WO2022032930A1 - 一种激光冲击层裂缺陷的超声检测方法及装置 - Google Patents

一种激光冲击层裂缺陷的超声检测方法及装置 Download PDF

Info

Publication number
WO2022032930A1
WO2022032930A1 PCT/CN2020/131587 CN2020131587W WO2022032930A1 WO 2022032930 A1 WO2022032930 A1 WO 2022032930A1 CN 2020131587 W CN2020131587 W CN 2020131587W WO 2022032930 A1 WO2022032930 A1 WO 2022032930A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
composite material
laser shock
ultrasonic signal
shock
Prior art date
Application number
PCT/CN2020/131587
Other languages
English (en)
French (fr)
Inventor
邹大鹏
范中岚
张永康
纪轩荣
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2022032930A1 publication Critical patent/WO2022032930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • G01N29/046Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks using the echo of particles imparting on a surface; using acoustic emission of particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Definitions

  • the invention belongs to the field of performance detection of composite materials, and in particular relates to an ultrasonic detection method and device for laser shock spalling defects.
  • industrial parts generally include composite components formed by bonding to meet various functions such as protection, increased strength, and bipolar formation.
  • the paint coating of the aircraft is bonded to the aircraft wing material through adhesive force
  • the semiconductor of the chip material is bonded to the base material such as copper and aluminum through epoxy resin.
  • the interfacial bonding strength defect of such composite materials has always been a difficult point to detect, which indirectly affects the service life and performance stability of components.
  • the detection method of interface bonding quality is usually mainly based on measuring the bonding force, which has difficulties in operation and large dispersion, and cannot realize real-time measurement.
  • the disadvantage of this method is also that because of the direct measurement of the adhesive force, when using the contact tensile force measurement, the surface of the sample needs to be bonded, thereby introducing a large load effect, the accuracy of the measurement results is not high, and it is impossible to Obtain the location and morphology of interfacial adhesion defects.
  • This method can usually detect existing defects at the interface, but cannot detect potential defects in the bonding interface of materials or defects in a critical state. Such defects Only in the process of use will it appear due to vibration, shock, etc., and the current commonly used ultrasonic nondestructive testing cannot be detected.
  • the invention provides an ultrasonic detection method for laser shock spalling defects, which solves the technical problem that potential defects in the bonding interface of composite materials or defects in critical state cannot be detected in the prior art.
  • An embodiment of the present invention provides an ultrasonic detection method for a laser shock spalling defect, and the ultrasonic detection method includes the following steps:
  • S1 Perform ultrasonic testing on the composite material to obtain the initial value of the ultrasonic signal
  • S4 determine whether the characteristic value of the ultrasonic signal is equal to the initial value of the ultrasonic signal
  • S7 Repeat S2-S3 and increase the power of the laser shock in S2, and judge whether the ultrasonic signal characteristic value measured by the composite material after the previous impact is the same as the ultrasonic signal characteristic value measured by the composite material after the next impact ;
  • the power setting of the laser shock in the S2 specifically includes:
  • the power of the laser shock is set at the lower limit of the acceptable threshold of the bond strength of the known material and the shock is started according to the bond strength of the known material.
  • the power setting of the laser shock in the S2 specifically includes:
  • the impact is performed according to the preset initial value as the power of the laser impact.
  • the interval between S1 and S2 also includes:
  • S101 Determine whether the initial value of the ultrasonic signal is within a preset threshold range
  • the ultrasonic detection method further comprises:
  • the ultrasonic detection method further comprises:
  • the initial value of the ultrasonic signal and the characteristic value of the ultrasonic signal both include amplitude and time.
  • the embodiment of the present invention also provides an ultrasonic testing device for laser shock spalling defects, the ultrasonic testing device includes a composite material fixture, a comprehensive testing system, a laser shock system and an ultrasonic testing system,
  • the comprehensive testing system is electrically connected to the laser shock system and the ultrasonic testing system;
  • the composite material clamp is used to clamp the composite material
  • the comprehensive testing system is used for sending a signal to the laser shock system and the ultrasonic testing system according to the above-mentioned ultrasonic testing method for a laser shock spalling defect, and processing the received data sent back by the ultrasonic testing system;
  • the laser shock system is used to perform laser shock on the composite material according to the received signal sent by the comprehensive testing system;
  • the ultrasonic testing system is used to perform ultrasonic testing on the composite material according to the received signal sent by the comprehensive testing system, and send the measured data back to the comprehensive testing system.
  • the ultrasonic testing device further comprises an XY stage and an XY stage controller;
  • the ultrasonic testing system includes an ultrasonic testing controller and a phased array ultrasonic transducer that are electrically connected to each other;
  • the XY platform controller and the ultrasonic testing controller are both electrically connected to the comprehensive testing system;
  • the laser shock system is placed above the composite material
  • the phased array ultrasonic transducer is installed on the XY platform, and the XY platform controller is used to control the XY platform to move up and down, so that the phased array ultrasonic transducer is close to the top surface or bottom surface of the composite material;
  • the phased array ultrasonic transducer is used for ultrasonic testing of composite materials
  • the ultrasonic detection controller is electrically connected to the phased array ultrasonic transducer for controlling the phased array ultrasonic transducer to perform ultrasonic detection on the composite material.
  • the laser shock system includes a laser controller and a laser source that are electrically connected to each other, and the laser controller is electrically connected to the comprehensive testing system for controlling the laser source to shock the composite material;
  • a force sensor is installed on the XY platform, and the force sensor is used to detect the adhesion force between the phased array ultrasonic transducer and the composite material;
  • the working surface of the phased array ultrasonic transducer is provided with a coupling material, and the coupling material is used for expelling air so that the phased array ultrasonic transducer is in close contact with the bottom surface or the top surface of the composite material.
  • the present invention has the following advantages:
  • the invention provides an ultrasonic detection method for laser shock spalling defects.
  • the initial value of ultrasonic signal is obtained by ultrasonic testing of composite material, the characteristic value of ultrasonic signal is measured after the composite material is subjected to laser shock, and the characteristic value of ultrasonic signal is determined by judging the characteristic value of ultrasonic signal. Whether it is equal to the initial value of the ultrasonic signal can know whether the composite material has defects.
  • the characteristic value of the ultrasonic signal is equal to the initial value of the ultrasonic signal, that is, there is no defect in the composite material, then increase the power of the laser shock to perform shock and ultrasonic testing until the ultrasonic signal features
  • the value is not equal to the initial value of the ultrasonic signal, that is, the composite material begins to have defects.
  • the bonding strength of the composite material starting to debond can be obtained, and then continue to increase the laser shock power and ultrasonic detection until the current impact after the impact.
  • the eigenvalue of the ultrasonic signal measured by the composite material is the same as the eigenvalue of the ultrasonic signal measured by the composite material after the next impact, that is, the composite material has been completely debonded at this time, the power of the laser shock for the next impact on the composite material is obtained.
  • the laser power is obtained as the bonding strength of the initial debonding, and the power intensity of the next impact is used as the bonding strength of the complete debonding, so as to realize that the defects of the bonding interface occur completely. Detection of the entire process of debonding. Further, the technical problem in the prior art that potential defects in the bonding interface of the composite material or defects in a critical state cannot be detected is solved.
  • Fig. 1 is the flow chart of the ultrasonic detection method of a kind of laser shock spallation defect provided in the embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a transmission type of an ultrasonic detection device for laser shock spallation defects provided in Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of a reflection type of an ultrasonic detection device for laser shock spallation defects according to Embodiment 2 of the present invention.
  • Embodiments of the present invention provide an ultrasonic detection method and device for laser shock spalling defects, which are used to solve the technical problem in the prior art that potential defects in the bonding interface of composite materials or defects in critical state cannot be detected.
  • an embodiment of the present invention provides an ultrasonic detection method for a laser shock spalling defect.
  • the ultrasonic detection method includes the following steps:
  • S1 Perform ultrasonic testing on the composite material to obtain the initial value of the ultrasonic signal
  • the composite material includes composite material 1 and composite material 2, composite material 1 and composite material 2 respectively represent the bonding of different materials, composite material 1 and composite material 2 are bonded, and the bonding layer is the bonding interface.
  • the composite material is initially detected by ultrasonic testing, and the initial value of the ultrasonic signal is obtained.
  • the initial value of the ultrasonic signal includes signal characteristic values such as amplitude and acoustic time.
  • the amplitude is the maximum amplitude of the effective direct wave of the sound wave propagation, so
  • the speech time is the propagation travel time of the effective direct wave of the outgoing sound wave propagation.
  • S101 Determine whether the initial value of the ultrasonic signal is within a preset threshold range
  • the preset threshold range refers to the qualified range of ultrasonic testing required by composite material manufacturing or the qualified range of ultrasonic testing of composite material manufacturing standards; that is, judging whether the initial value of the ultrasonic signal is within the preset threshold value range is to determine the composite material manufacturing standard. Whether the material meets the manufacturing requirements of the composite material before the following ultrasonic testing is performed, when the initial value of the ultrasonic signal is not within the preset threshold range, that is, a defect has occurred inside the composite material, and the composite material can be directly qualified as unqualified. For unqualified products, it is not necessary to carry out the following ultrasonic inspection, and the defect shape and defect position of the composite material can be obtained directly by methods such as phased array. When the initial value of the ultrasonic signal is within the preset threshold range, that is, the composite material meets the manufacturing requirements, so the ultrasonic inspection can be continued.
  • the power of the laser shock needs to be selected, and when the composite material is a known material, the power of the laser shock is set at the value of the bonding strength of the known material according to the bonding strength of the known material.
  • the power corresponding to the lower limit of the pass threshold starts to shock.
  • selecting the power corresponding to the lower limit of the qualified threshold of the known material bonding strength to start shock is mainly to make the composite material produce the shock as soon as possible. Defects, reduce the number of laser shocks and save energy.
  • the composite material is a workpiece of new material
  • the impact is performed according to the preset initial value as the power of the laser impact. That is, when the bonding strength of the workpiece of the new material is not very clear, a small preset initial value is set as the power of the laser shock to prevent the composite material from being impacted to the stage of debonding at the beginning.
  • the ultrasonic signal eigenvalues include eigenvalues such as amplitude and acoustic time.
  • S4 determine whether the characteristic value of the ultrasonic signal is equal to the initial value of the ultrasonic signal
  • the characteristic value of the ultrasonic signal obtained by ultrasonic testing of the composite material will change. Therefore, ultrasonic testing of the composite material can be used to analyze the internal bonding of the composite material and the change of defects. detected.
  • the characteristic value of the ultrasonic signal is not equal to the initial value of the ultrasonic signal, the composite material is defective.
  • the characteristic value of the ultrasonic signal is equal to the initial value of the ultrasonic signal, it is determined whether the composite material changes after being impacted by the laser, that is, whether the composite material has defects.
  • the characteristic value of the ultrasonic signal is not equal to the initial value of the ultrasonic signal, that is, the composite material begins to have defects, and the bonding strength at which defects begin to appear on the bonding interface of the composite material can be obtained according to the power of the laser shock at this time. Proceed to S7. And obtain the power of the current laser shock and obtain the bonding strength at which the composite material starts to debond according to the current power of the laser shock.
  • the characteristic value of the ultrasonic signal is equal to the initial value of the ultrasonic signal, that is, the composite material has no defects, that is, it is determined that the composite material has no defects and good bonding quality.
  • the composite material is ultrasonically tested to obtain the ultrasonic signal characteristic value of the ultrasonic detection after each shock is completed, until the ultrasonic signal characteristic value is not equal to the initial value of the ultrasonic signal. , that is, until the composite material begins to show defects.
  • S7 Repeat S2-S3 and increase the power of the laser shock in S2, and judge whether the ultrasonic signal characteristic value measured by the composite material after the previous impact is the same as the ultrasonic signal characteristic value measured by the composite material after the next impact ;
  • the power of the laser shock is the laser shock power when the composite material is impacted to debonding.
  • the phased array can monitor the process of composite materials from defect occurrence to debonding in real time, and obtain the defect shape and defect position of the composite material, which can further improve the function of ultrasonic inspection and help inspectors to collect more inspection information. In order to have more data analysis on the adhesion of composite materials.
  • the power of each laser shock the initial value of the ultrasonic signal and the characteristic value of each ultrasonic signal
  • the power of the laser shock is placed on the X-axis
  • the initial value of the ultrasonic signal and the characteristic value of each ultrasonic signal are placed on the Y-axis to generate the bonding strength of the composite material.
  • the performance curve can be clearly obtained from the bond strength performance curve of the composite material.
  • the change of the characteristic value of the ultrasonic signal can know the change of the internal interface of the composite material, which is beneficial to the inspectors. Adhesion analysis of composite materials.
  • the strength of the laser shock can be directly obtained according to the power of the laser shock that impacts the composite material in the next time, so as to determine the bonding strength of the composite material. Enables the ultimate quality inspection of the bond strength of newly developed or newly grown composite materials, and the qualification of workpieces that have used composite materials Provides an efficient, continuous, real-time, less-disturbance form of measurement, especially for composite materials The detection of workpieces is non-destructive.
  • the ultrasonic detection method provided in this embodiment has the characteristics of high efficiency, rapidity, and automaticity, and realizes the detection of critical defects or the initial state of defects. Moreover, with the continuous incremental power laser shock, it can realize the whole-process detection of new product performance, and the realization of in-use detection. Qualification testing within the product force and vibration range of the process.
  • the ultrasonic detection method provided in this embodiment has high detection efficiency, the laser impact time can be controlled within ms, and the ultrasonic detection can be controlled within seconds, plus the intermediate moving positioning time, so one impact plus detection can be about 3-5 seconds When the time is completed, the final total time can be calculated according to the increment of the laser shock power, which is much more efficient than the existing adhesive force test of the entire fabrication and measurement process.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present invention also provides an ultrasonic testing device for laser shock spalling defects, the ultrasonic testing device includes a composite material fixture 1, a comprehensive testing system 9, a laser shock system and an ultrasonic testing system,
  • the comprehensive testing system 9 is electrically connected to the laser shock system and the ultrasonic testing system;
  • the composite material fixture 1 is used for clamping composite materials
  • the comprehensive testing system 9 is configured to send signals to the laser shock system and the ultrasonic testing system according to one of the above ultrasonic testing methods for laser shock spalling defects, and process the received data sent back by the ultrasonic testing system;
  • the laser shock system is used to perform laser shock on the composite material according to the received signal sent by the comprehensive testing system 9;
  • the ultrasonic testing system is used to perform ultrasonic testing on the composite material according to the received signal sent by the comprehensive testing system 9 , and send the measured data back to the comprehensive testing system 9 .
  • the ultrasonic testing device further includes an XY platform 7 and an XY platform controller 8;
  • the ultrasonic testing system includes an ultrasonic testing controller 5 and a phased array ultrasonic transducer 4 that are electrically connected to each other;
  • the XY platform controller 8 and the ultrasonic detection controller 5 are both electrically connected to the comprehensive testing system 9;
  • the laser shock system is placed above the composite material
  • the phased array ultrasonic transducer 4 is installed on the XY platform 7, and the XY platform controller 8 is used to control the XY platform 7 to move up and down, so that the phased array ultrasonic transducer 4 is close to the top surface or bottom surface of the composite material;
  • phased array ultrasonic transducer 4 when the phased array ultrasonic transducer 4 is close to the top surface of the composite material for testing, that is, when the phased array ultrasonic transducer 4 is on the same side as the laser shock system, it is a reflective ultrasonic test. Way.
  • phased array ultrasonic transducer 4 When the phased array ultrasonic transducer 4 is closely attached to the bottom surface of the composite material for testing, the phased array ultrasonic transducer 4 is on a different side from the laser shock system, and the transmission ultrasonic measurement method is used.
  • the phased array ultrasonic transducer 4 is used for ultrasonic testing of composite materials
  • the ultrasonic detection controller 5 is electrically connected to the phased array ultrasonic transducer 4 for controlling the phased array ultrasonic transducer 4 to perform ultrasonic detection on the composite material.
  • the laser shock system includes a laser controller 3 and a laser source 2 that are electrically connected to each other, and the laser controller 3 is electrically connected to the comprehensive testing system 9 for controlling the laser source 2 to impact the composite material;
  • a force sensor 6 is installed on the XY platform 7, and the force sensor 6 is used to detect the adhesion force between the phased array ultrasonic transducer 4 and the composite material; the force sensor is electrically connected to the comprehensive testing system,
  • the phased array ultrasonic transducer 4 is preferably a Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4.
  • the coupling material 41 is preferably glycerin.
  • the ultrasonic testing controller 5 is preferably a Robust 256-channel phased array ultrasonic testing board.
  • the comprehensive testing system 9 is preferably a host computer, and the comprehensive measurement and control system can display the results of each ultrasonic test by imaging through the connected display screen.
  • a coupling material 41 is provided on the working surface of the phased array ultrasonic transducer 4, and the coupling material 41 is used for expelling air so that the phased array ultrasonic transducer 4 is closely attached to the bottom surface or the top surface of the composite material.
  • the transmission ultrasonic testing process is as follows:
  • the XY stage controller 8 controls the XY stage 7 to carry the Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4, and the movement reaches the aluminum/ Adhesive/silicon structural composite bottom;
  • the composite material fixture 1 and the XY platform 7 are accurately controlled, so that the Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4 reaches the bottom surface of the aluminum/adhesive/silicon structure composite material and sticks tightly, and the force sensor 6 detects the sticking tightening force to ensure effective contact between the aluminum/adhesive/silicon structural composite material and the phased array ultrasonic transducer 4 .
  • the Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4 has glycerol as the coupling material 41 on the working surface, and the coupling material 41 can exclude air and stick to the bottom surface of the aluminum/adhesive/silicon structural composite material.
  • the reflection type ultrasonic detection device is in which the working surface of the phased array ultrasonic transducer 4 is attached to the top surface of the aluminum/adhesive/silicon structural composite material.
  • the Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4 is controlled by the Robust 256-channel phased array ultrasonic detection board to complete an excitation and reception process, and the initial state detection of the aluminum/adhesive/silicon structural composite material is completed.
  • the comprehensive measurement and control system judges that the detection is completed, and sends an instruction to the XY platform controller 8 to control the XY platform 7 to return and reset with the Doppler D3 7.5L640.6*10 phased array ultrasonic transducer 4.
  • the comprehensive measurement and control system sends out instructions to make the laser controller 3 control the laser source 2 to emit laser shock to the aluminum/adhesive/silicon structure composite material. After the shock, it will be accurately controlled again through the composite material fixture 1 and the XY platform 7, so that the Doppler D3 7.5L640 .6*10 phased array ultrasonic transducer 4 reaches the bottom surface of the aluminum/adhesive/silicon structural composite material and sticks to the bottom for ultrasonic testing. Based on the comprehensive measurement and control system to determine that the detection is completed, the XY platform controller 8 controls the XY platform 7 to carry the Doppler D3 7.5L640.6*10 Phased array ultrasonic transducer 4 is retracted and reset.
  • the comprehensive measurement and control system controls the laser controller 3 and the laser source 2 to emit laser to impact the composite material. According to a certain power increment principle, the impact power is increased and the impact is performed. After each incremental impact, an ultrasonic test is completed until The aluminum/adhesive/silicon structural composite was completely debonded. During the measurement process, the comprehensive measurement and control system will image and display the results of each ultrasonic inspection, and visually observe the formation process of defects or debonding.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division of an ultrasonic detection method for laser shock spallation defects.
  • multiple units or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种激光冲击层裂缺陷的超声检测方法及装置,通过对复合材料进行超声检测获取超声信号初始值,对复合材料进行激光冲击后测得超声信号的特征值,通过判断超声信号特征值是否等于超声信号初始值,当超声信号特征值等于超声信号初始值时,则增大激光冲击的功率进行冲击和超声检测,直到超声信号特征值不等于超声信号初始值,再继续增大激光的冲击功率和超声检测直到当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,则获取后一次冲击复合材料的激光冲击的功率;根据后一次冲击复合材料的激光冲击的功率,获取复合材料的粘接强度,从而实现粘接界面的缺陷发生到脱粘过程的检测。

Description

一种激光冲击层裂缺陷的超声检测方法及装置 技术领域
本发明属于复合材料的性能检测领域,尤其涉及一种激光冲击层裂缺陷的超声检测方法及装置。
背景技术
当前工业零部件普遍包含通过粘接方式形成复合材料元件,以满足各种防护、增加强度、形成双极等功能。如飞机的油漆涂层通过粘接力与飞机机翼材料粘接,芯片材料的半导体通过环氧树脂与铜铝等基底材料粘接等。这类复合材料的界面粘接强度缺陷一直以来是检测的难点,间接的影响了零部件的使用寿命和性能稳定。当前,对界面粘接质量检测方法通常以测量粘接力为主,存在操作困难和离散性大,也无法实现实时测量。这种方法的不足之处还表现在因为直接测量粘接力,采用接触式拉力测量时,需要对样品进行表面粘接,从而引入较大的负载效应,测量的结果准确性不高,而且无法获得界面粘接缺陷的位置和形态。另一方面,有直接采用超声进行测量的方法,这种方法对界面已经存在的缺陷通常能够检测出来,但是对于材料的粘合界面的潜在缺陷或者处于临界状态的缺陷无法检测出来,这种缺陷只有在使用过程中因为振动、冲击等,才会显现出来,而采用当前常用的超声无损检测是无法实现检测的。
现有技术中,对于复合材料的粘合界面,存在潜在缺陷或者处于临界状态的缺陷无法检测出来的技术问题。
发明内容
本发明提供了一种激光冲击层裂缺陷的超声检测方法,解决了现有技术中存在复合材料的粘合界面的潜在缺陷或者处于临界状态的缺陷无法检测出来的技术问题。
本发明的实施例提供了的一种激光冲击层裂缺陷的超声检测方法,所述超声检测方法包括如下步骤:
S1:对复合材料进行超声检测,获取超声信号初始值;
S2:对复合材料进行激光冲击,获取冲击后的复合材料;
S3:对冲击后的复合材料进行超声检测,获取超声信号特征值;
S4:判断超声信号特征值是否等于超声信号初始值;
S5:当超声信号特征值不等于超声信号初始值时,则获取当前激光冲击的功率并根据当前激光冲击的功率获取复合材料开始脱粘的粘接强度以及执行S7;
S6:当超声信号特征值等于超声信号初始值时,则重复执行S2-S6并增大S2中的激光冲击的功率;
S7:重复执行S2-S3并增大S2中的激光冲击的功率并判断前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值是否相同;
S8:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值不相同时,则重复执行S7;
S9:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,则获取后一次冲击复合材料的激光冲击的功率;
S10:根据后一次冲击复合材料的激光冲击的功率,获取复合材料的粘接强度。
优选地,所述S2中的激光冲击的功率设定具体包括:
当复合材料为已知材料时,则根据已知材料的粘合强度将激光冲击的功率设置在所述已知材料粘合强度的合格阈值的下限开始进行冲击。
优选地,所述S2中的激光冲击的功率设定具体包括:
当复合材料为新材料的工件时,则根据预设初始值作为激光冲击的功率进行冲击。
优选地,所述S1和S2之间还包括:
S101:判断超声信号初始值是否在预设阈值范围内;
S102:当超声信号初始值不在预设阈值范围内时,则确定复合材料的质量;
S103:当超声信号初始值在预设阈值范围内时,则执行S2。
优选地,所述超声检测方法还包括:
S11:根据相控阵列对复合材料进行检测,获取复合材料的缺陷形状和缺陷位置。
优选地,所述超声检测方法还包括:
S12:根据各激光冲击的功率、超声信号初始值和各超声信号特征值,生成复合材料的粘接强度性能曲线。
优选地,所述超声信号初始值和超声信号特征值均包括幅值和声时。
本发明的实施例还提供了一种激光冲击层裂缺陷的超声检测装置,所述超声检测装置包括复合材料夹具、综合测试系统、激光冲击系统和超声检测系统,
所述综合测试系统电连接激光冲击系统和超声检测系统;
所述复合材料夹具用于夹持复合材料;
所述综合测试系统用于根据上述一种激光冲击层裂缺陷的超声检测方法发送信号至激光冲击系统和超声检测系统并对接收到的超声检测系统发回的数据进行处理;
所述激光冲击系统用于根据接收到的综合测试系统发送的信号对复合材料进行激光冲击;
所述超声检测系统用于根据接收到的综合测试系统发送的信号对复合材料进行超声检测,并将测得的数据发回至综合测试系统。
优选地,所述超声检测装置还包括XY平台和XY平台控制器;
所述超声检测系统包括相互电连接的超声检测控制器和相控阵列超声换能器;
所述XY平台控制器和超声检测控制器均电连接综合测试系统;
所述激光冲击系统置于复合材料的上方;
所述相控阵列超声换能器安装在XY平台上,XY平台控制器用于控制XY平台上下移动,使相控阵列超声换能器贴紧复合材料的顶面或底面;
所述相控阵列超声换能器用于对复合材料进行超声检测;
所述超声检测控制器电连接相控阵列超声换能器,用于控制相控阵列超 声换能器对复合材料进行超声检测。
优选地,所述激光冲击系统包括相互电连接的激光控制器和激光源,所述激光控制器与综合测试系统电连接,用于控制激光源对复合材料进行冲击;
所述XY平台上安装有力传感器,所述力传感器用于检测相控阵列超声换能器与复合材料的贴紧力;
所述相控阵列超声换能器的工作面上具有耦合材料,所述耦合材料用于排除空气使相控阵列超声换能器贴紧在复合材料底面或顶面上。
从以上技术方案可以看出,本发明具有以下优点:
本发明提供了一种激光冲击层裂缺陷的超声检测方法,通过对复合材料进行超声检测获取超声信号初始值,对复合材料进行激光冲击后测得超声信号的特征值,通过判断超声信号特征值是否等于超声信号初始值能够知道复合材料是否出现缺陷,当超声信号特征值等于超声信号初始值时,即复合材料未出现缺陷,则增大激光冲击的功率进行冲击和超声检测,直到超声信号特征值不等于超声信号初始值,即复合材料开始出现缺陷,通过获取当前激光冲击的功率得到复合材料开始脱粘的粘接强度,再继续增大激光的冲击功率和超声检测直到当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,即此时复合材料已经完全脱粘了,则获取后一次冲击复合材料的激光冲击的功率;第一次发现脱粘信号特征值的时候获取激光功率,作为开始脱粘的粘接强度,后一次冲击的功率强度作为完全脱粘的粘接强度,从而实现粘接界面的缺陷发生到完全脱粘整个过程的检测。进而解决了现有技术中存在复合材料的粘合界面的潜在缺陷或者处于临界状态的缺陷无法检测出来的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例一提供的一种激光冲击层裂缺陷的超声检测方法的 流程图;
图2为本发明实施例二提供的一种激光冲击层裂缺陷的超声检测装置的透射式的结构示意图;
图3为本发明实施例二提供的一种激光冲击层裂缺陷的超声检测装置的反射式的结构示意图。
对应说明书附图内的附图标记参考如下:
1、复合材料夹具;2、激光源;3、激光控制器;4、相控阵列超声换能器;41、耦合材料;5、超声检测控制器;6、力传感器;7、XY平台;8、XY平台控制器;9、综合测试系统。
具体实施方式
本发明实施例提供了一种激光冲击层裂缺陷的超声检测方法及装置,用于解决现有技术中存在复合材料的粘合界面的潜在缺陷或者处于临界状态的缺陷无法检测出来的技术问题。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
请参阅图1,本发明实施例提供的一种激光冲击层裂缺陷的超声检测方法,所述超声检测方法包括如下步骤:
S1:对复合材料进行超声检测,获取超声信号初始值;
所述复合材料包括复合材料一和复合材料二,复合材料一和复合材料二分别代表不同的材料相粘合,复合材料一和复合材料二相粘合,粘合层为粘合界面。
通过超声检测对复合材料进行初始检测,得到超声信号初始值,所述超声信号初始值包括幅值和声时等信号特征值,所述幅值为出声波传播有效直达波的最大幅值,所述声时为出声波传播有效直达波的传播走时。
其中,
S101:判断超声信号初始值是否在预设阈值范围内;
S102:当超声信号初始值不在预设阈值范围内时,则确定复合材料的质量;
S103:当超声信号初始值在预设阈值范围内时,则执行S2。
其中,所述预设阈值范围指的是在复合材料制造要求的超声检测的合格范围或复合材料制造标准的超声检测合格范围;即判断超声信号初始值是否在预设阈值范围内是为了确定复合材料的在进行下面的超声检测前是否符合复合材料制造要求,当超声信号初始值不在预设阈值范围内时,即复合材料的内部已经出现了缺陷,此时可以直接将复合材料定性为不合格产品,对于不合格的产品就没有必要进行下面的超声检测了,直接可以通过相控阵列的等的方法可以得到复合材料的缺陷形状和缺陷位置。当超声信号初始值在预设阈值范围内时,即复合材料符合制造的要求,因此可以继续进行超声检测。
S2:对复合材料进行激光冲击,获取冲击后的复合材料;
其中,在对于激光冲击的时候,需要选择激光冲击的功率,当复合材料为已知材料时,则根据已知材料的粘合强度将激光冲击的功率设置在所述已知材料粘合强度的合格阈值下限对应的功率开始进行冲击。对于已经知道的特别是使用过一段时间后的复合材料进行激光冲击的时候,选择在所述已知材料粘合强度的合格阈值下限对应的功率开始进行冲击主要是为了能够尽快的使复合材料产生缺陷,减少激光冲击的次数,节约能源。当复合材料为新材料的工件时,则根据预设初始值作为激光冲击的功率进行冲击。即对于新材料的工件对于粘合强度不是很清楚的时候,设定较小的预设初始值作为激光冲击的功率,以防止一开始就将复合材料冲击至脱粘的阶段。
S3:对冲击后的复合材料进行超声检测,获取超声信号特征值;
所述超声信号特征值包括幅值和声时等特征值。
S4:判断超声信号特征值是否等于超声信号初始值;
在复合材料存在或出现缺陷的时候,通过对复合材料进行超声检测,得到的超声信号特征值会发生变化,因此,通过对复合材料进行超声检测能够将复合材料内部粘接情况和缺陷的变化情况检测出来。通常,在超声信号特 征值不等于超声信号初始值时,即复合材料出现缺陷。通过判断超声信号特征值是否等于超声信号初始值来确定在受到激光冲击后复合材料是否发生改变,即复合材料是否出现缺陷。
S5:当超声信号特征值不等于超声信号初始值时,则获取当前激光冲击的功率并根据当前激光冲击的功率获取复合材料开始脱粘的粘接强度以及执行S7;
当超声信号特征值不等于超声信号初始值时,即复合材料开始出现缺陷,可以根据此时激光冲击的功率得到复合材料的粘合界面开始出现缺陷的粘接强度。继续执行S7。并且获取当前激光冲击的功率并根据当前激光冲击的功率获取复合材料开始脱粘的粘接强度。
S6:当超声信号特征值等于超声信号初始值时,则重复执行S2-S6并增大S2中的激光冲击的功率;
当超声信号特征值等于超声信号初始值时,即复合材料未出现缺陷,亦即确定复合材料无缺陷、粘合质量好。再继续增大激光冲击的功率对复合材料进行冲击,冲击完成后对复合材料进行超声检测,得到每次冲击完成后超声检测的超声信号特征值,直至当超声信号特征值不等于超声信号初始值时,即复合材料开始出现缺陷的时候为止。
S7:重复执行S2-S3并增大S2中的激光冲击的功率并判断前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值是否相同;
继续对复合材料执行S2和S3,即对复合材料进行激光冲击和超声检测,当复合材料出现缺陷后,继续复合材料继续增大激光冲击的功率进行冲击,会将复合材料最后冲击到超过复合材料的粘接临界状态,直至复合材料完全脱粘,此时通过超声测量得到的超声信号特征值是不发生改变了,即通过判断前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值是否相同,来判断复合材料是否完全脱粘了。
S8:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值不相同时,则重复执行S7;
当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复 合材料测得的超声信号特征值不相同时,即复合材料还在进一步扩大缺陷,还未到复合材料脱粘的临界点,因此,继续加大对于复合材料的冲击,直至复合材料脱粘的时候。
S9:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,则获取后一次冲击复合材料的激光冲击的功率;
当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,即复合材料发生了脱粘的情况,此时获取后一次冲击复合材料的激光冲击的功率即将复合材料冲击到脱粘时的激光冲击功率。
S10:根据后一次冲击复合材料的激光冲击的功率,获取复合材料的粘接强度。
S11:根据相控阵列对复合材料进行检测,获取复合材料的缺陷形状和缺陷位置。
通过相控阵列能够实时的对复合材料从发生缺陷到脱粘的过程进行监测,得到复合材料的缺陷形状和缺陷位置,能够进一步提升超声检测的功能,有利于检测人员采集更多的检测信息,以便对复合材料的粘接性具有更多的数据分析。
S12:根据各激光冲击的功率、超声信号初始值和各超声信号特征值,生成复合材料的粘接强度性能曲线。
根据各激光冲击的功率、超声信号初始值和各超声信号特征值,激光冲击的功率置于X轴,将超声信号初始值和各超声信号特征值置于Y轴,生成复合材料的粘接强度性能曲线,通过复合材料的粘接强度性能曲线能够清晰的得到,在激光冲击功率发生变化的时候,超声信号特征值发生的变化,即可以知道复合材料内部界面发生的变化,能够有利于检测人员对于复合材料对于粘接性的分析。
根据后一次冲击复合材料的激光冲击的功率,能够直接得到激光冲击的强度,从而确定复合材料的粘接强度。实现了对新开发的或新生长的复合材料的粘接强度极限质量检验、对已经使用复合材料工件的合格性进行检验提 供一种高效、连续、实时、少扰动形式的测量,尤其是复合材料工件的检测,具有无破坏性的特点。
本实施例提供的超声检测方法具有高效、快速、自动的特性,实现了临界缺陷或者缺陷初始状态的检测,而且就连续增量功率激光冲击,可以实现新产品性能全过程检测、以及实现在使用过程的产品受力及振动范围内的合格性检测。本实施例提供的超声检测方法检测效率高,激光冲击时间可以控制在ms级以内,超声检测可以控制在秒级以内,加上中间移动定位时间,因此一次冲击加上检测可以3-5秒左右时间完成,最终总时间可以根据激光冲击功率的增量来计算,比已有的粘接力测试整个制作和测量过程的效率大大提高。实现了粘接界面的缺陷发生到脱粘过程的检测,得到最终复合材料的粘接强度。进而解决了现有技术中存在复合材料的粘合界面的潜在缺陷或者处于临界状态的缺陷无法检测出来的技术问题。
实施例二:
本发明还提供了一种激光冲击层裂缺陷的超声检测装置,所述超声检测装置包括复合材料夹具1、综合测试系统9、激光冲击系统和超声检测系统,
所述综合测试系统9电连接激光冲击系统和超声检测系统;
所述复合材料夹具1用于夹持复合材料;
所述综合测试系统9用于根据上述中的一种激光冲击层裂缺陷的超声检测方法发送信号至激光冲击系统和超声检测系统并对接收到的超声检测系统发回的数据进行处理;
所述激光冲击系统用于根据接收到的综合测试系统9发送的信号对复合材料进行激光冲击;
所述超声检测系统用于根据接收到的综合测试系统9发送的信号对复合材料进行超声检测,并将测得的数据发回至综合测试系统9。
其中,所述超声检测装置还包括XY平台7和XY平台控制器8;
所述超声检测系统包括相互电连接的超声检测控制器5和相控阵列超声换能器4;
所述XY平台控制器8和超声检测控制器5均电连接综合测试系统9;
所述激光冲击系统置于复合材料的上方;
所述相控阵列超声换能器4安装在XY平台7上,XY平台控制器8用于控制XY平台7上下移动,使相控阵列超声换能器4贴紧复合材料的顶面或底面;
如图3所示,当相控阵列超声换能器4紧贴复合材料顶面进行测试的时候,即相控阵列超声换能器4与激光冲击系统同侧的时候,为反射式的超声测试方式。
当相控阵列超声换能器4紧贴复合材料底面进行测试的时候,相控阵列超声换能器4与激光冲击系统不同侧,则为透射式超声测量方式。
所述相控阵列超声换能器4用于对复合材料进行超声检测;
所述超声检测控制器5电连接相控阵列超声换能器4,用于控制相控阵列超声换能器4对复合材料进行超声检测。
其中,所述激光冲击系统包括相互电连接的激光控制器3和激光源2,所述激光控制器3与综合测试系统9电连接,用于控制激光源2对复合材料进行冲击;
所述XY平台7上安装有力传感器6,所述力传感器6用于检测相控阵列超声换能器4与复合材料的贴紧力;所述力传感器电连接综合测试系统,
所述相控阵列超声换能器4优选为Doppler D3 7.5L640.6*10相控阵列超声换能器4。
所述耦合材料41优选为甘油。
所述超声检测控制器5优选为Robust 256通道相控阵超声检测板卡。
综合测试系统9优选为主机,可通过连接的显示屏将综合测控系统将每次超声检测结果成像显示出来。
所述相控阵列超声换能器4的工作面上具有耦合材料41,所述耦合材料41用于排除空气使相控阵列超声换能器4贴紧在复合材料底面或顶面上。
以铝/胶粘剂/硅结构复合材料为例进行透射式的超声检测过程如下:
将铝/胶粘剂/硅结构复合材料安装在复合材料夹具1上后,XY平台控制器8控制XY平台7带着Doppler D3 7.5L640.6*10相控阵列超声换能器4,运动到达铝/胶粘剂/硅结构复合材料底部;
通过复合材料夹具1和XY平台7进行准确控制,使得Doppler D3 7.5L640.6*10相控阵列超声换能器4到达铝/胶粘剂/硅结构复合材料底面并且 贴紧,通过力传感器6检测贴紧力,保证铝/胶粘剂/硅结构复合材料与相控阵列超声换能器4进行有效接触。
Doppler D3 7.5L640.6*10相控阵列超声换能器4工作面上具有甘油作为耦合材料41,所述耦合材料41能够排除空气贴紧在铝/胶粘剂/硅结构复合材料底面。相较于透射式的超声检测方式,反射式的超声检测装置是相控阵列超声换能器4工作面贴紧铝/胶粘剂/硅结构复合材料的顶面。
通过Robust 256通道相控阵超声检测板卡控制Doppler D3 7.5L640.6*10相控阵列超声换能器4完成一个激发和接收过程,完成铝/胶粘剂/硅结构复合材料的初始状态检测,基于综合测控系统判断检测完毕,发指令给XY平台控制器8控制XY平台7带着Doppler D3 7.5L640.6*10相控阵列超声换能器4退回,复位。
综合测控系统发出指令使激光控制器3控制激光源2发射激光冲击将铝/胶粘剂/硅结构复合材料,冲击结束后,重新通过复合材料夹具1和XY平台7进行准确控制,使得Doppler D3 7.5L640.6*10相控阵列超声换能器4到达铝/胶粘剂/硅结构复合材料底面并且贴紧进行超声测试,基于综合测控系统判断检测完毕后,XY平台控制器8控制XY平台7带着Doppler D3 7.5L640.6*10相控阵列超声换能器4退回,复位。综合测控系统控制激光控制器3和激光源2发射激光冲击复合材料,按照一定的功率递增增量原则,增大冲击功率,进行冲击,且每次增量冲击一次后,完成一次超声检测,直至铝/胶粘剂/硅结构复合材料完全脱粘。测量过程中,综合测控系统将每次超声检测结果成像显示,直观观察缺陷或者脱粘的形成过程。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种激光冲击层裂缺陷的超声检测方法逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。 另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述超声检测方法包括如下步骤:
    S1:对复合材料进行超声检测,获取超声信号初始值;
    S2:对复合材料进行激光冲击,获取冲击后的复合材料;
    S3:对冲击后的复合材料进行超声检测,获取超声信号特征值;
    S4:判断超声信号特征值是否等于超声信号初始值;
    S5:当超声信号特征值不等于超声信号初始值时,则获取当前激光冲击的功率并根据当前激光冲击的功率获取复合材料开始脱粘的粘接强度以及执行S7;
    S6:当超声信号特征值等于超声信号初始值时,则重复执行S2-S6并增大S2中的激光冲击的功率;
    S7:重复执行S2-S3并增大S2中的激光冲击的功率并判断前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值是否相同;
    S8:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值不相同时,则重复执行S7;
    S9:当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,则获取后一次冲击复合材料的激光冲击的功率;
    S10:根据后一次冲击复合材料的激光冲击的功率,获取复合材料的粘接强度。
  2. 根据权利要求1所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述S2中的激光冲击的功率设定具体包括:
    当复合材料为已知材料时,则根据已知材料的粘合强度将激光冲击的功率设置在已知材料粘合强度的合格阈值下限对应的功率开始进行冲击。
  3. 根据权利要求2所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述S2中的激光冲击的功率设定具体包括:
    当复合材料为新材料的工件时,则根据预设初始值作为激光冲击的功率进行冲击。
  4. 根据权利要求3所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述S1和S2之间还包括:
    S101:判断超声信号初始值是否在预设阈值范围内;
    S102:当超声信号初始值不在预设阈值范围内时,则确定复合材料的质量;
    S103:当超声信号初始值在预设阈值范围内时,则执行S2。
  5. 根据权利要求4所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述超声检测方法还包括:
    S11:根据相控阵列对复合材料进行检测,获取复合材料的缺陷形状和缺陷位置。
  6. 根据权利要求5所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述超声检测方法还包括:
    S12:根据各激光冲击的功率、超声信号初始值和各超声信号特征值,生成复合材料的粘接强度性能曲线。
  7. 根据权利要求6所述的一种激光冲击层裂缺陷的超声检测方法,其特征在于,所述超声信号初始值和超声信号特征值均包括幅值和声时。
  8. 一种激光冲击层裂缺陷的超声检测装置,其特征在于,所述超声检测装置包括复合材料夹具、综合测试系统、激光冲击系统和超声检测系统,
    所述综合测试系统电连接激光冲击系统和超声检测系统;
    所述复合材料夹具用于夹持复合材料;
    所述综合测试系统用于根据权利要求1-7中的一种激光冲击层裂缺陷的超声检测方法发送信号至激光冲击系统和超声检测系统并对接收到的超声检测系统发回的数据进行处理;
    所述激光冲击系统用于根据接收到的综合测试系统发送的信号对复合材料进行激光冲击;
    所述超声检测系统用于根据接收到的综合测试系统发送的信号对复合材料进行超声检测,并将测得的数据发回至综合测试系统。
  9. 根据权利要求8所述的一种激光冲击层裂缺陷的超声检测装置,其特征在于,所述超声检测装置还包括XY平台和XY平台控制器;
    所述超声检测系统包括相互电连接的超声检测控制器和相控阵列超声换能器;
    所述XY平台控制器和超声检测控制器均电连接综合测试系统;
    所述激光冲击系统置于复合材料的上方;
    所述相控阵列超声换能器安装在XY平台上,XY平台控制器用于控制XY平台上下移动,使相控阵列超声换能器贴紧复合材料的顶面或底面;
    所述相控阵列超声换能器用于对复合材料进行超声检测;
    所述超声检测控制器电连接相控阵列超声换能器,用于控制相控阵列超声换能器对复合材料进行超声检测。
  10. 根据权利要求9所述的一种激光冲击层裂缺陷的超声检测装置,其特征在于,所述激光冲击系统包括相互电连接的激光控制器和激光源,所述激光控制器与综合测试系统电连接,用于控制激光源对复合材料进行冲击;
    所述XY平台上安装有力传感器,所述力传感器电连接综合测试系统,所述力传感器用于检测相控阵列超声换能器与复合材料的贴紧力;
    所述相控阵列超声换能器的工作面上具有耦合材料,所述耦合材料用于排除空气使相控阵列超声换能器贴紧在复合材料底面或顶面上。
PCT/CN2020/131587 2020-08-12 2020-11-25 一种激光冲击层裂缺陷的超声检测方法及装置 WO2022032930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010806113.6A CN111948288A (zh) 2020-08-12 2020-08-12 一种激光冲击层裂缺陷的超声检测方法及装置
CN202010806113.6 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022032930A1 true WO2022032930A1 (zh) 2022-02-17

Family

ID=73332827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131587 WO2022032930A1 (zh) 2020-08-12 2020-11-25 一种激光冲击层裂缺陷的超声检测方法及装置

Country Status (2)

Country Link
CN (1) CN111948288A (zh)
WO (1) WO2022032930A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948288A (zh) * 2020-08-12 2020-11-17 广东工业大学 一种激光冲击层裂缺陷的超声检测方法及装置
CN114509384A (zh) * 2022-02-18 2022-05-17 重庆交通大学 用于不同复合材料界面结合力的激光冲击波检测装置及其最优激光冲击距离计算方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278932A (ja) * 1988-09-14 1990-03-19 Nec Corp 成膜付着力測定装置
CN101101277A (zh) * 2007-08-10 2008-01-09 华南理工大学 一种高清晰焊缝超声成像无损检测方法及检测系统
JP2013217791A (ja) * 2012-04-10 2013-10-24 Sumitomo Bakelite Co Ltd 界面強度の評価方法
CN109917007A (zh) * 2019-04-18 2019-06-21 广东工业大学 一种复合材料胶接界面结合强度的检测方法及设备
CN109916744A (zh) * 2019-04-18 2019-06-21 广东工业大学 一种焊点与基板拉伸强度的检测方法和设备
CN110361324A (zh) * 2019-08-13 2019-10-22 西安空天能源动力智能制造研究院有限公司 一种结合激光冲击波和兰姆波的复合材料结合力在线快速检测装置及方法
CN110361323A (zh) * 2019-07-30 2019-10-22 西安空天能源动力智能制造研究院有限公司 一种基于传感器单元阵列的激光冲击波复合材料结合力检测装置及方法
CN111948288A (zh) * 2020-08-12 2020-11-17 广东工业大学 一种激光冲击层裂缺陷的超声检测方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765861B2 (en) * 2002-11-06 2010-08-03 Nxp B.V. Method of adhesion measurement at the interface between layers
US10048230B2 (en) * 2013-11-14 2018-08-14 The Boeing Company Structural bond inspection
CN103743817B (zh) * 2014-01-10 2017-06-09 中国矿业大学 一种低频超声换能器阵列耦合检测装置
CN103901108A (zh) * 2014-03-31 2014-07-02 华南理工大学 一种复合材料界面脱粘的相控阵超声波检测方法
CN107561004B (zh) * 2017-09-25 2020-05-12 中国人民解放军空军工程大学 一种基于激光冲击波的复合材料粘接力在线快速检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278932A (ja) * 1988-09-14 1990-03-19 Nec Corp 成膜付着力測定装置
CN101101277A (zh) * 2007-08-10 2008-01-09 华南理工大学 一种高清晰焊缝超声成像无损检测方法及检测系统
JP2013217791A (ja) * 2012-04-10 2013-10-24 Sumitomo Bakelite Co Ltd 界面強度の評価方法
CN109917007A (zh) * 2019-04-18 2019-06-21 广东工业大学 一种复合材料胶接界面结合强度的检测方法及设备
CN109916744A (zh) * 2019-04-18 2019-06-21 广东工业大学 一种焊点与基板拉伸强度的检测方法和设备
CN110361323A (zh) * 2019-07-30 2019-10-22 西安空天能源动力智能制造研究院有限公司 一种基于传感器单元阵列的激光冲击波复合材料结合力检测装置及方法
CN110361324A (zh) * 2019-08-13 2019-10-22 西安空天能源动力智能制造研究院有限公司 一种结合激光冲击波和兰姆波的复合材料结合力在线快速检测装置及方法
CN111948288A (zh) * 2020-08-12 2020-11-17 广东工业大学 一种激光冲击层裂缺陷的超声检测方法及装置

Also Published As

Publication number Publication date
CN111948288A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022032930A1 (zh) 一种激光冲击层裂缺陷的超声检测方法及装置
CN107561004B (zh) 一种基于激光冲击波的复合材料粘接力在线快速检测方法
CA2581691C (en) Laminate material testing method and systems
CN103245729B (zh) 一种焊缝内部缺陷的检测方法和装置
WO2020057270A1 (zh) 材料微裂纹扩展尺寸的超声无损检测方法
JP5705862B2 (ja) 留め具の締まりばめを検証するための超音波法
CN104458910A (zh) 一种风力机叶片壳体与腹板粘接缺陷的无损检测方法
US4538462A (en) Adhesive bond integrity evaluation method
Guo et al. Lamb wave propagation in composite laminates and its relationship with acousto-ultrasonics
US11733210B2 (en) Ultrasonic detection and tensile calibration test method for bonding strength grade
CN109387564B (zh) 一种基于锂枝晶生长的锂离子电池在线检测方法及装置
Allin et al. Adhesive disbond detection of automotive components using first mode ultrasonic resonance
JPH09243584A (ja) 構造物の一区域の試験及び検査を行う装置及び方法
KR20160038493A (ko) 음향 공진 비파괴 검사 시스템
CN108802202A (zh) 一种超声波串列探头装置及方法
JP2002055089A (ja) トンネル診断装置及び方法
CN112067183A (zh) 一种带耦合剂的超声波复合材料残余应力测试方法
CN115791596A (zh) 一种基于3d激光测振的界面损伤综合测试系统及方法
Wong et al. Real-time electrical impedance resonance shift of piezoelectric sensor for detection of damage in honeycomb core sandwich structures
CN113466343A (zh) 一种粘接结构紧贴型脱粘缺陷无损检测方法
CN212722731U (zh) 一种激光冲击层裂缺陷的超声检测装置
JP7332397B2 (ja) レーザー接合検査較正システム
CN215493332U (zh) 一种超声波无损检测设备
Lehmann et al. Contribution to the qualification of air-coupled ultrasound as non-destructive, automated test method for spot welds in the car body shop
Semoroz et al. Monitoring of hidden damage in multi-layered aerospace structures using high-frequency guided waves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949423

Country of ref document: EP

Kind code of ref document: A1