意图;
图7是根据本申请一个实施例的通信设备的结构示意图;
图8是根据本申请一个实施例的终端的结构示意图;
图9是根据本申请一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的完好性保护方法和系统进行详细地说明。
如图2所示,本申请的一个实施例提供一种完好性保护方法200,该方法包括如下步骤。
S202:完好性保护系统计算第一信息。
S204:完好性保护系统通过第一信息进行完好性校验,以确定目标系统的可靠性程度;第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度。
本申请各个实施例中提到的完好性保护系统,可以是第一通信设备内的子模块/子装置/子设备;还可以是第二通信设备内的子模块/子装置/子设备; 还可以是独立于第一通信号设备和第二通信设备之外,能够和第一通信设备和第二通信设备通信连接的模块/装置/设备。可以理解,第一通信设备和第二通信设备内可以均安装上述完好性保护系统。
本申请各个实施例中,第一通信设备可以是终端,也可以是网络侧设备;同理,第二通信设备可以是终端,也可以是网络侧设备,后续实施例主要以第一通信设备是终端,第二通信设备是网络侧设备为例进行介绍,在该场景中,终端可以通过网络侧设备实现自身的定位,该实施例对具体的定位方法不进行限定,例如,到达时间(Time of Arrival,TOA)定位法。
上述目标系统可以是第一通信设备和第二通信设备构成的定位系统,因此,该目标系统包括所述第一通信设备和所述第二通信设备。可以理解,上述目标系统除了用于实现第一通信设备或第二通信设备的定位之外,还可以实现其他功能,例如测量第一通信设备或第二通信设备的移动速度;校正/同步第一通信设备或第二通信设备的时钟信息等。
上述第一信息可以是误差信息;上述采样数据可以是能够造成/引起定位误差的数据,例如包括时钟同步信息,系统校正信息,干扰情况,遮挡情况,折射情况等。
在一个例子中,第一通信设备是终端,第二通信设备是网络侧设备,完好性保护系统设置于终端内。该例子中,网络侧设备向终端提供采样数据,该采样数据包括定位辅助数据等,具体可以包括上述提到的能够造成/引起定位误差的数据。
终端在接收到来自于网络侧设备的采样数据之后,将该采样数据提供给完好性保护系统,完好性保护系统根据采样数据、目标风险容忍度等计算第一信息,该例子中,第一信息具体可以是得到的位置信息对应的定位完好性保护等级。可选地,完好性保护系统在确定出定位完好性保护等级大于定位完好性风险告警等级的情况下,发出报警,提示用户本次位置信息不可靠。
上述提到的目标风险容忍度可以是终端提供;也可以是由网络侧设备提供;也可以是由其他应用提供,还可以是预配置的值。目标风险容忍度通常 为定值,例如,目标风险容忍度为:安全性99.9999%,或风险0.0000000001。
可以理解,在其他的实施例中,第一通信设备是终端,第二通信设备是网络侧设备,完好性保护系统还可以设置于网络侧设备内。该例子中,网络侧设备根据终端实现自身的定位,终端可以向网络侧设备提供采样数据,网络侧设备通过完好性保护系统对自身的位置信息进行完好性保护,具体实现方式可以参见上述实施例的介绍。
本申请实施例提供的完好性保护方法,完好性保护系统计算第一信息,并通过第一信息进行完好性校验以确定目标系统的可靠性程度,该目标系统包括第一通信设备和第二通信设备,第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度。该实施例在移动通信系统实现完好性保护功能,可以提升移动通信系统的定位可靠性,提高定位应用的安全性,使得无线通信的应用场景更加广泛。
可选地,实施例200中提到的第一信息可以用于指示如下至少之一:
1)所述采样数据中是否存在异常数据。
2)所述第一通信设备是否发生故障。
3)所述第二通信设备是否发生故障。
4)所述目标系统是否发生故障。
为详细说明上述四种情况,以下将结合一个具体的例子进行解释说明。在一个例子中,第一通信设备是终端,第二通信设备是网络侧设备,完好性保护系统设置于终端内。该例子中,网络侧设备向终端提供采样数据。该例子中,终端可以接收来自于多个网络侧设备的采样数据,用于实现自身定位,同时用于通过完好性保护系统计算第一信息,并确定定位系统的可靠性程度。
该例子中,完好性保护系统可以通过第一信息来指示上述采样数据中是否存在异常数据,进而在后续的定位过程中可以剔除该异常数据,提高定位的可靠性。
该例子中,完好性保护系统可以通过第一信息来指示第一通信设备是否发生故障。例如,第一信息指示终端本身发生错误,并及时发出告警信息。 该例子中,完好性保护系统可以检测到终端自身定位错误,进一步提高定位的可靠性。
该例子中,完好性保护系统可以通过第一信息来指示第二通信设备是否发生故障,例如,指示存在故障的网络侧设备等,进而在后续的定位过程中可以剔除该故障的网络侧设备(即不再通过该故障的网络侧设备定位),提高定位的可靠性。
该例子中,完好性保护系统可以通过第一信息来指示上述目标系统是否发生故障。例如,第一信息指示终端和网络侧设备构成的定位系统发生故障,并及时发出告警信息,进一步提高定位的可靠性。
如前所述,上述目标系统除了用于实现第一通信设备或第二通信设备的定位之外,还可以实现其他功能,例如测量第一通信设备或第二通信设备的移动速度;校正/同步第一通信设备或第二通信设备的时钟信息等。因此,本申请各个实施例中提到的第一信息用于对如下至少之一进行完好性保护:第一通信设备的位置信息、速度信息、时钟信息,该例子中,第一通信设备可以是终端,第二通信设备可以是网络侧设备。
在上述实施例中提到的第一信息用于对所述位置信息进行完好性保护,上述实施例还包括如下步骤:完好性保护系统接收第二信息,所述第二信息包括如下至少之一:1)定位辅助数据;2)定位完好性风险;3)定位完好性保护等级;4)定位完好性风险告警等级;5)定位完好性风险事件上报时间;6)定位完好性保护阈值;7)定位精度要求;8)完好性指标要求。
上述实施例提到完好性保护系统的接收第二信息包括:完好性保护系统通过如下方式的至少之一接收所述第二信息:1)通过寻呼信令接收;2)通过IP数据包接收;3)通过定位协议接收;4)通过广播方式接收。
该实施例中,第一通信设备可以是终端,第二通信设备可以是网络侧设备,完好性保护系统设置于终端内,网络侧设备通过上述四种方式的至少之一来向终端发送第二信息。
该实施例中,完好性保护系统在得到所述定位完好性保护等级大于所述 定位完好性风险告警等级的情况下,还可以发出报警,提示用户本次位置信息不可靠。
可选地,针对上述实施例中提到的定位完好性保护等级以及定位完好性风险告警等级,存在以下四种提供方式:1)所述定位完好性保护等级是所述第一通信设备提供的,所述定位完好性风险告警等级是所述第二通信设备提供的;或2)所述定位完好性保护等级是所述第二通信设备提供的,所述定位完好性风险告警等级是所述第一通信设备提供的;或3)所述定位完好性保护等级是所述第一通信设备提供的,所述定位完好性风险告警等级是所述第一通信设备提供的;4)所述定位完好性保护等级是所述第二通信设备提供的,所述定位完好性风险告警等级是所述第二通信设备提供的。
可选地,前文各个实施例中提到的所述第一信息用于对第一通信设备的位置信息进行完好性保护,所述通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度包括:通过所述第一信息以及如下至少之一进行完好性校验,以确定目标系统的可靠性程度:所述第一通信设备的轨道信息、地图信息。
该实施例中,完好性保护系统的数据分析和校正流程,可以结合终端的轨道信息和/或地图信息(如航道信息,铁路轨道图,高德地图等)进行综合比对,提高完好性保护的位置信息的准确性。
在一个例子中,第一通信设备是终端,第二通信设备是网络侧设备,完好性保护系统设置于终端内。该例子中,网络侧设备向终端提供采样数据,该采样数据包括定位辅助数据等,具体可以是上述提到的能够造成/引起定位误差的数据。第一通信设备还可以向所述第二网络侧设备发送第三信息,所述第三信息包括如下至少之一:
1)所述第一信息。
2)所述完好性保护系统使用的完好性保护信息。该完好性保护信息还可以称作是完好性保护系统使用的校验方法。
3)经过校验后的所述第一信息。该例子中,第一信息还可以包括终端的 位置信息、速度信息或时钟信息等,完好性保护系统可以对该第一信息进行校验/校正,以提供更准确的第一信息。
4)报警信息。通常,终端是在定位完好性保护等级大于定位完好性风险告警等级的情况下,发出报警,因此,该报警信息可以包括定位完好性保护等级、定位完好性风险告警等级、报警时间,报警对应的位置信息(即该位置信息可能不准确)等。
5)所述完好性保护系统使用的完好性校验信息。
在一个具体例子中,终端可以上报未经校正的位置信息给网络侧设备,网络侧设备设置有完好性保护系统,由网络侧设备的完好性保护系统对上述位置信息进行校正,并提供上述第三信息给终端。
需要说明的是,本申请各个实施例提供的完好性保护系统,不限于终端校验自身的位置信息,网络侧设备和位置服务器端也存在完好性保护系统用以对收到的数据进行完好性保护。具体存在以下几种情况:终端校正网络侧设备;网络侧设备校正终端;终端校正其他终端;网络系统1校正网络系统2。
可选地,所述完好性保护系统使用的校验方法包括如下至少之一:一阶马尔科夫过程;误差模型;二维逆向正态分布;贝叶斯统计方法;最小二乘法;卡尔曼滤波;奈曼皮尔逊定理。
可选地,上述5)中提到的所述完好性保护系统使用的完好性校验信息可以包括如下至少之一:1)定位辅助数据;2)定位完好性风险;3)定位完好性保护等级;4)定位完好性风险告警等级;5)定位完好性风险事件上报时间;6)定位完好性保护阈值;7)定位精度要求;8)完好性指标要求。
在一个具体的例子中,所述完好性保护系统使用的校验方法包括贝叶斯统计方法,该例子中,完好性保护系统包括有贝叶斯预测模型,贝叶斯预测模型是运用贝叶斯统计进行的一种预测,贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。
对于单次的位置信息(或称位置数据),可以首先将该位置信息输入贝叶 斯模型,对该位置信息进行可靠性评估,在得到该位置信息对应的定位完好性保护等级大于定位完好性风险告警等级的情况下,还可以发出报警;在得到该位置信息对应的定位完好性保护等级小于或等于定位完好性风险告警等级的情况下,返回贝叶斯模型进行迭代分析。可以理解,采样数据的数据量越大,得到的结果(如位置信息)越准确。
可选地,当位置数据经由完好性保护系统检测,发现单次数据不符合完好性校验时,系统报警。如某用户定位的位置区域,其他用户的定位大多数或绝大多数集中在某个范围内,而该次用户定位的位置数据超出此范围,则认为本次该用户的定位数据误差较大。上述报警信息经由完好性保护系统通知给终端,并由终端上报网络侧或者定位应用服务器。
可选地,前文各个实施例中提到的第一通信设备和第二通信设备满足如下之一:1)所述第一通信设备为终端,所述第二通信设备为网络侧设备;2)所述第一通信设备为网络侧设备,所述第二通信设备为终端;3)所述第一通信设备为终端,所述第二通信设备为终端;4)所述第一通信设备为网络侧设备,所述第二通信设备为网络侧设备。
上述提到的网络侧设备包括如下至少之一:无线接入网侧;认证管理功能(AuthenticationManagementFunction,AMF);位置管理功能(Location Management Function,LMF);定位服务器;定位应用;卫星定位系统(Global Navigation Satellite System,GNSS)校正系统;完好性校正系统,如接收机自体完好性监控(Receiver Autonomous Integrity Monitoring,RAIM)系统。
可选地,至少两个上述网络侧设备之间能够实现完好性能力的互通,所述互通的方式包括如下至少之一:1)接口信令互通;2)数据服务器共享。
上述提到的数据服务器共享,可以是指通过建立数据服务器,以上提到的全部网络侧设备都可以设立于数据服务器接口,可通过直接读取数据的方式,进行数据共享。此种方式还可以对访问模块(如以上提到的全部网络侧设备)设置权限,包括但不限于如下至少之一:只读;可写;部分只读;部分可写。
可选地,所述终端还用于通过如下方式的至少之一向所述网络侧设备上报所述终端的完好性能力:1)通过信令上报;2)通过IP数据包上报;3)通过定位协议上报。
可选地,所述网络侧设备还用于通过如下方式的至少之一向所述终端通知所述网络侧设备的完好性能力:1)通过寻呼信令通知;2)通过IP数据包通知;3)通过定位协议通知;4)通过广播方式通知。
需要说明的是,本说明书各个实施例中提到的完好性能力可以包括:低完好性要求(low);高完好性要求(high,);中等完好性要求(medium);无完好性要求这四种类型。
可选地,所述网络侧设备还用于通过信令或者广播的方式通知所述终端所述网络侧设备的错误信息,使得终端在定位时可以充分考虑该错误信息。
为详细说明本申请实施例提供的移动通信系统的完好性保护方法,以下将结合几个具体的实施例进行说明。
实施例一
如图3所示,该实施例包括如下步骤。
步骤1:UE获得完好性能力。该实施例中,UE内设置有完好性保护系统。
步骤2:UE通过定位协议向LMF上报自身的完好性能力。
步骤3:定位流程发起。具体地,可以由定位服务器向LMF发送定位服务请求,以实现UE的定位。
步骤4:LMF向UE发送定位辅助数据,同时,还可以携带LMF支持的完好性能力。
步骤5:UE进行定位测量,得到定位信息(或称位置信息)。
步骤6:UE栈(stack)向UE应用发送带精度的定位信息。
步骤7:完好性保护系统对定位信息进行校正。该实施例中的完好性保护系统可以参见图3中的RAIM。
步骤8:完好性保护系统将校正后的定位信息(即经过完保的数据)提 供给UE栈。
步骤9:UE栈将经过完保的数据发送给LMF,具体可以参见前文实施例中的第三信息。
步骤10:LMF将上述经过完保的数据发送给定位服务器。
步骤11:定位服务器端可能也存在上述完好性保护系统,因此,还可以通过完好性保护系统校验单个UE的位置信息,还可以统计多个UE的位置信息。
实施例二
该实施例类似实施例一,实施例二中进行定位的不是UE和网络侧设备,而是UE和UE。该实施例二通过采样大量UE和UE之间定位信息,定位单次UE定位的准确性。
该实施例二中的UE1相当于实施例一的UE,该实施例二中的UE2相当于实施例一的网络侧设备,该网络侧设备包括LMF和定位服务器。
实施例三
如图4所示,该实施例包括如下步骤。
该实施例三与实施例一的区别从第6步开始,不同于实施例一,该实施例中测量的定位信息不在UE侧进行完好性校验,而是由UE上报网络侧设备,由网络侧设备进行完保校验,再将校验结果发回UE。
该实施例的步骤1至步骤5参见实施例一,以下将从步骤6开始介绍。
步骤6:UE栈向LMF发送带精度的定位信息。
步骤7:LMF向定位服务器发送上述带精度的定位信息。该实施例中的完好性保护系统可以参见图4中的RAIM,位于定位服务器侧。
步骤8:完好性保护系统对定位信息进行校正。
步骤9:定位服务器将校正后的数据(可以是校正后定位信息)提供给UE应用。
步骤10:UE应用将校正后的数据提供给UE栈。
步骤11:UE可能也存在上述完好性保护系统,因此,还可以对上述校 正后的数据进行再次校正,提高定位信息的精度。
实施例四
如图5所示,该实施例包括如下步骤。
步骤1:gNB向LMF发送自身的错误信息。
步骤2:UE定位时,LMF将携带有上述错误信息的定位辅助数据发送给UE,使得UE在定位时可以充分考虑该错误信息。
在另一种实施方式中,如图5的步骤3和步骤4所示,LMF将携带有上述错误信息的定位辅助数据发送给gNB,再由gNB转发给UE,使得终端在定位时可以充分考虑该错误信息。
步骤5:UE进行定位测量。
该实施例的后续步骤还可以参见实施例一的步骤6至步骤11。
需要说明的是,本申请实施例提供的完好性保护方法,执行主体可以为完好性保护系统,或者,该完好性保护系统中的用于执行完好性保护方法的控制模块。本申请实施例中以完好性保护系统执行完好性保护方法为例,说明本申请实施例提供的完好性保护系统。
图6是根据本申请实施例的完好性保护系统的结构示意图,如图6所示,完好性保护系统600包括:计算模块602,可以用于计算第一信息;完好性校验模块604,用于通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。
在本申请实施例中,完好性保护系统计算第一信息,并通过第一信息进行完好性校验以确定目标系统的可靠性程度,该目标系统包括第一通信设备和第二通信设备,第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度。该实施例在移动通信系统实现完好性保护功能,可以提升移动通信系统的定位可靠性,提高定位应用的安全性,使得无线通信的应用场景更加广泛。
可选地,作为一个实施例,所述第一信息用于指示如下至少之一:所述采样数据中是否存在异常数据;所述第一通信设备是否发生故障;所述第二通信设备是否发生故障;所述目标系统是否发生故障。
可选地,作为一个实施例,所述第一信息用于对如下至少之一进行完好性保护:所述第一通信设备的位置信息、速度信息、时钟信息。
可选地,作为一个实施例,所述第一信息用于对所述位置信息进行完好性保护,所述系统600还包括:接收模块,用于接收第二信息,所述第二信息包括如下至少之一:定位辅助数据;定位完好性风险;定位完好性保护等级;定位完好性风险告警等级;定位完好性风险事件上报时间;定位完好性保护阈值;定位精度要求;完好性指标要求。
可选地,作为一个实施例,所述接收模块,用于通过如下方式的至少之一接收所述第二信息:通过寻呼信令接收;通过IP数据包接收;通过定位协议接收;通过广播方式接收。
可选地,作为一个实施例,所述完好性校验模块604,还用于:在得到所述定位完好性保护等级大于所述定位完好性风险告警等级的情况下,发出报警。
可选地,作为一个实施例,所述第一信息用于对所述位置信息进行完好性保护,所述完好性校验模块604,用于:通过所述第一信息以及如下至少之一进行完好性校验,以确定目标系统的可靠性程度:所述第一通信设备的轨道信息、地图信息。
可选地,作为一个实施例,所述系统600还包括:发送模块,用于向所述第二网络侧设备发送第三信息,所述第三信息包括如下至少之一:所述第一信息;所述完好性保护系统使用的完好性保护信息;经过校验后的所述第一信息;报警信息;所述完好性保护系统使用的完好性校验信息。
可选地,作为一个实施例,所述完好性保护系统600使用的校验方法包括如下至少之一:一阶马尔科夫过程;误差模型;二维逆向正态分布;贝叶斯统计方法;最小二乘法;卡尔曼滤波;奈曼皮尔逊定理。
可选地,作为一个实施例,所述第一通信设备和所述第二通信设备满足如下之一:所述第一通信设备为终端,所述第二通信设备为网络侧设备;所述第一通信设备为网络侧设备,所述第二通信设备为终端;所述第一通信设备为终端,所述第二通信设备为终端;所述第一通信设备为网络侧设备,所述第二通信设备为网络侧设备。
可选地,作为一个实施例,所述终端还用于通过如下方式的至少之一向所述网络侧设备上报所述终端的完好性能力:通过信令上报;通过IP数据包上报;通过定位协议上报。
可选地,作为一个实施例,所述网络侧设备还用于通过如下方式的至少之一向所述终端通知所述网络侧设备的完好性能力:通过寻呼信令通知;通过IP数据包通知;通过定位协议通知;通过广播方式通知。
可选地,作为一个实施例,所述网络侧设备还用于通过信令或者广播的方式向所述终端通知所述网络侧设备的错误信息。
根据本申请实施例的完好性保护系统600可以参照对应本申请实施例的方法200的流程,并且,该完好性保护系统600中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的完好性保护系统可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的完好性保护系统可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的完好性保护系统能够实现图2至图5的方法实施例 实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701,存储器702,存储在存储器702上并可在所述处理器701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述完好性保护方法实施例的各个过程,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述完好性保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后, 给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
处理器810,用于计算第一信息;通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。
在本申请实施例中,终端的完好性保护系统计算第一信息,并通过第一信息进行完好性校验以确定目标系统的可靠性程度,该目标系统包括第一通信设备和第二通信设备,第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度。该实施例在移动通信系统实现完好性保护功能,可以提升移动通信系统的定位可靠性,提高定位应用的安全性,使得无线通信的应用场景更加广泛。
本申请实施例提供的终端执行时实现上述完好性保护方法实施例的各个 过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络设备900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述完好性保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述完好性保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现上述完好性保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,被配置成用于执行上述完好性保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种完好性保护方法,所述方法包括:
    完好性保护系统计算第一信息;
    通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;
    其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。
  2. 根据权利要求1所述的方法,其中,所述第一信息用于指示如下至少之一:
    所述采样数据中是否存在异常数据;
    所述第一通信设备是否发生故障;
    所述第二通信设备是否发生故障;
    所述目标系统是否发生故障。
  3. 根据权利要求1所述的方法,其中,所述第一信息用于对如下至少之一进行完好性保护:
    所述第一通信设备的位置信息、速度信息、时钟信息。
  4. 根据权利要求3所述的方法,其中,所述第一信息用于对所述位置信息进行完好性保护,所述方法还包括:接收第二信息,所述第二信息包括如下至少之一:
    定位辅助数据;
    定位完好性风险;
    定位完好性保护等级;
    定位完好性风险告警等级;
    定位完好性风险事件上报时间;
    定位完好性保护阈值;
    定位精度要求;
    完好性指标要求。
  5. 根据权利要求4所述的方法,其中,所述接收第二信息包括:通过如下方式的至少之一接收所述第二信息:
    通过寻呼信令接收;
    通过IP数据包接收;
    通过定位协议接收;
    通过广播方式接收。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    在得到所述定位完好性保护等级大于所述定位完好性风险告警等级的情况下,发出报警。
  7. 根据权利要求6所述的方法,其中,
    所述定位完好性保护等级是所述第一通信设备提供的,所述定位完好性风险告警等级是所述第二通信设备提供的;或
    所述定位完好性保护等级是所述第二通信设备提供的,所述定位完好性风险告警等级是所述第一通信设备提供的;或
    所述定位完好性保护等级是所述第一通信设备提供的,所述定位完好性风险告警等级是所述第一通信设备提供的;
    所述定位完好性保护等级是所述第二通信设备提供的,所述定位完好性风险告警等级是所述第二通信设备提供的。
  8. 根据权利要求3所述的方法,其中,所述第一信息用于对所述位置信息进行完好性保护,所述通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度包括:
    通过所述第一信息以及如下至少之一进行完好性校验,以确定目标系统的可靠性程度:
    所述第一通信设备的轨道信息、地图信息。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:向所述第二网络侧设备发送第三信息,所述第三信息包括如下至少之一:
    所述第一信息;
    所述完好性保护系统使用的完好性保护信息;
    经过校验后的所述第一信息;
    报警信息;
    所述完好性保护系统使用的完好性校验信息。
  10. 根据权利要求9所述的方法,其中,所述完好性保护系统使用的校验方法包括如下至少之一:一阶马尔科夫过程;误差模型;二维逆向正态分布;贝叶斯统计方法;最小二乘法;卡尔曼滤波;奈曼皮尔逊定理。
  11. 根据权利要求1所述的方法,其中,所述第一通信设备和所述第二通信设备满足如下之一:
    所述第一通信设备为终端,所述第二通信设备为网络侧设备;
    所述第一通信设备为网络侧设备,所述第二通信设备为终端;
    所述第一通信设备为终端,所述第二通信设备为终端;
    所述第一通信设备为网络侧设备,所述第二通信设备为网络侧设备。
  12. 根据权利要求11所述的方法,其中,所述网络侧设备包括如下至少之一:
    无线接入网侧;
    功能管理模块AMF
    定位管理模块LMF
    定位服务器;
    定位应用;
    卫星定位系统GNSS校正系统;
    完好性校正系统。
  13. 根据权利要求12所述的方法,其中,至少两个所述网络侧设备之间能够实现完好性能力的互通,所述互通的方式包括如下至少之一:
    接口信令互通;
    数据服务器共享。
  14. 根据权利要求11所述的方法,其中,所述终端还用于通过如下方式 的至少之一向所述网络侧设备上报所述终端的完好性能力:
    通过信令上报;
    通过IP数据包上报;
    通过定位协议上报。
  15. 根据权利要求11所述的方法,其中,所述网络侧设备还用于通过如下方式的至少之一向所述终端通知所述网络侧设备的完好性能力:
    通过寻呼信令通知;
    通过IP数据包通知;
    通过定位协议通知;
    通过广播方式通知。
  16. 根据权利要求11所述的方法,其中,所述网络侧设备还用于通过信令或者广播的方式向所述终端通知所述网络侧设备的错误信息。
  17. 一种完好性保护系统,包括:
    计算模块,用于计算第一信息;
    完好性校验模块,用于通过所述第一信息进行完好性校验,以确定目标系统的可靠性程度;
    其中,所述第一信息是根据如下至少之一计算得到的:第一通信设备的采样数据、第二通信设备的采样数据、目标风险容忍度;所述目标系统包括所述第一通信设备和所述第二通信设备。
  18. 根据权利要求17所述的系统,其中,所述第一信息用于指示如下至少之一:
    所述采样数据中是否存在异常数据;
    所述第一通信设备是否发生故障;
    所述第二通信设备是否发生故障;
    所述目标系统是否发生故障。
  19. 根据权利要求17所述的系统,其中,所述第一信息用于对如下至少之一进行完好性保护:
    所述第一通信设备的位置信息、速度信息、时钟信息。
  20. 根据权利要求19所述的系统,其中,所述第一信息用于对所述位置信息进行完好性保护,所述系统还包括:接收模块,用于接收第二信息,所述第二信息包括如下至少之一:
    定位辅助数据;
    定位完好性风险;
    定位完好性保护等级;
    定位完好性风险告警等级;
    定位完好性风险事件上报时间;
    定位完好性保护阈值;
    定位精度要求;
    完好性指标要求。
  21. 根据权利要求20所述的系统,其中,所述接收模块,用于通过如下方式的至少之一接收所述第二信息:
    通过寻呼信令接收;
    通过IP数据包接收;
    通过定位协议接收;
    通过广播方式接收。
  22. 根据权利要求20所述的系统,其中,所述完好性校验模块,还用于:在得到所述定位完好性保护等级大于所述定位完好性风险告警等级的情况下,发出报警。
  23. 根据权利要求19所述的系统,其中,所述第一信息用于对所述位置信息进行完好性保护,所述完好性校验模块,用于:
    通过所述第一信息以及如下至少之一进行完好性校验,以确定目标系统的可靠性程度:
    所述第一通信设备的轨道信息、地图信息。
  24. 根据权利要求17所述的系统,其中,还包括:发送模块,用于向所 述第二网络侧设备发送第三信息,所述第三信息包括如下至少之一:
    所述第一信息;
    所述完好性保护系统使用的完好性保护信息;
    经过校验后的所述第一信息;
    报警信息;
    所述完好性保护系统使用的完好性校验信息。
  25. 根据权利要求24所述的系统,其中,所述完好性保护系统使用的校验方法包括如下至少之一:一阶马尔科夫过程;误差模型;二维逆向正态分布;贝叶斯统计方法;最小二乘法;卡尔曼滤波;奈曼皮尔逊定理。
  26. 根据权利要求17所述的系统,其中,所述第一通信设备和所述第二通信设备满足如下之一:
    所述第一通信设备为终端,所述第二通信设备为网络侧设备;
    所述第一通信设备为网络侧设备,所述第二通信设备为终端;
    所述第一通信设备为终端,所述第二通信设备为终端;
    所述第一通信设备为网络侧设备,所述第二通信设备为网络侧设备。
  27. 根据权利要求26所述的系统,其中,所述终端还用于通过如下方式的至少之一向所述网络侧设备上报所述终端的完好性能力:
    通过信令上报;
    通过IP数据包上报;
    通过定位协议上报。
  28. 根据权利要求26所述的方法,其中,所述网络侧设备还用于通过如下方式的至少之一向所述终端通知所述网络侧设备的完好性能力:
    通过寻呼信令通知;
    通过IP数据包通知;
    通过定位协议通知;
    通过广播方式通知。
  29. 根据权利要求26所述的系统,其中,所述网络侧设备还用于通过信 令或者广播的方式向所述终端通知所述网络侧设备的错误信息。
  30. 一种完好性保护系统,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的完好性保护方法。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的完好性保护方法。
  32. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至16任一项所述的完好性保护方法。
  33. 一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至16中任一项所述的完好性保护方法。
  34. 一种通信设备,被配置成用于执行如权利要求1至16中任一项所述的完好性保护方法的步骤。
PCT/CN2021/111599 2020-08-11 2021-08-09 完好性保护方法和系统 WO2022033440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/107,499 US20230188995A1 (en) 2020-08-11 2023-02-08 Integrity protection method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010803299.XA CN114125846B (zh) 2020-08-11 2020-08-11 完好性保护方法和系统
CN202010803299.X 2020-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/107,499 Continuation US20230188995A1 (en) 2020-08-11 2023-02-08 Integrity protection method and system

Publications (1)

Publication Number Publication Date
WO2022033440A1 true WO2022033440A1 (zh) 2022-02-17

Family

ID=80246947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111599 WO2022033440A1 (zh) 2020-08-11 2021-08-09 完好性保护方法和系统

Country Status (3)

Country Link
US (1) US20230188995A1 (zh)
CN (1) CN114125846B (zh)
WO (1) WO2022033440A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117279089A (zh) * 2022-06-15 2023-12-22 大唐移动通信设备有限公司 定位完好性确定方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049538A1 (en) * 2000-10-23 2002-04-25 Knapton Cary Paul Vehicle tracking systems and methods
CN101784051A (zh) * 2009-01-21 2010-07-21 华为技术有限公司 一种平台完整性验证的方法、网络设备和网络系统
CN104918252A (zh) * 2009-03-05 2015-09-16 交互数字专利控股公司 用于对wtru执行完整性验证的方法及wtru
KR101738384B1 (ko) * 2016-12-01 2017-05-22 한국해양과학기술원 Dgnss 측정 위치의 무결성 검사 시스템 및 이를 이용한 무결성 검사방법
CN107957587A (zh) * 2017-12-01 2018-04-24 华南农业大学 一种多路差分多模卫星导航定位方法及装置
CN108508461A (zh) * 2018-03-27 2018-09-07 千寻位置网络(浙江)有限公司 基于gnss载波相位高精度定位完好性监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297971B (zh) * 2012-02-29 2016-06-22 鼎桥通信技术有限公司 一种通信系统中的完整性保护方法和系统
EP3662698B1 (en) * 2017-08-02 2023-09-27 Sony Group Corporation Methods and apparatus for supporting integrity protection in handovers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049538A1 (en) * 2000-10-23 2002-04-25 Knapton Cary Paul Vehicle tracking systems and methods
CN101784051A (zh) * 2009-01-21 2010-07-21 华为技术有限公司 一种平台完整性验证的方法、网络设备和网络系统
CN104918252A (zh) * 2009-03-05 2015-09-16 交互数字专利控股公司 用于对wtru执行完整性验证的方法及wtru
KR101738384B1 (ko) * 2016-12-01 2017-05-22 한국해양과학기술원 Dgnss 측정 위치의 무결성 검사 시스템 및 이를 이용한 무결성 검사방법
CN107957587A (zh) * 2017-12-01 2018-04-24 华南农业大学 一种多路差分多模卫星导航定位方法及装置
CN108508461A (zh) * 2018-03-27 2018-09-07 千寻位置网络(浙江)有限公司 基于gnss载波相位高精度定位完好性监测方法

Also Published As

Publication number Publication date
US20230188995A1 (en) 2023-06-15
CN114125846B (zh) 2023-09-12
CN114125846A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US10805784B2 (en) Methods and systems for efficient location support for wireless emergency alerts
US9763235B2 (en) Paging repetition for increased robustness for extended paging cycles
US9419733B2 (en) Effective broadcasting of emergency messages
EP3641382A1 (en) Wireless link monitoring method and device
US20160249316A1 (en) Non-line-of-sight (nlos) and line-of-sight (los) classification techniques for indoor ranging
US9513362B2 (en) Method for enhancing positioning measurement and communications apparatus utilizing the same
EP4114074A1 (en) Information transmission method and device
CN111107612B (zh) 一种带宽部分的配置方法及装置
WO2022033440A1 (zh) 完好性保护方法和系统
CN113316164A (zh) 信息传输方法及装置
US20140233550A1 (en) Location determination
US20150065129A1 (en) M2m devices and communication methods thereof
WO2023046161A1 (zh) 波束失败检测的方法、装置及终端
CN110346754B (zh) 一种定位时刻获取方法及装置
KR20210034187A (ko) 배터리 방전속도에 따른 5g 셀 연결 방법 및 이를 이용한 단말
US10447725B1 (en) Secure ranging wireless communication
WO2022063319A1 (zh) 定位测量的方法、装置、设备及可读存储介质
CN114696975B (zh) 速率匹配方法和设备
CN113507741A (zh) 通信时延确定方法和电子设备
US20120171994A1 (en) Method and system of secured wireless communication
WO2023216109A1 (en) Methods and apparatuses for rat-dependent positioning integrity
JP6101601B2 (ja) 情報処理装置及び位置測位方法
WO2023193684A1 (zh) 验证终端位置的方法、终端及网络侧设备
WO2022194143A1 (zh) 定位方法、装置、通信设备
US20220322125A1 (en) Measurement report based radio link failure detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855492

Country of ref document: EP

Kind code of ref document: A1