WO2022032859A1 - 低温戊烷洗二氧化碳捕集系统和方法 - Google Patents

低温戊烷洗二氧化碳捕集系统和方法 Download PDF

Info

Publication number
WO2022032859A1
WO2022032859A1 PCT/CN2020/121307 CN2020121307W WO2022032859A1 WO 2022032859 A1 WO2022032859 A1 WO 2022032859A1 CN 2020121307 W CN2020121307 W CN 2020121307W WO 2022032859 A1 WO2022032859 A1 WO 2022032859A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
flue gas
temperature
outlet
low
Prior art date
Application number
PCT/CN2020/121307
Other languages
English (en)
French (fr)
Inventor
汪世清
郜时旺
肖平
蒋敏华
黄斌
丹慧杰
雷鸣
Original Assignee
中国华能集团清洁能源技术研究院有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 西安热工研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022032859A1 publication Critical patent/WO2022032859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the technical field of carbon dioxide capture, and in particular relates to a system and method for washing and cooling flue gas with low-temperature pentane liquid, and then condensing and removing carbon dioxide in the flue gas.
  • Coal-fired power plants are the main source of CO2 greenhouse gas emissions, and about 50% of China's CO2 emissions come from coal-fired power plants.
  • Power plant flue gas CO 2 emissions are stable, concentrated and large, and are the most important areas for large-scale CCS emission reduction.
  • Carbon capture technology for coal-fired power plants can be divided into three types: pre-combustion capture, post-combustion capture and oxy-fuel combustion. Among them, post-combustion capture has the advantages of wide adaptability, relatively simple and reliable technology, and is the technology with the most market potential. .
  • the post-combustion carbon capture process mainly includes chemical absorption method, pressure swing adsorption method, and membrane separation method. In comparison, chemical absorption method is the mainstream process choice for large-scale power plant flue gas carbon capture devices due to the complex composition of coal-fired flue gas and low CO 2 partial pressure.
  • cryogenic condensation has been introduced into power plant flue gas carbon dioxide capture (Cryogenic CO 2 Capture).
  • the method is to separate CO2 from the flue gas in solid form by cooling the flue gas to the desublimation temperature of carbon dioxide in the flue gas.
  • SES Corporation of the United States has conducted pilot tests on the technology of low-temperature condensation and CO 2 removal. When the flue gas temperature drops to about -120 °C, a higher CO 2 capture rate can be obtained, and the capture cost is higher than that of traditional chemical absorption carbon dioxide. The capture is low, so it has broad application prospects.
  • One of the main difficulties in the current low-temperature condensation method of carbon dioxide capture is to prevent the moisture in the flue gas from freezing and blocking the cold energy recovery device or flue gas pipeline when the temperature is below zero.
  • the dry flue gas is cooled to below zero degrees by the low-temperature clean flue gas through the cold energy recovery device, so as to avoid freezing and blockage of the heat exchanger ( Figure 2).
  • Figure 2 Due to the large amount of flue gas in power plants, the engineering scale-up of molecular sieve dehumidification has certain difficulties, so the low-temperature condensation method carbon dioxide capture has not been applied in engineering scale-up.
  • the object of the present invention is to provide a low-temperature pentane washing carbon dioxide capture system and method, to overcome the defects of the prior art, the present invention does not need to add a molecular sieve drying tower, and the wet flue gas can be directly cooled to a temperature zone below zero, and no Ice blockage occurs.
  • the present invention adopts the following technical solutions:
  • the low-temperature pentane washing carbon dioxide capture system includes a water cooler.
  • the inlet of the water cooler is connected to the boiler flue gas after denitration, dust removal and desulfurization. It is connected to a scrubbing tower for separating carbon dioxide and moisture in wet flue gas in the form of solid dry ice and solid ice.
  • the top of the scrubbing tower is provided with a cold flue gas outlet, the upper part is provided with a low-temperature n-pentane washing liquid inlet, and the bottom is provided with There is a solid-liquid mixture outlet, the cold flue gas outlet is connected to the chimney through a condenser, the solid-liquid mixture outlet is connected to a solid-liquid separator, and the liquid outlet of the solid-liquid separator is connected to a low-temperature n-pentane washing liquid through an evaporator
  • the inlet, the solid outlet of the solid-liquid separator is used to discharge ice and dry ice
  • the refrigerant outlet of the condenser is connected to the refrigerant inlet of the evaporator
  • the refrigerant outlet of the evaporator is connected to the compressor
  • the outlet of the compressor is connected to The refrigerant inlet of the condenser.
  • solid-liquid mixture outlet is connected to the solid-liquid separator through a circulating pump.
  • the top of the solid-liquid separator is also connected with a low-temperature n-pentane washing liquid replenishing pipeline.
  • the refrigerant outlet of the condenser is connected to the refrigerant inlet of the evaporator through a throttle valve.
  • Low-temperature pentane washing carbon dioxide capture method After the boiler flue gas goes through the denitration, dust removal and desulfurization processes, it enters the water cooler to cool the flue gas to close to room temperature, and at the same time discharge the condensed water of the flue gas, and the saturated wet flue gas after cooling by water cooling Entering the scrubbing tower, it is cooled by the low-temperature n-pentane scrubber sprayed from top to bottom to the sublimation temperature of carbon dioxide, so that the carbon dioxide in the flue gas is separated from the flue gas in the form of solid dry ice, and the flue gas is also removed. The moisture in the flue gas is condensed from the flue gas in the form of solid ice.
  • the solid dry ice and solid ice are insoluble in the n-pentane washing liquid, and form a solid-liquid mixed slurry with the n-pentane washing liquid, which flows out from the bottom of the washing tower and passes through the circulating pump. , enter the solid-liquid separator, separate solid dry ice and solid ice, the n-pentane washing liquid is cooled by the refrigerant in the evaporator to the set temperature, and then enters the top of the washing tower, and is recycled. After decarburization, the low temperature The clean flue gas enters the condenser, exchanges heat with the high-temperature refrigerant at the compressor outlet to recover the cold energy, and then discharges into the chimney.
  • the water cooler cools the flue gas to near room temperature through indirect heat exchange or contact spray cooling.
  • top of the solid-liquid separator is also connected with a washing liquid replenishing pipeline to supplement part of the washing liquid carried away by the flue gas.
  • the present invention has the following beneficial technical effects:
  • the present invention uses low-temperature n-pentane liquid to directly spray and cool the flue gas to cool it to a temperature below zero. At the sublimation temperature of carbon dioxide, it will be precipitated in solid form, and at the same time, it will be carried out of the washing tower by the low-temperature n-pentane liquid, and will not cause clogging. Since water and carbon dioxide are insoluble in n-pentane and will not form an azeotropic mixture with n-pentane, the solid ice and dry ice flowing out of the washing tower with pentane can be separated from the low-temperature pentane washing liquid through a solid-liquid separator to achieve removal and separation.
  • the invention does not need to add a molecular sieve drying tower, and the wet flue gas can be directly cooled to the sub-zero temperature area without ice blockage; , both carbon dioxide and water in the flue gas are insoluble in n-pentane liquid and will not form an azeotrope, which facilitates the separation of solid dry ice and solid ice from the n-pentane washing circulating liquid.
  • FIG. 2 is a schematic diagram of the system of the comparative example.
  • the low-temperature pentane washing carbon dioxide capture system includes a water cooler 1.
  • the inlet of the water cooler 1 is connected to the boiler flue gas after denitration, dust removal and desulfurization.
  • the bottom of the water cooler 1 is provided with a flue gas condensate water outlet.
  • the saturated wet flue gas outlet of the device 1 is connected to the washing tower 2 for separating carbon dioxide and moisture in the wet flue gas in the form of solid dry ice and solid ice.
  • the top of the washing tower 2 is provided with a cold flue gas outlet, and the upper part is provided with a
  • the low-temperature n-pentane washing liquid inlet is provided with a solid-liquid mixture outlet at the bottom, the cold flue gas outlet is connected to the chimney through the condenser 7, and the solid-liquid mixture outlet is connected to the solid-liquid separator 4 through the circulating pump 3, and the solid-liquid mixture outlet is connected to the solid-liquid separator 4.
  • the liquid outlet of the separator 4 is connected to the low-temperature n-pentane washing liquid inlet through the evaporator 5, the solid outlet of the solid-liquid separator 4 is used to discharge ice and dry ice, and the top of the solid-liquid separator 4 is also connected with a low-temperature n-pentane washing liquid.
  • the refrigerant outlet of the condenser 7 is connected to the refrigerant inlet of the evaporator 5
  • the refrigerant outlet of the evaporator 5 is connected to the compressor 6, and the outlet of the compressor 6 is connected to the refrigerant inlet of the condenser 7 .
  • water cooler 1 used to cool the flue gas after desulfurization to near room temperature, and separate the condensed water of the flue gas.
  • the water cooler 1 can adopt a water-cooled indirect heat exchange method or a direct spray cooling method.
  • Washing tower 2 with low-temperature n-pentane as a detergent used to spray and cool the flue gas to the sublimation point of carbon dioxide, separate the carbon dioxide in the flue gas from the flue gas in the form of solid dry ice, and at the same time Moisture is separated from the flue gas in the form of solid ice.
  • the washing tower 2 can be in the form of a spray tower or a packed tower.
  • Circulating pump 3 as a circulating pump for low-temperature pentane washing liquid.
  • Solid-liquid separator 4 It is used to separate solid ice and dry ice from the pentane circulating liquid, and at the same time, it is used to supplement the pentane washing liquid to overcome the loss of flue gas entrainment.
  • the refrigeration unit includes an evaporator 5, a compressor 6, a condenser 7 and a throttle valve 8.
  • the refrigeration unit can be a piston, screw or centrifugal refrigeration unit, and can use single-stage refrigeration or multi-stage refrigeration.
  • the present invention does not limit the form of the refrigeration unit.
  • the refrigerating unit cools the low-temperature n-pentane circulating liquid through the evaporator 5, and at the same time recovers the cooling capacity of the cold flue gas through the condenser 7.
  • the boiler flue gas goes through the processes of denitration, dust removal and desulfurization, and then enters the water cooler 1, and the flue gas is cooled to near room temperature by indirect heat exchange or contact spray cooling, and the condensed water of the flue gas is discharged at the same time.
  • the saturated wet flue gas after being cooled by water enters the low-temperature pentane washing tower 2, and is washed and cooled to the sublimation temperature of carbon dioxide by the low-temperature pentane liquid sprayed from top to bottom, so that the carbon dioxide in the flue gas is in the form of solid dry ice.
  • Solid dry ice and solid ice are insoluble in pentane liquid, form solid-liquid mixed slurry with pentane liquid, flow out from the bottom of washing tower 2, pass through low temperature circulating pump 3, enter into solid-liquid separator 4, and separate solid dry ice and solid ice .
  • pentane washing liquid is cooled to the set temperature by the refrigerant in the evaporator 5, it enters the top of the washing tower 2 and is recycled.
  • the low-temperature clean flue gas after decarbonization enters the condenser 7, exchanges heat with the high-temperature refrigerant at the compressor outlet to recover the cold energy, and then discharges into the chimney. Since the flue gas will take away a small amount of pentane, it is necessary to periodically replenish pentane from the solid-liquid separator 4 to maintain the flow balance.
  • the boiler flue gas enters the water cooler 1 after processes such as denitration, dust removal and desulfurization.
  • the saturated wet flue gas after water cooling and cooling enters the washing tower 2 where low-temperature n-pentane is used as a detergent, and is washed and cooled to -117 °C by the low-temperature n-pentane liquid sprayed from top to bottom, and 90% of the carbon dioxide in the flue gas is And more than 99.99% of the moisture is separated from the flue gas in the form of solid dry ice and solid ice, and forms a solid-liquid mixed slurry with n-pentane liquid, which flows out from the bottom of the washing tower 2, passes through the circulating pump 3, and enters the solid-liquid separation.
  • Device 4 separates solid dry ice and solid ice.
  • the n-pentane washing liquid is cooled to -120 °C by the carbon tetrafluoride refrigerant in the evaporator 5, and enters the top of the washing tower 2, and sprays and cools the flue gas.
  • the low-temperature clean flue gas after decarbonization enters the condenser 7, exchanges heat with the high-temperature refrigerant at the compressor outlet to recover the cold energy, and then discharges into the chimney.
  • the boiler flue gas enters the water cooler 1 after processes such as denitration, dust removal and desulfurization.
  • the saturated wet flue gas after being cooled by water enters the molecular sieve drying tower 9.
  • the molecular sieve drying tower 9 adopts a two-tower mode, and processes such as drying, regeneration, and cooling are carried out respectively according to the set program, and the moisture in the flue gas is heated in the molecular sieve drying tower 9. purged during regeneration.
  • the dry flue gas dried by the molecular sieve drying tower 9 enters the cold energy recovery device 10, exchanges heat with the low-temperature clean flue gas, and is pre-cooled to a sub-zero temperature region.
  • the flue gas pre-cooled by the cold energy recovery device 10 enters the washing tower 2, and is sprayed and cooled to -117 °C by the low-temperature washing liquid. 90% of the carbon dioxide in the flue gas is separated from the flue gas in the form of solid dry ice, and the low-temperature washing The liquid forms a solid-liquid mixed slurry, which flows out from the bottom of the washing tower 2, passes through the circulating pump 3, and enters the solid-liquid separator 4, where the solid dry ice is separated.
  • the low-temperature washing liquid is cooled to -120 °C by the carbon tetrafluoride refrigerant in the evaporator 5, and enters the top of the washing tower 2, and sprays and cools the flue gas.
  • the decarbonized low-temperature clean flue gas is heated by the cold energy recovery device 10 and then discharged into the chimney.
  • the process of the present invention has more application potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种低温戊烷洗二氧化碳捕集系统及方法,该系统包括水冷器(1),水冷器(1)的入口连接经过脱硝、除尘和脱硫后的锅炉烟气,水冷器(1)的底部设置有烟气冷凝水出口,水冷器(1)的饱和湿烟气出口连接至洗涤塔(2),洗涤塔(2)的顶部设置有冷烟气出口,上部设置有低温正戊烷洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器(7)连接至烟囱,所述固液混合物出口连接至固液分离器(4),固液分离器(4)的液体出口通过蒸发器(5)连接至低温正戊烷洗涤液入口,固液分离器(4)的固体出口用于排出冰和干冰,所述冷凝器(7)的制冷剂出口连接至蒸发器(5)的制冷剂入口,蒸发器(5)的制冷剂出口连接至压缩机(6),压缩机(6)的出口连接至冷凝器(7)的制冷剂入口。

Description

低温戊烷洗二氧化碳捕集系统和方法 技术领域
本发明属于二氧化碳捕集技术领域,具体涉及一种利用低温戊烷液体洗涤冷却烟气,进而将烟气中二氧化碳冷凝脱除的系统和方法。
背景技术
燃煤电厂是CO 2温室气体的主要排放源,我国约50%的CO 2排放来自燃煤电厂。电厂烟气CO 2排放具有稳定、集中和量大的特点,是大规模开展CCS减排最值得重视的领域。燃煤电厂碳捕集技术可分为燃烧前捕集、燃烧后捕集和富氧燃烧三种,其中燃烧后捕集具有适应性广、技术相对简单可靠等优点,是最具市场潜力的技术。燃烧后碳捕集工艺主要有化学吸收法、变压吸附法、膜分离法。相比较而言,针对燃煤烟气成分复杂、CO 2分压较低等特点,化学吸收法是目前大型电厂烟气碳捕集装置的主流工艺选择。
近些年来,低温冷凝法被引入电厂烟气二氧化碳捕集(Cryogenic CO 2Capture)。该方法是通过将烟气降温至烟气中二氧化碳的凝华温度,从而将CO 2以固态的形式从烟气中分离出来。美国SES公司目前已经对低温冷凝脱除CO 2的技术进行了中试验证,在烟气温度降至-120℃左右,获得较高CO 2捕集率,且捕集成本比传统化学吸收法二氧化碳捕集低,因此具有较广阔的应用前景。
当前低温冷凝法二氧化碳捕集的主要难点之一是防止烟气中水分在降温至零度以下时结冰堵塞冷量回收器或烟气管道,因此需要在冷却之前通过分子筛干燥塔深度除湿,除湿后的干烟气经过冷量回收器被低温净烟气冷却至零度以下,从而避免换热器结冰堵塞(图2)。由于电厂烟气量大,分子筛除湿的工程放大具备一定难度,因此低温冷凝法二氧化碳捕集尚未得到工程放大应用。
发明内容
本发明的目的在于提供一种低温戊烷洗二氧化碳捕集系统和方法,以克服现有技术的缺陷,本发明无需增设分子筛干燥塔,可将湿烟气直接冷却至零度以下温区,且不产生冰堵。
为达到上述目的,本发明采用如下技术方案:
低温戊烷洗二氧化碳捕集系统,包括水冷器,水冷器的入口连接经过脱硝、除尘和脱硫后的锅炉烟气,水冷器的底部设置有烟气冷凝水出口,水冷器的饱和湿烟气出口连接至用于将湿烟气中二氧化碳和水分以固态干冰和固态冰的形式分离出来的洗涤塔,洗涤塔的顶部设置有冷烟气出口,上部设置有低温正戊烷洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器连接至烟囱,所述固液混合物出口连接至固液分离器,固液分离器的液体出口通过蒸发器连接至低温正戊烷洗涤液入口,固液分离器的固体出口用于排出冰和干冰,所述冷凝器的制冷剂出口连接至蒸发器的制冷剂入口,蒸发器的制冷剂出口连接至压缩机,压缩机的出口连接至冷凝器的制冷剂入口。
进一步地,所述固液混合物出口通过循环泵连接至固液分离器。
进一步地,所述固液分离器顶部还连接有低温正戊烷洗涤液补充管路。
进一步地,所述冷凝器的制冷剂出口通过节流阀连接至蒸发器的制冷剂入口。
低温戊烷洗二氧化碳捕集方法,锅炉烟气经过脱硝、除尘和脱硫工序后,进入到水冷器,将烟气降温至接近室温,同时排出烟气冷凝水,经水冷降温之后的饱和湿烟气进入到洗涤塔,被由上而下喷淋的低温正戊烷洗涤页冷却至二氧化碳凝华温度,从而将烟气中的二氧化碳以固态干冰的形式从烟气中分离出来,同时也将烟气中的水分以固态冰的形式从烟气中冷凝下来,固态干冰和固态冰不溶于正戊烷洗涤液,与正戊烷洗涤液形成固液混合浆液,从洗涤塔塔底流出,经过循环泵,进入到固液分离器,分离出固态干冰和固态 冰,正戊烷洗涤液在蒸发器中被制冷剂冷却至设定温度后,进入洗涤塔塔顶,循环使用,经脱碳后的低温净烟气进入到冷凝器,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。
进一步地,所述水冷器通过间接换热或接触式喷淋降温方式将烟气降温至接近室温。
进一步地,所述固液分离器顶部还连接有洗涤液补充管路,以补充烟气带走的部分洗涤液。
与现有技术相比,本发明具有以下有益的技术效果:
本发明采用低温正戊烷液体直接喷淋冷却烟气,将其降温至零度以下温区,其特点是在冷却烟气前无需增设分子筛除湿装置,烟气中的水分和二氧化碳在烟气冷却至二氧化碳凝华温度时,会以固态形式析出,同时被低温正戊烷液体携带出洗涤塔,不会产生堵塞现象。由于水和二氧化碳不溶于正戊烷,不会和正戊烷形成共沸混合物,因此随戊烷流出洗涤塔的固态冰和干冰能够通过固液分离器分离出低温戊烷洗涤液,实现脱除和分离。
本发明无需增设分子筛干燥塔,可将湿烟气直接冷却至零度以下温区,且不产生冰堵;低温净烟气冷量通过制冷系统冷凝器回收,不采用预冷原烟气的方式回收,烟气中二氧化碳和水分均不溶于正戊烷液体,不会形成共沸物,便于从正戊烷洗涤循环液中分离出固态干冰和固态冰。
附图说明
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明系统结构示意图;
图2为对比实施例系统示意图。
其中,1、水冷器;2、洗涤塔;3、循环泵;4、固液分离器;5、蒸发 器;6、压缩机;7、冷凝器;8、节流阀;9、分子筛干燥塔;10、冷量回收器。
具体实施方式
下面对本发明作进一步详细描述:
参见图1,低温戊烷洗二氧化碳捕集系统,包括水冷器1,水冷器1的入口连接经过脱硝、除尘和脱硫后的锅炉烟气,水冷器1的底部设置有烟气冷凝水出口,水冷器1的饱和湿烟气出口连接至用于将湿烟气中二氧化碳和水分以固态干冰和固态冰的形式分离出来的洗涤塔2,洗涤塔2的顶部设置有冷烟气出口,上部设置有低温正戊烷洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器7连接至烟囱,所述固液混合物出口通过循环泵3连接至固液分离器4,固液分离器4的液体出口通过蒸发器5连接至低温正戊烷洗涤液入口,固液分离器4的固体出口用于排出冰和干冰,固液分离器4顶部还连接有低温正戊烷洗涤液补充管路,所述冷凝器7的制冷剂出口连接至蒸发器5的制冷剂入口,蒸发器5的制冷剂出口连接至压缩机6,压缩机6的出口连接至冷凝器7的制冷剂入口。
其中,水冷器1:用于将脱硫后烟气冷却至接近室温,并分离出烟气冷凝水。水冷器1可采用水冷间接换热方式或直接喷淋冷却方式。
以低温正戊烷为洗涤剂的洗涤塔2:用于将烟气喷淋降温至二氧化碳凝华点,将烟气中的二氧化碳以固态干冰的形式从烟气中分离出来,同时将烟气中水分以固态冰的形式从烟气中分离出来。洗涤塔2可以采用喷淋塔或填料塔等形式。
循环泵3:作为低温戊烷洗涤液循环泵。
固液分离器4:用于将固态冰和干冰从戊烷循环液中分离出来,同时用于补充戊烷洗涤液,克服烟气携带损失。
制冷机组:制冷机组包含蒸发器5、压缩机6、冷凝器7和节流阀8。制 冷机组可以采用活塞式、螺杆式或离心式制冷机组,可以采用单级制冷或多级制冷。本发明不对制冷机组形式做限定。制冷机组通过蒸发器5冷却低温正戊烷循环液,同时通过冷凝器7回收冷烟气冷量。
使用时,锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器1,通过间接换热或接触式喷淋降温等方式将烟气降温至接近室温,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到低温戊烷洗涤塔2,被由上而下喷淋的低温戊烷液体洗涤冷却至二氧化碳凝华温度,从而将烟气中的二氧化碳以固态干冰的形式从烟气中分离出来,同时也将烟气中的水分以固态冰的形式从烟气中冷凝下来。固态干冰和固态冰不溶于戊烷液体,与戊烷液体形成固液混合浆液,从洗涤塔2塔底流出,经过低温循环泵3,进入到固液分离器4,分离出固态干冰和固态冰。戊烷洗涤液在蒸发器5中被制冷剂冷却至设定温度后,进入洗涤塔2塔顶,循环使用。经脱碳后的低温净烟气进入到冷凝器7,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。由于烟气会带走少量戊烷,因此需要定期从固液分离器4中补充戊烷,维持物流平衡。
为清楚说明本发明,下面结合实施例及附图,对本发明进行进一步详细说明。本领域技术人员了解,下述内容不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
实施例:
如附图1所示,锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器1,通过水冷降温至30℃,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到低温正戊烷作为洗涤剂的洗涤塔2,被由上而下喷淋的低温正戊烷液体洗涤冷却至-117℃,烟气中90%的二氧化碳以及99.99%以上的水分以固态干冰和固态冰的形式从烟气中分离出来,与正戊烷液体形成固液混合浆液,从洗涤塔2塔底流出,经过循环泵3,进入到固液分离器4,分离出固 态干冰和固态冰。正戊烷洗涤液在蒸发器5中被四氟化碳制冷剂冷却至-120℃,进入洗涤塔2塔顶,喷淋冷却烟气。经脱碳后的低温净烟气进入到冷凝器7,与压缩机出口高温制冷剂换热回收冷量后排入烟囱。
对比实施例
如附图2所示,锅炉烟气经过脱硝、除尘和脱硫等工序后,进入到水冷器1,通过水冷降温至30℃,同时排出烟气冷凝水。经水冷降温之后的饱和湿烟气进入到分子筛干燥塔9,分子筛干燥塔9采用两塔模式,按照设定程序分别进行干燥、再生、冷却等工序,烟气中的水分在分子筛干燥塔9加热再生过程中被吹扫出来。经过分子筛干燥塔9干燥后的干烟气进入到冷量回收器10,与低温净烟气进行换热,被预冷至零度以下温区。由于烟气中水分被分子筛干燥塔9脱除,因此不会在冷量回收器10中形成冰堵现象。经过冷量回收器10预冷的烟气进入到洗涤塔2,被低温洗涤液喷淋冷却至-117℃,烟气中90%的二氧化碳以固态干冰形式从烟气中分离出来,与低温洗涤液形成固液混合浆液,从洗涤塔2塔底流出,经过循环泵3,进入到固液分离器4,分离出固态干冰。低温洗涤液在蒸发器5中被四氟化碳制冷剂冷却至-120℃,进入洗涤塔2塔顶,喷淋冷却烟气。经脱碳后的低温净烟气经过冷量回收器10加热后排入烟囱。
实施例和对比实施例相比,省却了分子筛干燥塔和冷量回收器两个设备,零下温区冷却没有结冰堵塞风险,低温净烟气的冷量通过制冷系统冷凝器进行回收,降低冷却水用量,因此本发明工艺更具有应用潜力。

Claims (7)

  1. 低温戊烷洗二氧化碳捕集系统,其特征在于,包括水冷器(1),水冷器(1)的入口连接经过脱硝、除尘和脱硫后的锅炉烟气,水冷器(1)的底部设置有烟气冷凝水出口,水冷器(1)的饱和湿烟气出口连接至用于将湿烟气中二氧化碳和水分以固态干冰和固态冰的形式分离出来的洗涤塔(2),洗涤塔(2)的顶部设置有冷烟气出口,上部设置有低温正戊烷洗涤液入口,底部设置有固液混合物出口,所述冷烟气出口通过冷凝器(7)连接至烟囱,所述固液混合物出口连接至固液分离器(4),固液分离器(4)的液体出口通过蒸发器(5)连接至低温正戊烷洗涤液入口,固液分离器(4)的固体出口用于排出冰和干冰,所述冷凝器(7)的制冷剂出口连接至蒸发器(5)的制冷剂入口,蒸发器(5)的制冷剂出口连接至压缩机(6),压缩机(6)的出口连接至冷凝器(7)的制冷剂入口。
  2. 根据权利要求1所述的低温戊烷洗二氧化碳捕集系统,其特征在于,所述固液混合物出口通过循环泵(3)连接至固液分离器(4)。
  3. 根据权利要求1所述的低温戊烷洗二氧化碳捕集系统,其特征在于,所述固液分离器(4)顶部还连接有低温正戊烷洗涤液补充管路。
  4. 根据权利要求1所述的低温戊烷洗二氧化碳捕集系统,其特征在于,所述冷凝器(7)的制冷剂出口通过节流阀(8)连接至蒸发器(5)的制冷剂入口。
  5. 低温戊烷洗二氧化碳捕集方法,基于权利要求1-4任一项所述的低温戊烷洗二氧化碳捕集系统,其特征在于,锅炉烟气经过脱硝、除尘和脱硫工序后,进入到水冷器(1),将烟气降温至接近室温,同时排出烟气冷凝水,经水冷降温之后的饱和湿烟气进入到洗涤塔(2),被由上而下喷淋的低温正戊烷洗涤页冷却至二氧化碳凝华温度,从而将烟气中的二氧化碳以固态干冰的形式从烟气中分离出来,同时也将烟气中的水分以固态冰的形式从烟气中冷凝下来,固态干冰和固态冰不溶于正戊烷洗涤液,与正戊烷洗涤液形成固 液混合浆液,从洗涤塔(2)塔底流出,经过循环泵(3),进入到固液分离器(4),分离出固态干冰和固态冰,正戊烷洗涤液在蒸发器(5)中被制冷剂冷却至设定温度后,进入洗涤塔(2)塔顶,循环使用,经脱碳后的低温净烟气进入到冷凝器(7),与压缩机(6)出口高温制冷剂换热回收冷量后排入烟囱。
  6. 根据权利要求5所述的低温戊烷洗二氧化碳捕集方法,其特征在于,所述水冷器(1)通过间接换热或接触式喷淋降温方式将烟气降温至接近室温。
  7. 根据权利要求5所述的低温戊烷洗二氧化碳捕集方法,其特征在于,所述固液分离器(4)顶部还连接有洗涤液补充管路,以补充烟气带走的部分洗涤液。
PCT/CN2020/121307 2020-08-14 2020-10-15 低温戊烷洗二氧化碳捕集系统和方法 WO2022032859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010819459.XA CN111841064A (zh) 2020-08-14 2020-08-14 低温戊烷洗二氧化碳捕集系统和方法
CN202010819459.X 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032859A1 true WO2022032859A1 (zh) 2022-02-17

Family

ID=72968998

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/121307 WO2022032859A1 (zh) 2020-08-14 2020-10-15 低温戊烷洗二氧化碳捕集系统和方法
PCT/CN2021/112709 WO2022033597A1 (zh) 2020-08-14 2021-08-16 低温戊烷洗二氧化碳捕集系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112709 WO2022033597A1 (zh) 2020-08-14 2021-08-16 低温戊烷洗二氧化碳捕集系统和方法

Country Status (2)

Country Link
CN (1) CN111841064A (zh)
WO (2) WO2022032859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920581A (zh) * 2023-08-31 2023-10-24 浙江浙能迈领环境科技有限公司 用于天然气动力船舶的二氧化碳回收控制系统及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841064A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗二氧化碳捕集系统和方法
CN112851463B (zh) * 2021-03-18 2023-06-13 西安热工研究院有限公司 一种利用锅炉含硫烟气制甲烷的系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265512A1 (en) * 2010-05-03 2011-11-03 Battelle Memorial Institute Carbon dioxide capture from power or process plant gases
US20110296870A1 (en) * 2009-05-15 2011-12-08 Florida Turbine Technologies, Inc. Apparatus and process for separating CO2 from a flue gas
CN102620523A (zh) * 2012-04-16 2012-08-01 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
US20180252469A1 (en) * 2017-03-06 2018-09-06 Larry Baxter Method for Removing a Foulant from a Gas Stream with Minimal External Refrigeration
CN208990490U (zh) * 2018-10-18 2019-06-18 中国华能集团清洁能源技术研究院有限公司 一种烟气回收干冰的装置
CN212327453U (zh) * 2020-08-14 2021-01-12 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳系统
CN212395926U (zh) * 2020-08-14 2021-01-26 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗二氧化碳捕集系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531269A4 (en) * 2010-02-03 2014-02-19 Exxonmobil Upstream Res Co SYSTEM AND METHOD FOR USING A COLD LIQUID TO REMOVE COMPATIBLE GAS COMPONENTS FROM PROCESS GAS FLOWS
WO2016179115A1 (en) * 2015-05-06 2016-11-10 Sustainable Energy Solutions, Llc Methods of cryogenic purification, ethane separation, and systems related thereto
KR101924288B1 (ko) * 2017-09-05 2018-11-30 두산중공업 주식회사 액화 천연 가스의 냉열로 포집한 플루 가스의 이산화탄소를 활용하는 시스템
CN109078447A (zh) * 2018-10-18 2018-12-25 中国华能集团清洁能源技术研究院有限公司 一种烟气回收干冰的装置及方法
CN109821341A (zh) * 2019-03-20 2019-05-31 赫普科技发展(北京)有限公司 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法
CN111841064A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗二氧化碳捕集系统和方法
CN111841067A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳系统及工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110296870A1 (en) * 2009-05-15 2011-12-08 Florida Turbine Technologies, Inc. Apparatus and process for separating CO2 from a flue gas
US20110265512A1 (en) * 2010-05-03 2011-11-03 Battelle Memorial Institute Carbon dioxide capture from power or process plant gases
CN102620523A (zh) * 2012-04-16 2012-08-01 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
US20180252469A1 (en) * 2017-03-06 2018-09-06 Larry Baxter Method for Removing a Foulant from a Gas Stream with Minimal External Refrigeration
CN208990490U (zh) * 2018-10-18 2019-06-18 中国华能集团清洁能源技术研究院有限公司 一种烟气回收干冰的装置
CN212327453U (zh) * 2020-08-14 2021-01-12 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗烟气同时脱硫脱碳系统
CN212395926U (zh) * 2020-08-14 2021-01-26 中国华能集团清洁能源技术研究院有限公司 低温戊烷洗二氧化碳捕集系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920581A (zh) * 2023-08-31 2023-10-24 浙江浙能迈领环境科技有限公司 用于天然气动力船舶的二氧化碳回收控制系统及其方法
CN116920581B (zh) * 2023-08-31 2024-04-19 浙江浙能迈领环境科技有限公司 用于天然气动力船舶的二氧化碳回收控制系统及其方法

Also Published As

Publication number Publication date
CN111841064A (zh) 2020-10-30
WO2022033597A1 (zh) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2022033597A1 (zh) 低温戊烷洗二氧化碳捕集系统和方法
WO2022032858A1 (zh) 低温戊烷洗烟气同时脱硫脱碳系统及工艺
US11918950B2 (en) Deep-condensation VOCs recovery system using air as refrigerant
CN212327453U (zh) 低温戊烷洗烟气同时脱硫脱碳系统
CN110115910A (zh) 一种节能型二氧化碳捕集系统及方法
CN107741103B (zh) 一种氨水吸收式制冷联合碳捕集装置
CN102000486A (zh) 活性碳酸钠捕集烟气中二氧化碳的方法及其设备
JP7461679B2 (ja) 吸収、脱離及び回収を一体化したVOCs回収システム及び方法
TW201248099A (en) Cryogenic CO2 separation using a refrigeration system
US9447996B2 (en) Carbon dioxide removal system using absorption refrigeration
CN114768488A (zh) 一种燃煤机组烟气二氧化碳捕集系统
US4294590A (en) Removal of undesired gaseous components from hot waste gases
CN109078447A (zh) 一种烟气回收干冰的装置及方法
WO2024174479A1 (zh) 一种水泥全氧燃烧耦合烟气二氧化碳捕集提纯装置
CN110180317A (zh) 一种同时脱除烟气中二氧化碳和二氧化硫的系统及方法
CN108211671A (zh) 一种节能型二氧化碳再生和压缩系统及方法
CN106422647B (zh) 低液化温度有机废气回收装置
CN212395926U (zh) 低温戊烷洗二氧化碳捕集系统
CN106345237A (zh) 一种冷气循环式压缩空气冷冻干燥器
CN108854423A (zh) 一种烟气余热驱动的脱硫、脱硝与碳捕集耦合的烟气净化系统及烟气处理的方法
CN208990490U (zh) 一种烟气回收干冰的装置
CN115608133A (zh) 一种烟气碳捕集系统和对烟气进行碳捕集的方法
WO2022188254A1 (zh) 窑炉废气废热回收工艺和系统
CN210544174U (zh) 一种同时脱除烟气中二氧化碳和二氧化硫的系统
CN113318577A (zh) 一种转炉烟气相变除雾装置及其运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949355

Country of ref document: EP

Kind code of ref document: A1