WO2022032962A1 - 一种基于辐射制冷的自动通断装置及路灯 - Google Patents

一种基于辐射制冷的自动通断装置及路灯 Download PDF

Info

Publication number
WO2022032962A1
WO2022032962A1 PCT/CN2020/138458 CN2020138458W WO2022032962A1 WO 2022032962 A1 WO2022032962 A1 WO 2022032962A1 CN 2020138458 W CN2020138458 W CN 2020138458W WO 2022032962 A1 WO2022032962 A1 WO 2022032962A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric generator
automatic
radiation
cooler
device based
Prior art date
Application number
PCT/CN2020/138458
Other languages
English (en)
French (fr)
Inventor
詹耀辉
徐修冬
马鸿晨
赵海鹏
章新源
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022032962A1 publication Critical patent/WO2022032962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections

Definitions

  • the utility model belongs to the field of optical devices, in particular to an automatic on-off device.
  • Solar cells though, offer a way to achieve this goal, enabling small-scale, distributed, renewable energy generation during the day.
  • its photoelectric conversion efficiency is only about 20%, and its cost is high. It cannot automatically turn on and off the circuit and must rely on photosensitive elements. If there is no electricity stored in the rainy day, it is still a big challenge to generate electricity at night. A large part of the world still does not have access to electricity, especially at night when photovoltaic systems are not working.
  • solar street lights have made progress in this regard, as night-time lighting demand peaks, photovoltaics or solar thermal modules need to be coupled to batteries, driving up costs. Therefore, a modular way to generate electricity at night without storage would have an immediate and significant impact on lighting applications.
  • a large number of low-power off-grid sensors can also benefit from modular power at night, and the ability to generate electricity at night may be an essential capability for a wide range of applications, including lighting and low-power sensors.
  • An automatic on-off device based on radiation refrigeration comprising: a draft shield, a radiant cooler, an insulating casing, a heat-conducting sheet, a thermoelectric generator, and a positive lead and a negative lead are arranged on the thermoelectric generator; the draft shield and the insulation
  • the shell is surrounded by a cavity structure, and the windshield is transparent in the atmospheric window band;
  • the radiation cooler includes an emission end surface and an input end surface, and the emission end surface of the radiation cooler faces the windshield and is placed in the cavity; the temperature difference generates
  • the top of the electrical appliance is close to the input end face of the radiant cooler, and the heat conducting sheet is arranged at the bottom of the thermoelectric generator and is in contact with the outside air;
  • thermoelectric generator The top of the thermoelectric generator is in contact with the input end face of the radiant cooler; the heat conduction sheet transfers the heat of the outside air to the bottom of the thermoelectric generator through heat transfer, and the bottom of the thermoelectric generator has the same temperature as the outside air;
  • the radiating end face of the radiant cooler radiates the heat from the top of the thermoelectric generator to the outside air through thermal radiation, and the temperature at the top of the thermoelectric generator is lower than the temperature of the outside air at this time;
  • thermoelectric generator A temperature difference is generated between the top and the bottom of the thermoelectric generator to drive the thermoelectric generator to work, and a potential difference is generated between the positive lead and the negative lead of the thermoelectric generator.
  • the working state of the automatic on-off device based on radiation refrigeration is a channel;
  • the sunlight radiates to the radiating end face of the radiant cooler after passing through the windshield, so that the temperature of the radiant cooler rises, the heat radiated by the radiant cooler and the heat absorbed by the sunlight are offset, the thermoelectric generator cannot work normally, and the temperature difference generates
  • the potential difference between the positive lead and the negative lead on the electrical appliance is zero, and the working state of the automatic on-off device based on radiation refrigeration is open circuit.
  • the heat-conducting sheets are arranged in a grid-like or strip-like array to increase the contact area with the air, and have good thermal conductivity.
  • the heat-conducting sheets enhance the conduction and convection with the environment, thereby heating the bottom end of the thermoelectric generator.
  • the radiant cooler is composed of two layers of SiO 2 and Si 3 N 4 .
  • Si 3 N 4 is on top of SiO 2 , and the thickness is 59nm and 1500nm respectively after being optimized by an optimization algorithm, which is integrated on the top of the thermoelectric generator. It achieves a selective high emissivity of 8-14um "atmospheric window" through complementary phonon resonance, and then cools the top of the thermogenerator by radiative cooling without any energy input, so that a temperature difference is generated between the two ends of the thermogenerator.
  • the combination of SiO 2 and Si 3 N 4 can also be HfO 2 and SiO 2 , or HfO 2 and Si 3 N 4 , the main function of which is to provide high emissivity in the atmospheric window.
  • the windshield is made of 12.5mm thick low density polyethylene and is characterized by infrared transparency.
  • the insulating shell is composed of a polystyrene shell covered with aluminized polyester film, and the purpose is to reduce the influence of the external environment on the thermal radiation of the top of the thermoelectric generator.
  • the radiant cooler of the above scheme is only composed of two layers of SiO 2 and Si 3 N 4 .
  • the utility model also designs another radiant cooler, which is only based on SiO 2 film, and uses ion beam etching to etch a 2.5um high grating with a period of 4.5um, the duty cycle is 1/3, and the average emissivity in the atmospheric window is more than 90%. It can effectively improve the output current of the thermoelectric generator, so that the street lamp can work stably at night.
  • the working wavelength of this scheme is infrared light.
  • the windshield isolates the conduction convection between the cavity structure and the external environment, and the heat conduction sheet strengthens the conduction convection between the bottom end of the thermoelectric generator and the environment, and conducts conduction on the side facing the sky that isolates the thermoelectric generator.
  • the radiant cooler is used to reduce the temperature at the top of the thermogenerator to make it lower than the ambient temperature, while the bottom end of the thermogenerator generates a temperature difference between the two ends due to the heating of the environment to realize the passage; in the daytime, due to the sunlight passing through the windshield After radiating to the radiant cooler, the temperature of the radiant cooler rises, which offsets the cooling caused by the high emission in the atmospheric window. Since the heating of the solar radiation offsets the temperature difference generated by the radiant cooling, the thermoelectric generator does not work, thereby realizing the circuit breaker. ; Using the technical solution can realize the automatic switching on and off the street lamp device driven by sunlight.
  • this technical solution can also provide power for the video surveillance system at night, and can also be used as a supporting equipment for solar power plants. A large number of automatic on-off devices based on radiation cooling are connected in parallel, and the positive lead and negative lead are output at night. electricity, so as to generate electricity at night.
  • Figure 1 is a schematic structural diagram of an automatic on-off device based on radiation refrigeration
  • Figure 2 is a schematic diagram of the working principle of an automatic on-off device based on radiation refrigeration
  • Figure 3 is a schematic diagram of a radiant cooler
  • thermoelectric generator 4 is a schematic structural diagram of a thermoelectric generator
  • Figure 5 is the 8um-14 ⁇ m emissivity spectrum of the radiation cooler
  • Figure 6 is a cooling effect diagram of a radiant cooler
  • 1- draft shield 2- radiant cooler, 3- insulating shell, 4- heat conduction sheet, 5- thermoelectric generator, 6- emitting end face, 7- input end face, 8- positive lead, 9- negative lead.
  • an automatic switching device based on radiation refrigeration includes: a windshield 1, a radiant cooler 2, an insulating shell 3, a heat-conducting sheet 4, and a thermoelectric generator 5, and the thermoelectric generator is provided with a positive lead wire 8 and negative lead 9;
  • the windshield and the insulating shell form a cavity structure, and the windshield is transparent in the atmospheric window band;
  • the radiation cooler includes an emission end face 6 and an input end face 7, and the emission of the radiant cooler The end face faces the windshield and is placed in the cavity;
  • the top of the thermoelectric generator is close to the input end face of the radiant cooler, and the heat conducting sheet is arranged at the bottom of the thermoelectric generator and is in contact with the outside air;
  • thermoelectric generator The top of the thermoelectric generator is in contact with the input end face of the radiant cooler; the heat conduction sheet transfers the heat of the outside air to the bottom of the thermoelectric generator through heat transfer, and the bottom of the thermoelectric generator has the same temperature as the outside air;
  • the radiating end face of the radiant cooler radiates the heat from the top of the thermoelectric generator to the outside air through thermal radiation, and the temperature at the top of the thermoelectric generator is lower than the outside air temperature;
  • thermoelectric generator A temperature difference is generated between the top and the bottom of the thermoelectric generator to drive the thermoelectric generator to work, and a potential difference is generated between the positive lead and the negative lead of the thermoelectric generator.
  • the working state of the automatic on-off device based on radiation refrigeration is a channel;
  • the sunlight radiates to the radiating end face of the radiant cooler after passing through the windshield, so that the temperature of the radiant cooler rises, the heat radiated by the radiant cooler and the heat absorbed by the sunlight are offset, the thermoelectric generator cannot work normally, and the temperature difference generates
  • the potential difference between the positive lead and the negative lead of the electrical appliance is zero, and the working state of the automatic on-off device based on radiation refrigeration is open circuit;
  • the thermoelectric generator When the solar radiation is insufficient in rainy days or haze days, the heat energy radiated by the radiant cooler to the outside world is greater than the heat energy input from the outside world, the thermoelectric generator is in the working state, and the working state of the automatic on-off device based on radiation refrigeration is the channel.
  • Prad is the energy radiated by the structure, and its calculation formula is:
  • h Planck's constant
  • kB Boltzmann's constant
  • c the speed of light
  • the operating wavelength
  • Psun is the solar absorption power
  • IAM1.5 is the AM1.5 spectrum
  • ⁇ ( ⁇ , ⁇ sun) is the solar absorptivity of the device
  • r( ⁇ , ⁇ sun) is the reflectance spectrum of the radiative cooler
  • ⁇ sun is the solar incident angle.
  • the radiation cooler adopts the preferred solution, that is, the SiO 2 grating fabricated by the ion beam etching method. Its spectrum in the atmospheric window has good selectivity and high emission, and the production process is mature.
  • the main steps of grating etching are gluing, pre-baking, exposure, development, etching, and degumming.
  • thermoelectric generator is a power generation device that utilizes the Seebeck effect to directly convert thermal energy into electrical energy.
  • a p-type thermoelectric element and an n-type thermoelectric element are connected with metal conductor electrodes at the hot end, and the cold end electrodes are respectively connected at the cold end to form a thermoelectric cell or monocouple.
  • An external load with resistance R L is connected to the open end of the thermoelectric cell. If the heat flow is input to the hot surface of the thermoelectric cell and a temperature difference is established between the hot end and the cold end of the thermoelectric cell, there will be a current flow. Through the circuit, the electric power I ⁇ 2*R L will be obtained on the load, thus obtaining a generator that directly converts thermal energy into electric energy.
  • Figure 5 is the emissivity spectrum of the radiative cooler of the embodiment of the utility model at 8um-14 ⁇ m; the radiative cooler has a good selective high emissivity in the atmospheric window, except for the inherent properties of the SiO2 material at the wavelength of 9um. Outside the emissivity valley, the emissivity of the rest of the bands is around 0.95, so a good net cooling power can be achieved; it can be derived from the above theoretical calculation process.
  • FIG. 6 is the change of the cooling effect of the radiant refrigerator according to the embodiment of the utility model with the change of the ambient temperature.
  • the variation of the cooling effect of the radiant cooler with the ambient temperature is theoretically calculated. The temperature difference it produces is enough to make the thermoelectric generator work, lighting up street lights at night without any input.
  • An automatic on-off lamp based on radiation refrigeration comprising: an automatic on-off device based on radiant refrigeration, a lamp, and a wire; the lamp and the automatic on-off device based on radiant refrigeration are connected by wires to form a closed loop.
  • thermoelectric generator works and lights up the street lamps.
  • thermoelectric generator does not work, and the street lights are automatically turned off. The above realizes that without any input, it can directly generate electricity and light the street light device without storage at night.
  • the thermoelectric generator When the solar radiation is insufficient in rainy or hazy days, the heat energy radiated to the outside by the radiant cooler is greater than the heat energy input to the outside world, the thermoelectric generator is in the working state, and the working state of the automatic on-off device based on radiation refrigeration is the passage, so
  • the street lamps of this scheme glow during the daytime when it is cloudy and rainy.
  • a better solution is to set the lights as fog lights, and in rainy weather or foggy weather, the light penetration is stronger and the lighting range is larger.

Abstract

本实用新型属于光学器件领域,为解决现有太阳能电池路灯寿命短、转化效率低、需要电能存储等问题,公开了一种基于辐射制冷技术的自动通断装置及路灯,工作波长为红外光,在夜间,在隔绝温差发电器面向天空那一面传导与对流情况下,利用辐射制冷器降低温差发电器那一面温度,使其低于环境温度,而温差发电器另一面由于环境加热使两端产生温差进而夜间通路;在白天,由于太阳光辐射的加热抵消了辐射制冷产生的温差,温差发电器不工作,则在白天断路;使用本技术方案可以实现一种自动通断装置。

Description

一种基于辐射制冷的自动通断装置及路灯 技术领域
实用新型属于光学器件领域,具体涉及一种自动通断路装置。
背景技术
随着时代的发展,城市现代化建设步伐不断加快,能源的供需矛盾也越来越突出其中单单路灯的照明就需要消耗大约15%的电能,因此节电节能、绿色照明的要求越来越迫切,越来越高。在过去的一个世纪里,如何通过可再生能源发电受到科学家广泛关注。
太阳能电池虽然为实现这一目标提供了一个途径,即在白天实现小规模、分布式的可再生能源发电。但是其光电转换效率只有百分之二十左右,而且其成本较高,无法自动通断路必须依靠光敏元件,如果在阴雨天没有存储电能情况下夜晚发电仍然是一个很大的挑战。世界上有很大一部分人仍然没有用上电,尤其是在晚上光伏发电系统无法工作的时候。虽然太阳能路灯在这方面已经取得了进展,但随着夜间照明需求达到峰值,需要将光伏或太阳能热模组与电池耦合,从而推高了成本。因此,一种无需储存就能在夜间发电的模块化方式将对照明应用产生直接而重大的影响。除了照明,大量的低功耗离网传感器也可以从夜间模块化电源中受益,夜间发电的能力可能是一种广泛应用的基本能力,包括照明和低功率传感器。
实用新型内容
为解决现有技术中存在的成本高,效率低,必须需要存储夜间才能正常发电,无法自动通断路问题,采用如下技术方案:
一种基于辐射制冷的自动通断装置,包含:防风罩,辐射冷却器,绝缘外壳,导热片,温差发电器,所述温差发电器上设置正极引线和负极引线;所述的防风罩与绝缘外壳围成腔体结构,所述的防风罩在大气窗口波段为透明;辐射冷却器上包含发射端面和输入端面,辐射冷却器的发射端面朝向防风罩且置于所述腔体中;温差发电器顶部紧贴辐射冷却器的输入端面,所述导热片设置于温差发电器底部并与外界空气接触;
温差发电器顶部与辐射冷却器的输入端面接触;导热片通过热传递将外界空气的热量传递至温差发电器底部,温差发电器底部与外界空气温度相同;
在夜间时,辐射冷却器发射端面通过热辐射将温差发电器顶部的热量辐射向外界空气中,此时温差发电器顶部温度低于外界空气温度;
温差发电器顶部与底部产生温差进而驱动温差发电器工作,温差发电器上正极引线和负极引线之间产生电势差,此时基于辐射制冷的自动通断装置的工作状态为通路;
在白天时,太阳光通过防风罩后辐射到辐射冷却器发射端面上,使辐射冷却器温度升高,辐射冷却器辐射的热量和吸收太阳光的热量抵消,温差发电器不能正常工作,温差发电器上正极引线和负极引线之间电势差为零,此时基于辐射制冷的自动通断装置的工作状态为断路。
优选方案:
所述导热片设置为栅格状或者条状阵列增大与空气的接触面积,具有良好的热传导性能,通过导热片加强了与环境的传导对流,进而加热温差发电器底端。
所述的辐射制冷器由SiO 2和Si 3N 4两层膜组成,Si 3N 4在SiO 2上面,厚度通过优化算法优化之后分别是59nm和1500nm,集成在温差发电器的顶端。其通过互补声子共振实现8-14um“大气窗口”的选择性高发射率,进而在不需要任何能源输入的情况下通过辐射制冷冷却温差发电器顶端,使温差发电器两端产生温差。SiO 2和Si 3N 4的组合也可以是HfO 2和SiO 2,或者HfO 2和Si 3N 4,其主要作用是在大气窗口提供高发射率。
所述的防风罩由12.5mm厚的低密度聚乙烯制成,其特征在于红外透明。
所述的绝缘外壳由聚苯乙烯外壳覆盖着镀铝的聚酯薄膜组成,其目的为减少外界环境对温差发电器顶端的热辐射影响。
上述方案的辐射冷却器为了减少成本,仅仅利用SiO 2和Si 3N 4两层膜组成。为了获得更好的降温效果,增加温差发电器的输出电流,实用新型还设计了另外一种辐射制冷器,其仅仅基于SiO 2薄膜,利用离子束刻蚀法刻蚀2.5um高光栅,周期为4.5um,占空比为1/3,实现了在大气窗口平均发射率90%以上。可以有效提高温差发电器的输出电流,使路灯在夜晚可以稳定工作。
本方案的工作波长为红外光,在夜间,防风罩隔绝了腔体结构与外界环境的传导对流,导热片加强了温差发电器底端与环境传导对流,在隔绝温差发电器面向天空那一面传导与对流情况下,利用辐射制冷器降低温差发电器顶端温度,使其低于环境温度,而温差发电器底端由于环境加热使两端产生温差进而实现通路;在白天,由于太阳光通过防风罩后辐射到辐射冷却器上,使辐射冷却器温度升高,抵消了在大气窗口高发射产生的降温,由于太阳光辐射的加热抵消了辐射制冷产生的温差,温差发电器不工作,进而实现断路;使用本技术方案可以实现以太阳光作为驱动的自动通断路灯装置。
本方案的优点是无需要额外电源存储电能,且无需专用光电感应开关,利用大气中的温差进行发电,无需铺设专用电缆,更加节能环保。此外此技术方案也可在夜间为视频监控系统提供电能,还可作为太阳能发电站的配套设备,通过大量的一种基于辐射制冷的自动通断装置并联,在夜间在其正极引线和负极引线输出电能,从而实现夜间发电。
附图说明
图1为基于辐射制冷的自动通断装置结构示意图;
图2为基于辐射制冷的自动通断装置工作原理示意图;
图3为辐射制冷器示意图;
图4为温差发电器的结构示意图;
图5为辐射制冷器8um-14μm发射率光谱图;
图6为辐射制冷器降温效果图;
其中:1-防风罩,2-辐射冷却器,3-绝缘外壳,4-导热片,5-温差发电器,6-发射端面,7-输入端面,8-正极引线,9-负极引线。
具体实施方式
为使实用新型实施例的目的、技术方案和优点更加清楚,下面将结合实用新型实施例的附图,对实用新型实施例的技术方案进行清楚、完整地描述。以下结合说明书附图对实用新型的技术方案做进一步的详细说明。
实施例一
如图1所示,一种基于辐射制冷的自动通断装置,包含:防风罩1,辐射冷却器2,绝缘外壳3,导热片4,温差发电器5,所述温差发电器上设置正极引线8和负极引线9;所述的防风罩与绝缘外壳围成腔体结构,所述的防风罩在大气窗口波段为透明;辐射冷却器上包含发射端面6和输入端面7,辐射冷却器的发射端面朝向防风罩且置于所述腔体中;温差发电器顶部紧贴辐射冷却器的输入端面,所述导热片设置于温差发电器底部并与外界空气接触;
温差发电器顶部与辐射冷却器的输入端面接触;导热片通过热传递将外界空气的热量传递至温差发电器底部,温差发电器底部与外界空气温度相同;
如图2所示:在夜间时,辐射冷却器发射端面通过热辐射将温差发电器顶部的热量辐射向外界空气中,此时温差发电器顶部温度低于外界空气温度;
温差发电器顶部与底部产生温差进而驱动温差发电器工作,温差发电器上正极引线和负极引线之间产生电势差,此时基于辐射制冷的自动通断装置的工作状态为通路;
在白天时,太阳光通过防风罩后辐射到辐射冷却器发射端面上,使辐射冷却器温度升高,辐射冷却器辐射的热量和吸收太阳光的热量抵消,温差发电器不能正常工作,温差发电器上正极引线和负极引线之间电势差为零,此时基于辐射制冷的自动通断装置的工作状态为断路;
阴雨天或者雾霾天气里接收太阳光辐射不足时,辐射制冷器辐射向外界的热能大于外界输入的热能,温差发电器处于工作状态,基于辐射制冷的自动通断装置的工作状态为通路。
通过一个热模型来表征设备的性能,在这个模型中,假设热电模块的冷侧是一个向上辐射的板,其净能量平衡建模为:
Figure PCTCN2020138458-appb-000001
上式中Prad是由结构辐射出去的能量,其计算公式为:
Figure PCTCN2020138458-appb-000002
其中h是普朗克常数,
Figure PCTCN2020138458-appb-000003
kB是波尔兹曼常数,c是光速,λ是工作波长。
Figure PCTCN2020138458-appb-000004
Psun为太阳能吸收功率,IAM1.5为AM1.5光谱,ε(λ,θsun)为设备的太阳吸收率,r(λ,θsun)为辐射冷却器的反射率谱,θsun为太阳入射角。
Figure PCTCN2020138458-appb-000005
是入射大气热辐射的吸收功率。
Pconv+cond(Tc,Tamb)=Ah c(Tamb-Tc)          (5)
是由于对流和传导造成的能量损失。hc=hcond+hconv是一个组合的非辐射热系数,它表示了由于辐射冷却器与外表面和邻近的空气接触而产生的传导和对流加热的集体效应。
在晚上的时候Prad>>Patm+Pconv+cond,Psun=0,则
Figure PCTCN2020138458-appb-000006
即通过辐射制冷有净功率输出,产生的温差通过温差发电器之后会有电流输出,进而点亮路灯。而在白天的时候,Psun>Prad即
Figure PCTCN2020138458-appb-000007
辐射制冷的降温效果被太阳辐射的加热效果抵消导致无净功率输出,则温差发电机无法正常工作,路灯会进入断路状态。综上,实现了白天路灯自动断路,晚上路灯有电流输入而无需储存就可以直接工作的自动通断路灯装置设计。
如图3所示,所述辐射制冷器选用优选方案,即采用离子束刻蚀法制作的SiO 2光栅。其在大气窗口的光谱有很好的选择性高发射,且制作工艺成熟。刻蚀光栅的主要步骤为涂胶,前烘,曝光,显影,刻蚀,去胶这几个主要步骤。
如图4所示,所述温差发电器是利用塞贝克效应,将热能直接转换成电能的一种发电器件。将一个p型温差电元件和一个n型温差电元件在热端用金属导体电极连接起来,在其冷端分别连接冷端电极,就构成一个温差电单体或单偶。在温差电单体开路端接入 电阻为R L的外负载,如果温差电单体的热面输入热流,在温差电单体热端和冷端之间建立了温差,则将会有电流流经电路,负载上将得到电功率I^2*R L,因而得到了热能直接转换为电能的发电器。
图5为实用新型实施例辐射制冷器在8um-14μm的发射率光谱;所述辐射制冷器在大气窗口有很好的选择性高发射率,除了在9um波长处由于SiO2材料固有属性所引起的发射率低谷外,其余波段发射率在0.95左右,因此可以实现很好的净降温功率;由上述理论计算过程推导可以得到其
Figure PCTCN2020138458-appb-000008
图6为实用新型实施例辐射制冷器随环境温度变化所具有降温效果的改变。为精确显示其降温效果,令
Figure PCTCN2020138458-appb-000009
理论计算了所述辐射制冷器降温效果随环境温度变化情况。其所产生的温差足以使温差发电器工作,在夜晚无需任何输入点亮路灯。
实施例二
一种基于辐射制冷的自动通断路灯,包括:基于辐射制冷的自动通断装置、灯、导线;所述灯、基于辐射制冷的自动通断装置通过导线连接构成闭合回路。
当在晴朗的夜空条件下,由于温差发电器冷端的辐射冷却器的高发射率,在隔绝对流前提下,会比环境温度低。因此温差发电器工作,点亮路灯。
在白天,由于辐射制冷器的降温效果被太阳辐射抵消,温差发电器不工作,路灯自动熄灭。以上实现了在无任何输入的情况下在夜晚无需存储就可以直接发电进而点亮路灯装置。
阴雨天或者雾霾天气里接收太阳光辐射不足时,辐射制冷器辐射向外界的热能大于外界输入的热能,温差发电器处于工作状态,基于辐射制冷的自动通断装置的工作状态为通路,因此白天阴雨天时本方案的路灯发光。更优方案为可将灯设置为雾灯,在阴雨天气或雾霾天气灯光穿透力更强可照明范围更大。
以上所述是实用新型的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离实用新型所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应 视为实用新型的保护范围。

Claims (6)

  1. 一种基于辐射制冷的自动通断装置,其特征在于包含:防风罩,辐射冷却器,绝缘外壳,导热片,温差发电器,所述温差发电器上设置正极引线和负极引线;所述的防风罩与绝缘外壳围成腔体结构,所述的防风罩在大气窗口波段为透明;辐射冷却器上包含发射端面和输入端面,辐射冷却器的发射端面朝向防风罩且置于所述腔体中;温差发电器顶部紧贴辐射冷却器的输入端面,所述导热片设置于温差发电器底部并与外界空气接触;
    温差发电器顶部与辐射冷却器的输入端面温度相同;温差发电器底部与外界空气温度相同;
    在夜间时,辐射冷却器发射端面通过热辐射使温差发电器顶部温度低于外界空气温度,
    温差发电器顶部与底部产生温差进而驱动温差发电器工作,温差发电器上正极引线和负极引线之间产生电势差,此时基于辐射制冷的自动通断装置的工作状态为通路;
    在白天时,太阳光通过防风罩后辐射到辐射冷却器发射端面上,使辐射冷却器温度升高,辐射冷却器辐射的热量和吸收太阳光的热量抵消,温差发电器不能正常工作,温差发电器上正极引线和负极引线之间电势差为零,此时基于辐射制冷的自动通断装置的工作状态为断路。
  2. 根据权利要求1所述的一种基于辐射制冷的自动通断装置,其特征在于:所述的导热片形状为栅格状或条形阵列,材质包括金属。
  3. 根据权利要求1所述的一种基于辐射制冷的自动通断装置,其特征在于:所述的辐射制冷器为层状结构,由分别为SiO 2和Si 3N 4两层膜组成,集成在温差发电器的顶端。
  4. 根据权利要求1所述的一种基于辐射制冷的自动通断装置,其特征在于:所述的防风罩由聚乙烯制成。
  5. 根据权利要求1所述的一种基于辐射制冷的自动通断装置,其特征在于:所述的绝缘外壳由聚苯乙烯外壳覆盖着镀铝的聚酯薄膜组成。
  6. 一种基于辐射制冷的自动通断路灯,其特征在于包括:权利要求1至5之一所述的基于辐射制冷的自动通断装置、灯、导线;所述灯、基于辐射制冷的自动通断装置通过导线连 接构成闭合回路。
PCT/CN2020/138458 2020-08-11 2020-12-23 一种基于辐射制冷的自动通断装置及路灯 WO2022032962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021655629.7 2020-08-11
CN202021655629.7U CN212277226U (zh) 2020-08-11 2020-08-11 一种基于辐射制冷的自动通断装置及路灯

Publications (1)

Publication Number Publication Date
WO2022032962A1 true WO2022032962A1 (zh) 2022-02-17

Family

ID=73899278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138458 WO2022032962A1 (zh) 2020-08-11 2020-12-23 一种基于辐射制冷的自动通断装置及路灯

Country Status (2)

Country Link
CN (1) CN212277226U (zh)
WO (1) WO2022032962A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864044B (zh) * 2020-08-11 2024-04-05 苏州大学 一种基于辐射制冷的自动通断装置及路灯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341977A (ja) * 1999-05-25 2000-12-08 Calsonic Kansei Corp 排熱発電装置
CN110107851A (zh) * 2019-06-11 2019-08-09 长沙理工大学 一种自供能路灯灯杆
CN110138277A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种基于辐射制冷和高效吸收太阳能的温差发电装置
CN111371343A (zh) * 2020-03-26 2020-07-03 国装新材料技术(江苏)有限公司 一种温差发电装置
CN111864044A (zh) * 2020-08-11 2020-10-30 苏州大学 一种基于辐射制冷的自动通断装置及路灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341977A (ja) * 1999-05-25 2000-12-08 Calsonic Kansei Corp 排熱発電装置
CN110138277A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种基于辐射制冷和高效吸收太阳能的温差发电装置
CN110107851A (zh) * 2019-06-11 2019-08-09 长沙理工大学 一种自供能路灯灯杆
CN111371343A (zh) * 2020-03-26 2020-07-03 国装新材料技术(江苏)有限公司 一种温差发电装置
CN111864044A (zh) * 2020-08-11 2020-10-30 苏州大学 一种基于辐射制冷的自动通断装置及路灯

Also Published As

Publication number Publication date
CN212277226U (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
Ghosh Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review
CN202059353U (zh) 高倍聚光太阳能光伏光热复合发电系统
Li et al. Performance analysis of passive cooling for photovoltaic modules and estimation of energy-saving potential
CN101304056B (zh) 平板式太阳能发电制热器
CN105957912A (zh) 一种多功能的光谱选择性封装材料
CN111864044B (zh) 一种基于辐射制冷的自动通断装置及路灯
Durisch et al. Novel thin film thermophotovoltaic system
CN102570918A (zh) 将照明设施的热能回收再利用的方法及其装置
CN113315416A (zh) 一种可模块组装的全天候持续发电装置
WO2022032962A1 (zh) 一种基于辐射制冷的自动通断装置及路灯
US9171984B2 (en) Optical system and method of use
CN205900562U (zh) 一种多功能的光谱选择性封装材料
Zhan et al. Enhanced performance of diurnal radiative cooling for solar cells based on a grating-textured PDMS photonic structure
CN112421989B (zh) 一种基于辐射制冷-温室效应的温差发电装置
CN115765526B (zh) 一种基于光谱调节的全天候温差发电装置及其制备方法
CN201976044U (zh) 将照明设施的热能回收再利用的装置
CN102195528A (zh) 聚光光伏与温差联合发电装置
CN206422079U (zh) 一种双重发电的半导体模块
Andreev et al. Thermophotovoltaic converters with solar powered high temperature emitters
CN101442281B (zh) 光电光热同体同步转换利用太阳能的方法及其装置
Hajji et al. A numerical modeling of hybrid photovoltaic/thermal (PV/T) collector
CN106784106B (zh) 一种双重发电的半导体模块
CN102299194A (zh) 光电/光热一体化器件
CN216904805U (zh) 一种温差发电装置及太阳能发电装置
CN213599591U (zh) 光伏光热热电水箱模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949454

Country of ref document: EP

Kind code of ref document: A1