WO2022033123A1 - 天线组件以及电子设备 - Google Patents

天线组件以及电子设备 Download PDF

Info

Publication number
WO2022033123A1
WO2022033123A1 PCT/CN2021/096769 CN2021096769W WO2022033123A1 WO 2022033123 A1 WO2022033123 A1 WO 2022033123A1 CN 2021096769 W CN2021096769 W CN 2021096769W WO 2022033123 A1 WO2022033123 A1 WO 2022033123A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive structure
field communication
near field
antenna assembly
excitation current
Prior art date
Application number
PCT/CN2021/096769
Other languages
English (en)
French (fr)
Inventor
黄武鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21855179.4A priority Critical patent/EP4199253A4/en
Publication of WO2022033123A1 publication Critical patent/WO2022033123A1/zh
Priority to US18/148,488 priority patent/US20230170617A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an antenna assembly and an electronic device.
  • NFC Near Field Communication, near field communication
  • the NFC antenna is the most critical part that determines the overall performance of the NFC system.
  • the NFC antenna is used to generate high-frequency magnetic lines of force, which are coupled with other devices in the form of an AC magnetic field, so that data interaction can be completed safely and conveniently with high-speed transmission.
  • Embodiments of the present application provide an antenna assembly and an electronic device, which can enhance the radiation intensity of a near-field communication signal radiated by the antenna assembly and improve its radiation performance.
  • an antenna assembly including:
  • a near field communication chip for providing a near field communication excitation current
  • the first conductive structure electrically connected with the near field communication chip to transmit the near field communication excitation current, the first conductive structure is provided with one or more first gaps, when the first conductive structure transmits the near field communication When the near field communication excites a current, the first conductive structure can generate a magnetic field, and the magnetic field generated by the first conductive structure can be radiated to the outside through the one or more first gaps.
  • An embodiment of the present application provides an electronic device, including an antenna assembly, a middle frame, and a main circuit board disposed on the middle frame.
  • the antenna assembly is the above-mentioned antenna assembly, and the first conductive structure is disposed on the middle frame.
  • the near field communication chip is arranged on the main circuit board.
  • FIG. 1 is a schematic diagram of a first structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a third structure of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of a fourth structure of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of a fifth structure of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of a second structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a third structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a fourth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fifth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a sixth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a seventh structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an eighth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a ninth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a tenth structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a second structure of an electronic device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a fourth structure of an electronic device provided by an embodiment of the present application.
  • an antenna assembly which includes:
  • a near field communication chip for providing a near field communication excitation current
  • the first conductive structure electrically connected with the near field communication chip to transmit the near field communication excitation current, the first conductive structure is provided with one or more first gaps, when the first conductive structure transmits the near field communication When the near field communication excites the current, the first conductive structure can generate a magnetic field, and the magnetic field generated by the first conductive structure can be radiated to the outside through the one or more first gaps.
  • the magnetic field generated by the first conductive structure can penetrate the first conductive structure itself through the first gaps, thereby increasing the radiation near field of the antenna component
  • the radiation intensity of the communication signal improves its radiation performance.
  • the number of the first voids is multiple, and the multiple first voids are arranged in a distributed manner.
  • the first conductive structure includes a first side edge and a second side edge that are disposed opposite to each other, and a plurality of the first gaps extend along a direction from the first side edge to the second side edge. The directions are arranged in sequence.
  • the first conductive structure further includes a third side edge and a fourth side edge, and the third side edge is connected to one end of the first side edge and one end of the second side edge the fourth side is connected between the other end of the first side and the other end of the second side, and the lengths of the first side and the second side are the same greater than the length of the third side and the fourth side.
  • the number of the first voids is multiple, and the plurality of the first voids are staggered and spaced apart from each other.
  • a minimum area of a cross section of the first conductive structure along a transmission direction perpendicular to the near field communication excitation current is greater than a first preset value.
  • the first conductive structure is a printed circuit or a metal sheet on a flexible circuit board.
  • the first conductive structure includes a first portion and a second portion, the second portion is bent relative to the first portion, and the first portion and/or Each of the second parts is provided with one or more of the first gaps.
  • the antenna assembly further includes a second conductive structure, the second conductive structure is provided with a first feed end and a connection end spaced apart from each other, the first feed end is connected to The near field communication chip is electrically connected, the connection end is electrically connected with the first conductive structure, and the second conductive structure is used to transmit the near field communication excitation current together with the first conductive structure.
  • the antenna assembly further includes a ground plane, the second conductive structure is provided with a first ground terminal, and the first ground terminal is electrically connected to the ground plane.
  • the near field communication chip provides a differential excitation current
  • the antenna assembly further includes a ground plane, and the ground plane includes a first ground point and a second ground point arranged at intervals, so The ground plane forms a conductive path between the first ground point and the second ground point;
  • the second conductive structure is provided with a first ground terminal, the first conductive structure is provided with a second ground terminal, so The first ground terminal is electrically connected to the first ground point, the second ground terminal is electrically connected to the second ground point, and the first conductive structure, the conductive path and the second conductive structure are in common
  • a conductive loop is formed for transmission of the differential excitation current.
  • the antenna assembly further includes a ground plane
  • the second conductive structure includes:
  • first sub-conductive structure the first sub-conductive structure is electrically connected to the near field communication chip, and the first sub-conductive structure is electrically connected to the ground plane; a second sub-conductive structure is electrically connected to the first sub-conductive structure
  • the sub-conductive structures are arranged at intervals, the second sub-conductive structures are electrically connected to the first conductive structures, and the second sub-conductive structures are electrically connected to the ground plane.
  • the second conductive structure is provided with one or more second voids, and when the second conductive structure transmits the near field communication excitation current, the second conductive structure A magnetic field can be generated, and the magnetic field generated by the second conductive structure can be radiated to the outside through the one or more second gaps.
  • the first conductive structure and the second conductive structure transmit the near field communication excitation current
  • the first conductive structure when the first conductive structure and the second conductive structure transmit the near field communication excitation current, the first conductive structure generates a first near field communication radiation field
  • the second conductive structure when the first conductive structure and the second conductive structure transmit the near field communication excitation current, the first conductive structure generates a first near field communication radiation field
  • the second conductive structure generates a second near field communication radiation field, the first near field communication radiation field and the second near field communication radiation field at least partially overlapping.
  • the antenna assembly further includes a first non-near field communication chip, and the first non-near field communication chip is used to provide a first non-near field communication excitation current; the second non-near field communication chip
  • the conductive structure is further provided with a second feed end, the second feed end is spaced apart from the first feed end, and the second feed end is electrically connected to the first non-near field communication chip for transmission The non-near field communication excitation current.
  • the antenna assembly further includes a first non-near field communication chip and a second non-near field communication chip, and the first non-near field communication chip is used to provide the first non-near field communication chip a communication excitation current, the second non-near field communication chip is used to provide a second non-near field communication excitation current; the first sub-conducting structure is electrically connected to the first non-near field communication chip, and the first sub-conductive structure is electrically connected to the first non-near field communication chip The conductive structure is used to transmit the first non-near field communication excitation current; the second sub-conductive structure is electrically connected to the second non-near field communication chip, and the second sub-conductive structure is used to transmit the second non-near field communication chip Non-NFC excitation current.
  • An embodiment of the present application further provides an electronic device, which includes an antenna assembly, a middle frame, and a main circuit board disposed on the middle frame, and the antenna assembly is the antenna assembly described in any of the above application embodiments, so The first conductive structure is arranged on the middle frame, and the near field communication chip is arranged on the main circuit board.
  • the embodiment of the present application also provides an electronic device, which includes:
  • antenna assembly being the antenna assembly of any one of claims 10 to 16;
  • the middle frame includes a third conductive structure and a fourth conductive structure
  • the second conductive structure is located between the third conductive structure and the fourth conductive structure
  • a first gap is provided between the third conductive structure and the second conductive structure
  • a second gap is provided between the fourth conductive structure and the second conductive structure.
  • the second conductive structure, a part of the third conductive structure, and a part of the fourth conductive structure are all located at the same end of the middle frame.
  • An embodiment of the present application provides an antenna assembly, which can be applied to an electronic device, and the electronic device can be a device such as a smartphone, a tablet computer, or the like, and can also be a game device, an Augmented Reality (AR) device, or a car device. , data storage devices, audio playback devices, video playback devices, notebook computers, desktop computing equipment, etc.
  • the electronic device can be a device such as a smartphone, a tablet computer, or the like, and can also be a game device, an Augmented Reality (AR) device, or a car device.
  • AR Augmented Reality
  • FIG. 1 is a schematic diagram of a first structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 100 may include a near field communication chip (NCF IC) 110 and a first conductive structure 120 .
  • NCF IC near field communication chip
  • the near field communication chip 110 may be used for providing a near field communication signal, that is, the near field communication chip 110 is used for providing a near field communication excitation current.
  • the near field communication excitation current may be a differential excitation current, and the differential excitation current may include two current signals, the two current signals have the same amplitude and opposite phases, or the two current signals have a phase difference of 180 degrees.
  • the differential excitation current can be a balanced signal. It is understandable that in the process of transmission, if the analog signal is directly transmitted, it is an unbalanced signal; if the original analog signal is inverted, then the inverted analog signal and the original analog signal are transmitted at the same time, and the inverted analog signal and the original analog signal are transmitted at the same time. The analog signal is called a balanced signal.
  • the near field communication excitation current may also be an unbalanced signal, for example, a converter (such as a balun) is added in the circuit, and the converter can convert the balanced signal into an unbalanced signal.
  • the unbalanced signal is a single-ended signal.
  • the converted single-ended signal can be electrically connected to the first conductive structure 120, and the other signal end of the near field communication chip can be grounded to realize the transmission of the unbalanced signal.
  • the first conductive structure 120 can be used as an antenna of an electronic device for receiving or transmitting communication signals of multiple frequency bands.
  • the first conductive structure 120 can be formed into various shapes as antennas of various design forms, such as the first conductive structure 120 can be formed as a loop antenna, a patch antenna, an inverted-F antenna, a closed and open slot antenna, a flat antenna, a One or more of the inverted-F antenna, helical antenna, strip antenna, monopole antenna, and dipole antenna.
  • the first conductive structure 120 is connected to the near field communication chip 110 to transmit the near field communication excitation current provided by the near field communication chip 110 .
  • the first conductive structure 120 is provided with one or more first voids 121 , for example, the first conductive structure 120 may be provided with one first void 121 , two first voids 121 , three first voids 121 , and five first voids 121 or other number of first voids 121 .
  • the first conductive structure 120 When the first conductive structure 120 transmits the excitation current for near field communication, the first conductive structure 120 can generate a magnetic field in an electrified state, and the magnetic field generated by the first conductive structure 120 can be radiated to the outside through the first gap 121, thereby widening the antenna assembly 100 The radiation area when transmitting near-field communication signals, and improve the radiation intensity when the antenna assembly transmits near-field communication signals.
  • the number of turns of the coil for transmitting the near-field communication signal is usually increased to increase the magnetic field strength, but this increases the space occupied by the antenna assembly on the electronic device.
  • the embodiment of the present application can increase the magnetic field strength of the near-field communication signal transmitted by the antenna assembly 100 without additionally increasing the space occupied by the antenna assembly 100 for the electronic device.
  • the number of the first voids 121 in the embodiment of the present application may be multiple, for example, the number of the first voids 121 may be three, and the three first voids 121 are arranged in an array.
  • the number of the first voids 121 may be three, and the three first voids 121 are arranged in an array.
  • the first conductive structure 120 may be a rectangular plate-like structure, and the first conductive structure 120 may include a first side 122 , a second side 123 , a third side 124 and a fourth side 125 , the first side 122 and the second side 123 are arranged oppositely, the third side 124 and the fourth side 125 are arranged oppositely, and the third side 124 is connected to one end of the first side 122 and the second side 123
  • the fourth side 125 is connected between the other end of the first side 122 and the other end of the second side 123, and the three first gaps 121 may be along the length of the first conductor structure 120, namely The first side edges 122 are arranged in sequence toward the direction of the second side edges 123 . It can be understood that, the three first voids 121 may be arranged in sequence along the width direction of the first conductive structure 120 , that is, the direction from the third side edge 124 to the fourth side edge 125 .
  • first side 122 can also be the side located on the right side of the first conductive structure 120
  • third side 124 can also be the first conductive structure 120 on the lower side.
  • the positional relationship between the near field communication chip 110 and the first conductive structure 120 in the electronic device shown in FIG. 1 is only exemplary, and has no limiting significance, and the positions of the near field communication chip 110 and the first conductive structure 120 in the electronic device can be based on the actual situation. needs to be adjusted.
  • the plurality of first voids 121 in the embodiments of the present application may be arranged in sequence along the length direction of the first conductive structure 120 .
  • the three first gaps 121 can also be arranged in sequence along the direction of the third side edge 124 toward the fourth side edge 125, as shown in FIG. A schematic diagram of the structure.
  • the plurality of first voids 121 may also be arranged in sequence along other directions of the first conductive structure 120, for example, may be along the diagonal direction of the first conductive structure 120, or the direction of any other angle, For example, 60°, or 75°, or 120°, etc.
  • each of the first voids 121 close to the third side edge 124 are flush with each other, and each of the first voids 121 and the third side edge 124 are spaced apart by a first predetermined distance d1 .
  • the first preset distance d1 is a distance that is relatively close to the third side edge 124 but does not penetrate the third side edge 124.
  • the first preset distance d1 may be 0.5mm, or 1mm, or 2mm, or a distance of other values. .
  • each first gap 121 close to the fourth side edge 125 are flush with each other, and each first gap 121 and the fourth side edge 125 are spaced apart from each other by a second preset distance d2, which is preset the distance.
  • the second preset distance d2 is a distance that is relatively close to the fourth side edge 125 but does not penetrate the fourth side edge 125 .
  • the second preset distance d2 may be 0.5mm, or 1mm, or 2mm, or a distance of other values.
  • the second preset distance d2 may be equal to the first preset distance, or may not be equal to the first preset distance d1.
  • first gap 121 when the first gap 121 is formed on the first conductive structure 120 , only one row of the first gap 121 may be formed in the direction of the first side 122 toward the second side 123 , and both ends of the first gap 121 may be formed.
  • the third side 124 and the fourth side 125 are as close as possible, so that as few first gaps 121 as possible can be opened to increase the radiation intensity when the antenna assembly 100 transmits the near field communication signal.
  • FIG. 3 is a schematic diagram of a third structure of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • the plurality of first voids 121 in this embodiment of the present application may also be staggered.
  • the antenna assembly 100 may include seven first voids 121, the seven first voids 121 are arranged in three columns, the first row is two first voids 121, the second row is three first voids 121, and the first row If a part (or all) of the first first space 121 of the first line is located between the first two first space Between the last two first gaps 121 of the column, the third column is the two first gaps 121, and a part (or all) of the first first gap 121 of the third column is located in the first two first gaps of the second column. Between the gaps 121 . A part (or all) of the second first gap 121 of the third column is located between the last two first gaps 121 of the second column.
  • the plurality of first voids 121 in the embodiment of the present application may also be arranged in an array distribution in part and in a staggered arrangement, for example, as shown in FIG. 4 , which shows the first conductive structure in the antenna assembly shown in FIG. 1 Schematic diagram of the fourth structure.
  • the first conductive structure 120 of the embodiment of the present application may include five first voids 121 , wherein the first row is one first void 121 , the second row is one first void 121 , and the first void 121 is located in the second row
  • the first voids 121 in the first row are arranged in an array
  • the third row is two first voids 121
  • the fourth row is one first void 121
  • the first voids 121 in the fourth row are arranged in the third row. between the two first gaps 121 of the column.
  • the shapes of the plurality of first voids 121 may be the same, for example, the orthographic projection shapes of the plurality of first voids 121 are all rectangles (such as shown in FIG. 1 ), or squares, or triangles.
  • the shapes of the plurality of first voids 121 may also be different, or partially different, for example, the orthographic shape of some of the first voids 121 is a rectangle, and the orthographic shape of some of the first voids 121 is a triangle, as shown in FIG. 5 , and FIG. 5 is A fifth structural schematic diagram of the first conductive structure in the antenna assembly shown in FIG. 1 .
  • the sizes of the plurality of first voids 121 may be the same, for example, the plurality of first voids 121 are all rectangles with a length of m and a width of n (eg, as shown in FIG. 1 ).
  • the sizes of the plurality of first voids 121 may also be different, or partially different, for example, some of the first voids 121 are rectangles with a length m and a width n, and some of the first voids 121 have a length a and a width b , where the value of a is not equal to m and the value of b is not equal to n (such as shown in Figure 3).
  • the shapes and sizes of the plurality of first voids 121 may be the same, or may be different, or partially different.
  • R1 ⁇ L/S1
  • represents the resistivity of the resistor, which is determined by its own properties
  • L represents the length of the resistor
  • S1 represents the cross-sectional area of the first conductive structure 120.
  • the first conductive structure 120 in the embodiment of the present application satisfies that the minimum area of the cross section along the transmission direction perpendicular to the near field communication excitation current is greater than the first preset value, so that the resistance value of the first conductive structure 120 satisfies Preset requirements, so that the signal transmission performance of the antenna assembly 100 is not affected.
  • the direction in which the first conductive structure 120 transmits the near field communication excitation current is the direction from the first side 122 to the second side 123 or the direction from the second side 123 to the first side 122
  • the cross section perpendicular to the conduction direction of the near field communication excitation current is the cross section along the P1 - P1 direction as shown in FIG.
  • the area of the cross section of the first conductive structure 120 along the P1-P1 direction is the area after subtracting the three first voids 121 , the area is greater than the first preset value, the first preset value is a preset value, the third A preset value can make the resistance value of the first conductive structure 120 meet the preset requirements.
  • the first conductive structure 120 excites the current along a direction perpendicular to the near field communication.
  • the minimum area of the cross section in the transmission direction is the part with the largest occupied area of the first void 121.
  • the first conductive structure 120 is perpendicular to the near field communication
  • the minimum area of the cross-section in the direction of transmission of the excitation current is then the area of the cross-section along P2-P2.
  • the first conductive structure 120 has a plurality of cross-sections along the width direction of the first conductive structure 120, and the area of the plurality of cross-sections in the width direction can be calculated to select the one with the smallest area, And make the area of the minimum cross-section larger than the first preset value.
  • the shape of the first conductive structure 120 in FIG. 1 to FIG. 5 is only exemplary, the first conductive structure 120 is not limited to a rectangular plate-like structure, and the first conductive structure 120 may also be in other shapes, such as the first conductive structure 120 .
  • the orthographic shape of a conductive structure 120 may be an “L”-like shape, for example, as shown in FIG. 6 , which is a schematic diagram of the second structure of the antenna assembly provided by the embodiment of the present application.
  • the first conductive structure 120 may include a first part 126 and a second part 127, the second part 127 is bent and disposed relative to the first part 126 to form an "L"-like shape, and the "L"-like shape refers to It is roughly shaped like an "L” shape.
  • each first space 121 close to the third side 124 are flush with each other, and the distance between the edge of each first space 121 close to the third side 124 and the third side 124 is the first predetermined distance d1 , the edges of each first space 121 close to the fourth side 125 are flush with each other, and the distance between the edge of each first space 121 close to the fourth side 125 and the fourth side 125 is the second preset distance d2,
  • first preset distance d1 and the second preset distance d2 is shown in
  • the first part 126 and the second part 127 may both be provided with a plurality of first gaps 121, and the number of the first gaps 121a located in the first part 126 is the same as the number of the first gaps 121b located in the second part 127, for example, both are three, and a first gap 121a on the first part 126 and a first gap 121b on the second part 127 communicate with each other. For example, as shown in FIG.
  • the first gap 121a on the first part 126 and the second gap The first voids 121b in the corresponding positions on the first row are communicated with the first voids 121b in the first row, and the first voids 121a in the second row are in communication with the first voids 121b in the second row.
  • the first voids 121a of the third row communicate with the first voids 121b of the third row.
  • the first voids 121a on the first portion 126 may also communicate with the first voids 121b at other positions on the second portion 127, for example, the first voids 121a in the first row communicate with the first voids 121b in the second row.
  • first gap 121a of the first part 126 may not be communicated with the first gap 121b of the second part 127, or partially communicated and partially disconnected.
  • the first conductive structure 120 is a printed circuit on a flexible circuit board (Flexible Printed Circuit, FPC).
  • a flexible circuit board may be used as a radiator for transmitting near field communication signals.
  • the flexible circuit board is usually a closed sheet-like structure, or the flexible circuit board is usually not provided with through holes or voids.
  • the traces on the flexible circuit board are usually The generated magnetic field cannot penetrate the trace itself on the flexible circuit board (or the trace position in the flexible circuit board has no magnetic field line distribution, which does not contribute to the magnetic flux). Radiation to the outside world, the radiation area and radiation intensity of the flexible circuit board are limited.
  • one or more first voids 121 are arranged on the printed circuit of the flexible circuit board, so that the magnetic field generated by the flexible circuit board can penetrate the printed circuit of the flexible circuit board through the first voids 121, and further
  • the printed circuit itself has a distribution of magnetic lines of force and contributes to the magnetic flux.
  • the embodiments of the present application can increase the total magnetic flux of the magnetic field radiated by the flexible circuit board, effectively widen the radiation area of the antenna assembly 100 for transmitting near-field communication signals, and improve the ability of the antenna assembly 100 to transmit near-field communication signals. Radiation area, improve its radiation performance.
  • the first conductive structure 120 in the embodiment of the present application may also be a metal sheet.
  • the first conductive structure 120 may also be a steel sheet.
  • the steel sheet is provided with one or more first gaps 121.
  • the steel sheet can generate a magnetic field, and the magnetic field generated by the steel sheet can be radiated to the outside through the first gap 121 .
  • the first conductive structure 120 can also be other objects that can be used as radiators except the printed circuit of the flexible circuit board and the metal sheet.
  • FIG. 7 is a schematic diagram of a third structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 100 in this embodiment of the present application may further include a second conductive structure 130.
  • the second conductive structure 130 is provided with a first feed end 131a and a connection end 131b, and the connection end 131b and the first feed end 131a are arranged at intervals.
  • the feeding terminal 131a is electrically connected to the near field communication chip 110
  • the connecting terminal 131b is electrically connected to the first conductive structure 120
  • the second conductive structure 130 is used for jointly transmitting the near field communication excitation current with the first conductive structure 120 .
  • the near field communication chip 110 may be used to provide a differential excitation current.
  • the near field communication chip 110 includes a first differential signal terminal 111 and a second differential signal terminal 112 .
  • the first differential signal terminal 111 may be the positive port of the near field communication chip 110
  • the second differential signal terminal 112 may be the negative port of the near field communication chip 110 .
  • the first differential signal terminal 111 and the second differential signal terminal 112 are used for providing differential excitation current.
  • the differential excitation current provided by the near field communication chip 110 can be output to the antenna assembly 100 via the first differential signal terminal 111 and returned to the near field communication chip 110 via the second differential signal terminal 112 to form a current loop.
  • the near field communication chip 110 , the first conductive structure 120 and the second conductive structure 130 may form a conductive loop for the near field communication excitation current transmission. That is, the near field communication excitation current is output from the first differential signal terminal 111 of the near field communication chip 110 , then fed into the first conductive structure 120 , and transmitted to the second conductive structure via the first conductive structure 120 The structure 130 is then reflowed to the second differential signal terminal 112 of the near field communication chip 110 through the second conductive structure 130, thereby forming a complete conductive loop.
  • the first conductive structure 120 and the second conductive structure 130 can jointly generate an alternating magnetic field, so as to radiate the near field communication signal outward, so as to realize the above Near field communication of electronic device 20 .
  • part of the near field communication signal may be radiated to the outside through the first gap 121 in the first conductive structure 120 .
  • the radiation intensity of the near-field communication signal radiated by the antenna assembly 100 is increased, thereby improving the signal transmission performance of the antenna assembly 100 .
  • the positional relationship between the near field communication chip 110 , the first conductive structure 120 , the second conductive structure 130 and the ground plane 140 is not limited to this.
  • FIG. 8 is provided by this embodiment of the application.
  • a schematic diagram of the fourth structure of the antenna assembly the first conductive structure 120 can also be located on the other side of the second conductive structure 130.
  • the first conductive structure 120 can be located on the left side of the second conductive structure 130.
  • the first conductive structure The bending directions of the first portion 126 and the second portion 127 in 120 are opposite to the bending directions of the first portion 126 and the second portion 127 in the first conductive structure 120 shown in FIG. 6 .
  • first conductive structure 120 in the embodiment of the present application can be arranged according to the internal space of the electronic device 20 as long as the near field communication chip 110 , the first conductive structure 120 and the second conductive structure 130 can form a conductive loop.
  • FIG. 9 is an embodiment of the present application.
  • FIG. 10 is a sixth structural schematic diagram of the antenna assembly provided by the embodiment of the application.
  • the antenna assembly 100 also includes a ground plane 140 for forming a common ground.
  • the ground plane 140 may be formed by a conductor, a printed circuit, or a metal printed layer in the electronic device.
  • the ground plane 140 may be formed on the main circuit board of the electronic device.
  • the ground plane 140 can also be formed on the casing of the electronic device, for example, the ground plane 140 can be formed by the middle frame substrate of the casing, or can also be formed by the battery cover (or back cover) of the casing. Ground plane 140 .
  • the second conductive structure 130 is provided with a first ground terminal 132, and the first ground terminal 132 is electrically connected to the ground plane 140 to realize the grounding of the second conductive structure 130 and further improve the performance of the second conductive structure 130 for transmitting near field communication signals.
  • the ground plane 140 includes a first ground point 141 and a second ground point 142 that are spaced apart.
  • the first ground point 141 and the second ground point 142 may be, for example, the ends of the ground plane 140 , or may be raised structures on the ground plane 140 , or may be pads formed on the ground plane 140 , or may also be is an area of a certain area on the ground plane 140, and so on.
  • the ground plane 140 forms a conductive path between the first ground point 141 and the second ground point 142, and the conductive path can be used to conduct current. That is, when a voltage signal is applied to the first ground point 141 and the second ground point 142, a current may be generated between the first ground point 141 and the second ground point 142, thereby forming a current loop. It can be understood that when the near field communication chip 110 provides the differential excitation current, the conductive path between the first ground point 141 and the second ground point 142 can be used to transmit the near field excitation current signal provided by the near field communication chip.
  • the first conductive structure 120 is electrically connected to the first differential signal terminal 111 , so that the first differential signal terminal 111 feeds power to the first conductive structure 120 .
  • the differential excitation current provided by the near field communication chip 110 may be transmitted to the first conductive structure 120 via the first differential signal terminal 111 , so as to feed the first conductive structure 120 .
  • the first conductive structure 120 is provided with a second ground terminal 128 , and the second ground terminal 128 is electrically connected to the first ground point 141 of the ground plane 140 to realize the grounding of the first conductive structure 120 .
  • the first power feeding terminal 131a of the second conductive structure 130 is electrically connected to the second differential signal terminal 112, so that the second differential signal terminal 112 feeds power to the first power feeding terminal 131a.
  • the differential excitation current provided by the near field communication chip 110 may be transmitted to the second differential signal terminal 112 via the first feeding terminal 131 a, so as to feed the second conductive structure 130 .
  • the first ground terminal 132 of the second conductive structure 130 is electrically connected to the second ground point 142 of the ground plane 140, so as to realize the ground return of the second conductive structure.
  • the ground plane 140 forms a conductive path between the first ground point 141 and the second ground point 142, and the conductive path can be used to conduct current. That is, when a voltage signal is applied to the first ground terminal 132 and the second ground terminal 128, a current may be generated between the first ground terminal 132 and the second ground terminal 128, thereby forming a conductive path. It can be understood that when the near field communication chip 110 provides the near field communication excitation current, the conductive path between the first ground terminal 132 and the second ground terminal 128 can be used to transmit the differential excitation current.
  • the antenna assembly 100 transmits the differential excitation current provided by the near field communication chip 110 , the first conductive structure 120 , the conductive path on the ground plane 140 and the second conductive structure 130 together form a conductive loop for differential excitation current transmission. That is, the near field communication chip 110 is output from the first differential signal terminal 111 of the near field communication chip 110 , and then fed into the first conductive structure 120 , and transmitted to the ground plane 140 via the first conductive structure 120 The conductive path on the NFC chip is then transmitted to the second conductive structure 130 via the conductive path, and finally returned to the second differential signal terminal 112 of the near field communication chip 110 through the second conductive structure 130 , thereby forming a complete conductive loop.
  • the conductive loop transmits the near field communication excitation current
  • the first conductive structure 120, the conductive path on the ground plane 140, and the second conductive structure 130 can jointly generate an alternating magnetic field, thereby radiating a near field. field communication signal to realize near field communication of the electronic device.
  • the first conductive structure 120 can generate a first near field communication radiation field.
  • the first near field communication radiation field may cover an area of a certain space around the electronic device.
  • the second conductive structure 130 may generate a second near field communication radiation field.
  • the second near field communication radiation field may also cover an area of a certain space around the electronic device.
  • the second near-field communication radiation field and the first near-field communication radiation field at least partially overlap, so that the area of the near-field communication radiation field around the electronic device can be enhanced, and the field strength of the overlapping area can be enhanced. Therefore, the effective read/write (card swipe) area of the near field communication antenna of the electronic device can be increased, and the stability of the near field communication antenna of the electronic device during reading and writing (card swiping) can be improved.
  • the ground plane 140 may generate a third near field communication radiation field.
  • the third near field communication radiation field may also cover an area of a certain space around the electronic device. Wherein, the third near field communication radiation field and the first near field communication radiation field at least partially overlap, and the third near field communication radiation field and the second near field communication radiation field at least partially overlap. Therefore, the area of the near field communication radiation field around the electronic device can be further enhanced, and the field strength in the overlapping area can be enhanced.
  • the first near field communication radiation field formed by the first conductive structure 120 As the main radiation field, the second near-field communication radiation field formed by the second conductive structure 130 and the third near-field communication radiation field formed by the ground plane 140 can both compensate the main radiation field, so that the Compensation is performed at positions with weaker field strengths in the main radiation field to enhance the field strength in the entire area of the main radiation field.
  • the near field communication receiver reads the near field communication signal near the second conductive structure 130
  • the second near field communication radiation field formed by the second conductive structure 130 is used as the main radiation field. Both the field communication radiation field and the third near-field communication radiation field may compensate the main radiation field.
  • the antenna assembly 100 of the present application can ensure that in the electronic device, the near field communication signal can be received and received at any position of the near field communication radiation field formed by the first conductive structure 120 , the second conductive structure 130 , and the ground plane 140 . , so as to realize near field communication between the electronic device in the embodiment of the present application and other electronic devices.
  • the second conductive structure 130 in the embodiment of the present application may also be used to transmit non-near field communication signals.
  • FIG. 11 is a schematic diagram of a seventh structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 100 further includes a first non-near field communication chip 151, which may be an IC chip, and the first non-near field communication chip 151 may be used to provide a first non-near field communication excitation current.
  • the second conductive structure 130 is further provided with a second feed end 133, the second feed end 133 is spaced apart from the first feed end 131a, and the second feed end 133 can be electrically connected to the first non-near field communication chip 151,
  • the second conductive structure 130 may also be used to transmit the first non-near field communication excitation current. It can be understood that the first non-near field communication excitation current provided by the first non-near field communication chip 151 is fed from the second feeding terminal 133 and returned to the ground from the first ground terminal 132 to realize the first non-near field communication. Communication excitation current transmission.
  • the first non-near field communication excitation current may be an unbalanced signal, including but not limited to cellular network signals, wireless fidelity (Wireless Fidelity, Wi-Fi) signals, global positioning system (Global Positioning System, GPS) signals, Bluetooth ( Bluetooth, BT) signal.
  • the first non-near field communication chip 151 may be a cellular communication chip for providing cellular network signals; the first non-near field communication chip 151 may be a Wi-Fi chip for providing Wi-Fi signals;
  • the near field communication chip 151 may be a GPS chip for providing GPS signals; the first non-near field communication chip 151 may also be a BT chip for providing the BT signals.
  • the second feeding terminal 133 is spaced apart from the first feeding terminal 131a, the connecting terminal 131b, and the first ground terminal 132, respectively.
  • the second feed end 133 is electrically connected to the first non-near field communication chip 151 , and the first non-near field communication chip 151 can feed the first non-near field communication excitation current to the second conductive structure 130 through the second feed end 133 , so that the second conductive structure 130 can also be used to transmit the first non-near field communication excitation current.
  • the second conductive structure 130 can be used not only to transmit the near field communication excitation current signal provided by the near field communication chip 110 , but also to transmit the first non-near field communication chip 151 .
  • the non-near field communication excites current, so that multiplexing of the second conductive structure 130 can be achieved, the number of antennas used for transmitting wireless signals in the antenna assembly 100 can be reduced, and the space occupied by the antenna assembly 100 for electronic equipment can be saved.
  • the frequency of the NFC signal is usually 13.56MHz (megahertz)
  • the frequency of the cellular network signal is usually above 0MHz
  • the frequency of the Wi-Fi signal is usually 2.4GHz (gigahertz) or 5GHz
  • the frequency of the GPS signal is usually 2.4GHz (gigahertz) or 5GHz.
  • the frequency usually includes multiple frequency bands such as 1.575GHz, 1.7GHz, 1.381GHz, 1.842GHz
  • the frequency of the BT signal is usually 2.4GHz. Therefore, compared to cellular network signals, Wi-Fi signals, GPS signals, and BT signals, NFC signals are low-frequency signals, while cellular network signals, Wi-Fi signals, GPS signals, and BT signals are high-frequency signals.
  • the NFC signal is a low-frequency signal
  • the non-near field communication excitation current is a high-frequency signal
  • the frequency of the NFC signal is lower than the frequency of the non-near field communication excitation signal
  • the lower the frequency of the wireless signal the longer the required radiator length; and the higher the frequency of the wireless signal, the shorter the required radiator length. That is, the length of the radiator required to transmit the NFC signal is greater than the length of the radiator required to transmit the non-near field communication excitation current.
  • the second feed end 133 and the first feed end 131 a may be disposed on different sides of the first ground end 132 . That is, the first ground terminal 132 is located between the second power feeding terminal 133 and the first power feeding terminal 131a. Compared with the fact that the second feed end 133 and the first feed end 131 a are located on the same side of the first ground end 132 , the second feed end 133 and the first feed end 131 a are located on different sides of the first ground end 132 The part between the first feeding terminal 131a and the first ground terminal 132 can be reused, so that the overall length of the second conductive structure 130 can be reduced.
  • FIG. 12 is a schematic diagram of an eighth structure of an antenna assembly provided by an embodiment of the present application.
  • the second conductive structure 130 is provided with one or more second voids 134 , for example, the second conductive structure 130 may be provided with one second void 134 , two second voids 134 , three second voids 134 , and five second voids 134 or other number of second voids 134 .
  • the second conductive structure 130 transmits an excitation current for near field communication, the second conductive structure 130 can generate a magnetic field in an electrified state, and the magnetic field generated by the second conductive structure 130 can be radiated to the outside through the second gap 134 .
  • the number of the second gaps 134 in the embodiment of the present application may be multiple, for example, the number of the second gaps 134 may be three, and the three second gaps 134 are arranged in an array.
  • the second conductive structure 130 may be a rectangular plate-like structure, and the second conductive structure 130 may include a fifth side 135 , a sixth side 136 , a seventh side 137 and an eighth side 138 , the fifth side 135 and the sixth side 136 are arranged oppositely, the seventh side 137 is arranged opposite the eighth side 138, and the seventh side 137 is connected to one end of the fifth side 135 and the sixth side 136 Between one end, the eighth side 138 is connected between the other end of the fifth side 135 and the other end of the sixth side 136.
  • the three second gaps 134 may be along the fifth side 135 toward the sixth side 136. The directions are arranged in sequence. It can be understood that, the three second voids 134 may be arranged in sequence along the width
  • the fifth side 135 can also be the side located on the right side of the second conductive structure 130
  • the seventh side 137 can also be the second conductive structure 130 on the lower side.
  • the plurality of second voids 134 in the embodiment of the present application may be arranged in sequence along the length direction of the second conductive structure 130 .
  • the three second gaps 134 may also be arranged in sequence along the direction of the seventh side edge 137 toward the eighth side edge 138 .
  • the plurality of second voids 134 may also be arranged in sequence along other directions of the second conductive structure 130, for example, may be along the diagonal direction of the second conductive structure 130, or the direction of any other angle, For example, 60°, or 75°, or 120°, etc.
  • the plurality of second voids 134 in the embodiment of the present application may also be arranged in a staggered manner.
  • the plurality of second voids 134 in the embodiment of the present application may also be partially arranged in an array distribution and partially arranged in a staggered manner.
  • the relevant description of the first conductive structure 120 please refer to the relevant description of the first conductive structure 120 , which will not be repeated here.
  • the shapes of the plurality of second voids 134 may be the same, for example, the orthographic projection shapes of the plurality of second voids 134 are all rectangles (such as shown in FIG. 12 ), or squares, or triangles.
  • the shapes of the plurality of second voids 134 may also be different, or partially different, for example, the orthographic shape of some of the second voids 134 is a rectangle, and the orthographic shape of some of the second voids 134 is a triangle.
  • the sizes of the plurality of second voids 134 may be the same. Of course, the sizes of the plurality of second voids 134 may also be different, or partially different. The shapes and sizes of the plurality of second voids 134 may all be the same, or may be different, or partially different. For details, please refer to the relevant description of the first conductive structure 120 .
  • R1 ⁇ L/S2
  • represents the resistivity of the resistor, which is determined by its own properties
  • L represents the length of the resistor
  • S2 represents the cross-sectional area of the second conductive structure 130.
  • the second conductive structure 130 in the embodiment of the present application satisfies that the minimum area of the cross section along the transmission direction of the near field communication excitation current is greater than the second preset value, so that the resistance value of the second conductive structure 130 satisfies the preset value requirements, so that the signal transmission performance of the antenna assembly 100 is not affected.
  • the transmission direction may be the direction from the fifth side 135 to the sixth side 136 , or the direction from the sixth side 135 to the sixth side 136 .
  • the cross section perpendicular to the conduction direction of the near field communication excitation current is the cross section along the P3-P3 direction as shown in FIG. Width-wise cross-section.
  • the area of the cross section of the second conductive structure 130 along the P3-P3 direction is the area after subtracting the two second voids 134 , and the area is greater than the second preset value, which is a preset value.
  • the two preset values are values that can make the resistance value of the second conductive structure 130 meet the preset requirements.
  • the second conductive structure 130 has a plurality of cross-sections along the width direction of the second conductive structure 130, and the area of the plurality of cross-sections in the width direction can be calculated to select the one with the smallest area, And make the area of the minimum cross section larger than the second preset value.
  • the shape and size of the second void 134 in the embodiment of the present application may be the same as or different from the shape and size of the first void 121 .
  • the structure of the second conductive structure 130 in the embodiment of the present application may be the same as the structure of the first conductive structure 120 , for example, both are rectangular plate-like structures, and the dimensions may also be the same. Of course, the structures of the two can also be different, such as different shapes and/or different sizes.
  • the shape of the second conductive structure 130 shown in FIG. 12 is only an example, the second conductive structure 130 is not limited to a rectangular plate-like structure, and the second conductive structure 130 may also have other shapes.
  • the first conductive structure 120 in the embodiment of the present application may also include a plurality of sub-conductive structures.
  • FIG. 13 is a schematic diagram of a ninth structure of an antenna assembly provided by an embodiment of the present application.
  • the second conductive structure 130 may include a first sub-conductive structure 1391 and a second sub-conductive structure 1392, and the first sub-conductive structure 1391 and the second sub-conductive structure 1392 are spaced apart.
  • the first signal terminal of the near field communication chip 110 is electrically connected to the feeding terminal of the first conductive structure 120
  • the second signal terminal of the near field communication chip 110 is electrically connected to the feeding terminal of the first sub-conductive structure 1391
  • the first The ground terminal of a sub-conductive structure 1391 is electrically connected to the ground plane 140
  • the feed terminal of the second sub-conductive structure 1392 is electrically connected to the first conductive structure 120
  • the ground terminal of the second sub-conductive structure 1392 is electrically connected to the ground plane.
  • the antenna assembly 100 transmits the near-field communication excitation current provided by the near-field communication chip 110, the first conductive structure 120, the first sub-conductive structure 1391, the conductive path on the ground plane 140 and the second sub-conductive structure 1392 together form a supply for the near field Communication energizes conductive loops for current transmission. That is, the near field communication chip 110 is output from one signal terminal of the near field communication chip 110, and then fed into the first conductive structure 120, and the first conductive structure 120 is transmitted to the second sub-conductive structure 1392 and via the second sub-conductive structure 1392.
  • the conductive structure 1392 is transmitted to the conductive path on the ground plane 140 , and then transmitted to the first sub-conductive structure 1391 via the conductive path on the ground plane 140 , and finally returns to the other signal terminal of the near field communication chip 110 through the first sub-conductive structure 1391 , thus forming a complete conductive loop.
  • the first conductive structure 120 when the conductive loop transmits the near field communication excitation current, the first conductive structure 120 , the conductive path on the ground plane 140 , the first sub-conductive structure 1391 and the second sub-conductive structure can jointly generate alternating currents. magnetic field, so as to radiate a near-field communication signal outward, so as to realize the near-field communication of the electronic device.
  • the first sub-conductive structure 1391 may include a first straight portion 1391a, a first curved portion 1391b and a second straight portion 1391c connected in sequence, and the first curved portion 1391b is opposite to the first straight portion 1391a and the second straight portion 1391c are both curved.
  • the structure of the first sub-conductive structure 1391 is not limited to this, and the first sub-conductive structure 1391 can also be in other shapes.
  • the first sub-conductive structure can be specifically set according to the shape of the electronic device. This is not limited.
  • the structure of the second sub-conductive structure 1392 may be the same as that of the first sub-conductive structure 1391.
  • the second sub-conductive structure 1392 may include a third straight portion 1392a, a second curved portion 1392b and a fourth straight portion that are connected in sequence 1392c, the second curved portion 1392b is curved relative to the third straight portion 1392a and the fourth straight portion 1392c.
  • the structure of the second sub-conductive structure 1392 may also be different from that of the first sub-conductive structure 1391 , for example, the second sub-conductive structure 1392 may be a rectangular structure.
  • the first sub-conductive structure 1391 can be electrically connected to the first non-near field communication chip 151, so that the first sub-conductive structure 1391 can transmit a near-field communication signal and a first non-near field communication signal, so as to realize the communication between the first sub-conductive structure and the first non-near field communication signal. 1391 multiplexing.
  • the antenna assembly 100 may also include a second non-near field communication chip 152, which may be used to provide a second non-near field communication excitation current.
  • the second sub-conductive structure 1392 can be electrically connected to the second non-near field communication chip 152 , so that the second sub-conductive structure 1392 can transmit a near field communication signal and a second non-near field communication signal, so as to realize the communication between the second sub-conductive structure 1392 reuse.
  • the type of the second non-near field communication signal transmitted by the second sub-conductive structure 1392 may be the same as the type of the first non-near field communication signal transmitted by the first sub-conductive structure 1391, for example, both are cellular signals, and two non-near field communication signals are of the same type.
  • the field communication signals can also be different. Of course, only one of the sub-conducting structures can be multiplexed.
  • first sub-conductive structure and the second sub-conductive structure shown in FIG. 13 are only exemplary, wherein the first sub-conductive structure and/or the second sub-conductive structure may not be provided with the second gap.
  • the first sub-conducting structure and/or also may not be connected with a non-near field communication chip, but only for transmitting near field communication signals.
  • the molding method of the second conductive structure 130 in the above-mentioned application embodiments may be the same as that of the first conductive structure 120.
  • the second conductive structure 130 may also be a flexible printed circuit (Flexible Printed Circuit, FPC).
  • the second conductive structure 130 is formed by the metal traces on the top, and the FPC can be, for example, an FPC of a display screen, an FPC of a camera, an FPC of a motor, or the like.
  • the molding method of the second conductive structure 130 can also be the same as that of the first conductive structure 120 .
  • the second conductive structure 130 may be formed by a metal structure in an electronic device.
  • slits may be formed on the frame of the casing, metal branches may be formed through the slits, and the second conductive structures 130 may be formed by the metal branches. Therefore, by forming the second conductive structure 130 through the middle frame, it can be ensured that the near field communication antenna has sufficient clearance space in the electronic device, so as to improve the stability of the near field communication signal. Moreover, when the conductive structures at different positions of the middle frame are connected through the conductive paths on the ground plane 140, the length of the entire conductive loop can be extended, thereby increasing the effective radiation range of the entire near field communication antenna.
  • the second conductive structure 130 may be formed by a decorative ring of a camera in an electronic device.
  • one or more second gaps 134 are provided in the second conductive structure 130 , so that the magnetic field generated by the antenna assembly 100 can pass through the first gaps 121 during the process of transmitting the near field communication excitation current by the antenna assembly 100 . and the second gap 134 are transmitted to the outside world, compared to only opening the first gap 121 in the first conductive structure 120, the above application embodiment can further increase the radiation area and radiation intensity of the antenna assembly 100, and further improve the transmission of near field communication. performance of the signal.
  • the antenna assembly 100 may further include a matching circuit, which may also be referred to as a matching network, a tuning circuit, a tuning network, and the like.
  • a matching circuit which may also be referred to as a matching network, a tuning circuit, a tuning network, and the like.
  • FIG. 14 is a schematic diagram of a tenth structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 100 may further include a first matching circuit 161 and a second matching circuit.
  • the first matching circuit 161 is respectively connected with the first signal terminal of the near field communication chip 110 , the second signal terminal of the near field communication chip 110 , the feeding terminal of the first conductive structure 120 , and the first feeding terminal of the second conductive structure 130 . 131a is electrically connected.
  • the first matching circuit 161 is used to match the impedance when the conductive loop transmits the near field communication excitation current.
  • the first matching circuit 161 may include a first terminal, a second terminal, a third terminal and a fourth terminal.
  • the first terminal is electrically connected to the first signal terminal of the near field communication chip 110
  • the second terminal is electrically connected to the second signal terminal of the near field communication chip 110
  • the third terminal is electrically connected to the feeding terminal of the first conductive structure 120
  • the fourth terminal is electrically connected to the first feeding terminal 131 a of the first conductive structure 120 .
  • the first matching circuit 161 may include a circuit composed of any series or any parallel connection of capacitors, inductors, and resistors. It can also be understood that the first matching circuit 161 may further include a switch for switching any circuit formed by any series or any parallel connection of capacitors, inductors, and resistors.
  • the second matching circuit 162 is electrically connected to the first non-near field communication chip 151 and the second feeding terminal 133 of the second conductive structure 130 , and the second matching circuit 162 is used to transmit the non-near field communication excitation current to the second conductive structure 130 impedance matching.
  • the second matching circuit 162 may also include a circuit composed of any series or any parallel connection of capacitors, inductors, and resistors. It can also be understood that the second matching circuit 162 may further include a switch for switching any circuit formed by any series or any parallel connection of capacitors, inductors, and resistors. Furthermore, the structure of the second matching circuit 162 may be the same as that of the first matching circuit 161 , or may be different from that of the first matching circuit 161 .
  • the antenna assembly 100 may further include a filter circuit.
  • This filter circuit may be referred to as a filter network.
  • the antenna assembly 100 may further include a first filter circuit 171 , a second filter circuit 172 and a third filter circuit 173 .
  • the first filter circuit 171 is disposed between the first conductive structure 120 and the second conductive structure 130 .
  • the first filter circuit 171 is used to filter out the first interference signal between the first conductive structure 120 and the second conductive structure 130 .
  • the first interference signal is an electrical signal other than the near field communication excitation current provided by the near field communication chip 110 .
  • the second filter circuit 172 is disposed between the fourth end of the first matching circuit and the first feeding end 131 a of the second conductive structure 130 .
  • the second filter circuit 172 is used to filter out the second interference signal between the second signal terminal and the second conductive structure 130 .
  • the second interference signal is an electrical signal other than the near field communication excitation current provided by the near field communication chip 110 .
  • the first filter circuit 171 in this embodiment of the present application may include a circuit composed of any series or any parallel connection of capacitors, inductors, and resistors.
  • the first filter circuit 171 may be an LC filter circuit composed of capacitors and inductors or other types of circuits. filter circuit.
  • the structures of the second filter circuit 172 and the third filter circuit 173 may be the same as the structure of the first filter circuit 171, or of course they may be different, or one of the second filter circuit 172 and the third filter circuit 173 may be the same as the first filter circuit 171.
  • the structure of the filter circuit 171 is the same.
  • FIG. 15 is a first structural schematic diagram of the electronic device provided by the embodiment of the present application.
  • the electronic device 20 may include the antenna assembly 100 , the middle frame 200 , the rear cover 300 , the main circuit board 400 and the battery 500 as described above.
  • FIG. 16 is a schematic diagram of a second structure of an electronic device provided by an embodiment of the present application.
  • the middle frame 200 is the main bearing structure for the internal components of the electronic device 20 , for example, the main circuit board 400 , the battery 500 , the display screen and the like are all fixed on the middle frame 200 .
  • the first conductive structure 120 in the antenna assembly 100 is disposed on the middle frame 200 .
  • the middle frame 200 includes a frame 210 and a middle plate 220 .
  • the frame 210 is a closed frame structure surrounded by a strip frame, and the frame 210 has a certain strength to protect the display screen and other devices of the electronic device 20 .
  • the middle plate 220 is a plate-shaped structural member, and the middle plate 220 is used for placing devices such as the first conductive structure 120 , the main circuit board 400 , the battery 500 , and the display screen. It can be understood that the first conductive structure 120 may be disposed on the middle plate 220 . Wherein, the arrangement position of the first conductive structure 120 on the mid-board can be determined according to the arrangement position of other devices. For example, the first conductive structure 120 can be arranged in the gap between the main circuit board 400 and the battery 500, or can be arranged in the gap between the main circuit board 400 and the battery 500. In the gap between other connected components of the middle plate 220, or at other positions.
  • the first conductive structure 120 is a flexible circuit board
  • the flexible circuit board since the flexible circuit board has a bendable property, it can be bent and arranged in the gap between the devices according to the positional relationship of the components in the middle plate 220, so that the first conductive structure 120 has a flexible structure.
  • the layout can be more flexible.
  • Chips and/or circuits (such as matching circuits and filter circuits, etc.) in the antenna assembly 100 may be integrated on the main circuit board 400, for example, the near field communication chip 110 and the first non-near field communication chip 151 may both be integrated in the main circuit on board 400.
  • the near field communication chip 110 and the first non-near field communication chip 151 may also be provided independently, and then electrically connected to the main circuit board 400 through an electrical connection structure.
  • the antenna assembly 100 in the embodiment of the present application can increase the radiation intensity when the electronic device 20 transmits a near field communication signal by providing one or more first gaps 121 in the first conductive structure 120 .
  • electronic devices directly as multi-functional payment products, such as directly using electronic devices as point of sale (POS).
  • POS point of sale
  • the radiation intensity of the mobile terminal in the related art is relatively weak, and when it is used as a sales terminal, its response speed is relatively slow.
  • the radiation area of the embodiment of the present application is relatively large and the magnetic strength is strong. When the electronic device 20 is used as a sales terminal , its response speed is fast, which can improve the user's mobile payment experience.
  • the arrangement position of the second conductive structure 130 in the electronic device 20 may be the same as the arrangement position of the first conductive structure 120 in the electronic device 20 , for example, the second conductive structure 130 may also be arranged on the middle plate 220 . Certainly, the disposition position of the second conductive structure 130 in the electronic device 20 may be different from that of the first conductive structure 120 in the electronic device 20 .
  • the second conductive structure 130 may be disposed on the frame 210 .
  • the frame 210 can be made of a metal material. In one embodiment, the frame 210 is made of an aluminum alloy material.
  • the aluminum alloy has good electrical conductivity and low density, which is beneficial to reduce the weight of the electronic device 20, and on the other hand
  • the aluminum alloy material has good strength, which can improve the protection effect of the display screen and other devices.
  • the frame 210 may be formed with slits so that the frame 210 forms a plurality of metal branches, and one of the metal branches is used as the second conductive structure 130 . Since the frame 210 is located outside the electronic device 20 to form the appearance of the electronic device 20 , when a part of the frame 210 is used as the second conductive structure 130 that can radiate near-field communication signals, the second conductive structure 130 is affected by other components of the electronic device 20 . With less shielding, when the second conductive structure 130 transmits a near field communication excitation current, the magnetic field generated by the second conductive structure 130 has a good effect of radiating outward.
  • the electronic device 20 provided with the middle frame 200 shown in FIG. )taking the test.
  • the performance of the electronic device 20 in the embodiment of the present application for radiating near-field communication signals is improved in the 0-plane, the 1-plane inner circle, and the 1-plane outer circle.
  • the 0 plane refers to the plane where the test board is located when the test board in the detection setting is closely attached to the back cover 300 of the electronic device 20
  • the 1 plane refers to the test board in the detection device and the back cover of the electronic device 20 .
  • the plane on which the test board is located when the interval preset distance value is 300.
  • the frame 210 includes a third conductive structure 211 and a fourth conductive structure 212 , the second conductive structure 130 is located between the third conductive structure 211 and the fourth conductive structure 212 , and the third conductive structure 211 is connected to the second conductive structure 211 .
  • the conductive structure 130 is provided with a first slit 213
  • the fourth conductive structure 212 and the second conductive structure 130 are provided with a second slit 214 .
  • both the third conductive structure 211 and the fourth conductive structure 212 can be used as the antenna radiator of the electronic device 20, which can be used to transmit the same communication signal as the second conductive structure 130, and can also be used to transmit the same communication signal as the second conductive structure 212. 130 different communication signals.
  • the third conductive structure 211 may include a first part, a second part and a third part connected in sequence, the second part is bent, the first part may be located at the top of the middle frame 200 , and the second part may be located at the upper left corner of the middle frame 200 , the third part may be located on the left side of the middle frame 200 .
  • the fourth conductive structure 212 may include a fourth part, a fifth part and a sixth part connected in sequence, the fifth part is curved, the fourth part may be located at the top of the middle frame 200 and is spaced apart from the first part, and the second part may be located in the middle frame 200. In the upper right corner of the middle frame 200 , the sixth part may be located on the right side of the middle frame 200 .
  • the second conductive structure 130 may be disposed between the first part and the fourth part.
  • the arrangement of the third conductive structure 211 , the second conductive structure 130 and the fourth conductive structure 212 is not limited to this, for example, a part of the third conductive structure 211 , the second conductive structure 130 and the fourth conductive structure 212
  • a part of the middle frame 200 may also be located at the bottom end of the middle frame 200 , or on the left or right side of the middle frame 200 .
  • FIG. 17 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the present application.
  • the first straight portion 1391a of the first sub-conductive structure 1391 is disposed on the top of the middle frame 200
  • the first curved portion 1391 is disposed on the upper left corner of the middle frame 200
  • the second straight portion 1391c is disposed on the left side of the middle frame 200 .
  • the third straight portion 1392a of the second sub-conductive structure 1392 is disposed on the top of the middle frame 200
  • the second curved portion 1392 is disposed on the upper right corner of the middle frame 200
  • the fourth straight portion 1392c is disposed on the right side of the middle frame 200 .
  • the second conductive structure 130 in the embodiment of the present application may also be disposed on the frame 210 in other ways.
  • the second conductive structure 130 may be formed by printing, such as printing a printing material containing a conductive material on the frame 210.
  • the frame 210 can also be formed by means of laser, for example, the frame 210 (the frame 210 is made of non-metallic materials, such as plastic materials, etc.).
  • the arrangement position of the second conductive structure 130 in the embodiment of the present application is not limited to this, for example, the second conductive structure 130 may also be arranged on the back cover 300 , for example, the second conductive structure 130 may be arranged on the back cover The inner surface of 300 or the outer surface of the back cover 300 . It can be understood that when viewed from the outside of the electronic device 20 , the inner surface of the back cover 300 refers to the invisible side of the back cover 300 , and the outer surface of the back cover 300 refers to the visible and accessible side of the back cover 300 . As shown in FIG. 18 , FIG. 18 is a schematic diagram of a fourth structure of an electronic device provided by an embodiment of the present application.
  • the back cover 300 may be made of a metal material. When the second conductive structure 130 is formed, the back cover 300 may be cut into two metal segments. The two metal segments are spaced apart, and the spaced positions may be separated by non-metallic materials. , one of the metal segments can be used as the second conductive structure 130 (or both metal segments can be used as the second conductive structure 130, one of the metal segments can be used as the first sub-conductive structure 1391, and the other metal segment can be used as the second sub-conductive structure 1392. ). Of course, the metal back cover can also be processed to form a larger number of metal segments, which is not limited to two metal segments. Of course, the second conductive structure 130 can also be disposed on the back cover 300 in other ways.
  • the back cover 300 is made of plastic material, and the back cover 300 made of plastic material (such as the inner surface of the back cover 300 ) is printed by printing.
  • the second conductive structure 130 can be formed by means of laser or laser, or the second conductive structure 130 can be bonded to the plastic back cover in the form of bonding.
  • the electronic device 20 in the embodiment of the present application may further include components such as a camera, a sensor, and an acoustic-electrical conversion device.
  • components such as a camera, a sensor, and an acoustic-electrical conversion device.
  • reference may be made to the description in the related art. No longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例提供一种天线组件以及电子设备,天线组件包括近场通信芯片和第一导电结构,第一导电结构与近场通信芯片电连接以传输近场通信芯片所提供的近场通信激励电流,第一导电结构设置有一个或多个第一空隙,当第一导电结构传输近场通信激励电流时,第一导电结构可产生磁场且其所产生的磁场可通过第一空隙向外界辐射。

Description

天线组件以及电子设备
本申请要求于2020年08月14日提交中国专利局、申请号为202010821435.8、发明名称为“天线组件以及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种天线组件以及电子设备。
背景技术
近年来,NFC(Near Field Communication,近场通信)技术在电子产品中的应用越来越广泛。NFC天线是决定NFC系统整体性能最关键的一环,利用NFC天线产生高频磁力线,与其它设备以交流磁场方式进行耦合,从而以高速的传输安全便捷地完成数据交互。
发明内容
本申请实施例提供一种天线组件和电子设备,可以增强天线组件辐射近场通信信号的辐射强度,提升其辐射性能。
本申请实施例提供一种天线组件,包括:
近场通信芯片,用于提供近场通信激励电流;和
第一导电结构,与所述近场通信芯片电连接以传输所述近场通信激励电流,所述第一导电结构设置有一个或多个第一空隙,当所述第一导电结构传输所述近场通信激励电流时,所述第一导电结构可产生磁场且所述第一导电结构所产生的磁场可通过所述一个或多个第一空隙向外界辐射。
本申请实施例提供一种电子设备,包括天线组件、中框和设置在所述中框上的主电路板,所述天线组件为如上所述的天线组件,所述第一导电结构设置在所述中框上,所述近场通信芯片设置在所述主电路板上。
附图说明
图1为本申请实施例提供的天线组件的第一种结构示意图。
图2为图1所示天线组件中第一导电结构的第二种结构示意图。
图3为图1所示天线组件中第一导电结构的第三种结构示意图。
图4为图1所示天线组件中第一导电结构的第四种结构示意图。
图5为图1所示天线组件中第一导电结构的第五种结构示意图。
图6为本申请实施例提供的天线组件的第二种结构示意图。
图7为本申请实施例提供的天线组件的第三种结构示意图。
图8为本申请实施例提供的天线组件的第四种结构示意图。
图9为本申请实施例提供的天线组件的第五种结构示意图。
图10为本申请实施例提供的天线组件的第六种结构示意图。
图11为本申请实施例提供的天线组件的第七种结构示意图。
图12为本申请实施例提供的天线组件的第八种结构示意图。
图13为本申请实施例提供的天线组件的第九种结构示意图。
图14为本申请实施例提供的天线组件的第十种结构示意图。
图15为本申请实施例提供的电子设备的第一种结构示意图。
图16为本申请实施例提供的电子设备的第二种结构示意图。
图17为本申请实施例提供的电子设备的第三种结构示意图。
图18为本申请实施例提供的电子设备的第四种结构示意图。
具体实施方式
在实际应用中,伴随着电子技术的发展,电子设备越来越小型化、轻薄化,电子设备的内部空间有限,导致NFC天线的辐射强度受到限制。如何合理地设计电子设备的NFC天线是当前亟需解决的难题。
基于上述技术问题,本申请实施例提供一种天线组件,其中,包括:
近场通信芯片,用于提供近场通信激励电流;和
第一导电结构,与所述近场通信芯片电连接以传输所述近场通信激励电流,所述第一导电结构设置有一个或多个第一空隙,当所述第一导电结构传输所述近场通信激励电流时,所述第一导电结构可产生磁场,且所述第一导电结构所产生的磁场可通过所述一个或多个第一空隙向外界辐射。
本申请实施例通过在第一导电结构设置一个或多个第一空隙,使得第一导电结构所产生的磁场可通过第一空隙穿透第一导电结构本身,进而增大了天线组件辐射近场通信信号的辐射强度,提升其辐射性能。
本申请一种可选的实施例中,所述第一空隙的个数为多个,多个所述第一空隙分布设置。
本申请一种可选的实施例中,所述第一导电结构包括相对设置的第一侧边和第二侧边,多个所述第一空隙沿从第一侧边朝向第二侧边的方向依次排列设置。
本申请一种可选的实施例中,所述第一导电结构还包括第三侧边和第四侧边,所述第三侧边连接在第一侧边的一端和第二侧边的一端之间,所述第四侧边连接在所述第一侧边的另一端和所述第二侧边的另一端之间,且所述第一侧边和所述第二侧边的长度均大于所述第三侧边和所述第四侧边的长度。
本申请一种可选的实施例中,所述第一空隙的个数为多个,多个所述第一空隙交错设置且彼此间隔。
本申请一种可选的实施例中,所述第一导电结构在沿垂直于所述近场通信激励电流的传输方向的横截面的最小面积大于第一预设值。
本申请一种可选的实施例中,所述第一导电结构为柔性电路板上的印刷线路或金属片。
本申请一种可选的实施例中,所述第一导电结构包括第一部和第二部,所述第二部相对于所述第一部弯折设置,所述第一部和/或所述第二部均设置有一个或多个所述第一空隙。
本申请一种可选的实施例中,所述天线组件还包括第二导电结构,所述第二导电结构设置有相互间隔的第一馈电端和连接端,所述第一馈电端与所述近场通信芯片电连接,所述连接端与所述第一导电结构电连接,所述第二导电结构用于与所述第一导电结构共同传输所述近场通信激励电流。
本申请一种可选的实施例中,所述天线组件还包括接地平面,所述第二导电结构设置有第一接地端,所述第一接地端与所述接地平面电连接。
本申请一种可选的实施例中,所述近场通信芯片提供差分激励电流,所述天线组件还包括接地平面,所述接地平面包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;所述第二导电结构设置有第一接地端,所述第一导电结构设置有第二接地端,所述第一接地端与所述第一接地点电连接,所述第二接地端与所述第二接地点电连接,所述第一导电结构、所述导电路径以及所述第二导电结构共同形成供所述差分激励电流传输的导电回路。
本申请一种可选的实施例中,所述天线组件还包括接地平面,所述第二导电结构包括:
第一子导电结构,所述第一子导电结构与所述近场通信芯片电连接,且所述第一子导电结构与所述接地平面电连接;第二子导电结构,与所述第一子导电结构间隔设置,所述第二子导电结构与所述第一导电结构电连接,且所述第二子导电结构与所述接地平面电连接。
本申请一种可选的实施例中,所述第二导电结构设置有一个或多个第二空隙,当所述第二导电结构传输所述近场通信激励电流时,所述第二导电结构可产生磁场,且所述第二导电结构所产生的磁场可通过所述一个或多个第二空隙向外界辐射。
本申请一种可选的实施例中,所述第一导电结构和所述第二导电结构在传输所述近场通信激励电流时,所述第一导电结构产生第一近场通信辐射场,所述第二导电结构产生第二近场通信辐射场,所述第一近场通信辐射场和所述第二近场通信辐射场至少部分重叠。
本申请一种可选的实施例中,所述天线组件还包括第一非近场通信芯片,所述第一非近场通信芯片用于提供第一非近场通信激励电流;所述第二导电结构还设置有第二馈电端,所述第二馈电端与所述第一馈电端间隔设置,所述第二馈电端与所述第一非近场通信芯片电连接以传输所述非近场通信激励电流。
本申请一种可选的实施例中,所述天线组件还包括第一非近场通信芯片和第二非近场通信芯片,所述第一非近场通信芯片用于提供第一非近场通信激励电流,所述第二非近场通信芯片用于提供第二非近场通信激励电流;所述第一子导电结构与所述第一非近场通信芯片电连接,所述第一子导电结构用于传输所述第一非近场通信激励电流;所述第二子导电结构与所述第二非近场通信芯片电连接,所述第二子导电结构用于传输所述第二非近场通信激励电流。
本申请实施例还提供一种电子设备,其中,包括天线组件、中框和设置在所述中框上的主电路板,所述天线组件为如上任一个申请实施例所述的天线组件,所述第一导电结构设置在所述中框上,所述近场通信芯片设置在所述主电路板上。
本申请实施例还提供一种电子设备,其中,包括:
天线组件,所述天线组件为权利要求10至16任一项所述的天线组件;和
中框和与所述中框连接的后盖,所述第一导电结构设置在所述中框的中板,所述第二导电结构设置在所述中框的边框上或所述后盖上。
本申请一种可选的实施例中,所述中框包括第三导电结构和第四导电结构,所述第二导电结构位于所述第三导电结构和所述第四导电结构之间,且所述第三导电结构与所述第二导电结构之间设置有第一缝隙,所述第四导电结构与所述第二导电结构之间设置有第二缝隙。
本申请一种可选的实施例中,所述第二导电结构、所述第三导电结构的一部分和所述第四导电结构的一部分和均位于所述中框的同一端。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种天线组件,该天线组件可以应用于电子设备,电子设备可以为智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
请参考图1,图1为本申请实施例提供的天线组件的第一种结构示意图,天线组件100可以包括近场通信芯片(NCF IC)110和第一导电结构120。
其中,近场通信芯片110可以用于提供近场通信信号,也即,近场通信芯片110用于提供近场通信激励电流。其中,近场通信激励电流可以为差分激励电流,差分激励电流可以包括两个电流信号,这两个电流信号的振幅相同,并且相位相反,或者理解为这两个电流信号的相位相差180度。此外,差分激励电流可以为平衡信号。可以理解的,模拟信号在传输过程中,如果被直接传送就是非平衡信号;如果把原始的模拟信号反相,然后同时传送反相的模拟信号和原始的模拟信号,反相的模拟信号和原始的模拟信号就叫做平衡信号。
需要说明的是,近场通信激励电流也可以为非平衡信号,比如在电路中增设转换器(比如巴伦),转换器可以将平衡信号转换为非平衡信号。非平衡信号为单端信号,此时可以将转换后的单端信号与第一导电结构120电连接,并将近场通信芯片的另一个信号端接地,以实现非平衡信号的传输。
第一导电结构120可作为电子设备的天线,用于接收或发射多个频段的通信信号。第一导电结构120可以成型为多种形状以作为各种设计形态的天线,诸如第一导电结构120可以成型作为环形天线、贴片天线、倒F形天线、封闭式和开放式隙缝天线、平面倒F形天线、螺旋形天线、带状天线、单极天线、偶极天线中的一种或多种。
第一导电结构120与近场通信芯片110连接,以传输近场通信芯片110所提供的近场通信激励电流。第一导电结构120设置有一个或多个第一空隙121,比如第一导电结构120可以设置有一个第一空隙121、两个第一空隙121、三个第一空隙121、五个第一空隙121或者其他数量的第一空隙121。当第一导电结构120传输近场通信激励电流时,第一导电结构120在通电状态下可产生磁场,第一导电结构120所产生的磁场可以通过第一空隙121向外界辐射,进而拓宽天线组件100传输近场通信信号时的辐射面积,并提升天线组件传输近场通信信号时的辐射强度。
相关技术中,通常是采用增加传输近场通信信号的线圈的圈数来增加磁场强度,然而这样会增加天线组件对电子设备的占用空间。而本申请实施例可以在不额外增加天线组件100对电子设备的占用空间的情况下,增加天线组件100传输近场通信信号的磁场强度。
本申请实施例的第一空隙121的数量可以为多个,比如第一空隙121的数量可以为三个,三个第一空隙121阵列分布设置。比如,请继续参阅图1,第一导电结构120可以为矩形板状结构,第一导电结构120可以包括第一侧边122、第二侧边123、第三侧边124和第四侧边125,第一侧边122和第二侧边123相对设置,第三侧边124与第四侧边125相对设置,且第三侧边124连接在第一侧边122的一端和第二侧边123的一端之间,第四侧边125连接在第一侧边122的另一端和第二侧边123的另一端之间,三个第一空隙121可以沿第一导体结构120的长度方向,即第一侧边122朝第二侧边123的方向依次排列设置。可以理解的是,三个第一空隙121可以沿第一导电结构120的宽度方向,即第三侧边124朝第四侧边125的方向依次排列设置。
需要说明的是,在本申请实施例的描述中,诸如“第一”、“第二”、“第三”、“第四”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,比如第一侧边122也可以为第一导电结构120中位于右边的侧边,第三侧边124也可以为第一导电结构120位于下方的侧边。
可以理解的是,图1所示的近场通信芯片110和第一导电结构120在电子设备中的位置关系仅为示例性的,并不具有限定意义,其在电子设备中的位置可以根据实际需求进行调整。
本申请实施例的多个第一空隙121可以沿第一导电结构120的长度方向依次排列设置。比如三个第一空隙121也可以沿第三侧边124朝第四侧边125的方向依次排列设置,如图2所示,图2为图1所示天线组件中第一导电结构的第二种结构示意图。
在其他一些实施例中,多个第一空隙121也可以沿第一导电结构120的其他方向依次排列设置,比如可以沿第一导电结构120的对角线方向,或者是其他任意角度的方向,比如60°,或者75°,或者120°等。
如图1所示,每一个第一空隙121靠近第三侧边124的边缘相互齐平,且每一个第一空隙121与第三侧边124均间隔第一预设距离d1设置,第一预设距离为预先设置的距离。第一预设距离d1为相对靠近第三侧边124但又不穿透第三侧边124的距离,比如第一预设距离d1可以为0.5mm,或者1mm,或者2mm,或者其他数值的距离。每一个第一空隙121靠近第四侧边125的边缘相互齐平,且每一个第一空隙121与第四侧边125均间隔第二预设距离d2设置,第二预设距离d2为预先设置的距离。第二预设距离d2为相对靠近第四侧边125但又不穿透第四侧边125的距离,比如第二预设距离d2可以为0.5mm,或者1mm,或者2mm,或者其他数值的距离。第二预设距离d2可以与第一预设距离相等,也可以与第一预设距离d1不相等。可以理解的是,在第一导电结构120上开设第一空隙121时,在第一侧边122朝第二侧边123的方向可以仅开设一行第一空隙121,且第一空隙121的两端尽可能地靠近第三侧边124和第四侧边125,这样可以开设尽可能少的第一空隙121而增加天线组件100传输近场通信信号时的辐射强度。
请参阅图3,图3为图1所示天线组件中第一导电结构的第三种结构示意图。本申请实施例的多个第一空隙121也可以交错设置。比如说天线组件100可以包括七个第一空隙121,七个第一空隙121排列成三列,第一列为两个第一空隙121,第二列为三个第一空隙121,第一列的第一个第一空隙121的一部分(或者全部)位于第二列的前两个第一空隙121之间的,第一列的第二个第一空隙121的一部分(或者全部)位于第二列的后两个第一空隙121之间,第三列为两个第一空隙121,第三列的第一个第一空隙121的一部分(或者全部)位于第二列的前两个第一空隙121之间。第三列的第二个第一空隙121的一部分(或者全部)位于第二列的后两个第一空隙121之间。
需要说明的是,本申请实施例的多个第一空隙121也可以一部分为阵列分布设置,一部分为交错设置,比如图4所示,图4为图1所示天线组件中第一导电结构的第四种结构示意图。本申请实施例的第一导电结构120可以包括五个第一空隙121,其中第一列为一个第一空隙121,第二列为一个第一空隙121,且位于第二列的第一空隙121与位于第一列的第一空隙121呈阵列分布设置,第三列为两个第一空隙121,第四列为一个第一空隙121,且位于第四列的第一空隙121设置在第三列的两个第一空隙121之间。
本申请实施例中,多个第一空隙121的形状可以相同,比如多个第一空隙121的正投影形状均为长方形(比如图1所示),或者正方形,或者三角形等。多个第一空隙121的形状也可以不同,或者部分不同,比如部分第一空隙121的正投影形状为长方形,部分第一空隙121的正投影形状为三角形,比如图5所示,图5为图1所示天线组件中第一导电结构的第五种结构示意图。
其中,多个第一空隙121的尺寸可以相同,比如多个第一空隙121均为长度为m,宽度为n的长方形(比如图1所示)。当然,多个第一空隙121的尺寸也可以不相同,或者部分不相同,比如部分第一空隙121为长度为m,宽度为n的长方形,部分第一空隙121为长度为a,宽度为b的长方形,其中a的数值不等于m,b的数值不等于n(比如图3所示)。当然,多个第一空隙121的形状和尺寸可以都相同,也可以都不相同,或者部分不相同。
根据电阻公式R1=ρL/S1,其中ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S1表示第一导电结构120的横截面积,可以知道当第一导电结构120的横截面积变小时,第一导电结构120的电阻值会变大,此时会影响天线组件100的信号传输性能。由此,本申请实施例的第一导电结构120满足:在沿垂直于近场通信激励电流的传输方向的横截面的最小面积大于第一预设值,使得第一导电结构120的电阻值满足预设要求,进而使得天线组件100的信号传输性能不受影响。从图1中可见,第一导电结构120传输近场通信激励电流的方向为从第一侧边122至第二侧边123的方向或者是第二侧边123至第一侧边122的方向,垂直于近场通信激励电流的传导方向的横截面为如图1所示的沿P1-P1方向的横截面,或者说沿第一导电结构120的宽度方向的横截面。第一导电结构120沿P1-P1方向的横截面的面积为减去三个第一空隙121后的面积,该面积大于第一预设值,第一预设值为预先设置的数值,该第一预设值为可以使得第一导电结构120的电阻值满足预设要求的数值。
当多个第一空隙121并非如图1所示的并排设置的时候,比如如图3所示,多个第一空隙121为交错设置时,第一导电结构120沿垂直于近场通信激励电流的传输方向的横截面的最小面积为第一空隙121的占用面积最大的部分,比如当P2-P2位置处的第一空隙121的占用面积最大时,第一导电结构120沿垂直于近场通信激励电流的传输方向的横截面的最小面积则为沿P2-P2的横截面的面积。可以理解的是,第一导电结构120在沿第一导电结构120的宽度方向上具有多个横截面,可以对宽度方向上的多个横截面的面积进行计算,从中选取出面积最小的一个,并且使得该最小横截面的面积大于第一预设值。
需要说明的是,图1至图5的第一导电结构120的形状仅为示例性的,第一导电结构120并不限于矩形板状结构,第一导电结构120也可以为其他形状,比如第一导电结构120的正投影形状可以为类“L”字型形状,比如,如图6所示,图6为本申请实施例提供的天线组件的第二种结构示意图。第一导电结构120可以包括第一部126和第二部127,第二部127相对于第一部126弯折设置以形成类“L”字型形状,类“L”字型形状指的是形状大致像“L”字型的形状。图6所示的第一导电结构120可以包括第一侧边122、第二侧边123、第三侧边124和第四侧边125,第一侧边122和第二侧边123相对设置,第三侧边124连接在第一侧边122的一端和第二侧边123的一端之间,第四侧边125连接在第一侧边122的另一端和第二侧边123的另一端之间,每一第一空隙121靠近第三侧边124的边缘相互齐平,且每一第一空隙121靠近第三侧边124的边缘与第三侧边124的距离为第一预设距离d1,每一第一空隙121靠近第四侧边125的边缘相互齐平,且每一第一空隙121靠近第四侧边125的边缘与第四侧边125的距离为第二预设距离d2,具体可参见如图1所示中关于第一预设距离d1和第二预设距离d2的相关描述,在此不再赘述。
其中,第一部126和第二部127可以均设置有多个第一空隙121,位于第一部126的第一空隙121a数量与位于第二部127的第一空隙121b数量相同,比如均为三个,而且位于第一部126的一个第一空隙121a与位于第二部127的一个第一空隙121b相互连通,比如如图6所示,第一部126上的第一空隙 121a与第二部上的对应位置的第一空隙121b连通,第一列的第一空隙121a与第一列的第一空隙121b连通,第二列的第一空隙121a与第二列的第一空隙121b连通,第三列的第一空隙121a与第三列的第一空隙121b连通。当然第一部126上的第一空隙121a也可以与第二部127上的其他位置的第一空隙121b连通,比如第一列的第一空隙121a与第二列的第一空隙121b连通。
需要说明的是,第一部126的第一空隙121a也可以不与第二部127的第一空隙121b连通,或者部分连通,部分不连通。
其中,第一导电结构120为柔性电路板(Flexible Printed Circuit,FPC)上的印刷线路。可以理解的是,本申请实施例可以采用柔性电路板作为传输近场通信信号的辐射体。相关技术中,柔性电路板通常为封闭的薄片状结构,或者说柔性电路板通常没有设置通孔或者空隙,当柔性电路板通电时,由于柔性电路板上的走线通常为金属,因此其所产生的磁场无法穿透柔性电路板上的走线本身(或者说柔性电路板中的走线位置无磁力线分布,其对磁通量无贡献),其所产生的磁场只能在柔性电路板的边缘两侧向外界辐射,柔性电路板的辐射面积以及辐射强度有限。而本申请实施例通过在柔性电路板的印刷线路上设置有一个或多个第一空隙121,使得柔性电路板所产生的磁场可通过第一空隙121穿透柔性电路板的印刷线路本身,进而使得印制线路本身有磁力线分布,对磁通量有贡献。相对于相关技术,本申请实施例可以增加柔性电路板所辐射的磁场的总磁通量,有效地拓宽了天线组件100传输近场通信信号的辐射面积,并提升了天线组件100传输近场通信信号的辐射面积,提升其辐射性能。
本申请实施例的第一导电结构120也可以为金属片,比如第一导电结构120也可以为钢片,钢片设置有一个或多个第一空隙121,当钢片处于通电状态下,或者说在传输近场通信激励电流时,钢片可产生磁场,且钢片所产生的磁场可通过第一空隙121向外界辐射。需要说明的是,第一导电结构120也可以为除柔性电路板的印刷线路和金属片外的其他可作为辐射体的物体。
如图7所示,图7为本申请实施例提供的天线组件的第三种结构示意图。本申请实施例的天线组件100还可以包括第二导电结构130,第二导电结构130设置有第一馈电端131a和连接端131b,连接端131b和第一馈电端131a间隔设置,第一馈电端131a与近场通信芯片110电连接,连接端131b与第一导电结构120电连接,第二导电结构130用于与第一导电结构120共同传输近场通信激励电流。其中,近场通信芯片110可以用于提供差分激励电流,比如近场通信芯片110包括第一差分信号端111和第二差分信号端112。例如,第一差分信号端111可以为近场通信芯片110的正端口,第二差分信号端112可以为近场通信芯片110的负端口。第一差分信号端111和第二差分信号端112用于提供差分激励电流。例如,近场通信芯片110提供的差分激励电流可以经由第一差分信号端111输出到天线组件100,并经由第二差分信号端112回流到近场通信芯片110中,从而形成电流回路。可以理解的是,近场通信芯片110、第一导电结构120和第二导电结构130可以形成供近场通信激励电流传输的导电回路。也即,所述近场通信激励电流从近场通信芯片110的第一差分信号端111输出,随后被馈入第一导电结构120,经由所述第一导电结构120传输到所述第二导电结构130,随后通过第二导电结构130回流到近场通信芯片110的第二差分信号端112,从而形成完整的导电回路。
可以理解的,所述导电回路在传输所述近场通信激励电流时,第一导电结构120和第二导电结构130可以共同产生交变磁场,从而向外辐射近场通信信号,以实现所述电子设备20的近场通信。在向外辐射近场通信信号的过程中,部分近场通信信号可以通过第一导电结构120中的第一空隙121而向外 界辐射,相比于未设置第一空隙121,本申请实施例可以增大天线组件100辐射近场通信信号的辐射强度,进而提升天线组件100的信号传输性能。
需要说明的是,近场通信芯片110、第一导电结构120、第二导电结构130和接地平面140的位置关系并不限于此,比如如图8所示,图8为本申请实施例提供的天线组件的第四种结构示意图,第一导电结构120也可以位于第二导电结构130的另一侧,比如第一导电结构120可以位于第二导电结构130的左侧,此时第一导电结构120中第一部126与第二部127的弯折方向与图6所示中的第一导电结构120中第一部126与第二部127的弯折方向相反。
可以理解的是,本申请实施例的第一导电结构120可以根据电子设备20的内部空间布设,只要近场通信芯片110、第一导电结构120和第二导电结构130可以构成导电回路即可。
还需要说明的是,近场通信芯片110、第一导电结构120和第二导电结构130之间的连接关系并不限于此,比如如图9和图10所示,图9为本申请实施例提供的天线组件的第五种结构示意图,图10为本申请实施例提供的天线组件的第六种结构示意图。
天线组件100还包括接地平面140,接地平面140用于形成公共地。其中,接地平面140可以通过电子设备中的导体、印刷线路或者金属印刷层等形成。例如,接地平面140可以形成在电子设备的主电路板上。需要说明的是接地平面140还可以形成在电子设备的壳体上,例如可以通过壳体的中框基板来形成接地平面140,或者也可以通过壳体的电池盖(或者说后盖)来形成接地平面140。
第二导电结构130设置有第一接地端132,第一接地端132与接地平面140电连接,以实现第二导电结构130的接地,进一步提升第二导电结构130传输近场通信信号的性能。
接地平面140包括间隔设置的第一接地点141和第二接地点142。第一接地点141、第二接地点142例如可以为接地平面140的端部,或者也可以为接地平面140上的凸起结构,或者也可以为接地平面140上形成的焊盘,或者还可以为接地平面140上一定面积的区域,等等。
其中,接地平面140在第一接地点141和第二接地点142之间形成导电路径,导电路径可以用于传导电流。也即,当在第一接地点141与第二接地点142施加电压信号时,第一接地点141与第二接地点142之间可以产生电流,从而形成电流回路。可以理解的,当近场通信芯片110提供差分激励电流时,第一接地点141和第二接地点142之间的导电路径可以用于传输近场通信芯片所提供的近场激励电流信号。
其中,第一导电结构120与第一差分信号端111电连接,从而实现第一差分信号端111向第一导电结构120馈电。例如,近场通信芯片110提供的差分激励电流可以经由第一差分信号端111传输到第一导电结构120,以实现向第一导电结构120馈电。第一导电结构120设置有第二接地端128,第二接地端128与接地平面140的第一接地点141电连接,以实现第一导电结构120的接地。
第二导电结构130的第一馈电端131a与第二差分信号端112电连接,从而实现第二差分信号端112向第一馈电端131a馈电。例如,近场通信芯片110提供的差分激励电流可以经由第一馈电端131a传输到第二差分信号端112,以实现向第二导电结构130馈电。第二导电结构130的第一接地端132与接地平面140的第二接地点142电连接,从而实现所述第二导电结构的回地。
其中,接地平面140在第一接地点141和第二接地点142之间形成导电路径,导电路径可以用于传导电流。也即,当在第一接地端132和第二接地端128施加电压信号时,第一接地端132和第二接地端 128之间可以产生电流,从而形成导电通路。可以理解的,当近场通信芯片110提供近场通信激励电流时,第一接地端132和第二接地端128之间的导电路径可以用于传输差分激励电流。
天线组件100传输近场通信芯片110提供的差分激励电流时,第一导电结构120、接地平面140上的导电路径以及第二导电结构130共同形成供差分激励电流传输的导电回路。也即,所述近场通信芯片110从近场通信芯片110的第一差分信号端111输出,随后被馈入第一导电结构120,经由所述第一导电结构120传输到所述接地平面140上的导电路径,随后经由所述导电路径传输到第二导电结构130,最终通过第二导电结构130回流到近场通信芯片110的第二差分信号端112,从而形成完整的导电回路。
可以理解的,所述导电回路在传输所述近场通信激励电流时,第一导电结构120、接地平面140上的导电路径、第二导电结构130可以共同产生交变磁场,从而向外辐射近场通信信号,以实现所述电子设备的近场通信。
本申请实施例的天线组件100在传输近场通信激励电流时,第一导电结构120可产生第一近场通信辐射场。第一近场通信辐射场可以覆盖电子设备周围一定空间的区域。第二导电结构130可产生第二近场通信辐射场。第二近场通信辐射场也可以覆盖电子设备周围一定空间的区域。其中第二近场通信辐射场与第一近场通信辐射场至少部分重叠,从而既可以增强电子设备周围的近场通信辐射场的区域,又可以增强重叠区域的场强。因此,既可以增加电子设备的近场通信天线的有效读写(刷卡)面积,又可以提高电子设备的近场通信天线在读写(刷卡)时的稳定性。
此外,天线组件100在传输近场通信激励电流时,接地平面140可以产生第三近场通信辐射场。第三近场通信辐射场也可以覆盖电子设备周围一定空间的区域。其中,第三近场通信辐射场与第一近场通信辐射场至少部分重叠,并且第三近场通信辐射场与第二近场通信辐射场至少部分重叠。因此,可以进一步增强电子设备周围的近场通信辐射场的区域,并且能够增强重叠区域的场强。
例如,在实际应用中,当近场通信接收机(例如地铁刷卡机)靠近第一导电结构120的位置读取近场通信信号时,第一导电结构120所形成的第一近场通信辐射场作为主辐射场,第二导电结构130所形成的第二近场通信辐射场、接地平面140所形成的第三近场通信辐射场都可以对所述主辐射场进行补偿,从而可以对所述主辐射场中场强较弱的位置进行补偿,以增强所述主辐射场整个区域的场强。同样的,当近场通信接收机靠近第二导电结构130的位置读取近场通信信号时,第二导电结构130所形成的第二近场通信辐射场作为主辐射场,所述第一近场通信辐射场、所述第三近场通信辐射场都可以对所述主辐射场进行补偿。
因此,本申请的天线组件100可以保证在电子设备中,第一导电结构120、第二导电结构130、接地平面140所形成的近场通信辐射场的任意位置都可以实现近场通信信号的收发,从而实现本申请实施例的电子设备与其它电子设备之间的近场通信。
本申请实施例中的第二导电结构130除了形成的第二近场通信辐射场并传输近场通信信号外,本申请实施例的第二导电结构130还可以用于传输非近场通信信号。示例性地,请参考图11,图11为本申请实施例提供的天线组件的第七种结构示意图。天线组件100还包括第一非近场通信芯片151,该第一非近场通信芯片151可以是IC芯片,该第一非近场通信芯片151可以用于提供第一非近场通信激励电流。第二导电结构130还设置有第二馈电端133,第二馈电端133与第一馈电端131a间隔设置,第二馈电端133可以与第一非近场通信芯片151电连接,从而,第二导电结构130也可以用于传输第一非近 场通信激励电流。可以理解的是,第一非近场通信芯片151提供的第一非近场通信激励电流从第二馈电端133馈入,并从第一接地端132回地,以实现第一非近场通信激励电流的传输。
其中,第一非近场通信激励电流可以是非平衡信号,包括但不限于蜂窝网络信号、无线保真(Wireless Fidelity,Wi-Fi)信号、全球定位系统(Global Positioning System,GPS)信号、蓝牙(Bluetooth,BT)信号。相应的,第一非近场通信芯片151可以为蜂窝通信芯片,用于提供蜂窝网络信号;第一非近场通信芯片151可以为Wi-Fi芯片,用于提供Wi-Fi信号;第一非近场通信芯片151可以为GPS芯片,用于提供GPS信号;第一非近场通信芯片151还可以为BT芯片,用于提供所述BT信号。
可以理解的是,第二馈电端133分别与第一馈电端131a、连接端131b、第一接地端132间隔设置。第二馈电端133与第一非近场通信芯片151电连接,第一非近场通信芯片151可以通过第二馈电端133向第二导电结构130馈入第一非近场通信激励电流,使得第二导电结构130还可以用于传输第一非近场通信激励电流。
本申请实施例的天线组件100,第二导电结构130既可以用于传输近场通信芯片110提供的近场通信激励电流信号,又可以用于传输第一非近场通信芯片151提供的第一非近场通信激励电流,从而可以实现第二导电结构130的复用,能够减少天线组件100中用于传输无线信号的天线的数量,从而可以节省天线组件100对电子设备的占用空间。
其中,需要说明的是,NFC信号的频率通常为13.56MHz(兆赫兹),蜂窝网络信号的频率通常在0MHz以上,Wi-Fi信号的频率通常为2.4GHz(吉赫兹)或5GHz,GPS信号的频率通常包括1.575GHz、1.7GHz、1.381GHz、1.842GHz等多个频段,BT信号的频率通常为2.4GHz。因此,相对于蜂窝网络信号、Wi-Fi信号、GPS信号、BT信号而言,NFC信号为低频信号,而蜂窝网络信号、Wi-Fi信号、GPS信号、BT信号均为高频信号。或者也可以理解为,NFC信号为低频信号,非近场通信激励电流为高频信号,NFC信号的频率小于非近场通信激励信号的频率。
此外,需要说明的是,在传输无线信号时,无线信号的频率越低,所需的辐射体长度越长;而无线信号的频率越高,所需的辐射体长度越短。也即,传输NFC信号所需的辐射体的长度大于传输非近场通信激励电流所需的辐射体长度。
由此,为了减小第二导电结构130的整体长度,可以将第二馈电端133与第一馈电端131a设置在所述第一接地端132的不同侧。也即,第一接地端132位于第二馈电端133和第一馈电端131a之间。相较于第二馈电端133与第一馈电端131a位于第一接地端132的同一侧而言,第二馈电端133与第一馈电端131a位于第一接地端132的不同侧可以复用第一馈电端131a与第一接地端132之间的部分,从而可以减小第二导电结构130的整体长度。
请参阅图12,图12为本申请实施例提供的天线组件的第八种结构示意图。第二导电结构130设置有一个或多个第二空隙134,比如第二导电结构130可以设置有一个第二空隙134、两个第二空隙134、三个第二空隙134、五个第二空隙134或者其他数量的第二空隙134。当第二导电结构130传输近场通信激励电流时,第二导电结构130在通电状态下可产生磁场,第二导电结构130所产生的磁场可以通过第二空隙134向外界辐射。
本申请实施例的第二空隙134的数量可以为多个,比如第二空隙134的数量可以为三个,三个第二 空隙134阵列分布设置。比如,请继续参阅图11,第二导电结构130可以为矩形板状结构,第二导电结构130可以包括第五侧边135、第六侧边136、第七侧边137和第八侧边138,第五侧边135和第六侧边136相对设置,第七侧边137与第八侧边138相对设置,第七侧边137连接在第五侧边135的一端和第六侧边136的一端之间,第八侧边138连接在第五侧边135的另一端和第六侧边136的另一端之间三个第二空隙134可以沿第五侧边135朝第六侧边136的方向依次排列设置。可以理解的是,三个第二空隙134可以沿第二导电结构130的宽度方向依次排列设置。
需要说明的是,在本申请实施例的描述中,诸如“第五”、“第六”、“第七”、“第八”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,比如第五侧边135也可以为第二导电结构130中位于右边的侧边,第七侧边137也可以为第二导电结构130位于下方的侧边。
本申请实施例的多个第二空隙134可以沿第二导电结构130的长度方向依次排列设置。比如三个第二空隙134也可以沿第七侧边137朝第八侧边138的方向依次排列设置。
在其他一些实施例中,多个第二空隙134也可以沿第二导电结构130的其他方向依次排列设置,比如可以沿第二导电结构130的对角线方向,或者是其他任意角度的方向,比如60°,或者75°,或者120°等。
本申请实施例的多个第二空隙134也可以交错设置,具体可参见第一导电结构120的相关描述,在此不再赘述。
需要说明的是,本申请实施例的多个第二空隙134也可以一部分为阵列分布设置,一部分为交错设置,具体可参见第一导电结构120的相关描述,在此不再赘述。
本申请实施例中,多个第二空隙134的形状可以相同,比如多个第二空隙134的正投影形状均为长方形(比如图12所示),或者正方形,或者三角形等。多个第二空隙134的形状也可以不同,或者部分不同,比如部分第二空隙134的正投影形状为长方形,部分第二空隙134的正投影形状为三角形。
其中,多个第二空隙134的尺寸可以相同。当然,多个第二空隙134的尺寸也可以不相同,或者部分不相同。多个第二空隙134的形状和尺寸可以都相同,也可以都不相同,或者部分不相同,具体可参见第一导电结构120的相关描述。
根据电阻公式R1=ρL/S2,其中ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S2表示第二导电结构130的横截面积,可以知道当第二导电结构130的横截面积变小时,第二导电结构130的电阻值会变大,此时会影响天线组件100的信号传输性能。由此,本申请实施例的第二导电结构130满足:在沿近场通信激励电流的传输方向的横截面的最小面积大于第二预设值,使得第二导电结构130的电阻值满足预设要求,进而使得天线组件100的信号传输性能不受影响。从图12可以看出,本申请实施例中的第二导电结构130传输近场通信激励电流时的传输方向可以为从第五侧边135至第六侧边136的方向,或者是从第六侧边136至第五侧边135的方向,垂直于近场通信激励电流的传导方向的横截面为如图11所示的沿P3-P3方向的横截面,或者说沿第一导电结构120的宽度方向的横截面。第二导电结构130沿P3-P3方向的横截面的面积为减去两个第二空隙134后的面积,该面积大于第二预设值,第二预设值为预先设置的数值,该第二预设值为可以使得第二导电结构130的电阻值满足预设要求的数值。当多个第二空隙134并非如图12所示的并排设置的时候,比如多个第二空隙134为交错设 置时,第二导电结构130沿垂直于近场通信激励电流的传输方向的横截面的最小面积为第二空隙134的占用面积最大的部分,具体可参见第一导电结构120的相关描述。可以理解的是,第二导电结构130在沿第二导电结构130的宽度方向上具有多个横截面,可以对宽度方向上的多个横截面的面积进行计算,从中选取出面积最小的一个,并且使得该最小横截面的面积大于第二预设值。
本申请实施例中的第二空隙134的形状大小可以与第一空隙121的形状大小相同,也可以不相同。
本申请实施例中的第二导电结构130的结构可以与第一导电结构120的结构相同,比如两者均为矩形板状结构,其尺寸也可以都相同。当然两者的结构也可以不相同,比如形状不同和/或尺寸不同。
需要说明的是,图12所示的第二导电结构130的形状仅为示例性的,第二导电结构130并不限于矩形板状结构,第二导电结构130也可以为其他形状。例如,本申请实施例的第一导电结构120也可以包括多个子导电结构。示例性地,如图13所示,图13为本申请实施例提供的天线组件的第九种结构示意图。第二导电结构130可以包括第一子导电结构1391和第二子导电结构1392,第一子导电结构1391和第二子导电结构1392间隔设置。
其中,近场通信芯片110的第一信号端与第一导电结构120的馈电端电连接,近场通信芯片110的第二信号端与第一子导电结构1391的馈电端电连接,第一子导电结构1391的接地端与接地平面140电连接,第二子导电结构1392的馈电端与第一导电结构120电连接,第二子导电结构1392的接地端与接地平面电连接。
天线组件100传输近场通信芯片110提供的近场通信激励电流时,第一导电结构120、第一子导电结构1391、接地平面140上的导电路径以及第二子导电结构1392共同形成供近场通信激励电流传输的导电回路。也即,所述近场通信芯片110从近场通信芯片110的一个信号端输出,随后被馈入第一导电结构120,第一导电结构120传输到第二子导电结构1392并经由第二子导电结构1392传输至接地平面140上的导电路径,随后经由接地平面140上导电路径传输到第一子导电结构1391,最终通过第一子导电结构1391回流到近场通信芯片110的另一个信号端,从而形成完整的导电回路。
可以理解的,所述导电回路在传输所述近场通信激励电流时,第一导电结构120、接地平面140上的导电路径、第一子导电结构1391和第二子导电结构可以共同产生交变磁场,从而向外辐射近场通信信号,以实现所述电子设备的近场通信。
请继续参阅图13,第一子导电结构1391可以包括依次连接的第一平直部1391a、第一弯曲部1391b和第二平直部1391c,第一弯曲部1391b相对于第一平直部1391a和第二平直部1391c均弯曲设置。需要说明的是,第一子导电结构1391的结构并不限于此,第一子导电结构1391也可以为其他形状,比如可以根据电子设备的形态具体设置第一子导电结构,本申请实施例对此并不予以限定。
第二子导电结构1392的结构可以与第一子导电结构1391的结构相同,比如第二子导电结构1392可以包括依次连接的第三平直部1392a、第二弯曲部1392b和第四平直部1392c,第二弯曲部1392b相对于第三平直部1392a和第四平直部1392c均弯曲设置。第二子导电结构1392的结构也可以与第一子导电结构1391的结构不同,比如第二子导电结构1392可以为矩形结构。
其中,第一子导电结构1391可以与第一非近场通信芯片151电连接,使得第一子导电结构1391可以传输近场通信信号和第一非近场通信信号,实现对第一子导电结构1391的复用。
天线组件100还可以包括第二非近场通信芯片152,第二非近场通信芯片152可以用于提供第二非 近场通信激励电流。第二子导电结构1392可以与第二非近场通信芯片152电连接,使得第二子导电结构1392可以传输近场通信信号和第二非近场通信信号,实现对第二子导电结构1392的复用。第二子导电结构1392所传输的第二非近场通信信号的类型可以与第一子导电结构1391所传输的第一非近场通信信号的类型相同,比如均为蜂窝信号,两个非近场通信信号也可以不同。当然,也可以仅对其中一个子导电结构进行复用。
需要说明的是,图13所示的第一子导电结构和第二子导电结构仅为示例性的,其中第一子导电结构和/或第二子导电结构也可以不设置有第二空隙。第一子导电结构和/或也可以不连接有非近场通信芯片,而仅用于传输近场通信信号。
上述申请实施例的第二导电结构130的成型方式可以与第一导电结构120相同,比如第二导电结构130也可以为柔性电路板(Flexible Printed Circuit,FPC),比如可以通过电子设备中的FPC上的金属走线来形成第二导电结构130,FPC例如可以为显示屏的FPC、摄像头的FPC、马达的FPC等结构。当然,第二导电结构130的成型方式也可以与第一导电结构120相同。比如,第二导电结构130可以通过电子设备中的金属结构形成。例如,可以在壳体的边框上开设缝隙,通过缝隙形成金属枝节,并由金属枝节形成第二导电结构130。从而,通过中框形成第二导电结构130,可以保证近场通信天线在电子设备中有足够的净空空间,以提高近场通信信号的稳定性。并且,通过接地平面140上的导电路径连接中框不同位置上的导电结构时,可以延长整个导电回路的长度,从而提升整个近场通信天线的有效辐射范围。再例如,可以通过电子设备中的摄像头的装饰圈形成第二导电结构130。
上述申请实施例通过在第二导电结构130设置有一个或多个第二空隙134,使得天线组件100在传输近场通信激励电流的过程中,天线组件100所产生的磁场可通过第一空隙121和第二空隙134向外界传输,相比于仅在第一导电结构120中开设第一空隙121,上述申请实施例可以进一步增加天线组件100的辐射面积和辐射强度,进一步提升其传输近场通信信号的性能。
其中,为了进一步提高天线组件100的辐射性能,天线组件100还可以包括匹配电路,该匹配电路也可以称为匹配网络、调谐电路、调谐网络等。示例性的,请参考图14,图14为本申请实施例提供的天线组件的第十种结构示意图。天线组件100还可以包括第一匹配电路161和第二匹配电路。
第一匹配电路161分别与近场通信芯片110的第一信号端、近场通信芯片110的第二信号端、第一导电结构120的馈电端、第二导电结构130的第一馈电端131a电连接。第一匹配电路161用于对导电回路传输近场通信激励电流时的阻抗进行匹配。
其中,第一匹配电路161可以包括第一端、第二端、第三端和第四端。第一端与近场通信芯片110的第一信号端电连接,第二端与近场通信芯片110的第二信号端电连接,第三端与第一导电结构120的馈电端电连接,第四端与第一导电结构120的第一馈电端131a电连接。
第一匹配电路161可以包括由电容、电感、电阻的任意串联或者任意并联所组成的电路。还可以理解的是,第一匹配电路161还可以包括对电容、电感、电阻的任意串联或者任意并联所组成的电路进行切换的切换开关。
第二匹配电路162与第一非近场通信芯片151、第二导电结构130的第二馈电端133电连接,第二匹配电路162用于对第二导电结构130传输非近场通信激励电流时的阻抗进行匹配。
其中,可以理解的是,第二匹配电路162也可以包括由电容、电感、电阻的任意串联或者任意并联 所组成的电路。还可以理解的是,第二匹配电路162还可以包括对电容、电感、电阻的任意串联或者任意并联所组成的电路进行切换的切换开关。而且第二匹配电路162的结构可以与第一匹配电路161的结构相同,也可以与第一匹配电路161的结构不相同。
为了滤除导电回路中的杂波,天线组件100还可以包括滤波电路。该滤波电路可以被称为滤波网络。示例性的,如图13所示,天线组件100还可以包括第一滤波电路171、第二滤波电路172和第三滤波电路173。
其中,第一滤波电路171设置在第一导电结构120和第二导电结构130之间。第一滤波电路171用于滤除第一导电结构120和第二导电结构130之间的第一干扰信号。第一干扰信号即为近场通信芯片110提供的近场通信激励电流之外的电信号。第二滤波电路172设置在第一匹配电路的第四端与第二导电结构130的第一馈电端131a之间。第二滤波电路172用于滤除第二信号端与第二导电结构130之间的第二干扰信号。第二干扰信号即为近场通信芯片110提供的近场通信激励电流之外的电信号。
本申请实施例的第一滤波电路171可以包括由电容、电感、电阻的任意串联或者任意并联所组成的电路,比如第一滤波电路171可以为有电容和电感组成的LC滤波电路或其他类型的滤波电路。第二滤波电路172和第三滤波电路173的结构可以与第一滤波电路171的结构相同,当然也可以不相同,或者也可以第二滤波电路172和第三滤波电路173中的一个与第一滤波电路171的结构相同。
本申请实施例还提供一种电子设备,示例性地,如图15所示,图15为本申请实施例提供的电子设备的第一种结构示意图。电子设备20可以包括如上所述的天线组件100、中框200、后盖300、主电路板400和电池500。
结合图16所示,图16为本申请实施例提供的电子设备的第二种结构示意图。中框200为电子设备20内部器件的主要承载结构,例如主电路板400、电池500、显示屏等均固定于中框200上。天线组件100中的第一导电结构120设置在中框200上。比如中框200包括边框210和中板220。具体的,边框210为条状边框围成的封闭的框体结构,边框210具有一定的强度以起到保护电子设备20的显示屏及其他器件的作用。中板220为板状的结构件,中板220用于放置第一导电结构120、主电路板400、电池500、显示屏等器件。可以理解的是,第一导电结构120可以设置在中板220上。其中,第一导电结构120在中板上的设置位置可以根据其他器件的布设位置而决定,比如第一导电结构120可以设置在主电路板400与电池500之间的缝隙内,也可以设置在中板220的其他相连两个部件之间的缝隙内、或者其他位置的。当第一导电结构120为柔性电路板时,由于柔性电路板具有可弯曲的性能,可以根据中板220中的部件位置关系而弯曲设置在器件之间的缝隙内,使得第一导电结构120的布设方式可以更加灵活。
天线组件100中的芯片和/或电路(比如匹配电路和滤波电路等)等可以集成在主电路板400上,比如近场通信芯片110和第一非近场通信芯片151可以均集成在主电路板400上。当然,近场通信芯片110和第一非近场通信芯片151也可以分别独立设置,再通过电连接结构与主电路板400电连接。
本申请实施例中的天线组件100通过在第一导电结构120设置有一个或多个第一空隙121,可以增加电子设备20传输近场通信信号时的辐射强度。在实际应用中,随着移动支付技术的发展,将电子设备直接作为多功能的收款产品越来越普遍,诸如直接将电子设备作为销售终端(point of sale,POS)。然而相关技术的移动终端的辐射强度较弱,将其作为销售终端时,其响应的速度较慢,但本申请实施例 的辐射面积比较大,磁性强度强,在将电子设备20作为销售终端使用时,其响应速度快,可以提升用户的移动支付体验。
第二导电结构130在电子设备20的设置位置可以与第一导电结构120在电子设备20的设置位置相同,比如第二导电结构130也可以设置在中板220上。当然,第二导电结构130在电子设备20的设置位置可以与第一导电结构120在电子设备20的设置位置不同,比如如图16所示,第二导电结构130可以设置在边框210上。比如边框210可以采用金属材质制成,一种实施方式中,边框210为铝合金材料制成,一方面,铝合金的导电效果好,且密度小,有利于降低电子设备20的重量,另一方面,铝合金材料具有较好的强度,可提高对显示屏及其他器件的保护效果。当成型第二导电结构130时,可以采用在边框210开设缝隙的方式以使得边框210形成多个金属枝节,并将其中一个金属枝节作为第二导电结构130。由于边框210位于电子设备20的外侧而形成电子设备20的外观,当边框210的一部分作为可辐射近场通信信号的第二导电结构130时,第二导电结构130受到电子设备20的其他器件的遮挡少,第二导电结构130在传输近场通信激励电流时,第二导电结构130所产生的磁场向外辐射的效果好。
为了进一步说明本申请实施例提供的天线组件所提升的性能,采用检测设备对设置有图16所示的中框200的电子设备20(其中,第一导电结构120开设有两条第一空隙121)进行了测试。经过测试可知,本申请实施例的电子设备20辐射近场通信信号的性能在0平面、1平面内圈和1平面外圈均有所提升。。其中,0平面指的是将检测设置中的测试板紧贴电子设备20的后盖300时,测试板所在的平面,1平面指的是将检测设备中的测试板与电子设备20的后盖300间隔预设距离值时,测试板所在的平面。
请继续参阅图16,边框210包括第三导电结构211和第四导电结构212,第二导电结构130位于第三导电结构211和第四导电结构212之间,且第三导电结构211与第二导电结构130设置有第一缝隙213,第四导电结构212与第二导电结构130设置有第二缝隙214。其中,第三导电结构211和第四导电结构212均可以作为电子设备20的天线辐射体,其可以用于传输与第二导电结构130相同的通信信号,也可以用于传输与第二导电结构130不相同的通信信号。
其中,第三导电结构211的一部分、第二导电结构130和第四导电结构212的一部分均位于中框200的同一端。例如,第三导电结构211可以包括依次连接的第一部分、第二部分和第三部分,第二部分弯曲设置,第一部分可以位于中框200的顶端,第二部分可以位于中框200的左上角,第三部分可以位于中框200的左侧。第四导电结构212可以包括依次连接的第四部分、第五部分和第六部分,第五部分弯曲设置,第四部分可以位于中框200的顶端且与第一部分间隔设置,第二部分可以位于中框200的右上角,第六部分可以位于中框200的右侧。第二导电结构130可以设置在第一部分和第四部分之间。
需要说明的是,第三导电结构211、第二导电结构130和第四导电结构212的设置方式并不限于此,比如第三导电结构211的一部分、第二导电结构130和第四导电结构212的一部分也可以均位于中框200的底端、或者中框200的左侧或右侧。
再例如,第二导电结构130的一部分设置在中框200的左上角,第二导电结构130的一部分设置在中框200的右上角。示例性地,如图17所示,图17为本申请实施例提供的电子设备的第三种结构示意图。第一子导电结构1391的第一平直部1391a设置在中框200的顶端,第一弯曲部1391设置在中框200的左上角,第二平直部1391c设置在中框200的左侧。第二子导电结构1392的第三平直部1392a设置在中框200的顶端,第二弯曲部1392设置在中框200的右上角,第四平直部1392c设置在中框200 的右侧。
需要说明的是,本申请实施例的第二导电结构130也可以采用其他方式设置在边框210上,比如第二导电结构130可以通过印刷的方式成型诸如将含有导电材质的印刷材料印刷在边框210上,还可以通过激光镭射的方式成型诸如在成型的边框210(边框210采用非金属材料制成,比如塑胶材料等)。
还需要说明的是,本申请实施例的第二导电结构130的设置位置并不限于此,比如第二导电结构130也可以设置在后盖300上,比如第二导电结构130可以设置在后盖300的内表面或者后盖300的外表面。可以理解的是,从电子设备20外部观察时,后盖300的内表面是指后盖300不可见的一面,后盖300的外表面是指后盖300可以被看见并可以被接触的一面。如图18所示,图18为本申请实施例提供的电子设备的第四种结构示意图。后盖300可以采用金属材质制成,在成型第二导电结构130时,可以对后盖300进行切割为两个金属段,两个金属段之间间隔设置,间隔位置可以采用非金属材料间隔开,其中的一个金属段可以作为第二导电结构130(或者两个金属段均作为第二导电结构130,其中一个金属段作为第一子导电结构1391,另一个金属段作为第二子导电结构1392)。当然,也可以对金属后盖进行加工以成型出更多数量的金属段,并不限于两个金属段。当然,也可以采用其他方式在后盖300上设置第二导电结构130,比如后盖300采用塑胶材料制成,在塑胶材料制成的后盖300(比如后盖300内表面)采用印刷的方式或激光镭射的方式成型出第二导电结构130,或者可以采用粘接的形式将第二导电结构130粘接到塑胶后盖上。
可以理解的是,以上仅为电子设备20的示例性举例,本申请实施例的电子设备20还可以包括摄像头、传感器、声电转换装置等部件,这些部件可以参见相关技术中的描述,在此不再赘述。
以上对本申请实施例提供的天线组件以及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线组件,其中,包括:
    近场通信芯片,用于提供近场通信激励电流;和
    第一导电结构,与所述近场通信芯片电连接以传输所述近场通信激励电流,所述第一导电结构设置有一个或多个第一空隙,当所述第一导电结构传输所述近场通信激励电流时,所述第一导电结构可产生磁场,且所述第一导电结构所产生的磁场可通过所述一个或多个第一空隙向外界辐射。
  2. 根据权利要求1所述的天线组件,其中,所述第一空隙的个数为多个,多个所述第一空隙分布设置。
  3. 根据权利要求2所述的天线组件,其中,所述第一导电结构包括相对设置的第一侧边和第二侧边,多个所述第一空隙沿从第一侧边朝向第二侧边的方向依次排列设置。
  4. 根据权利要求3所述的天线组件,其中,所述第一导电结构还包括第三侧边和第四侧边,所述第三侧边连接在第一侧边的一端和第二侧边的一端之间,所述第四侧边连接在所述第一侧边的另一端和所述第二侧边的另一端之间,且所述第一侧边和所述第二侧边的长度均大于所述第三侧边和所述第四侧边的长度。
  5. 根据权利要求1所述的天线组件,其中,所述第一空隙的个数为多个,多个所述第一空隙交错设置且彼此间隔。
  6. 根据权利要求1所述的天线组件,其中,所述第一导电结构在沿垂直于所述近场通信激励电流的传输方向的横截面的最小面积大于第一预设值。
  7. 根据权利要求1至6任一项所述的天线组件,其中,所述第一导电结构为柔性电路板上的印刷线路或金属片。
  8. 根据权利要求7所述的天线组件,其中,所述第一导电结构包括第一部和第二部,所述第二部相对于所述第一部弯折设置,所述第一部和/或所述第二部均设置有一个或多个所述第一空隙。
  9. 根据权利要求8所述的天线组件,其中,所述天线组件还包括第二导电结构,所述第二导电结构设置有相互间隔的第一馈电端和连接端,所述第一馈电端与所述近场通信芯片电连接,所述连接端与所述第一导电结构电连接,所述第二导电结构用于与所述第一导电结构共同传输所述近场通信激励电流。
  10. 根据权利要求9所述的天线组件,其中,所述天线组件还包括接地平面,所述第二导电结构设置有第一接地端,所述第一接地端与所述接地平面电连接。
  11. 根据权利要求9所述的天线组件,其中,所述近场通信芯片提供差分激励电流,所述天线组件还包括接地平面,所述接地平面包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;
    所述第二导电结构设置有第一接地端,所述第一导电结构设置有第二接地端,所述第一接地端与所述第一接地点电连接,所述第二接地端与所述第二接地点电连接,所述第一导电结构、所述导电路径以及所述第二导电结构共同形成供所述差分激励电流传输的导电回路。
  12. 根据权利要求9所述的天线组件,其中,所述天线组件还包括接地平面,所述第二导电结构包括:
    第一子导电结构,所述第一子导电结构与所述近场通信芯片电连接,且所述第一子导电结构与所述接地平面电连接;
    第二子导电结构,与所述第一子导电结构间隔设置,所述第二子导电结构与所述第一导电结构电连接,且所述第二子导电结构与所述接地平面电连接。
  13. 根据权利要求9所述的天线组件,其中,所述第二导电结构设置有一个或多个第二空隙,当所述第二导电结构传输所述近场通信激励电流时,所述第二导电结构可产生磁场,且所述第二导电结构所产生的磁场可通过所述一个或多个第二空隙向外界辐射。
  14. 根据权利要求13所述的天线组件,其中,所述第一导电结构和所述第二导电结构在传输所述近场通信激励电流时,所述第一导电结构产生第一近场通信辐射场,所述第二导电结构产生第二近场通信辐射场,所述第一近场通信辐射场和所述第二近场通信辐射场至少部分重叠。
  15. 根据权利要求9所述的天线组件,其中,所述天线组件还包括第一非近场通信芯片,所述第一非近场通信芯片用于提供第一非近场通信激励电流;
    所述第二导电结构还设置有第二馈电端,所述第二馈电端与所述第一馈电端间隔设置,所述第二馈电端与所述第一非近场通信芯片电连接以传输所述非近场通信激励电流。
  16. 根据权利要求12所述的天线组件,其中,所述天线组件还包括第一非近场通信芯片和第二非近场通信芯片,所述第一非近场通信芯片用于提供第一非近场通信激励电流,所述第二非近场通信芯片用于提供第二非近场通信激励电流;
    所述第一子导电结构与所述第一非近场通信芯片电连接,所述第一子导电结构用于传输所述第一非近场通信激励电流;
    所述第二子导电结构与所述第二非近场通信芯片电连接,所述第二子导电结构用于传输所述第二非近场通信激励电流。
  17. 一种电子设备,其中,包括天线组件、中框和设置在所述中框上的主电路板,所述天线组件为权利要求1至16任一项所述的天线组件,所述第一导电结构设置在所述中框上,所述近场通信芯片设置在所述主电路板上。
  18. 一种电子设备,其中,包括:
    天线组件,所述天线组件为权利要求10至16任一项所述的天线组件;和
    中框和与所述中框连接的后盖,所述第一导电结构设置在所述中框的中板,所述第二导电结构设置在所述中框的边框上或所述后盖上。
  19. 根据权利要求18所述的电子设备,其中,所述中框包括第三导电结构和第四导电结构,所述第二导电结构位于所述第三导电结构和所述第四导电结构之间,且所述第三导电结构与所述第二导电结构之间设置有第一缝隙,所述第四导电结构与所述第二导电结构之间设置有第二缝隙。
  20. 根据权利要求19所述的电子设备,其中,所述第二导电结构、所述第三导电结构的一部分和所述第四导电结构的一部分和均位于所述中框的同一端。
PCT/CN2021/096769 2020-08-14 2021-05-28 天线组件以及电子设备 WO2022033123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21855179.4A EP4199253A4 (en) 2020-08-14 2021-05-28 ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
US18/148,488 US20230170617A1 (en) 2020-08-14 2022-12-30 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821435.8 2020-08-14
CN202010821435.8A CN111969303B (zh) 2020-08-14 2020-08-14 天线组件以及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,488 Continuation US20230170617A1 (en) 2020-08-14 2022-12-30 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022033123A1 true WO2022033123A1 (zh) 2022-02-17

Family

ID=73388925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096769 WO2022033123A1 (zh) 2020-08-14 2021-05-28 天线组件以及电子设备

Country Status (4)

Country Link
US (1) US20230170617A1 (zh)
EP (1) EP4199253A4 (zh)
CN (1) CN111969303B (zh)
WO (1) WO2022033123A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386261A1 (de) 2022-12-16 2024-06-19 Vaillant GmbH Verfahren zum betreiben eines heizgerätes, computerprogramm, regel- und steuer-gerät und heizgerät

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969303B (zh) * 2020-08-14 2023-01-10 Oppo广东移动通信有限公司 天线组件以及电子设备
CN116417799B (zh) * 2021-12-31 2024-05-17 Oppo广东移动通信有限公司 天线组件及电子设备
CN115458911A (zh) * 2022-08-31 2022-12-09 Oppo广东移动通信有限公司 天线装置和电子设备
CN117855804A (zh) * 2022-09-30 2024-04-09 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009077A1 (en) * 2013-07-03 2015-01-08 Samsung Electronics Co., Ltd. Cover of a mobile device and mobile device including the same
CN105529531A (zh) * 2014-10-20 2016-04-27 三星电子株式会社 近场通信装置和具有该近场通信装置的电子装置
CN105552545A (zh) * 2016-01-28 2016-05-04 深圳市飞荣达科技股份有限公司 Nfc天线装置及电子设备
WO2017206470A1 (zh) * 2016-05-28 2017-12-07 华为技术有限公司 一种用作近场通信天线的导电板及终端
CN111969303A (zh) * 2020-08-14 2020-11-20 Oppo广东移动通信有限公司 天线组件以及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995716B1 (ko) * 2008-08-04 2010-11-19 한국전자통신연구원 근역장 rfid 리더 안테나
US9083073B2 (en) * 2012-06-28 2015-07-14 Intel Corporation Thin chassis near field communication (NFC) antenna integration
CN206194944U (zh) * 2016-09-27 2017-05-24 广东欧珀移动通信有限公司 Nfc天线及终端设备
CN112448146B (zh) * 2019-08-30 2022-03-01 Oppo广东移动通信有限公司 天线装置、电子设备及天线切换方法
CN210838090U (zh) * 2019-12-26 2020-06-23 Oppo广东移动通信有限公司 天线装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009077A1 (en) * 2013-07-03 2015-01-08 Samsung Electronics Co., Ltd. Cover of a mobile device and mobile device including the same
CN105529531A (zh) * 2014-10-20 2016-04-27 三星电子株式会社 近场通信装置和具有该近场通信装置的电子装置
CN105552545A (zh) * 2016-01-28 2016-05-04 深圳市飞荣达科技股份有限公司 Nfc天线装置及电子设备
WO2017206470A1 (zh) * 2016-05-28 2017-12-07 华为技术有限公司 一种用作近场通信天线的导电板及终端
CN111969303A (zh) * 2020-08-14 2020-11-20 Oppo广东移动通信有限公司 天线组件以及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199253A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386261A1 (de) 2022-12-16 2024-06-19 Vaillant GmbH Verfahren zum betreiben eines heizgerätes, computerprogramm, regel- und steuer-gerät und heizgerät

Also Published As

Publication number Publication date
EP4199253A4 (en) 2024-01-24
CN111969303A (zh) 2020-11-20
US20230170617A1 (en) 2023-06-01
CN111969303B (zh) 2023-01-10
EP4199253A1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2022033123A1 (zh) 天线组件以及电子设备
US10957978B2 (en) Electronic devices having multi-frequency ultra-wideband antennas
TWI425713B (zh) 諧振產生之三頻段天線
US7884774B2 (en) Planar antenna
US8081122B2 (en) Folded slotted monopole antenna
US11239550B2 (en) Electronic devices having compact ultra-wideband antennas
CN106099354B (zh) 一种双频内置天线及其设计方法
US7948445B2 (en) Wideband antenna and clothing and articles using the same
US10074905B2 (en) Planar antenna apparatus and method
US20090073047A1 (en) Antenna System With Second-Order Diversity and Card for Wireless Communication Apparatus Which is Equipped With One Such Device
US20110309993A1 (en) Small-size printed circuit board-printed meander line inverted-f antenna for radio frequency integrated circuits
US20110140973A1 (en) Antenna apparatus and radio terminal apparatus
US20110199272A1 (en) Field-confined printed circuit board-printed antenna for radio frequency front end integrated circuits
CN107845857B (zh) 天线结构及天线系统
US8299868B2 (en) High frequency coupler and communication device
CN201893435U (zh) 宽带天线模块与整合宽带天线模块的机壳结构
CN103872452A (zh) 电子设备、天线、和用于形成天线的方法
CN113690588A (zh) 天线装置、电子设备及天线装置的设计方法
EP3817140A1 (en) Sum and difference mode antenna and communication product
CN201498593U (zh) 印刷天线及使用其的电子设备
EP2375488B1 (en) Planar antenna and handheld device
CN215342969U (zh) 天线装置及电子设备
CN112448144A (zh) 天线装置及电子设备
EP2538572B1 (en) Communication apparatus
TWM311143U (en) Wideband antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021855179

Country of ref document: EP

Effective date: 20230314