WO2022033391A1 - 一种超景深显微快速测量装置及测量方法 - Google Patents

一种超景深显微快速测量装置及测量方法 Download PDF

Info

Publication number
WO2022033391A1
WO2022033391A1 PCT/CN2021/111066 CN2021111066W WO2022033391A1 WO 2022033391 A1 WO2022033391 A1 WO 2022033391A1 CN 2021111066 W CN2021111066 W CN 2021111066W WO 2022033391 A1 WO2022033391 A1 WO 2022033391A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
zoom lens
picture
sample
optical assembly
Prior art date
Application number
PCT/CN2021/111066
Other languages
English (en)
French (fr)
Inventor
李世昌
陈欢
胡春桃
帅成忠
刘倩
Original Assignee
杭州魔方智能科技有限公司
浙江省计量科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州魔方智能科技有限公司, 浙江省计量科学研究院 filed Critical 杭州魔方智能科技有限公司
Publication of WO2022033391A1 publication Critical patent/WO2022033391A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to a size measurement device and a measurement method, in particular to a super-depth-of-field microscopic fast measurement device and a measurement method.
  • Measuring microscope is a microscope device that converts the image seen by the microscope to make it image on the screen of the microscope or on the computer; Measurement.
  • measuring microscopes generally use the main lens with zoom function or multiple groups of objective lenses with different magnifications to achieve stable measurement of the measurement point. It is within the depth of field of the lens; correspondingly, when the imaging sharpness and imaging size at the measurement point are required to increase, the main lens or objective lens can improve the imaging effect of the measurement point by increasing the magnification.
  • the magnification of the lens increases, the depth of field will also be reduced accordingly; as a result, once there is a height difference in the detected workpiece, each area in the image cannot be displayed clearly at the same time.
  • the increase of the magnification of the lens will reduce the measurement range of the workpiece to be inspected, so that when the size of the inspection workpiece is large, the measuring microscope cannot display the complete image of the workpiece at one time; and the way of traversing the workpiece will vary
  • the height deviation of the measurement point causes the problem of blurred image, which needs to be refocused after the measurement point is changed.
  • the current measurement method is to use a measuring microscope to measure the local positions of the workpiece at different heights in multiple times, and adjust the lens height manually or electrically to achieve focus during each measurement.
  • the image of the local position is synthesized to obtain a complete measurement image; when focusing, the Z-axis position of the lens is measured by the grating ruler, and the focal length of the lens is calculated to obtain the height information of the measurement point.
  • this method needs to adjust the height of the lens to focus, and the lens needs about 3 to 5 seconds of raising and lowering time each time the height is adjusted, so the measurement time of this method for a single measurement point needs to be about 10 seconds.
  • the measuring microscope When the workpieces within the measurement range are at different height positions, the measuring microscope also needs to adjust the lens height several times within the same measurement range, so as to focus on different height positions, which further reduces the overall measurement efficiency of the detected workpiece; and when When the heights of the workpieces within the measurement range are different, it is necessary to manually select the corresponding focus point, which further reduces the measurement efficiency; there are still some unselected blurred positions in the obtained image, which reduces the imaging effect of the measurement microscope.
  • the current measurement microscope will reduce the definition standard of the image to expand the acquisition range of the clear part of the image when collecting the image, so that the measurement microscope only needs a small number of pictures to obtain the complete two parts of the sample. dimensional pictures. This results in a serious decline in the clarity of the composite image and poor imaging results.
  • the reduction of image clarity will cause the measuring microscope to record some workpiece surfaces with small height differences as the same height when acquiring height information, thereby reducing the accuracy of workpiece detection and reducing the model for subsequent 3D modeling. Accuracy.
  • the existing measurement microscopes have the problems of low measurement efficiency and poor imaging effect.
  • the purpose of the present invention is to provide a super-depth-of-field microscopic fast measurement device and measurement method. It has the characteristics of high measurement efficiency and good imaging effect.
  • a super-depth-of-field microscopic fast measurement device comprising a measurement frame, an optical assembly is connected to the measurement frame, and a mobile measurement platform is arranged below the optical assembly; a zoom lens is arranged in the optical assembly.
  • the optical assembly includes a camera, a zoom lens, a main lens and an objective lens connected in sequence, and the zoom lens is a liquid lens or an electric zoom lens.
  • the lower end of the mobile measurement platform is connected to the measurement frame via the shock-absorbing workbench, and the bottom of the measurement frame is provided with a buffer cushion.
  • the measurement frame is connected to the shock-absorbing workbench through a marble bottom plate, and the buffer cushion layer is arranged at the bottom of the marble bottom plate.
  • an illumination light source is provided on one side of the optical component, and the illumination light source is a halogen lamp of more than 100W, and the illumination light of the halogen lamp is a ring light or a coaxial light of a point light source.
  • Step D Change the measurement range of the sample in turn by moving the measurement platform, and re-obtain a complete and clear picture of the measurement range according to Step B and Step C after each change of the measurement range, and obtain multiple complete and clear pictures of different measurement ranges picture, get C picture;
  • each A picture in the step B records the height value of the picture according to the parameter value of the current zoom lens when acquiring; the clear parts in the step C are synthesized according to the corresponding clear parts.
  • the height value of the picture displays each clear part with the corresponding gray value pair to obtain the D gray image; the step E is to synthesize the D gray images of different ranges to be measured to obtain the E gray image; the step E In F, the height information of the sample at different positions is obtained according to the gray value of the E gray image, and then the E gray image is stretched based on the height information to obtain the three-dimensional model of the sample.
  • the height value of the picture in the step B is calculated according to the parameter value of the zoom lens and the conversion function, and the acquisition method of the conversion function includes the following steps:
  • the zoom lens is an electric zoom lens
  • the parameter value of the electric zoom lens is a rotation angle value.
  • the present invention has the following characteristics:
  • the present invention selects an electric zoom lens or a liquid lens as the zoom lens in the optical assembly, and on this basis, the zoom lens directly acquires the workpiece image within the range to be measured under different focal lengths through preset parameter values, so that The present invention does not need to focus on a designated position within the range to be measured by raising and lowering the lens, but relies on pictures obtained at different focal lengths to obtain clear images of different heights within the range to be measured, thereby greatly improving the performance compared to the existing method.
  • the present invention further optimizes the method for obtaining the height value of the clear part in the picture, so that the present invention can directly convert the parameter value of the zoom lens to obtain the height information of different positions in the picture, and then realize the height information of the workpiece.
  • Height measurement and subsequent three-dimensional modeling; at the same time, recording the height information of the workpiece through the gray value can also effectively improve the processing efficiency of the software for subsequent pictures and the speed of three-dimensional modeling, so that the present invention can be used in the two-dimensional synthesis of the sample.
  • the picture can be completed within 1 second, and the three-mode modeling can be completed within 2 seconds; more images can be obtained in one detection process by using the present invention, and the final imaging effect can be improved;
  • the present invention can also effectively improve the shock absorption effect on the workpiece, so that the optical component will not vibrate when the picture is acquired, causing the blurring of the acquired picture, thereby avoiding the software synthesizing the image. Due to the problem of clarity, it cannot be screened normally, so that the present invention has good stability, and can realize the acquisition and height detection of the workpiece image under the condition of 15-800 times magnification;
  • the present invention has the characteristics of high measurement efficiency and good imaging effect.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is a picture of the range to be measured under any focal length in step B;
  • Figure 3 is a clear picture of the sample in step C within a range to be measured
  • Fig. 4 is a grayscale image of the sample in a range to be measured in step C;
  • Figure 5 is a three-dimensional model of the sample extracted by the present invention.
  • the marks in the drawings are: 1-measurement stand, 2-movable measurement platform, 3-zoom lens, 4-camera, 5-main lens, 6-objective lens, 7-vibration-reducing workbench, 8-illumination light source.
  • a super-depth-of-field microscopic fast measurement device as shown in Figure 1, includes a measurement frame 1, an optical assembly is connected to the measurement frame 1, and a mobile measurement platform 2 is arranged below the optical assembly; the optical assembly is provided with a zoom Lens 3.
  • the optical assembly includes a camera 4, a zoom lens 3, a main body lens 5 and an objective lens 6 connected in sequence, the zoom lens 3 is a liquid lens or an electric zoom lens, and the electric zoom lens 6 can be selected from commercially available STOT-EL-10- 30-C type fast electronically controlled zoom focusing lens; liquid lens can choose CS-25H0-026 type liquid lens from Corning Corporation (CORNING).
  • the mobile measuring platform 2 can be selected as a high-precision electric XY mobile platform.
  • the lower end of the mobile measuring platform 2 is connected to the measuring frame 1 through the shock-absorbing work table 7 , and the bottom of the measuring frame 1 is provided with a buffer cushion.
  • the measuring frame 1 is connected to the shock-absorbing workbench 7 through a marble bottom plate, and the buffer cushion is arranged at the bottom of the marble bottom plate.
  • the illumination light source 8 is a halogen lamp of more than 100W, and the illumination light of the halogen lamp is a ring light or a point light source coaxial light; the halogen lamp uses a bundle of total reflection optical fibers to guide the light to the bottom of the lens , the small optical fibers are distributed along the ring on the halogen lamp.
  • Step D Change the measurement range of the sample in turn by moving the measurement platform, and re-obtain a complete and clear picture of the measurement range according to Step B and Step C after each change of the measurement range, and obtain multiple complete and clear pictures of different measurement ranges Picture, the pictures of the adjacent to-be-measured range overlap partially, and the C picture is obtained;
  • each A picture records the height value of the picture according to the parameter value of the current zoom lens when acquiring; when each clear part in the step C is synthesized, according to the height value of the corresponding picture of each clear part.
  • the clear part is displayed with the corresponding gray value pairs, forming an 8-bit grayscale image with the height information of the sample recorded, and obtaining a D grayscale image;
  • the step E is to synthesize the D grayscale images of different ranges to be measured, and obtain a
  • the complete picture of the sample displayed by the gray value is the E gray image; in the step F, the height information of the sample at different positions is obtained according to the gray value of the E gray image, and then the existing modeling software is used based on the height information.
  • the E grayscale image is stretched to obtain a three-dimensional model of the sample.
  • the height value of the picture in the step B is calculated according to the parameter value of the zoom lens and the conversion function, and the acquisition method of the conversion function includes the following steps:
  • the zoom lens can focus on the test sample at 0 position and each scale line by moving the optical component in the vertical direction.
  • the image sharpness evaluation function is used to obtain a unified focusing effect;
  • the grating ruler is used to record the height information of the optical component at different focusing positions. When the optical component is focused at 0 position, the grating ruler is set to zero, and the height information H[2n] is obtained;
  • the zoom lens is a liquid lens, and the parameter value of the liquid lens is an input voltage value.
  • the zoom lens is in a reference state.
  • the zoom lens is an electric zoom lens, and the parameter value of the electric zoom lens is a rotation angle value.
  • the rotation angle value in step B1 is 0°, the zoom lens is in a reference state.
  • the display effect of any A picture in the step B is shown in Figure 2
  • the display effect of the B picture in the step C is shown in Figure 3
  • the display effect of the D grayscale image of the sample in the step C is shown in Figure 4.
  • the display effect of the three-dimensional model of the sample in the step F is shown in FIG. 5 .
  • Working principle of the present invention when measuring, the present invention first manually places the workpiece in the center of the field of view of the optical component, and then adjusts the magnification of the main lens 5 or switches the objective lens 6 to make the range to be measured of the workpiece within the field of view of the lens; After the measurement range of the workpiece is confirmed, the software adjusts the focal length of the zoom lens in turn according to the preset parameter values, so that the optical components can obtain clear pictures of the workpiece at different heights within the measurement range, and then the clear parts in the picture are processed.
  • the detection workpiece when multiple measurement points are sequentially measured, the detection workpiece is moved horizontally by moving the measurement platform 2, so that the seamless splicing of microphotographs with small field of view can be realized, and the overall imaging effect thereof can be improved;
  • the combination of the marble bottom plate and the buffer layer can effectively reduce the image jitter of the detected workpiece under high magnification, thereby further improving the measurement speed and image clarity of the present invention.

Abstract

本发明公开了一种超景深显微快速测量装置及测量方法,包括测量架,测量架上连接有光学组件,光学组件的下方设有移动测量平台;所述光学组件中设有变焦镜头。本发明利用电动变焦镜头或液体镜头在不同焦距下对工件在检测范围内进行图像获取,并对获取图像中的清晰部分进行合成得到样品的完整图像;使其可以无需调整镜头高度或对焦位置便能实现对样品的高度检测和图像采集;同时,通过以灰度图的方式对图片进行显示,还可以提高软件对工件的高度值提取及后续三维建模效率,具有测量效率高和成像效果好的特点。

Description

一种超景深显微快速测量装置及测量方法 技术领域
本发明涉及一种尺寸测量装置和测量方法,特别是一种超景深显微快速测量装置及测量方法。
背景技术
测量显微镜是一种将显微镜看到的图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上的显微镜设备;同时利用高精度光学聚焦点检测的方式对测量点的表面进行高度测量。目前的测量显微镜普遍采用带有变倍功能的主体镜头或多组不同倍率的物镜实现对测量点的稳定测量,当检测工件的尺寸较大时,主体镜头或物镜通过缩小放大倍数使测量点能够处于镜头的景深内;相应的,当测量点处的成像锐利度及成像尺寸要求在提高时,主体镜头或物镜通过增大放大倍数提高测量点的成像效果。但由于镜头的放大倍数在增加后,其景深范围也会相应的缩小;导致一旦检测工件存在高低差时,图像中的各个区域便无法同时清晰显示。同时,镜头放大倍数的增加会缩小对检测工件的测量范围,导致当检测工件的尺寸较大时,测量显微镜无法一次性将工件的完整图像显示完全;而通过横移工件的方式也会因不同测量点的高度偏差造成图像模糊的问题,需要在测量点改变后重新对焦。
对于这类表面存在高度差的工件,目前的测量方法是利用测量显微镜分多次对工件在不同高度的局部位置进行测量,且每次测量时通过手动或电动调整镜头高度实现对焦,最后将各局部位置的图像合成后得到完整的测量图像;每次对焦时,通过光栅尺测量镜头的Z轴位 置,并配合镜头焦距进行计算,从而得到测量点的高度信息。但这种方式由于需要通过调整镜头高度进行对焦,而镜头在每次调高时需要3~5s左右的升降时间,导致该方法对单个测量点的测量时间需要在10秒左右。当测量范围内的工件处于不同高度位置时,测量显微镜还需要在同一测量范围内多次调整镜头高度,从而分别对不同的高度位置进行对焦,进一步降低了对检测工件整体的测量效率;且当测量范围内的工件高度不同时,需要由人工选择相应的对焦点,从而进一步降低了其测量效率;获取到的图片还会存在部分未被选择的模糊位置,降低测量显微镜的成像效果。
此外,为了保证对样品的测量效率,目前的测量显微镜在采集图像时会通过降低图像的清晰度标准来扩大对图像的清晰部分获得范围,使得测量显微镜只需少量图片便能得到样品的完整二维图片。而这就造成了合成图片清晰度的严重下降,成像效果较差。同时,图像清晰度的降低会导致测量显微镜在获取高度信息时,会将部分存在微小高度差的工件表面记录为同一高度,从而造成对工件检测精度的降低,并降低后续三维建模时的模型准确度。
因此,现有测量显微镜存在测量效率低和成像效果差的问题。
发明内容
本发明的目的在于,提供一种超景深显微快速测量装置及测量方法。它具有测量效率高和成像效果好的特点。
本发明的技术方案:一种超景深显微快速测量装置,包括测量架,测量架上连接有光学组件,光学组件的下方设有移动测量平台;所述光学组件中设有变焦镜头。
前述的一种超景深显微快速测量装置中,所述光学组件包括依次连接的相机、变焦镜头、主体镜头和物镜,所述变焦镜头为液体镜头或电动变焦镜头。
前述的一种超景深显微快速测量装置中,所述移动测量平台的下端经减震工作台连接测量架,测量架的底部设有缓冲垫层。
前述的一种超景深显微快速测量装置中,所述测量架经大理石底板连接减震工作台,所述缓冲垫层设置在大理石底板的底部。
前述的一种超景深显微快速测量装置中,所述光学组件一侧设有照明光源,照明光源为100W以上的卤素灯,卤素灯的照射光为环形光或点光源同轴光。
基于前述的一种超景深显微快速测量装置的测量方法,包括以下步骤:
A.将样品放置在光学组件下方的移动测量平台上,并使样品的待测范围位于光学组件的显示中心;
B.根据预设的多个参数值,依次改变变焦镜头的对焦焦距,并使光学组件在每次变焦后获取待测范围的图片,得到待测范围在不同焦距下的多张图片,得A图片;
C.选取每张A图片中的清晰部分,然后将所有A图片中的清晰部分进行合成,得到待测范围的完整清晰图片,得B图片;
D.通过移动测量平台依次改变样品的待测范围,并在每次待测范围改变后按照步骤B和步骤C重新获得该待测范围的完整清晰图片,得到多张不同待测范围的完整清晰图片,得C图片;
E.将B图片和C图片进行合成,得到样品的二维图片;
F.根据步骤E中样品的二维图片得到样品的三维模型。
前述的测量方法中,所述步骤B中每张A图片在获取时根据当前变焦镜头的参数值记录该图片的高度值;所述步骤C中的各清晰部分在合成时,根据各清晰部分对应图片的高度值将各清晰部分以对应的灰度值对进行显示,得到D灰度图;所述步骤E对不同待测范围的D灰度图进行合成,得到E灰度图;所述步骤F中根据E灰度图的灰度 值得到样品在不同位置的高度信息,再以高度信息为基础对E灰度图进行拉伸,得到样品的三维模型。
前述的测量方法中,所述步骤B中图片的高度值根据变焦镜头的参数值及换算函数计算得到,换算函数的获取方式包括以下步骤:
B1.以测试样品在不同高度下的待测表面作为标准平面,使变焦镜头在基准状态下,通过竖直方向移动光学组件实现对测试样品在不同标准平面的聚焦;同时利用光栅尺记录光学组件在不同聚焦位置的高度信息,得到高度信息H;
B2.将光学组件回复至初始位置,然后依次调整变焦镜头的参数值,使光学组件能够对不同高度的标准平面进行聚焦,同时记录在不同聚焦状态时的变焦镜头参数值V;
B3.将记录得到的高度信息H和参数值V进行拟合,得到H=f(V)的换算函数。
前述的测量方法中,所述变焦镜头为电动变焦镜头,电动变焦镜头的参数值为转动角度值,当步骤B1中的转动角度值为0°时变焦镜头为基准状态。
与现有技术相比,本发明具有以下特点:
(1)本发明选用电动变焦镜头或液体镜头作为光学组件中的变焦镜头,并在此基础上通过预设的参数值使变焦镜头在不同焦距下对待测范围内的工件图像进行直接获取,使得本发明无需通过升降镜头对待测范围内的指定位置进行对焦,而是依靠在不同焦距下获取的图片分别得到该待测范围内不同高度的清晰图像,从而相比现有方法能够极大的提高图像的清晰度范围和成像效果;且由于液体镜头的变焦速率能够达到微秒级,而电动变焦镜头的变焦速率能够达到毫秒级,使得本发明能够在0.5秒内获得在同一待测范围内的100张以上的测量图片,从而相比现有方式能够极大的提高对工件的测量效率;
(2)在上述基础上,本发明进一步优化了对图片中清晰部分的高度值获取方法,使得本发明能够通过变焦镜头的参数值直接换算得到图片中不同位置的高度信息,进而实现对工件的高度测量以及后续的三维建模;同时,通过灰度值记录工件的高度信息,还能够有效提高软件对后续图片的处理效率及三模建模时的速率,使本发明在合成样品的二维图片时能够在1秒内完成,三模建模在2秒内完成;并使用本发明在一次检测过程中可以获取更多的图像,提高最终的成像效果;
(3)本发明通过对移动测量平台的安装结构优化,还能够有效提高对工件的减震效果,使得光学组件在图片获取时,不会振动造成获取图片的模糊问题,进而避免软件在合成图像时因清晰度问题而无法正常筛选,使得本发明具有良好的稳定性,能够在放大15~800倍的条件下实现对工件图像的获取和高度检测;
所以,本发明具有测量效率高和成像效果好的特点。
附图说明
图1是本发明的结构示意图;
图2是步骤B中待测范围在任一焦距下的图片;
图3是步骤C中样品在一个待测范围内的清晰图片;
图4是步骤C中样品在一个待测范围内的灰度图;
图5是本发明提取得到的样品三维模型。
附图中的标记为:1-测量架,2-移动测量平台,3-变焦镜头,4-相机,5-主体镜头,6-物镜,7-减震工作台,8-照明光源。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例。一种超景深显微快速测量装置,构成如图1所示,包括测量架1,测量架1上连接有光学组件,光学组件的下方设有移动测 量平台2;所述光学组件中设有变焦镜头3。
所述光学组件包括依次连接的相机4、变焦镜头3、主体镜头5和物镜6,所述变焦镜头3为液体镜头或电动变焦镜头,电动变焦镜头6可选用市售的STOT-EL-10-30-C型快速电控变焦聚焦镜;液体镜头可选用美国康宁公司(CORNING)的C-S-25H0-026型液体镜头。
所述移动测量平台2可选用高精密电动XY移动平台,移动测量平台2的下端经减震工作台7连接测量架1,测量架1的底部设有缓冲垫层。
所述测量架1经大理石底板连接减震工作台7,所述缓冲垫层设置在大理石底板的底部。
所述光学组件一侧设有照明光源8,照明光源8为100W以上的卤素灯,卤素灯的照射光为环形光或点光源同轴光;卤素灯用一束全反射光纤将光导到镜头下方,小光纤沿环形分布在卤素灯上。
所述一种超景深显微快速测量装置的测量方法,包括以下步骤:
A.将样品放置在光学组件下方的移动测量平台上,并使样品的待测范围位于光学组件的显示中心;
B.根据预设的多个参数值,依次改变变焦镜头的对焦焦距,并使光学组件在每次变焦后获取待测范围的图片,得到待测范围在不同焦距下的多张图片,得A图片;
C.选取每张A图片中的清晰部分,然后基于depth-from-focus方法将所有A图片中的清晰部分进行合成,得到待测范围的完整清晰图片,得B图片;
D.通过移动测量平台依次改变样品的待测范围,并在每次待测范围改变后按照步骤B和步骤C重新获得该待测范围的完整清晰图片,得到多张不同待测范围的完整清晰图片,相邻待测范围的图片部分重叠,得C图片;
E.将B图片和C图片进行合成,得到样品的二维图片;
F.根据步骤E中样品的二维图片得到样品的三维模型。
所述步骤B中每张A图片在获取时根据当前变焦镜头的参数值记录该图片的高度值;所述步骤C中的各清晰部分在合成时,根据各清晰部分对应图片的高度值将各清晰部分以对应的灰度值对进行显示,形成记录有样品高度信息的8位灰度图,得到D灰度图;所述步骤E对不同待测范围的D灰度图进行合成,得到以灰度值显示的样品完整图片,即E灰度图;所述步骤F中根据E灰度图的灰度值得到样品在不同位置的高度信息,再以高度信息为基础利用现有建模软件对E灰度图进行拉伸,得到样品的三维模型。
所述步骤B中图片的高度值根据变焦镜头的参数值及换算函数计算得到,换算函数的获取方式包括以下步骤:
B1.以一个带有45°斜面的带刻度标准块作为测试样品,测试样品的中间刻度为0位,测试样品的斜面在0位的上下两侧均设有n条刻度线,2n条刻度线沿斜面等高度间隔设置;使变焦镜头在基准状态下,通过竖直方向移动光学组件实现对测试样品在0位及各刻度线的聚焦,聚焦时通过图像锐利度评价函数获得统一的聚焦效果;同时利用光栅尺记录光学组件在不同聚焦位置的高度信息,光学组件在0位聚焦时光栅尺置零,得到高度信息H[2n];
B2.将光学组件回复至光栅尺的0位,然后依次调整变焦镜头的参数值,使光学组件能够对不同刻度线进行聚焦,同时记录在不同刻度时的变焦镜头参数值V[2n];
B3.将记录得到的2*n组数据(H[2n]+V[2n])进行拟合,得到H=f(V)的换算函数。
所述变焦镜头为液体镜头,液体镜头的参数值为输入电压值,当步骤B1中的输入电压值为0时变焦镜头为基准状态。
所述变焦镜头为电动变焦镜头,电动变焦镜头的参数值为转动角度值,当步骤B1中的转动角度值为0°时变焦镜头为基准状态。
所述步骤B中任意一张A图片的显示效果如图2所示,步骤C中B图片的显示效果如图3所示,所述步骤C中样品的D灰度图的显示效果如图4所示,所述步骤F中样品的三维模型的显示效果如图5所示。
本发明的工作原理:本发明在测量时,先手动将工件处于光学组件视野的居中放置,然后通过调整主体镜头5的放大倍率或切换物镜6使工件的待测范围位于镜头的视野范围内;工件的待测范围确认后,由软件根据预设的参数值依次调节变焦镜头的焦距,使光学组件能够分别获取待测范围内工件在不同高度的清晰图片,然后将对图片中的清晰部分进行选取并合成,得到该待测范围的清晰图片;该图片在合成时,单独通过不同的灰度值对变焦镜头在不同焦距获取的清晰部分进行显示,使得每个灰度值能够分别对应样品的高度值,从而得到一张记录有样品高度信息的灰度图(即D灰度图)。由于本发明无需通过升降进行对焦,因此无需手动调整对焦位置,使得本发明能够极大的节省对待测范围的图片获取时间;以640*512像素的照片为例,液体镜头能够在1秒内便能完成对91张图片的采集、分析及合成,从而得到最佳的成型图像。
本发明在对多个测量点的进行依次测量时,通过移动测量平台2对检测工件进行水平移动,能够实现小视野显微照片的无缝拼接,提高其整体成像效果;通过减震工作台7、大理石底板和缓冲垫层的配合,则能够有效减少检测工件在高放大倍率下的图像抖动,从而进一步提高本发明的测量速度及图像的清晰度。

Claims (10)

  1. 一种超景深显微快速测量装置,其特征在于:包括测量架(1),测量架(1)上连接有光学组件,光学组件的下方设有移动测量平台(2);所述光学组件中设有变焦镜头(3)。
  2. 根据权利要求1所述的一种超景深显微快速测量装置,其特征在于:所述光学组件包括依次连接的相机(4)、变焦镜头(3)、主体镜头(5)和物镜(6),所述变焦镜头(3)为液体镜头或电动变焦镜头。
  3. 根据权利要求1所述的一种超景深显微快速测量装置,其特征在于:所述移动测量平台(2)的下端经减震工作台(7)连接测量架(1),测量架(1)的底部设有缓冲垫层。
  4. 根据权利要求3所述的一种超景深显微快速测量装置,其特征在于:所述测量架(1)经大理石底板连接减震工作台(7),所述缓冲垫层设置在大理石底板的底部。
  5. 根据权利要求1所述的一种超景深显微快速测量装置,其特征在于:所述光学组件一侧设有照明光源(8),照明光源(8)为100W以上的卤素灯,卤素灯的照射光为环形光或点光源同轴光。
  6. 基于权利要求1、2、3、4或5所述的一种超景深显微快速测量装置的测量方法,其特征在于,包括以下步骤:
    A.将样品放置在光学组件下方的移动测量平台上,并使样品的待测范围位于光学组件的显示中心;
    B.根据预设的多个参数值,依次改变变焦镜头的对焦焦距,并使光学组件在每次变焦后获取待测范围的图片,得到待测范围在不同焦距下的多张图片,得A图片;
    C.选取每张A图片中的清晰部分,然后将所有A图片中的清晰部 分进行合成,得到待测范围的完整清晰图片,得B图片;
    D.通过移动测量平台依次改变样品的待测范围,并在每次待测范围改变后按照步骤B和步骤C重新获得该待测范围的完整清晰图片,得到多张不同待测范围的完整清晰图片,得C图片;
    E.将B图片和C图片进行合成,得到样品的二维图片;
    F.根据步骤E中样品的二维图片得到样品的三维模型。
  7. 根据权利要求6所述的测量方法,其特征在于:所述步骤B中每张A图片在获取时根据当前变焦镜头的参数值记录该图片的高度值;所述步骤C中的各清晰部分在合成时,根据各清晰部分对应图片的高度值将各清晰部分以对应的灰度值对进行显示,得到D灰度图;所述步骤E对不同待测范围的D灰度图进行合成,得到E灰度图;所述步骤F中根据E灰度图的灰度值得到样品在不同位置的高度信息,再以高度信息为基础对E灰度图进行拉伸,得到样品的三维模型。
  8. 根据权利要求7所述的测量方法,其特征在于:所述步骤B中图片的高度值根据变焦镜头的参数值及换算函数计算得到,换算函数的获取方式包括以下步骤:
    B1.以测试样品在不同高度下的待测表面作为标准平面,使变焦镜头在基准状态下,通过竖直方向移动光学组件实现对测试样品在不同标准平面的聚焦;同时利用光栅尺记录光学组件在不同聚焦位置的高度信息,得到高度信息H;
    B2.将光学组件回复至初始位置,然后依次调整变焦镜头的参数值,使光学组件能够对不同高度的标准平面进行聚焦,同时记录在不同聚焦状态时的变焦镜头参数值V;
    B3.将记录得到的高度信息H和参数值V进行拟合,得到H=f(V)的换算函数。
  9. 根据权利要求8所述的测量方法,其特征在于:所述变焦镜 头为液体镜头,液体镜头的参数值为输入电压值,当步骤B1中的输入电压值为0时变焦镜头为基准状态。
  10. 根据权利要求8所述的测量方法,其特征在于:所述变焦镜头为电动变焦镜头,电动变焦镜头的参数值为转动角度值,当步骤B1中的转动角度值为0°时变焦镜头为基准状态。
PCT/CN2021/111066 2020-08-12 2021-08-06 一种超景深显微快速测量装置及测量方法 WO2022033391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010806255.2 2020-08-12
CN202010806255.2A CN111811406A (zh) 2020-08-12 2020-08-12 一种超景深显微快速测量装置及测量方法

Publications (1)

Publication Number Publication Date
WO2022033391A1 true WO2022033391A1 (zh) 2022-02-17

Family

ID=72860296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111066 WO2022033391A1 (zh) 2020-08-12 2021-08-06 一种超景深显微快速测量装置及测量方法

Country Status (3)

Country Link
CN (1) CN111811406A (zh)
DE (1) DE202021004248U1 (zh)
WO (1) WO2022033391A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811406A (zh) * 2020-08-12 2020-10-23 杭州魔方智能科技有限公司 一种超景深显微快速测量装置及测量方法
CN112763498A (zh) * 2020-12-25 2021-05-07 常州信息职业技术学院 一种微铣刀质量检测装置及方法
CN113932710B (zh) * 2021-10-09 2022-06-21 大连理工大学 一种复合式视觉刀具几何参数测量系统及方法
CN114326080A (zh) * 2022-01-11 2022-04-12 上海察微电子技术有限公司 一种用于显微镜的超大景深和防震防抖图像处理方法
CN114659445A (zh) * 2022-02-15 2022-06-24 中国电子科技集团公司第十一研究所 一种通用型多功能光学指标检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201047756Y (zh) * 2007-04-29 2008-04-16 上海研润光机科技有限公司 影像测量仪
CN101231158A (zh) * 2008-02-20 2008-07-30 北京理工大学 基于液体变焦透镜的微小物体三维外形尺寸的快速检测装置
JP2009282145A (ja) * 2008-05-20 2009-12-03 Nikon Corp ズーム倍率検出ユニットと、これを有するズーム顕微鏡。
CN103606181A (zh) * 2013-10-16 2014-02-26 北京航空航天大学 一种显微三维重构方法
CN106707488A (zh) * 2017-01-18 2017-05-24 梅木精密工业(珠海)有限公司 一种快速对焦显微镜
CN111811406A (zh) * 2020-08-12 2020-10-23 杭州魔方智能科技有限公司 一种超景深显微快速测量装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201047756Y (zh) * 2007-04-29 2008-04-16 上海研润光机科技有限公司 影像测量仪
CN101231158A (zh) * 2008-02-20 2008-07-30 北京理工大学 基于液体变焦透镜的微小物体三维外形尺寸的快速检测装置
JP2009282145A (ja) * 2008-05-20 2009-12-03 Nikon Corp ズーム倍率検出ユニットと、これを有するズーム顕微鏡。
CN103606181A (zh) * 2013-10-16 2014-02-26 北京航空航天大学 一种显微三维重构方法
CN106707488A (zh) * 2017-01-18 2017-05-24 梅木精密工业(珠海)有限公司 一种快速对焦显微镜
CN111811406A (zh) * 2020-08-12 2020-10-23 杭州魔方智能科技有限公司 一种超景深显微快速测量装置及测量方法

Also Published As

Publication number Publication date
CN111811406A (zh) 2020-10-23
DE202021004248U1 (de) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2022033391A1 (zh) 一种超景深显微快速测量装置及测量方法
WO2021196419A1 (zh) 计量级3d超景深显微系统及检测方法
JP6437947B2 (ja) 全自動迅速顕微鏡用スライドスキャナ
CN110006905A (zh) 一种线面阵相机结合的大口径超净光滑表面缺陷检测装置
JP6032767B2 (ja) マイクロタイタープレート特性の画像の提示および評価の方法
CN109765242A (zh) 一种高检测效率高分辨率的光滑表面质量测量装置及方法
CN110849289A (zh) 一种双摄像头并行共焦差动显微3d形貌测量装置及方法
US10120163B2 (en) Auto-focus method for a coordinate-measuring apparatus
CN210119453U (zh) 一种光滑表面缺陷的检测装置
CN110082360A (zh) 一种基于阵列相机的序列光学元件表面缺陷在线检测装置及方法
CN211626406U (zh) 计量级3d超景深干涉显微系统
CN107121065A (zh) 一种便携式相位定量检测装置
CN211651535U (zh) 计量级3d超景深共焦显微系统
CN108895992A (zh) 一种用于混凝土裂缝断裂面粗糙度的激光扫描装置及使用方法
CN110823531B (zh) 一种数字化光具座
CN209992407U (zh) 线面阵相机结合的大口径超净光滑表面缺陷检测装置
JP2011145160A (ja) マルチフォーカス検査装置及びマルチフォーカス検査方法
CN206058718U (zh) 光学元件共轴调节实验装置
CN104483317A (zh) 高通量数字全视场金相原位统计表征分析仪及分析方法
CN109884082B (zh) 一种光滑表面缺陷的检测方法
DE112020002180T5 (de) Normaleinfall-phasenverschiebungs-deflektometrie-sensor, -system und - verfahren zum prüfen einer oberfläche einer probe
CN201130235Y (zh) 芯片检测装置
CN212721294U (zh) 超景深显微快速测量装置
WO2018098833A1 (zh) 显微镜载玻片曲面高度值的测算方法以及一种显微镜
CN113624358A (zh) 用于光热反射显微热成像的三维位移补偿方法及控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855444

Country of ref document: EP

Kind code of ref document: A1