WO2022032510A1 - User equipment orientation information via wireless access point - Google Patents

User equipment orientation information via wireless access point Download PDF

Info

Publication number
WO2022032510A1
WO2022032510A1 PCT/CN2020/108598 CN2020108598W WO2022032510A1 WO 2022032510 A1 WO2022032510 A1 WO 2022032510A1 CN 2020108598 W CN2020108598 W CN 2020108598W WO 2022032510 A1 WO2022032510 A1 WO 2022032510A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
beam information
beams
orientation information
orientation
Prior art date
Application number
PCT/CN2020/108598
Other languages
French (fr)
Inventor
Hargovind Prasad BANSAL
Tom Chin
Huichun LIU
Ozcan Ozturk
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108598 priority Critical patent/WO2022032510A1/en
Publication of WO2022032510A1 publication Critical patent/WO2022032510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for providing user equipment (UE) orientation information via a wireless access point.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a user equipment includes: transmitting, to a wireless local area network (WLAN) node, orientation information regarding the UE; receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a wireless wide area network (WWAN) ; and communicating based at least in part on the beam information.
  • WLAN wireless local area network
  • WWAN wireless wide area network
  • a method of wireless communication performed by a WLAN node includes: receiving, from a UE, orientation information regarding the UE; transmitting the orientation information to a network entity associated with a WWAN; receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and transmitting the beam information to the UE.
  • a method of wireless communication performed by a network entity of a WWAN includes: receiving, from a WLAN node, orientation information associated with a UE; determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmitting the beam information to the WLAN node.
  • a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a WLAN node, orientation information regarding the UE; receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and communicate based at least in part on the beam information.
  • a WLAN node for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a UE, orientation information regarding the UE; transmit the orientation information to a network entity associated with a WWAN; receive, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and transmit the beam information to the UE.
  • a network entity for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a WLAN node, orientation information associated with a UE; determine beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmit the beam information to the WLAN node.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: transmit, to a WLAN node, orientation information regarding the UE; receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and communicate based at least in part on the beam information.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a WLAN node, cause the WLAN to: receive, from a UE, orientation information regarding the UE; transmit the orientation information to a network entity associated with a WWAN; receive, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and transmit the beam information to the UE.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network entity, cause the network entity to: receive, from a WLAN node, orientation information associated with a UE; determine beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmit the beam information to the WLAN node.
  • an apparatus for wireless communication includes: means for transmitting, to a WLAN node, orientation information regarding the UE; means for receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and means for communicating based at least in part on the beam information.
  • an apparatus for wireless communication includes: means for receiving, from a UE, orientation information regarding the UE; means for transmitting the orientation information to a network entity associated with a WWAN; means for receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and means for transmitting the beam information to the UE.
  • an apparatus for wireless communication includes: means for receiving, from a WLAN node, orientation information associated with a UE; means for determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and means for transmitting the beam information to the WLAN node.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Figs. 3-5 are diagrams illustrating examples associated with providing UE orientation information via a wireless local area network (WLAN) node, in accordance with various aspects of the present disclosure.
  • WLAN wireless local area network
  • Figs. 6-8 are diagrams illustrating example processes associated with providing UE orientation information via a WLAN node, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide access to wireless network 100, and wireless network 100 may be a wireless wide area network (WWAN) .
  • WWAN wireless wide area network
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE 120 may communicate with a WLAN node 140.
  • the WLAN node 140 may provide the UE 120 access to a WLAN.
  • WLAN node 140 may include a wireless access point associated with a wireless local area communication technology (e.g., WiFi, Bluetooth, near-field communication, ZigBee, and/or the like) .
  • WLAN node 140 may be associated with a non-beam-based communication technology.
  • WLAN node 140 may be deployed by a same operator or original equipment manufacturer (OEM) as BS 110.
  • OEM original equipment manufacturer
  • WLAN node 140 and BS 110 may be deployed by different operators or OEMs.
  • the WLAN node 140 may communicate with the UE 120 via a first interface, and may communicate with the BS 110 via a second interface.
  • the WLAN node 140 may include one or more of the components described in Fig. 2 as included in a BS 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with providing UE orientation information via a WLAN node, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for transmitting, to a WLAN node, orientation information regarding the UE; means for receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a wireless wide area network (WWAN) ; and means for communicating based at least in part on the beam information, and/or the like.
  • WWAN wireless wide area network
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • WLAN node 140 may include means for receiving, from a UE, orientation information regarding the UE; means for transmitting the orientation information to a network entity associated with a WWAN; means for receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and means for transmitting the beam information to the UE.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • base station 110 may include means for receiving, from a WLAN node, orientation information associated with a UE; means for determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; means for transmitting the beam information to the WLAN node; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to d
  • Some radio access technologies such as 5G/NR, may enable communication using beams.
  • Beam-based communication may be particularly beneficial in communication media and/or frequency ranges associated with high path loss, such as millimeter wave frequency ranges.
  • Beamforming may include analog beamforming, in which precoding for beam generation is handled by separate radio frequency chains for respective antennas, or digital beamforming, in which precoding for beam generation is handled jointly in the digital domain for multiple antennas.
  • a wireless communication device may use hybrid beamforming, which is a combination of analog and digital beamforming. Hybrid beamforming may permit multi-beam operation, which can improve the utilization of link budget.
  • Beam-based communication may be dependent on an orientation of the UE. For example, as the orientation of the UE changes, the UE may update the UE’s active beam so that communication can continue via an active beam pair of the UE and the base station. In some cases, such as in a connected-mode discontinuous reception (C-DRX) mode, the UE may enter an idle mode or an inactive mode, in which an active beam pair of the UE is not maintained. In such scenarios, the UE may need to identify an updated beam in order to enter an active time of the C-DRX mode.
  • C-DRX connected-mode discontinuous reception
  • the orientation of the UE may have significantly changed since a last active time, meaning that the UE may need to perform time-consuming and resource-intensive beam identification procedures on a large set of beams to identify a suitable beam for an active beam pair.
  • a UE may need to identify an active beam while the UE is not associated with an active RAN connection, such as monitoring core network paging, performing idle mode measurements, and initial acquisition.
  • the RAN e.g., a base station or core network associated with the RAN
  • the RAN may be able to streamline the UE’s operations by reducing the size of the set of beams to be monitored by the UE.
  • reducing the size of the set of beams may require information regarding an orientation of the UE, which may be difficult for a base station to determine if the base station does not have an active connection with the UE.
  • Some techniques and apparatuses described herein enable a UE to provide orientation information to a base station via a WLAN node.
  • the UE may provide the orientation information to the WLAN node, and the WLAN node may provide the orientation to the base station.
  • the base station may determine beam information based at least in part on the orientation information, and may provide the beam information to the UE via the WLAN node.
  • the beam information may identify a set of beams for a communication to be performed by the UE, such as a monitoring operation, a communication during a C-DRX On duration, and/or the like.
  • the beam information may enable the UE to conserve battery power associated with initial acquisition, monitoring, and active communication, and reduce time and resource usage associated with beam acquisition and service recovery. Furthermore, providing the orientation information and the beam information via the WLAN node may enable the determination of beam information if the UE is not associated with an active connection with a base station, which increases the utility of the beam information and which enables the usage and determination of beam information for a UE that is not associated with an active connection.
  • Figs. 3-5 are diagrams illustrating examples 300, 400, and 500 associated with providing UE orientation information via a WLAN node, in accordance with various aspects of the present disclosure.
  • examples 300, 400, and 500 include a UE (e.g., UE 120) , a WLAN node (e.g., WLAN node 140) , and one or more base stations (e.g., BS 110) .
  • UE e.g., UE 120
  • WLAN node e.g., WLAN node 140
  • base stations e.g., BS 110
  • the UE may determine orientation information.
  • the orientation information may indicate a spatial orientation of the UE.
  • the orientation information may indicate a spatial orientation of the UE relative to a reference that can be determined by the BS.
  • the orientation information may indicate an angular displacement relative to a beam, such as an angle of arrival (AoA) or an angle of departure (AoD) relative to a transmit beam or a receive beam of the UE, or a transmit beam or a receive beam of the BS.
  • a transmit beam is a beam used to transmit a signal
  • a receive beam is a beam used to receive a signal.
  • the orientation information may indicate an identifier of a beam used to determine the orientation information.
  • the orientation information may indicate a beam used as a reference point for the angular displacement (e.g., a beam identifier such as a synchronization signal block index, and/or the like) , a physical cell identifier (PCI) associated with the beam, an E-UTRA Absolute Radio Frequency Channel Number (EARFCN) , and/or the like.
  • the orientation information may be determined by a location component of the UE, such as a gyroscope, an accelerometer, and/or the like.
  • the UE may transmit the orientation information to the WLAN node.
  • the UE may transmit the orientation information via a WLAN connection to the WLAN node.
  • the UE may transmit the orientation information in a physical-layer (e.g., Layer 1) message, such as an indication message.
  • the physical-layer message may be generated in a fashion that indicates the orientation information.
  • the UE may transmit the orientation information in a data-layer (e.g., Layer 2) message.
  • a data layer of the UE may generate a protocol data unit (PDU) that includes the orientation information, and may provide the PDU to a physical layer for transmission.
  • PDU protocol data unit
  • the orientation information may include information identifying the UE, such as a UE identifier (e.g., a UE_ID, a temporary mobile subscriber identity, a cell radio network temporary identifier, an international mobile subscriber identity, and/or the like) assigned by the base station, and/or the like.
  • the WLAN node may determine at least part of the orientation information, for example, based at least in part on a beam used for communication between the WLAN node and the UE, based at least in part on a location service of the WLAN node, and/or the like.
  • the UE may transmit the orientation information based at least in part on a request from the WLAN node or the base station. For example, the WLAN node or the base station may trigger the UE to determine and/or transmit the orientation information. In some aspects, the UE may transmit the orientation information periodically, such as based at least in part on a configured periodicity.
  • the UE may transmit the orientation information based at least in part on a triggering condition, such as an upcoming C-DRX On duration, a determination that the UE is to monitor for core network paging or base station paging, a determination that the UE is to perform idle-mode or inactive-mode monitoring, a performance parameter of the UE failing to satisfy a threshold, a number of radio link failures of the UE, a threshold delay associated with acquisition or exiting an idle/inactive state, and/or the like.
  • a triggering condition such as an upcoming C-DRX On duration, a determination that the UE is to monitor for core network paging or base station paging, a determination that the UE is to perform idle-mode or inactive-mode monitoring, a performance parameter of the UE failing to satisfy a threshold, a number of radio link failures of the UE, a threshold delay associated with acquisition or exiting an idle/inactive state, and/or the like.
  • the WLAN node may transmit the orientation information to the BS.
  • the WLAN node may transmit the orientation information via an interface between the WLAN node and the BS.
  • the WLAN node may transmit the orientation information based at least in part on an agreement between an operator of the WLAN node and an operator of the BS.
  • the agreement may indicate the interface, may indicate a messaging format for the orientation information, and/or the like.
  • the WLAN node and the BS may be associated with a same operator, which may mean that the WLAN node and the BS can be configured to communicate the orientation information (and the corresponding beam information) without such an agreement.
  • the BS may determine beam information based at least in part on the orientation information.
  • the BS may determine the beam information based at least in part on the spatial orientation of the UE as indicated by the orientation information.
  • the beam information may indicate a set of beams.
  • the set of beams may be selected from a plurality of beams that the BS can generate.
  • the set of beams may be based at least in part on the spatial orientation of the UE.
  • the set of beams may be spatially proximate to (e.g., adjacent to, within a threshold angular displacement of) a beam associated with a spatial orientation of the UE.
  • the set of beams may be within a threshold angular displacement of an axis formed between the UE and the BS.
  • the beam information may indicate a set of beam identifiers (e.g., information identifying the set of beams, such as synchronization signal block (SSB) indexes and/or the like) , information identifying the UE (e.g., a UE identifier and/or the like) , a PCI, an EARFCN, and/or the like.
  • the beam information may indicate an active beam of the BS, as described in more detail in connection with Fig. 5.
  • the BS may provide the beam information in association with a measurement configuration.
  • the BS may provide a measurement configuration (e.g., one or more measurement objects and/or the like) that indicates the set of beams selected based at least in part on the orientation information.
  • the measurement configuration may indicate to perform a measurement on the set of beams, or to prioritize measurement on the set of beams relative to another set of beams, for the purpose of initial access, cell reselection, idle mode measurement, and/or the like.
  • the BS may provide the beam information to the WLAN node.
  • the WLAN node may provide the beam information to the UE.
  • the WLAN node may provide the beam information to the UE based at least in part on an identifier of the UE and/or based at least in part on the orientation information.
  • the BS may provide the beam information to the WLAN node via the interface used to provide the orientation information from the WLAN node to the BS.
  • the BS and the WLAN node may provide a security service for the orientation information and/or the beam information.
  • the BS and the WLAN node may provide a session-based security service (in which the beam information and/or the orientation information are provided via a secure session established by the BS and the WLAN node) or a hashing-based security service (in which the beam information and/or the orientation information are secured by performing a hashing method) .
  • a session-based security service in which the beam information and/or the orientation information are provided via a secure session established by the BS and the WLAN node
  • a hashing-based security service in which the beam information and/or the orientation information are secured by performing a hashing method
  • the UE may communicate based at least in part on the beam information. For example, the UE may perform an idle-mode measurement operation based at least in part on the beam information by performing a measurement on the set of beams indicated by the beam information. As another example, the UE may perform an initial access measurement operation based at least in part on the beam information by performing a measurement on the set of beams indicated by the beam information. As yet another example, the UE may perform a connected mode measurement on a set of beams identified by the beam information. As still another example, the UE may monitor for core network paging in accordance with the beam information, as described in connection with Fig. 4.
  • the UE may transmit measurement information to the BS based at least in part on the beam information. For example, the UE may determine the measurement information based at least in part on performing measurements on the set of beams indicated by the beam information, and may report the measurement information to the BS and/or communicate in accordance with the measurement information.
  • the UE may determine at least part of the beam information. For example, the UE may determine the orientation information, and may identify a set of beams based at least in part on the orientation information. In some aspects, the set of beams may be associated with an active beam of the UE (e.g., may be within a threshold angular displacement of the active beam of the UE) . In some aspects, the beam information may indicate the active beam, and the UE may determine the set of beams based at least in part on the active beam, which conserves signaling resources that would otherwise be used to signal information indicating the active beam.
  • the UE may conserve battery power associated with initial acquisition, monitoring, and active communication, and may reduce time and resource usage associated with beam acquisition and service recovery. Furthermore, providing the orientation information and the beam information via the WLAN node may enable the determination of beam information if the UE is not associated with an active connection with a base station, which increases the utility of the beam information and which enables the usage and determination of beam information for a UE that is not associated with an active connection.
  • Fig. 4 shows an example where the beam information indicates a configuration for core network (CN) paging.
  • CN paging includes paging initiated by a core network of a BS 1 and a BS 2.
  • CN paging may be broadcasted to all cells (and to all beams associated with a given cell identifier) that are associated with tracking areas under a tracking area list associated with the UE. Since the UE may communicate on a beam, the UE may need to monitor all beams associated with a given cell identifier to detect CN paging, which leads to significant battery usage and radio resource consumption.
  • the UE may enable the BS 1 and/or the BS 2 (or a core network associated with the BS 1 and/or the BS 2) to identify a set of beams on which to monitor for CN paging.
  • a set of BSs (here, the BS 1 and the BS 2) may communicate with each other to configure a single base station (here, the BS 2) to transmit the CN paging shown by reference number 420.
  • the set of BSs may communicate via an X2 interface.
  • the set of base stations may select a base station to provide the CN paging based at least in part on the orientation information (e.g., based at least in part on which BS can most efficiently transmit the CN paging, based at least in part on channel conditions of the set of BSs, based at least in part on traffic conditions of the set of BSs, and/or the like) .
  • the UE may monitor for the CN paging based at least in part on the beam information (e.g., on the set of beams indicated by the beam information) , as shown by reference number 430.
  • the monitoring resources of the UE may be conserved and radio resource usage at the BS 1 and the BS 2 may be reduced.
  • Fig. 5 shows an example where the beam information is provided in association with an active time (e.g., an On duration) of a C-DRX cycle of the UE.
  • the WLAN node may provide the beam information prior to an active time of the UE’s C-DRX cycle.
  • the WLAN node may receive or obtain the orientation information based at least in part on the active time (e.g., a configured length of time before the active time and/or the like) , and may receive the beam information based at least in part on providing the orientation information to the BS.
  • the BS may provide the beam information based at least in part on the active time (e.g., a configured length of time before the active time and/or the like) .
  • the BS may determine the beam information based at least in part on stored orientation information (which may be provided by the WLAN node periodically or on request) , and may provide the beam information prior to the active time.
  • the beam information may indicate an active beam for the active time associated with the C-DRX cycle.
  • the UE may determine one or more active beams for the active time based at least in part on the beam information.
  • the UE may communicate during the active time on the one or more active beams. In this way, the beam information may reduce the detrimental effects of fades, mobility, and signal blockage during inactive times of the UE, which improves communication performance of the UE and which reduces delay associated with acquiring the active beam for the active time.
  • FIGS. 3-5 are provided as an example. Other examples may differ from what is described with regard to Figs. 3-5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., UE 120) performs operations associated with providing UE orientation information via a WLAN node.
  • the UE e.g., UE 120
  • process 600 may include transmitting, to a WLAN node, orientation information regarding the UE (block 610) .
  • the UE e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • process 600 may include receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN (block 620) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • process 600 may include communicating based at least in part on the beam information (block 630) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
  • the WWAN is associated with a millimeter wave frequency range.
  • the WWAN is associated with a 5G/New Radio radio access technology.
  • the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
  • the beam information is determined by a network entity associated with the WWAN.
  • the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  • the orientation information is provided to the WLAN node via a physical layer message or a data layer message.
  • the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and the interface provides a security service for the orientation information and the beam information.
  • the security service is based at least in part on a hashing method.
  • the security service is based at least in part on a secure session establishment technique.
  • receiving the beam information is based at least in part on at least one of a service threshold or a delay threshold at the UE being satisfied.
  • the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  • communicating based at least in part on the beam information further comprises monitoring for paging on a set of beams indicated by the beam information.
  • the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
  • the set of beams are associated with an angle of arrival indicated by the orientation information.
  • communicating based at least in part on the beam information further comprises performing a connected-mode measurement on a set of beams indicated by the beam information.
  • the set of beams are associated with an angle of arrival indicated by the orientation information.
  • communicating based at least in part on the beam information further comprises performing an idle-mode measurement or an initial acquisition measurement on a set of beams indicated by the beam information.
  • the set of beams are associated with an angle of arrival indicated by the orientation information.
  • communicating based at least in part on the beam information further comprises communicating in a connected-mode discontinuous reception active time via a set of beams indicated by the beam information.
  • the set of beams are associated with an angle of arrival indicated by the orientation information.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a WLAN node, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the WLAN node (e.g., WLAN node 140) performs operations associated with relaying orientation information and beam information between a UE and a network entity such as a base station.
  • the WLAN node e.g., WLAN node 140
  • process 700 may include receiving, from a UE, orientation information regarding the UE (block 710) .
  • the WLAN node e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like
  • process 700 may include transmitting the orientation information to a network entity associated with a WWAN (block 720) .
  • the WLAN node e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • process 700 may include receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN (block 730) .
  • the WLAN e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like
  • process 700 may include transmitting the beam information to the UE (block 740) .
  • the WLAN e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
  • the WWAN is associated with a millimeter wave frequency range.
  • the WWAN is associated with a 5G/New Radio radio access technology.
  • the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
  • transmitting the beam information to the UE is based at least in part on the identifier of the UE.
  • the beam information is determined by the network entity.
  • the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  • the orientation information is received via a physical layer message or a data layer message.
  • the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and the interface provides a security service for the orientation information and the beam information.
  • the security service is based at least in part on a hashing method.
  • the security service is based at least in part on a secure session establishment technique.
  • the beam information is received on an interface between the WLAN node and the network entity.
  • the orientation information is transmitted on the interface.
  • the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network entity, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the network entity (e.g., BS 110, network controller 130, or a core network device) performs operations associated with determining beam information based at least in part on orientation information associated with a UE.
  • the network entity e.g., BS 110, network controller 130, or a core network device
  • process 800 may include receiving, from a WLAN node, orientation information associated with a UE (block 810) .
  • the network entity e.g., using antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or memory 242; and/or using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • process 800 may include determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN (block 820) .
  • the network entity e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, and/or scheduler 246; and/or using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • process 800 may include transmitting the beam information to the WLAN node (block 830) .
  • the network entity e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246; and/or using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
  • the WWAN is associated with a millimeter wave frequency range.
  • the WWAN is associated with a 5G/New Radio radio access technology.
  • the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
  • the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  • the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  • the beam information indicates a set of beams via which the UE is to monitor for paging.
  • process 800 includes configuring a set of base stations so that a single base station, of the set of base stations, transmits the paging to the UE.
  • the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
  • the beam information indicates a set of beams via which the UE is to perform a connected-mode measurement.
  • the beam information indicates a set of beams via which the UE is to perform an idle-mode measurement or an initial acquisition measurement.
  • the beam information indicates a set of beams via which the UE is to communicate in a connected-mode discontinuous reception active time.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a wireless local area network (WLAN) node, orientation information regarding the UE. The UE may receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a wireless wide area network. The UE may communicate based at least in part on the beam information. Numerous other aspects are provided.

Description

USER EQUIPMENT ORIENTATION INFORMATION VIA WIRELESS ACCESS POINT
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for providing user equipment (UE) orientation information via a wireless access point.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the  uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a user equipment (UE) includes: transmitting, to a wireless local area network (WLAN) node, orientation information regarding the UE; receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam  information is associated with a wireless wide area network (WWAN) ; and communicating based at least in part on the beam information.
In some aspects, a method of wireless communication performed by a WLAN node includes: receiving, from a UE, orientation information regarding the UE; transmitting the orientation information to a network entity associated with a WWAN; receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and transmitting the beam information to the UE.
In some aspects, a method of wireless communication performed by a network entity of a WWAN includes: receiving, from a WLAN node, orientation information associated with a UE; determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmitting the beam information to the WLAN node.
In some aspects, a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a WLAN node, orientation information regarding the UE; receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and communicate based at least in part on the beam information.
In some aspects, a WLAN node for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a UE, orientation information regarding the UE; transmit the orientation information to a network entity associated with a WWAN; receive, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set  of beams for communication via the WWAN; and transmit the beam information to the UE.
In some aspects, a network entity for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a WLAN node, orientation information associated with a UE; determine beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmit the beam information to the WLAN node.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: transmit, to a WLAN node, orientation information regarding the UE; receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and communicate based at least in part on the beam information.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a WLAN node, cause the WLAN to: receive, from a UE, orientation information regarding the UE; transmit the orientation information to a network entity associated with a WWAN; receive, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and transmit the beam information to the UE.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when  executed by one or more processors of a network entity, cause the network entity to: receive, from a WLAN node, orientation information associated with a UE; determine beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and transmit the beam information to the WLAN node.
In some aspects, an apparatus for wireless communication includes: means for transmitting, to a WLAN node, orientation information regarding the UE; means for receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN; and means for communicating based at least in part on the beam information.
In some aspects, an apparatus for wireless communication includes: means for receiving, from a UE, orientation information regarding the UE; means for transmitting the orientation information to a network entity associated with a WWAN; means for receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and means for transmitting the beam information to the UE.
In some aspects, an apparatus for wireless communication includes: means for receiving, from a WLAN node, orientation information associated with a UE; means for determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and means for transmitting the beam information to the WLAN node.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station,  wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Figs. 3-5 are diagrams illustrating examples associated with providing UE orientation information via a wireless local area network (WLAN) node, in accordance with various aspects of the present disclosure.
Figs. 6-8 are diagrams illustrating example processes associated with providing UE orientation information via a WLAN node, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should  be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on  the context in which the term is used. A BS may provide access to wireless network 100, and wireless network 100 may be a wireless wide area network (WWAN) .
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A  relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular  component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used  herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE 120 may communicate with a WLAN node 140. The WLAN node 140 may provide the UE 120 access to a WLAN. For example, WLAN node 140 may include a wireless access point associated with a wireless local area communication technology (e.g., WiFi, Bluetooth, near-field communication, ZigBee, and/or the like) . In some aspects, WLAN node 140 may be associated with a non-beam-based communication technology. In some aspects, WLAN node 140 may be deployed by a same operator or original equipment manufacturer (OEM) as BS 110. In some aspects, WLAN node 140 and BS 110 may be deployed by different operators or OEMs. The WLAN node 140 may communicate with the UE 120 via a first interface, and may communicate with the BS 110 via a second interface. The WLAN node 140 may include one or more of the components described in Fig. 2 as included in a BS 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received  from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection  on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282  to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with providing UE orientation information via a WLAN node, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory  computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for transmitting, to a WLAN node, orientation information regarding the UE; means for receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a wireless wide area network (WWAN) ; and means for communicating based at least in part on the beam information, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, WLAN node 140 may include means for receiving, from a UE, orientation information regarding the UE; means for transmitting the orientation information to a network entity associated with a WWAN; means for receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and means for transmitting the beam information to the UE. In some aspects, such means may include one or more components of base station 110 described  in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, base station 110 may include means for receiving, from a WLAN node, orientation information associated with a UE; means for determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; means for transmitting the beam information to the WLAN node; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to d
Some radio access technologies (RATs) , such as 5G/NR, may enable communication using beams. Beam-based communication may be particularly beneficial in communication media and/or frequency ranges associated with high path loss, such as millimeter wave frequency ranges. Beamforming may include analog beamforming, in which precoding for beam generation is handled by separate radio  frequency chains for respective antennas, or digital beamforming, in which precoding for beam generation is handled jointly in the digital domain for multiple antennas. In some aspects, a wireless communication device may use hybrid beamforming, which is a combination of analog and digital beamforming. Hybrid beamforming may permit multi-beam operation, which can improve the utilization of link budget.
Beam-based communication may be dependent on an orientation of the UE. For example, as the orientation of the UE changes, the UE may update the UE’s active beam so that communication can continue via an active beam pair of the UE and the base station. In some cases, such as in a connected-mode discontinuous reception (C-DRX) mode, the UE may enter an idle mode or an inactive mode, in which an active beam pair of the UE is not maintained. In such scenarios, the UE may need to identify an updated beam in order to enter an active time of the C-DRX mode. However, the orientation of the UE may have significantly changed since a last active time, meaning that the UE may need to perform time-consuming and resource-intensive beam identification procedures on a large set of beams to identify a suitable beam for an active beam pair. Furthermore, there are situations in which a UE may need to identify an active beam while the UE is not associated with an active RAN connection, such as monitoring core network paging, performing idle mode measurements, and initial acquisition. In each of the above scenarios, the RAN (e.g., a base station or core network associated with the RAN) may be able to streamline the UE’s operations by reducing the size of the set of beams to be monitored by the UE. However, reducing the size of the set of beams may require information regarding an orientation of the UE, which may be difficult for a base station to determine if the base station does not have an active connection with the UE.
Some techniques and apparatuses described herein enable a UE to provide orientation information to a base station via a WLAN node. For example, the UE may provide the orientation information to the WLAN node, and the WLAN node may provide the orientation to the base station. The base station may determine beam information based at least in part on the orientation information, and may provide the beam information to the UE via the WLAN node. In some aspects, the beam information may identify a set of beams for a communication to be performed by the UE, such as a monitoring operation, a communication during a C-DRX On duration, and/or the like.
The beam information may enable the UE to conserve battery power associated with initial acquisition, monitoring, and active communication, and reduce time and resource usage associated with beam acquisition and service recovery. Furthermore, providing the orientation information and the beam information via the WLAN node may enable the determination of beam information if the UE is not associated with an active connection with a base station, which increases the utility of the beam information and which enables the usage and determination of beam information for a UE that is not associated with an active connection.
Figs. 3-5 are diagrams illustrating examples 300, 400, and 500 associated with providing UE orientation information via a WLAN node, in accordance with various aspects of the present disclosure. As shown, examples 300, 400, and 500 include a UE (e.g., UE 120) , a WLAN node (e.g., WLAN node 140) , and one or more base stations (e.g., BS 110) .
As shown in Fig. 3, and by reference number 310, the UE may determine orientation information. The orientation information may indicate a spatial orientation of the UE. For example, the orientation information may indicate a spatial orientation  of the UE relative to a reference that can be determined by the BS. In some aspects, the orientation information may indicate an angular displacement relative to a beam, such as an angle of arrival (AoA) or an angle of departure (AoD) relative to a transmit beam or a receive beam of the UE, or a transmit beam or a receive beam of the BS. A transmit beam is a beam used to transmit a signal, and a receive beam is a beam used to receive a signal. In some aspects, the orientation information may indicate an identifier of a beam used to determine the orientation information. For example, the orientation information may indicate a beam used as a reference point for the angular displacement (e.g., a beam identifier such as a synchronization signal block index, and/or the like) , a physical cell identifier (PCI) associated with the beam, an E-UTRA Absolute Radio Frequency Channel Number (EARFCN) , and/or the like. In some aspects, the orientation information may be determined by a location component of the UE, such as a gyroscope, an accelerometer, and/or the like.
As shown by reference number 320, the UE may transmit the orientation information to the WLAN node. For example, the UE may transmit the orientation information via a WLAN connection to the WLAN node. In some aspects, the UE may transmit the orientation information in a physical-layer (e.g., Layer 1) message, such as an indication message. For example, the physical-layer message may be generated in a fashion that indicates the orientation information. In some aspects, the UE may transmit the orientation information in a data-layer (e.g., Layer 2) message. For example, a data layer of the UE may generate a protocol data unit (PDU) that includes the orientation information, and may provide the PDU to a physical layer for transmission. In some aspects, the orientation information, or the transmission of the orientation information, may include information identifying the UE, such as a UE identifier (e.g., a UE_ID, a temporary mobile subscriber identity, a cell radio network temporary identifier, an  international mobile subscriber identity, and/or the like) assigned by the base station, and/or the like. In some aspects, the WLAN node may determine at least part of the orientation information, for example, based at least in part on a beam used for communication between the WLAN node and the UE, based at least in part on a location service of the WLAN node, and/or the like.
In some aspects, the UE may transmit the orientation information based at least in part on a request from the WLAN node or the base station. For example, the WLAN node or the base station may trigger the UE to determine and/or transmit the orientation information. In some aspects, the UE may transmit the orientation information periodically, such as based at least in part on a configured periodicity. In some aspects, the UE may transmit the orientation information based at least in part on a triggering condition, such as an upcoming C-DRX On duration, a determination that the UE is to monitor for core network paging or base station paging, a determination that the UE is to perform idle-mode or inactive-mode monitoring, a performance parameter of the UE failing to satisfy a threshold, a number of radio link failures of the UE, a threshold delay associated with acquisition or exiting an idle/inactive state, and/or the like.
As shown by reference number 330, the WLAN node may transmit the orientation information to the BS. For example, the WLAN node may transmit the orientation information via an interface between the WLAN node and the BS. In some aspects, the WLAN node may transmit the orientation information based at least in part on an agreement between an operator of the WLAN node and an operator of the BS. For example, the agreement may indicate the interface, may indicate a messaging format for the orientation information, and/or the like. In some aspects, the WLAN node and the BS may be associated with a same operator, which may mean that the  WLAN node and the BS can be configured to communicate the orientation information (and the corresponding beam information) without such an agreement.
As shown by reference number 340, the BS may determine beam information based at least in part on the orientation information. For example, the BS may determine the beam information based at least in part on the spatial orientation of the UE as indicated by the orientation information. In some aspects, the beam information may indicate a set of beams. For example, the set of beams may be selected from a plurality of beams that the BS can generate. In some aspects, the set of beams may be based at least in part on the spatial orientation of the UE. For example, the set of beams may be spatially proximate to (e.g., adjacent to, within a threshold angular displacement of) a beam associated with a spatial orientation of the UE. As another example, the set of beams may be within a threshold angular displacement of an axis formed between the UE and the BS.
In some aspects, the beam information may indicate a set of beam identifiers (e.g., information identifying the set of beams, such as synchronization signal block (SSB) indexes and/or the like) , information identifying the UE (e.g., a UE identifier and/or the like) , a PCI, an EARFCN, and/or the like. In some aspects, the beam information may indicate an active beam of the BS, as described in more detail in connection with Fig. 5.
In some aspects, the BS may provide the beam information in association with a measurement configuration. For example, the BS may provide a measurement configuration (e.g., one or more measurement objects and/or the like) that indicates the set of beams selected based at least in part on the orientation information. In this case, the measurement configuration may indicate to perform a measurement on the set of beams, or to prioritize measurement on the set of beams relative to another set of beams,  for the purpose of initial access, cell reselection, idle mode measurement, and/or the like.
As shown by reference number 350, the BS may provide the beam information to the WLAN node. As shown by reference number 360, the WLAN node may provide the beam information to the UE. For example, the WLAN node may provide the beam information to the UE based at least in part on an identifier of the UE and/or based at least in part on the orientation information. In some aspects, the BS may provide the beam information to the WLAN node via the interface used to provide the orientation information from the WLAN node to the BS. In some aspects, the BS and the WLAN node may provide a security service for the orientation information and/or the beam information. For example, the BS and the WLAN node may provide a session-based security service (in which the beam information and/or the orientation information are provided via a secure session established by the BS and the WLAN node) or a hashing-based security service (in which the beam information and/or the orientation information are secured by performing a hashing method) .
As shown by reference number 370, the UE may communicate based at least in part on the beam information. For example, the UE may perform an idle-mode measurement operation based at least in part on the beam information by performing a measurement on the set of beams indicated by the beam information. As another example, the UE may perform an initial access measurement operation based at least in part on the beam information by performing a measurement on the set of beams indicated by the beam information. As yet another example, the UE may perform a connected mode measurement on a set of beams identified by the beam information. As still another example, the UE may monitor for core network paging in accordance with the beam information, as described in connection with Fig. 4.
In some aspects, the UE may transmit measurement information to the BS based at least in part on the beam information. For example, the UE may determine the measurement information based at least in part on performing measurements on the set of beams indicated by the beam information, and may report the measurement information to the BS and/or communicate in accordance with the measurement information.
In some aspects, the UE may determine at least part of the beam information. For example, the UE may determine the orientation information, and may identify a set of beams based at least in part on the orientation information. In some aspects, the set of beams may be associated with an active beam of the UE (e.g., may be within a threshold angular displacement of the active beam of the UE) . In some aspects, the beam information may indicate the active beam, and the UE may determine the set of beams based at least in part on the active beam, which conserves signaling resources that would otherwise be used to signal information indicating the active beam.
Thus, the UE may conserve battery power associated with initial acquisition, monitoring, and active communication, and may reduce time and resource usage associated with beam acquisition and service recovery. Furthermore, providing the orientation information and the beam information via the WLAN node may enable the determination of beam information if the UE is not associated with an active connection with a base station, which increases the utility of the beam information and which enables the usage and determination of beam information for a UE that is not associated with an active connection.
Fig. 4 shows an example where the beam information indicates a configuration for core network (CN) paging. CN paging includes paging initiated by a core network of a BS 1 and a BS 2. For example, CN paging may be broadcasted to all cells (and to  all beams associated with a given cell identifier) that are associated with tracking areas under a tracking area list associated with the UE. Since the UE may communicate on a beam, the UE may need to monitor all beams associated with a given cell identifier to detect CN paging, which leads to significant battery usage and radio resource consumption.
By providing the orientation information to the BS 1 and/or the BS 2, the UE may enable the BS 1 and/or the BS 2 (or a core network associated with the BS 1 and/or the BS 2) to identify a set of beams on which to monitor for CN paging. In some aspects, as shown by reference number 410, a set of BSs (here, the BS 1 and the BS 2) may communicate with each other to configure a single base station (here, the BS 2) to transmit the CN paging shown by reference number 420. For example, the set of BSs may communicate via an X2 interface. The set of base stations may select a base station to provide the CN paging based at least in part on the orientation information (e.g., based at least in part on which BS can most efficiently transmit the CN paging, based at least in part on channel conditions of the set of BSs, based at least in part on traffic conditions of the set of BSs, and/or the like) . The UE may monitor for the CN paging based at least in part on the beam information (e.g., on the set of beams indicated by the beam information) , as shown by reference number 430. Thus, the monitoring resources of the UE may be conserved and radio resource usage at the BS 1 and the BS 2 may be reduced.
Fig. 5 shows an example where the beam information is provided in association with an active time (e.g., an On duration) of a C-DRX cycle of the UE. As shown by reference number 510, the WLAN node may provide the beam information prior to an active time of the UE’s C-DRX cycle. In some aspects, the WLAN node may receive or obtain the orientation information based at least in part on the active  time (e.g., a configured length of time before the active time and/or the like) , and may receive the beam information based at least in part on providing the orientation information to the BS. In some aspects, the BS may provide the beam information based at least in part on the active time (e.g., a configured length of time before the active time and/or the like) . For example, the BS may determine the beam information based at least in part on stored orientation information (which may be provided by the WLAN node periodically or on request) , and may provide the beam information prior to the active time.
In some aspects, the beam information may indicate an active beam for the active time associated with the C-DRX cycle. For example, as shown by reference number 520, the UE may determine one or more active beams for the active time based at least in part on the beam information. As shown by reference number 530, the UE may communicate during the active time on the one or more active beams. In this way, the beam information may reduce the detrimental effects of fades, mobility, and signal blockage during inactive times of the UE, which improves communication performance of the UE and which reduces delay associated with acquiring the active beam for the active time.
As indicated above, Figs. 3-5 are provided as an example. Other examples may differ from what is described with regard to Figs. 3-5.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., UE 120) performs operations associated with providing UE orientation information via a WLAN node.
As shown in Fig. 6, in some aspects, process 600 may include transmitting, to a WLAN node, orientation information regarding the UE (block 610) . For example, the  UE (e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may transmit, to a WLAN node, orientation information regarding the UE, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN (block 620) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a WWAN, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include communicating based at least in part on the beam information (block 630) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may communicate based at least in part on the beam information, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
In a second aspect, alone or in combination with the first aspect, the WWAN is associated with a millimeter wave frequency range.
In a third aspect, alone or in combination with one or more of the first and second aspects, the WWAN is associated with a 5G/New Radio radio access technology.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the beam information is determined by a network entity associated with the WWAN.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the orientation information is provided to the WLAN node via a physical layer message or a data layer message.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and the interface provides a security service for the orientation information and the beam information.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the security service is based at least in part on a hashing method.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the security service is based at least in part on a secure session establishment technique.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, receiving the beam information is based at least in part on at least one of a service threshold or a delay threshold at the UE being satisfied.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, communicating based at least in part on the beam information further comprises monitoring for paging on a set of beams indicated by the beam information.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the set of beams are associated with an angle of arrival indicated by the orientation information.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, communicating based at least in part on the beam information further comprises performing a connected-mode measurement on a set of beams indicated by the beam information.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the set of beams are associated with an angle of arrival indicated by the orientation information.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, communicating based at least in part on the beam information further comprises performing an idle-mode measurement or an initial acquisition measurement on a set of beams indicated by the beam information.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the set of beams are associated with an angle of arrival indicated by the orientation information.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, communicating based at least in part on the beam information further comprises communicating in a connected-mode discontinuous reception active time via a set of beams indicated by the beam information.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, the set of beams are associated with an angle of arrival indicated by the orientation information.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a WLAN node, in accordance with various aspects of the present disclosure. Example process 700 is an example where the WLAN node (e.g., WLAN node 140) performs operations associated with relaying orientation information and beam information between a UE and a network entity such as a base station.
As shown in Fig. 7, in some aspects, process 700 may include receiving, from a UE, orientation information regarding the UE (block 710) . For example, the WLAN  node (e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like) may receive, from a UE, orientation information regarding the UE, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting the orientation information to a network entity associated with a WWAN (block 720) . For example, the WLAN node (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may transmit the orientation information to a network entity associated with a WWAN, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN (block 730) . For example, the WLAN (e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like) may receive, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting the beam information to the UE (block 740) . For example, the WLAN (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may transmit the beam information to the UE, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
In a second aspect, alone or in combination with the first aspect, the WWAN is associated with a millimeter wave frequency range.
In a third aspect, alone or in combination with one or more of the first and second aspects, the WWAN is associated with a 5G/New Radio radio access technology.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, transmitting the beam information to the UE is based at least in part on the identifier of the UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the beam information is determined by the network entity.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the orientation information is received via a physical layer message or a data layer message.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and the interface provides a security service for the orientation information and the beam information.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the security service is based at least in part on a hashing method.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the security service is based at least in part on a secure session establishment technique.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the beam information is received on an interface between the WLAN node and the network entity.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the orientation information is transmitted on the interface.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network entity, in accordance with various aspects of the present disclosure. Example process 800 is an example where the network entity (e.g., BS 110, network controller 130, or a core network device) performs operations associated with determining beam information based at least in part on orientation information associated with a UE.
As shown in Fig. 8, in some aspects, process 800 may include receiving, from a WLAN node, orientation information associated with a UE (block 810) . For example, the network entity (e.g., using antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or memory 242; and/or using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive, from a WLAN node, orientation information associated with a UE, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN (block 820) . For example, the network entity (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, and/or scheduler 246; and/or using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may determine beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting the beam information to the WLAN node (block 830) . For example, the network entity (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246; and/or using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may transmit the beam information to the WLAN node, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the orientation information includes at least one of information regarding an angle of arrival or an angle of departure of a beam, or an identifier of the UE.
In a second aspect, alone or in combination with the first aspect, the WWAN is associated with a millimeter wave frequency range.
In a third aspect, alone or in combination with one or more of the first and second aspects, the WWAN is associated with a 5G/New Radio radio access technology.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the beam information indicates at least one of: one or more beam identifiers, an identifier of the UE, information identifying the WWAN, or information identifying a cell associated with the beam information.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the beam information indicates a set of beams via which the UE is to monitor for paging.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 800 includes configuring a set of base stations so that a single base station, of the set of base stations, transmits the paging to the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the beam information indicates a set of beams via which the UE is to perform a connected-mode measurement.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the beam information indicates a set of beams via which the UE is to perform an idle-mode measurement or an initial acquisition measurement.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the beam information indicates a set of beams via which the UE is to communicate in a connected-mode discontinuous reception active time.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although  each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (51)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    transmitting, to a wireless local area network (WLAN) node, orientation information regarding the UE;
    receiving, from the WLAN node, beam information based at least in part on the orientation information, wherein the beam information is associated with a wireless wide area network (WWAN) ; and
    communicating based at least in part on the beam information.
  2. The method of claim 1, wherein the orientation information includes at least one of:
    information regarding an angle of arrival or an angle of departure of a beam, or
    an identifier of the UE.
  3. The method of claim 1, wherein the WWAN is associated with a millimeter wave frequency range.
  4. The method of claim 1, wherein the WWAN is associated with a 5G/New Radio radio access technology.
  5. The method of claim 1, wherein the beam information indicates at least one of:
    one or more beam identifiers,
    an identifier of the UE,
    information identifying the WWAN, or
    information identifying a cell associated with the beam information.
  6. The method of claim 1, wherein the beam information is determined by a network entity associated with the WWAN.
  7. The method of claim 1, wherein the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  8. The method of claim 1, wherein the orientation information is provided to the WLAN node via a physical layer message or a data layer message.
  9. The method of claim 1, wherein the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and wherein the interface provides a security service for the orientation information and the beam information.
  10. The method of claim 9, wherein the security service is based at least in part on a hashing method.
  11. The method of claim 9, wherein the security service is based at least in part on a secure session establishment technique.
  12. The method of claim 1, wherein receiving the beam information is based at least in part on at least one of a service threshold or a delay threshold at the UE being satisfied.
  13. The method of claim 1, wherein the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  14. The method of claim 1, wherein communicating based at least in part on the beam information further comprises:
    monitoring for paging on a set of beams indicated by the beam information.
  15. The method of claim 14, wherein the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
  16. The method of claim 14, wherein the set of beams are associated with an angle of arrival indicated by the orientation information.
  17. The method of claim 1, wherein communicating based at least in part on the beam information further comprises:
    performing a connected-mode measurement on a set of beams indicated by the beam information.
  18. The method of claim 17, wherein the set of beams are associated with an angle of arrival indicated by the orientation information.
  19. The method of claim 1, wherein communicating based at least in part on the beam information further comprises:
    performing an idle-mode measurement or an initial acquisition measurement on a set of beams indicated by the beam information.
  20. The method of claim 19, wherein the set of beams are associated with an angle of arrival indicated by the orientation information.
  21. The method of claim 1, wherein communicating based at least in part on the beam information further comprises:
    communicating in a connected-mode discontinuous reception active time via a set of beams indicated by the beam information.
  22. The method of claim 21, wherein the set of beams are associated with an angle of arrival indicated by the orientation information.
  23. A method of wireless communication performed by a wireless local area network (WLAN) node, comprising:
    receiving, from a user equipment (UE) , orientation information regarding the UE;
    transmitting the orientation information to a network entity associated with a wireless wide area network (WWAN) ;
    receiving, from the network entity, beam information based at least in part on the orientation information, wherein the beam information indicates a set of beams for communication via the WWAN; and
    transmitting the beam information to the UE.
  24. The method of claim 23, wherein the orientation information includes at least one of:
    information regarding an angle of arrival or an angle of departure of a beam, or
    an identifier of the UE.
  25. The method of claim 23, wherein the WWAN is associated with a millimeter wave frequency range.
  26. The method of claim 23, wherein the WWAN is associated with a 5G/New Radio radio access technology.
  27. The method of claim 23, wherein the beam information indicates at least one of:
    one or more beam identifiers,
    an identifier of the UE,
    information identifying the WWAN, or
    information identifying a cell associated with the beam information.
  28. The method of claim 27, wherein transmitting the beam information to the UE is based at least in part on the identifier of the UE.
  29. The method of claim 23, wherein the beam information is determined by the network entity.
  30. The method of claim 23, wherein the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  31. The method of claim 23, wherein the orientation information is received via a physical layer message or a data layer message.
  32. The method of claim 23, wherein the orientation information and the beam information are communicated via an interface between the WLAN node and the UE, and wherein the interface provides a security service for the orientation information and the beam information.
  33. The method of claim 32, wherein the security service is based at least in part on a hashing method.
  34. The method of claim 32, wherein the security service is based at least in part on a secure session establishment technique.
  35. The method of claim 23, wherein the beam information is received on an interface between the WLAN node and the network entity.
  36. The method of claim 35, wherein the orientation information is transmitted on the interface.
  37. The method of claim 23, wherein the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  38. A method of wireless communication performed by a network entity of a wireless wide area network (WWAN) , comprising:
    receiving, from a wireless local area network (WLAN) node, orientation information associated with a user equipment (UE) ;
    determining beam information based at least in part on the orientation information, wherein the beam information is associated with the WWAN; and
    transmitting the beam information to the WLAN node.
  39. The method of claim 38, wherein the orientation information includes at least one of:
    information regarding an angle of arrival or an angle of departure of a beam, or
    an identifier of the UE.
  40. The method of claim 38, wherein the WWAN is associated with a millimeter wave frequency range.
  41. The method of claim 38, wherein the WWAN is associated with a 5G/New Radio radio access technology.
  42. The method of claim 38, wherein the beam information indicates at least one of:
    one or more beam identifiers,
    an identifier of the UE,
    information identifying the WWAN, or
    information identifying a cell associated with the beam information.
  43. The method of claim 38, wherein the orientation information is based at least in part on an angle of arrival of a transmit beam of the UE or an angle of arrival of a receive beam of the UE.
  44. The method of claim 38, wherein the beam information indicates a set of beams associated with an angle of arrival indicated by the orientation information.
  45. The method of claim 38, wherein the beam information indicates a set of beams via which the UE is to monitor for paging.
  46. The method of claim 45, further comprising:
    configuring a set of base stations so that a single base station, of the set of base stations, transmits the paging to the UE.
  47. The method of claim 45, wherein the set of beams is prioritized over another set of beams for the monitoring based at least in part on the set of beams being indicated by the beam information.
  48. The method of claim 38, wherein the beam information indicates a set of beams via which the UE is to perform a connected-mode measurement.
  49. The method of claim 38, wherein the beam information indicates a set of beams via which the UE is to perform an idle-mode measurement or an initial acquisition measurement.
  50. The method of claim 38, wherein the beam information indicates a set of beams via which the UE is to communicate in a connected-mode discontinuous reception active time.
  51. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, base station, node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2020/108598 2020-08-12 2020-08-12 User equipment orientation information via wireless access point WO2022032510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108598 WO2022032510A1 (en) 2020-08-12 2020-08-12 User equipment orientation information via wireless access point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108598 WO2022032510A1 (en) 2020-08-12 2020-08-12 User equipment orientation information via wireless access point

Publications (1)

Publication Number Publication Date
WO2022032510A1 true WO2022032510A1 (en) 2022-02-17

Family

ID=80247505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108598 WO2022032510A1 (en) 2020-08-12 2020-08-12 User equipment orientation information via wireless access point

Country Status (1)

Country Link
WO (1) WO2022032510A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075151A1 (en) * 2016-10-21 2018-04-26 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure
WO2020068331A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Enhanced cell identification location determination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075151A1 (en) * 2016-10-21 2018-04-26 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure
WO2020068331A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Enhanced cell identification location determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Measurements of radio performances for UMTS terminals in speech mode (Release 10)", 3GPP STANDARD; 3GPP TR 25.914, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. V10.2.0, 3 October 2011 (2011-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 67, XP050554342 *

Similar Documents

Publication Publication Date Title
US11706834B2 (en) User equipment communications while operating in a secondary cell group deactivated state
US11831586B2 (en) Transmit receive point pairing indication
WO2022006573A1 (en) Secondary cell group activation by bandwidth part for dual connectivity with multiple radio access technologies
EP4118927A1 (en) Layer 2 user equipment relay procedure
WO2021068002A1 (en) Narrowband reference signal for user equipment specific discontinuous reception cycle
US20230318781A1 (en) Dynamic measurement gap control
EP4118777A1 (en) Frequency allocation for channel state information reference signals
WO2021007829A1 (en) Scell measurement configuration
US11546032B2 (en) Beam direction selection for transmission and reception in full duplex operation
WO2022222016A1 (en) Known transmission control indicator duration
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021138753A1 (en) Techniques for indicating a multi-subscriber identity module capability of a device to a network
WO2022040652A1 (en) Layer 2 remote radio head configuration
EP4098003A1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2022032510A1 (en) User equipment orientation information via wireless access point
WO2021232179A1 (en) Restoration of vehicle to everything service
US11863488B2 (en) Single reference signal timing information for measurements of multiple reference signals of multiple cells
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
WO2022036663A1 (en) Network slicing registration using requested nssai and quality of service assistance message
WO2022126405A1 (en) Techniques for measuring neighbor cells using prioritization of the neighbor cells that is based at least in part on associations of the neighbor cells with network operators
WO2021212299A1 (en) Data service with dual subscriber identity modules
WO2021226983A1 (en) Hysteresis increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
US20220046431A1 (en) Cell and full duplex beam pair updating
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2022073165A1 (en) Techniques for indicating frequency band during blind handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949009

Country of ref document: EP

Kind code of ref document: A1