WO2022032843A1 - 基于不同形状单元的微型光谱芯片 - Google Patents

基于不同形状单元的微型光谱芯片 Download PDF

Info

Publication number
WO2022032843A1
WO2022032843A1 PCT/CN2020/120409 CN2020120409W WO2022032843A1 WO 2022032843 A1 WO2022032843 A1 WO 2022032843A1 CN 2020120409 W CN2020120409 W CN 2020120409W WO 2022032843 A1 WO2022032843 A1 WO 2022032843A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
layer
units
light
nano structure
Prior art date
Application number
PCT/CN2020/120409
Other languages
English (en)
French (fr)
Inventor
崔开宇
杨家伟
黄翊东
张巍
冯雪
刘仿
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US17/423,414 priority Critical patent/US20220344381A1/en
Publication of WO2022032843A1 publication Critical patent/WO2022032843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of spectral imaging, and in particular, to a miniature spectral chip based on units of different shapes.
  • spectrometers need to spatially separate different wavelengths of incident light through spectroscopic elements, and then perform detection, and precise spectroscopic elements are usually bulky, which limits the miniaturization of spectrometers.
  • the incident light is modulated by a micro-nano structure array of regular, repeating shape elements, and then the spectral information of the incident light can be recovered from the detector response with the help of an algorithm; however, this scheme uses regular shape elements, by changing the period, duty cycle
  • the wide spectrum modulation function that can be achieved is limited, which limits the accuracy of spectral recovery, and it is difficult to further reduce the size of the device. Therefore, it is of great significance to realize a spectroscopic chip with higher precision and smaller size.
  • the embodiments of the present application provide a miniature spectral chip based on units of different shapes, which is used to solve the problem that the wide-spectrum modulation function that can be achieved by the spectral core in the prior art is limited, thus limiting the accuracy of spectral recovery, and it is difficult to further reduce the size of the device.
  • An embodiment of the present application provides a micro-spectroscopy chip based on units of different shapes, including: a CIS wafer, and a light modulation layer, where the light modulation layer includes a plurality of micro-nano structure units disposed on the surface of the photosensitive region of the CIS wafer , each micro-nano structure unit includes a plurality of micro-nano structure arrays, and in each micro-nano structure unit, different micro-nano structure arrays are two-dimensional gratings composed of internal units of different shapes.
  • the several micro-nano structural units are the same repeating unit, the arrays of micro-nano structures located at corresponding positions in different micro-nano structural units are the same, and/or , there is no micro-nano structure array at at least one corresponding position in different micro-nano structural units, and/or, the size of each of the micro-nano structural units is 0.5 ⁇ m 2 to 40000 ⁇ m 2 , and/or, each of the The period of the nanostructure array is 20 nm to 50 ⁇ m.
  • the number of micro-nano structure arrays contained in each of the micro-nano structure units is dynamically adjustable; and/or, the plurality of micro-nano structure units Nano building blocks have C4 symmetry.
  • each micro-nano structure array corresponds to one or more pixels on the CIS wafer.
  • the micro-spectroscopy chip based on units of different shapes further includes a signal processing circuit, and the signal processing circuit is connected to the CIS wafer through electrical contact.
  • the CIS wafer includes a light detection layer and a metal wire layer, the light detection layer is disposed under the metal wire layer, and the light modulation layer is integrated in the metal wire layer. On the wire layer, or, the light detection layer is disposed above the metal wire layer, and the light modulation layer is integrated on the light detection layer.
  • the light modulation layer is prepared by etching on the light detection layer of the CIS wafer, and the etching The depth is 50 nm to 2 ⁇ m.
  • the light modulation layer is a single-layer, double-layer or multi-layer structure, and the thickness of each layer is 50 nm ⁇ 2 ⁇ m;
  • the material of the light modulation layer is silicon , at least one of germanium, germanium-silicon material, silicon compound, germanium compound, metal or group III-V material, wherein the silicon compound includes at least one of silicon nitride, silicon dioxide, and silicon carbide, And/or, when the light modulation layer is a double or multiple layers, at least one of the layers is not penetrated.
  • a light-transmitting medium layer is provided between the light modulation layer and the CIS wafer, the thickness of the light-transmitting medium layer is 50 nm to 2 ⁇ m, and the light-transmitting medium
  • the material of the layer is silicon dioxide; the light-transmitting medium layer is prepared on the CIS wafer by chemical vapor deposition, sputtering or spin coating, and then the light-modulating layer is deposited and etched above the light-transmitting medium layer. etching, or preparing a light modulation layer on the light-transmitting medium layer, and then transferring the light-transmitting medium layer and the light modulation layer to the CIS wafer.
  • a micro-spectroscope chip based on units of different shapes is integrated with micro-lenses and/or filters; the micro-lenses and/or filters are arranged on the light modulation layer. above or below.
  • each micro-nano structure unit different micro-nano structure arrays have different internal unit shapes, and each group of micro-nano structure arrays has different modulation effects on light of different wavelengths.
  • the degree of freedom of "shape” a rich modulation effect on incident light can be obtained, the accuracy of spectral recovery can be improved, and the size of the unit can be reduced; the use of two-dimensional grating structures based on internal units of different shapes has rich modulation on incident light.
  • the wide-spectrum modulation characteristics of the instrument can achieve high-precision measurement of the incident light spectrum.
  • FIG. 1 is a schematic diagram of a lateral structure of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a longitudinal structure of a microspectroscope chip based on units of different shapes provided in an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a lateral structure of a light modulation layer in a microspectroscopy chip based on different shaped units provided in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a lateral structure of a light modulation layer in a microspectroscopy chip based on different shaped units provided in an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a lateral structure of a light modulation layer in a microspectroscopy chip based on different shaped units provided in an embodiment of the present application;
  • FIG. 6 is a schematic longitudinal structure diagram of a front-illuminated CIS wafer in a micro-spectroscopy chip based on different shaped units provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of the longitudinal structure of a back-illuminated CIS wafer in a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the longitudinal structure of a single-layer grating in which the light modulation layer in a micro-spectroscopy chip based on different shaped units provided in an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a longitudinal structure in which the light modulation layer is a single-layer grating in a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 10 is a schematic diagram of the longitudinal structure of a multi-layer grating in which the light modulation layer in a micro-spectroscope chip based on different shaped units provided by an embodiment of the present application is provided;
  • FIG. 11 is a schematic diagram of a longitudinal structure in which the light modulation layer is a multi-layer grating in a micro-spectroscopy chip based on different shaped units provided by an embodiment of the present application, and one layer does not penetrate;
  • FIG. 12 is a schematic diagram of an etching longitudinal structure of a light modulation layer and a back-illuminated CIS wafer in a micro-spectroscopy chip based on different shaped units according to an embodiment of the present application;
  • FIG. 13 is a schematic diagram of the lateral structure of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram of a lateral structure of a light modulation layer in a microspectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 15 is a schematic diagram of the longitudinal structure of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application;
  • 16 is a schematic flowchart of a multispectral image acquisition provided by an embodiment of the present application.
  • 17 is a schematic diagram of a lateral structure of a light modulation layer in a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 18 is a schematic longitudinal structure diagram of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application.
  • FIG. 19 is a schematic longitudinal structure diagram of a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application.
  • FIG. 20 is a schematic longitudinal structure diagram of a light modulation layer in a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • 21 is a schematic longitudinal structure diagram of a light modulation layer in a micro-spectroscopy chip based on units of different shapes provided in an embodiment of the present application;
  • FIG. 22 is a schematic diagram of the longitudinal structure of a CIS wafer in a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 23 is a schematic longitudinal structure diagram of a microspectroscope chip based on units of different shapes provided in an embodiment of the present application;
  • FIG. 24 is a schematic diagram of the longitudinal structure of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 25 is a schematic longitudinal structure diagram of a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application.
  • FIG. 26 is a schematic longitudinal structure diagram of a micro-spectroscope chip based on units of different shapes provided by an embodiment of the present application;
  • FIG. 27 is a schematic longitudinal structure diagram of a micro-spectroscopy chip based on units of different shapes provided by an embodiment of the present application.
  • FIG. 28 is a schematic longitudinal structure diagram of a microspectroscope chip based on units of different shapes provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of randomly generated irregular shapes in a micro-spectroscopy chip based on units of different shapes provided in an embodiment of the present application.
  • a micro-spectroscopy chip based on units of different shapes will be described below with reference to FIG. 1 , including: a CIS wafer 2 , and a light modulation layer 1 .
  • a micro-nano structure unit includes a plurality of micro-nano structure arrays, and different micro-nano structure arrays in each micro-nano structure unit are two-dimensional gratings composed of internal units of different shapes.
  • FIG. 1 The schematic diagram of the structure of the high-precision micro-spectroscopy chip based on units of different shapes of the present application is shown in FIG. 1 , including a light modulation layer 1 , a CIS wafer 2 and a signal processing circuit 3 . After the incident light passes through the light modulation layer 1 , it is converted into an electrical signal by the CIS wafer 2 , and then processed and output by the signal processing circuit 3 .
  • the light modulation layer 1 contains a plurality of repeating micro-nano structural units, each micro-nano structural unit is composed of multiple groups of micro-nano structural arrays, and each micro-nano structural unit can contain more than 8 array groups, and its overall size is 0.5 ⁇ m 2 to 40000 ⁇ m 2 ; in each micro-nano structure unit, different micro-nano structure arrays have different internal unit shapes, and the period size of each micro-nano structure array is 20 nm to 50 ⁇ m, and the internal units of different shapes respond to different wavelengths of light.
  • Each group of micro-nano structure arrays corresponds to one or more CIS wafer photosensitive pixels in the vertical direction.
  • the incident light passes through the light modulation layer 1, it is modulated by each group of micro-nano structure arrays in the unit.
  • the modulated optical signal intensity is detected by the CIS wafer 2 and converted into an electrical signal, and then processed by the signal processing circuit 3.
  • the spectral information of the incident light is recovered.
  • the light modulation layer 1 is provided on the CIS wafer by monolithic integration. In this case, the two-dimensional grating structure based on different shaped units is used, and the degree of freedom of "shape" is used to obtain a rich modulation effect on the incident light and improve the spectral recovery. accuracy and can reduce the size of the unit.
  • a two-dimensional grating structure based on internal cells of different shapes, it has rich broadband modulation characteristics for incident light, and realizes high-precision measurement of incident light spectrum.
  • Monolithic integration of light modulation layers based on different shaped units and image sensors without discrete components is conducive to improving the stability of the device and greatly promoting the miniaturization and light weight of imaging spectrometers. There are broad prospects for applications such as these. Achieving monolithic integration at the wafer level minimizes the distance between the sensor and the light modulation layer, which is beneficial for reducing unit size, enabling higher spectral resolution and reducing packaging costs.
  • each group of micro-nano structure arrays in the light modulation layer 1 is a two-dimensional grating based on internal units 11 of different shapes, which can be grown by directly growing one or more layers on the CIS wafer 2 Dielectric or metal materials are then etched to prepare. By changing the geometry of 11, each group of micro-nano structure arrays can have different modulation effects on light of different wavelengths in the target range.
  • the thickness of the light modulation layer 1 is 50 nm ⁇ 2 ⁇ m, and each group of micro-nano structure arrays in the light modulation layer 1 corresponds to one or more pixels on the CIS wafer 2 .
  • the light modulation layer 1 is directly prepared on the CIS wafer 2, and the CIS wafer 2 and the signal processing circuit 3 are connected through electrical contact.
  • the light modulation layer 1 is directly integrated on the CIS wafer 2 from the wafer level, and the preparation of the spectral chip can be completed in one tape-out using the CMOS process.
  • this case integrates the light modulation layer 1 based on different shaped units and the CIS wafer 2 monolithically without discrete components, which is beneficial to improve the stability of the device and reduce the volume and cost of the device.
  • the light modulation layer 1 is engraved with various micro-nano structure arrays composed of two-dimensional gratings with different shapes and structures as internal units, and modulates the received light. Different structures have different modulation effects. In the lateral view, the light modulation layer 1 can have the following three schemes:
  • each unit is composed of multiple groups of micro-nano structure arrays, and the same position in different units
  • the micro-nano structure array is the same, for example, the micro-nano structure array included in the micro-nano structure unit 11 includes a first group of two-dimensional gratings 110 with a first shape, a second group of two-dimensional gratings 111 with a second shape, and a third group of Three-shaped two-dimensional gratings 112, a fourth group of two-dimensional gratings 113 with a fourth shape; for example, the micro-nano structure array included in the micro-nano structure unit 44 includes a first group of two-dimensional gratings 440 with a first shape, a second A group of two-dimensional gratings 443 with a second shape, a third group of two-dimensional gratings 442 with a third shape, and
  • Each group of micro-nano structure arrays in the micro-nano structure unit has different modulation effects on light of different wavelengths, and the modulation effects on the input light between groups of micro-nano structures are also different.
  • the specific modulation methods include but are not limited to scattering, Absorption, interference, surface plasmon, resonance enhancement, etc.
  • the corresponding transmission spectra are different after light passes through different groups of micro-nano structures.
  • Each unit and the light sensor below it constitute a pixel, and the spectral information on each pixel, that is, the intensity distribution of each wavelength, can be obtained through the restoration algorithm in the prior art; a plurality of pixels constitute a picture containing spectral information. image.
  • each unit includes multiple groups of different micro-nano structure arrays, and the micro-nano structure arrays in the same position in different units
  • the nanostructure arrays are the same, and each group of micro-nanostructure arrays has a corresponding sensor under it.
  • the micro-nano structure array included in the micro-nano structure unit 11 includes a first group of gratings 110 with a first shape, a second group of gratings 111 with a second shape, a third group of gratings 112 with a third shape, and a fourth group 113
  • the micro-nano structure array included in the micro-nano structure unit 44 includes a first group of gratings 440 with a first shape, a second group of gratings 443 with a second shape, and a third group of gratings 442 with a third shape , the fourth group 444 is empty; it can be seen that the micro-nano structure array used in this scheme is the same as that of scheme 1, the difference is that there is no micro-nano structure in one group, and the incident light is straight through, which can be used for the unit to pass through. Calibration of light intensity.
  • each micro-nano structure unit includes multiple groups of different micro-nano structure arrays.
  • sensors under the micro-nano structure array.
  • the number of micro-nano structure arrays contained in each micro-nano structure unit is dynamically adjustable.
  • the left side of Figure 5 shows that each unit contains 9 groups of micro-nano structure arrays, and the right side It means that each micro-nano structure unit contains 4 groups of micro-nano structure arrays.
  • the CIS wafer 2 is front-illuminated, the light detection layer 21 is below the metal wire layer 22, the microlenses and filters are not integrated on the CIS wafer, and the light modulation layer 1 is directly integrated into the metal wire layer 22 on.
  • the CIS wafer 2 is back-illuminated, the light detection layer 21 is above the metal wire layer 22, the microlenses and filters are not integrated on the CIS wafer, and the light modulation layer 1 is directly integrated into the light detection layer 21 on.
  • the light modulation layer 1 may be composed of one or more layers of materials, so as to increase the spectral modulation capability and sampling capability of the light modulation layer 1 for incident light, which is beneficial to improve the spectral recovery accuracy.
  • the light modulation layer 1 can have the following four schemes in the longitudinal direction:
  • the light modulation layer 1 has a single-layer grating structure of a single material, and the grating units are structures of different shapes and have a thickness of 50 nm to 2 ⁇ m.
  • Specific materials may include silicon, germanium, germanium-silicon materials, silicon compounds, germanium compounds, metals, III-V group materials, etc., wherein silicon compounds include but are not limited to silicon nitride, silicon dioxide, silicon carbide, and the like.
  • the light modulation layer 1 may be composed of two or more layers of materials, wherein 11 , 12 , and 13 are all different materials, and the thickness of each layer is 50 nm ⁇ 2 ⁇ m.
  • Specific materials may include silicon, germanium, germanium-silicon materials, silicon compounds, germanium compounds, metals, III-V group materials, etc., wherein silicon compounds include but are not limited to silicon nitride, silicon dioxide, silicon carbide, and the like.
  • the light modulation layer 1 may be composed of multiple layers or mixed materials, wherein 11 and 12 are different materials, and one or more layers may not penetrate through.
  • 12 does not penetrate through, and the thickness of each layer is 50nm ⁇ 2 ⁇ m.
  • Specific materials may include silicon, germanium, germanium-silicon materials, silicon compounds, germanium compounds, metals, III-V materials, silicon and SiN sputtering materials, etc., wherein silicon compounds include but are not limited to silicon nitride, Silicon oxide, silicon carbide, etc.
  • the light modulation layer 1 is prepared by directly etching the structure on the light detection layer 21 of the back-illuminated CIS wafer, and the etching depth is 50 nm ⁇ 2 ⁇ m.
  • micro-spectroscopy chips based on units of different shapes of the present application will be further described below with reference to specific embodiments.
  • the spectrum chip includes a light modulation layer 1 , a CIS wafer 2 and a signal processing circuit 3 .
  • the light modulation layer 1 is directly prepared on the CIS wafer, and its lateral structure adopts the above scheme 1.
  • the specific structure is shown in Figure 14 and Figure 15.
  • the light modulation layer 1 includes a plurality of repeating micro-nano structural units, each of which is a micro-nano structural unit.
  • the interior is divided into 9 groups of different micro-nano structure arrays 110 to 118, each group of micro-nano structure arrays is based on gratings of different shaped units, and the shape of the grating can be a circle, a ring, a polygon, a cross or some other regular shapes.
  • each group of micro-nano structure arrays is respectively 20nm ⁇ 50 ⁇ m; each group of micro-nano structure arrays has different broad-spectrum modulation effects on incident light, and the micro-nano structure units of different micro-nano structure units at corresponding positions
  • the structure arrays are the same, and the overall size of each unit is 0.5 ⁇ m 2 to 40000 ⁇ m 2 .
  • the dielectric material in the light modulation layer 1 is polysilicon, and the thickness is 50 nm to 2 ⁇ m.
  • the above-mentioned irregular shape may be a random shape generated by an algorithm, and the process of the algorithm is as follows: First, uniformly mesh the area within a period, and the size of the mesh can be set flexibly. Then, the index of refraction is assigned to each grid point according to a certain distribution law. Usually, the standard normal distribution is selected for assignment. It should be emphasized that the index of refraction assigned here is only a numerical value and does not represent the refraction of the real material. Rate. Next, the image filtering, smoothing and binarization processing is performed on the refractive index distribution. At this time, the obtained refractive index distribution has only two values of 0 and 1, representing air and medium respectively.
  • the values 0 and 1 represent the areas of air and medium, respectively, and will not Contains undersized structures for ease of processing.
  • specific constraints can be placed on the generated random structures. For example, if the structure is required to have a certain symmetry, the refractive index distribution can be symmetric in the algorithm. Moreover, by modifying the parameters in the algorithm, the characteristics such as the minimum feature size of the generated random shape can be regulated.
  • Figure 29 shows some of the random shapes produced by this algorithm, where the numbers 0 and 1 represent areas of air and medium, respectively. It can be seen that the algorithm can generate a large number of different irregular shapes, which can produce rich modulation effects on the incident light, which is beneficial to improve the spectral recovery accuracy.
  • CIS wafer 2 The specific structure of CIS wafer 2 is shown in Figure 6, 21 is a silicon detector layer, 22 is a metal wire layer, and the response range is visible to near-infrared bands; the CIS wafer is bare, and no Bayer filter is prepared. Arrays and Microlens Arrays. Each group of micro-nano structures corresponds to one or more light sensor units on the CIS wafer 2 .
  • the complete process of multi-spectral image acquisition is: as shown in FIG. 16 , the broad-spectrum light source 100 illuminates the target object 200 , and then the reflected light is collected by the spectrum chip 300 , or the light radiated directly from the target object is collected by the spectrum chip 300 .
  • Each micro-nano structure array and its underlying light sensor constitute a pixel, and the spectral information on each pixel can be obtained through the restoration algorithm, and multiple pixels constitute an image containing spectral information.
  • Both the light modulation layer 1 and the CIS wafer 2 can be fabricated by the semiconductor CMOS integration process, and the monolithic integration is realized at the wafer level, which is beneficial to reduce the distance between the sensor and the light modulation layer, reduce the volume of the device, and achieve higher spectral resolution and reduce packaging costs.
  • Example 2 the main difference between Example 2 and Example 1 lies in the lateral structure.
  • Several micro-nano structural units constituting the light modulation layer 1 have C4 symmetry, that is, after the structure is rotated by 90°, 180° or 270°, Coinciding with the original non-rotated structure, this allows the structure to have polarization-independent properties.
  • the main difference from Example 1 is the vertical structure of the micro-spectroscope chip.
  • a light-transmitting medium layer 4 is added between the light modulation layer 1 and the CIS wafer 2 , and the thickness of the light-transmitting medium layer 4 is It is 50nm ⁇ 2 ⁇ m, and the material can be silicon dioxide. If it is the process plan of direct deposition growth, the light-transmitting medium layer can be prepared on the CIS wafer by chemical vapor deposition, sputtering, spin coating, etc., and then the light modulation layer structure can be deposited and etched on top of it. .
  • the micro-nano structure can be prepared on the silicon dioxide first, and then the two parts can be transferred to the CIS wafer as a whole.
  • the preparation of the spectrum chip can be completed by one tap-out of the CMOS process, which is beneficial to reduce the failure rate of the device, improve the yield of the device, and reduce the cost.
  • the difference between Embodiment 4 and Embodiment 1 is that the grating in the light modulation layer 1 is a partially etched structure, and the holes therein do not completely penetrate the plate, but have a certain depth.
  • the thickness of the micro-nano structure is 50 nm to 2 ⁇ m, and the thickness of the whole plate is 100 nm to 4 ⁇ m; in addition, a light-transmitting medium layer can also be added between 1 and 2 in this structure.
  • Example 5 the difference between Example 5 and Example 1 is that the light modulation layer 1 has a two-layer structure, 11 is a silicon layer, 12 is a silicon nitride layer, and the thicknesses of the two-layer structures are both 50 nm to 2 ⁇ m; and,
  • the underlying material of this structure can also adopt a partially etched structure that is not penetrated, as shown in FIG. 21 .
  • the difference from Example 1 is that the CIS wafer is back-illuminated, and the light detection layer 21 is above the metal wire layer 22, which reduces the influence of the metal wire layer on the incident light and improves the quantum efficiency of the device .
  • Embodiment 7 the difference between Embodiment 7 and Embodiment 1 is that the spectrum chip integrates microlenses or filters or both.
  • the spectrum chip integrates a microlens 4, which can be above ( Figure 23) or below ( Figure 24) the light modulation layer; as shown in Figures 25 and 26, the spectrum chip integrates light filtering Filter 5, the filter can be above ( Figure 25) or below ( Figure 26) the light modulation layer; as shown in Figures 27 and 28, the spectrum chip integrates the microlens 4 and filter 5, and its position can be Above (Fig. 27) or below (Fig. 28) the modulation layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于不同形状单元的微型光谱芯片,包括:CIS晶圆(2),光调制层(1),光调制层(1)包括设置在CIS晶圆(2)的感光区域表面的若干个微纳结构单元(11,22,33,44,55,66),每个微纳结构单元(11,22,33,44,55,66)包括多个微纳结构阵列,每个微纳结构单元(11,22,33,44,55,66)中、不同微纳结构阵列是由不同形状的内部单元组成的二维光栅(110、111、112、113、440、443、442、444)。每个微纳结构单元(11,22,33,44,55,66)中、不同微纳结构阵列具有的内部单元形状不同,各组微纳结构阵列对不同波长光的调制作用不同,充分利用"形状"这个自由度,得到对入射光丰富的调制作用,提高了光谱恢复的精度,并且可以降低单元的尺寸;利用基于不同形状的内部单元的二维光栅结构,具有对入射光丰富的宽谱调制特性,实现对入射光频谱的高精度测量。

Description

基于不同形状单元的微型光谱芯片
相关申请的交叉引用
本申请要求于2020年8月14日提交的申请号为202010821286.5,发明名称为“基于不同形状单元的微型光谱芯片”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及光谱成像技术领域,尤其涉及一种基于不同形状单元的微型光谱芯片。
背景技术
现有的光谱仪需要通过分光元件将入射光的不同波长在空间上分开,再进行探测,而精密的分光元件通常体积较大,限制了光谱仪的小型化。此外,利用规则、重复形状单元的微纳结构阵列对入射光进行调制,再借助算法可以从探测器响应中恢复出入射光的频谱信息;然而,该方案采用规则形状单元,通过改变周期、占空比等参数,所能实现的宽谱调制函数有限,从而限制了光谱恢复的精度,而且难以进一步缩小器件的尺寸。因此,实现更高精度、更小尺寸的光谱芯片具有重要意义。
发明内容
本申请实施例提供一种基于不同形状单元的微型光谱芯片,用以解决现有技术中的光谱芯所能实现的宽谱调制函数有限,从而限制了光谱恢复的精度,而且难以进一步缩小器件的尺寸的问题,实现更高精度、更小尺寸的光谱芯片。
本申请实施例提供一种基于不同形状单元的微型光谱芯片,包括:CIS晶圆,光调制层,所述光调制层包括设置在所述CIS晶圆的感光区域表面的若干个微纳结构单元,每个微纳结构单元包括多个微纳结构阵列,每个微纳结构单元中、不同微纳结构阵列是由不同形状的内部单元组成的二维光栅。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,所述若干个微纳结构单元是相同的重复单元,位于不同微纳结构单元中相应位置处的微纳结构阵列相同,和/或,位于不同微纳结构单元中至少一个相应位置处无微纳结构阵列,和/或,每个所述微纳结构单元的尺寸为0.5μm 2~40000μm 2,和/或,每个所述微纳结构阵列的周期为20nm~50μm。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,每一个所述微纳结构单元内所包含的微纳结构阵列的个数是动态可调的;和/或,所述若干个微纳结构单元具有C4对称性。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,每个微纳结构阵列对应所述CIS晶圆上的一个或多个像素。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,还包括信号处理电路,所述信号处理电路通过电接触连接所述CIS晶圆。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,所述CIS晶圆包括光探测层和金属线层,所述光探测层设置在金属线层下方,所述光调制层集成在金属线层上,或,所述光探测层设置在金属线层上方,所述光调制层集成在光探测层上。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,当所述光探测层在金属线层上方时,光调制层是由CIS晶圆的光探测层上刻蚀制备的,且刻蚀深度为50nm~2μm。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,所述光调制层为单层、双层或多层结构,每层的厚度为50nm~2μm;所述光调制层的材料为硅、锗、锗硅材料、硅的化合物、锗的化合物、金属或III-V族材料中的至少一种,其中,硅的化合物包括氮化硅、二氧化硅、碳化硅中的至少一种,和/或,当所述光调制层为双层或多层时,其中至少一层不贯穿。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,所述光调制层和CIS晶圆之间设有透光介质层,所述透光介质层的厚度为50nm~2μm,透光介质层的材质为二氧化硅;在CIS晶圆上通过化学气相沉积、溅射或旋涂的方式制备所述透光介质层,然后在所述透光介质层上方进行光调制层的沉积、刻蚀,或,在透光介质层上制备出光调制层,再 将透光介质层、光调制层转移到所述CIS晶圆上。
根据本申请一个实施例的基于不同形状单元的微型光谱芯片,所述微型光谱芯片集成有微透镜和/或滤光片;所述微透镜和/或滤光片设置在所述光调制层的上方或下方。
本申请实施例提供的基于不同形状单元的微型光谱芯片,每个微纳结构单元中、不同微纳结构阵列具有的内部单元形状不同,各组微纳结构阵列对不同波长光的调制作用不同,充分利用“形状”这个自由度,得到对入射光丰富的调制作用,提高了光谱恢复的精度,并且可以降低单元的尺寸;利用基于不同形状的内部单元的二维光栅结构,具有对入射光丰富的宽谱调制特性,实现对入射光频谱的高精度测量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的横向结构示意图;
图2是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图3是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的横向结构示意图;
图4是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的横向结构示意图;
图5是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的横向结构示意图;
图6是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的前照式CIS晶圆的纵向结构示意图;
图7是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的背照式CIS晶圆的纵向结构示意图;
图8是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中 的光调制层为单层光栅的纵向结构示意图;
图9是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层为单层光栅的纵向结构示意图;
图10是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层为多层光栅的纵向结构示意图;
图11是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层为多层光栅、其中一层不贯穿的纵向结构示意图;
图12是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层与背照式CIS晶圆的刻蚀纵向结构示意图;
图13是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的横向结构示意图;
图14是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的横向结构示意图;
图15是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图16是本申请实施例提供的一种多光谱图像采集的流程示意图;
图17是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的横向结构示意图;
图18是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图19是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图20是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的纵向结构示意图;
图21是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的光调制层的纵向结构示意图;
图22是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的CIS晶圆的纵向结构示意图;
图23是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图24是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图25是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图26是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图27是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图28是本申请实施例提供的一种基于不同形状单元的微型光谱芯片的纵向结构示意图;
图29是本申请实施例提供的一种基于不同形状单元的微型光谱芯片中的随机产生的不规则形状的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1描述本申请实施例的一种基于不同形状单元的微型光谱芯片,包括:CIS晶圆2,光调制层1,所述光调制层1包括设置在所述CIS晶圆2的感光区域表面的若干个微纳结构单元,每个微纳结构单元包括多个微纳结构阵列,每个微纳结构单元中、不同微纳结构阵列是由不同形状的内部单元组成的二维光栅。
本申请的基于不同形状单元的高精度微型光谱芯片,其结构示意图如图1所示,包括光调制层1、CIS晶圆2和信号处理电路3。入射光经过光调制层1后,由CIS晶圆2转换成电信号,再由信号处理电路3进行处理输出。光调制层1包含多个重复的微纳结构单元,每个微纳结构单元由多组微纳结构阵列组成,每个微纳结构单元包含的阵列组数可以在8个以上,其整体尺寸为0.5μm 2~40000μm 2;每个微纳结构单元中、不同微纳结构阵列具有的内部单元形状不同,每个微纳结构阵列的周期大小为20nm~50μm, 不同形状的内部单元对不同波长光的调制作用不同,每组微纳结构阵列与一个或多个CIS晶圆感光像素在垂直方向上相对应。入射光经过光调制层1后,受到单元内各组微纳结构阵列的调制,调制后的光信号强度由CIS晶圆2探测并转换成电信号,再由信号处理电路3进行处理,通过算法恢复得到入射光的频谱信息。光调制层1采用单片集成的方式设置在CIS晶圆上,本案利用基于不同形状单元的二维光栅结构,利用“形状”这个自由度,得到对入射光丰富的调制作用,提高了光谱恢复的精度,并且可以降低单元的尺寸。利用基于不同形状的内部单元的二维光栅结构,具有对入射光丰富的宽谱调制特性,实现对入射光频谱的高精度测量。将基于不同形状单元的光调制层与图像传感器单片集成,无分立元件,有利于提高器件的稳定性,极大促进成像光谱仪的小型化和轻量化,在小型平台如小卫星、无人机等上的应用有着广阔的前景。在晶圆级别实现单片集成,可以最大程度减小传感器与光调制层之间的距离,有利于缩小单元的尺寸,实现更高的光谱分辨率并降低封装成本。
从纵向上看,如图2所示,光调制层1中的每组微纳结构阵列是基于不同形状内部单元11的二维光栅,可以通过在CIS晶圆2上直接生长一层或多层介质或金属材料,再进行刻蚀,进行制备。通过改变11的几何形状,各组微纳结构阵列能够对目标范围内不同波长的光有不同的调制作用。光调制层1的厚度为50nm~2μm,光调制层1中的每组微纳结构阵列对应CIS晶圆2上一个或多个像素。光调制层1是直接在CIS晶圆2上制备的,CIS晶圆2和信号处理电路3之间通过电接触进行连接。本案从晶圆级别直接在CIS晶圆2上单片集成光调制层1,利用CMOS工艺一次流片即可完成该光谱芯片的制备。与传统光谱成像设备相比,本案将基于不同形状单元的光调制层1与CIS晶圆2单片集成,无分立元件,有利于提高器件的稳定性,降低器件的体积和成本。
光调制层1上刻有各种以不同形状结构为内部单元的二维光栅组成的微纳结构阵列,并对接收到的光进行调制,不同结构的调制作用不同。在横向上看,光调制层1可有以下三种方案:
方案一:
如图3所示,平板上有多个重复的微纳结构单元,例如11、22、33、 44、55、66,每个单元由多组微纳结构阵列组成,不同单元中相同位置处的微纳结构阵列相同,例如微纳结构单元11包括的微纳结构阵列包括第一组具有第一形状的二维光栅110、第二组具有第二形状的二维光栅111、第三组具有第三形状的二维光栅112、第四组具有第四形状的二维光栅113;还例如微纳结构单元44包括的微纳结构阵列包括第一组具有第一形状的二维光栅440、第二组具有第二形状的二维光栅443、第三组具有第三形状的二维光栅442、第四组具有第四形状的二维光栅444;可以看出,不同微纳结构阵列的内部单元形状不同,同一个微纳结构阵列的组成二维光栅的内部单元的形状是相同的,内部单元实际上就是构成二维光栅的内部光栅单元。微纳结构单元内的每组微纳结构阵列对不同波长的光具有不同的调制作用,并且各组微纳结构之间对输入光的调制作用也不同,具体的调制方式包括但不限于散射、吸收、干涉、表面等离激元、谐振增强等。通过改变单元形状,使得光通过不同组的微纳结构后,对应的透射谱不同。每组微纳结构阵列下方有对应的传感器,光经过微纳结构阵列的调制作用后,由下方的光传感器探测到光强。每个单元与其下方的光传感器构成一个像素点,通过现有技术中的恢复算法可以得到每个像素点上的光谱信息,即各个波长的强度分布;多个像素点构成一幅包含光谱信息的图像。
方案二:
如图4所示,平板上有多个重复的微纳结构单元,例如11、22、33、44、55、66,每个单元包括多组不同微纳结构阵列,不同单元中相同位置的微纳结构阵列相同,每一组微纳结构阵列下方有对应的传感器。例如微纳结构单元11包括的微纳结构阵列包括第一组具有第一形状的光栅110、第二组具有第二形状的光栅111、第三组具有第三形状的光栅112、第四组113处为空;还例如微纳结构单元44包括的微纳结构阵列包括第一组具有第一形状的光栅440、第二组具有第二形状的光栅443、第三组具有第三形状的光栅442、第四组444处为空;可以看出,该方案采用的微纳结构阵列与方案一相同,所不同的是,其中有一组的位置无微纳结构,入射光直通,可用于该单元直通光强的标定。
方案三:
如图5所示,平板上有多个微纳结构单元如11、22、33、44、55、66、 77、88,每个微纳结构单元包括多组不同微纳结构阵列,每一组微纳结构阵列下方有对应的传感器。该方案与方案一的区别在于,每一个微纳结构单元内包含的微纳结构阵列个数是动态可调的,例如图5左侧表示每个单元内包含9组微纳结构阵列,右侧则表示每个微纳结构单元内包含4组微纳结构阵列。每个微纳结构单元内包含的阵列数越多,光谱恢复精度越高,抗噪声性能越好,但光谱像素密度越低。这种动态组合方案可以实现光谱恢复精度与光谱像素密度之间的平衡。
根据不同的需求,CIS晶圆2的具体结构可以有两种可选方案:
方案一:
如图6所示,CIS晶圆2是前照式的,光探测层21在金属线层22下方,CIS晶圆上未集成微透镜和滤光片,光调制层1直接集成到金属线层22上。
方案二:
如图7所示,CIS晶圆2是背照式的,光探测层21在金属线层22上方,CIS晶圆上未集成微透镜和滤光片,光调制层1直接集成到光探测层21上。
在纵向上看,光调制层1可由一层或多层材料构成,以增加光调制层1对入射光的在频谱上的调制能力和采样能力,有利于提高光谱恢复精度。光调制层1在纵向上可以有以下四种方案:
方案一:
如图8所示,光调制层1单一材料的单层光栅结构,光栅单元为不同形状结构,厚度为50nm~2μm。具体材料可包括硅、锗、锗硅材料、硅的化合物、锗的化合物、金属、III-V族材料等,其中硅的化合物包括但不限于氮化硅、二氧化硅、碳化硅等。
方案二:
如图9和图10所示,光调制层1可以由两层或多层材料构成,其中11、12、13均为不同材料,各层的厚度为50nm~2μm。具体材料可包括硅、锗、锗硅材料、硅的化合物、锗的化合物、金属、III-V族材料等,其中硅的化合物包括但不限于氮化硅、二氧化硅、碳化硅等。
方案三:
如图11所示,光调制层1可以为多层或混合材料构成,其中11、12为不同材料,其中一层或多层可以不贯穿,图11中,12没有贯穿,各层的厚度为50nm~2μm。具体材料可包括硅、锗、锗硅材料、硅的化合物、锗的化合物、金属、III-V族材料、硅和SiN的混溅材料等,其中硅的化合物包括但不限于氮化硅、二氧化硅、碳化硅等。
方案四:
如图12所示,光调制层1是在背照式CIS晶圆的光探测层21上直接刻蚀结构制备的,刻蚀深度为50nm~2μm。
以下结合具体实施例对本案的基于不同形状单元的微型光谱芯片进行进一步的说明。
实施例1:
如图13所示,光谱芯片包括光调制层1、CIS晶圆2和信号处理电路3。光调制层1直接在CIS晶圆上制备,其横向结构采用上述方案一,具体结构如图14、图15所示,光调制层1包含多个重复微纳结构单元,每个微纳结构单元内部划分为9组不同的微纳结构阵列110~118,各组微纳结构阵列是基于不同形状单元的光栅,光栅形状可以是圆形、圆环、多边形、十字形这些规则的形状或者其它一些预设的不规则形状,各组微纳结构阵列周期大小分别为20nm~50μm;各组微纳结构阵列对入射光具有不同的宽谱调制作用,不同微纳结构单元在相应位置处的微纳结构阵列相同,每个单元的整体尺寸为0.5μm 2~40000μm 2。光调制层1中的介质材料为多晶硅,厚度为50nm~2μm。
上述不规则形状可以是通过算法产生的随机形状,该算法的流程如下:首先对一个周期内的区域进行均匀网格划分,网格的大小可以灵活设置。然后,对网格上的各个格点按照一定的分布规律进行折射率的分配,通常选取标准正态分布进行分配,需要强调的是,这里分配的折射率只是一个数值,不代表真实材料的折射率。接着,对折射率分布进行图像的滤波平滑处理和二值化处理,此时得到的折射率分布中只有0和1两个数值,分别代表空气和介质。为了消除结构中的尺寸过小的部分,以便工艺制备,还需要进行模糊化处理,以及二值化处理,在最终生成的图像中,数值0和1分别表示空气和介质的区域,并且不会包含尺寸过小的结构,便于工 艺加工。此外,还可以对产生的随机结构进行特定的限制。例如,若要求结构具有一定的对称性,可以在算法中对折射率分布进行对称化处理。并且,通过修改算法中的参数,能够对生成的随机形状的最小特征尺寸等特性进行调控。
图29给出了通过该算法产生的一些随机形状,其中的数字0和1分别表示空气和介质的区域。可以看到,该算法能够产生大量互不相同的不规则形状,从而能够对入射光产生丰富的调制作用,有利于提高光谱恢复精度。
CIS晶圆2的具体结构如图6所示,21是硅探测器层,22是金属线层,响应范围为可见到近红外波段;CIS晶圆是裸露的,未制备上拜尔滤光片阵列和微透镜阵列。每组微纳结构对应CIS晶圆2上的一个或多个光传感器单元。
对于多光谱图像采集的完整流程为:如图16所示,宽谱光源100照射到目标物体200上,然后反射光由光谱芯片300采集,或者目标物体直接向外辐射的光由光谱芯片300采集。每个微纳结构阵列与其下方的光传感器构成一个像素点,通过恢复算法可以得到每个像素点上的光谱信息,多个像素点构成一幅包含光谱信息的图像。光调制层1和CIS晶圆2都可以由半导体CMOS集成工艺制造,在晶圆级别实现单片集成,有利于减小传感器与光调制层之间的距离,缩小器件的体积,实现更高的光谱分辨率并降低封装成本。
实施例2:
如图17所示,实施例2与实施例1的主要区别在于横向结构,构成光调制层1的若干个微纳结构单元具有C4对称性,即结构旋转90°、180°或270°后,与原来不旋转时的结构重合,这样可以使得结构具有偏振无关的特性。
实施例3:
如图18所示,与实施例1的主要区别在于微型光谱芯片的纵向结构,在光调制层1和CIS晶圆2之间加入了一层透光介质层4,透光介质层4的厚度为50nm~2μm,材料可为二氧化硅。若为直接沉积生长的工艺方案,可在CIS晶圆上通过化学气相沉积、溅射、旋涂等方式制备该透光介质层, 然后在其上方进行光调制层结构的沉积、刻蚀即可。若为转移的工艺方案,则可在二氧化硅上先进行微纳结构的制备,再将这两部分整体转移到CIS晶圆上。可以通过CMOS工艺一次流片完成对光谱芯片的制备,有利于降低器件失效率,提高器件的成品良率,并降低成本。
实施例4:
如图19所示,实施例4与实施例1的差别在于光调制层1中的光栅是部分刻蚀结构,其中的孔并未完全贯穿平板,而是具有一定深度。微纳结构的厚度为50nm~2μm,整个平板的厚度为100nm~4μm;并且,此结构也可在1和2之间加入透光介质层。
实施例5:
如图20所示,实施例5与实施例1的差别在于光调制层1为两层结构,11为硅层,12为氮化硅层,两层结构的厚度均为50nm~2μm;并且,此结构的下层材料也可采用未被贯穿的部分刻蚀结构,如图21所示。
实施例6:
如图22所示,与实施例1的差别在于CIS晶圆是背照式的,光探测层21在金属线层22上方,减少了金属线层对入射光的影响,提高了器件的量子效率。
实施例7:
本实施例7与实施例1的差别在于:光谱芯片集成了微透镜或滤光片或两者兼有。如图23和24所示,光谱芯片集成了微透镜4,微透镜可在光调制层的上方(图23)或下方(图24);如图25和26所示,光谱芯片集成了滤光片5,滤光片可在光调制层的上方(图25)或下方(图26);如图27和28所示,光谱芯片集成了微透镜4和滤光片5,其位置可在光调制层的上方(图27)或下方(图28)。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (10)

  1. 一种基于不同形状单元的微型光谱芯片,其特征在于,包括:CIS晶圆,光调制层,所述光调制层包括设置在所述CIS晶圆的感光区域表面的若干个微纳结构单元,每个微纳结构单元包括多个微纳结构阵列,每个微纳结构单元中、不同微纳结构阵列是由不同形状的内部单元组成的二维光栅。
  2. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,所述若干个微纳结构单元是相同的重复单元,位于不同微纳结构单元中相应位置处的微纳结构阵列相同,和/或,位于不同微纳结构单元中至少一个相应位置处无微纳结构阵列,和/或,每个所述微纳结构单元的尺寸为0.5μm 2~40000μm 2,和/或,每个所述微纳结构阵列的周期为20nm~50μm。
  3. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,每一个所述微纳结构单元内所包含的微纳结构阵列的个数是动态可调的;和/或,所述若干个微纳结构单元具有C4对称性。
  4. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,每个微纳结构阵列对应所述CIS晶圆上的一个或多个像素。
  5. 根据权利要求1-4任一所述的基于不同形状单元的微型光谱芯片,其特征在于,还包括信号处理电路,所述信号处理电路通过电接触连接所述CIS晶圆。
  6. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,所述CIS晶圆包括光探测层和金属线层,所述光探测层设置在金属线层下方,所述光调制层集成在金属线层上,或,所述光探测层设置在金属线层上方,所述光调制层集成在光探测层上。
  7. 根据权利要求6所述的基于不同形状单元的微型光谱芯片,其特征在于,当所述光探测层在金属线层上方时,光调制层是由CIS晶圆的光探测层上刻蚀制备的,且刻蚀深度为50nm~2μm。
  8. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,所述光调制层为单层、双层或多层结构,每层的厚度为50nm~2μm;所述光调制层的材料为硅、锗、锗硅材料、硅的化合物、锗的化合物、金 属或III-V族材料中的至少一种,其中,硅的化合物包括氮化硅、二氧化硅、碳化硅中的至少一种,和/或,当所述光调制层为双层或多层时,其中至少一层不贯穿。
  9. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,所述光调制层和CIS晶圆之间设有透光介质层,所述透光介质层的厚度为50nm~2μm,透光介质层的材质为二氧化硅;在CIS晶圆上通过化学气相沉积、溅射或旋涂的方式制备所述透光介质层,然后在所述透光介质层上方进行光调制层的沉积、刻蚀,或,在透光介质层上制备出光调制层,再将透光介质层、光调制层转移到所述CIS晶圆上。
  10. 根据权利要求1所述的基于不同形状单元的微型光谱芯片,其特征在于,所述微型光谱芯片集成有微透镜和/或滤光片;所述微透镜和/或滤光片设置在所述光调制层的上方或下方。
PCT/CN2020/120409 2020-08-14 2020-10-12 基于不同形状单元的微型光谱芯片 WO2022032843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,414 US20220344381A1 (en) 2020-08-14 2020-10-12 Micro spectrum chip based on units of different shapes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821286.5A CN112018141B (zh) 2020-08-14 2020-08-14 基于不同形状单元的微型光谱芯片
CN202010821286.5 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032843A1 true WO2022032843A1 (zh) 2022-02-17

Family

ID=73504581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120409 WO2022032843A1 (zh) 2020-08-14 2020-10-12 基于不同形状单元的微型光谱芯片

Country Status (3)

Country Link
US (1) US20220344381A1 (zh)
CN (1) CN112018141B (zh)
WO (1) WO2022032843A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025886A (ko) * 2020-08-14 2023-02-23 칭화 유니버시티 서로 다른 형상 유닛에 기반한 마이크로 스펙트럼 칩 및 그 마이크로 나노 구조 어레이의 생성 방법
CN116913937B (zh) * 2023-08-25 2023-12-22 浙桂(杭州)半导体科技有限责任公司 图像传感器件及其光学调控方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298533A1 (en) * 2006-06-26 2007-12-27 Micron Technology, Inc. Method and apparatus providing imager pixel array with grating structure and imager device containing the same
CN101858786A (zh) * 2009-12-29 2010-10-13 南京邮电大学 相位调制台阶阵列微型光谱仪
CN106847849A (zh) * 2016-12-30 2017-06-13 中国科学院西安光学精密机械研究所 一种基于超表面窄带滤光的多光谱芯片及其制备方法
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪
CN110381243A (zh) * 2019-07-31 2019-10-25 清华大学 一种图像采集芯片、物体成像识别设备及物体成像识别方法
CN111505820A (zh) * 2020-03-17 2020-08-07 清华大学 单片集成的图像传感芯片及光谱识别设备
CN211627935U (zh) * 2020-03-17 2020-10-02 清华大学 单片集成的图像传感芯片及光谱识别设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741483B1 (fr) * 1995-11-21 1998-01-02 Thomson Csf Dispositif optoelectronique a puits quantiques
EA010503B1 (ru) * 2004-09-27 2008-10-30 Государственное Научное Учреждение "Институт Физики Им. Б.И.Степанова Национальной Академии Наук Беларуси" Высокоэффективный узконаправленный преобразователь света
FR2994602B1 (fr) * 2012-08-16 2014-09-12 Commissariat Energie Atomique Dispositif de filtrage spectral dans les domaines visible et infrarouge
CN105866873B (zh) * 2013-01-25 2018-03-02 中国科学技术大学 基于金属纳米光栅的微偏振片阵列的制备方法
CN106553993A (zh) * 2015-09-28 2017-04-05 中国科学院微电子研究所 与cmos工艺兼容的纳米结构制备方法
EP3780581B1 (en) * 2018-04-04 2023-10-25 Sony Semiconductor Solutions Corporation Solid-state imaging device
US11442282B2 (en) * 2018-10-26 2022-09-13 Viavi Solutions Inc. Optical element including a plurality of regions
FR3093377B1 (fr) * 2019-03-01 2021-02-26 Isorg Capteur d'images couleur et infrarouge
CN110346313A (zh) * 2019-07-31 2019-10-18 清华大学 一种光调制微纳结构、微集成光谱仪及光谱调制方法
CN111490060A (zh) * 2020-05-06 2020-08-04 清华大学 光谱成像芯片及光谱识别设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298533A1 (en) * 2006-06-26 2007-12-27 Micron Technology, Inc. Method and apparatus providing imager pixel array with grating structure and imager device containing the same
CN101858786A (zh) * 2009-12-29 2010-10-13 南京邮电大学 相位调制台阶阵列微型光谱仪
CN106847849A (zh) * 2016-12-30 2017-06-13 中国科学院西安光学精密机械研究所 一种基于超表面窄带滤光的多光谱芯片及其制备方法
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪
CN110381243A (zh) * 2019-07-31 2019-10-25 清华大学 一种图像采集芯片、物体成像识别设备及物体成像识别方法
CN111505820A (zh) * 2020-03-17 2020-08-07 清华大学 单片集成的图像传感芯片及光谱识别设备
CN211627935U (zh) * 2020-03-17 2020-10-02 清华大学 单片集成的图像传感芯片及光谱识别设备

Also Published As

Publication number Publication date
US20220344381A1 (en) 2022-10-27
CN112018141B (zh) 2023-11-28
CN112018141A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022032842A1 (zh) 基于随机形状单元的微型光谱芯片
JP6707105B2 (ja) カラー撮像素子および撮像装置
US8810808B2 (en) Determination of optimal diameters for nanowires
WO2022032843A1 (zh) 基于不同形状单元的微型光谱芯片
CN111505820A (zh) 单片集成的图像传感芯片及光谱识别设备
CN110146949A (zh) 一种窄带光谱滤波结构及其制作方法
JP2020123964A (ja) カラー撮像素子および撮像装置
CN111811651A (zh) 光谱芯片、光谱仪及光谱芯片制备方法
CN212721756U (zh) 光谱芯片及光谱仪
WO2021070305A1 (ja) 分光素子アレイ、撮像素子および撮像装置
WO2022033353A1 (zh) 基于不同形状单元的微型光谱芯片以及其中的微纳结构阵列的生成方法
CN211627935U (zh) 单片集成的图像传感芯片及光谱识别设备
CN211122509U (zh) 光谱仪结构及电子设备
TW202119094A (zh) 攝像元件及攝像裝置
CN113345925B (zh) 像素单元、图像传感器及光谱仪
JP7364066B2 (ja) 撮像素子及び撮像装置
CN112730267A (zh) 光谱仪结构及电子设备
US20240079421A1 (en) Image sensor
WO2022113363A1 (ja) 光学素子、撮像素子及び撮像装置
CN114156295A (zh) 基于双透镜阵列的凝视型多光谱图像传感器及其制作方法
CN116412910A (zh) 一种基于热载流子的多光谱传感器、芯片及其制备方法
JP2023166200A (ja) 受光素子
CN116314216A (zh) 基于硅基柱状体阵列的cis传感器、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949340

Country of ref document: EP

Kind code of ref document: A1