WO2022032678A1 - 信息处理方法及装置、设备、计算机存储介质 - Google Patents

信息处理方法及装置、设备、计算机存储介质 Download PDF

Info

Publication number
WO2022032678A1
WO2022032678A1 PCT/CN2020/109352 CN2020109352W WO2022032678A1 WO 2022032678 A1 WO2022032678 A1 WO 2022032678A1 CN 2020109352 W CN2020109352 W CN 2020109352W WO 2022032678 A1 WO2022032678 A1 WO 2022032678A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
time
synchronization signal
domain resource
Prior art date
Application number
PCT/CN2020/109352
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/109352 priority Critical patent/WO2022032678A1/zh
Priority to CN202080102091.3A priority patent/CN115699898A/zh
Publication of WO2022032678A1 publication Critical patent/WO2022032678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an information processing method, apparatus, device, and computer storage medium.
  • the New Radio (NR) system continues the Discontinuous Reception (DRX) mechanism of the Long Term Evolution (LTE) system, so that the terminal device does not have to turn on the receiver all the time when there is no data reception. Instead, it enters a state of discontinuous reception, so as to achieve the purpose of energy saving.
  • DRX Discontinuous Reception
  • LTE Long Term Evolution
  • the current NR system introduces the energy-saving signal, that is, the terminal device needs to monitor the energy-saving signal before monitoring the physical downlink control channel (PDCCH). Knowing that the network device has sent a PDCCH message, it continues to monitor the PDCCH signal, otherwise the terminal device does not monitor the corresponding PDCCH signal, but monitors the energy-saving signal at the next moment.
  • PDCCH physical downlink control channel
  • a network device may send paging messages to terminal devices in an idle state (RRC-IDLE), an inactive state (RRC-INACTIVE), and a connected state (RRC-CONNECTION).
  • RRC-IDLE idle state
  • RRC-INACTIVE inactive state
  • RRC-CONNECTION connected state
  • the paging reception of the terminal device also follows the principle of DRX, that is, the terminal is woken up at a specific time to monitor the paging message.
  • the terminal device periodically monitors the paging message, which will generate high power consumption.
  • Embodiments of the present application provide an information processing method, apparatus, device, and computer storage medium.
  • an embodiment of the present application provides an information processing method, which is applied to a terminal device, and the method includes:
  • the first reference signal is used to carry energy-saving related information of the paging message of the terminal device;
  • a paging processing mode of the terminal device is determined.
  • an embodiment of the present application provides an information processing method, which is applied to a network device, and the method includes:
  • the terminal device sends a first reference signal to the terminal device, where the first reference signal is used to carry the energy saving related information of the paging message of the terminal device, so that the terminal device determines the paging of the terminal device based on the energy saving related information how to handle it.
  • an embodiment of the present application provides an information processing apparatus, which is applied to a terminal device, and the information processing apparatus includes:
  • a first communication unit configured to receive a first reference signal; the first reference signal is used to carry energy-saving related information of the paging message of the terminal device;
  • a first processing unit configured to determine a paging processing mode of the terminal device based on the energy saving related information.
  • an embodiment of the present application provides an information processing apparatus, which is applied to a network device, and the information processing apparatus includes:
  • the second communication unit is configured to send a first reference signal to the terminal device, where the first reference signal is used to carry the energy saving related information of the paging message of the terminal device, so that the terminal device, based on the energy saving related information signal, Determine the paging processing mode of the terminal device.
  • an embodiment of the present application provides a terminal device, the device includes: a first transceiver, a first processor, and a first memory storing a computer program;
  • the first processor is configured to communicate with a network device through the first transceiver; wherein,
  • the first processor is further configured to execute the steps of the method of the first aspect when running the computer program stored in the first memory in conjunction with the first transceiver.
  • an embodiment of the present application provides a network device, where the network device includes: a second transceiver, a second processor, and a second memory storing a computer program;
  • the second processor is configured to communicate with the terminal device through the second transceiver; wherein,
  • the second processor is further configured to, in conjunction with the second transceiver, execute the steps of the method of the first aspect when running the computer program stored in the second memory.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a first processor to implement the steps of the method in the first aspect; or, the computer program The steps of the method of the second aspect are performed by a second processor.
  • a terminal device receives a first reference signal; the first reference signal is used to carry energy-saving related information of a paging message of the terminal device; based on the energy-saving related information, the terminal device is determined to be The paging processing method of the device; since the coding method of the reference signal is simple and occupies less time-frequency resources, the energy saving related information of the terminal device is carried by the first reference signal, which can reduce the energy consumption used in parsing the first reference signal, To achieve the effect of power saving.
  • FIG. 1 is a schematic diagram of a DRX cycle provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of distribution of energy-saving signals in a related art provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the composition and structure of an energy-saving signal in a related art provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of paging occasion distribution according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time-frequency structure of a synchronization signal block according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an information processing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of distribution of a first reference signal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram 1 of a synchronization signal block distribution provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a time-frequency structure of an exemplary first reference signal provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a time-frequency structure of an exemplary first reference signal provided by an embodiment of the present application.
  • FIG. 12 is a third schematic diagram of a time-frequency structure of an exemplary first reference signal according to an embodiment of the present application.
  • FIG. 13 is a fourth schematic diagram of a time-frequency structure of a first reference signal according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram 2 of a synchronization signal block distribution provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram 3 of a synchronization signal block distribution provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram 1 of an information processing apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 18 is a second schematic structural diagram of a section information processing apparatus provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural composition diagram of a network device according to an embodiment of the present application.
  • the network side can configure the terminal device to "wake up" or start DRX (DRX ON) at a time predicted by the network side. At this time, the radio frequency channel of the terminal device is turned on, and the terminal device continues to monitor the PDCCH; Similarly, the network side can also configure the terminal device to "sleep" or turn off DRX (DRX OFF) at the time predicted by the network side. At this time, the radio frequency channel of the terminal device is closed and the terminal device does not monitor the PDCCH. In this way, if the network side has data that needs to be transmitted to the terminal equipment, the network side can schedule the terminal equipment within the time when the terminal equipment is DRX ON. During the time when the terminal device is in DRX OFF, the power consumption of the terminal device can be reduced because the radio frequency is turned off.
  • RRC Radio Resource Control
  • the network side can configure a discontinuous reception cycle (DRX cycle) for terminal equipment under RRC_CONNECTED.
  • a DRX cycle consists of On Duration and Opportunity for DRX. )composition.
  • On Duration the terminal device monitors and receives downlink channels and signals including PDCCH; in Opportunity for DRX, the terminal device does not receive downlink channels and signals of PDCCH to reduce power consumption.
  • the terminal device in the RRC-IDLE state needs to receive the paging message in a similar way to DRX.
  • the terminal device There is a paging occasion (Paging Occasion, PO) in a DRX paging cycle, and the terminal device only receives the paging message in the PO, and The paging message is not received outside the PO to achieve the purpose of power saving.
  • the terminal device determines whether there is a paging message by detecting the PDCCH signal scrambled by the P-RNTI.
  • Energy-saving signal In the evolution of the fifth generation (5G, 5th Generation ) mobile communication system, higher requirements are placed on the energy-saving of terminal equipment; in order to achieve further energy-saving, the NR system introduces energy-saving signals.
  • the power saving signal is used in combination with the DRX mechanism, and the terminal device can receive the indication of the power saving signal before On Duration. Referring to a schematic diagram of the distribution of energy-saving signals shown in FIG. 2 , when the terminal device has data transmission in one DRX cycle (for example, the 0th DRX cycle or the 3rd DRX cycle shown in FIG.
  • the network device passes the energy-saving signal 21 "wake up" the terminal device so that the terminal device listens to the PDCCH during the On Duration 22 of the DRX cycle; otherwise, when the terminal device has no data transmission in a DRX cycle (such as the first DRX cycle and the second DRX cycle described in Figure 2) DRX cycle), the energy saving signal 21 does not "wake up” the terminal device, and the terminal device does not need to monitor the PDCCH during the On Duration 22 of the DRX cycle.
  • the terminal device can omit the monitoring of the PDCCH during the On Duration period, thereby reducing the power consumption of the terminal device.
  • the energy saving signal can be carried by the downlink control information format (DCI format) 2_6 newly defined by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) R16; based on this, the network side can configure the terminal device to detect the bearer DCI format.
  • the search space set (search space set) of the PDCCH of 2_6 is used to obtain the energy-saving signal.
  • the energy-saving signal can carry energy-saving related information of N terminal devices (from the first terminal device to the Nth terminal device), and the energy-saving related information of each terminal device includes: Including wake-up indication and secondary cell dormancy indication; in addition, the energy-saving signal also includes Cyclic Redundancy Check (Cyclic Redundancy Check, CRC) information.
  • the network device may notify each terminal device of the starting position of the energy saving related information in the DCI in advance, and further, the network device may also notify the terminal device of the total number of bits of DCI and the PS-RNTI of the scrambled PDCCH.
  • the network can send pages to terminal devices in the RRC-CONNECTED state, the RRC-INACTIVE state, and the RRC-IDLE state.
  • the paging process can be triggered by the core network to notify the terminal device to receive a paging request, or the paging process can be triggered by the base station to notify the system information update, and notify the terminal device to receive Earthquake Tsunami Warning (ETWS) and commercial mobile warning services (CMAS) and other information.
  • EWS Earthquake Tsunami Warning
  • CMAS commercial mobile warning services
  • the base station interprets the content, obtains the Tracking Area Identity (TAI) list of the terminal equipment, and performs air interface search in the cells belonging to the tracking area in the list. call.
  • the core network domain indication of the paging message will not be decoded at the base station, but will be transparently transmitted to the terminal device.
  • the base station aggregates the paging messages of the UEs with the same PO into one paging message, and transmits it to the relevant terminal equipment through the paging channel.
  • the terminal device receives the paging parameters through the system message, calculates the PO in combination with its own terminal device identification (UE_ID), and receives the paging message at the corresponding PO.
  • UE_ID terminal device identification
  • the terminal device in the RRC-IDLE state can save power through the DRX mechanism.
  • the terminal device can use the paging frame (Paging Frame, PF) in a DRX paging cycle.
  • the PO monitors the PDCCH scrambled by P-RNTI to receive the paging message; among them, PF indicates which system frame number the paging message should appear on, and PO indicates the possible moment.
  • a PF may include one or more POs, and in each DRX paging cycle, a terminal device only needs to monitor its own POs.
  • Synchronization Signal Block It is a signal structure defined in NR, a set of time-frequency resources transmitted on a basic Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplexing, OFDM) grid (Resource unit), including Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH).
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • PSS is sent on the first OFDM symbol of the synchronization signal block, occupying 127 sub-carriers in the frequency domain, and the rest of the sub-carriers are empty;
  • SSS is sent on the third OFDM symbol of the synchronization signal block, occupying the same sub-carriers as PSS Carrier, 8 and 9 subcarriers are vacated at both ends of the SSS;
  • PBCH is sent on the second and fourth OFDM symbols of the synchronization signal block.
  • the PBCH is also sent using 48 subcarriers at both ends of the SSS.
  • the SSB needs to cover the entire cell by means of multi-beam scanning, which is convenient for the terminal equipment in the cell to receive.
  • the multi-beam transmission of SSB is realized by defining a synchronization signal burst set (SS burst set).
  • One SS burst set contains one or more SSBs, and one SSB is used to carry the synchronization signal and physical broadcast channel of one beam; Therefore, one SS burst set can contain the synchronization signals of N beams corresponding to SSBs in the cell, and the maximum number L of SSBs is related to the frequency band of the system.
  • the maximum number L of SSBs is 4; when the frequency band of the system is within the range of 3GHz and 6GHz, the maximum number L of SSBs is 8; when the frequency band of the system is 6GHz and 52.6GHz, the maximum number L of SSBs is 64.
  • all SSBs are sent within a time window of 5ms, and are repeatedly sent at a certain period.
  • the period can be configured by the upper layer parameter SSB-timing, and the SSB period can be are 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc., which are not limited in this embodiment of the present application.
  • FIG. 6 is a schematic architecture diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include a network device 610 and a terminal device 620 .
  • the network device 610 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area.
  • the network device 610 may be a base station in a 5G system, an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, a radio control system in a cloud radio access network (Cloud Radio Access Network, CRAN).
  • device mobile switching center, relay station, access point, in-vehicle device, wearable device, hub, switch, network bridge, router, or network device in future communication systems, etc., which are not limited in this embodiment of the present application.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter; and/or a device of another terminal device configured to receive/transmit communication signals; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device arranged to communicate via a wireless interface may be referred to as a "wireless communication terminal device", “wireless terminal device” or “mobile terminal device”.
  • mobile terminal devices include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminal devices that may combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; may include radiotelephones, pagers, Internet PDAs with intranet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or including radiotelephone transceivers other electronic devices.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment may refer to access terminal equipment, user equipment (User Equipment, terminal equipment), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user terminal equipment, terminal equipment, wireless communication device, user agent, or user device.
  • the access terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Communication-enabled handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • FIG. 6 exemplarily shows a network device and a terminal device.
  • the communication system may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the communication system may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • An embodiment of the present application provides an information processing method, which is applied to the terminal device 620 shown in FIG. 6 .
  • the method includes:
  • Step 710 Receive a first reference signal; the first reference signal is used to carry energy-saving related information of the paging message of the terminal device;
  • Step 720 Determine the paging processing mode of the terminal device based on the energy saving related information.
  • the network device may send an energy saving signal to the terminal device before the PF or PO of the terminal device, and inform the terminal device whether there will be a paging message sent to the terminal device through the energy saving related information in the energy saving signal. In this way, the terminal device can determine the paging processing mode through the energy saving signal.
  • the energy-saving related information of the paging message of the terminal device is carried by DCI, and the DCI coding method is complex and occupies a lot of time-frequency resources. consumption.
  • an embodiment of the present application provides an information processing method, where the first reference signal is used to carry energy-saving related information of the terminal device, that is, the terminal device determines whether there is any information sent to itself by receiving and analyzing the first reference signal. paging message.
  • the first reference signal may be any type of reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DMRS), a downlink channel state information reference signal, and a cell-specific reference signal (Cell-specific reference). signal, CRS), etc.
  • DMRS Demodulation Reference Signal
  • CRS Cell-specific reference
  • the type of the first reference signal is not limited in this embodiment of the present application.
  • a terminal device receives a first reference signal; the first reference signal is used to carry energy-saving related information of a paging message of the terminal device; based on the energy-saving related information, the terminal device is determined to be
  • the paging processing method of the equipment; the coding method of the reference signal is simple and occupies less time-frequency resources. Therefore, the energy saving related information of the terminal equipment is carried by the first reference signal, which can reduce the energy consumption used in parsing the first reference signal, and achieve power saving effect.
  • step 720 based on the energy saving signal, determining the receiving manner of the paging message may be implemented by the following steps:
  • Step 7201 If the energy saving signal indicates to monitor the PDCCH at a specific paging occasion, determine that the terminal device monitors the PDCCH at the specific paging occasion;
  • Step 7202 If the energy saving signal indicates not to monitor the PDCCH at the specific paging occasion, determine that the terminal device does not monitor the PDCCH at the specific paging occasion.
  • the specific paging occasion is used to represent the time period during which the terminal device detects the paging indication information.
  • the terminal device after receiving the first reference signal, parses the first reference signal to obtain energy saving related information of the terminal device carried by the first reference information. If the energy saving related information indicates to monitor the PDCCH at a specific paging occasion, it means that the network device is about to send a paging message corresponding to the terminal device at the specific paging occasion. above, monitor the PDCCH scrambled by the P-RNTI, and detect the DCI format 1_0 carried by the PDCCH to obtain the paging message belonging to the terminal device.
  • the energy saving related information indicates not to monitor the PDCCH at a specific paging occasion, it means that there is no paging message corresponding to the terminal device, and the terminal device does not monitor the PDCCH on the specific PF or PO, that is, the terminal device does not monitor the PDCCH.
  • the device does not detect P-RNTI scrambled DCI format 1_0 on a specific PF or PO.
  • the terminal device will monitor the PDCCH only when the energy-saving related information indicates to monitor the PDCCH at a specific paging occasion. In this way, the terminal device does not need to wake up periodically to monitor the PDCCH, which reduces the power consumption of the terminal device. and the energy saving related information of the terminal device is carried by the first reference signal, which can reduce the energy consumption used in parsing the first reference signal, and achieve the effect of power saving.
  • the specific paging occasions may include one or more first paging occasions; the first paging occasions are the paging occasions to which the terminal device belongs or the public paging occasions configured by the network device.
  • the embodiment does not limit this.
  • the first paging included in the specific paging occasion may be indicated by energy saving related information.
  • the energy-saving related information can also indicate whether the terminal device monitors the time period of the PDCCH.
  • the PF or PO included in the time period of paging reception may be the PF or PO belonging to the terminal device, or may be the public PF or PO configured by the cell. This embodiment of the present application does not limit this.
  • one or more first paging occasions carrying the paging message of the terminal device are indicated by the energy saving related information in the first reference signal, which can improve the flexibility of the paging process of the terminal device.
  • the first reference signal and the PBCH DMRS in the synchronization signal block are generated in the same manner.
  • the first reference signal can be generated by reusing the PBCH DMRS in the existing SSB, and the first reference signal is used as an energy saving signal of the terminal device to carry the energy saving related information of the terminal device.
  • the first reference signal is different from the PBCH DMRS carried in the SSB.
  • the PBCH DMRS carried in the SSB is used to indicate the lowest three bits of the SSB index, and the SSB index identifies the position of the SSB in the SS burst set.
  • the PBCH DMRS carried in the current SSB cannot be used as an energy saving signal to indicate other information.
  • the PBCH DMRS generation method can be used to obtain the first reference signal, and the first reference signal is the energy-saving indication information of the terminal device, so that the technical complexity of generating the first reference signal can be reduced.
  • the PBCH DMRS sequence r(m) can be obtained by formula (1).
  • j is a complex identifier
  • c(n) is a pseudo-random sequence
  • c(n) should be initialized according to formula (2) at each SSB transmission timing.
  • i SSB is the lowest two bits of the SSB index.
  • i SSB is the lowest three bits of the SSB index.
  • the PBCH DMRS can include 8 different sequences.
  • the PBCH DMRS can also implicitly indicate 8 kinds of SSB indexes according to the different sequences, that is, the lowest 3 bits of the SSB index are indicated. . In this way, the terminal device obtains the lowest 3 bits of the SSB index by blindly detecting the sequence of the PBCH DMRS.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the PBCH DMRS in the SSB.
  • the length of the PBCH DMRS in the SSB is 144.
  • the sequence length of the first reference signal can be set to be the same as or different from the sequence length of the PBCH DMRS in the SSB according to actual needs. Not limited.
  • the generation method of the sequence of the first reference signal may refer to the above-mentioned generation method of the PBCH DMRS sequence r(m). That is, the first reference signal may also include a maximum of 8 different sequences.
  • different energy saving related information is carried by different first reference signal sequences.
  • the range of values is 0 and 1; use The generated first reference signal sequence may indicate that no paging message is detected on the PO or PF that has a corresponding relationship with the first reference signal sequence, or the PDCCH listening opportunity in the PO; use The generated first reference signal sequence may indicate that the paging message is detected on the PO or PF corresponding to the first reference signal sequence, or the PDCCH listening opportunity in the PO.
  • value ranges from 0-7; use a different The values generate different first reference signal sequences.
  • the information indicated by different first reference signal sequences is different, and the first reference signal has a total of 8 different sequences, which can indicate 8 different information.
  • the generated first reference signal sequence can indicate that the paging message is detected on 3 POs or PFs, or the PO terminal PDCCH listening opportunity; the 3 POs or PFs mentioned here can be PFs or POs belonging to the terminal equipment, It can also be a public PF or PO configured by a cell.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the terminal device needs to perform a time-frequency synchronization operation with the network side before its own PF or PO arrives, so as to be able to receive the paging message accurately.
  • the terminal device can perform time-frequency synchronization operations based on the SSB.
  • the terminal device can detect the SSB in the SS burst set to perform a time-frequency synchronization operation before the PF or PO arrives, so as to monitor the PDCCH on the PF or PO.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the SSB may be established in advance.
  • the corresponding relationship here may be that the time-frequency resources of the first reference signal are located within the preset range of the SSB time-frequency resources, or, the time-frequency resources of the first reference signal are adjacent to the SSB time-frequency resources, which is not the case in this embodiment of the present application. Do limit.
  • the terminal device when the terminal device searches the SSB for time-frequency synchronization, it can also obtain the first reference signal from the time-frequency resource that has a corresponding relationship with the SSB time-frequency resource, and determine the paging message of the terminal device based on the first reference signal. In this way, the extra power consumption caused by the separate detection of the first reference signal is avoided, and the effect of power saving is achieved.
  • the network device may send SSBs in the form of beam scanning, that is, sending different SSBs on different beams in the form of time division multiplexing, and the SSB set in the beam scanning is the SS burst set.
  • the SSB in this embodiment of the present application may be any one of the SS burst sets.
  • the terminal device can detect the first reference signal at the time-frequency resource corresponding to each SSB time-frequency resource in the SS burst set.
  • the first reference signal and the SSB have a corresponding relationship, that is, one SSB may correspond to one first reference signal.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block may include multiple types, three of which are described in detail below:
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource position of the first reference signal and the frequency domain resource position of the SSB at least partially overlap, and the time domain resource position of the first reference signal and the time domain resource position of the SSB do not overlap.
  • the first reference signal may be set on a different OFDM symbol having the same bandwidth as the SSB.
  • the first reference signal may be located on some subcarriers or all subcarriers in the subcarriers numbered 0-239.
  • the energy-saving signal is located on the OFDM symbol whose OFDM symbol number is 4.
  • the number of subcarriers occupied by the first reference signal in the frequency domain may be determined according to the sequence length of the first reference signal in practical applications.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the time domain resource position of the first reference signal and the time domain resource position occupied by the SSB at least partially overlap, and the frequency domain resource position of the first reference signal and the frequency domain resource position of the SSB do not overlap.
  • the first reference signal may be set at a position that overlaps with the OFDM symbol of the SSB and has different subcarriers.
  • the first reference signal may be located on subcarriers numbered from 249 to M+248, and the first reference The signal is on the OFDM symbol with OFDM symbol number 0.
  • M is the length of the power saving signal.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal PSS in the SSB, and the time domain resources of the first reference signal include the first set of subcarriers and/or the second set of subcarriers; the first set of subcarriers and the second set of subcarriers, which do not overlap with the set of subcarriers occupied by the primary synchronization signal PSS.
  • the first reference signal may be located on the OFDM symbol of the PSS in the SSB, that is, on the OFDM symbol numbered 0, And the first reference signal occupies the first subcarrier set 121 and/or the second subcarrier set 122 .
  • the first subcarrier set may be some subcarriers or all subcarriers with subcarriers numbered 0 to 47 in the SSB time-frequency structure
  • the second subcarrier set may be subcarriers numbered 192 to 239 in the SSB time-frequency structure Some subcarriers or all subcarriers.
  • the time-frequency resources occupied by the first reference signal are OFDM symbols numbered 0, and the frequency domain resources occupied by the first reference signal are subcarriers numbered 0 to 47 (48 subcarriers in total); or, the first The time-frequency resources occupied by the reference signal are OFDM symbols numbered 0, and the frequency domain resources occupied by the first reference signal are subcarriers numbered 0 to 47 and 192 to 239 (96 subcarriers in total).
  • the first reference signal is carried near the time-frequency resource location of the SSB, and when the terminal device detects the SSB to perform the time-frequency synchronization operation, it can also detect the first reference signal near the time-frequency resource of the SSB, avoiding the need to detect the first reference signal separately. Additional power consumption due to the reference signal.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the PBCH DMRS in the SSB.
  • the relationship between the sequence length of the first reference signal and the sequence length of the PBCH DMRS in the SSB is exemplarily described below with reference to the schematic diagram 4 of the time-frequency structure of the first reference signal shown in FIG. 13 .
  • the first reference signal may occupy the OFDM symbol numbered 0 and the subcarriers numbered 0-47 and 192-239; the sequence length of the first reference signal is 96.
  • the first reference signal may also occupy the OFDM symbol numbered 0 and the subcarriers numbered 0-47 or 192-239, and the sequence length of the first reference signal is 48.
  • a specific encoding method may be used to control the sequence length of the first reference signal, which is an energy-saving signal, to be less than or equal to 96.
  • the 48 sub-carriers on the upper and lower sides can be combined to carry a first reference signal (that is, the length of the first reference signal is less than or equal to 96), or can also carry a first reference signal separately, (that is, each The sequence length of the first reference signal is less than or equal to 48).
  • the first reference sequences at different locations may correspond to different terminal equipment groups, or correspond to different POs or PFs, and so on. This embodiment of the present application does not limit this.
  • the first reference signal and the synchronization signal block have a corresponding relationship, wherein the corresponding relationship is a Quasi Co-Location (Quasi Co-Location, QCL). It can be understood that the first reference signal and the SSB are transmitted using the same antenna port.
  • the PDCCH monitoring timing in the PO has a corresponding relationship with the SSB in the SS burst set, and the PDCCH monitoring timing in the PO also has a corresponding relationship with the first DMRS.
  • Each or every several listening occasions has a corresponding relationship with an SSB, which is used for multi-beam transmission of paging messages.
  • the SS burst set includes multiple SSBs, and the SSB 141 corresponding to each first DMRS signal corresponds to a PDCCH monitoring opportunity 142 in the PO.
  • step 710 receives the energy saving signal, the following steps may also be performed:
  • Step 701 determine the time offset parameter, the minimum time interval, and the period of the synchronization signal block
  • Step 702 Determine the receiving moment of the first reference signal based on the time offset parameter, the minimum time interval, and the period of the synchronization signal block.
  • step 710 receives the energy saving signal, including:
  • the first reference signal is received.
  • the SS burst set is sent periodically, before the PO or PF of the terminal device arrives, there may be multiple cycles of the SS burst set sent. At this time, it is necessary to determine which SS burst sets carry the energy-saving signal.
  • the monitoring time of the first reference signal can be determined in combination with the period of the configured SS burst set (that is, the period of the SSB) through the time offset parameter and the minimum time interval.
  • the time offset parameter may be a value pre-agreed by the terminal device and the network device, or may be configured by the network device through a system message, which is not limited in this embodiment of the present application.
  • the terminal device needs to perform operations such as device wake-up and post-wake initialization before the PF or PO is reached. Therefore, before the minimum time interval starts, the terminal device needs to receive a complete energy-saving signal, and the terminal device needs to receive a complete energy-saving signal before the PF or PO reaches the minimum time interval.
  • the device performs an initialization operation after waking up, so it does not need to monitor the power saving signal during this minimum time interval.
  • the minimum time interval is related to the capabilities of the terminal equipment. Referring to the example of the minimum time interval shown in Table 1, using two terminal devices with the same subcarrier spacing (such as 15kHz), the terminal device with faster initialization speed can use a shorter minimum time interval (such as the value 1 in Table 1) , and a terminal with a slower initialization speed can use a longer minimum time interval (such as value 2 in Table 1).
  • the unit of the minimum time interval is a slot.
  • a time offset parameter and a minimum time interval can be used to determine the monitoring timing of the first reference signal in combination with the configured period of the SS burst set. As shown in Figure 15, before the PF or PO arrives, the terminal device receives the first reference signal within a complete set of SSB bursts that satisfy the configured time offset parameter and the minimum time interval.
  • the terminal device is in the RRC idle state or the RRC inactive state.
  • the embodiments of the present application further provide an information processing method, which is applied to the network device 610 shown in FIG. 6 , and the method includes:
  • Step 810 Send a first reference signal to the terminal device, where the first reference signal is used to carry energy-saving related information of the paging message of the terminal device, so that the terminal device determines a paging processing method of the terminal device based on the energy-saving related information.
  • the network device may send the first reference signal to the terminal device before sending the paging message to the terminal device, so that when the terminal device reaches the paging message, the terminal device can, according to the energy saving related information carried in the first reference signal, Determine whether to listen to the PDCCH to receive the paging message.
  • the network device carries the energy-saving related information in the first reference signal and sends it to the terminal device; in this way, the terminal device can determine the paging processing method of the terminal device based on the energy-saving related information;
  • the reference signal carries the energy-saving first-off information, which can reduce the energy consumption used in parsing the first reference signal and achieve the effect of power saving.
  • the first reference signal and the demodulation reference signal in the synchronization signal block are generated in the same manner.
  • the first reference signal can be generated by reusing the PBCH DMRS in the existing SSB, and the first reference signal is used as an energy saving signal of the terminal device to carry the energy saving related information of the terminal device.
  • the first reference signal is different from the PBCH DMRS carried in the SSB.
  • the PBCH DMRS carried in the SSB is used to indicate the lowest three bits of the SSB index, and the SSB index identifies the position of the SSB in the SS burst set.
  • the PBCH DMRS carried in the current SSB cannot be used as an energy saving signal to indicate other information.
  • the PBCH DMRS generation method can be used to obtain the first reference signal, and the first reference signal is the energy-saving indication information of the terminal device, so that the technical complexity of generating the first reference signal can be reduced.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the demodulation reference signal.
  • the length of the PBCH DMRS in the SSB is 144.
  • the sequence length of the first reference signal can be set to be the same as or different from the sequence length of the PBCH DMRS in the SSB according to actual needs. Not limited.
  • the first reference signal includes multiple sequences; different first reference signal sequences carry different energy saving related information.
  • the first reference signal adopts the same generation method as the PBCH DMRS in the SSB, that is, the first reference signal can also include up to 8 different sequences. Different sequences may be indicated to carry different energy saving related information.
  • the first reference signal and the synchronization signal block have a corresponding relationship; the corresponding relationship includes a quasi-co-location relationship.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block at least partially overlap, and the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block do not overlap.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block at least partially overlap, and the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block do not overlap.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block, and the frequency domain resource of the first reference signal includes the first subcarrier set and/or the second subcarrier gather;
  • the first subcarrier set and the second subcarrier set do not overlap with the subcarrier set occupied by the primary synchronization signal.
  • the network device can send the energy-saving signal on the time-frequency resource within the preset range of the SSB time-frequency resource, that is, the network device sends the energy-saving signal on the time-frequency resource near the SSB, In this way, before the arrival of the PF or PO, the terminal device can detect the energy-saving signals near the time-frequency resource location of the SSB together when detecting the SSB to perform the time-frequency synchronization operation, so as to avoid the additional power consumption caused by the separate detection of the energy-saving signal, and save energy. effect of electricity.
  • the energy-saving signal is carried near the time-frequency resource location of the SSB, and when the terminal device detects the time-frequency synchronization operation of the SSB, the energy-saving signal can be detected together, thereby avoiding additional power consumption caused by detecting the energy-saving signal separately.
  • step 810 sends the energy saving signal to the terminal device
  • the following steps may also be performed:
  • Step 801 Send configuration information to a terminal device; the configuration information includes a time offset parameter.
  • the network device can configure a time offset parameter to the terminal device, so that the terminal device can determine the receiving moment of the energy saving signal based on the time offset parameter.
  • the configuration information may be carried through system information.
  • the synchronization signal block is any one of a synchronization signal burst set sent by a network device.
  • FIG. 16 is a schematic structural composition diagram of the information processing apparatus provided by the embodiments of the present application, as shown in FIG. 16 .
  • the information processing device includes:
  • the first communication unit 1601 is configured to receive a first reference signal; the first reference signal is used to carry energy-saving related information of a paging message of a terminal device;
  • a first processing unit 1602 configured to determine a paging processing mode of the terminal device based on the energy saving related information.
  • the first processing unit 1602 is configured to determine that the terminal device monitors the physical downlink control channel PDCCH at a specific paging occasion if the energy saving related information indicates that the terminal device monitors the specific paging occasion PDCCH; the specific paging occasion is used to represent the time period during which the terminal device detects the paging indication information; if the energy saving related information indicates that the PDCCH is not to be monitored at the specific paging occasion, it is determined that the terminal device is in the PDCCH is not monitored for certain paging occasions.
  • the first reference signal and the demodulation reference signal in the synchronization signal block are generated in the same manner.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the demodulation reference signal.
  • the first reference signal includes multiple sequences; different first reference signal sequences carry different energy saving related information.
  • the first reference signal and the synchronization signal block have a corresponding relationship; the corresponding relationship includes a quasi-co-location relationship.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block at least partially overlap, and the time domain resource location of the time-frequency resource of the first reference signal and the time domain resource location of the synchronization signal block Domain resource locations do not overlap;
  • the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block at least partially overlap, and the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block are different. overlapping.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the orthogonal frequency division multiplexing OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block, and the frequency domain resource of the first reference signal includes the first subcarrier set and / or the second set of subcarriers;
  • the first subcarrier set and the second subcarrier set do not overlap with the subcarrier set occupied by the primary synchronization signal.
  • the specific paging occasions include one or more first paging occasions; the first paging occasions are the paging occasions to which the terminal device belongs or the public paging occasions configured by the network device. call time.
  • the first processing unit 1602 is further configured to determine a time offset parameter, a minimum time interval, and a period of a synchronization signal block; based on the time offset parameter, the minimum time interval, and the period of the synchronization signal block, to determine the receiving moment of the energy-saving signal;
  • the first communication unit is configured to receive the energy-saving signal on a first time-frequency resource based on the receiving moment of the energy-saving signal.
  • the terminal device is in a radio resource control RRC idle state or an RRC inactive state.
  • the synchronization signal block is any one of a synchronization signal burst set sent by a network device.
  • the functions implemented by each unit in the information processing apparatus can be understood by referring to the relevant description of the foregoing information processing method.
  • the first processing unit in the information processing apparatus may be a processor in the terminal device, such as a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microcomputer Control unit (Microcontroller Unit, MCU) or programmable gate array (Field-Programmable Gate Array, FPGA), etc.; the communication unit in the information processing device modules, standardized interfaces and protocols, etc.) and transceiver antenna implementation.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • MCU microcomputer Control unit
  • FPGA programmable gate array
  • FIG. 17 is a schematic diagram of the hardware structure of the terminal device according to the embodiment of the present application.
  • the terminal includes a first transceiver 1701, A processor 1702, and a first memory 1703 storing computer programs.
  • the terminal device further includes a first communication bus 1704 ; various components in the terminal device are coupled together through the first communication bus 1704 . It can be understood that, the first transceiver 1701 , the first processor 1702 and the first memory 1703 in the terminal device communicate through the first communication bus 1704 .
  • the first processor 1702 is configured to implement communication with a network device through the first transceiver 1701 .
  • the first receiver 1701 is configured to receive a first reference signal; the first reference signal is used to carry energy-saving related information of the paging message of the terminal device;
  • the first processor 1702 executes the computer program in the first memory 1703, it is configured to implement the following steps: determining a paging processing mode of the terminal device based on the energy saving related information.
  • the first processor 1702 when the first processor 1702 executes the computer program in the first memory 1703, it is configured to implement the following steps: if the energy saving related information indicates that the physical downlink control channel PDCCH is monitored at a specific paging occasion, then: determining that the terminal device monitors the PDCCH at the specific paging occasion; the specific paging occasion is used to represent the time period during which the terminal device detects the paging indication information;
  • the energy saving related information indicates that the PDCCH is not to be monitored at a specific paging occasion, it is determined that the terminal device does not monitor the PDCCH at the specific paging occasion.
  • the first reference signal and the demodulation reference signal in the synchronization signal block are generated in the same manner.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the demodulation reference signal.
  • the first reference signal includes multiple sequences; different first reference signal sequences carry different energy saving related information.
  • the first reference signal and the synchronization signal block have a corresponding relationship; the corresponding relationship includes a quasi-co-location relationship.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block at least partially overlap, and the time domain resource location of the time-frequency resource of the first reference signal and the time domain resource location of the synchronization signal block Domain resource locations do not overlap;
  • the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block at least partially overlap, and the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block are different. overlapping.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the orthogonal frequency division multiplexing OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block, and the frequency domain resource of the first reference signal includes the first subcarrier set and / or the second set of subcarriers;
  • the first subcarrier set and the second subcarrier set do not overlap with the subcarrier set occupied by the primary synchronization signal.
  • the specific paging occasions include one or more first paging occasions; the first paging occasions are the paging occasions to which the terminal device belongs or the public paging occasions configured by the network device. call time
  • the first processor 1702 executes the computer program in the first memory 1703, it is configured to implement the following steps: determine a time offset parameter, a minimum time interval, and a period of a synchronization signal block; based on the time offset parameter, the minimum The time interval, and the period of the synchronization signal block, determine the receiving moment of the energy-saving signal;
  • the first communication unit is configured to receive the energy-saving signal on the first time-frequency resource based on the reception time of the energy-saving signal.
  • the terminal device is in a radio resource control RRC idle state or an RRC inactive state.
  • the synchronization signal block is any one of a synchronization signal burst set sent by a network device.
  • FIG. 18 is a schematic structural diagram of the information processing apparatus provided by the embodiments of the present application, as shown in FIG. 18 .
  • the information processing device includes:
  • the second communication unit 1801 is configured to send a first reference signal to a terminal device, where the first reference signal is used to carry the energy saving related information of the paging message of the terminal device, so that the terminal device, based on the energy saving related information, Determine the paging processing mode of the terminal device.
  • the first reference signal and the demodulation reference signal in the synchronization signal block are generated in the same manner.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the demodulation reference signal.
  • the first reference signal includes multiple sequences; different first reference signal sequences carry different energy saving related information.
  • the first reference signal and the synchronization signal block have a corresponding relationship; the corresponding relationship includes a quasi-co-location relationship.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block at least partially overlap, and the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block are different. overlapping;
  • the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block at least partially overlap, and the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block are different. overlapping.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the orthogonal frequency division multiplexing OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block, and the frequency domain resource of the first reference signal includes the first subcarrier set and / or the second set of subcarriers;
  • the first subcarrier set and the second subcarrier set do not overlap with the subcarrier set occupied by the primary synchronization signal.
  • the energy saving related information is used to indicate whether the terminal device monitors the physical downlink control channel PDCCH at a specific paging occasion; the specific paging occasion includes one or more first paging occasions ; the first paging occasion is the paging occasion to which the terminal device belongs or the public paging occasion configured by the network device.
  • the second communication unit 1801 is further configured to send configuration information to the terminal device; the configuration information includes a time offset parameter.
  • the synchronization signal block is any one of a synchronization signal burst set sent by a network device.
  • each unit in the information processing apparatus can be understood by referring to the relevant description of the foregoing information processing method.
  • the communication unit in the information processing device may be implemented by a communication module (including: a basic communication suite, an operating system, a communication module, standardized interfaces and protocols, etc.) and a transceiver antenna.
  • FIG. 19 is a schematic structural diagram of the hardware composition of the network device according to the embodiment of the present application.
  • the network device includes a second transceiver 1901 .
  • the network device further includes a second communication bus 1904 ; various components in the network device are coupled together through the second communication bus 1904 . It can be understood that, communication between the second transceiver 1901 , the second processor 1902 and the second memory 1903 in the network device is performed through the second communication bus 1904 .
  • the second processor 1902 is configured to implement communication with a network device through the second transceiver 1901 .
  • the second receiver 1901 is configured to send a first reference signal to a terminal device, where the first reference signal is used to carry the energy saving related information of the paging message of the terminal device, so that the terminal device Based on the energy saving related information, a paging processing mode of the terminal device is determined.
  • the first reference signal and the demodulation reference signal in the synchronization signal block are generated in the same manner.
  • the sequence length of the first reference signal is the same as or different from the sequence length of the demodulation reference signal.
  • the first reference signal includes multiple sequences; different first reference signal sequences carry different energy saving related information.
  • the first reference signal and the synchronization signal block have a corresponding relationship; the corresponding relationship includes a quasi-co-location relationship.
  • the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block have a corresponding relationship.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block at least partially overlap, and the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block are different. overlapping;
  • the time domain resource location of the first reference signal and the time domain resource location of the synchronization signal block at least partially overlap, and the frequency domain resource location of the first reference signal and the frequency domain resource location of the synchronization signal block are different. overlapping.
  • the correspondence between the time-frequency resources of the first reference signal and the time-frequency resources of the synchronization signal block includes:
  • the orthogonal frequency division multiplexing OFDM symbol of the first reference signal is the same as the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block, and the frequency domain resource of the first reference signal includes the first subcarrier set and / or the second set of subcarriers;
  • the first subcarrier set and the second subcarrier set do not overlap with the subcarrier set occupied by the primary synchronization signal.
  • the energy saving related information is used to indicate whether the terminal device monitors the physical downlink control channel PDCCH at a specific paging occasion; the specific paging occasion includes one or more first paging occasions ; the first paging occasion is the paging occasion to which the terminal device belongs or the public paging occasion configured by the network device.
  • the second transceiver 1901 is further configured to send configuration information to the terminal device; the configuration information includes a time offset parameter.
  • the synchronization signal block is any one of a synchronization signal burst set sent by a network device.
  • the memory in this embodiment may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory may be Read Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory) , EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory (Flash Memory), Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory, CD-ROM); magnetic surface memory can be disk memory or tape memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM random access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced Type synchronous dynamic random access memory Enhanced Synchronous Dynamic Random Access Memory, ESDRAM
  • synchronous link dynamic random access memory SyncLink Dynamic Random Access Memory, SLDRAM
  • direct memory bus random access memory Direct Rambus Random Access Memory, DRRAM
  • DRRAM Direct Rambus Random Access Memory
  • Embodiments of the present application further provide a computer storage medium, specifically a computer-readable storage medium.
  • Computer instructions are stored thereon.
  • the computer storage medium is located in the terminal, when the computer instructions are executed by the processor, any steps in the above information processing methods of the embodiments of the present application are implemented.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息处理方法,应用于终端设备,所述方法包括:接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;基于所述节能相关信息,确定所述终端设备的寻呼处理方式。

Description

信息处理方法及装置、设备、计算机存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种信息处理方法及装置、设备、计算机存储介质。
背景技术
新无线(New radio,NR)系统延续长期演进(Long Term Evolution,LTE)系统的非连续接收(Discontinuous Reception,DRX)机制,使得终端设备在没有数据接收的情况下,可以不必一直开启接收机,而是进入了一种非连续接收的状态,从而达到节能的目的。
为了进一步降低终端设备的功耗,当前的NR系统引入了节能信号,即终端设备在监听物理下行控制信道(physical downlink control channel,PDCCH)前需要先监听节能信号,如果终端设备通过监听节能信号得知网络设备有PDCCH消息发送,则继续监听PDCCH信号,否则终端设备不监听对应的PDCCH信号,而是在下一个时刻监听节能信号。
在NR系统中,网络设备可以向空闲状态(RRC-IDLE)、非激活状态(RRC-INACTIVE)、以及连接状态(RRC-CONNECTION)的终端设备发送寻呼消息。出于节电的考虑,终端设备的寻呼接收同样遵循DRX的原则,即终端在特定时间被唤醒以监听寻呼消息。然而,终端设备周期性监听寻呼消息,会产生较高的功耗,如何在监听寻呼消息的场景下传输节能信号目前并没有对应的解决方案。
发明内容
本申请实施例提供了一种信息处理方法及装置、设备、计算机存储介质。
第一方面,本申请实施例提供一种信息处理方法,应用于终端设备,所述方法包括:
接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;
基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
第二方面,本申请实施例提供一种信息处理方法,应用于网络设备,所述方法包括:
向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
第三方面,本申请实施例提供一种信息处理装置,应用于终端设备,所述信息处理装置包括:
第一通信单元,用于接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;
第一处理单元,用于基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
第四方面,本申请实施例提供一种信息处理装置,应用于网络设备,所述信息处理装置包括:
第二通信单元,用于向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息信号,确定所述终端设备的寻呼处理方式。
第五方面,本申请实施例提供一种终端设备,所述设备包括:第一收发器、第一处理器和存储有计算机程序的第一存储器;
所述第一收发器、所述第一处理器和所述第一存储器之间通过第一通信总线进行通信;
所述第一处理器,配置为通过所述第一收发器实现与网络设备的通信;其中,
所述第一处理器,还配置为结合所述第一收发器,运行所述第一存储器中存储的所述计算机程序时,执行第一方面所述方法的步骤。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:第二收发器、第二处理器和存储有计算机程序的第二存储器;
所述第二收发器、所述第二处理器和所述第二存储器之间通过第二通信总线进行通信;
所述第二处理器,配置为通过所述第二收发器实现与终端设备的通信;其中,
所述第二处理器,还配置为结合所述第二收发器,运行所述第二存储器中存储的所述计算机程序时,执行第一方面所述方法的步骤。
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被第一处理器执行实现第一方面所述方法的步骤;或者,所述计算机程序被第二处理器执行第二方面所述方法的步骤。
本申请实施例提供的信息处理方法,终端设备接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;基于所述节能相关信息,确定所述终端设备的寻呼处理方式;由于参考信号的编码方式简单,占用时频资源较少,因此,通过第一参考信号携带终端设备的节能相关信息,能够降低解析第一参考信号时所用的能耗,达到节电的效果。
附图说明
图1为本申请实施例提供的一种DRX周期示意图;
图2为本申请实施例提供的一种相关技术中节能信号分布示意图;
图3为本申请实施例提供的一种相关技术中节能信号的组成结构示意图;
图4为本申请实施例提供的一种寻呼时机分布示意图;
图5为本申请实施例提供的一种同步信号块的时频结构示意图;
图6为本申请实施例提供的一种通信系统的示意架构图;
图7为本申请实施例提供的一种信息处理方法流程示意图;
图8为本申请实施例提供的一种第一参考信号分布示意图;
图9为本申请实施例提供的一种同步信号块分布示意图一;
图10为本申请实施例提供的一种示例性的第一参考信号的时频结构示意图一;
图11为本申请实施例提供的一种示例性的第一参考信号的时频结构示意图二;
图12为本申请实施例提供的一种示例性的第一参考信号的时频结构示意图三;
图13为本申请实施例提供的一种第一参考信号时频结构示意图四;
图14为本申请实施例提供的一种同步信号块分布示意图二;
图15为本申请实施例提供的一种同步信号块分布示意图三;
图16为本申请实施例提供的一种信息处理装置结构组成示意图一;
图17为本申请实施例提供的一种终端设备的结构组成示意图;
图18为本申请实施例提供的一种节信息处理装置结构组成示意图二;
图19为本申请实施例提供的一种网络设备的结构组成示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
首先,对本申请中涉及的名词做出解释:
非连续接收(Discontinuous Reception,DRX):网络侧可以配置终端设备在网络侧预知的时间“醒来”或者说启动DRX(DRX ON),这时终端设备的射频通道开启,终端设备持续监听PDCCH;同样地,网络侧也可以配置终端设备在网络侧预知的时间“睡眠”或者关闭DRX(DRX OFF),这时终端设备的射频通道关闭,终端设备不监听PDCCH。这样,如果网络侧有数据需要传输给终端设备,网络侧可以在终端设备DRX ON的时间内调度该终端设备。而在终端设备处于DRX OFF的时间内,由于射频关闭,可以减少终端设备的耗电量。
针对终端设备所处的不同无线资源控制(Radio Resource Control,RRC)模式,比如RRC连接态(RRC-CONNECTED)模式或者RRC空闲态(RRC-IDLE)模式,DRX定义了不同的操作方法。
网络侧可以为RRC_CONNECTED下的终端设备配置非连续接收周期(DRX cycle),参考图1所示的一种DRX周期示意图,一个DRX cycle由持续监听时间(On Duration)和非监听时间(Opportunity for DRX)组成。在On Duration内,终端设备监听并接收包括PDCCH在内的下行信道和信号;在Opportunity for DRX内,终端设备不接收PDCCH的下行信道和信号以减少功耗。在RRC-IDLE状态下的终端设备需要与DRX类似的方式接收寻呼消息,在一个DRX寻呼周期内存在一个寻呼时机(Paging Occasion,PO),终端设备只在PO接收寻呼消息,而在PO之外的时间不接收寻呼消息,来达到省电的目的。在PO期间,终端设备通过检测通过P-RNTI加扰的PDCCH信号来判断是否有寻呼消息。
节能信号:在第五代(5G,5 th Generation)移动通信系统的演进中,对终端设备的节能提出了更高的要求;为了实现进一步的节能,NR系统引入了节能信号。节能信号与DRX机制结合使用,终端设备可以在On Duration之前接收节能信号的指示。参考图2所示的一种节能信号分布示意图,当终端设备在一个DRX周期有数据传输时(例如,图2所示的第0个DRX周期或者第3个DRX周期),网络设备通过节能信号21“唤醒”终端设备,以使得终端设备在该DRX周期的On Duration22期间监听PDCCH;否则,当终端设备在一个DRX周期没有数据传输时(例如图2所述的第1个DRX周期和第2个DRX周期),节能信号21不“唤醒”终端设备,终端设备在该DRX周期的On Duration22期间不需要监听PDCCH。相比现有DRX机制,在终端设备没有数据传输时,终端设备可省略在On Duration期间对PDCCH的监听,从而实现降低终端设备的功耗。
相关技术中,节能信号可以通过第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)R16新定义的下行控制信息格式(DCI format)2_6承载;基于此,网络侧可以配置终端设备检测承载DCI format 2_6的PDCCH的搜索空间集(search space set),来得到节能信号。
在节能信号中,单个终端设备所需的比特位数为最多6个;其中包括1个唤醒指示比特位和最多5个辅小区休眠指示比特位。实际应用中,节能信号可以承载多个终端设备的指示比特以提升资源使用效率。参考图3所示的一种节能信号结构示意图,节能信号可以承载N个终端设备(从第1个终端设备到第N个终端设备)的节能相关信息,每个终端设备的节能相关信息包括都包括唤醒指示和辅小区休眠指示;另外,节能信号还包括循环冗余校验(Cyclic Redundancy Check,CRC)信息。网络设备可以预先通知每一个终端设备的节能相关信息在DCI中的起始位置,进一步地,网络设备还可以通知终端设备DCI的总比特数目以及加扰PDCCH的PS-RNTI。
寻呼:在NR系统中,网络可以向处于RRC-CONNECTED状态、RRC非激活(RRC-INACTIVE)状态,以及RRC-IDLE状态的终端设备发送寻呼。寻呼过程可以由核心网触发,用于通知终端设备接收寻呼请求,或者寻呼过程由基站触发,用于通知系统信息更新,以及通知终端设备接收地震海啸预警(ETWS)以及商用移动预警服务(CMAS)等信息。
其中,基站接收到核心网的寻呼消息后,解读其中的内容,得到终端设备的跟踪区域标识(Tracking Area Identity,TAI)列表,并在其下属于列表中的跟踪区域的小区进行空口的寻呼。寻呼消息的核心网域指示不会在基站解码,而是被透传给终端设备。在空口进行寻呼消息的传输时,基站将PO相同的UE的寻呼消息汇总成一条寻呼消息,通过寻呼信道传输给相关终端设备。此外,终端设备通过系统消息接收寻呼参数,并结合自身的终端设备标识(UE_ID)计算PO,在相应的PO接收寻呼消息。
RRC-IDLE状态下的终端设备可以通过DRX机制省电,参考图4所示的一种寻呼时机分布示意图,终端设备可以在一个DRX寻呼周期中的寻呼帧(Paging Frame,PF)上的PO监听通过P-RNTI加扰的PDCCH来接收寻呼消息;其中,PF表示寻呼消息应该出现在哪个系统帧号上,PO则表示可能出现的时刻。参考图4所示,一个PF可能包括1个或多个PO,每个DRX寻呼周期,终端设备只需要监听其中属于自己的PO。
同步信号块(Synchronization Signal Block,SSB):是NR中定义的一种信号结构,在基本的正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing,OFDM)网格上传输的一组时频资源(资源单位),包含主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)。参考图5所示的一种同步信号块的时频结构示意图,如图5所示,同步信号块在时域上持续4个OFDM符号,在频域上持续240个子载波(Subcarrier,SC)。其中,PSS在同步信号块的第一个OFDM符号上发送,频域上占据127个子载波,其余子载波为空;SSS在同步信号块的第三个OFDM符号上发送,与PSS占据相同的子载波,SSS两端分别空出8个和9个子载波;PBCH在同步信号块的第二个和第四个OFDM符号上发送。另外,PBCH还使用SSS两端各48个子载波发送。
在NR系统中,SSB需要通过多波束扫描的方式覆盖整个小区,便于小区内的终端设备接收。其中,SSB的多波束发送是通过定义同步信号突发集(SS burst set)实现的,一个SS burst set包含有一个或多个SSB,一个SSB用于承载一个波束的同步信号和物理广播信道;因此,一个SS burst set可以包含小区内SSB对应的N个波束的同步信号,SSB的最大数目L与系统的频段有关。例如,当系统的频段不超过3GHz时,SSB的最 大数目L取值为4;当系统的频段处于3GHz和6GHz范围之内时,SSB的最大数目L取值为8;当系统的频段处于6GHz和52.6GHz范围之内时,SSB的最大数目L取值为64。
需要说明的是,在一个SS burst set内,所有的SSB在5ms的时间窗内发送,并且是以一定的周期重复发送,周期可以通过上层参数SSB周期(SSB-timing)进行配置,SSB周期可以为5ms,10ms,20ms,40ms,80ms,160ms等,对此,本申请实施例不作限制。
下面,对本申请实施例涉及的无线通信系统进行简单介绍。
图6是本申请实施例提供的一种通信系统的示意架构图。该通信系统可以包括网络设备610和终端设备620。其中,网络设备610可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备610可以是5G系统中的基站,LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,移动交换中心,中继站,接入点,车载设备,可穿戴设备,集线器,交换机,网桥,路由器或者未来通信系统中的网络设备等,本申请实施例这里不做限定。
进一步地,上述通信系统还包括位于网络设备610覆盖范围内的至少一个终端设备620。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。移动终端设备的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端设备;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端设备、用户设备(User Equipment,终端设备)、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
图6示例性地示出了一个网络设备和一个终端设备。可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供一种信息处理方法,应用于图6所示的终端设备620中,参考图7所示的一种信息处理方法流程示意图,该方法包括:
步骤710、接收第一参考信号;第一参考信号用于承载终端设备寻呼消息的节能相关信息;
步骤720、基于节能相关信息,确定终端设备的寻呼处理方式。
实际应用中,网络设备可以在终端设备的PF或PO之前,向终端设备发送节能信号,通过节能信号中的节能相关信息告知终端设备是否会有发送给该终端设备的寻呼消息。这样,终端设备可以通过节能信号来确定寻呼处理方式。
相关技术中,终端设备寻呼消息的节能相关信息是通过DCI承载的,DCI编码方式复杂,并且占用的时频资源较多,终端设备解析DCI得到节能相关信息时需要耗费较多的时间以及能耗。
基于此,本申请实施例提供一种信息处理方法,通过第一参考信号承载终端设备的节能相关信息,也就是说,终端设备通过接收并解析第一参考信号来确定是否会有发送给自己的寻呼消息。
在本申请提供的实施例中,第一参考信号可以是任意类型的参考信号,例如解调参考信号(Demodulation Reference Signal,DMRS),下行信道状态信息参考信号,小区特定参考信号(Cell-specific reference signals,CRS)等,本申请实施例这里对第一参考信号的类型不做限定。
本申请实施例提供的信息处理方法,终端设备接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;基于所述节能相关信息,确定所述终端设备的寻呼处理方式;参考信号的编码方式简单,占用时频资源较少,因此,通过第一参考信号携带终端设备的节能相关信息,能够降低解析第一参考信号时所用的能耗,达到节电的效果。
在一种可能的实现方式中,步骤720基于节能信号,确定寻呼消息的接收方式可以通过以下步骤来实现:
步骤7201、若节能信号指示在特定寻呼时机监听PDCCH,则确定终端设备在特定寻呼时机监听PDCCH;
步骤7202、若节能信号指示在特定寻呼时机不监听PDCCH,则确定终端设备在特定寻呼时机不对PDCCH进行监听。
其中,特定寻呼时机,用于表征终端设备检测寻呼指示信息的时间段。
在本申请提供的实施例中,终端设备接收到第一参考信号之后,对第一参考信号进行解析,得到第一参考信息携带的该终端设备的节能相关信息。若节能相关信息指示在特定寻呼时机监听PDCCH,则表征网络设备即将在该特定寻呼时机发送该终端设备对应的寻呼消息,这时,终端设备在特定寻呼时机(即PF或PO)上,监听通过P-RNTI加扰的PDCCH,并检测PDCCH携带的DCI format 1_0来获取属于该终端设备的寻呼消息。
另外,若节能相关信息指示在特定寻呼时机不监听PDCCH,则表征不存在该终端设备对应的寻呼消息,终端设备在该特定的PF或PO上,不对PDCCH进行监听,也就是说,终端设备在特定的PF或PO上不检测P-RNTI加扰的DCI format 1_0。
由此可见,终端设备只有在节能相关信息指示在特定寻呼时机监听PDCCH的情况下,才会对PDCCH进行监听,这样,终端设备不用周期性醒来对PDCCH进行监听,降低终端设备的功耗;并且通过第一参考信号携带终端设备的节能相关信息,能够降低解析第一参考信号时所用的能耗,达到节电的效果。
在一种可能的实现方式中,特定寻呼时机可以包括一个或多个第一寻呼时机;第一寻呼时机为终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机,本申请实施例对此不作限定。
这里,特定寻呼时机中包含的第一寻呼可以通过节能相关信息进行指示。可以理解的是,节能相关信息除了可以指示终端设备是否监听PDCCH,节能相关信息还可以指示终端设备是否监听PDCCH的时间段。这里,寻呼接收的时间段中包含PF或PO可以是属于该终端设备的PF或PO,也可以是小区配置的公共PF或PO。本申请实施例对此不作限定。如此,通过第一参考信号中的节能相关信息,指示携带所述终端设备寻呼消息的一个或多个第一寻呼时机,可以提高终端设备进行寻呼处理的灵活性。
在一种可能的实现方式中,第一参考信号与同步信号块中的PBCH DMRS的生成方式相同。
也就是说,第一参考信号可以重用现有的SSB中的PBCH DMRS方式生成,通过第一参考信号作为终端设备的节能信号,来承载终端设备的节能相关信息。
需要说明的是,第一参考信号与SSB中携带的PBCH DMRS不同。SSB中携带的PBCH DMRS用于指示SSB索引的最低三位,该SSB索引标识了该SSB在SS burst set里的位置。
为了保持后向兼容性,目前SSB中携带的PBCH DMRS并不能作为节能信号指示其他信息。但是,可以采用PBCH DMRS的生成方式来得到第一参考信号,通过第一参考信号最为终端设备的节能指示信息,这样,可以降低生成第一参考信号的技术复杂度。
实际应用中,PBCH DMRS序列r(m)可以通过公式(1)得到。
Figure PCTCN2020109352-appb-000001
其中,j为复数标识,c(n)为伪随机序列,c(n)在每个SSB的发送时机都要根据公式(2)进行初始化。
下面详细介绍c(n)的初始化过程:
Figure PCTCN2020109352-appb-000002
其中,
Figure PCTCN2020109352-appb-000003
为小区标识;当半帧内SSB的最大个数
Figure PCTCN2020109352-appb-000004
时,
Figure PCTCN2020109352-appb-000005
n hf为半帧指示(若SSB在前半帧发送,则n hf=0,否则,n hf=1),这时i SSB为SSB索引的最低两位。当半帧内SSB的最大个数
Figure PCTCN2020109352-appb-000006
时,
Figure PCTCN2020109352-appb-000007
这时i SSB为SSB索引的最低三位。
可见,初始化序列的不同,可以产生不同的DMRS序列。相关技术中,PBCH DMRS可以包括8种不同的序列,其除了用于PBCH的解调之外,PBCH DMRS根据序列的不同还可以隐含地指示8种SSB索引,即指示SSB索引的最低3位。这样,终端设备通过盲检测PBCH DMRS的序列,来获得SSB索引的最低3位。
在一种可能的实现方式中,第一参考信号的序列长度与SSB中PBCH DMRS的序列长度相同或不同。
实际应用中,SSB中的PBCH DMRS的长度为144。第一参考信号虽然采用与SSB中PBCH DMRS相同的生成方式,但是,可以根据实际需要,设置第一参考信号的序列长度与SSB中PBCH DMRS的序列长度相同或者不同,本申请实施例这里对此不作限定。
根据上文的描述,第一参考信号的序列生成方式可以参考上述PBCH DMRS序列r(m)生成方式。也就是说,第一参考信号同样可以包括最多8种不同的序列。
在一种可能的实现方式中,通过不同的第一参考信号序列承载不同的节能相关信息。
在本申请提供的实施例中,可以使用
Figure PCTCN2020109352-appb-000008
表示节能相关信息。具体地,可以通过
Figure PCTCN2020109352-appb-000009
指示终端设备是否在与节能信号相邻的下一个PF或PO上监听PDCCH,还可以通过
Figure PCTCN2020109352-appb-000010
指示终端设备是否进行寻呼接收的时间段。
在一可行的示例中,
Figure PCTCN2020109352-appb-000011
的取值范围为0和1;使用
Figure PCTCN2020109352-appb-000012
产生的第一参考信号序列可以指示在与该第一参考信号序列有对应关系的PO或PF,或者PO中的PDCCH监听时机上不检测寻呼消息;使用
Figure PCTCN2020109352-appb-000013
产生的第一参考信号序列可以指示在与该第一参考信号序列有对应关系的PO或PF,或者PO中的PDCCH监听时机上检测寻呼消息。
在另一可行的示例中,
Figure PCTCN2020109352-appb-000014
的取值范围为0-7;使用不同的
Figure PCTCN2020109352-appb-000015
取值产生不同的第一参考信号序列。其中,不同的第一参考信号序列指示的信息不同,第一参考信号总共有8种不同的序列,可以指示8种不同的信息。例如,参考图8所示的一种第一参考信号分布示意图,使用
Figure PCTCN2020109352-appb-000016
产生的第一参考信号序列,可以指示在3个PO或PF,或者PO终端PDCCH监听时机上检测寻呼消息;这里提到的3个PO或PF可以是属于该终端设备的PF或PO的,也可以是小区配置的公共PF或者PO。
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
实际应用中,终端设备在自己的PF或PO到达之前,需要与网络侧进行时频同步操作,以便能够准确地接收到寻呼消息。一般情况下,终端设备可以基于SSB进行时频同步操作。示例性的,参考图9所示的一种SSB分布示意图一,终端设备可以在PF或者PO到达之前,检测SS burst set中的SSB进行时频同步操作,以便在PF或者PO上监听PDCCH。
本申请实施例中,可以预先建立第一参考信号时频资源与SSB时频资源之间的对应关系。这里对应关系可以是,第一参考信号的时频资源位于SSB时频资源的预设范围内,或者,第一参考信号的时频资源与SSB时频资源相邻,本申请实施例对此不做限定。
基于此,终端设备在搜索SSB进行时频同步的时候,可以在与SSB时频资源具有对应关系的时频资源处一并获取第一参考信号,并基于第一参考信号确定终端设备寻呼消息的节能相关信息,如此,避免单独检测第一参考信号带来的额外耗电,达到节电的效果。
需要说明的是,网络设备可能以波束扫描的方式发送SSB,即以时分复用的形式在不同波束上发送不同的SSB,波束扫描中的SSB集合即为SS burst set。本申请实施例中的SSB可以是SS burst set中的任意一个。
也就是说,终端设备可以在SS burst set中每个SSB时频资源对应的时频资源处检测第一参考信号。第一参考信号与SSB具有对应关系,即一个SSB可以对应一个第一参考信号。
在本申请提供的实施例中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系可以包括多种,下面详细介绍其中的三种:
第一种、
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的频域资源位置与SSB的频域资源位置至少部分重叠,且第一参考信 号的时域资源位置与SSB的时域资源位置不重叠。
可以理解的是,第一参考信号可以被设置在与SSB具有相同带宽的不同OFDM符号上。
示例性的,参考图10所示的一种示例性的第一参考信号的时频结构示意图一,第一参考信号可以位于子载波编号为0-239中的部分子载波上或者全部子载波上,且节能信号位于OFDM符号编号为4的OFDM符号上。
需要说明的是,第一参考信号在频域上占据的子载波个数可以根据实际应用中第一参考信号的序列长度确定。
第二种、
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的时域资源位置与SSB占用的时域资源位置至少部分重叠,且第一参考信号的频域资源位置与SSB的频域资源位置不重叠。
也就是说,第一参考信号可以被设置在与SSB的OFDM符号重叠,子载波不同的位置上。
示例性的,参考图11所示的一种示例性的第一参考信号的时频结构示意图二,第一参考信号可以位于子载波编号为249至M+248的子载波上,且第一参考信号位于OFDM符号编号为0的OFDM符号上。这里,M为节能信号的长度。
第三种、
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的OFDM符号与SSB中主同步信号PSS所占用的OFDM符号相同,且第一参考信号的时域资源包括第一子载波集合和/或第二子载波集合;第一子载波集合和所述第二子载波集合,与主同步信号PSS所占用的子载波集合不重叠。
可以理解的是,参考图12所示的一种示例性的第一参考信号的时频结构示意图三,第一参考信号可以位于SSB中PSS的OFDM符号上,即编号为0的OFDM符号上,且第一参考信号占用第一子载波集合121和/或第二子载波集合122。这里,第一子载波集合可以是SSB时频结构中子载波编号为0至47的部分子载波或者全部子载波,第二子载波集合可以是SSB时频结构中子载波编号为192至239的部分子载波或全部子载波。
示例性的,第一参考信号占用的时频资源为编号为0的OFDM符号,第一参考信号占用的频域资源为编号为0至47的子载波(共48个子载波);或者,第一参考信号占用的时频资源为编号为0的OFDM符号,第一参考信号占用的频域资源为编号为0至47和编号为192至239的子载波(共96个子载波)。
这样,在SSB的时频资源位置附近承载第一参考信号,终端设备在检测SSB进行时频同步操作的时候,可以在SSB时频资源附近一并检测第一参考信号,避免了单独检测第一参考信号带来的额外耗电。
在本申请提供的实施例中,虽然第一参考信号和SSB中PBCH DMRS的生成方式相同,但是第一参考信号的序列长度与SSB中PBCH DMRS的序列长度相同或不同。下面结合图13所示的第一参考信号的时频结构示意图四,示例性说明第一考信号的序列长度与SSB中PBCH DMRS的序列长度之间的关系。
示例性的,参考图13所示的时频结构,第一参考信号可以占据编号为0的OFDM符号,以及编号为0-47和192-239的子载波;该第一参考信号的序列长度为96。在另一示例中,第一参考信号也可以占据编号为0的OFDM符号,以及编号为0-47或192-239的子载波,该第一参考信号的序列长度为48。这里,可以采用特定编码方式, 将作为节能信号的第一参考信号的序列长度控制在小于等于96。
需要说明的是,图13中上下各48个子载波,可以结合起来承载一个第一参考信号(即第一参考信号的长度小于等于96),也可以分别承载一个第一参考信号,(即每个第一参考信号的序列长度为小于等于48)。这里,不同位置的第一参考序列可以对应不同的终端设备分组,或对应不同的PO或PF等。本申请实施例对此不作限定。
在一种可能的实现方式中,第一参考信号和同步信号块具有对应关系,其中,该对应关系为准同址关系(Quasi Co-Location,QCL)。可以理解的是,第一参考信号和SSB采用相同的天线端口进行传输。
需要说明的是,由于采用多波束传输,使得一个PO中存在多个PDCCH监听时机,且每个PDCCH监听时机对应一个波束。因此,在本申请提供的实施例中,PO中的PDCCH监听时机与SS burst set中的SSB有对应关系,PO中的PDCCH监听时机同样与第一DMRS具有对应关系。
每个或每几个监听时机与一个SSB是有对应关系的,用于寻呼消息的多波束发送。如图14所示,SS burst set中包括多个SSB,每个第一DMRS信号所对应的SSB141,都对应PO中的一个PDCCH监听时机142。
在一种可能的实现方式中,步骤710接收节能信号之前,还可以执行以下步骤:
步骤701、确定时间偏移参数,最小时间间隔,以及同步信号块的周期;
步骤702、基于时间偏移参数,最小时间间隔,以及同步信号块的周期,确定第一参考信号的接收时刻。
对应的,步骤710接收节能信号,包括:
基于第一参考信号的接收时刻,接收第一参考信号。
这里,由于SS burst set是周期性发送的,在终端设备的PO或PF到达之前,可能存在多个周期的SS burst set的发送,此时需要确定在哪些SS burst set承载节能信号。
在本申请提供的实施例中,可以通过时间偏移参数和最小时间间隔,在结合配置的SS burst set的周期(即SSB的周期),确定第一参考信号的监听时刻。
这里,时间偏移参数可以是终端设备与网络设备事先约定好的值,也可以由网络设备通过系统消息进行配置,本申请实施例对此不做限定。
终端设备在PF或PO达到之前需要执行设备唤醒以及唤醒后的初始化等操作,因此,在最小时间间隔开始前,终端设备需要接收完整的节能信号,在PF或PO达到之前的最小时间间隔内终端设备进行唤醒后的初始化操作,因此在该最小时间间隔内不需要监听节能信号。
这里,最小时间间隔与终端设备的能力相关。参考表1所示的最小时间间隔示例,使用相同子载波间隔(如15kHz)的两个终端设备,初始化速度较快的终端设备,可以使用较短的最小时间间隔(如表1中值1),而初始化速度较慢的终端,可以使用较长的最小时间间隔(如表1中值2)。这里,最小时间间隔的单位为时隙(slot)。
表1
Figure PCTCN2020109352-appb-000017
在本申请提供的实施例中,可以通过一个时间偏移参数和一个最小时间间隔,在结合配置的SS burst set的周期,确定第一参考信号的监听时机。如图15所示,在PF或者PO到达之前,终端设备在满足配置的时间偏移参数和最小时间间隔的完整的SSB突 发集合内,接收第一参考信号。
在本申请提供的实施例中,终端设备处于无线资源控制RRC空闲状态或者RRC非激活状态。
基于前述实施例,本申请实施例还提供一种信息处理方法,应用于图6所示的网络设备610中,该方法包括:
步骤810、向终端设备发送第一参考信号,第一参考信号用于承载终端设备寻呼消息的节能相关信息,使得终端设备基于节能相关信息,确定终端设备的寻呼处理方式。
这里,网络设备可以在向终端设备发送寻呼消息前,向终端设备发送第一参考信号,使得终端设备在寻呼消息达到的时候,终端设备能够根据第一参考信号中携带的节能相关信息,确定是否监听PDCCH以接收该寻呼消息。
本申请实施例中,网络设备将节能相关信息承载在第一参考信号中发送给终端设备;这样,终端设备可以基于所述节能相关信息,确定所述终端设备的寻呼处理方式;这里,采用参考信号承载节能先关信息,能够降低解析第一参考信号时所用的能耗,达到节电的效果。
在一种可能的实现方式中,第一参考信号与同步信号块中的解调参考信号的生成方式相同。
也就是说,第一参考信号可以重用现有的SSB中的PBCH DMRS方式生成,通过第一参考信号作为终端设备的节能信号,来承载终端设备的节能相关信息。
需要说明的是,第一参考信号与SSB中携带的PBCH DMRS不同。SSB中携带的PBCH DMRS用于指示SSB索引的最低三位,该SSB索引标识了该SSB在SS burst set里的位置。
为了保持后向兼容性,目前SSB中携带的PBCH DMRS并不能作为节能信号指示其他信息。但是,可以采用PBCH DMRS的生成方式来得到第一参考信号,通过第一参考信号最为终端设备的节能指示信息,这样,可以降低生成第一参考信号的技术复杂度。
在一种可能的实现方式中,第一参考信号的序列长度与解调参考信号的序列长度相同或不同。
实际应用中,SSB中的PBCH DMRS的长度为144。第一参考信号虽然采用与SSB中PBCH DMRS相同的生成方式,但是,可以根据实际需要,设置第一参考信号的序列长度与SSB中PBCH DMRS的序列长度相同或者不同,本申请实施例这里对此不作限定。
在一种可能的实现方式中,第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
这里,第一参考信号采用与SSB中PBCH DMRS同样的生成方式,即第一参考信号同样可以包括最多8种不同的序列。不同的序列可以指示承载不同的节能相关信息。
在一种可能的实现方式中,第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
在本申请提供的实施例中,第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的频域资源位置与同步信号块的频域资源位置至少部分重叠,且第 一参考信号的时域资源位置与同步信号块的时域资源位置不重叠。
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的时域资源位置与同步信号块的时域资源位置至少部分重叠,且第一参考信号的频域资源位置与同步信号块的频域资源位置不重叠。
在一种可能的实现方式中,第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
第一参考信号的正交频分复用OFDM符号与同步信号块中主同步信号所占用的OFDM符号相同,且第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
在本申请提供的实施例中,网络设备可以将节能信号承载在SSB时频资源预设范围内的时频资源上发送,也就是说,网络设备在SSB附近的时频资源上发送节能信号,这样,终端设备在PF或PO到达之前,在检测SSB进行时频同步操作的时候,可以一并检测SSB时频资源位置附近的节能信号,避免单独检测节能信号带来的额外耗电,达到节电的效果。
这样,在SSB的时频资源位置附近承载节能信号,终端设备在检测SSB进行时频同步操作的时候,可以一并检测节能信号,避免了单独检测节能信号带来的额外耗电。
在本申请提供的实施例中,步骤810向终端设备发送节能信号之前,还可以执行以下步骤:
步骤801、向终端设备发送配置信息;配置信息包括时间偏移参数。
可以理解的是,网络设备可以向终端设备配置时间偏移参数,这样,终端设备可以基于时间偏移参数,确定节能信号的接收时刻。
在一种可能的实现方式中,配置信息可以通过系统信息承载。
在本申请提供的实施例中,同步信号块为网络设备发送的同步信号突发集中的任意一个。
基于前述实施例,本申请实施例提供一种信息处理装置,该装置可以应用于上文所述的终端设备中,图16为本申请实施例提供的信息处理装置的结构组成示意图,如图16所示,所述信息处理装置包括:
第一通信单元1601,用于接收第一参考信号;所述第一参考信号用于承载终端设备寻呼消息的节能相关信息;
第一处理单元1602,用于基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
在本申请提供的实施例中,第一处理单元1602,用于若所述节能相关信息指示在特定寻呼时机监听物理下行控制信道PDCCH,则确定所述终端设备在所述特定寻呼时机监听PDCCH;所述特定寻呼时机,用于表征所述终端设备检测寻呼指示信息的时间段;若所述节能相关信息指示在特定寻呼时机不监听PDCCH,则确定所述终端设备在所述特定寻呼时机不对PDCCH进行监听。
在本申请提供的实施例中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
在本申请提供的实施例中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
在本申请提供的实施例中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
在本申请提供的实施例中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时频资源的时域资源位置与所述同步信号块的时域资源位置不重叠;
或者,
所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
在本申请提供的实施例中,所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机。
在本申请提供的实施例中,第一处理单元1602,还用于确定时间偏移参数,最小时间间隔,以及同步信号块的周期;基于所述时间偏移参数,所述最小时间间隔,以及所述同步信号块的周期,确定所述节能信号的接收时刻;
所述第一通信单元,用于基于所述节能信号的接收时刻,在第一时频资源上接收所述节能信号。
在本申请提供的实施例中,所述终端设备处于无线资源控制RRC空闲状态或者RRC非激活状态。
在本申请提供的实施例中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
本申请实施例中,所述信息处理装置中各单元实现的功能可以参照前述信息处理方法的相关描述进行理解。具体实现时,所述信息处理装置中的第一处理单元可由所述终端设备中的处理器,比如中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微控制单元(Microcontroller Unit,MCU)或可编程门阵列(Field-Programmable Gate Array,FPGA)等实现;所述信息处理装置中的通信单元可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
需要说明的是:上述各单元的划分仅为示例性的,实际应用中,可以将终端设备的内部结构划分成不同的单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的信息处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述装置的硬件实现,本申请实施例还提供了一种终端设备,图17为本申请 实施例的终端设备的硬件组成结构示意图,如图17所示,终端包括第一收发器1701,第一处理器1702,以及存储有计算机程序的第一存储器1703。
进一步地,终端设备还包括第一通信总线1704;终端设备中的各个组件通过第一通信总线1704耦合在一起。可以理解的是,终端设备中的第一收发器1701、第一处理器1702和第一存储器1703之间通过第一通信总线1704进行通信。
在本申请提供的实施例中,所述第一处理器1702,用于通过所述第一收发器1701实现与网络设备的通信。
作为第一种实施方式,第一接收器1701,用于接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;
第一处理器1702执行第一存储器1703中的计算机程序时,用于实现以下步骤:基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
在本申请提供的实施例中,第一处理器1702执行第一存储器1703中的计算机程序时,用于实现以下步骤若所述节能相关信息指示在特定寻呼时机监听物理下行控制信道PDCCH,则确定所述终端设备在所述特定寻呼时机监听PDCCH;所述特定寻呼时机,用于表征所述终端设备检测寻呼指示信息的时间段;
若所述节能相关信息指示在特定寻呼时机不监听PDCCH,则确定所述终端设备在所述特定寻呼时机不对PDCCH进行监听。
在本申请提供的实施例中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
在本申请提供的实施例中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
在本申请提供的实施例中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
在本申请提供的实施例中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时频资源的时域资源位置与所述同步信号块的时域资源位置不重叠;
或者,
所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
在本申请提供的实施例中,所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机
第一处理器1702执行第一存储器1703中的计算机程序时,用于实现以下步骤:确定时间偏移参数,最小时间间隔,以及同步信号块的周期;基于所述时间偏移参数,所述最小时间间隔,以及所述同步信号块的周期,确定所述节能信号的接收时刻;
所述第一通信单元,用于基于所述节能信号的接收时刻,在所述第一时频资源上接收所述节能信号。
在本申请提供的实施例中,所述终端设备处于无线资源控制RRC空闲状态或者RRC非激活状态。
在本申请提供的实施例中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
基于前述实施例,本申请实施例提供一种信息处理装置,该装置可以应用于上文所述的网络设备中,图18为本申请实施例提供的信息处理装置的结构组成示意图,如图18所示,所述信息处理装置包括:
第二通信单元1801,用于向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
在本申请提供的实施例中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
在本申请提供的实施例中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
在本申请提供的实施例中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
在本申请提供的实施例中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置不重叠;
或者,
所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
在本申请提供的实施例中,所述节能相关信息用于指示所述终端设备在特定寻呼时机是否监听物理下行控制信道PDCCH;所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公 共寻呼时机。
第二通信单元1801,还用于向所述终端设备发送配置信息;所述配置信息包括时间偏移参数。
在本申请提供的实施例中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
本申请实施例中,所述信息处理装置中各单元实现的功能可以参照前述信息处理方法的相关描述进行理解。具体实现时,所述信息处理装置中的通信单元可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
需要说明的是:上述各单元的划分仅为示例性的,实际应用中,可以将网络设备的内部结构划分成不同的单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的信息处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述设备的硬件实现,本申请实施例还提供了一种网络设备,图19为本申请实施例的网络设备的硬件组成结构示意图,如图19所示,网络设备包括第二收发器1901,第二处理器1902,以及存储有计算机程序的第二存储器1903。
进一步地,网络设备还包括第二通信总线1904;网络设备中的各个组件通过第二通信总线1904耦合在一起。可以理解的是,网络设备中的第二收发器1901、第二处理器1902和第二存储器1903之间通过第二通信总线1904进行通信。
在本申请提供的实施例中,所述第二处理器1902,用于通过所述第二收发器1901实现与网络设备的通信。
作为第一种实施方式,第二接收器1901,用于向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
在本申请提供的实施例中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
在本申请提供的实施例中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
在本申请提供的实施例中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
在本申请提供的实施例中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置不重叠;
或者,
所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
在本申请提供的实施例中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
在本申请提供的实施例中,所述节能相关信息用于指示所述终端设备在特定寻呼时机是否监听物理下行控制信道PDCCH;所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机。
在本申请提供的实施例中,第二收发器1901,还用于向所述终端设备发送配置信息;所述配置信息包括时间偏移参数。
在本申请提供的实施例中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
应理解,本实施例中的存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机存储介质,具体为计算机可读存储介质。其上存储有计算机指令,作为第一种实施方式,在计算机存储介质位于终端时,该计算机指令被处理器执行时实现本申请实施例上述信息处理方法中的任意步骤。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种信息处理方法,应用于终端设备,所述方法包括:
    接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;
    基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
  2. 根据权利要求1所述的方法,其中,所述基于所述节能相关信息,确定所述终端设备的寻呼处理方式,包括:
    若所述节能相关信息指示在特定寻呼时机监听物理下行控制信道PDCCH,则确定所述终端设备在所述特定寻呼时机监听PDCCH;所述特定寻呼时机,用于表征所述终端设备检测寻呼指示信息的时间段;
    若所述节能相关信息指示在特定寻呼时机不监听PDCCH,则确定所述终端设备在所述特定寻呼时机不对PDCCH进行监听。
  3. 根据权利要求1或2所述的方法,其中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
  4. 根据权利要求3所述的方法,其中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
  5. 根据权利要求1-4任一项所述的方法,其中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
  6. 根据权利要求1-5任一项所述的方法,其中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
  7. 根据权利要求1-6任一项所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
  8. 根据权利要求7所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
    所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时频资源的时域资源位置与所述同步信号块的时域资源位置不重叠;
    或者,
    所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
  9. 根据权利要求7所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
    所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
    所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
  10. 根据权利要求2-9任一项所述的方法,其中,所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机。
  11. 根据权利要求1-10任一项所述的方法,其中,所述接收第一参考信号之前,所述方法还包括:
    确定时间偏移参数,最小时间间隔,以及同步信号块的周期;
    基于所述时间偏移参数,所述最小时间间隔,以及所述同步信号块的周期,确定所述第一参考信号的接收时刻;
    所述接收第一参考信号,包括:
    基于所述第一参考信号的接收时刻,接收所述第一参考信号。
  12. 根据权利要求1-11任一项所述的方法,其中,所述终端设备处于无线资源控制RRC空闲状态或者RRC非激活状态。
  13. 根据权利要求1-12任一项所述的方法,其中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
  14. 一种信息处理方法,应用于网络设备,所述方法包括:
    向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
  15. 根据权利要求14所述的方法,其中,所述第一参考信号与同步信号块中的解调参考信号的生成方式相同。
  16. 根据权利要求15任一项所述的方法,其中,所述第一参考信号的序列长度与所述解调参考信号的序列长度相同或不同。
  17. 根据权利要求14-16任一项所述的方法,其中,所述第一参考信号包括多种序列;不同的第一参考信号序列承载不同的节能相关信息。
  18. 根据权利要求14-17任一项所述的方法,其中,所述第一参考信号与同步信号块具有对应关系;所述对应关系包括准同址关系。
  19. 根据权利要求14-18任一项所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源具有对应关系。
  20. 根据权利要求19所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
    所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置至少部分重叠,且所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置不重叠;
    或者,
    所述第一参考信号的时域资源位置与所述同步信号块的时域资源位置至少部分重叠,且所述第一参考信号的频域资源位置与所述同步信号块的频域资源位置不重叠。
  21. 根据权利要求19所述的方法,其中,所述第一参考信号的时频资源与同步信号块的时频资源之间的对应关系包括:
    所述第一参考信号的正交频分复用OFDM符号与所述同步信号块中主同步信号所占用的OFDM符号相同,且所述第一参考信号的频域资源包括第一子载波集合和/或第二子载波集合;
    所述第一子载波集合和所述第二子载波集合,与所述主同步信号所占用的子载波集合不重叠。
  22. 根据权利要求14-21任一项所述的方法,其中,所述节能相关信息用于指示所述终端设备在特定寻呼时机是否监听物理下行控制信道PDCCH;所述特定寻呼时机包括一个或者多个第一寻呼时机;所述第一寻呼时机为所述终端设备所属的寻呼时机或者网络设备配置的公共寻呼时机。
  23. 根据权利要求14-22任一项所述的方法,其中,所述方法还包括:
    向所述终端设备发送配置信息;所述配置信息包括时间偏移参数。
  24. 根据权利要求14-23任一项所述的方法,其中,所述同步信号块为网络设备发送的同步信号突发集中的任意一个。
  25. 一种信息处理装置,应用于终端设备,所述信息处理装置包括:
    第一通信单元,用于接收第一参考信号;所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息;
    第一处理单元,用于基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
  26. 一种信息处理装置,应用于网络设备,所述信息处理装置包括:
    第二通信单元,用于在向终端设备发送第一参考信号,所述第一参考信号用于承载所述终端设备寻呼消息的节能相关信息,使得所述终端设备基于所述节能相关信息,确定所述终端设备的寻呼处理方式。
  27. 一种终端设备,所述设备包括:第一收发器、第一处理器和存储有计算机程序的第一存储器;
    所述第一收发器、所述第一处理器和所述第一存储器之间通过第一通信总线进行通信;
    所述第一处理器,配置为通过所述第一收发器实现与网络设备的通信;其中,
    所述第一处理器,还配置为结合所述第一收发器,运行所述第一存储器中存储的所述计算机程序时,执行权利要求1至13任一项所述方法的步骤。
  28. 一种网络设备,所述网络设备包括:第二收发器、第二处理器和存储有计算机程序的第二存储器;
    所述第二收发器、所述第二处理器和所述第二存储器之间通过第二通信总线进行通信;
    所述第二处理器,配置为通过所述第二收发器实现与终端设备的通信;其中,
    所述第二处理器,还配置为结合所述第二收发器,运行所述第二存储器中存储的所述计算机程序时,执行权利要求14至24任一项所述方法的步骤。
  29. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被第一处理器执行实现权利要求1至13任一项所述方法的步骤;或者,所述计算机程序被第二处理器执行14至24任一项所述方法的步骤。
PCT/CN2020/109352 2020-08-14 2020-08-14 信息处理方法及装置、设备、计算机存储介质 WO2022032678A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/109352 WO2022032678A1 (zh) 2020-08-14 2020-08-14 信息处理方法及装置、设备、计算机存储介质
CN202080102091.3A CN115699898A (zh) 2020-08-14 2020-08-14 信息处理方法及装置、设备、计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109352 WO2022032678A1 (zh) 2020-08-14 2020-08-14 信息处理方法及装置、设备、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022032678A1 true WO2022032678A1 (zh) 2022-02-17

Family

ID=80247585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109352 WO2022032678A1 (zh) 2020-08-14 2020-08-14 信息处理方法及装置、设备、计算机存储介质

Country Status (2)

Country Link
CN (1) CN115699898A (zh)
WO (1) WO2022032678A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183965A1 (zh) * 2018-03-30 2019-10-03 Oppo广东移动通信有限公司 信号传输的方法和设备
CN110831123A (zh) * 2018-08-10 2020-02-21 电信科学技术研究院有限公司 一种信号发送、接收方法、网络设备及终端
CN111194072A (zh) * 2018-11-15 2020-05-22 电信科学技术研究院有限公司 多波束场景下监听寻呼的方法及装置
CN111194084A (zh) * 2018-11-15 2020-05-22 电信科学技术研究院有限公司 信息传输方法及装置
CN111200870A (zh) * 2020-01-07 2020-05-26 展讯通信(上海)有限公司 通信方法及装置
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183965A1 (zh) * 2018-03-30 2019-10-03 Oppo广东移动通信有限公司 信号传输的方法和设备
CN110831123A (zh) * 2018-08-10 2020-02-21 电信科学技术研究院有限公司 一种信号发送、接收方法、网络设备及终端
CN111194072A (zh) * 2018-11-15 2020-05-22 电信科学技术研究院有限公司 多波束场景下监听寻呼的方法及装置
CN111194084A (zh) * 2018-11-15 2020-05-22 电信科学技术研究院有限公司 信息传输方法及装置
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
CN111200870A (zh) * 2020-01-07 2020-05-26 展讯通信(上海)有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN115699898A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
EP3923502A1 (en) Communication method, apparatus, and device
WO2020163998A1 (zh) 无线通信的方法和设备
US8488543B2 (en) Method of paging using header
JP7053802B2 (ja) 非連続受信の方法、端末デバイス及びネットワークデバイス
WO2022206620A1 (zh) 一种非授权频谱中的同步方法和装置
WO2021249535A1 (zh) 一种寻呼指示方法及相关装置
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
KR102457879B1 (ko) 정보 전송 방법, 네트워크 기기 및 단말
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
US20230422210A1 (en) Paging monitoring method and apparatus, and device and storage medium
US20230199716A1 (en) Wireless communication method, and terminal and network device
CN115362724A (zh) 基于增强非连续接收的寻呼方法、装置、设备及存储介质
WO2023098845A1 (zh) 资源确定方法与装置、终端
US20230199714A1 (en) Information indication method and apparatus, terminal device and network device
US20230232369A1 (en) Peips applicability considering non-3gpp registration
WO2020164143A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2007107113A1 (fr) Procédé et dispositif permettant d'avertir une station mobile dans un système de télécommunication mobile
WO2022032678A1 (zh) 信息处理方法及装置、设备、计算机存储介质
WO2022027635A1 (zh) 一种寻呼指示方法、电子设备及存储介质
WO2018171591A1 (zh) 一种用来唤醒设备的方法及装置
WO2023284500A1 (zh) 通信方法及装置
EP4351229A1 (en) Method and apparatus for determining energy-saving signal monitoring occasion, and terminal device
WO2023066152A1 (zh) 信息传输的方法和装置
US20220086762A1 (en) Method for transmitting power-saving information, terminal device, and network device
EP4346290A1 (en) Time window determination method and apparatus and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949176

Country of ref document: EP

Kind code of ref document: A1