WO2022032555A1 - Conditional suppression of reference signal transmissions - Google Patents

Conditional suppression of reference signal transmissions Download PDF

Info

Publication number
WO2022032555A1
WO2022032555A1 PCT/CN2020/108815 CN2020108815W WO2022032555A1 WO 2022032555 A1 WO2022032555 A1 WO 2022032555A1 CN 2020108815 W CN2020108815 W CN 2020108815W WO 2022032555 A1 WO2022032555 A1 WO 2022032555A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signals
reference signal
suppressing
base station
data rate
Prior art date
Application number
PCT/CN2020/108815
Other languages
French (fr)
Inventor
Chaofeng HUI
Bing LENG
Li Tan
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108815 priority Critical patent/WO2022032555A1/en
Publication of WO2022032555A1 publication Critical patent/WO2022032555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Definitions

  • the following relates to wireless communications, including conditional suppression of reference signal transmissions.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may have one or more limits on certain parameters, and in the event that such limits are exceeded the UE may change a state in order to comply with the exceeded limit.
  • a UE may have a thermal limit associated with transmit and receive circuitry and if the UE detects that the thermal limit is exceeded, the UE may take steps to change a receive state (e.g., by reducing a number of concurrent transmissions that may be received) or suspend communications in order to try and reduce thermal output of the transmit and receive circuitry.
  • a receive state e.g., by reducing a number of concurrent transmissions that may be received
  • Such reductions or suspensions of communications may reduce efficiency of communications with the UE, and degrade overall user experience.
  • described techniques relate to improved methods, systems, devices, and apparatuses that support conditional suppression of reference signal transmissions.
  • described techniques provide for a determination by a user equipment (UE) that a limit associated with one or more parameters are exceeded. Based on such a determination, the UE may suppress a transmission of one or more reference signals to a base station.
  • the one or more parameters may include a thermal parameter, a target throughput parameter, or any combinations thereof.
  • a channel condition associated with the UE as estimated by the base station may be reduced by an amount sufficient to cause the base station to schedule less data to the UE.
  • Such a reduction in data rate e.g., through selection of a modulation and coding scheme that provides a lower data rate
  • may allow the one or more parameters to come within the associated limits e.g., a reduction in processing power for lower data rate communications may reduce a thermal temperature of the UE and allow a thermal parameter to come within a thermal limit
  • Such techniques may allow the UE to maintain a more efficient communication state (e.g., with multiple concurrent receive chains remaining active) while also managing the one or more parameters to remain within associated limits.
  • a method of wireless communication at a UE may include transmitting a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receiving, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppressing, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the apparatus may include means for transmitting a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receiving, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppressing, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a second set of downlink communications having a second data rate that is based on a signal quality of the second set of reference signals, where the second data rate may be lower than the first data rate.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications, and further suppressing, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity.
  • the one or more parameters associated with the UE include a thermal parameter.
  • the first set of reference signals, the second set of reference signals, and a third set of reference signals may be sounding reference signals transmitted by the UE using the set of reference signal resources.
  • the first periodicity corresponds to a sounding reference signal duty cycle, and where the suppressing the one or more transmissions of the second set of reference signals includes suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  • the determining and suppressing may be repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based on a thermal parameter of the UE exceeding a thermal parameter threshold.
  • the maximum suppression percentage of sounding reference signals may be 40 percent.
  • the suppressing may be performed according to a suppression ratio step size (e.g., 5%steps up to 40%) .
  • the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine the downlink data rate.
  • the one or more parameters associated with the UE include target downlink throughput parameter.
  • the target downlink throughput parameter may be set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
  • the suppressing the one or more transmissions of the second set of reference signals may be applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  • the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  • FIG. 1 illustrates an example of a system for wireless communications that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a portion of a wireless communications system that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of suppressed reference signal resources that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a flow chart of UE operation that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a flow chart of UE operation that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show flowcharts illustrating methods that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • a wireless communications system may support a variety of different types of communications in a variety of different channel conditions, and may select various transmission parameters based on particular type of communications and channel conditions that are present between a user equipment (UE) and a base station.
  • channel conditions that are present between the UE and base station may be estimated by the base station based on measurements of a reference signal transmitted by the UE.
  • a UE may transmit sounding reference signals (SRSs) that are used by a base station to estimate channel conditions.
  • SRSs sounding reference signals
  • Such estimated channel conditions may then be used to determine a downlink data block size for downlink transmissions from the base station to the UE.
  • the downlink data rate may be increased for higher signal to noise ratio (SNR) SRSs that are received at the base station, and decreased for lower SNR SRSs.
  • SNR signal to noise ratio
  • Higher downlink data rates may provide enhanced throughput for communications with the UE, and may also result in higher thermal temperatures at the UE, due to increased processing power needed to demodulate and decode the downlink data at the higher data rates.
  • UEs may reach thermal limits due to high data rates, which may result in the UE disabling some features (e.g., the UE may change from having four enabled receive antenna ports to one enabled receive antenna port) , which may decrease efficiency.
  • a UE manufacturer may use multiple different vendors to supply wireless components (e.g., wireless modems and other components of transmit/receive chains) , which may have different downlink data transfer rate capabilities.
  • wireless components e.g., wireless modems and other components of transmit/receive chains
  • a consistent data transfer rate across the same model of UEs may be desirable irrespective of a vendor that manufactured wireless components used in that model UE.
  • a UE upon determining that a parameter is exceeding a threshold value (e.g., based on a thermal parameter exceeding a thermal limit or a data rate that exceeds a target maximum data rate rate) , may suppress a percentage of reference signal transmissions that are used for channel estimation at a serving base station.
  • the suppression of the reference signals transmissions results in the serving base station determining that the UE has a reduced SNR, which then may result in the base station reducing a downlink data rate for the UE.
  • Such a lower data rate may result in lower processing requirements and thus lower associated thermal output in cases where the UE parameter is a thermal parameter.
  • Such a lower data rate may also result in communications being within a target data rate parameter, in cases where the UE parameter is a target data rate.
  • the suppression of reference signal transmissions may be made in steps (e.g., 5%of SRS duty cycle for each SRS resource ID) up to a maximum suppression (e.g., 40%for SRS) .
  • a base station may switch a precoding determination to a precoding matrix indication (PMI) provided by the UE if the SNR associated with measured reference signals is below a SNR threshold value.
  • PMI precoding matrix indication
  • a maximum reference signal suppression may be selected to avoid such a switch in precoding determination.
  • a UE may initially suppress 5%of SRS transmission, and re-evaluate the UE parameters (e.g., temperature or data rate) to determine if further suppression is needed.
  • the UE parameter is a thermal parameter, as the UE temperature cools, the suppression percentage can be reduced in order to increase downlink data rates.
  • the techniques employed by the described UEs may provide benefits and enhancements to the operation of a wireless communications system. For example, operations performed by the UEs may provide improvements to reliability and efficiency in communications through managing UE parameters such as thermal parameters, data rate parameters, or combinations thereof. Such improvements may enhance efficiency of wireless communications at a UE by allowing for efficient configurations (e.g., multiple concurrent receive antenna ports) while reducing a data rate to maintain the one or more parameters at or below target levels.
  • the described techniques may thus include features for improvements to reliability in communications, and enhanced communications efficiency for UEs, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Examples of suppressed reference signal resources, and flow charts of UE operations are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to conditional suppression of reference signal transmissions.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may determine that a limit associated with one or more parameters are exceeded. Based on such a determination, the UE 115 may suppress a transmission of one or more reference signals to a base station 105.
  • the one or more parameters may include a thermal parameter, a target throughput parameter, or any combinations thereof.
  • Such a reduction in data rate may allow the one or more parameters to come within the associated parameter limits (e.g., a reduction in processing power for lower data rate communications may reduce a thermal temperature of the UE 115 and allow a thermal parameter to come within a thermal limit) .
  • Such techniques may allow the UE 115 to maintain a more efficient communication state (e.g., with multiple concurrent receive chains remaining active) while also managing the one or more parameters to remain at or below target levels.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include base station 105-a and UE 115-a which may be examples of a base station or UE described above with reference to FIG. 1.
  • Base station 105-a and UE 115-a may communicate with one another within coverage area 110-a using downlink 205 and uplink 210 communications and using techniques as discussed herein.
  • the base station 105-a may transmit and the UE 115-a may receive downlink communications 215, which in this example may include a first set of downlink communications 215-a and a second set of downlink communications 215-b.
  • the base station 105-a may determine one or more parameters associated with the downlink communications 215 (e.g., a modulation and coding scheme (MCS) that provides a downlink data rate) based on one or more reference signal transmissions 220 transmitted by the UE 115-a.
  • MCS modulation and coding scheme
  • the UE 115-a may transmit SRSs for one or more SRS resources IDs (e.g., associated with one or more antenna ports at the UE 115-a) .
  • the UE 115-a may transmit a first plurality of reference signals 220-a and a second plurality of reference signals 220-b to the base station 105-a in accordance with techniques as discussed herein.
  • the downlink communications 215 may be transmitted with a relatively high data rate.
  • the UE 115-a may need to use significant processing resources (e.g., relatively high microprocessor clock rates, additional processing cores may be activated to process/decode communications, etc. ) .
  • processing resources may cause a relatively high battery drain, and may also result in higher thermal output.
  • data rates of the downlink communications 215 may be dependent upon a number of factors, such as, for example, a channel quality indicator (CQI) , precoding matrix indicator (PMI) , SRS signal strength, rank indicator (RI) , or any combinations thereof.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • downlink throughput may be dependent upon UE 115-a capabilities (e.g., supported bandwidth, number of antennas, etc. ) .
  • downlink resources may be scheduled based on SRS or PMI, where PMI may be used for cell edge scenarios and SRS may be used for TDD system in which the base station 105-a may use the SRS and channel reciprocity to infer the downlink channel characteristics to define an accurate downlink precoding matrix.
  • an original equipment manufacturer may select two or more vendors to provide components for wireless communications (e.g., wireless modem chip sets) that may be designed into a same model of UE 115-a.
  • OEM might request a component vendor having higher performance components to detune the components in order to provide consistent performance for the UE regardless of which chip set is incorporated into the UE 115-a.
  • the UE 115-a and base station 105-a may conditionally suppress a portion of the reference signal transmissions 220. Such suppression may work to reduce reference signal filter SNR at the base station 105-a, which then results in a lower downlink throughput for the downlink communications 215.
  • the base station 105-a may target to maintain a SRS SNR threshold, and once filter SNR is lower than the threshold, base station 105-a may switch to PMI-based weights.
  • the UE 115-a may have a maximum amount of reference signal suppression (e.g., a SRS transmission puncture ratio that is no larger than 40%) .
  • a maximum amount of reference signal suppression e.g., a SRS transmission puncture ratio that is no larger than 40%
  • the UE 115-a throughput may be controlled in order to allow for a less processor-intensive decoding process, which may help maintain thermal parameters below a threshold value. Further, suppression of some of the reference signals may also reduce some reference signals transmission power.
  • Such techniques thus provide that the UE 115-a temperature can be controlled, and also provide that UE 115-a battery life can be extended. Additionally or alternatively, such techniques may also help UE OEMs to pass operator tests for target data transfer rates. Further, such techniques may allow for similar throughput performance at the UE 115-a for two or more different modem vendors, which may allow an OEM to deliver UEs 115 having consistent operational performance.
  • FIG. 3 illustrates an example of suppressed reference signal resources 300 that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • suppressed reference signal resources 300 may implement aspects of wireless communications system 100 or 200.
  • a set of wireless resources 305 may include a number of different SRS resources 315.
  • the SRS resources 315 may be associated with different SRS resource IDs, which may each be associated with a different antenna port at a UE, for example.
  • a UE may suppress some reference signal transmissions, which may include one or more SRS transmissions using SRS resources 315.
  • a duty cycle of SRS transmissions may be based on a SRS periodicity in slots times 10, for example.
  • the UE may suppress reference signals as a percentage of SRS transmissions per duty cycle, and in some cases a suppression ratio may start at 5%and increase up to 40%with a step size of 5%.
  • the suppression ratio is illustrated for a 20%suppression, in which a subset 310-a and a second subset 310-b of SRS transmissions are suppressed.
  • the UE may initially start at the starting reference signal suppression percentage (e.g., 5%) and monitor one or more parameters for a duration of a duty cycle. If the one or more parameters remain above a corresponding parameter threshold level (e.g., a thermal parameter threshold) , the UE may increase the suppression percentage by one step and monitor the parameter for a subsequent duty cycle. Such a procedure may continue until the monitored parameter is at or below the parameter threshold level, until the downlink transmissions stop, or until a suppression ratio limit is achieved. In the event that the monitored parameter drops below its associated limit, the UE may unsuppress the reference signals by one step, in some cases. Examples of such reference signal suppression techniques are discussed with reference to example flow charts for thermal mitigation of FIGs. 4 and 5. While these examples are directed to thermal mitigation, other examples may be used for other parameters that may be monitored at a UE, such as data throughput relative to a target throughput, for example.
  • a corresponding parameter threshold level e.g., a thermal parameter threshold
  • FIG. 4 illustrates an example of a flow chart of UE operation 400 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • flow chart of UE operation 400 may implement aspects of wireless communications system 100 or 200.
  • UE operations 400 may be implemented by a UE such as discussed herein (e.g., a UE 115 of FIGs. 1 or 2) when in communication with a base station.
  • Alternative examples of the following may be implemented, where some operations are performed in a different order than described or are not performed at all. In some cases, operations may include additional features not mentioned herein, or further operations may be added.
  • the UE may receive downlink transmissions from a base station.
  • the downlink data transmissions may be transmitted by the base station at a first data rate, which may be based on an estimated channel condition of a channel between the UE and the base station.
  • the UE may determine whether thermal mitigation is needed. In some cases, the determination of whether thermal mitigation is needed may be based on an operating temperature of a modem processor of the UE (e.g., based on a silicon-based temperature sensor or a thermocouple, etc., associated with the modem) . In the event that thermal mitigation is not needed, operations at 405 may be continued. In the event that thermal mitigation is needed, the UE may determine, at 415, whether a puncture or suppression ratio of reference signal transmissions is below an upper limit for the ratio. As discussed herein, in some cases the UE may have an upper limit of 40%for suppressing SRS transmissions.
  • the UE may, at 420, take further thermal mitigation measures that are unassociated with sounding reference signal suppression.
  • Such further measures may include, for example, disabling one or more receive chains (e.g., disabling one or more antennas and associated receive circuitry) at the UE, reducing a number of concurrent component carriers that may be used for communications with the UE, and the like.
  • Such further measures may result in less efficient communications with the UE (e.g., the UE may drop to supporting only a single receive antenna port, which may increase latency for communications with the UE) .
  • the UE may suppress the SRS on the next duty cycle.
  • the SRS may be suppressed by the next step of puncture ratios (e.g., 5%) relative to the prior suppression level.
  • the UE may determine whether it has reached a last duty cycle for a set of downlink communications. If the last duty cycle has not been reached, the UE may perform operations starting at 410 to determine whether thermal mitigation is still needed. If the UE has reached the last duty cycle, the UE may perform operations starting at 405.
  • FIG. 5 illustrates an example of a flow chart of UE operation 500 that supports conditional suppression of sounding reference signal transmissions in accordance with aspects of the present disclosure.
  • flow chart of UE operation 500 may implement aspects of wireless communications system 100 or 200.
  • UE operations 500 may be implemented by a UE such as discussed herein (e.g., a UE 115 of FIGs. 1 or 2) when in communication with a base station.
  • Alternative examples of the following may be implemented, where some operations are performed in a different order than described or are not performed at all. In some cases, operations may include additional features not mentioned herein, or further operations may be added.
  • the UE may be operating with SRS suppression in an active state.
  • the UE may have performed operations such as discussed with reference it FIG. 4, and suppressed or punctured sounding reference signal transmissions in order to reduce a throughput rate for communications received from the base station.
  • the UE may determine whether a thermal parameter exceeds a first thermal threshold value (e.g., a temperature T 1 ) . If the thermal threshold value is exceeded, it may indicate that further thermal mitigation is needed. If the thermal threshold value is not exceeded, is may beam that thermal mitigation may be reduced.
  • a first thermal threshold value e.g., a temperature T 1
  • the UE may, at 515, determine whether a puncture ratio is below an upper limit for the ratio. As discussed herein, in some cases the UE may have an upper limit of 40%for suppressing SRS transmissions. If it is determined that the puncture ratio is at the limit, the UE may, at 520, take further thermal mitigation measures that are unassociated with reference signal suppression. Such further measures may include, for example, disabling one or more receive chains (e.g., disabling one or more antennas and associated receive circuitry) at the UE, reducing a number of concurrent component carriers that may be used for communications with the UE, and the like. Such further measures may result in less efficient communications with the UE (e.g., the UE may drop to supporting only a single receive antenna port, which may increase latency for communications with the UE) .
  • further thermal mitigation measures may include, for example, disabling one or more receive chains (e.g., disabling one or more antennas and associated receive circuitry) at the UE, reducing a number of concurrent
  • the UE may suppress the SRS by the next step in suppression percentage (e.g., 5%) relative to the prior suppression level.
  • the UE may, at 530, determine whether the thermal parameter is less than or equal to a second thermal threshold value (e.g., a temperature T 2 ) .
  • a second thermal threshold value e.g., a temperature T 2
  • the first thermal threshold value and the second thermal threshold value may be selected to provide some hysteresis, in order to prevent ping-ponging of suppression steps in consecutive duty cycles. If it is determined at 530 that the thermal parameter does not exceed the second thermal threshold value, operations at 505 may be repeated. If it is determined at 530 that the thermal parameter is less than or equal to the second thermal threshold value, the UE may determine that less SRS suppression is needed, and at 535 may unsuppress the SRS the step percentage. Such unsuppression may allow for relatively higher data rates, which may enhance UE performance and system efficiency while the thermal parameters of the UE are at desirable levels. Following operations at 525 or 535, the UE may repeat operations starting at 505.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to conditional suppression of reference signal transmissions, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 605 to determine reference signal suppression in order to moderate downlink throughput and reduce thermal output. Such operations may provide improvements to reliability and efficiency in communications through moderating throughput while maintaining a number of concurrent channels or receive antenna ports.
  • supported techniques may include improved network and UE operations and, in some examples, may promote network efficiencies, reduce latency, and provide network scheduling flexibility, among other benefits.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 735.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to conditional suppression of reference signal transmissions, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a reference signal manager 720, a downlink communications manager 725, and a receive parameter manager 730.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the reference signal manager 720 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity.
  • the downlink communications manager 725 may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals.
  • the receive parameter manager 730 may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the transmitter 735 may transmit signals generated by other components of the device 705.
  • the transmitter 735 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 735 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 735 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a reference signal manager 810, a downlink communications manager 815, a receive parameter manager 820, a thermal status manager 825, and a data rate manager 830. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the reference signal manager 810 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity.
  • the first set of reference signals, the second set of reference signals, and a third set of reference signals are sounding reference signals transmitted by the UE using the set of reference signal resources.
  • the suppressing the one or more transmissions of the second set of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  • the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  • the downlink communications manager 815 may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals. In some examples, the downlink communications manager 815 may receive, from the base station, a second set of downlink communications having a second data rate that is based on a signal quality of the second set of reference signals, where the second data rate is lower than the first data rate.
  • the receive parameter manager 820 may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications. In some examples, the receive parameter manager 820 may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the receive parameter manager 820 may determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications. In some examples, the receive parameter manager 820 may further suppress, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity.
  • the first periodicity corresponds to a sounding reference signal duty cycle
  • the suppressing the one or more transmissions of the second set of reference signals includes suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  • the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based on a thermal parameter of the UE exceeding a thermal parameter threshold.
  • the maximum suppression percentage of sounding reference signals is 40 percent.
  • the suppressing is performed according to a suppression ratio step size.
  • the thermal status manager 825 may monitor a thermal parameter of the device.
  • the one or more parameters associated with the UE include a thermal parameter.
  • the data rate manager 830 may monitor a data rate of the device.
  • the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine the downlink data rate.
  • the one or more parameters associated with the UE include target downlink throughput parameter.
  • the target downlink throughput parameter is set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the communications manager 9105 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 905 to determine reference signal suppression in order to moderate downlink throughput and reduce thermal output. Such operations may provide improvements to reliability and efficiency in communications through moderating throughput while maintaining a number of concurrent channels or receive antenna ports.
  • supported techniques may include improved network and UE operations and, in some examples, may promote network efficiencies, reduce latency, and provide network scheduling flexibility, among other benefits.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include RAM and ROM.
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting conditional suppression of reference signal transmissions) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a reference signal manager as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
  • the UE may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the one or more parameters associated with the UE include a thermal parameter.
  • the one or more parameters associated with the UE include target downlink throughput parameter. In some cases, the target downlink throughput parameter is set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
  • the UE may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the suppressing reduces a downlink data rate through a reduction in a detected SNR at the base station that is used to determine the downlink data rate.
  • the suppressing the one or more transmissions of the second set of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs. In some cases, the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a reference signal manager as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
  • the UE may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the UE may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, a second set of downlink communications having a second data rate that is based on a signal quality of the second set of reference signals, where the second data rate is lower than the first data rate.
  • the operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
  • the UE may determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications.
  • the operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the UE may further suppress, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity.
  • the operations of 1135 may be performed according to the methods described herein. In some examples, aspects of the operations of 1135 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
  • the first set of reference signals, the second set of reference signals, and a third set of reference signals are sounding reference signals transmitted by the UE using the set of reference signal resources.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described that provide for a determination by a user equipment (UE) that a limit associated with one or more parameters are exceeded. Based on such a determination, the UE may suppress a transmission of one or more reference signals to a base station. The one or more parameters may include a thermal parameter, a target throughput parameter, or any combinations thereof. By suppressing the transmission of one or more reference signals from the UE, a channel condition associated with the UE as estimated by the base station may be reduced by an amount sufficient to cause the base station to reduce a data rate for communications with the UE.Such a reduction in data rate may allow the one or more parameters to come within the associated limits.

Description

CONDITIONAL SUPPRESSION OF REFERENCE SIGNAL TRANSMISSIONS
FIELD OF TECHNOLOGY
The following relates to wireless communications, including conditional suppression of reference signal transmissions.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some deployments, a UE may have one or more limits on certain parameters, and in the event that such limits are exceeded the UE may change a state in order to comply with the exceeded limit. For example, a UE may have a thermal limit associated with transmit and receive circuitry and if the UE detects that the thermal limit is exceeded, the UE may take steps to change a receive state (e.g., by reducing a number of concurrent transmissions that may be received) or suspend communications in order to try and reduce thermal output of the transmit and receive circuitry. Such reductions or suspensions of communications may reduce efficiency of communications with the UE, and degrade overall user experience.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support conditional suppression of reference signal transmissions. In accordance with various aspects of the disclosure, described techniques provide for a determination by a user equipment (UE) that a limit associated with one or more parameters are exceeded. Based on such a determination, the UE may suppress a transmission of one or more reference signals to a base station. In some cases, the one or more parameters may include a thermal parameter, a target throughput parameter, or any combinations thereof. By suppressing the transmission of one or more reference signals from the UE (e.g., suppression of a certain percentage of sounding reference signals (SRSs) ) , a channel condition associated with the UE as estimated by the base station may be reduced by an amount sufficient to cause the base station to schedule less data to the UE. Such a reduction in data rate (e.g., through selection of a modulation and coding scheme that provides a lower data rate) may allow the one or more parameters to come within the associated limits (e.g., a reduction in processing power for lower data rate communications may reduce a thermal temperature of the UE and allow a thermal parameter to come within a thermal limit) . Such techniques may allow the UE to maintain a more efficient communication state (e.g., with multiple concurrent receive chains remaining active) while also managing the one or more parameters to remain within associated limits.
A method of wireless communication at a UE is described. The method may include transmitting a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receiving, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppressing, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to  transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for transmitting a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receiving, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppressing, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a second set of downlink communications having a second data rate that is based on a signal quality of the second set of reference signals, where the  second data rate may be lower than the first data rate. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications, and further suppressing, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more parameters associated with the UE include a thermal parameter. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of reference signals, the second set of reference signals, and a third set of reference signals, may be sounding reference signals transmitted by the UE using the set of reference signal resources. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first periodicity corresponds to a sounding reference signal duty cycle, and where the suppressing the one or more transmissions of the second set of reference signals includes suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining and suppressing may be repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based on a thermal parameter of the UE exceeding a thermal parameter threshold. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the maximum suppression percentage of sounding reference signals may be 40 percent. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the suppressing may be performed according to a suppression ratio step size (e.g., 5%steps up to 40%) .
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine  the downlink data rate. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more parameters associated with the UE include target downlink throughput parameter. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the target downlink throughput parameter may be set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the suppressing the one or more transmissions of the second set of reference signals may be applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a portion of a wireless communications system that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of suppressed reference signal resources that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a flow chart of UE operation that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a flow chart of UE operation that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show flowcharts illustrating methods that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A wireless communications system may support a variety of different types of communications in a variety of different channel conditions, and may select various transmission parameters based on particular type of communications and channel conditions that are present between a user equipment (UE) and a base station. In some cases, channel conditions that are present between the UE and base station may be estimated by the base station based on measurements of a reference signal transmitted by the UE. For example, a UE may transmit sounding reference signals (SRSs) that are used by a base station to estimate channel conditions. Such estimated channel conditions may then be used to determine a downlink data block size for downlink transmissions from the base station to the UE. The downlink data rate may be increased for higher signal to noise ratio (SNR) SRSs that are received at the base station, and decreased for lower SNR SRSs.
Higher downlink data rates may provide enhanced throughput for communications with the UE, and may also result in higher thermal temperatures at the UE, due to increased processing power needed to demodulate and decode the downlink data at the higher data rates. In some cases, UEs may reach thermal limits due to high data rates, which may result in the UE disabling some features (e.g., the UE may change from having four enabled receive antenna ports to one enabled receive antenna port) , which may decrease efficiency. In some  cases, it may be more efficient if the UE is able to maintain the same number of antenna ports with reduced data rates, which would lower overall UE power consumption and provide lower latency than a switch to a single antenna. Suppressing transmission for SRS itself will also reduce the power associated with SRS transmissions. Additionally or alternatively, in some cases a UE manufacturer may use multiple different vendors to supply wireless components (e.g., wireless modems and other components of transmit/receive chains) , which may have different downlink data transfer rate capabilities. In such cases, a consistent data transfer rate across the same model of UEs may be desirable irrespective of a vendor that manufactured wireless components used in that model UE.
In accordance with various aspects of techniques discussed herein, a UE, upon determining that a parameter is exceeding a threshold value (e.g., based on a thermal parameter exceeding a thermal limit or a data rate that exceeds a target maximum data rate rate) , may suppress a percentage of reference signal transmissions that are used for channel estimation at a serving base station. The suppression of the reference signals transmissions results in the serving base station determining that the UE has a reduced SNR, which then may result in the base station reducing a downlink data rate for the UE. Such a lower data rate may result in lower processing requirements and thus lower associated thermal output in cases where the UE parameter is a thermal parameter. Such a lower data rate may also result in communications being within a target data rate parameter, in cases where the UE parameter is a target data rate.
In some cases, the suppression of reference signal transmissions may be made in steps (e.g., 5%of SRS duty cycle for each SRS resource ID) up to a maximum suppression (e.g., 40%for SRS) . In some cases, a base station may switch a precoding determination to a precoding matrix indication (PMI) provided by the UE if the SNR associated with measured reference signals is below a SNR threshold value. In such cases, a maximum reference signal suppression may be selected to avoid such a switch in precoding determination. For example, a UE may initially suppress 5%of SRS transmission, and re-evaluate the UE parameters (e.g., temperature or data rate) to determine if further suppression is needed. In cases where the UE parameter is a thermal parameter, as the UE temperature cools, the suppression percentage can be reduced in order to increase downlink data rates.
Various aspects of the subject matter described herein may be implemented to realize one or more of the following potential advantages. The techniques employed by the described UEs may provide benefits and enhancements to the operation of a wireless communications system. For example, operations performed by the UEs may provide improvements to reliability and efficiency in communications through managing UE parameters such as thermal parameters, data rate parameters, or combinations thereof. Such improvements may enhance efficiency of wireless communications at a UE by allowing for efficient configurations (e.g., multiple concurrent receive antenna ports) while reducing a data rate to maintain the one or more parameters at or below target levels. The described techniques may thus include features for improvements to reliability in communications, and enhanced communications efficiency for UEs, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Examples of suppressed reference signal resources, and flow charts of UE operations are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to conditional suppression of reference signal transmissions.
FIG. 1 illustrates an example of a wireless communications system 100 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more  communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC)  device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink  transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may  be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control  channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may  support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception  simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming  operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the  bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some cases, a UE 115 may determine that a limit associated with one or more parameters are exceeded. Based on such a determination, the UE 115 may suppress a transmission of one or more reference signals to a base station 105. In some cases, the one or more parameters may include a thermal parameter, a target throughput parameter, or any combinations thereof. By suppressing the transmission of one or more reference signals from the UE 115 (e.g., suppression of a certain percentage of SRSs) , a channel condition associated with the UE 115 as estimated by the base station 105 may be reduced by an amount sufficient to cause the base station 105 to reduce a data rate for communications with the UE. Such a reduction in data rate (e.g., through selection of a modulation and coding scheme that provides a lower data rate) may allow the one or more parameters to come within the associated parameter limits (e.g., a reduction in processing power for lower data rate  communications may reduce a thermal temperature of the UE 115 and allow a thermal parameter to come within a thermal limit) . Such techniques may allow the UE 115 to maintain a more efficient communication state (e.g., with multiple concurrent receive chains remaining active) while also managing the one or more parameters to remain at or below target levels.
FIG. 2 illustrates an example of a wireless communications system 200 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include base station 105-a and UE 115-a which may be examples of a base station or UE described above with reference to FIG. 1. Base station 105-a and UE 115-a may communicate with one another within coverage area 110-a using downlink 205 and uplink 210 communications and using techniques as discussed herein.
In the example of FIG. 2, the base station 105-a may transmit and the UE 115-a may receive downlink communications 215, which in this example may include a first set of downlink communications 215-a and a second set of downlink communications 215-b. The base station 105-a, in some cases, may determine one or more parameters associated with the downlink communications 215 (e.g., a modulation and coding scheme (MCS) that provides a downlink data rate) based on one or more reference signal transmissions 220 transmitted by the UE 115-a. For example, the UE 115-a may transmit SRSs for one or more SRS resources IDs (e.g., associated with one or more antenna ports at the UE 115-a) . In the example of FIG. 2, the UE 115-a may transmit a first plurality of reference signals 220-a and a second plurality of reference signals 220-b to the base station 105-a in accordance with techniques as discussed herein.
In some cases, as discussed herein, the downlink communications 215 may be transmitted with a relatively high data rate. In order for the UE 115-a to receive and decode such communications in accordance with established timelines (e.g., timelines for reporting acknowledgment or negative acknowledgment feedback associated with the downlink communications 215) , the UE 115-a may need to use significant processing resources (e.g., relatively high microprocessor clock rates, additional processing cores may be activated to process/decode communications, etc. ) . Such processing resources may cause a relatively high  battery drain, and may also result in higher thermal output. In some cases, data rates of the downlink communications 215 may be dependent upon a number of factors, such as, for example, a channel quality indicator (CQI) , precoding matrix indicator (PMI) , SRS signal strength, rank indicator (RI) , or any combinations thereof. Further, downlink throughput may be dependent upon UE 115-a capabilities (e.g., supported bandwidth, number of antennas, etc. ) . In some cases, downlink resources may be scheduled based on SRS or PMI, where PMI may be used for cell edge scenarios and SRS may be used for TDD system in which the base station 105-a may use the SRS and channel reciprocity to infer the downlink channel characteristics to define an accurate downlink precoding matrix. Additionally or alternatively, an original equipment manufacturer (OEM) may select two or more vendors to provide components for wireless communications (e.g., wireless modem chip sets) that may be designed into a same model of UE 115-a. In order to provide consistent performance for the UEs, the OEM might request a component vendor having higher performance components to detune the components in order to provide consistent performance for the UE regardless of which chip set is incorporated into the UE 115-a.
In some aspects, in cases where the UE 115-a and base station 105-a operate in a TDD system where the base station 105-a relies mainly on the reference signal transmissions 220 (e.g., SRS) to infer downlink channel characteristics, the UE 115-a may conditionally suppress a portion of the reference signal transmissions 220. Such suppression may work to reduce reference signal filter SNR at the base station 105-a, which then results in a lower downlink throughput for the downlink communications 215. In some cases, the base station 105-a may target to maintain a SRS SNR threshold, and once filter SNR is lower than the threshold, base station 105-a may switch to PMI-based weights. Thus, in some cases, the UE 115-a may have a maximum amount of reference signal suppression (e.g., a SRS transmission puncture ratio that is no larger than 40%) . By suppressing a portion of the reference signal transmissions 220, the UE 115-a throughput may be controlled in order to allow for a less processor-intensive decoding process, which may help maintain thermal parameters below a threshold value. Further, suppression of some of the reference signals may also reduce some reference signals transmission power. Such techniques thus provide that the UE 115-a temperature can be controlled, and also provide that UE 115-a battery life can be extended. Additionally or alternatively, such techniques may also help UE OEMs to pass operator tests for target data transfer rates. Further, such techniques may allow for similar throughput  performance at the UE 115-a for two or more different modem vendors, which may allow an OEM to deliver UEs 115 having consistent operational performance.
FIG. 3 illustrates an example of suppressed reference signal resources 300 that support conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. In some examples, suppressed reference signal resources 300 may implement aspects of  wireless communications system  100 or 200. In the example of FIG. 3, a set of wireless resources 305 may include a number of different SRS resources 315. The SRS resources 315 may be associated with different SRS resource IDs, which may each be associated with a different antenna port at a UE, for example.
As discussed herein, in some aspects of the present disclosure, a UE (e.g., a UE 115 of FIGs. 1 or 2) may suppress some reference signal transmissions, which may include one or more SRS transmissions using SRS resources 315. In some cases, a duty cycle of SRS transmissions may be based on a SRS periodicity in slots times 10, for example. The UE may suppress reference signals as a percentage of SRS transmissions per duty cycle, and in some cases a suppression ratio may start at 5%and increase up to 40%with a step size of 5%. In the example of FIG. 3, the suppression ratio is illustrated for a 20%suppression, in which a subset 310-a and a second subset 310-b of SRS transmissions are suppressed. In some cases, the UE may initially start at the starting reference signal suppression percentage (e.g., 5%) and monitor one or more parameters for a duration of a duty cycle. If the one or more parameters remain above a corresponding parameter threshold level (e.g., a thermal parameter threshold) , the UE may increase the suppression percentage by one step and monitor the parameter for a subsequent duty cycle. Such a procedure may continue until the monitored parameter is at or below the parameter threshold level, until the downlink transmissions stop, or until a suppression ratio limit is achieved. In the event that the monitored parameter drops below its associated limit, the UE may unsuppress the reference signals by one step, in some cases. Examples of such reference signal suppression techniques are discussed with reference to example flow charts for thermal mitigation of FIGs. 4 and 5. While these examples are directed to thermal mitigation, other examples may be used for other parameters that may be monitored at a UE, such as data throughput relative to a target throughput, for example.
FIG. 4 illustrates an example of a flow chart of UE operation 400 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. In some examples, flow chart of UE operation 400 may implement aspects of  wireless communications system  100 or 200. UE operations 400 may be implemented by a UE such as discussed herein (e.g., a UE 115 of FIGs. 1 or 2) when in communication with a base station. Alternative examples of the following may be implemented, where some operations are performed in a different order than described or are not performed at all. In some cases, operations may include additional features not mentioned herein, or further operations may be added.
At 405, the UE may receive downlink transmissions from a base station. In some cases, the downlink data transmissions may be transmitted by the base station at a first data rate, which may be based on an estimated channel condition of a channel between the UE and the base station.
At 410, the UE may determine whether thermal mitigation is needed. In some cases, the determination of whether thermal mitigation is needed may be based on an operating temperature of a modem processor of the UE (e.g., based on a silicon-based temperature sensor or a thermocouple, etc., associated with the modem) . In the event that thermal mitigation is not needed, operations at 405 may be continued. In the event that thermal mitigation is needed, the UE may determine, at 415, whether a puncture or suppression ratio of reference signal transmissions is below an upper limit for the ratio. As discussed herein, in some cases the UE may have an upper limit of 40%for suppressing SRS transmissions. If it is determined that the puncture ratio is at the limit, the UE may, at 420, take further thermal mitigation measures that are unassociated with sounding reference signal suppression. Such further measures may include, for example, disabling one or more receive chains (e.g., disabling one or more antennas and associated receive circuitry) at the UE, reducing a number of concurrent component carriers that may be used for communications with the UE, and the like. Such further measures may result in less efficient communications with the UE (e.g., the UE may drop to supporting only a single receive antenna port, which may increase latency for communications with the UE) .
If it is determined that the puncture ratio is below the limit, the UE, at 425, may suppress the SRS on the next duty cycle. In some cases, the SRS may be suppressed by the  next step of puncture ratios (e.g., 5%) relative to the prior suppression level. At 430, the UE may determine whether it has reached a last duty cycle for a set of downlink communications. If the last duty cycle has not been reached, the UE may perform operations starting at 410 to determine whether thermal mitigation is still needed. If the UE has reached the last duty cycle, the UE may perform operations starting at 405.
FIG. 5 illustrates an example of a flow chart of UE operation 500 that supports conditional suppression of sounding reference signal transmissions in accordance with aspects of the present disclosure. In some examples, flow chart of UE operation 500 may implement aspects of  wireless communications system  100 or 200. UE operations 500 may be implemented by a UE such as discussed herein (e.g., a UE 115 of FIGs. 1 or 2) when in communication with a base station. Alternative examples of the following may be implemented, where some operations are performed in a different order than described or are not performed at all. In some cases, operations may include additional features not mentioned herein, or further operations may be added.
At 505, the UE may be operating with SRS suppression in an active state. For example, the UE may have performed operations such as discussed with reference it FIG. 4, and suppressed or punctured sounding reference signal transmissions in order to reduce a throughput rate for communications received from the base station.
At 510, the UE may determine whether a thermal parameter exceeds a first thermal threshold value (e.g., a temperature T 1) . If the thermal threshold value is exceeded, it may indicate that further thermal mitigation is needed. If the thermal threshold value is not exceeded, is may beam that thermal mitigation may be reduced.
In the event that the UE determines that the thermal threshold value is exceeded, the UE may, at 515, determine whether a puncture ratio is below an upper limit for the ratio. As discussed herein, in some cases the UE may have an upper limit of 40%for suppressing SRS transmissions. If it is determined that the puncture ratio is at the limit, the UE may, at 520, take further thermal mitigation measures that are unassociated with reference signal suppression. Such further measures may include, for example, disabling one or more receive chains (e.g., disabling one or more antennas and associated receive circuitry) at the UE, reducing a number of concurrent component carriers that may be used for communications with the UE, and the like. Such further measures may result in less efficient communications  with the UE (e.g., the UE may drop to supporting only a single receive antenna port, which may increase latency for communications with the UE) .
If it is determined that the puncture ratio is below the limit, the UE, at 525, may suppress the SRS by the next step in suppression percentage (e.g., 5%) relative to the prior suppression level.
If, at 510, it is determined that the thermal parameter does not exceed the first thermal threshold value, the UE may, at 530, determine whether the thermal parameter is less than or equal to a second thermal threshold value (e.g., a temperature T 2) . In some cases, the first thermal threshold value and the second thermal threshold value may be selected to provide some hysteresis, in order to prevent ping-ponging of suppression steps in consecutive duty cycles. If it is determined at 530 that the thermal parameter does not exceed the second thermal threshold value, operations at 505 may be repeated. If it is determined at 530 that the thermal parameter is less than or equal to the second thermal threshold value, the UE may determine that less SRS suppression is needed, and at 535 may unsuppress the SRS the step percentage. Such unsuppression may allow for relatively higher data rates, which may enhance UE performance and system efficiency while the thermal parameters of the UE are at desirable levels. Following operations at 525 or 535, the UE may repeat operations starting at 505.
FIG. 6 shows a block diagram 600 of a device 605 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to conditional suppression of reference signal transmissions, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
The communications manager 615 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 605 to determine reference signal suppression in order to moderate downlink throughput and reduce thermal output. Such operations may provide improvements to reliability and efficiency in communications through moderating throughput while maintaining a number of concurrent channels or receive antenna ports. As such, supported techniques may include improved network and UE operations and, in some examples, may promote network efficiencies, reduce latency, and provide network scheduling flexibility, among other benefits.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O)  component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a device 705 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 735. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to conditional suppression of reference signal transmissions, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a reference signal manager 720, a downlink communications manager 725, and a receive parameter manager 730. The communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The reference signal manager 720 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity.
The downlink communications manager 725 may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals.
The receive parameter manager 730 may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
The transmitter 735 may transmit signals generated by other components of the device 705. In some examples, the transmitter 735 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 735 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 735 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a reference signal manager 810, a downlink communications manager 815, a receive parameter manager 820, a thermal status manager 825, and a data rate manager 830. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The reference signal manager 810 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity. In some cases, the first set of reference signals, the second set of reference signals, and a third set of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources. In some cases, the suppressing the one or more transmissions of the second set of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs. In some cases, the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
The downlink communications manager 815 may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals. In some examples, the downlink communications manager 815 may receive, from the base station, a second set of downlink communications  having a second data rate that is based on a signal quality of the second set of reference signals, where the second data rate is lower than the first data rate.
The receive parameter manager 820 may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications. In some examples, the receive parameter manager 820 may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
In some examples, the receive parameter manager 820 may determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications. In some examples, the receive parameter manager 820 may further suppress, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity.
In some cases, the first periodicity corresponds to a sounding reference signal duty cycle, and where the suppressing the one or more transmissions of the second set of reference signals includes suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle. In some cases, the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based on a thermal parameter of the UE exceeding a thermal parameter threshold. In some cases, the maximum suppression percentage of sounding reference signals is 40 percent. In some cases, the suppressing is performed according to a suppression ratio step size.
The thermal status manager 825 may monitor a thermal parameter of the device. In some cases, the one or more parameters associated with the UE include a thermal parameter.
The data rate manager 830 may monitor a data rate of the device. In some cases, the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine the downlink data rate. In some cases, the one or more parameters associated with the UE include target downlink throughput  parameter. In some cases, the target downlink throughput parameter is set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity, receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals, determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications, and suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity.
The communications manager 9105 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 905 to determine reference signal suppression in order to moderate downlink throughput and reduce thermal output. Such operations may provide improvements to reliability and efficiency in communications through moderating throughput while maintaining a number of concurrent channels or receive antenna ports. As such, supported techniques may include improved network and UE operations and, in some examples, may promote network efficiencies, reduce latency, and provide network scheduling flexibility, among other benefits.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as
Figure PCTCN2020108815-appb-000001
or another  known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include RAM and ROM. The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting conditional suppression of reference signal transmissions) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of  memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a flowchart illustrating a method 1000 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a reference signal manager as described with reference to FIGs. 6 through 9.
At 1010, the UE may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
At 1015, the UE may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9. In some cases, the one or more parameters associated with the UE include a thermal parameter. In some cases, the one or more parameters associated with the UE include target downlink throughput parameter. In some cases, the target downlink throughput parameter is set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
At 1020, the UE may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9. In some cases, the suppressing reduces a downlink data rate through a reduction in a detected SNR at the base station that is used to determine the downlink data rate. In some cases, the suppressing the one or more transmissions of the second set of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs. In some cases, the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
FIG. 11 shows a flowchart illustrating a method 1100 that supports conditional suppression of reference signal transmissions in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE may transmit a first set of reference signals to a base station using a set of reference signal resources that have a first periodicity. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a reference signal manager as described with reference to FIGs. 6 through 9.
At 1110, the UE may receive, from the base station, a first set of downlink communications having a first data rate that is based on a signal quality of the first set of reference signals. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
At 1115, the UE may determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink  communications. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
At 1120, the UE may suppress, based on the determining, one or more transmissions of a second set of reference signals using the set of reference signal resources that have the first periodicity. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
At 1125, the UE may receive, from the base station, a second set of downlink communications having a second data rate that is based on a signal quality of the second set of reference signals, where the second data rate is lower than the first data rate. The operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a downlink communications manager as described with reference to FIGs. 6 through 9.
At 1130, the UE may determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications. The operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9.
At 1135, the UE may further suppress, based on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third set of reference signals using the set of reference signal resources that have the first periodicity. The operations of 1135 may be performed according to the methods described herein. In some examples, aspects of the operations of 1135 may be performed by a receive parameter manager as described with reference to FIGs. 6 through 9. In some case, the first set of reference signals, the second set of reference signals, and a third set of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a  processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (46)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    transmitting a first plurality of reference signals to a base station using a set of reference signal resources that have a first periodicity;
    receiving, from the base station, a first set of downlink communications having a first data rate that is based at least in part on a signal quality of the first plurality of reference signals;
    determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications; and
    suppressing, based at least in part on the determining, one or more transmissions of a second plurality of reference signals using the set of reference signal resources that have the first periodicity.
  2. The method of claim 1, further comprising:
    receiving, from the base station, a second set of downlink communications having a second data rate that is based at least in part on a signal quality of the second plurality of reference signals, wherein the second data rate is lower than the first data rate.
  3. The method of claim 2, further comprising:
    determining that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications; and
    further suppressing, based at least in part on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third plurality of reference signals using the set of reference signal resources that have the first periodicity.
  4. The method of claim 1, wherein the one or more parameters associated with the UE include a thermal parameter.
  5. The method of claim 1, wherein the first plurality of reference signals, the second plurality of reference signals, and a third plurality of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources.
  6. The method of claim 1, wherein the first periodicity corresponds to a sounding reference signal duty cycle, and wherein the suppressing the one or more transmissions of the second plurality of reference signals comprises suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  7. The method of claim 6, wherein the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based at least in part on a thermal parameter of the UE exceeding a thermal parameter threshold.
  8. The method of claim 7, wherein the maximum suppression percentage of sounding reference signals is 40 percent.
  9. The method of claim 7, wherein the suppressing is performed according to a suppression ratio step size.
  10. The method of claim 1, wherein the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine the downlink data rate.
  11. The method of claim 1, wherein the one or more parameters associated with the UE include target downlink throughput parameter.
  12. The method of claim 11, wherein the target downlink throughput parameter is set to provide that different modem manufacturers have corresponding downlink throughput at the UE.
  13. The method of claim 1, wherein the suppressing the one or more transmissions of the second plurality of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  14. The method of claim 13, wherein the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  15. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit a first plurality of reference signals to a base station using a set of reference signal resources that have a first periodicity;
    receive, from the base station, a first set of downlink communications having a first data rate that is based at least in part on a signal quality of the first plurality of reference signals;
    determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications; and
    suppress, based at least in part on the determining, one or more transmissions of a second plurality of reference signals using the set of reference signal resources that have the first periodicity.
  16. The apparatus of claim 15, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, a second set of downlink communications having a second data rate that is based at least in part on a signal quality of the second plurality of reference signals, wherein the second data rate is lower than the first data rate.
  17. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications; and
    further suppressing, based at least in part on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third plurality of reference signals using the set of reference signal resources that have the first periodicity.
  18. The apparatus of claim 15, wherein the one or more parameters associated with the UE include a thermal parameter.
  19. The apparatus of claim 15, wherein the first plurality of reference signals, the second plurality of reference signals, and a third plurality of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources.
  20. The apparatus of claim 15, wherein the first periodicity corresponds to a sounding reference signal duty cycle, and wherein the suppressing the one or more transmissions of the second plurality of reference signals comprises suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  21. The apparatus of claim 20, wherein the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based at least in part on a thermal parameter of the UE exceeding a thermal parameter threshold.
  22. The apparatus of claim 21, wherein the maximum suppression percentage of sounding reference signals is 40 percent, and the suppressing is performed according to a suppression ratio step size.
  23. The apparatus of claim 15, wherein the suppressing reduces a downlink data rate through a reduction in a detected signal to noise ratio (SNR) at the base station that is used to determine the downlink data rate.
  24. The apparatus of claim 15, wherein the one or more parameters associated with the UE include target downlink throughput parameter.
  25. The apparatus of claim 15, wherein the suppressing the one or more transmissions of the second plurality of reference signals is applied to reference signals for  each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  26. The apparatus of claim 25, wherein the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  27. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for transmitting a first plurality of reference signals to a base station using a set of reference signal resources that have a first periodicity;
    means for receiving, from the base station, a first set of downlink communications having a first data rate that is based at least in part on a signal quality of the first plurality of reference signals;
    means for determining that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications; and
    means for suppressing, based at least in part on the determining, one or more transmissions of a second plurality of reference signals using the set of reference signal resources that have the first periodicity.
  28. The apparatus of claim 27, further comprising:
    means for receiving, from the base station, a second set of downlink communications having a second data rate that is based at least in part on a signal quality of the second plurality of reference signals, wherein the second data rate is lower than the first data rate.
  29. The apparatus of claim 28, further comprising:
    means for determining that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications; and
    means for further suppressing, based at least in part on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third plurality of reference signals using the set of reference signal resources that have the first periodicity.
  30. The apparatus of claim 27, wherein the one or more parameters associated with the UE include a thermal parameter.
  31. The apparatus of claim 27, wherein the first plurality of reference signals, the second plurality of reference signals, and a third plurality of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources.
  32. The apparatus of claim 27, wherein the first periodicity corresponds to a sounding reference signal duty cycle, and wherein the suppressing the one or more transmissions of the second plurality of reference signals comprises suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  33. The apparatus of claim 32, wherein the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based at least in part on a thermal parameter of the UE exceeding a thermal parameter threshold.
  34. The apparatus of claim 27, wherein the one or more parameters associated with the UE include target downlink throughput parameter.
  35. The apparatus of claim 27, wherein the suppressing the one or more transmissions of the second plurality of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  36. The apparatus of claim 35, wherein the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
  37. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    transmit a first plurality of reference signals to a base station using a set of reference signal resources that have a first periodicity;
    receive, from the base station, a first set of downlink communications having a first data rate that is based at least in part on a signal quality of the first plurality of reference signals;
    determine that one or more parameters associated with the UE exceed an associated parameter threshold value while receiving the first set of downlink communications; and
    suppress, based at least in part on the determining, one or more transmissions of a second plurality of reference signals using the set of reference signal resources that have the first periodicity.
  38. The non-transitory computer-readable medium of claim 37, wherein the instructions are further executable to:
    receive, from the base station, a second set of downlink communications having a second data rate that is based at least in part on a signal quality of the second plurality of reference signals, wherein the second data rate is lower than the first data rate.
  39. The non-transitory computer-readable medium of claim 38, wherein the instructions are further executable to:
    determine that the one or more parameters associated with the UE continue to exceed the associated parameter threshold value while receiving the second set of downlink communications; and
    further suppress, based at least in part on the one or more parameters that continue to exceed the associated parameter threshold, one or more transmissions of a third plurality of reference signals using the set of reference signal resources that have the first periodicity.
  40. The non-transitory computer-readable medium of claim 37, wherein the one or more parameters associated with the UE include a thermal parameter.
  41. The non-transitory computer-readable medium of claim 37, wherein the first plurality of reference signals, the second plurality of reference signals, and a third plurality of reference signals, are sounding reference signals transmitted by the UE using the set of reference signal resources.
  42. The non-transitory computer-readable medium of claim 37, wherein the first periodicity corresponds to a sounding reference signal duty cycle, and wherein the suppressing the one or more transmissions of the second plurality of reference signals comprises suppressing a first percentage of sounding reference signals of the sounding reference signal duty cycle.
  43. The non-transitory computer-readable medium of claim 42, wherein the determining and suppressing are repeated up to a maximum suppression percentage of sounding reference signals of the sounding reference signal duty cycle based at least in part on a thermal parameter of the UE exceeding a thermal parameter threshold.
  44. The non-transitory computer-readable medium of claim 37, wherein the one or more parameters associated with the UE include target downlink throughput parameter.
  45. The non-transitory computer-readable medium of claim 37, wherein the suppressing the one or more transmissions of the second plurality of reference signals is applied to reference signals for each of two or more sets of reference signal resources that are associated with different reference signal resource IDs.
  46. The non-transitory computer-readable medium of claim 45, wherein the different reference signal resource IDs are associated with different antenna ports for antenna switching at the UE.
PCT/CN2020/108815 2020-08-13 2020-08-13 Conditional suppression of reference signal transmissions WO2022032555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108815 WO2022032555A1 (en) 2020-08-13 2020-08-13 Conditional suppression of reference signal transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108815 WO2022032555A1 (en) 2020-08-13 2020-08-13 Conditional suppression of reference signal transmissions

Publications (1)

Publication Number Publication Date
WO2022032555A1 true WO2022032555A1 (en) 2022-02-17

Family

ID=80246674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108815 WO2022032555A1 (en) 2020-08-13 2020-08-13 Conditional suppression of reference signal transmissions

Country Status (1)

Country Link
WO (1) WO2022032555A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227148A1 (en) * 2017-06-09 2018-12-13 Qualcomm Incorporated Power control in new radio systems
WO2019141147A1 (en) * 2018-01-20 2019-07-25 Qualcomm Incorporated Reference resource indication techniques in wireless communications
WO2019158064A1 (en) * 2018-02-14 2019-08-22 华为技术有限公司 Method and apparatus for transmitting sounding reference signal
WO2019213934A1 (en) * 2018-05-11 2019-11-14 株式会社Ntt都科摩 Method for signal transmission and corresponding user terminal, and base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227148A1 (en) * 2017-06-09 2018-12-13 Qualcomm Incorporated Power control in new radio systems
WO2019141147A1 (en) * 2018-01-20 2019-07-25 Qualcomm Incorporated Reference resource indication techniques in wireless communications
WO2019158064A1 (en) * 2018-02-14 2019-08-22 华为技术有限公司 Method and apparatus for transmitting sounding reference signal
WO2019213934A1 (en) * 2018-05-11 2019-11-14 株式会社Ntt都科摩 Method for signal transmission and corresponding user terminal, and base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Additional SRS symbols", 3GPP DRAFT; R1-1907006_SRS ADDITIONAL SYMBOLS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728454 *

Similar Documents

Publication Publication Date Title
US20210194556A1 (en) Aperiodic channel state information physical uplink shared channel repetition with demodulation reference signal bundling
US20210377914A1 (en) Transmit beam selection schemes for multiple transmission reception points
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
WO2021174437A1 (en) Multiplexing for physical uplink channels with different directional beams
US20230224960A1 (en) Techniques for adapting resource sensing in sidelink communications system
US11678314B2 (en) Packet duplication carrier enhancements
US11395329B2 (en) Uplink traffic prioritization across multiple links
WO2022047777A1 (en) Channel state information reference signal triggering when secondary cell dormancy is configured
WO2021226956A1 (en) Monitoring for downlink repetitions
US20220014313A1 (en) Efficient turbo hybrid automatic repeat request feedback reporting
US11950121B2 (en) Techniques for beam measurement reporting
US11678203B2 (en) Link adaptation upon beam blocking determination
WO2021259159A1 (en) Support of flexible sounding reference signal switching capability
US20210328635A1 (en) Techniques for switching orthogonal and non-orthogonal sequence based noncoherent uplink control transmissions
US11792671B2 (en) Channel state information reporting over discontinuous reception operations
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2021223204A1 (en) Vehicle-to-everything cell reselection
WO2022032555A1 (en) Conditional suppression of reference signal transmissions
US11778590B2 (en) Techniques for selecting a sidelink sensing mode based on duplex mode
US11510209B2 (en) Overheating triggered radio resource management (RRM) relaxation
US11617205B2 (en) Channel sensing for full-duplex sidelink communications
US11576201B2 (en) Candidate uplink grants for channel access
WO2022077416A1 (en) Device-to-device discontinuous reception latency enhancement
US20230421288A1 (en) Blind decoding limit techniques for wireless communications
WO2022036586A1 (en) Adaptive discontinuous reception cycle configuration for active flows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949054

Country of ref document: EP

Kind code of ref document: A1