WO2022032544A1 - 一种通信方法、通信装置、终端设备及用户面网元 - Google Patents

一种通信方法、通信装置、终端设备及用户面网元 Download PDF

Info

Publication number
WO2022032544A1
WO2022032544A1 PCT/CN2020/108744 CN2020108744W WO2022032544A1 WO 2022032544 A1 WO2022032544 A1 WO 2022032544A1 CN 2020108744 W CN2020108744 W CN 2020108744W WO 2022032544 A1 WO2022032544 A1 WO 2022032544A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock source
terminal device
network element
plane network
declaration
Prior art date
Application number
PCT/CN2020/108744
Other languages
English (en)
French (fr)
Inventor
李汉成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/108744 priority Critical patent/WO2022032544A1/zh
Priority to EP20949043.2A priority patent/EP4192134A4/en
Priority to CN202080049356.8A priority patent/CN114342489B/zh
Publication of WO2022032544A1 publication Critical patent/WO2022032544A1/zh
Priority to US18/168,212 priority patent/US20230217385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a communication method, a communication device, a terminal device, and a user plane network element.
  • the 5G system and the TSN Translator are regarded as a logical TSN switching node (called a 5G system bridge node).
  • the 5G system bridge node includes one or more terminal devices, and the 5G system bridge node supports the synchronization of external TSN clock sources through the terminal device or TSN converter.
  • the 5G system bridge node supports the synchronization of external TSN clock sources through the terminal device or TSN converter.
  • the present application provides a communication method, a communication device, a terminal device and a user plane network element, so as to ensure the reliability of clock synchronization.
  • the present application provides a communication method, the method includes: a terminal device detects whether a clock source declaration from a user plane network element is received within a first duration, and the port state of the terminal device is a slave state or a passive state ; when the terminal device does not receive the clock source declaration from the user plane network element within the first time period, send the clock source declaration from the remote device to the user plane network element.
  • the terminal device when the terminal device does not receive the clock source declaration from the user plane network element within the first period of time, it indicates that the user plane network element cannot receive the clock source declaration from other terminal devices, so that the terminal device can report to the user plane network element.
  • Sending the clock source declaration of the remote device ensures that the user plane network elements can be synchronized to the clock source from the remote device and can forward the clock source declaration, thus ensuring the reliability of the 5G system to synchronize external clock sources.
  • the terminal device receives configuration information from a control plane network element, where the configuration information is used to configure the port state of the terminal device to be a slave state or a passive state; or, the terminal device If it is determined that the clock source corresponding to the clock source declaration from the user plane network element is the same as the clock source corresponding to the clock source declaration from the remote device, it is determined that the port state of the terminal device is a slave state or a passive state.
  • the port status of the terminal device can be configured through the control plane, or the terminal device can determine the port status of the terminal device by itself, so as to ensure that the terminal device can receive the external clock source declaration in time and improve the reliability of clock synchronization.
  • the terminal device receives a clock synchronization message from the remote device; the terminal device performs clock synchronization according to the clock synchronization message.
  • the terminal device is synchronized from the remote device side to the external clock source, which improves the reliability of clock synchronization.
  • the terminal device receives a clock synchronization message from the user plane; the terminal device performs clock synchronization according to the clock synchronization message.
  • the terminal equipment is synchronized from the user plane network element side to the external clock source, which improves the reliability of clock synchronization.
  • the terminal device determines that the port state of the terminal device is a slave state.
  • the terminal device when the terminal device does not receive the clock source declaration from the user plane network element within the first period of time, it means that the user plane network element cannot receive the clock source declaration from other terminal devices, so that the terminal device can transfer the port of the terminal device
  • the state is determined to be a slave state to ensure that the clock source statement of the remote device can be sent to the user plane network element, which ensures that the user plane network element can be synchronized to the clock source from the remote device, thereby ensuring that the 5G system can synchronize external clock sources. reliability.
  • the present application provides a communication method, the method includes: a user plane network element receives a clock source declaration from a first terminal device at a first moment; the user plane network element passes through a port of the user plane network element Or the terminal device in the master port state sends the clock source declaration from the first terminal device; if the user plane network element does not receive the clock source declaration from the first terminal device or the The user plane network element receives, from the control plane network element, the indication information for instructing to send the clock source declaration from the second terminal device, and the user plane network element passes through the port of the user plane network element or is in the master port state
  • the terminal device sends the clock source declaration from the second terminal device, and the first duration is after the first moment; wherein the clock source corresponding to the clock source declaration from the first terminal device is the same as the clock source from the first terminal device.
  • the clock source of the second terminal device declares that the corresponding clock sources are the same.
  • the user plane network element first forwards the clock source declaration from the first terminal device.
  • the user plane network element cannot receive the clock source declaration from the first terminal device, it can receive the clock source from the second terminal device. statement, the user plane network element forwards the clock source statement from the second terminal device, thereby ensuring that the 5G system can be synchronized to an external clock source and ensuring the reliability of clock synchronization.
  • the user plane network element determines that the clock source declaration from the first terminal device is the same as the clock source declaration from the second terminal device, and then determines to send the clock source from the first terminal device or, the user plane network element receives configuration information from a control plane network element, where the configuration information is used to configure the user plane network element to send a clock source declaration from the first terminal device.
  • the user plane network element can determine to forward the clock source declaration from the first terminal device by itself, or the control plane informs the user plane network element to forward the clock source declaration from the first terminal device, which can ensure the reliability of clock synchronization.
  • the user plane network element in the case that the user plane network element does not receive the clock source declaration from the first terminal device within the first time period, the user plane network element sends a notification to the control plane network element. sending indication information, where the indication information is used to indicate that the clock source declaration from the first terminal device has not been received within the first duration; and/or the user plane network element sends a notification to the control plane network element information, where the notification information is used to instruct the user plane network element to send the clock source declaration from the second terminal device.
  • the user plane network element when the user plane network element does not receive the clock source declaration from the first terminal device within the first time period, it can notify the control plane network element, so that the control plane network element can configure the user plane network element or the second terminal device. device, so that the user plane network element can forward the clock source declaration from the second terminal device to ensure the reliability of clock synchronization.
  • the first duration is pre-configured; or, the first duration is configured by the control plane network element.
  • the user plane network element sends a clock source declaration from the first terminal device to the second terminal device.
  • the present application provides a communication method, the method comprising: a control plane network element receiving a clock source declaration from a first terminal device; the control plane network element determining that a port state of the first terminal device is a slave state ; the control plane network element receives the clock source declaration from the second terminal device; the control plane network element determines the clock source corresponding to the clock source declaration from the second terminal device and the clock source declaration from the first terminal device If the corresponding clock sources are the same, it is determined that the port state of the second terminal device is in the passive state; if the control plane network element determines that the first condition is met, it is determined that the port state of the second terminal device is the slave state and/or Send first indication information to the user plane network element, where the first indication information is used to instruct the user plane network element to send the clock source declaration from the second terminal device.
  • the control plane network element configures the port state of the terminal device to ensure that the 5G system can be synchronized to the external clock source declaration, and the control plane network element determines that the user plane network element cannot forward the clock source from the first terminal device.
  • the user plane network element can be controlled to forward the clock source declaration from the second terminal device, so as to improve the reliability of clock synchronization.
  • determining that the control plane network element satisfies the first condition includes: receiving, by the control plane network element, second indication information from the user plane network element, and the second indication information uses indicating that the user plane network element has not received the clock source declaration from the first terminal device within the first time period; or, the control plane network element receives the third indication information from the first terminal device, The third indication information is used to indicate that the first terminal device has not received the clock source declaration from the remote device within the second time period; or, the control plane network element determines that the first terminal device is abnormal; or , the control plane network element receives fourth indication information from the second terminal device, where the fourth indication information is used to indicate that the second terminal device has not received information from the user plane network within a third time period Meta's clock source declaration.
  • control plane network element receives notification information from the user plane network element, where the notification information is used to instruct the user plane network element to send the clock from the second terminal device source statement.
  • the present application provides a communication method, the method comprising: a control plane network element receiving a clock source declaration from a first terminal device; the control plane network element determining that a port state of the first terminal device is a slave state ; the control plane network element receives the clock source declaration from the second terminal device; the control plane network element determines the clock source corresponding to the clock source declaration from the second terminal device and the clock source declaration from the first terminal device If the corresponding clock sources are the same, it is determined that the port state of the second terminal device is a slave state.
  • the control plane network element configures the port states of the first terminal device and the second terminal device to be both slave states, so that both the first terminal device and the second terminal device can send the same clock source declaration to the user plane network element , and the user plane network element can choose to forward the clock source declaration of one of the terminal devices, and when the user plane network element cannot receive the clock source declaration from one of the terminal devices, it can switch to receive the clock source declaration from the other terminal device, ensuring that reliability of clock synchronization.
  • control plane network element determines that the first condition is met, and then sends first indication information to the user plane network element, where the first indication information is used to instruct the user plane network element to send the data from the The clock source declaration of the second terminal device.
  • determining that the control plane network element satisfies the first condition includes: receiving, by the control plane network element, second indication information from the user plane network element, and the second indication information uses indicating that the user plane network element has not received the clock source declaration from the first terminal device within the first time period; or, the control plane network element receives the third indication information from the first terminal device, The third indication information is used to indicate that the first terminal device has not received the clock source declaration from the remote device within the second time period; or, the control plane network element determines that the first terminal device is abnormal; or , the control plane network element receives fourth indication information from the second terminal device, where the fourth indication information is used to indicate that the second terminal device has not received information from the user plane network within a third time period Meta's clock source declaration.
  • the present application provides a communication apparatus, which may be a terminal device or a chip used for the terminal device.
  • the device has the function of implementing the various embodiments of the first aspect described above. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the present application provides a communication device, the device may be a user plane network element, and may also be a chip for a user plane network element.
  • the device has the function of implementing the various embodiments of the second aspect described above. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the present application provides a communication device, and the device may be a control plane network element or a chip used for the control plane network element.
  • the device has the function of implementing the embodiments of the third aspect or the embodiments of the fourth aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the present application provides a communication device, comprising: a processor and a memory; the memory is used to store computer-executed instructions, and when the device is running, the processor executes the computer-executed instructions stored in the memory, so that the The apparatus performs any of the communication methods as in the above-described first to fourth aspects.
  • the present application provides a communication device, comprising: including units or means for performing each step of any of the communication methods in the above-mentioned first to fourth aspects.
  • the present application provides a communication device, including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute any of the communication methods in the first to fourth aspects above.
  • the processor includes one or more.
  • the present application provides a communication device, including a processor, which is connected to a memory and used to call a program stored in the memory to execute any of the communication methods in the first to fourth aspects above.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • the present application further provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the processor causes the processor to execute the first to fourth aspects above. any communication method.
  • the present application further provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute any of the communication methods in the above-mentioned first to fourth aspects.
  • the present application further provides a chip system, including: a processor configured to execute any of the communication methods in the above-mentioned first to fourth aspects.
  • Figure 1 is a schematic diagram of a 5G network architecture based on a service-oriented architecture
  • Fig. 2 is a schematic diagram of clock synchronization
  • Fig. 3 is a schematic diagram of a clock synchronization spanning tree
  • FIG. 4 is a schematic diagram of a 3GPP network and TSN interworking system architecture
  • Figure 5 is a schematic diagram of a clock source on the 3GPP R17UE side
  • Fig. 6 is an example of clock synchronization
  • FIG. 7(a) is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7(b) is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7(c) is a schematic diagram of a communication method provided by an embodiment of the present application.
  • Figure 8(a) is another example of clock synchronization
  • FIG. 8(b) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 8(c) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • Figure 9(a) is another example of clock synchronization
  • FIG. 9(b) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 9(c) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • Figure 10(a) is another example of clock synchronization
  • FIG. 10(b) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 10(c) is a schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 1 it is a schematic diagram of the 5G network architecture based on the service-oriented architecture.
  • the 5G network architecture shown in Figure 1 can include three parts, namely the terminal equipment part, the data network (DN) and the operator network part.
  • DN data network
  • the operator network may include network exposure function (NEF) network elements, unified database (Unified Data Repository, UDR), policy control function (policy control function, PCF) network elements, unified data management (unified data management) network elements , UDM) network element, application function (AF) network element, access and mobility management function (AMF) network element, session management function (session management function, SMF) network element, ( Wireless) access network ((radio) access network, (R)AN) and user plane function (user plane function, UPF) network elements, etc.
  • NEF network exposure function
  • UDR Unified Data Repository
  • policy control function policy control function
  • PCF policy control function
  • UDM Unified Data Repository
  • AF application function
  • AMF access and mobility management function
  • SMF session management function
  • Wireless access network
  • (radio) access network, (R)AN) and user plane function (user plane function, UPF) network elements etc.
  • the part other than the (radio) access network part may be referred to as the core network part.
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellite, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal equipment also includes user equipment (user equipment, UE).
  • the above-mentioned terminal device can establish a connection with the operator network through an interface (eg, N1, etc.) provided by the operator network, and use the data and/or voice services provided by the operator network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN and/or the service provided by a third party.
  • the above-mentioned third party may be a service provider other than the operator's network and the terminal device, and may provide other services such as data and/or voice for the terminal device.
  • the specific expression form of the above third party can be specifically determined according to the actual application scenario, and is not limited here.
  • An access network device also known as a (Radio) Access Network ((R)AN) device, is a device that provides a wireless communication function for a terminal.
  • Access network equipment includes, but is not limited to, the next-generation base station (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit) , BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • g nodeB, gNB next-generation base station
  • eNB evolved node B
  • eNB radio network controller
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • the AMF network element is the control plane network element provided by the operator's network. It is responsible for the access control and mobility management of the terminal equipment accessing the operator's network, such as the management of mobility status, the allocation of user temporary identities, and the authentication and authorization of users. .
  • the SMF network element is a control plane network element provided by the operator network, and is responsible for managing the protocol data unit (PDU) session of the terminal device.
  • a PDU session is a channel for transmitting PDUs. Terminal devices need to communicate PDUs with the DN through the PDU session.
  • the PDU session is established, maintained and deleted by the SMF network element.
  • SMF network elements include session management (such as session establishment, modification and release, including tunnel maintenance between UPF and RAN), selection and control of UPF network elements, service and session continuity (Service and Session Continuity, SSC) mode selection, Session related functions such as roaming.
  • the UPF network element is the gateway provided by the operator, and is the gateway for the communication between the operator's network and the DN.
  • UPF network elements include user plane-related functions such as data packet routing and transmission, packet detection, service usage reporting, Quality of Service (QoS) processing, legal interception, uplink packet detection, and downlink packet storage.
  • QoS Quality of Service
  • DN also known as packet data network (PDN)
  • PDN packet data network
  • the operator's network can access multiple DNs, and a variety of services can be deployed on the DNs, which can provide Services such as data and/or voice.
  • DN is the private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices, and the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain the instruction of the control server, and transmit the collected sensor data to the control server according to the instruction.
  • the DN is an internal office network of a company.
  • the mobile phones or computers of employees of the company can be terminal devices, and the mobile phones or computers of employees can access information and data resources on the internal office network of the company.
  • the UDM network element is the control plane network element provided by the operator, which is responsible for storing the subscriber permanent identifier (SUPI), security context (security context), subscription data and other information of the subscriber in the operator's network.
  • the information stored by the UDM network element can be used for authentication and authorization of terminal equipment to access the operator's network.
  • the above-mentioned subscribers of the operator's network may specifically be users who use services provided by the operator's network, such as users using China Telecom's mobile phone core cards, or users using China Mobile's mobile phone core cards.
  • the permanent subscription identifier (Subscription Permanent Identifier, SUPI) of the above-mentioned subscriber may be the number or the like of the mobile phone core card.
  • the above-mentioned credential and security context of the signing user may be the encryption key of the mobile phone core card or a small file stored with information related to the encryption of the mobile phone core card, etc., for authentication and/or authorization.
  • the above-mentioned security context may be data (cookie) or token (token) stored on the user's local terminal (eg, mobile phone).
  • the contract data of the above-mentioned contract user may be the supporting services of the mobile phone chip card, such as the data package of the mobile phone chip card or the use of the network. It should be noted that permanent identifiers, credentials, security contexts, authentication data (cookies), and tokens are equivalent to information related to authentication and authorization.
  • the NEF network element is the control plane network element provided by the operator.
  • the NEF network element opens the external interface of the operator's network to the third party in a secure manner.
  • the SMF network element needs to communicate with a third-party network element
  • the NEF network element can be used as a relay for the communication between the SMF network element and the third-party network element.
  • the NEF network element can be used as the translation of the identification information of the subscriber and the translation of the identification information of the third-party network element.
  • the NEF sends the SUPI of the subscriber from the operator network to the third party, it can translate the SUPI into its corresponding external identity (identity, ID).
  • ID the external identity
  • the PCF network element is a control plane function provided by the operator, and is used to provide the SMF network element with the policy of the PDU session.
  • the policies may include charging-related policies, QoS-related policies, authorization-related policies, and the like.
  • the AF network element is a functional network element that provides various business services. It can interact with the core network through the NEF network element, and can interact with the policy management framework for policy management.
  • UDRs are used to store data.
  • Nnef, Npcf, Nudm, Naf, Nudr, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • interface serial numbers refer to the meanings defined in the 3GPP standard protocol, which is not limited here.
  • network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform).
  • a platform eg, a cloud platform
  • the foregoing network element or function may be implemented by one device, or may be implemented jointly by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the existing protocols 1588 and 802.1AS define a clock synchronization mechanism, which can realize high-precision clock synchronization between network devices and clock sources.
  • 1588 supports multi-clock domain synchronization, that is, network devices can synchronize clocks in different clock domains, that is, synchronize multiple clocks, and different clock domains are distinguished by clock domain identifiers.
  • 1588/802.1AS supports selecting an optimal clock source in the same TSN for synchronization.
  • the master device will publish its own clock source information, and the slave device will compare the received master clock source information to determine the optimal clock source information. Excellent clock source.
  • master device 1 issues a clock source declaration to other devices (including master device 2, slave device 1, and slave device 2).
  • the clock source declaration includes parameters such as clock source priority, clock source identification, and clock source accuracy.
  • Slave device 1 After the slave device 2 receives the clock source declaration, it is determined that the clock source 1 of the master device 1 is the optimal clock source.
  • the master device 2 After the master device 2 receives the clock source declaration sent by the master device 1 and determines that its own clock source 2 is better than the clock source 1, the master device 2 issues the clock source declaration to the master device 1, the slave device 1 and the slave device 2.
  • the clock source declaration includes parameters such as clock source priority, clock source identification, and clock source accuracy.
  • Slave 1 and slave 2 determine the master 2 according to the clock source declaration sent by master 1 and the clock source declaration sent by master 2.
  • the clock source 2 is the optimal clock source. After the slave device 1 and the slave device 2 determine the optimal clock source, the clock synchronization is performed and the clock source declaration is forwarded to the downstream device. It should be noted that the slave device 1 and the slave device 2 only forward the optimal clock source information to the downstream devices, while ignoring the sub-optimal clock source information.
  • FIG. 3 a schematic diagram of a spanning tree for clock synchronization is shown.
  • the network device determines the state of each port according to the clock source declaration received by each port, so that the entire network forms a clock synchronization spanning tree.
  • the state of the port on the device (also known as the role of the port) includes:
  • M port (Master Port): used to send clock source declarations and clock synchronization packets to downstream devices.
  • the clock source declaration is used to indicate the available clock source information
  • the clock synchronization packet is used for downstream devices to synchronize the clock to the clock source in the clock source declaration.
  • S port (slave port, Slave Port): used to receive clock source declaration and receive clock synchronization messages, and perform clock synchronization.
  • P port (passive port, Passive Port): does not process clock synchronization packets.
  • the network device when the network device receives a clock source declaration from a certain port and determines that the clock source corresponding to the clock source declaration received by the port is the optimal clock source, the port is determined as the S port, and then the network The device synchronizes to the optimal clock source from this S port.
  • the other ports are M ports, that is, the network device forwards the clock source declaration to other ports through the M port, and sends clock synchronization packets, so that other devices can synchronize to the optimal clock source.
  • the network device When the network device can receive not only the clock source declaration from the S port, but also the clock source declaration from other ports, the network device sets the other ports that can receive the clock source declaration as the P port to avoid loops in the network. Too many clock source declarations and clock synchronization packets are forwarded.
  • FIG. 4 it is a schematic diagram of an interworking system between a 3GPP network and a TSN.
  • the 3GPP 5G system and the TSN Translator are regarded as a logical TSN switching node (called a 5G system bridge node).
  • FIG. 4 only shows some network elements (ie, AMF network elements, SMF network elements, PCF network elements, RAN, UE, AF network elements, and UPF network elements) in the 5G architecture.
  • the 5G system exchanges information with the nodes in the TSN system through the TSN converter of the control plane (ie, the AF network element of 5G), and the exchanged information includes: the exchange capability information of the 5G system and the TSN configuration information , Time scheduling information and time synchronization information of TSN input and output ports.
  • the UPF network element of the 5G system receives the downstream TSN stream of the TSN system through the TSN converter, or sends the upstream TSN stream to the TSN system, wherein the TSN converter can be integrated in the UPF network element or with the UPF.
  • Network elements are deployed independently, which can be called NW-TT.
  • the UE of the 5G system receives the uplink TSN stream of the TSN system or sends the downlink TSN stream to the TSN system through the TSN converter. Called DS-TT.
  • the session management network element in this application refers to a network element having the functions of the SMF network element shown in FIG. 4 .
  • the session management network element is called SMF in the subsequent description of this application. It should be noted that in future communication, the session management network element may still be called SMF network element, or may have other names.
  • This application is not limited. The SMF that appears anywhere in this application can be replaced by a session management network element.
  • the application function network element in this application refers to a network element having the function of the AF network element shown in FIG. 4 .
  • the application function network element is called AF in the subsequent description of this application.
  • the application function network element may still be called the AF network element, or may have other names.
  • This application is not limited. AFs appearing anywhere in the future in this application may be replaced with application function network elements.
  • the user plane network element in this application refers to a network element having the functions of the UPF network element shown in FIG. 4 .
  • the user plane network element may be integrated with a TSN converter, or the TSN converter may be independent of the user plane network element.
  • this application takes the integration of the TSN converter in the user plane network element as an example for description.
  • the user plane network element is referred to as UPF in the subsequent description of this application.
  • UPF in future communications
  • the user plane network element may still be referred to as a UPF network element, or may have other names. This application is not limited. UPFs that appear anywhere in this application can be replaced with user plane network elements.
  • the TSN translator corresponding to the user plane network element may also be referred to as a network side TSN translator (Network TSN Translator, NW-TT). Therefore, the UPF involved in the subsequent embodiments of the present application may be partially replaced with NW-TT, or all may be replaced with NW-TT.
  • NW-TT Network TSN Translator
  • the terminal device in this application refers to a device having the functions of the UE shown in FIG. 4 .
  • the terminal device may be integrated with a TSN converter, or the TSN converter may be deployed independently of the terminal device.
  • TSN converter For the convenience of description, this application The description is given by taking the integration of the TSN converter into the terminal device as an example.
  • the terminal device is referred to as UE in the subsequent description of this application.
  • the TSN converter corresponding to the terminal device may also be referred to as a device-side TSN converter (Device Side TSN Translator, DS-TT).
  • the UE involved in the subsequent embodiments of this application may be partially replaced with DS-TT, or all of them may be replaced with DS-TT.
  • a UE receiving clock source declaration may be replaced by a DS-TT receiving clock source declaration
  • a UE sending clock source declaration may be replaced by a DS-TT forwarding clock source declaration, and so on.
  • FIG. 5 it is a schematic diagram of the clock source on the 3GPP R17 UE side.
  • the TSN clock source is deployed on the UE1 side, and the 5G system receives the clock synchronization packet from the UE1 side clock source (forwarded to the UPF through the PDU session of UE1), and forwards the clock synchronization packet to other user sessions and DN side ports in the clock domain .
  • the solution in the prior art is that each port sends the received clock source declaration to the control plane network element, and the control plane network element makes a decision and delivers the port status to the device where each port is located.
  • UE1 sends the received clock source declaration to the AF, and after the AF makes a decision, it sends the port status to UE1, UE2, and UPF.
  • the above solution of specifying the port state through the control plane can realize the optimal clock source selection and the process of creating a clock synchronization spanning tree.
  • the 5G system bridge node is not an independent entity like a physical device, but a virtual node composed of separate devices, when a loop occurs in the UE side topology, the port state determined according to the definition of 1588/802.1AS will make The UE may not be able to synchronize to an external clock.
  • FIG. 6 it is an example of clock synchronization. Assuming that UE1 first receives the clock source declaration from remote device 1 and reports it, then UE1 will be determined as the S port, and then UE2 and UPF will be determined as the M port, and when UE2 subsequently receives the same clock source from remote device 1 statement, the UE2 port will be determined as a P port (that is, updated from an M port to a P port), and by definition, UE2 will not synchronize the clock from the remote device 1, resulting in UE2 being unable to synchronize to the external TSN clock source.
  • P port that is, updated from an M port to a P port
  • the port state of the UE is a slave state, which can also be understood as the UE is an S port, or the UE is configured as an S port, or the port of the UE is configured as an S port, or The UE has the function or capability of the S port.
  • the port state of the UE is a passive state, which can also be understood as the UE being a P port, or the UE is configured as a P port, or the UE port is configured as a P port, or the UE has the function or capability of the P port.
  • the port status of the UE is the master port status, which can also be understood as the UE is an M port, or the UE is configured as an M port, or the UE port is configured as an M port, or the UE has the function or capability of the M port.
  • the control plane network element when the port state of the UE is in the subordinate state, the control plane network element (such as SMF, etc.) may configure the UPF with the port state corresponding to the session of the UE in the subordinate state (or be understood as configuring The port corresponding to the session of the UE is the S port).
  • the control plane network element when the port state of the UE is in the passive state, the control plane network element (such as SMF, etc.) can configure the port state corresponding to the session of the UE to the passive state to the UPF (or understand that the port corresponding to the session of the UE is configured as a P port) .
  • the operations that can be performed by the UE whose port state is in the slave state in the embodiments of the present application may be the same as or different from the operations that can be performed by the UE whose port state is the slave state in the prior art. Examples will be described.
  • the operations that can be performed by the UE whose port state is in the passive state in the embodiments of the present application may be the same as or different from the operations that can be performed by the UE whose port state is in the passive state in the prior art. illustrate.
  • Implementation 1 Multiple UEs in the 5G system can receive clock source declarations from the same remote device, and can forward clock source declarations to the UPF.
  • UPF receives multiple identical clock source declarations, only one of the clock source declarations is forwarded.
  • the UPF can forward the clock source declaration received from other UEs.
  • the sending method of the clock synchronization packet is similar to the method of declaring the clock source, but the UPF needs to increase the operation of processing the clock synchronization packet received from UE1 or UE2 to ensure the clock synchronization packet.
  • the time information in is accurate.
  • the following description takes the sending method of the clock source declaration as an example.
  • FIG. 6 is a solution of the prior art
  • FIG. 8(a) is an improved solution based on the first implementation solution.
  • the description is given by taking the 5G system including UE1 and UE2 as an example.
  • UE1 is configured as an S port
  • UE2 is configured as an S port or a P port.
  • both UE1 and UE2 can receive the same clock source declaration from the remote device 1, then both UE1 and UE2 can send the clock source declaration received from the remote device to the UPF.
  • the UPF receives the clock source declaration from UE1 first, the UPF may only forward the clock source declaration received from UE1, but not the clock source declaration received from UE2. Subsequently, if UE1 is abnormal (such as failure or offline), or the user plane path between UE1 and UPF is faulty, or the control plane decides that UE1 is heavily loaded, or UE1 cannot connect to the remote device within the set time period.
  • the UPF cannot receive the clock source declaration from UE1 within a set period of time, and then the UPF decides to forward the clock source declaration and clock synchronization message received from UE2.
  • the UPF forwards the clock source declaration from UE1 or UE2, which can be: UPF forwards the clock source declaration from UE1 or UE2 through the UPF port, or the UPF forwards the clock source declaration from UE1 or UE2 to the UE in the master port state (such as UE3, UE4, etc. etc.) send the clock source declaration from UE1 or UE2, and the UE in the master port state then forwards the clock source declaration from UE1 or UE2 to the outside.
  • the master port state such as UE3, UE4, etc. etc.
  • the UEs in the 5G system can perform clock synchronization according to the clock source declaration and clock synchronization messages received from the remote device.
  • the UE in the 5G system can perform clock synchronization according to the clock source declaration and the clock synchronization message received from the UPF. That is, the UPF sends the clock source declaration and the clock synchronization message received from the UE1 to the UE2, so that the UE2 can perform clock synchronization based on the received clock source declaration and the clock synchronization message.
  • the UPF only forwards one clock source declaration among the received multiple clock source declarations at a time, instead of forwarding all the received clock source declarations, which can save overhead and reduce the cost of the receiver of the clock source declaration. Decision overhead.
  • the UPF when the UPF receives the clock source declaration abnormally and cannot forward the clock source declaration, the UPF can switch to forwarding the clock source declaration of other UEs, which can ensure the reliability of clock synchronization.
  • all UEs in the 5G system can be synchronized, thereby realizing the reliability of clock synchronization.
  • multiple UEs in the 5G system can receive the clock source declaration from the same remote device, and only one UE forwards the clock source declaration to the UPF.
  • the UPF receives the clock source declaration from a UE, forwards the clock source declaration received from the UE, and sends the received clock source declaration to other UEs in the 5G system.
  • the other UE sends the clock source declaration to the UPF, so that the UPF can forward the clock source declaration received from the other UE.
  • FIG. 6 is a prior art solution
  • FIG. 9(a) and FIG. 10(a) are improved solutions based on the second implementation solution.
  • the description is given by taking the 5G system including UE1 and UE2 as an example.
  • UE1 is configured as an S port
  • UE2 is configured as an S port (based on Fig. 9(a)) or a P port (based on Fig. 10(a)).
  • both UE1 and UE2 can receive the same clock source declaration from the remote device 1, then both UE1 and UE2 can send the clock source declaration received from the remote device to the UPF.
  • the UPF receives the clock source declaration from UE1 first, the UPF may only forward the clock source declaration received from UE1, but not the clock source declaration received from UE2. And the UPF also sends the clock source declaration received from UE1 to UE2.
  • UE2 stops sending the clock source declaration received from the remote device 1 to the UPF.
  • UE2 can receive the clock source declaration from the remote device 1, and can receive the clock source declaration from the UPF (the clock source declaration is from the remote device 1 and sent to the UPF through the UE1). If the received clock source declaration is the same as the clock source declaration received from the UPF, UE2 does not send the clock source declaration received from the remote device 1 to the UPF. Subsequently, if UE1 is abnormal (such as failure or offline), or the user plane path between UE1 and UPF is faulty, or the control plane decides that UE1 is heavily loaded, or UE1 cannot connect to the remote device within the set time period.
  • UE1 is abnormal (such as failure or offline), or the user plane path between UE1 and UPF is faulty, or the control plane decides that UE1 is heavily loaded, or UE1 cannot connect to the remote device within the set time period.
  • the UPF will not be able to receive the clock source declaration from UE1 within a set period of time, and thus the UPF will not be able to send the clock source declaration to UE2.
  • UE2 can send the clock source declaration received from the remote device 1 to the UPF, so that the UPF can receive the clock source declaration from UE2, and then the UPF can Clock source declarations from UE2 can be forwarded. That is, when the UPF cannot receive the clock source declaration from UE1, the UPF can switch to receive the clock source declaration from UE2.
  • the UPF forwards the clock source declaration from UE1 or UE2, which can be: UPF forwards the clock source declaration from UE1 or UE2 through the UPF port, or the UPF forwards the clock source declaration from UE1 or UE2 to the UE in the master port state (such as UE3, UE4, etc. etc.) send the clock source declaration from UE1 or UE2, and the UE in the master port state then forwards the clock source declaration from UE1 or UE2 to the outside.
  • the master port state such as UE3, UE4, etc. etc.
  • the UEs in the 5G system can perform clock synchronization according to the clock source declaration and clock synchronization messages received from the remote device.
  • the UE in the 5G system can perform clock synchronization according to the clock source declaration and the clock synchronization message received from the UPF. That is, the UPF sends the clock source declaration and the clock synchronization message received from the UE1 to the UE2, so that the UE2 can perform clock synchronization based on the received clock source declaration and the clock synchronization message.
  • the UPF only receives the clock source declaration from one UE, and thus only forwards the clock source declaration from one UE, which can save overhead and reduce the decision overhead of the receiver of the clock source declaration.
  • the UPF receives the clock source declaration
  • the UPF can switch to forwarding the clock source declaration of other UEs, which can ensure the reliability of clock synchronization.
  • all UEs in the 5G system can be synchronized, thereby realizing the reliability of clock synchronization.
  • the embodiments of the present application may provide the following communication methods on the UPF side. As shown in Figure 7(a), the method includes the following steps:
  • Step 701a the UPF receives the clock source declaration from the first UE at the first moment.
  • Step 702a the UPF sends the clock source declaration from the first UE through the port of the UPF or the UE in the master port state.
  • Step 703a if the UPF does not receive the clock source declaration from the first UE within the first time period or the UPF receives the instruction information from the control plane network element for instructing to send the clock source declaration from the second UE, the UPF passes the UPF's clock source declaration.
  • the port or the UE in the master port state sends the clock source declaration from the second UE, and the first duration is after the first time, wherein the clock source corresponding to the clock source declaration from the first UE and the clock source declaration from the second UE The corresponding clock sources are the same.
  • the first duration is pre-configured or configured by the network element of the control plane.
  • the UPF may also send the clock source declaration from the first UE to the second UE.
  • the above-mentioned first UE and second UE may be, for example, UE1 and UE2 in FIG. 8( a ), FIG. 9 ( a ) or FIG. 10 ( a ), respectively.
  • the UPF first forwards the clock source declaration from the first UE.
  • the UPF cannot receive the clock source declaration from the first UE within the first time period or the UPF receives the clock source declaration from the control plane
  • the indication information of the clock source declaration of the second UE the UPF decision needs to switch to forwarding the clock source declaration from the second UE.
  • the UPF may be able to receive the clock source declaration from the second UE (as based on the example of Fig. 8(a)), or may not be able to receive the clock source declaration from the second UE (as based on the Fig.
  • the UPF can receive the clock source declaration from the second UE, and the UPF forwards the clock source declaration received from the second UE. Based on this solution, it can be ensured that the 5G system can be synchronized to an external clock source, which ensures the reliability of clock synchronization.
  • the UPF determines that the clock source declaration from the first UE is the same as that from the second UE. If the clock source declarations of the UEs are the same, it is determined to send the clock source declaration from the first UE. For example, the first UE sends the clock source declaration to the UPF first, so the UPF forwards the clock source declaration from the first UE. For another example, the UPF determines that the load of the first UE is light, so the UPF forwards the clock source declaration from the first UE.
  • the UPF may also receive the configuration information from the control plane network element, The configuration information is used to configure the UPF to send the clock source declaration from the first UE. That is, the control plane network element notifies the UPF to forward the clock source declaration from the first UE.
  • the UPF may send indication information to the network element of the control plane, where the indication information is used to indicate that the clock source is not declared within the first duration
  • the clock source declaration from the first UE is received within the next period, thereby triggering the control plane network element decision to forward the clock source declaration from the second UE by the UPF. Therefore, the control plane network element may send indication information to the UPF for instructing the UPF to send the clock source declaration from the second UE, and/or send indication information to the second UE for instructing the second UE to send the clock source declaration to the UPF (Based on the example of Fig. 9(a) or Fig. 10(a), after UE2 receives the indication information, it starts to send the clock source declaration to the UPF).
  • the UPF may decide to send the clock source declaration from the second UE, and send notification information to the control plane network element , the notification information is used to instruct the UPF to send the clock source declaration from the second UE.
  • the embodiments of the present application may provide the following communication methods on the UE side. As shown in Figure 7(b), the method includes the following steps:
  • Step 701b the UE detects whether it receives a clock source declaration from the UPF within the first time period, and the port state of the UE is a slave state or a passive state.
  • Step 702b when the UE does not receive the clock source declaration from the UPF within the first time period, the UE sends the clock source declaration from the remote device to the UPF.
  • the UE here may be, for example, UE2 in FIG. 9(a) or FIG. 10(a).
  • the UE when the UE does not receive the clock source declaration from the UPF within the first time period, it means that the UPF cannot receive the clock source declaration from other UEs, so that the UE can send the clock source declaration of the remote device to the UPF, which ensures the UPF It can be synchronized to the clock source from the remote device and can forward the clock source declaration, thus ensuring the reliability of the 5G system to synchronize external clock sources.
  • the UE may receive configuration information from the network element of the control plane, where the configuration information is used to configure the port state of the UE to be a slave state or a passive state.
  • the control plane network element configures the port of the UE as an S port or a P port.
  • the UE determines that the clock source corresponding to the clock source declaration from the UPF is the same as the clock source corresponding to the clock source declaration from the remote device, and determines that the port state of the UE is the slave state or passive state. That is, the port state of the UE may be configured by the network element of the control plane, or the port state of the UE may be determined by the UE itself.
  • the UE may perform clock synchronization according to the received clock synchronization message from the remote device.
  • the UE may also perform clock synchronization according to the received clock synchronization message from the user plane.
  • the UE when the port state of the UE is in the passive state, when the UE does not receive the clock source declaration from the UPF within the first time period, indicating that the UPF fails to receive the clock source declaration from other UEs, then The UE can determine that the port state of the UE is in the slave state, and then after the port state is changed to the slave state, it can send the clock source declaration received from the remote device to the UPF, thereby ensuring that the UPF can receive the clock source declaration and improving the The reliability of clock source declaration synchronization is improved.
  • the embodiments of the present application may provide the following communication methods on the network element side of the control plane (eg, the network element of the control plane may be SMF, NEF, or AF, etc.). As shown in Figure 7(c), the method includes the following steps:
  • Step 701c the control plane network element receives the clock source declaration from the first UE.
  • Step 702c the network element of the control plane determines that the port state of the first UE is the slave state.
  • the first UE is configured as an S port.
  • Step 703c the control plane network element receives the clock source declaration from the second UE.
  • Step 704c the control plane network element determines that the clock source corresponding to the clock source declaration from the second UE is the same as the clock source corresponding to the clock source declaration from the first UE, and determines that the port state of the second UE is passive or dependent.
  • the second UE is configured as a P port or an S port.
  • Step 705c the network element of the control plane determines that the first condition is met, then determines that the port state of the second UE is a slave state and/or sends first indication information to the UPF, where the first indication information is used to instruct the UPF to send the clock from the second UE source statement.
  • the above-mentioned first UE and second UE may be, for example, UE1 and UE2 in FIG. 8( a ), FIG. 9 ( a ) or FIG. 10 ( a ), respectively.
  • the control plane network element configures the port status of each UE in the 5G system.
  • the port state of the first UE is configured as a slave state, and the UPF forwards the clock source declaration from the first UE.
  • the port state of the second UE is configured as slave state or passive state, and the UPF does not forward the clock source declaration from the second UE.
  • the control plane network element determines that the first condition is met, the control plane network element determines that the first UE cannot send a clock source declaration to the UPF, so that the UPF cannot forward the clock source from the first UE, then the control plane network element can perform the following operations a ) and/or operation b):
  • indication information which may be referred to as first indication information
  • control plane network element determines that the first condition is met, including one or more of the following:
  • the control plane network element receives indication information (which may be referred to as second indication information) from the UPF, where the indication information is used to indicate that the UPF has not received the clock source declaration from the first UE within the first time period.
  • indication information which may be referred to as second indication information
  • the UPF when the UPF does not receive the clock source declaration from the first UE within the first duration, the UPF reports to the control plane network element the indication information that it has not received the clock source declaration from the first UE within the first duration, Therefore, the control plane network element determines that the first condition is satisfied, and triggers the control plane network element to decide to notify the UPF to forward the clock source declaration from the second UE.
  • the control plane network element receives indication information (may be referred to as third indication information) from the first UE, where the indication information is used to indicate that the first UE has not received the clock source declaration from the remote device within the second time period.
  • indication information may be referred to as third indication information
  • the control plane network element determines that the first condition is satisfied, and triggers the control plane network element to decide to notify the UPF to forward the clock source declaration from the second UE.
  • the network element of the control plane determines that the first UE is abnormal.
  • the control plane network element determines that the first UE is abnormal (for example, the control plane network element is SMF, the SMF can detect that the first UE is abnormal, or the control plane network element is AF or NEF, then the SMF can detect that the first UE is abnormal. After the UE is abnormal, it is reported to the AF or NEF), so that the control plane network element determines that the first condition is satisfied, and triggers the control plane network element to make a decision to notify the UPF to forward the clock source declaration from the second UE.
  • the control plane network element determines that the first UE is abnormal
  • the control plane network element is AF or NEF
  • the control plane network element receives indication information (may be referred to as fourth indication information) from the second UE, where the indication information is used to indicate that the second UE has not received the clock source declaration from the UPF within the third time period.
  • indication information may be referred to as fourth indication information
  • the second UE when the second UE does not receive the clock source declaration from the UPF within the third time period, it indicates that the UPF may fail to receive the clock source declaration from the first UE, so the second UE reports to the control plane network element that the clock source declaration is not received in the third time period.
  • the indication information of the clock source declaration from the UPF is received within three time periods, so that the control plane network element determines that the first condition is met, and triggers the control plane network element to make a decision to notify the UPF to forward the clock source declaration from the second UE.
  • the above 1) to 4) are all specific implementations determined by the control plane network element to satisfy the first condition. After the control plane network element determines that the first condition is satisfied, the control plane network element is triggered to decide to notify the UPF to forward the clock from the second UE. source statement.
  • the UPF may determine that the clock source declaration from the first UE is not received within a set duration (eg, the first duration), and the UPF decides to forward the clock source declaration from the second UE. Further, the UPF may also report notification information for instructing the UPF to send the clock source declaration from the second UE to the control plane network element.
  • a set duration eg, the first duration
  • the embodiments of the above-mentioned implementation scheme 1 and implementation scheme 2 will be described below with reference to specific examples.
  • the following embodiment 1 is a specific introduction to the above-mentioned implementation scheme 1 in combination with specific examples
  • the following embodiments 2 and 3 are a specific introduction to the above-mentioned implementation scheme 2 in combination with specific examples.
  • the UE2 in the second embodiment is configured as the S port
  • the UE2 in the third embodiment is configured as the P port.
  • FIG. 8(a) it is an example diagram of clock source synchronization.
  • the TSN clock source is deployed in the network connected to UE1 and UE2, and UE1 and UE2 and the connected network form a loop (simplified in the figure, UE1 and UE2 are both connected to remote devices).
  • UE2 is determined to be an S port or a P port, and forwards a clock source declaration and a clock synchronization message to the UPF.
  • an embodiment of the present application provides a communication method.
  • the method is to determine the port status of each device in the 5G system on the user plane.
  • the communication method includes the following steps:
  • Step 801b the remote device 1 sends a clock source declaration to the UE1. Accordingly, UE1 receives the clock source declaration.
  • Step 802b UE1 determines that UE1 is an S port.
  • UE1 determines that no other clock source declaration has been received from the UPF, then determines UE1 to be the S port.
  • UE1 receives other clock source declarations from the UPF, but determines that the TSN clock source corresponding to the clock source declaration received from the remote device on the UE1 side is better than the TSN clock source corresponding to the clock source declaration received from the UPF, then UE1 Determine that the TSN clock source corresponding to the clock source declaration received from the remote device side is the optimal clock source, and determine UE1 as the S port.
  • Step 803b UE1 sends a clock source declaration to the UPF. Accordingly, the UPF receives the clock source declaration.
  • UE1 forwards the clock source declaration received from remote device 1 to the UPF.
  • Step 804b the remote device 1 sends a clock synchronization message to the UE1.
  • UE1 receives the clock synchronization message.
  • UE1 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • Step 805b UE1 sends a clock synchronization message to the UPF. Accordingly, the UPF receives the clock synchronization message.
  • the UE1 forwards the clock synchronization message received from the remote device 1 to the UPF.
  • the UPF synchronizes the clock with the TSN clock source according to the clock synchronization packet.
  • Step 806b the UPF determines that the UPF is the M port.
  • the UPF determines that no other clock source declaration has been received from the remote device 2, and determines that the UPF is the M port. Or, the UPF receives other clock source declarations from the remote device 2, but determines that the TSN clock source corresponding to the clock source declaration received from the UE1 side is superior to the TSN clock source corresponding to the clock source declaration received from the remote device 2, Then the UPF determines that the TSN clock source corresponding to the clock source declaration received from the UE1 side is the optimal clock source, and determines the UPF as the M port.
  • the UPF can send the clock source declaration from UE1 to the remote device 2, process the clock synchronization message from the UE1, and send the processed clock synchronization message to the remote device 2.
  • step 806b may be executed after step 803b and any step before step 809b.
  • Step 807b the remote device 1 sends a clock source declaration to the UE2. Accordingly, UE2 receives the clock source declaration.
  • Step 808b UE2 determines that UE2 is an S port or a P port.
  • UE2 determines that no other clock source declaration is received from the UPF, and determines UE2 to be an S port or a P port. Or, UE2 receives the clock source declaration from UE1 sent by the UPF, and determines that the clock source declaration received from the UPF side is the same as the clock source declaration received from the remote device 1, then UE2 determines that UE2 is an S port or a P port .
  • Step 809b UE2 sends a clock source declaration to the UPF. Accordingly, the UPF receives the clock source declaration.
  • UE2 forwards the clock source declaration received from remote device 1 to the UPF.
  • Step 810b the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • Step 811b UE2 sends a clock synchronization message to the UPF. Accordingly, the UPF receives the clock synchronization message.
  • the UE2 forwards the clock synchronization message received from the remote device 1 to the UPF.
  • the UPF determines that the clock source declaration received from UE1 is the same as the clock source declaration received from UE2, and the UPF does not process the clock synchronization packet after receiving the clock synchronization packet from UE2.
  • the UPF determines the port corresponding to the session of UE2 as the S port or the P port.
  • the UPF can forward the clock source declaration from UE2 to other devices and process the clock synchronization message from UE2. If in the above step 811b, the UPF determines the port corresponding to the session of UE2 as the P port, the UPF also needs to modify the P port to the S port.
  • both UE1 and UE2 receive and process clock source declaration and clock synchronization packets from remote devices, and synchronize to the external TSN clock source, and UPF only processes clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source. Moreover, when a link failure occurs in one of the UEs and the clock source cannot be synchronized, it can be switched to other UEs to synchronize the clock source, thus ensuring the reliability of the 5G system bridge node synchronizing the external TSN clock source.
  • an embodiment of the present application provides a communication method.
  • the method is to determine the port status of each device in the 5G system on the control plane.
  • the communication method includes the following steps:
  • Step 801c the remote device 1 sends a clock source declaration to the UE1. Accordingly, UE1 receives the clock source declaration.
  • Step 802c UE1 sends a clock source declaration to the control plane network element. Accordingly, the control plane network element receives the clock source declaration.
  • UE1 forwards the clock source declaration received from remote device 1 to the control plane network element.
  • the control plane network element may be an AF, NEF, or SMF, or the like.
  • Step 803c the network element of the control plane determines that UE1 is the S port.
  • the control plane network element determines that the TSN clock source corresponding to the clock source declaration received from UE1 is the optimal clock source received by the 5G system, and determines that UE1 is the S port.
  • Step 804c the control plane network element sends configuration information to UE1. Accordingly, UE1 receives the configuration information.
  • the configuration information is used to configure UE1 as an S port.
  • UE1 sends the clock source declaration to the control plane network element.
  • UE1 may also send the clock source declaration to the UPF, and then the UPF sends the clock source declaration to the control plane network element. Further, the network element of the control plane executes the above steps 803c and 804c.
  • the network element of the control plane may further configure the port state corresponding to the session of UE1 to the UPF as the S port.
  • the configuration method can be to configure the port state or configure the packet processing rules, for example, configure the UPF to receive the clock source declaration from the session of UE1, and broadcast or multicast to other sessions and/or N6 side ports in the clock domain.
  • the control plane network element is AF/NEF, etc., it can send the configuration information to UPF through bridge configuration, or when it configures UE1 port state to SMF, SMF configures the port state to UPF or generates packet processing rule configuration Go to the UPF, or the AF/NEF triggers the creation process of the packet processing rules, and creates the packet processing rules on the UPF through the SMF.
  • the network element of the control plane is required to configure the port state corresponding to the session of UE1 or UE2 to the UPF, one or more of the methods described herein may be adopted, which will not be repeated in the following.
  • the network element of the control plane may also configure the UPF as an M port.
  • Step 805c UE1 sends a clock source declaration to the UPF. Accordingly, the UPF receives the clock source declaration.
  • the UPF receives the clock source declaration from UE1, determines that the TSN clock source corresponding to the clock source declaration is the optimal clock source, and can forward the clock source declaration to other devices. Or the UPF forwards the clock source declaration according to the configured packet processing rules.
  • Step 806c the remote device 1 sends a clock synchronization message to the UE1.
  • UE1 receives the clock synchronization message.
  • UE1 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • Step 807c UE1 sends a clock synchronization message to the UPF. Accordingly, the UPF receives the clock synchronization message.
  • the UE1 forwards the clock synchronization message received from the remote device 1 to the UPF.
  • the UPF synchronizes the clock with the TSN clock source according to the clock synchronization packet.
  • Step 808c the remote device 1 sends a clock source declaration to the UE2. Accordingly, UE2 receives the clock source declaration.
  • Step 809c UE2 sends a clock source declaration to the control plane network element. Accordingly, the control plane network element receives the clock source declaration.
  • UE2 forwards the clock source declaration received from remote device 1 to the control plane network element.
  • Step 810c the network element of the control plane determines that UE2 is an S port or a P port.
  • the control plane network element determines the TSN clock source corresponding to the clock source declaration received from UE2, which is the same as the TSN clock source corresponding to the clock source declaration received from UE1, but the TSN clock source corresponding to the clock source declaration received from UE2 is from The UE side further determines that UE2 is an S port or a P port.
  • Step 811c the control plane network element sends configuration information to UE2. Accordingly, UE2 receives the configuration information.
  • the configuration information is used to configure UE2 as an S port or a P port.
  • UE2 sends the clock source declaration to the control plane network element.
  • UE2 can also send the clock source declaration to the UPF, and then the UPF sends the clock source declaration to the control plane network element. Further, the control plane network element executes the above steps 810c and 811c.
  • the network element of the control plane may further configure the port state corresponding to the session of UE2 to the UPF as the S port or the P port.
  • Step 812c UE2 sends a clock source declaration to the UPF. Accordingly, the UPF receives the clock source declaration.
  • the UPF receives the clock source declaration from UE2. If the port corresponding to the session corresponding to UE2 on the UPF is configured as an S port, the UPF determines the TSN clock source corresponding to the clock source declaration from UE2 and the clock source declaration received from UE1. If the corresponding TSN clock sources are the same, the UPF determines to forward the clock source declaration from UE1 to other devices and process the clock synchronization message from UE1. If the port corresponding to the session corresponding to UE2 is configured as a P port, the UPF directly determines to forward the clock source declaration from UE1 to other devices and process the clock synchronization message from UE1.
  • Step 813c the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • Step 814c UE2 sends a clock synchronization message to the UPF. Accordingly, the UPF receives the clock synchronization message.
  • the UE2 forwards the clock synchronization message received from the remote device 1 to the UPF.
  • the UPF determines that the clock source declaration received from UE1 is the same as the clock source declaration received from UE2, and the UPF does not process the clock synchronization packet after receiving the clock synchronization packet from UE2.
  • the control plane network element determines that UE1 is offline (for example, if the control plane network element is SMF, then SMF can monitor that UE1 is offline. For example, if the control plane network element is AF/NEF, then SMF When monitoring UE1 offline, report UE1 offline to AF/NEF or receive indication information from UPF, the indication information is used to instruct UPF to receive clock source declaration from UE1 over time, then the control plane network element informs UPF to forward to other devices The clock source from UE2 declares and processes the clock synchronization message from UE2.
  • the control plane network element may send configuration information to the UPF for configuring the port state corresponding to the session of UE2 on the UPF as an S port. .
  • the control plane network element receives indication information from UE1, the indication information is used to instruct UE1 to receive the clock source declaration from remote device 1 over time, then the control plane network element notifies the UPF to forward the clock source declaration from UE2 to other devices and process the clock source declaration from UE2.
  • the control plane network element configures the UPF/UE1 with a timeout period for UPF/UE1 to report to the control plane network element when the received clock source declares the timeout.
  • the exception handling method in the user plane solution in the embodiment of FIG. 8(b) can also be used, that is, after the UPF recognizes the abnormality, it directly switches to forwarding
  • the clock source from UE2 declares and forwards the clock synchronization message from UE2 without control plane configuration.
  • both UE1 and UE2 receive and process clock source declaration and clock synchronization packets from remote devices, and synchronize to the external TSN clock source, and UPF only processes clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source. Moreover, when a link failure occurs in one of the UEs and the clock source cannot be synchronized, it can be switched to other UEs to synchronize the clock source, thus ensuring the reliability of the 5G system bridge node synchronizing the external TSN clock source.
  • FIG. 9(a) it is another example diagram of clock source synchronization.
  • the TSN clock source is deployed in the network connected to UE1 and UE2, and UE1 and UE2 and the connected network form a loop (simplified in the figure, UE1 and UE2 are both connected to remote devices).
  • UE2 is determined to be the S port, and does not forward clock source declaration and clock synchronization messages to the UPF.
  • an embodiment of the present application provides a communication method.
  • the method is to determine the port status of each device in the 5G system on the user plane.
  • the communication method includes the following steps:
  • Steps 901b to 909b are the same as steps 801b to 809b in FIG. 8(b), and reference may be made to the foregoing description.
  • Step 910b the UPF sends a clock source declaration to UE2. Accordingly, UE2 receives the clock source declaration.
  • the clock source declaration here refers to the clock source declaration received by the UPF from UE1.
  • the UPF determines that the clock source declaration received from UE1 is the same as the clock source declaration received from UE2, then the UPF still forwards the clock source declaration from UE1 to UE2, and optionally, the UPF also forwards the clock synchronization message from UE1 to UE2 .
  • Step 911b UE2 determines to stop sending the clock source declaration to the UPF.
  • UE2 After UE2 receives the clock source declaration from the UPF, it determines that the clock source declaration received by UE2 from the UPF is the same as the clock source declaration received from the remote device 1, then UE2 determines to stop sending the clock source declaration received from the remote device 1 to the UPF. clock source declaration and clock synchronization messages.
  • Step 912b the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 After receiving the clock synchronization message in this step, UE2 does not send the clock synchronization message to the UPF.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message received from remote device 1 .
  • UE2 can also perform clock synchronization with the TSN clock source according to the clock synchronization message from UE1.
  • UE2 may send the clock synchronization message to UPF, and UPF does not process the clock synchronization message.
  • UPF when UE1 is abnormal, such as link failure or offline, UPF cannot receive the clock source declaration from UE1, and then cannot forward the clock source declaration from UE1 to UE2.
  • UE2 detects that receiving the clock source declaration from the UPF times out, it sends the clock source declaration and clock synchronization message from the remote device 1 to the UPF, which ensures that the UPF can receive the clock source declaration and the clock synchronization packet.
  • both UE1 and UE2 receive and process the clock source declaration and clock synchronization packets from the remote device, and synchronize to the external TSN clock source, and the UPF only processes the clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source.
  • one of the UEs has a link failure and cannot synchronize the clock source, it can switch to other UEs to synchronize the clock source, thus ensuring the reliability of the 5G system bridge node synchronizing the external TSN clock source.
  • a communication method provided by an embodiment of the present application is to determine the port status of each device in the 5G system on the control plane. As shown in Figure 9(c), the communication method includes the following steps:
  • Steps 901c to 912c are the same as steps 801c to 812c in the embodiment of FIG. 8( c ), and reference may be made to the foregoing description.
  • Step 913c the UPF sends a clock source declaration to UE2. Accordingly, UE2 receives the clock source declaration.
  • the clock source declaration here refers to the clock source declaration received by the UPF from UE1.
  • the UPF determines that the clock source declaration received from UE1 is the same as the clock source declaration received from UE2, then the UPF still forwards the clock source declaration from UE1 to UE2, and optionally, the UPF also forwards the clock synchronization message from UE1 to UE2 .
  • Step 914c UE2 determines to stop sending the clock source declaration to the UPF.
  • UE2 After UE2 receives the clock source declaration from the UPF, it determines that the clock source declaration received by UE2 from the UPF is the same as the clock source declaration received from the remote device 1, then UE2 determines to stop sending the clock source declaration received from the remote device 1 to the UPF. clock source declaration and clock synchronization messages.
  • Step 912b the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 After receiving the clock synchronization message in this step, UE2 does not send the clock synchronization message to the UPF.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message received from remote device 1.
  • UE2 can also perform clock synchronization with the TSN clock source according to the clock synchronization message from UE1.
  • UE2 may send the clock synchronization message to the UPF, and the UPF does not process the clock synchronization message.
  • UPF when UE1 is abnormal, such as link failure or offline, UPF cannot receive the clock source declaration from UE1, and then cannot forward the clock source declaration from UE1 to UE2.
  • UE2 detects that receiving the clock source declaration from the UPF times out, it sends the clock source declaration and clock synchronization message from the remote device 1 to the UPF, which ensures that the UPF can receive the clock source declaration and the clock synchronization packet.
  • UE2 further sends indication information to the control plane network element, used to indicate that the clock source declaration from the UPF has expired, or UE2 sends the indication information to the UPF, and then the UPF sends the indication information to the control plane network element.
  • the network element of the control plane After receiving the indication information, the network element of the control plane updates the port status of the device of the 5G system. For example, if the port status corresponding to the session of UE2 is previously configured to the UPF as the P port, the port status corresponding to the session of UE2 can be updated. Status updated to S port.
  • the control plane network element determines that UE1 is offline (for example, the control plane network element is SMF, then SMF can monitor that UE1 is offline, and for example, the control plane network element is AF/NEF,
  • SMF detects that UE1 is offline, it reports UE1 offline to AF/NEF) or receives indication information from UPF, which is used to instruct UPF to receive clock source declaration from UE1 over time, or to instruct UPF to receive clock source declaration from UE2
  • the control plane network element informs UE2 to forward the clock source declaration and clock synchronization message received from remote device 1 to the UPF, and/or informs the UPF to forward the clock source declaration from UE2 to other devices and process the clock synchronization from UE2 message.
  • the control plane network element receives indication information from UE1, the indication information is used to instruct UE1 to receive the clock source declaration timeout, and the control plane network element informs UE2 to forward the clock received from remote device 1 to the UPF.
  • Source declaration and clock synchronization message and instruct UPF to forward the clock source declaration from UE2 to other devices and process the clock synchronization message from UE2.
  • the control plane network element receives indication information from UE2, the indication information is used to instruct UE2 to send the clock source declaration to the UPF, then the control plane network element can notify the UPF to forward the clock source declaration and the clock source declaration from UE2 to other devices. Process the clock synchronization message from UE2.
  • the network element of the control plane configures a timeout period to the UPF/UE1/UE2.
  • both UE1 and UE2 receive and process clock source declaration and clock synchronization packets from remote devices, and synchronize to the external TSN clock source, and UPF only processes clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source. Moreover, when a link failure occurs in one of the UEs and the clock source cannot be synchronized, it can be switched to other UEs to synchronize the clock source, thus ensuring the reliability of the 5G system bridge node synchronizing the external TSN clock source.
  • FIG. 10(a) it is an example diagram of clock source synchronization.
  • the TSN clock source is deployed in the network connected to UE1 and UE2, and UE1 and UE2 and the connected network form a loop (simplified in the figure, UE1 and UE2 are both connected to remote devices).
  • UE2 is determined to be the P port, but can perform clock synchronization according to the clock synchronization message received from remote device 1 .
  • an embodiment of the present application provides a communication method.
  • the method is to determine the port status of each device in the 5G system on the user plane.
  • the communication method includes the following steps:
  • Steps 1001b to 1006b are the same as steps 801b to 806b in FIG. 8(b), and reference may be made to the foregoing description.
  • Step 1007b the remote device 1 sends a clock source declaration to the UE2. Accordingly, UE2 receives the clock source declaration.
  • Step 1008b the UPF sends a clock source declaration to UE2. Accordingly, UE2 receives the clock source declaration.
  • the clock source declaration here refers to the clock source declaration from UE1 forwarded by the UPF.
  • UE2 receives the clock source declaration from remote device 1 first, UE2 sets the port of UE2 as the S port. If UE2 receives the clock source declaration from the UPF first, UE2 sets the port of UE2 as the M port.
  • Step 1009b UE2 sets UE2 as the P port.
  • UE2 determines that the clock source declaration received from the UPF is the same as the clock source declaration received from the remote device 1, then UE2 sets the port status of UE2 to the P port, that is, from the S port to the P port, or from the M port. Update to P port.
  • Step 1010b the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • UE2 may also perform clock synchronization with the TSN clock source according to the clock synchronization message from UE1.
  • UPF when UE1 is abnormal, such as link failure or offline, UPF cannot receive the clock source declaration from UE1, and then cannot forward the clock source declaration from UE1 to UE2.
  • UE2 detects that receiving the clock source declaration from the UPF times out, it sends the clock source declaration and clock synchronization message from the remote device 1 to the UPF, which ensures that the UPF can receive the clock source declaration and the clock synchronization packet.
  • both UE1 and UE2 receive and process clock source declaration and clock synchronization packets from remote devices, and synchronize to the external TSN clock source, and UPF only processes clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source. Moreover, when a link failure occurs in one of the UEs and the clock source cannot be synchronized, it can be switched to other UEs to synchronize the clock source.
  • an embodiment of the present application provides a communication method.
  • the method is to determine the port status of each device in the 5G system on the control plane.
  • the communication method includes the following steps:
  • Steps 1001c to 1009c are the same as steps 801c to 809c shown in the embodiment of FIG. 8( c ).
  • Step 1010c the control plane network element determines that UE2 is the P port.
  • the control plane network element determines that the TSN clock source corresponding to the clock source declaration received from UE2 is the same as the TSN clock source corresponding to the clock source declaration received from UE1, and further determines that UE2 is the P port.
  • Step 1011c the control plane network element sends configuration information to UE2. Accordingly, UE2 receives the configuration information.
  • the configuration information is used to configure UE2 as a P port.
  • UE2 sends the clock source declaration to the control plane network element.
  • UE2 can also send the clock source declaration to the UPF, and then the UPF sends the clock source declaration to the control plane network element.
  • the network element of the control plane executes the above steps 1010c and 1011c.
  • the network element of the control plane may further configure the port state corresponding to the session of UE2 to the UPF as a P port.
  • Step 1012c the UPF sends a clock source declaration to UE2. Accordingly, UE2 receives the clock source declaration.
  • the clock source declaration here is the clock source declaration received by the UPF from UE1.
  • the UPF also sends the received clock synchronization message from UE1 to UE2.
  • Step 1013c the remote device 1 sends a clock synchronization message to the UE2.
  • UE2 receives the clock synchronization message.
  • UE2 performs clock synchronization with the TSN clock source according to the clock synchronization message.
  • UE2 may also perform clock synchronization with the TSN clock source according to the clock synchronization message from UE1.
  • UPF when UE1 is abnormal, such as link failure or offline, UPF cannot receive the clock source declaration from UE1, and then cannot forward the clock source declaration from UE1 to UE2.
  • UE2 detects that receiving the clock source declaration from the UPF times out, it sends the clock source declaration and clock synchronization message from the remote device 1 to the UPF, which ensures that the UPF can receive the clock source declaration and the clock synchronization packet.
  • UE2 further sends indication information to the control plane network element, used to indicate that the clock source declaration from the UPF has expired, or UE2 sends the indication information to the UPF, and then the UPF sends the indication information to the control plane network element.
  • the network element of the control plane After receiving the indication information, the network element of the control plane updates the port status of the device of the 5G system. For example, if the port status corresponding to the session of UE2 is previously configured to the UPF as the P port, the port status corresponding to the session of UE2 can be updated. Updated to S-port.
  • the control plane network element determines that UE1 is offline (for example, the control plane network element is SMF, then SMF can monitor that UE1 is offline, and for example, the control plane network element is AF/NEF,
  • SMF detects that UE1 is offline, it reports UE1 offline to AF/NEF) or receives indication information from UPF, which is used to instruct UPF to receive clock source declaration from UE1 over time, or to instruct UPF to receive clock source declaration from UE2
  • the control plane network element informs UE2 to forward the clock source declaration and clock synchronization message received from remote device 1 to the UPF, and/or informs the UPF to forward the clock source declaration from UE2 to other devices and process the clock synchronization from UE2 message.
  • the control plane network element receives indication information from UE1, the indication information is used to instruct UE1 to receive the clock source declaration timeout, and the control plane network element informs UE2 to forward the clock received from remote device 1 to the UPF.
  • Source declaration and clock synchronization message and instruct UPF to forward the clock source declaration from UE2 to other devices and process the clock synchronization message from UE2.
  • the control plane network element receives indication information from UE2, the indication information is used to instruct UE2 to send the clock source declaration to the UPF, then the control plane network element can notify the UPF to forward the clock source declaration and the clock source declaration from UE2 to other devices. Process the clock synchronization message from UE2.
  • the network element of the control plane configures a timeout period to the UPF/UE1/UE2.
  • both UE1 and UE2 receive and process clock source declaration and clock synchronization packets from remote devices, and synchronize to the external TSN clock source, and UPF only processes clock synchronization packets from UE1.
  • This solution realizes that multiple UEs in the 5G system can achieve clock synchronization with an external TSN clock source. Moreover, when a link failure occurs in one of the UEs and the clock source cannot be synchronized, it can be switched to other UEs to synchronize the clock source, thus ensuring the reliability of the 5G system bridge node synchronizing the external TSN clock source.
  • each network element in the above-mentioned implementation includes corresponding hardware structures and/or software modules for executing each function.
  • the present invention can be implemented in hardware or a combination of hardware and computer software in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods of implementing the described functionality for each particular application, but such implementations should not be considered beyond the scope of the present invention.
  • FIG. 11 it is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus is used to implement various steps of the corresponding terminal equipment, user plane network element, or control plane network element in the above embodiments.
  • the communication apparatus 1100 includes a sending unit 1110, a receiving unit 1120, and a processing unit 1110. unit 1130.
  • the above-mentioned apparatus 1100 is used for terminal equipment or the above-mentioned apparatus 1110 is a terminal equipment, then:
  • the processing unit 1130 is configured to detect whether a clock source declaration from the user plane network element is received within the first duration, and the port state of the terminal device is a slave state or a passive state; the sending unit 1110 is configured to detect when If the receiving unit 1120 does not receive the clock source declaration from the user plane network element within the first time period, it sends the clock source declaration from the remote device to the user plane network element.
  • the receiving unit 1120 is further configured to receive configuration information from a control plane network element, where the configuration information is used to configure the port state of the terminal device to be a slave state or a passive state; or , the processing unit 1130 is further configured to determine that the clock source corresponding to the clock source declaration from the user plane network element is the same as the clock source corresponding to the clock source declaration from the remote device, then determine that the port state of the terminal device is slave state or passive state.
  • the receiving unit 1120 is further configured to receive a clock synchronization message from the remote device; the processing unit 1130 is further configured to perform clock synchronization according to the clock synchronization message .
  • the receiving unit 1120 is further configured to receive a clock synchronization packet from the user plane; the processing unit 1130 is further configured to perform clock synchronization according to the clock synchronization packet.
  • the processing unit 1130 is further configured to, in the case that the port state of the terminal device is a passive state, when the receiving unit 1120 does not receive an incoming message from the first time period
  • the clock source declaration of the user plane network element determines that the port state of the terminal device is a slave state.
  • the above-mentioned apparatus 1100 is used for a user plane network element or the above-mentioned apparatus 1110 is a user plane network element, then:
  • the receiving unit 1120 is configured to receive the clock source declaration from the first terminal device at the first moment; the sending unit 1110 is configured to send the clock source statement through the port of the user plane network element or the terminal device in the master port state.
  • a clock source declaration of the first terminal device and, if the receiving unit 1120 does not receive a clock source declaration from the first terminal device within the first time period or receives a clock source declaration from a control plane network element Instructing to send the indication information of the clock source declaration from the second terminal device, then send the clock source declaration from the second terminal device through the port of the user plane network element or the terminal device in the master port state, and the The first duration is after the first moment; wherein, the clock source corresponding to the clock source declaration from the first terminal device is the same as the clock source corresponding to the clock source declaration from the second terminal device.
  • the processing unit 1130 is configured to determine that the clock source declaration from the first terminal device is the same as the clock source declaration from the second terminal device, and then determine to send the clock source from the first terminal device or, the receiving unit 1120 is further configured to receive configuration information from a control plane network element, where the configuration information is used to configure the user plane network element to send a clock source declaration from the first terminal device.
  • the sending unit 1110 is further configured to send a notification to the control plane
  • the network element sends indication information, where the indication information is used to indicate that the clock source declaration from the first terminal device has not been received within the first duration; and/or, sends notification information to the control plane network element, the said The notification information is used to instruct the user plane network element to send the clock source declaration from the second terminal device.
  • the first duration is pre-configured; or, the first duration is configured by the control plane network element.
  • the sending unit 1110 is further configured to send the clock source declaration from the first terminal device to the second terminal device.
  • the above-mentioned apparatus 1100 is used for a control plane network element or the above-mentioned apparatus 1110 is a control plane network element, then:
  • the receiving unit 1120 is configured to receive a clock source declaration from a first terminal device; and, receive a clock source declaration from a second terminal device; the processing unit 1130 is configured to determine the port status of the first terminal device It is a slave state; it is determined that the clock source corresponding to the clock source declaration from the second terminal device is the same as the clock source corresponding to the clock source declaration from the first terminal device, then it is determined that the port state of the second terminal device is a passive state and, if it is determined that the first condition is satisfied, then determine that the port state of the second terminal device is a subordinate state and/or send first indication information to the user plane network element through the sending unit 1110, and the first indication information is used instructing the user plane network element to send a clock source declaration from the second terminal device.
  • the processing unit 1130 for determining that the first condition is met, includes: determining that the receiving unit 1120 receives the second indication information from the user plane network element, the The second indication information is used to indicate that the user plane network element has not received the clock source declaration from the first terminal device within the first duration; or, used to determine that the receiving unit 1120 has received third indication information of the terminal device, where the third indication information is used to indicate that the first terminal device has not received the clock source declaration from the remote device within the second time period; or, is used to determine the first terminal device The device is abnormal; or, it is used to determine that the receiving unit 1120 has received fourth indication information from the second terminal device, where the fourth indication information is used to indicate that the second terminal device has not received the data within the third time period. to the clock source declaration from the user plane network element.
  • the receiving unit 1120 is further configured to receive notification information from the user plane network element, where the notification information is used to instruct the user plane network element to send information from the second terminal The device's clock source declaration.
  • the above-mentioned apparatus 1100 is used for a control plane network element or the above-mentioned apparatus 1110 is a control plane network element, then:
  • the receiving unit 1120 is configured to receive the clock source declaration from the first terminal device; receive the clock source declaration from the second terminal device; the processing unit 1130 is configured to determine that the port state of the first terminal device is a slave state; If the clock source corresponding to the clock source declaration of the second terminal device is the same as the clock source corresponding to the clock source declaration from the first terminal device, it is determined that the port state of the second terminal device is a slave state.
  • the sending unit 1110 is configured to send first indication information to a user plane network element when the processing unit 1130 determines that the first condition is satisfied, where the first indication information is used to indicate the user plane
  • the network element sends the clock source declaration from the second terminal device.
  • the processing unit 1130 for determining that the first condition is met, includes:
  • the receiving unit 1120 It is used to determine that the receiving unit 1120 has received the second indication information from the user plane network element, where the second indication information is used to indicate that the user plane network element has not received the second indication information from the first time period.
  • a clock source declaration of a terminal device or, used to determine that the receiving unit 1120 has received third indication information from the first terminal device, where the third indication information is used to indicate that the first terminal device is not in the The clock source declaration from the remote device is received within the second time period; or, it is used to determine that the first terminal device is abnormal; or,
  • the receiving unit 1120 uses fourth indication information to determine that the receiving unit 1120 has received fourth indication information from the second terminal device, where the fourth indication information is used to indicate that the second terminal device has not received information from the user within a third time period Clock source declaration of the plane NE.
  • the above-mentioned communication device may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions.
  • the processing unit 1130 may read data or instructions in the storage unit, so that the communication apparatus implements the methods in the above embodiments.
  • each unit in the above communication apparatus can all be implemented in the form of software calling through the processing element; also can all be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the communication device to realize, in addition, it can also be stored in the memory in the form of a program, which can be called and executed by a certain processing element of the communication device. function of the unit.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above communication devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASICs), or, an or multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • a unit in the communication device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can invoke programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the apparatus 1200 includes: a processor 1202 , a communication interface 1203 , and a memory 1201 .
  • the apparatus 1200 may further include a communication line 1204 .
  • the communication interface 1203, the processor 1202 and the memory 1201 can be connected to each other through a communication line 1204;
  • the communication line 1204 can be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • the communication line 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1202 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the programs of the present application.
  • Communication interface 1203, using any transceiver-like device, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 1201 can be a ROM or other types of static storage devices that can store static information and instructions, a RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory CD-ROM
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory may exist independently and be connected to the processor through communication line 1204 .
  • the memory can also be integrated with the processor.
  • the memory 1201 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 1202 .
  • the processor 1202 is configured to execute the computer-executed instructions stored in the memory 1201, thereby implementing the communication method provided by the foregoing embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • FIG. 13 provides a schematic structural diagram of a terminal device.
  • the terminal device may be applicable to the terminal device in any of the foregoing embodiments.
  • FIG. 13 only shows the main components of the terminal device.
  • the terminal device 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
  • Figure 13 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 1311 of the terminal device 1300
  • the processor having a processing function can be regarded as the processing unit 1312 of the terminal device 1300
  • the terminal device 1300 includes a transceiver unit 1311 and a processing unit 1312 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 1311 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1311 may be regarded as a transmitting unit, that is, the transceiver unit 1311 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the above-mentioned receiving unit and transmitting unit may be an integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and transmitting unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Chip 1400 includes one or more processors 1401 and interface circuits 1402 .
  • the chip 1400 may further include a bus 1403 . in:
  • the processor 1401 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1401 or an instruction in the form of software.
  • the above-mentioned processor 1401 may be a general purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the interface circuit 1402 can be used to send or receive data, instructions or information.
  • the processor 1401 can use the data, instructions or other information received by the interface circuit 1402 to process, and can send the processing completion information through the interface circuit 1402.
  • the chip further includes a memory, which may include a read-only memory and a random access memory, and provides operation instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory stores executable software modules or data structures
  • the processor may execute corresponding operations by calling operation instructions stored in the memory (the operation instructions may be stored in the operating system).
  • the chip may be used in a communication apparatus (including a terminal device, a user plane network element, and a control plane network element) involved in the embodiments of the present application.
  • the interface circuit 1402 can be used to output the execution result of the processor 1401 .
  • processor 1401 and the interface circuit 1402 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • An embodiment of the present application further provides a communication system, including the user plane network element and the control plane network element in any of the foregoing embodiments.
  • An embodiment of the present application further provides a chip, including at least one processor and an interface.
  • the interface is used to provide program instructions or data for at least one processor.
  • the at least one processor is configured to execute program instructions to implement the method in any of the above-described embodiments.
  • At least one item (single, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple.
  • “Plurality” means two or more, and other quantifiers are similar.
  • occurrences of the singular forms "a”, “an” and “the” do not mean “one or only one” unless the context clearly dictates otherwise, but rather “one or more” in one".
  • "a device” means to one or more such devices.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • a software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor may read information from, and store information in, the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium may be provided in the ASIC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种通信方法、通信装置、终端设备及用户面网元。该方法包括:终端设备检测在第一时长内是否收到来自用户面网元的时钟源声明,终端设备的端口状态为从属状态或被动状态;当终端设备未在第一时长内收到来自用户面网元的时钟源声明,则向用户面网元发送来自远端设备的时钟源声明。基于该方法,当终端设备未在第一时长内收到来自用户面网元的时钟源声明,表明用户面网元无法从其他终端设备接收时钟源声明,从而可以向用户面网元发送远端设备的时钟源声明,保障了用户面网元可以同步到来自远端设备的时钟源以及可以转发时钟源声明,从而保障了5G系统同步外部的时钟源的可靠性。

Description

一种通信方法、通信装置、终端设备及用户面网元 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、通信装置、终端设备及用户面网元。
背景技术
在第三代合作伙伴计划(3rd generation partnership project,3GPP)网络(以第五代(the 5th generation,5G)系统为例)与时延敏感网络(Time Sensitive Network,TSN)互通的网络架构中,将5G系统和TSN转换器(TSN Translator)整体作为一个逻辑上的TSN交换节点(称为5G系统桥节点)。
5G系统桥节点包括一个或多个终端设备,5G系统桥节点支持通过终端设备或TSN转换器同步外部的TSN时钟源。然而,如何保障时钟同步的可靠性,目前还没有很好的解决方案。
发明内容
本申请提供一种通信方法、通信装置、终端设备及用户面网元,用以实现保障时钟同步的可靠性。
第一方面,本申请提供一种通信方法,该方法包括:终端设备检测在第一时长内是否收到来自用户面网元的时钟源声明,所述终端设备的端口状态为从属状态或被动状态;当所述终端设备未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则向所述用户面网元发送来自远端设备的时钟源声明。
基于上述方案,当终端设备未在第一时长内收到来自用户面网元的时钟源声明,表明用户面网元无法从其他终端设备接收时钟源声明,从而该终端设备可以向用户面网元发送远端设备的时钟源声明,保障了用户面网元可以同步到来自远端设备的时钟源以及能够转发时钟源声明,从而保障了5G系统同步外部的时钟源的可靠性。
在一种可能的实现方法中,所述终端设备接收来自控制面网元的配置信息,所述配置信息用于配置所述终端设备的端口状态为从属状态或被动状态;或者,所述终端设备确定来自用户面网元的时钟源声明对应的时钟源与来自远端设备的时钟源声明对应的时钟源相同,则确定所述终端设备的端口状态为从属状态或被动状态。
基于该方案,可以通过控制面配置终端设备的端口状态,或者由终端设备自行确定终端设备的端口状态,以保障终端设备能够及时接收到外部的时钟源声明,提升时钟同步的可靠性。
在一种可能的实现方法中,所述终端设备接收来自所述远端设备的时钟同步报文;所述终端设备根据所述时钟同步报文进行时钟同步。
基于该方案,终端设备从远端设备侧同步到外部的时钟源,提升了时钟同步的可靠性。
在一种可能的实现方法中,所述终端设备接收来自所述用户面的时钟同步报文;所述终端设备根据所述时钟同步报文进行时钟同步。
基于该方案,终端设备从用户面网元侧同步到外部的时钟源,提升了时钟同步的可靠性。
在一种可能的实现方法中,在所述终端设备的端口状态为被动状态的情况下,当所述终端设备未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则所述终端设备确定所述终端设备的端口状态为从属状态。
基于该方案,当终端设备未在第一时长内收到来自用户面网元的时钟源声明,表明用户面网元无法从其他终端设备接收时钟源声明,从而该终端设备可以将终端设备的端口状态确定为从属状态,以保障可以向用户面网元发送远端设备的时钟源声明,保障了用户面网元可以同步到来自远端设备的时钟源,从而保障了5G系统同步外部的时钟源的可靠性。
第二方面,本申请提供一种通信方法,该方法包括:用户面网元在第一时刻接收来自第一终端设备的时钟源声明;所述用户面网元通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第一终端设备的时钟源声明;若所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明或所述用户面网元从控制面网元接收到用于指示发送来自所述第二终端设备的时钟源声明的指示信息,所述用户面网元通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第二终端设备的时钟源声明,所述第一时长位于所述第一时刻后;其中,所述来自第一终端设备的时钟源声明对应的时钟源与所述来自第二终端设备的时钟源声明对应的时钟源相同。
基于上述方案,用户面网元先转发来自第一终端设备的时钟源声明,当用户面网元无法接收到来自第一终端设备的时钟源声明,但可以接收到来自第二终端设备的时钟源声明,则用户面网元转发来自第二终端设备的时钟源声明,从而可以保障5G系统能够同步到外部的时钟源,保障了时钟同步的可靠性。
在一种可能的实现方法中,所述用户面网元确定来自第一终端设备的时钟源声明与来自第二终端设备的时钟源声明相同,则确定发送来自所述第一终端设备的时钟源声明;或者,所述用户面网元接收来自控制面网元的配置信息,所述配置信息用于配置所述用户面网元发送来自所述第一终端设备的时钟源声明。
基于上述方案,可以由用户面网元自行确定转发来自第一终端设备的时钟源声明,或者控制面通知用户面网元转发来自第一终端设备的时钟源声明,可保障时钟同步的可靠性。
在一种可能的实现方法中,在所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明的情况下,所述用户面网元向控制面网元发送指示信息,所述指示信息用于指示未在所述第一时长内收到来自所述第一终端设备的时钟源声明;和/或,所述用户面网元向控制面网元发送通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
基于上述方案,当用户面网元未在第一时长内收到来自第一终端设备的时钟源声明,则可以通知控制面网元,从而控制面网元可以配置用户面网元或第二终端设备,使得用户面网元可以转发来自第二终端设备的时钟源声明,以保障时钟同步的可靠性。
在一种可能的实现方法中,所述第一时长为预配置;或者,所述第一时长为所述控制面网元配置的。
在一种可能的实现方法中,所述用户面网元向所述第二终端设备发送来自所述第一终端设备的时钟源声明。
第三方面,本申请提供一种通信方法,该方法包括:控制面网元接收来自第一终端设 备的时钟源声明;所述控制面网元确定所述第一终端设备的端口状态为从属状态;所述控制面网元接收来自第二终端设备的时钟源声明;所述控制面网元确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源相同,则确定所述第二终端设备的端口状态为被动状态;所述控制面网元确定满足第一条件,则确定所述第二终端设备的端口状态为从属状态和/或向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
基于上述方案,由控制面网元配置终端设备的端口状态,以保障5G系统可以同步到外部的时钟源声明,并且控制面网元在确定用户面网元不能转发来自第一终端设备的时钟源声明时,可以控制用户面网元转发来自第二终端设备的时钟源声明,以提升时钟同步的可靠性。
在一种可能的实现方法中,所述控制面网元确定满足第一条件,包括:所述控制面网元接收来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,所述控制面网元接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,所述控制面网元确定所述第一终端设备异常;或者,所述控制面网元接收来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声明。
在一种可能的实现方法中,所述控制面网元接收来自所述用户面网元的通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
第四方面,本申请提供一种通信方法,该方法包括:控制面网元接收来自第一终端设备的时钟源声明;所述控制面网元确定所述第一终端设备的端口状态为从属状态;所述控制面网元接收来自第二终端设备的时钟源声明;所述控制面网元确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源相同,则确定所述第二终端设备的端口状态为从属状态。
基于上述方案,由控制面网元配置第一终端设备和第二终端设备的端口状态均为从属状态,从而第一终端设备和第二终端设备均可以向用户面网元发送相同的时钟源声明,进而用户面网元可以选择转发其中一个终端设备的时钟源声明,并且当用户面网元不能从其中一个终端设备接收时钟源声明时,可以切换为从另一个终端设备接收时钟源声明,保障了时钟同步的可靠性。
在一种可能的实现方法中,所述控制面网元确定满足第一条件,则向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
在一种可能的实现方法中,所述控制面网元确定满足第一条件,包括:所述控制面网元接收来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,所述控制面网元接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,所述控制面网元确定所述第一终端设备异常;或者,所述控制面网元接收来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声 明。
第五方面,本申请提供一种通信装置,该装置可以是终端设备,还可以是用于终端设备的芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请提供一种通信装置,该装置可以是用户面网元,还可以是用于用户面网元的芯片。该装置具有实现上述第二方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请提供一种通信装置,该装置可以是控制面网元,还可以是用于控制面网元的芯片。该装置具有实现上述第三方面的各实施例、或第四方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第八方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面至第四方面中的任意通信方法。
第九方面,本申请提供一种通信装置,包括:包括用于执行上述第一方面至第四方面中的任意通信方法的各个步骤的单元或手段(means)。
第十方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第四方面中的任意通信方法。该处理器包括一个或多个。
第十一方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面至第四方面中的任意通信方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十二方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述第一方面至第四方面中的任意通信方法。
第十三方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任意通信方法。
第十四方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第四方面中的任意通信方法。
附图说明
图1为基于服务化架构的5G网络架构示意图;
图2为时钟同步示意图;
图3为时钟同步生成树示意图;
图4为3GPP网络与TSN互通系统架构示意图;
图5为3GPP R17UE侧时钟源示意图;
图6为时钟同步的一个示例;
图7(a)为本申请实施例提供的一种通信方法示意图;
图7(b)为本申请实施例提供的一种通信方法示意图;
图7(c)为本申请实施例提供的一种通信方法示意图;
图8(a)为时钟同步的又一个示例;
图8(b)为本申请实施例提供的又一种通信方法示意图;
图8(c)为本申请实施例提供的又一种通信方法示意图;
图9(a)为时钟同步的又一个示例;
图9(b)为本申请实施例提供的又一种通信方法示意图;
图9(c)为本申请实施例提供的又一种通信方法示意图;
图10(a)为时钟同步的又一个示例;
图10(b)为本申请实施例提供的又一种通信方法示意图;
图10(c)为本申请实施例提供的又一种通信方法示意图;
图11为本申请实施例提供的一种通信装置示意图;
图12为本申请实施例提供的一种通信装置示意图;
图13为本申请实施例提供的一种终端设备示意图;
图14为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,为基于服务化架构的5G网络架构示意图。图1所示的5G网络架构中可包括三部分,分别是终端设备部分、数据网络(data network,DN)和运营商网络部分。
其中,运营商网络可包括网络开放功能(network exposure function,NEF)网元、统一数据库(Unified Data Repository,UDR)、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、(无线)接入网((radio)access network,(R)AN)以及用户面功能(user plane function,UPF)网元等。上述运营商网络中,除(无线)接入网部分之外的部分可以称为核心网络部分。为方便说明,后续以(R)AN称为RAN为例进行说明。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备还包括用户设备(user equipment,UE)。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使 用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
接入网设备,也称为(无线)接入网((Radio)Access Network,(R)AN)设备,是一种为终端提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
AMF网元是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。
SMF网元是由运营商网络提供的控制面网元,负责管理终端设备的协议数据单元(protocol data unit,PDU)会话。PDU会话是一个用于传输PDU的通道,终端设备需要通过PDU会话与DN互相传送PDU。PDU会话由SMF网元负责建立、维护和删除等。SMF网元包括会话管理(如会话建立、修改和释放,包含UPF和RAN之间的隧道维护)、UPF网元的选择和控制、业务和会话连续性(Service and Session Continuity,SSC)模式选择、漫游等会话相关的功能。
UPF网元是由运营商提供的网关,是运营商网络与DN通信的网关。UPF网元包括数据包路由和传输、包检测、业务用量上报、服务质量(Quality of Service,QoS)处理、合法监听、上行包检测、下行数据包存储等用户面相关的功能。
DN,也可以称为分组数据网络(packet data network,PDN),是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
UDM网元是由运营商提供的控制面网元,负责存储运营商网络中签约用户的用户永久标识符(subscriber permanent identifier,SUPI)、安全上下文(security context)、签约数据等信息。UDM网元所存储的这些信息可用于终端设备接入运营商网络的认证和授权。其中,上述运营商网络的签约用户具体可为使用运营商网络提供的业务的用户,例如使用中国电信的手机芯卡的用户,或者使用中国移动的手机芯卡的用户等。上述签约用户的永久签约标识(Subscription Permanent Identifier,SUPI)可为该手机芯卡的号码等。上述签约用户的信任状、安全上下文可为该手机芯卡的加密密钥或者跟该手机芯卡加密相关的信息等存储的小文件,用于认证和/或授权。上述安全上下文可为存储在用户本地终端(例如手机)上的数据(cookie)或者令牌(token)等。上述签约用户的签约数据可为该手机芯卡的配套业务,例如该手机芯卡的流量套餐或者使用网络等。需要说明的是,永久标识符、信任状、安全上下文、认证数据(cookie)、以及令牌等同认证、授权相关的信息,在本发 明本申请文件中,为了描述方便起见不做区分、限制。如果不做特殊说明,本申请实施例将以用安全上下文为例进行来描述,但本申请实施例同样适用于其他表述方式的认证、和/或授权信息。
NEF网元是由运营商提供控制面网元。NEF网元以安全的方式对第三方开放运营商网络的对外接口。在SMF网元需要与第三方的网元通信时,NEF网元可作为SMF网元与第三方的网元通信的中继。NEF网元作为中继时,可作为签约用户的标识信息的翻译,以及第三方的网元的标识信息的翻译。比如,NEF将签约用户的SUPI从运营商网络发送到第三方时,可以将SUPI翻译成其对应的外部身份标识(identity,ID)。反之,NEF网元将外部ID(第三方的网元ID)发送到运营商网络时,可将其翻译成SUPI。
PCF网元是由运营商提供的控制面功能,用于向SMF网元提供PDU会话的策略。策略可以包括计费相关策略、QoS相关策略和授权相关策略等。
AF网元,是提供各种业务服务的功能网元,能够通过NEF网元与核心网交互,以及能够和策略管理框架交互进行策略管理。
UDR用于存储数据。
图1中Nnef、Npcf、Nudm、Naf、Nudr、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
现有协议1588及802.1AS定义了时钟同步机制,能够实现网络设备和时钟源进行高精度的时钟同步。其中,1588支持多时钟域同步,即网络设备能够在不同的时钟域同步时钟,也即同步多个时钟,不同的时钟域通过时钟域标识进行区分。对于单个时钟域,1588/802.1AS支持在同一个TSN中选择一个最优时钟源进行同步,主设备会发布自己的时钟源信息,从设备根据接收到的主时钟源信息进行比较,确定出最优时钟源。
如图2所示,为时钟同步示意图。首先,主设备1向其他设备(包括主设备2、从设备1、从设备2)发布时钟源声明,该时钟源声明包含时钟源优先级、时钟源标识、时钟源精度等参数,从设备1及从设备2接收到时钟源声明后,确定主设备1的时钟源1是最优时钟源。主设备2在接收到主设备1发送的时钟源声明后,确定自己的时钟源2比时钟源1更优,则主设备2向主设备1、从设备1和从设备2发布时钟源声明,该时钟源声明包含时钟源优先级、时钟源标识、时钟源精度等参数,从设备1及从设备2根据主设备1发送的时钟源声明和主设备2发送的时钟源声明,确定主设备2的时钟源2是最优时钟源。从设备1及从设备2确定最优时钟源后,进行时钟同步,并向下游设备转发时钟源声明。需要说明的是,从设备1及从设备2仅向下游设备转发最优时钟源信息,而忽略次优时钟源信息。
如图3所示,为时钟同步生成树示意图。网络设备根据各端口接收到的时钟源声明, 确定各端口的状态,从而使整个网络形成一个时钟同步生成树。设备上端口的状态(也可称为端口的角色role)包括:
M端口(主端口,Master Port):用于向下游设备发送时钟源声明及发送时钟同步报文。时钟源声明用于表示能够提供的时钟源信息,时钟同步报文用于下游设备将时钟同步到时钟源声明中的时钟源。
S端口(从属端口,Slave Port):用于接收时钟源声明以及接收时钟同步报文,并进行时钟同步。
P端口(被动端口,Passive Port):不处理时钟同步报文。
结合图2及图3,网络设备从某个端口接收到时钟源声明,并确定该端口接收到的时钟源声明对应的时钟源为最优时钟源时,该端口被确定为S端口,进而网络设备从该S端口同步到最优时钟源。在确定了S端口后,其他端口为M端口,即网络设备通过M端口向其它端口转发时钟源声明,及发送时钟同步报文,使其他设备能够同步到最优时钟源。
当网络设备不仅可以从S端口接收到时钟源声明,也可以从其它端口接收到时钟源声明,则该网络设备将其它可以接收到时钟源声明的端口置为P端口,以避免网络中出现环路造成过多的时钟源声明和时钟同步报文转发。
如图4所示,为3GPP网络与TSN互通系统架构示意图。将3GPP 5G系统和TSN转换器(TSN Translator)整体作为一个逻辑上的TSN交换节点(称为5G系统桥节点)。其中,图4中仅示出了5G架构中的部分网元(即AMF网元、SMF网元、PCF网元、RAN、UE、AF网元、UPF网元)。
其中:
1)、在控制面,5G系统通过控制面的TSN转换器(即5G的AF网元),与TSN系统中的节点交换信息,所交换的信息包括:5G系统的交换能力信息、TSN配置信息、TSN输入输出端口的时间调度信息、时间同步信息等。
2)、在用户面,5G系统的UPF网元通过TSN转换器,接收TSN系统的下行TSN流,或向TSN系统发送上行TSN流,其中,TSN转换器可以是集成于UPF网元或与UPF网元独立部署,可称为NW-TT。
3)、在用户面,5G系统的UE通过TSN转换器,接收TSN系统的上行TSN流,或向TSN系统发送下行TSN流,其中,TSN转换器可以是集成于UE或与UE独立部署,可称为DS-TT。
本申请中的会话管理网元,指的具有图4所示的SMF网元的功能的网元。为方便说明,本申请后续描述中将该会话管理网元称为SMF,需要说明的是,在未来通信中,该会话管理网元仍然可以称为SMF网元,或者还可以有其他的名称,本申请不限定。本申请后续任意地方出现的SMF,可以替换为会话管理网元。
本申请中的应用功能网元,指的具有图4所示的AF网元的功能的网元。为方便说明,本申请后续描述中将该应用功能网元称为AF,需要说明的是,在未来通信中,该应用功能网元仍然可以称为AF网元,或者还可以有其他的名称,本申请不限定。本申请后续任意地方出现的AF,可以替换为应用功能网元。
本申请中的用户面网元,指的具有图4所示的UPF网元的功能的网元,该用户面网元中可以集成有TSN转换器,或者是该TSN转换器独立于用户面网元部署,为方便说明, 本申请以TSN转换器集成于用户面网元为例进行说明。为方便说明,本申请后续描述中将该用户面网元称为UPF,需要说明的是,在未来通信中,该用户面网元仍然可以称为UPF网元,或者还可以有其他的名称,本申请不限定。本申请后续任意地方出现的UPF,可以替换为用户面网元。需要说明的是,后续描述的用户面网元上执行的功能,也可以是在TSN转换器上执行。其中,用户面网元对应的TSN转换器也可以称为网络侧的TSN转换器(Network TSN Translator,NW-TT)。因此本申请后续实施例中所涉及的UPF,可以部分替换为NW-TT,或全部替换为NW-TT。作为示例,UPF接收时钟源声明可以替换为NW-TT接收时钟源声明,UPF转发时钟源声明可以替换为NW-TT转发时钟源声明,等等。
本申请中的终端设备,指的具有图4所示的UE的功能的设备,该终端设备中可以集成有TSN转换器,或者是该TSN转换器独立于终端设备部署,为方便说明,本申请以TSN转换器集成于终端设备为例进行说明。为方便说明,本申请后续描述中将该终端设备称为UE。需要说明的是,后续描述的终端设备上执行的功能,也可以是在TSN转换器上执行。其中,终端设备对应的TSN转换器也可以称为设备侧的TSN转换器(Device Side TSN Translator,DS-TT)。因此本申请后续实施例中所涉及的UE,可以部分替换为DS-TT,或全部替换为DS-TT。作为示例,UE接收时钟源声明可以替换为DS-TT接收时钟源声明,UE发送时钟源声明可以替换为DS-TT转发时钟源声明,等等。
如图5所示,为3GPP R17UE侧时钟源示意图。例如TSN时钟源部署在UE1侧,5G系统接收来自UE1侧时钟源的时钟同步报文(通过UE1的PDU会话转发到UPF),并向时钟域内的其它用户会话及DN侧端口转发时钟同步报文。对于最优时钟源的选择过程,现有技术的方案是各端口将接收到的时钟源声明发送到控制面网元,由控制面网元决策后下发端口状态到各端口所在设备。例如图表5中UE1将接收到的时钟源声明发送到AF,AF决策后将端口状态下发到UE1、UE2、UPF。
上述通过控制面指定端口状态的方案,能够实现最优时钟源选择,以及创建时钟同步生成树的过程。但由于5G系统桥节点并不是像物理设备一样的独立个体,而是分离的设备组成的虚拟节点,当UE侧拓扑出现环路时,按照1588/802.1AS的定义确定出的端口状态,将使得UE可能无法同步到外部的时钟。
如图6所示,为时钟同步的一个示例。假设UE1先从远端设备1接收到时钟源声明并上报,那么UE1将被确定为S端口,进而UE2和UPF被确定为M端口,而当UE2后续从远端设备1接收到相同的时钟源声明,则UE2端口会被确定为P端口(即从M端口更新为P端口),进而按照定义,UE2将不从远端设备1同步时钟,从而导致UE2无法同步到外部的TSN时钟源。并且,基于控制面方案,如果图6中的UE1的链路出现问题,由于UE2无法同步TSN时钟源,从而导致不能切换到UE2所在的链路的同步时钟,也即无法保障时钟同步的可靠性。
因此,本申请实施例需要解决的问题包括:
第一,UE侧存在时钟源时,5G系统如何确定最优时钟源及各5G系统各端口的状态,使得5G系统各端口能同步到外部的TSN时钟源,以保障时钟同步的可靠性。
第二,在5G系统接收时钟同步报文的UE出现异常时,如何切换路径以保障时钟同步的顺利进行,以保障时钟同步的可靠性。
需要说明的是,本申请实施例中,UE的端口状态为从属(Slave)状态,也可以理解为UE是S端口,或UE被配置为S端口,或UE的端口被配置为S端口,或UE具备S端口的功能或能力。UE的端口状态为被动(Passive)状态,也可以理解为UE是P端口,或UE被配置为P端口,或UE的端口被配置为P端口,或UE具备P端口的功能或能力。UE的端口状态为主(Master)端口状态,也可以理解为UE是M端口,或UE被配置为M端口,或UE的端口被配置为M端口,或UE具备M端口的功能或能力。
需要说明的是,本申请实施例中,当UE的端口状态为从属状态,则控制面网元(如SMF等)可以向UPF配置该UE的会话对应的端口状态为从属状态(或理解为配置该UE的会话对应的端口为S端口)。当UE的端口状态为被动状态,则控制面网元(如SMF等)可以向UPF配置该UE的会话对应的端口状态为被动状态(或理解为配置该UE的会话对应的端口为P端口)。
需要说明的是,本申请实施例中的端口状态为从属状态的UE所能够执行的操作,与现有技术中端口状态为从属状态的UE所能够执行的操作可能相同,也可能不同,在以下实施例中将会说明。本申请实施例中的端口状态为被动状态的UE所能够执行的操作,与现有技术中端口状态为被动状态的UE所能够执行的操作可能相同,也可能不同,在以下实施例中将会说明。
下面结合附图,介绍本申请实施例提供的多种实现方案,以保障5G系统同步外部的时钟源的可靠性。
实现方案一,5G系统内的多个UE均可以从同一个远端设备接收时钟源声明,并且均可以向UPF转发时钟源声明。UPF接收到多个相同的时钟源声明时,只转发其中一个时钟源声明。并且,在当前向UPF发送时钟源声明的UE不能向UPF继续发送时钟源声明时,UPF可以转发从其它UE收到的时钟源声明。
需要说明的是,对于时钟同步报文的发送方式,与时钟源声明的方式类似,但UPF上需要增加对从UE1或UE2收到的时钟同步报文进行处理的操作,以保障时钟同步报文中的时间信息是准确的。为便于说明,以下均以时钟源声明的发送方式为例进行说明。
下面结合图6和图8(a)进行详细说明。其中,图6是现有技术方案,图8(a)是基于该实现方案一后的改进方案。其中,以5G系统包括UE1和UE2为例进行说明。基于该方案一,UE1被配置为S端口,UE2被配置为S端口或P端口。
比如,UE1和UE2都能够从远端设备1收到相同的时钟源声明,则UE1和UE2都可以向UPF发送从远端设备收到的时钟源声明。若UPF先从UE1收到时钟源声明,则UPF可以仅转发从UE1收到的时钟源声明,而不转发从UE2收到的时钟源声明。后续,如果UE1出现异常(如故障或下线),或者是UE1与UPF之间的用户面路径故障,或者是控制面决策UE1负载较重,或者是UE1无法在设定时长内从远端设备收到时钟源声明,这都将导致UPF无法在一个设定时长内收到来自UE1的时钟源声明,进而UPF决策转发从UE2收到的时钟源声明和时钟同步报文。
需要说明的是,UPF转发来自UE1或UE2的时钟源声明,可以是:UPF通过UPF的端口转发来自UE1或UE2的时钟源声明,或者是UPF向处于主端口状态的UE(如UE3、UE4等等)发送来自UE1或UE2的时钟源声明,由主端口状态的UE再对外转发来自UE1 或UE2的时钟源声明。
可选的,5G系统内的UE(如图6中的UE1、UE2等)可以根据从远端设备收到的时钟源声明和时钟同步报文进行时钟同步。
可选的,5G系统内的UE(如图6中的UE2等)可以根据从UPF收到的时钟源声明和时钟同步报文进行时钟同步。也即,UPF将从UE1收到的时钟源声明和时钟同步报文发送给UE2,从而UE2可以基于收到的时钟源声明和时钟同步报文进行时钟同步。
基于上述方案一,一方面,UPF每次只转发收到的多个时钟源声明中的一个时钟源声明,而不是转发收到的所有时钟源声明,可以节约开销以及减少时钟源声明接收者的决策开销,另一方面,当UPF接收时钟源声明异常导致无法转发时钟源声明时,则UPF可以切换至转发其它UE的时钟源声明,可以保障时钟同步的可靠性。并且,上述方案中,5G系统内的所有UE都可以同步,实现了时钟同步的可靠性。
实现方案二,5G系统内的多个UE均可以从同一个远端设备接收时钟源声明,并且只有一个UE向UPF转发时钟源声明。UPF接收到来自一个UE的时钟源声明,转发从该UE收到的时钟源声明,以及向5G系统内的其它UE发送收到的时钟源声明。并且,在当前向UPF发送时钟源声明的UE不能向UPF继续发送时钟源声明时,由其它UE向UPF发送时钟源声明,从而UPF可以转发从该其它UE收到的时钟源声明。
下面结合图6、图9(a)和图10(a)进行详细说明。其中,图6是现有技术方案,图9(a)和图10(a)是基于该实现方案二后的改进方案。其中,以5G系统包括UE1和UE2为例进行说明。基于该方案二,UE1被配置为S端口,UE2被配置为S端口(基于图9(a))或P端口(基于图10(a))。
比如,UE1和UE2都能够从远端设备1收到相同的时钟源声明,则UE1和UE2都可以向UPF发送从远端设备收到的时钟源声明。若UPF先从UE1收到时钟源声明,则UPF可以仅转发从UE1收到的时钟源声明,而不转发从UE2收到的时钟源声明。并且UPF还向UE2发送从UE1收到的时钟源声明。当UE2从UPF收到时钟源声明,则UE2停止向UPF发送从远端设备1收到的时钟源声明。也即,UE2可以从远端设备1收到时钟源声明,以及可以从UPF收到时钟源声明(该时钟源声明来自远端设备1,通过UE1发送给UPF),UE2判断从远端设备1收到的时钟源声明与从UPF收到的时钟源声明相同,则UE2不向UPF发送从远端设备1收到的时钟源声明。后续,如果UE1出现异常(如故障或下线),或者是UE1与UPF之间的用户面路径故障,或者是控制面决策UE1负载较重,或者是UE1无法在设定时长内从远端设备收到时钟源声明,这都将导致UPF无法在一个设定时长内收到来自UE1的时钟源声明,进而导致UPF无法向UE2发送时钟源声明。当UE2确定在一个设定时长内未收到来自UPF的时钟源声明,则UE2可以向UPF发送从远端设备1收到的时钟源声明,从而UPF可以从UE2收到时钟源声明,进而UPF可以转发来自UE2的时钟源声明。也即当UPF无法从UE1收到时钟源声明时,则UPF可以切换从UE2接收时钟源声明。
需要说明的是,UPF转发来自UE1或UE2的时钟源声明,可以是:UPF通过UPF的端口转发来自UE1或UE2的时钟源声明,或者是UPF向处于主端口状态的UE(如UE3、UE4等等)发送来自UE1或UE2的时钟源声明,由主端口状态的UE再对外转发来自UE1或UE2的时钟源声明。
可选的,5G系统内的UE(如图6中的UE1、UE2等)可以根据从远端设备收到的时钟源声明和时钟同步报文进行时钟同步。
可选的,5G系统内的UE(如图6中的UE2等)可以根据从UPF收到的时钟源声明和时钟同步报文进行时钟同步。也即,UPF将从UE1收到的时钟源声明和时钟同步报文发送给UE2,从而UE2可以基于收到的时钟源声明和时钟同步报文进行时钟同步。
基于上述方案二,一方面,UPF只从一个UE接收时钟源声明,从而仅转发来自一个UE的时钟源声明,可以节约开销以及减少时钟源声明接收者的决策开销,另一方面,当UPF接收时钟源声明异常导致无法转发时钟源声明时,则UPF可以切换至转发其它UE的时钟源声明,可以保障时钟同步的可靠性。并且,上述方案中,5G系统内的所有UE都可以同步,实现了时钟同步的可靠性。
基于上述实现方案一或实现方案二,本申请实施例可以提供以下关于UPF侧的通信方法。如图7(a)所示,该方法包括以下步骤:
步骤701a,UPF在第一时刻接收来自第一UE的时钟源声明。
步骤702a,UPF通过UPF的端口或处于主端口状态的UE发送来自第一UE的时钟源声明。
步骤703a,若UPF未在第一时长内收到来自第一UE的时钟源声明或UPF从控制面网元接收到用于指示发送来自第二UE的时钟源声明的指示信息,UPF通过UPF的端口或处于主端口状态的UE发送来自第二UE的时钟源声明,第一时长位于第一时刻后,其中,来自第一UE的时钟源声明对应的时钟源与来自第二UE的时钟源声明对应的时钟源相同。
可选的,第一时长为预配置,或者是控制面网元配置的。
可选的,若UPF通过UPF的端口或处于主端口状态的UE发送来自第一UE的时钟源声明,则UPF还可以向第二UE发送来自第一UE的时钟源声明。
其中,上述第一UE、第二UE比如分别可以是图8(a)、图9(a)或图10(a)中的UE1、UE2。
基于上述方案,UPF先转发来自第一UE的时钟源声明,当UPF无法在第一时长内接收到来自第一UE的时钟源声明或者是UPF从控制面网元收到用于指示发送来自第二UE的时钟源声明的指示信息,则UPF决策需要切换为转发来自第二UE的时钟源声明。需要说明的是,在切换之前,UPF可能能够从第二UE接收时钟源声明(如基于图8(a)示例),也可能不能够从第二UE接收时钟源声明(如基于图9(a)或图10(a)示例),但在切换后,UPF是可以从第二UE接收时钟源声明,并且UPF转发从第二UE收到的时钟源声明。基于该方案,可以保障5G系统能够同步到外部的时钟源,保障了时钟同步的可靠性。
作为一种实现方法,在步骤702a之前,若UPF既能够从第一UE接收时钟源声明,也能够从第二UE接收时钟源声明,则UPF确定来自第一UE的时钟源声明与来自第二UE的时钟源声明相同,则确定发送来自第一UE的时钟源声明。比如,第一UE先向UPF发送时钟源声明,因而UPF转发来自第一UE的时钟源声明。再比如,UPF确定第一UE负载较轻,因而UPF转发来自第一UE的时钟源声明。
作为另一种实现方法,在步骤702a之前,若UPF既能够从第一UE接收时钟源声明,也能够从第二UE接收时钟源声明,则UPF也可以是从控制面网元接收配置信息,该配置信息用于配置UPF发送来自第一UE的时钟源声明。也即,是由控制面网元通知UPF转 发来自第一UE的时钟源声明。
作为一种实现方法,在UPF未在第一时长内收到来自第一UE的时钟源声明的情况下,UPF可以向控制面网元发送指示信息,该指示信息用于指示未在第一时长内收到来自第一UE的时钟源声明,从而触发控制面网元决策由UPF转发来自第二UE的时钟源声明。因此,控制面网元可以向UPF发送用于指示UPF发送来自第二UE的时钟源声明的指示信息,和/或向第二UE发送用于指示第二UE向UPF发送时钟源声明的指示信息(基于图9(a)或图10(a)示例,UE2接收到该指示信息后,开始向UPF发送时钟源声明)。
作为一种实现方法,在UPF未在第一时长内收到来自第一UE的时钟源声明的情况下,UPF可以决策发送来自第二UE的时钟源声明,并向控制面网元发送通知信息,该通知信息用于指示UPF发送来自第二UE的时钟源声明。
基于上述实现方案二,本申请实施例可以提供以下关于UE侧的通信方法。如图7(b)所示,该方法包括以下步骤:
步骤701b,UE检测在第一时长内是否收到来自UPF的时钟源声明,UE的端口状态为从属状态或被动状态。
步骤702b,当UE未在第一时长内收到来自UPF的时钟源声明,则向UPF发送来自远端设备的时钟源声明。
这里的UE比如可以是图9(a)或图10(a)中的UE2。
基于该方案,当UE未在第一时长内收到来自UPF的时钟源声明,表明UPF无法从其它UE接收时钟源声明,从而该UE可以向UPF发送远端设备的时钟源声明,保障了UPF可以同步到来自远端设备的时钟源以及能够转发时钟源声明,从而保障了5G系统同步外部的时钟源的可靠性。
作为一种实现方法,在步骤701b之前,UE可以接收来自控制面网元的配置信息,该配置信息用于配置UE的端口状态为从属状态或被动状态。或者理解为,控制面网元将该UE的端口配置为S端口或P端口。或者,作为另一种实现方法,在步骤701b之前,UE确定来自UPF的时钟源声明对应的时钟源与来自远端设备的时钟源声明对应的时钟源相同,则确定UE的端口状态为从属状态或被动状态。也即,可以由控制面网元配置UE的端口状态,也可以是由UE自行确定UE的端口状态。
作为一种实现方法,该UE可以根据接收到的来自远端设备的时钟同步报文进行时钟同步。或者,作为另一种实现方法,该UE也可以根据接收到的来自用户面的时钟同步报文进行时钟同步。
作为一种实现方法,在UE的端口状态为被动状态的情况下,当UE未在第一时长内收到来自UPF的时钟源声明,表明该UPF未能从其它UE接收到时钟源声明,则该UE可以确定该UE的端口状态为从属状态,进而在端口状态修改为从属状态后,可以向UPF发送从远端设备接收到的时钟源声明,从而保障了UPF可以收到时钟源声明,提升了时钟源声明同步的可靠性。
基于上述实现方案一或实现方案二,本申请实施例可以提供以下关于控制面网元侧(如控制面网元可以是SMF、NEF或AF等)的通信方法。如图7(c)所示,该方法包括以下步骤:
步骤701c,控制面网元接收来自第一UE的时钟源声明。
步骤702c,控制面网元确定第一UE的端口状态为从属状态。
或者理解为,将第一UE配置为S端口。
步骤703c,控制面网元接收来自第二UE的时钟源声明。
步骤704c,控制面网元确定来自第二UE的时钟源声明对应的时钟源与来自第一UE的时钟源声明对应的时钟源相同,则确定第二UE的端口状态为被动状态或从属状态。
或者理解为,将第二UE配置为P端口或S端口。
步骤705c,控制面网元确定满足第一条件,则确定第二UE的端口状态为从属状态和/或向UPF发送第一指示信息,第一指示信息用于指示UPF发送来自第二UE的时钟源声明。
其中,上述第一UE、第二UE比如分别可以是图8(a)、图9(a)或图10(a)中的UE1、UE2。
基于上述方案,是由控制面网元配置5G系统内各UE的端口状态。其中,将第一UE的端口状态配置为从属状态,并且UPF转发来自第一UE的时钟源声明。以及将第二UE的端口状态配置为从属状态或被动状态,且UPF不转发来自第二UE的时钟源声明。后续,当控制面确定满足第一条件,则控制面网元确定第一UE不能向UPF发送时钟源声明,从而UPF无法转发来自第一UE的时钟源,则控制面网元可以执行以下操作a)和/或操作b):
操作a):当第二UE的端口状态为被动状态时,控制面网元将第二UE的端口状态调整为从属状态,进而第二UE可以向UPF发送时钟源声明。
操作b):控制面网元向UPF发送指示信息(可以称为第一指示信息),该指示信息用于指示UPF发送来自第二UE的时钟源声明。
作为一种实现方法,控制面网元确定满足第一条件,包括以下一项或多项:
1)控制面网元接收来自UPF的指示信息(可以称为第二指示信息),该指示信息用于指示UPF未在第一时长内收到来自第一UE的时钟源声明。
也即,当UPF未在第一时长内收到来自第一UE的时钟源声明,则UPF向控制面网元上报未在第一时长内收到来自第一UE的时钟源声明的指示信息,从而控制面网元确定满足第一条件,触发控制面网元决策通知UPF转发来自第二UE的时钟源声明。
2)控制面网元接收来自第一UE的指示信息(可以称为第三指示信息),该指示信息用于指示第一UE未在第二时长内收到来自远端设备的时钟源声明。
也即,当第一UE未在第二时长内收到来自远端设备的时钟源声明,则第一UE向控制面网元上报未在第二时长内收到来自远端设备的时钟源声明的指示信息,从而控制面网元确定满足第一条件,触发控制面网元决策通知UPF转发来自第二UE的时钟源声明。
3)控制面网元确定第一UE异常。
也即,当控制面网元确定第一UE异常(如控制面网元是SMF,则SMF可以检测到第一UE异常,或者该控制面网元是AF或NEF,则SMF可以检测到第一UE异常后上报给AF或NEF),从而控制面网元确定满足第一条件,触发控制面网元决策通知UPF转发来自第二UE的时钟源声明。
4)控制面网元接收来自第二UE的指示信息(可以称为第四指示信息),该指示信息用于指示第二UE未在第三时长内收到来自UPF的时钟源声明。
也即,当第二UE未在第三时长内收到来自UPF的时钟源声明,表明UPF可能未能 从第一UE收到时钟源声明,从而第二UE向控制面网元上报未在第三时长内收到来自UPF的时钟源声明的指示信息,从而控制面网元确定满足第一条件,触发控制面网元决策通知UPF转发来自第二UE的时钟源声明。
以上1)至4)均是由控制面网元确定满足第一条件的具体实现方式,在控制面网元确定满足第一条件后,触发控制面网元决策通知UPF转发来自第二UE的时钟源声明。
作为另一种实现方法,也可以是由UPF确定未在设定时长(如第一时长)内收到来自第一UE的时钟源声明,则UPF决策转发来自第二UE的时钟源声明。进一步的,UPF还可以向控制面网元上报用于指示UPF发送来自第二UE的时钟源声明的通知信息。
下面结合具体示例,对上述实现方案一和实现方案二的实施例进行说明。以下实施例一是结合具体示例对上述实现方案一的具体介绍,以下实施例二、三是结合具体示例对上述实现方案二的具体介绍。其中,实施例二中的UE2被配置为S端口,实施例三中的UE2被配置为P端口。
需要说明的是,以下实施例一至实施例三中,将会提供比上述实现方案一和实现方案二更为详尽的细节描述。
实施例一
如图8(a)所示,为时钟源同步的一个示例图。该示例中,TSN时钟源部署在与UE1、UE2相连的网络中,并且UE1和UE2及相连的网络形成了环路(图中简化为UE1和UE2都连接在远端设备上)。UE2被确定为S端口或P端口,且向UPF转发时钟源声明和时钟同步报文。
基于图8(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在用户面确定5G系统内的各设备的端口状态。如图8(b)所示,该通信方法包括以下步骤:
步骤801b,远端设备1向UE1发送时钟源声明。相应地,UE1接收到时钟源声明。
步骤802b,UE1确定UE1为S端口。
UE1确定没有从UPF接收到其它时钟源声明,则将UE1确定为S端口。或者,UE1从UPF接收到其它时钟源声明,但确定从UE1侧的远端设备收到的时钟源声明对应的TSN时钟源优于从UPF收到的时钟源声明对应的TSN时钟源,则UE1确定从远端设备侧收到的时钟源声明对应的TSN时钟源为最优时钟源,并将UE1确定为S端口。
步骤803b,UE1向UPF发送时钟源声明。相应地,UPF接收到时钟源声明。
也即,UE1向UPF转发从远端设备1收到的时钟源声明。
步骤804b,远端设备1向UE1发送时钟同步报文。相应地,UE1接收到时钟同步报文。
UE1根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤805b,UE1向UPF发送时钟同步报文。相应地,UPF接收到时钟同步报文。
也即,UE1向UPF转发从远端设备1收到的时钟同步报文。
UPF根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤806b,UPF确定UPF为M端口。
UPF确定没有从远端设备2接收到其它时钟源声明,则确定UPF为M端口。或者,UPF从远端设备2接收到其它时钟源声明,但确定从UE1侧收到的时钟源声明对应的TSN时钟源优于从远端设备2收到的时钟源声明对应的TSN时钟源,则UPF确定从UE1侧收到的时钟源声明对应的TSN时钟源为最优时钟源,并将UPF确定为M端口。
因此UPF可以向远端设备2发送来自UE1的时钟源声明,以及处理来自UE1的时钟同步报文,并将处理后的时钟同步报文发送至远端设备2。
需要说明的是,步骤806b可以是在步骤803b之后,步骤809b之前的任意步骤执行。
步骤807b,远端设备1向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
步骤808b,UE2确定UE2为S端口或者P端口。
UE2确定没有从UPF接收到其它时钟源声明,则将UE2确定为S端口或者P端口。或者,UE2收到UPF发送的来自UE1的时钟源声明,并确定从UPF侧收到的时钟源声明与从远端设备1收到的时钟源声明相同,则UE2确定UE2为S端口或者P端口。
步骤809b,UE2向UPF发送时钟源声明。相应地,UPF接收到时钟源声明。
也即,UE2向UPF转发从远端设备1收到的时钟源声明。
步骤810b,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤811b,UE2向UPF发送时钟同步报文。相应地,UPF接收到时钟同步报文。
也即,UE2向UPF转发从远端设备1收到的时钟同步报文。
UPF确定从UE1接收的时钟源声明与从UE2接收的时钟源声明相同,则UPF在接收到来自UE2的时钟同步报文后,不处理该时钟同步报文。
可选的,UPF将UE2的会话对应的端口确定为S端口或P端口。
需要说明的是,当UE1出现异常时,例如链路故障或下线,UPF可以向其它设备转发来自UE2的时钟源声明并处理来自UE2的时钟同步报文。若上述步骤811b中,UPF将UE2的会话对应的端口确定为P端口,则UPF还需要将该P端口修改为S端口。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步,从而保障了5G系统桥节点同步外部的TSN时钟源时的可靠性。
基于图8(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在控制面确定5G系统内的各设备的端口状态。如图8(c)所示,该通信方法包括以下步骤:
步骤801c,远端设备1向UE1发送时钟源声明。相应地,UE1接收到时钟源声明。
步骤802c,UE1向控制面网元发送时钟源声明。相应地,控制面网元接收到时钟源声明。
也即,UE1向控制面网元转发从远端设备1收到的时钟源声明。
该控制面网元可以是AF、NEF或SMF等。
步骤803c,控制面网元确定UE1为S端口。
控制面网元确定从UE1接收到的时钟源声明对应的TSN时钟源为5G系统接收到的最 优时钟源,则确定UE1为S端口。
步骤804c,控制面网元向UE1发送配置信息。相应地,UE1接收到配置信息。
该配置信息用于将UE1配置为S端口。
上述方案是由UE1将时钟源声明发送至控制面网元,作为另一种实现方案,也可以是由UE1将时钟源声明发送至UPF,然后UPF将时钟源声明发送至控制面网元。进而控制面网元执行上述步骤803c和步骤804c。
可选地,控制面网元还可以向UPF配置UE1的会话对应的端口状态为S端口。配置的方式可以是配置端口状态,也可以是配置报文处理规则,例如配置为UPF从UE1的会话接收时钟源声明,并广播或组播到时钟域内的其他会话和/或N6侧端口。如果控制面网元是AF/NEF等,其可以是通过桥配置将该配置信息发送到UPF,或者是其配置UE1端口状态到SMF时,SMF将端口状态配置到UPF或生成报文处理规则配置到UPF,或者AF/NEF触发报文处理规则创建流程,通过SMF创建UPF上的报文处理规则。本申请中其它需要控制面网元向UPF配置UE1或UE2的会话对应的端口状态时,可采用此处描述的一种或多种方法,后续不再赘述。
可选地,控制面网元还可以将UPF配置为M端口。
步骤805c,UE1向UPF发送时钟源声明。相应地,UPF接收到时钟源声明。
UPF收到来自UE1的时钟源声明,确定该时钟源声明对应的TSN时钟源为最优时钟源,则可以向其它设备转发该时钟源声明。或者UPF根据配置的报文处理规则转发时钟源声明。
步骤806c,远端设备1向UE1发送时钟同步报文。相应地,UE1接收到时钟同步报文。
UE1根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤807c,UE1向UPF发送时钟同步报文。相应地,UPF接收到时钟同步报文。
也即,UE1向UPF转发从远端设备1收到的时钟同步报文。
UPF根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤808c,远端设备1向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
步骤809c,UE2向控制面网元发送时钟源声明。相应地,控制面网元接收到时钟源声明。
也即,UE2向控制面网元转发从远端设备1收到的时钟源声明。
步骤810c,控制面网元确定UE2为S端口或者P端口。
控制面网元确定从UE2接收到的时钟源声明对应的TSN时钟源,与从UE1接收到的时钟源声明对应的TSN时钟源相同,但从UE2接收到的时钟源声明对应的TSN时钟源来自UE侧,进而确定UE2为S端口或者P端口。
步骤811c,控制面网元向UE2发送配置信息。相应地,UE2接收到配置信息。
该配置信息用于将UE2配置为S端口或者P端口。
上述方案是由UE2将时钟源声明发送至控制面网元,作为另一种实现方案,也可以是由UE2将时钟源声明发送至UPF,然后UPF将时钟源声明发送至控制面网元。进而控制面网元执行上述步骤810c和步骤811c。
可选地,控制面网元还可以向UPF配置UE2的会话对应的端口状态为S端口或P端口。
步骤812c,UE2向UPF发送时钟源声明。相应地,UPF接收到时钟源声明。
UPF收到来自UE2的时钟源声明,若UPF上的UE2对应的会话对应的端口被配置为S端口,则UPF确定来自UE2的时钟源声明对应的TSN时钟源与从UE1收到的时钟源声明对应的TSN时钟源相同,则UPF确定向其它设备转发来自UE1的时钟源声明及处理来自UE1的时钟同步报文。若UE2对应的会话对应的端口被配置为P端口,则UPF直接确定向其它设备转发来自UE1的时钟源声明及处理来自UE1的时钟同步报文。
步骤813c,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2根据时钟同步报文,与TSN时钟源进行时钟同步。
步骤814c,UE2向UPF发送时钟同步报文。相应地,UPF接收到时钟同步报文。
也即,UE2向UPF转发从远端设备1收到的时钟同步报文。
UPF确定从UE1接收的时钟源声明与从UE2接收的时钟源声明相同,则UPF在接收到来自UE2的时钟同步报文后,不处理该时钟同步报文。
需要说明的是,当UE1出现异常时,控制面网元确定UE1下线(比如控制面网元为SMF,则SMF可以监测到UE1下线,再比如控制面网元是AF/NEF,则SMF监测到UE1下线时,向AF/NEF上报UE1下线)或从UPF收到指示信息,该指示信息用于指示UPF从UE1接收时钟源声明超时,则控制面网元通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。可选地,若UPF上的UE2对应的会话对应的端口被配置为P端口,则控制面网元可以向UPF发送配置信息,用于将UPF上的UE2的会话对应的端口状态配置为S端口。或者控制面网元从UE1接收到指示信息,该指示信息用于指示UE1从远端设备1接收时钟源声明超时,则控制面网元通知UPF向其他设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。可选的,控制面网元向UPF/UE1配置超时时间,用于UPF/UE1在接收时钟源声明超时时,向控制面网元上报。
作为另一种实现方法,在控制面方案中,对异常的处理也可以采用上述图8(b)实施例的用户面方案中的异常处理的方法,即UPF识别出异常后,直接切换到转发来自UE2的时钟源声明和转发来自UE2的时钟同步报文,而不需要控制面进行配置。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步,从而保障了5G系统桥节点同步外部的TSN时钟源时的可靠性。
实施例二
如图9(a)所示,为时钟源同步的又一个示例图。该示例中,TSN时钟源部署在与UE1、UE2相连的网络中,并且UE1和UE2及相连的网络形成了环路(图中简化为UE1和UE2都连接在远端设备上)。UE2被确定为S端口,且不向UPF转发时钟源声明和时钟同步报文。
基于图9(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在用户面确定5G系统内的各设备的端口状态。如图9(b)所示,该通信方法包括以下步骤:
步骤901b至步骤909b,同图8(b)中的步骤801b至步骤809b,可参考前述描述。
步骤910b,UPF向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
这里的时钟源声明指的是UPF收到的来自UE1的时钟源声明。
UPF确定从UE1收到的时钟源声明与从UE2收到的时钟源声明相同,则UPF仍然向UE2转发来自UE1的时钟源声明,可选地,UPF还向UE2转发来自UE1的时钟同步报文。
步骤911b,UE2确定停止向UPF发送时钟源声明。
UE2在接收到来自UPF的时钟源声明后,确定UE2从UPF收到的时钟源声明与从远端设备1收到的时钟源声明相同,则UE2确定停止向UPF发送从远端设备1收到的时钟源声明和时钟同步报文。
步骤912b,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2在该步骤中收到时钟同步报文后,不向UPF发送该时钟同步报文。
UE2根据从远端设备1收到的时钟同步报文,与TSN时钟源进行时钟同步。作为另一种实现方法,若上述步骤910b之后,UE2还从UPF收到来自UE1的时钟同步报文,则UE2也可以根据来自UE1的时钟同步报文,与TSN时钟源进行时钟同步。
需要说明的是,若UE2在步骤911b之前从远端设备1收到时钟同步报文,则UE2可以将时钟同步报文发送至UPF,UPF不处理该时钟同步报文。
需要说明的是,当UE1出现异常时,例如链路故障或下线,UPF则无法从UE1收到时钟源声明,进而无法向UE2转发来自UE1的时钟源声明。当UE2检测到从UPF接收时钟源声明超时,则向UPF发送来自远端设备1的时钟源声明和时钟同步报文,保障了UPF可以收到时钟源声明和时钟同步报文。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步,从而保障了5G系统桥节点同步外部的TSN时钟源时的可靠性。
基于图9(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在控制面确定5G系统内的各设备的端口状态。如图9(c)所示,该通信方法包括以下步骤:
步骤901c至步骤912c,同图8(c)实施例的步骤801c至步骤812c,可参考前述描述。
步骤913c,UPF向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
这里的时钟源声明指的是UPF收到的来自UE1的时钟源声明。
UPF确定从UE1收到的时钟源声明与从UE2收到的时钟源声明相同,则UPF仍然向UE2转发来自UE1的时钟源声明,可选地,UPF还向UE2转发来自UE1的时钟同步报文。
步骤914c,UE2确定停止向UPF发送时钟源声明。
UE2在接收到来自UPF的时钟源声明后,确定UE2从UPF收到的时钟源声明与从远端设备1收到的时钟源声明相同,则UE2确定停止向UPF发送从远端设备1收到的时钟源声明和时钟同步报文。
步骤912b,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2在该步骤中收到时钟同步报文后,不向UPF发送该时钟同步报文。
UE2根据从远端设备1收到的时钟同步报文,与TSN时钟源进行时钟同步。作为另一种实现方法,若上述步骤913c之后,UE2还从UPF收到来自UE1的时钟同步报文,则UE2也可以根据来自UE1的时钟同步报文,与TSN时钟源进行时钟同步。
需要说明的是,若UE2在步骤914c之前从远端设备1收到时钟同步报文,则UE2可以将时钟同步报文发送至UPF,UPF不处理该时钟同步报文。
需要说明的是,当UE1出现异常时,例如链路故障或下线,UPF则无法从UE1收到时钟源声明,进而无法向UE2转发来自UE1的时钟源声明。当UE2检测到从UPF接收时钟源声明超时,则向UPF发送来自远端设备1的时钟源声明和时钟同步报文,保障了UPF可以收到时钟源声明和时钟同步报文。可选地,UE2还向控制面网元发送指示信息,用于指示从UPF接收时钟源声明超时,或者UE2向UPF发送该指示信息,进而UPF将该指示信息发送至控制面网元。控制面网元在收到该指示信息后,对5G系统的设备的端口状态进行更新,例如,如果之前向UPF配置UE2的会话对应的端口状态为P端口,则可以将UE2的会话对应的端口状态更新为S端口。
作为另一种实现方法,当UE1出现异常时,控制面网元确定UE1下线(比如控制面网元为SMF,则SMF可以监测到UE1下线,再比如控制面网元是AF/NEF,则SMF监测到UE1下线时,向AF/NEF上报UE1下线)或从UPF收到指示信息,该指示信息用于指示UPF从UE1接收时钟源声明超时,或者指示UPF从UE2接收时钟源声明,则控制面网元通知UE2向UPF转发从远端设备1收到的时钟源声明和时钟同步报文,和/或通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
作为另一种实现方法,控制面网元从UE1接收到指示信息,该指示信息用于指示UE1接收时钟源声明超时,则控制面网元通知UE2向UPF转发从远端设备1收到的时钟源声明和时钟同步报文,以及通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
作为另一种实现方法,控制面网元从UE2接收指示信息,该指示信息用于指示UE2向UPF发送时钟源申明,则控制面网元可以通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
可选的,控制面网元向UPF/UE1/UE2配置超时时间。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步,从而保障了5G系统桥节点同步外部的TSN时钟源时的可靠性。
实施例三
如图10(a)所示,为时钟源同步的一个示例图。该示例中,TSN时钟源部署在与UE1、UE2相连的网络中,并且UE1和UE2及相连的网络形成了环路(图中简化为UE1和UE2都连接在远端设备上)。UE2确定为P端口,但可以根据从远端设备1收到的时钟同步报文进行时钟同步。
基于图10(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在用户面确定5G系统内的各设备的端口状态。如图10(b)所示,该通信方法包括以下步骤:
步骤1001b至步骤1006b,同图8(b)中的步骤801b至步骤806b,可参考前述描述。
步骤1007b,远端设备1向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
步骤1008b,UPF向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
这里的时钟源声明,指的是UPF转发的来自UE1的时钟源声明。
上述步骤1007b与步骤1008b的先后顺序,没有限定。
若UE2先从远端设备1收到时钟源声明,则UE2将UE2的端口设置为S端口。若UE2先从UPF收到时钟源声明,则UE2将UE2的端口设置为M端口。
步骤1009b,UE2将UE2设置为P端口。
UE2确定从UPF收到的时钟源声明与从远端设备1收到的时钟源声明相同,则UE2将UE2的端口状态设置为P端口,也即从S端口更新为P端口,或从M端口更新为P端口。
步骤1010b,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2根据时钟同步报文,与TSN时钟源进行时钟同步。可选的,若在步骤1008b之后,UE2从UPF收到来自UE1的时钟同步报文,则UE2也可以根据来自UE1的时钟同步报文与TSN时钟源进行时钟同步。
需要说明的是,当UE1出现异常时,例如链路故障或下线,UPF则无法从UE1收到时钟源声明,进而无法向UE2转发来自UE1的时钟源声明。当UE2检测到从UPF接收时钟源声明超时,则向UPF发送来自远端设备1的时钟源声明和时钟同步报文,保障了UPF可以收到时钟源声明和时钟同步报文。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步。
基于图10(a)所示的示例,本申请实施例提供的一种通信方法,该方法是在控制面确定5G系统内的各设备的端口状态。如图10(c)所示,该通信方法包括以下步骤:
步骤1001c至步骤1009c,同图8(c)实施例所示的步骤801c至步骤809c。
步骤1010c,控制面网元确定UE2为P端口。
控制面网元确定从UE2接收到的时钟源声明对应的TSN时钟源,与从UE1接收到的时钟源声明对应的TSN时钟源相同,进而确定UE2为P端口。
步骤1011c,控制面网元向UE2发送配置信息。相应地,UE2接收到配置信息。
该配置信息用于将UE2配置为P端口。
上述方案是由UE2将时钟源声明发送至控制面网元,作为另一种实现方案,也可以是由UE2将时钟源声明发送至UPF,然后UPF将时钟源声明发送至控制面网元。进而控制面网元执行上述步骤1010c和步骤1011c。可选地,控制面网元还可以向UPF配置UE2的会话对应的端口状态为P端口。
步骤1012c,UPF向UE2发送时钟源声明。相应地,UE2接收到时钟源声明。
这里的时钟源声明是UPF收到的来自UE1的时钟源声明。
可选的,UPF还向UE2发送收到的来自UE1的时钟同步报文。
步骤1013c,远端设备1向UE2发送时钟同步报文。相应地,UE2接收到时钟同步报文。
UE2根据时钟同步报文,与TSN时钟源进行时钟同步。可选地,若UE2从UPF收到来自UE1的时钟同步报文,则UE2也可以根据来自UE1的时钟同步报文与TSN时钟源进行时钟同步。
需要说明的是,当UE1出现异常时,例如链路故障或下线,UPF则无法从UE1收到时钟源声明,进而无法向UE2转发来自UE1的时钟源声明。当UE2检测到从UPF接收时钟源声明超时,则向UPF发送来自远端设备1的时钟源声明和时钟同步报文,保障了UPF可以收到时钟源声明和时钟同步报文。可选地,UE2还向控制面网元发送指示信息,用于指示从UPF接收时钟源声明超时,或者UE2向UPF发送该指示信息,进而UPF将该指示信息发送至控制面网元。控制面网元在收到该指示信息后,对5G系统的设备的端口状态进行更新,例如如果之前向UPF配置UE2的会话对应的端口状态为P端口,则可以将UE2的会话对应的端口状态更新为S端口。
作为另一种实现方法,当UE1出现异常时,控制面网元确定UE1下线(比如控制面网元为SMF,则SMF可以监测到UE1下线,再比如控制面网元是AF/NEF,则SMF监测到UE1下线时,向AF/NEF上报UE1下线)或从UPF收到指示信息,该指示信息用于指示UPF从UE1接收时钟源声明超时,或者指示UPF从UE2接收时钟源声明,则控制面网元通知UE2向UPF转发从远端设备1收到的时钟源声明和时钟同步报文,和/或通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
作为另一种实现方法,控制面网元从UE1接收到指示信息,该指示信息用于指示UE1接收时钟源声明超时,则控制面网元通知UE2向UPF转发从远端设备1收到的时钟源声明和时钟同步报文,以及通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
作为另一种实现方法,控制面网元从UE2接收指示信息,该指示信息用于指示UE2向UPF发送时钟源申明,则控制面网元可以通知UPF向其它设备转发来自UE2的时钟源声明及处理来自UE2的时钟同步报文。
可选的,控制面网元向UPF/UE1/UE2配置超时时间。
基于该方案,UE1和UE2都接收并处理来自远端设备的时钟源声明和时钟同步报文,并同步到外部的TSN时钟源,并且UPF仅处理来自UE1的时钟同步报文。该方案实现了5G系统内的多个UE均可以实现与外部的TSN时钟源进行时钟同步。并且,当其中一个UE出现链路故障导致无法同步时钟源时,可以切换至其它UE进行时钟源同步,从而保障了5G系统桥节点同步外部的TSN时钟源时的可靠性。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
参考图11,为本申请实施例提供的一种通信装置示意图。该通信装置用于实现上述各实施例中对应终端设备、或用户面网元、或控制面网元的各个步骤,如图11所示,该通信装置1100包括发送单元1110、接收单元1120和处理单元1130。
在第一个实施例中,上述装置1100用于终端设备或上述装置1110为终端设备,则:
所述处理单元1130,用于检测在第一时长内是否收到来自用户面网元的时钟源声明,所述终端设备的端口状态为从属状态或被动状态;所述发送单元1110,用于当所述接收单元1120未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则向所述用户面网元发送来自远端设备的时钟源声明。
在一种可能的实现方法中,所述接收单元1120,还用于接收来自控制面网元的配置信息,所述配置信息用于配置所述终端设备的端口状态为从属状态或被动状态;或者,所述处理单元1130,还用于确定来自用户面网元的时钟源声明对应的时钟源与来自远端设备的时钟源声明对应的时钟源相同,则确定所述终端设备的端口状态为从属状态或被动状态。
在一种可能的实现方法中,所述接收单元1120,还用于接收来自所述远端设备的时钟同步报文;所述处理单元1130,还用于根据所述时钟同步报文进行时钟同步。
在一种可能的实现方法中,所述接收单元1120,还用于接收来自所述用户面的时钟同步报文;所述处理单元1130,还用于根据所述时钟同步报文进行时钟同步。
在一种可能的实现方法中,所述处理单元1130,还用于在所述终端设备的端口状态为被动状态的情况下,当所述接收单元1120未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则确定所述终端设备的端口状态为从属状态。
在第二个实施例中,上述装置1100用于用户面网元或上述装置1110为用户面网元,则:
所述接收单元1120,用于在第一时刻接收来自第一终端设备的时钟源声明;所述发送单元1110,用于通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第一终端设备的时钟源声明;以及,用于若所述接收单元1120未在第一时长内收到来自所述第一终端设备的时钟源声明或从控制面网元接收到用于指示发送来自所述第二终端设备的时钟源声明的指示信息,则通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第二终端设备的时钟源声明,所述第一时长位于所述第一时刻后;其中,所述来自第一终端设备的时钟源声明对应的时钟源与所述来自第二终端设备的时钟源声明对应的时钟源相同。
在一种可能的实现方法中,处理单元1130,用于确定来自第一终端设备的时钟源声明与来自第二终端设备的时钟源声明相同,则确定发送来自所述第一终端设备的时钟源声明;或者,所述接收单元1120,还用于接收来自控制面网元的配置信息,所述配置信息用于配置所述用户面网元发送来自所述第一终端设备的时钟源声明。
在一种可能的实现方法中,在所述接收单元1120未在第一时长内收到来自所述第一终端设备的时钟源声明的情况下,所述发送单元1110,还用于向控制面网元发送指示信息,所述指示信息用于指示未在所述第一时长内收到来自所述第一终端设备的时钟源声明;和 /或,向控制面网元发送通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
在一种可能的实现方法中,所述第一时长为预配置;或者,所述第一时长为所述控制面网元配置的。
在一种可能的实现方法中,所述发送单元1110,还用于向所述第二终端设备发送来自所述第一终端设备的时钟源声明。
在第三个实施例中,上述装置1100用于控制面网元或上述装置1110为控制面网元,则:
所述接收单元1120,用于接收来自第一终端设备的时钟源声明;以及,接收来自第二终端设备的时钟源声明;所述处理单元1130,用于确定所述第一终端设备的端口状态为从属状态;确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源相同,则确定所述第二终端设备的端口状态为被动状态;以及,确定满足第一条件,则确定所述第二终端设备的端口状态为从属状态和/或通过所述发送单元1110向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
在一种可能的实现方法中,所述处理单元1130,用于确定满足第一条件,包括:用于确定所述接收单元1120接收到来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,用于确定所述接收单元1120接收到来自所述第一终端设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,用于确定所述第一终端设备异常;或者,用于确定所述接收单元1120接收到来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声明。
在一种可能的实现方法中,所述接收单元1120,还用于接收来自所述用户面网元的通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
在第四个实施例中,上述装置1100用于控制面网元或上述装置1110为控制面网元,则:
接收单元1120,用于接收来自第一终端设备的时钟源声明;接收来自第二终端设备的时钟源声明;处理单元1130,用于确定所述第一终端设备的端口状态为从属状态;确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源相同,则确定所述第二终端设备的端口状态为从属状态。
在一种可能的实现方法中,发送单元1110,用于当处理单元1130确定满足第一条件,则向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
在一种可能的实现方法中,所述处理单元1130,用于确定满足第一条件,包括:
用于确定所述接收单元1120接收到来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,用于确定所述接收单元1120接收到来自所述第一终端设备的第三指示信息,所 述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,用于确定所述第一终端设备异常;或者,
用于确定所述接收单元1120接收到来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声明。
可选地,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元1130可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
如图12所示,为本申请提供的一种通信装置示意图,该装置可以是上述实施例中的终端设备、用户面网元、或控制面网元。该装置1200包括:处理器1202、通信接口1203、存储器1201。可选的,装置1200还可以包括通信线路1204。其中,通信接口1203、处理器1202以及存储器1201可以通过通信线路1204相互连接;通信线路1204可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1202可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口1203,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器1201可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1204与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1201用于存储执行本申请方案的计算机执行指令,并由处理器1202来控制执行。处理器1202用于执行存储器1201中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
图13提供了一种终端设备的结构示意图。该终端设备可适用于上述任意实施例中的终端设备。为了便于说明,图13仅示出了终端设备的主要部件。如图13所示,终端设备1300包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1300的收发单元1311,将具有处理功能的处理器视为终端设备1300的处理单元1312。如图13所示,终端设备1300包括收发单元1311和处理单元1312。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1311中用于实现接收功能的器件视为接收单元,将收发单元1311中用于实现发送功能的器件视为发送单元,即收发单元1311包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
图14为本申请实施例提供的一种芯片的结构示意图。芯片1400包括一个或多个处理器1401以及接口电路1402。可选的,所述芯片1400还可以包含总线1403。其中:
处理器1401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1401可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路1402可以用于数据、指令或者信息的发送或者接收,处理器1401可以利用接口电路1402接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路1402发送出去。
可选的,芯片还包括存储器,存储器可以包括只读存储器和随机存取存储器,并向处理器提供操作指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(NVRAM)。
可选的,存储器存储了可执行软件模块或者数据结构,处理器可以通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
可选的,芯片可以使用在本申请实施例涉及的通信装置(包括终端设备、用户面网元、控制面网元)中。可选的,接口电路1402可用于输出处理器1401的执行结果。关于本申请的一个或多个实施例提供的通信方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1401、接口电路1402各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供一种通信系统,包括上述任意实施例中的用户面网元和控制面网元。
本申请实施例还提供一种芯片,包括至少一个处理器和接口。该接口用于为至少一个处理器提供程序指令或者数据。该至少一个处理器用于执行程序指令,以实现上述任意实施例中的方法。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关 联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附 权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端设备检测在第一时长内是否收到来自用户面网元的时钟源声明,所述终端设备的端口状态为从属状态或被动状态;
    当所述终端设备未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则向所述用户面网元发送来自远端设备的时钟源声明。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述终端设备接收来自控制面网元的配置信息,所述配置信息用于配置所述终端设备的端口状态为从属状态或被动状态;或者,
    所述终端设备确定来自用户面网元的时钟源声明对应的时钟源与来自远端设备的时钟源声明对应的时钟源相同,则确定所述终端设备的端口状态为从属状态或被动状态。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述远端设备的时钟同步报文;
    所述终端设备根据所述时钟同步报文进行时钟同步。
  4. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述用户面的时钟同步报文;
    所述终端设备根据所述时钟同步报文进行时钟同步。
  5. 如权利要求1-4任一所述的方法,其特征在于,还包括:
    在所述终端设备的端口状态为被动状态的情况下,当所述终端设备未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则所述终端设备确定所述终端设备的端口状态为从属状态。
  6. 一种通信方法,其特征在于,包括:
    用户面网元在第一时刻接收来自第一终端设备的时钟源声明;
    所述用户面网元通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第一终端设备的时钟源声明;
    若所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明或所述用户面网元从控制面网元接收到用于指示发送来自所述第二终端设备的时钟源声明的指示信息,所述用户面网元通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第二终端设备的时钟源声明,所述第一时长位于所述第一时刻后;
    其中,所述来自第一终端设备的时钟源声明对应的时钟源与所述来自第二终端设备的时钟源声明对应的时钟源相同。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    所述用户面网元确定来自第一终端设备的时钟源声明与来自第二终端设备的时钟源声明相同,则确定发送来自所述第一终端设备的时钟源声明;或者,
    所述用户面网元接收来自控制面网元的配置信息,所述配置信息用于配置所述用户面网元发送来自所述第一终端设备的时钟源声明。
  8. 如权利要求6或7所述的方法,其特征在于,在所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明的情况下,所述方法还包括:
    所述用户面网元向控制面网元发送指示信息,所述指示信息用于指示未在所述第一时 长内收到来自所述第一终端设备的时钟源声明;和/或,
    所述用户面网元向控制面网元发送通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  9. 如权利要求6-8任一所述的方法,其特征在于,所述第一时长为预配置;或者,
    所述第一时长为所述控制面网元配置的。
  10. 如权利要求6-9任一所述的方法,其特征在于,还包括:
    所述用户面网元向所述第二终端设备发送来自所述第一终端设备的时钟源声明。
  11. 一种通信方法,其特征在于,包括:
    控制面网元接收来自第一终端设备的时钟源声明;
    所述控制面网元确定所述第一终端设备的端口状态为从属状态;
    所述控制面网元接收来自第二终端设备的时钟源声明;
    所述控制面网元确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源相同,则确定所述第二终端设备的端口状态为被动状态;
    所述控制面网元确定满足第一条件,则确定所述第二终端设备的端口状态为从属状态和/或向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  12. 如权利要求11所述的方法,其特征在于,所述控制面网元确定满足第一条件,包括:
    所述控制面网元接收来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,
    所述控制面网元接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,
    所述控制面网元确定所述第一终端设备异常;或者,
    所述控制面网元接收来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声明。
  13. 如权利要求11或12所述的方法,其特征在于,还包括:
    所述控制面网元接收来自所述用户面网元的通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  14. 一种终端设备,其特征在于,包括:处理单元、发送单元和接收单元;
    所述处理单元,用于检测在第一时长内是否收到来自用户面网元的时钟源声明,所述终端设备的端口状态为从属状态或被动状态;
    所述发送单元,用于当所述接收单元未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则向所述用户面网元发送来自远端设备的时钟源声明。
  15. 如权利要求14所述的终端设备,其特征在于,
    所述接收单元,还用于接收来自控制面网元的配置信息,所述配置信息用于配置所述终端设备的端口状态为从属状态或被动状态;或者,
    所述处理单元,还用于确定来自用户面网元的时钟源声明对应的时钟源与来自远端设备的时钟源声明对应的时钟源相同,则确定所述终端设备的端口状态为从属状态或被动状态。
  16. 如权利要求14或15所述的终端设备,其特征在于,
    所述接收单元,还用于接收来自所述远端设备的时钟同步报文;
    所述处理单元,还用于根据所述时钟同步报文进行时钟同步。
  17. 如权利要求14或15所述的终端设备,其特征在于,还包括:
    所述接收单元,还用于接收来自所述用户面的时钟同步报文;
    所述处理单元,还用于根据所述时钟同步报文进行时钟同步。
  18. 如权利要求14-17任一所述的终端设备,其特征在于,
    所述处理单元,还用于在所述终端设备的端口状态为被动状态的情况下,当所述接收单元未在所述第一时长内收到来自所述用户面网元的所述时钟源声明,则确定所述终端设备的端口状态为从属状态。
  19. 一种用户面网元,其特征在于,包括发送单元和接收单元;
    所述接收单元,用于在第一时刻接收来自第一终端设备的时钟源声明;
    所述发送单元,用于通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第一终端设备的时钟源声明;以及,用于若所述接收单元未在第一时长内收到来自所述第一终端设备的时钟源声明或从控制面网元接收到用于指示发送来自所述第二终端设备的时钟源声明的指示信息,则通过所述用户面网元的端口或处于主端口状态的终端设备发送来自所述第二终端设备的时钟源声明,所述第一时长位于所述第一时刻后;
    其中,所述来自第一终端设备的时钟源声明对应的时钟源与所述来自第二终端设备的时钟源声明对应的时钟源相同。
  20. 如权利要求19所述的用户面网元,其特征在于,还包括处理单元,用于确定来自第一终端设备的时钟源声明与来自第二终端设备的时钟源声明相同,则确定发送来自所述第一终端设备的时钟源声明;或者,
    所述接收单元,还用于接收来自控制面网元的配置信息,所述配置信息用于配置所述用户面网元发送来自所述第一终端设备的时钟源声明。
  21. 如权利要求19或20所述的用户面网元,其特征在于,在所述接收单元未在第一时长内收到来自所述第一终端设备的时钟源声明的情况下,所述发送单元,还用于:
    向控制面网元发送指示信息,所述指示信息用于指示未在所述第一时长内收到来自所述第一终端设备的时钟源声明;和/或,
    向控制面网元发送通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  22. 如权利要求19-21任一所述的用户面网元,其特征在于,所述第一时长为预配置;或者,
    所述第一时长为所述控制面网元配置的。
  23. 如权利要求19-22任一所述的用户面网元,其特征在于,
    所述发送单元,还用于向所述第二终端设备发送来自所述第一终端设备的时钟源声明。
  24. 一种通信装置,其特征在于,包括发送单元、接收单元和处理单元;
    所述接收单元,用于接收来自第一终端设备的时钟源声明;以及,接收来自第二终端设备的时钟源声明;
    所述处理单元,用于确定所述第一终端设备的端口状态为从属状态;确定来自第二终端设备的时钟源声明对应的时钟源与所述来自第一终端设备的时钟源声明对应的时钟源 相同,则确定所述第二终端设备的端口状态为被动状态;以及,确定满足第一条件,则确定所述第二终端设备的端口状态为从属状态和/或通过所述发送单元向用户面网元发送第一指示信息,所述第一指示信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  25. 如权利要求24所述的装置,其特征在于,所述处理单元,用于确定满足第一条件,包括:
    用于确定所述接收单元接收到来自所述用户面网元的第二指示信息,所述第二指示信息用于指示所述用户面网元未在第一时长内收到来自所述第一终端设备的时钟源声明;或者,
    用于确定所述接收单元接收到来自所述第一终端设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备未在第二时长内收到来自远端设备的时钟源声明;或者,
    用于确定所述第一终端设备异常;或者,
    用于确定所述接收单元接收到来自所述第二终端设备的第四指示信息,所述第四指示信息用于指示所述第二终端设备未在第三时长内收到来自所述用户面网元的时钟源声明。
  26. 如权利要求24或25所述的装置,其特征在于,所述接收单元,还用于接收来自所述用户面网元的通知信息,所述通知信息用于指示所述用户面网元发送来自所述第二终端设备的时钟源声明。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1-13任一所述的方法被执行。
  28. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得权利要求1-13任一所述的方法被执行。
PCT/CN2020/108744 2020-08-12 2020-08-12 一种通信方法、通信装置、终端设备及用户面网元 WO2022032544A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/108744 WO2022032544A1 (zh) 2020-08-12 2020-08-12 一种通信方法、通信装置、终端设备及用户面网元
EP20949043.2A EP4192134A4 (en) 2020-08-12 2020-08-12 COMMUNICATION METHOD, COMMUNICATION APPARATUS, TERMINAL DEVICE AND USER PLANE NETWORK ELEMENT
CN202080049356.8A CN114342489B (zh) 2020-08-12 2020-08-12 一种通信方法、通信装置、终端设备及用户面网元
US18/168,212 US20230217385A1 (en) 2020-08-12 2023-02-13 Communication Method, Communication Apparatus, Terminal Device, and User Plane Network Element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108744 WO2022032544A1 (zh) 2020-08-12 2020-08-12 一种通信方法、通信装置、终端设备及用户面网元

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/168,212 Continuation US20230217385A1 (en) 2020-08-12 2023-02-13 Communication Method, Communication Apparatus, Terminal Device, and User Plane Network Element

Publications (1)

Publication Number Publication Date
WO2022032544A1 true WO2022032544A1 (zh) 2022-02-17

Family

ID=80246718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108744 WO2022032544A1 (zh) 2020-08-12 2020-08-12 一种通信方法、通信装置、终端设备及用户面网元

Country Status (4)

Country Link
US (1) US20230217385A1 (zh)
EP (1) EP4192134A4 (zh)
CN (1) CN114342489B (zh)
WO (1) WO2022032544A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362874A (zh) * 2022-03-21 2022-04-15 北京国科天迅科技有限公司 主时钟设备确定方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392422A (zh) * 2018-04-23 2019-10-29 华为技术有限公司 一种确定时钟源的方法及装置
WO2020111994A1 (en) * 2018-11-27 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Devices and methods for handling precise timing protocol frames
CN111490842A (zh) * 2020-03-23 2020-08-04 腾讯科技(深圳)有限公司 时间同步方法、装置、计算机可读介质及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472669B (zh) * 2016-03-18 2022-09-16 华为技术有限公司 更新时钟同步拓扑的方法、确定时钟同步路径的方法及设备
WO2020081062A1 (en) * 2018-10-16 2020-04-23 Nokia Technologies Oy Wireless network support for ieee tsn based industrial automation
WO2020151806A1 (en) * 2019-01-22 2020-07-30 Nokia Technologies Oy Time synchronization mechanisms for wireless end points
CN111490841B (zh) * 2020-03-23 2024-05-31 腾讯科技(深圳)有限公司 用于实现时间同步的方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392422A (zh) * 2018-04-23 2019-10-29 华为技术有限公司 一种确定时钟源的方法及装置
WO2020111994A1 (en) * 2018-11-27 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Devices and methods for handling precise timing protocol frames
CN111490842A (zh) * 2020-03-23 2020-08-04 腾讯科技(深圳)有限公司 时间同步方法、装置、计算机可读介质及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "TSN integration", 3GPP DRAFT; R3-190240, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Athens, GREECE; 20190225 - 20190301, 15 February 2019 (2019-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051604183 *
CMCC: "Support for Accurate Reference Timing Delivery", 3GPP DRAFT; R2-1818123 SUPPORT FOR ACCURATE REFERENCE TIMING DELIVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051557628 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362874A (zh) * 2022-03-21 2022-04-15 北京国科天迅科技有限公司 主时钟设备确定方法、装置、电子设备及存储介质
CN114362874B (zh) * 2022-03-21 2022-08-12 北京国科天迅科技有限公司 主时钟设备确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN114342489A (zh) 2022-04-12
US20230217385A1 (en) 2023-07-06
CN114342489B (zh) 2023-03-28
EP4192134A4 (en) 2023-09-27
EP4192134A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2020220747A1 (zh) 一种tsn业务的处理方法、装置及系统
KR102648251B1 (ko) 클록 드리프트 프로세싱 방법, 네트워크 기능 네트워크 엘리먼트들, 및 저장 매체
CN111034338A (zh) 统一rlf检测、nr中的多波束rlm和全分集bfr机制
WO2020221266A1 (zh) 一种通信方法及装置
US10797934B1 (en) Open control plane function for wireless networks
WO2020220799A1 (zh) 一种通信方法、装置及系统
US20220217505A1 (en) Message transmission method and apparatus
US11071166B2 (en) Apparatus and method for an open control plane in wireless networks
EP3879796A1 (en) Selection of edge application server
WO2020248709A1 (zh) 一种mdbv的确定方法、装置及系统
CN113632439B (zh) 支持虚拟以太网网桥管理的蜂窝通信系统
WO2022032544A1 (zh) 一种通信方法、通信装置、终端设备及用户面网元
US20230388871A1 (en) Mobility features for next generation cellular networks
US20230268982A1 (en) Network controlled repeater
WO2021056703A1 (zh) 信息更新方法、设备及系统
US11601947B2 (en) Systems and methods for network slice selection according to application specific request
WO2020213407A1 (ja) 通信システム、通信装置、及び端末装置
WO2021134561A1 (zh) 通信方法和通信装置
WO2023179231A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
US20240114367A1 (en) Mobility Measurement Reporting for XR Services
WO2023179262A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
WO2023125392A1 (zh) 一种通信方法及装置
CN116868547A (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020949043

Country of ref document: EP

Effective date: 20230301

NENP Non-entry into the national phase

Ref country code: DE