WO2021007829A1 - Scell measurement configuration - Google Patents

Scell measurement configuration Download PDF

Info

Publication number
WO2021007829A1
WO2021007829A1 PCT/CN2019/096470 CN2019096470W WO2021007829A1 WO 2021007829 A1 WO2021007829 A1 WO 2021007829A1 CN 2019096470 W CN2019096470 W CN 2019096470W WO 2021007829 A1 WO2021007829 A1 WO 2021007829A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency carriers
idle mode
subset
frequency
inactive mode
Prior art date
Application number
PCT/CN2019/096470
Other languages
French (fr)
Inventor
Peng Cheng
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/096470 priority Critical patent/WO2021007829A1/en
Publication of WO2021007829A1 publication Critical patent/WO2021007829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for secondary cell (SCell) measurement configuration.
  • SCell secondary cell
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  • SCell secondary cell
  • a UE for wireless communication may include memory and one or more processors coupled to the memory.
  • the memory and the one or more processors may be configured to determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  • an apparatus for wireless communication may include means for determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and means for selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  • a method of wireless communication may include transmitting an indication of an SCell measurement configuration; and receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  • a BS for wireless communication may include memory and one or more processors coupled to the memory.
  • the memory and the one or more processors may be configured to transmit an indication of an SCell measurement configuration; and receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a BS, may cause the one or more processors to: transmit an indication of an SCell measurement configuration; and receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  • an apparatus for wireless communication may include means for transmitting an indication of an SCell measurement configuration; and means for receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • Fig. 3 illustrates an example of a wireless network in which a UE may support additional communication modes, in accordance with various aspects of the present disclosure.
  • Figs. 4-6 are diagrams illustrating one or more examples of secondary cell (SCell) measurement configuration, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” ? can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell cell
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with secondary cell (SCell) measurement configuration, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration, means for selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting an indication of an SCell measurement configuration, means for receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 illustrates an example 300 of a wireless network (e.g., wireless network 100) in which a UE (e.g., UE 120) may support additional communication modes.
  • the UE may be communicatively connected with one or more base stations in the wireless network.
  • the UE may be connected to the one or more base stations in a dual connectivity configuration.
  • a first base station may serve the UE as a master node and a second base station may serve the UE as a secondary node.
  • the UE may support a connected communication mode (e.g., an RRC active mode 302) , an idle communication mode (e.g., an RRC idle mode 304) , an inactive communication mode (e.g., an RRC inactive mode 306) , and/or the like.
  • RRC inactive mode 306 may functionally reside between RRC active mode 302 and RRC idle mode 304.
  • the UE may transition between different modes based at least in part on various commands and/or communications received from the one or more base stations. For example, the UE may transition from RRC active mode 302 or RRC inactive mode 306 to RRC idle mode 304 based at least in part on receiving an RRCRelease communication. As another example, the UE may transition from RRC active mode 302 to RRC inactive mode 306 based at least in part on receiving an RRCRelease with suspendConfig communication. As another example, the UE may transition from RRC idle mode 304 to RRC active mode 302 based at least in part on receiving an RRCSetupRequest communication. As another example, the UE may transition from RRC inactive mode 306 to RRC active mode 302 based at least in part on receiving an RRCResumeRequest communication.
  • the UE and/or the one or more base stations may store a UE context (e.g., an access stratum (AS) context, higher-layer configurations, and/or the like) .
  • a UE context e.g., an access stratum (AS) context, higher-layer configurations, and/or the like.
  • AS access stratum
  • the UE may communicatively connect with a new master node when transitioning from RRC idle mode 304 or RRC inactive mode 306 to RRC active mode 302 (e.g., a master node that is different from the last serving master node when the UE transitioned to RRC idle mode 304 or RRC inactive mode 306) .
  • the new master node may be responsible for identifying a secondary node for the UE in the dual connectivity configuration.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a UE may perform measurements of one or more SCell frequency carriers (which may sometimes be referred to as “early measurements” ) , which may be used by a BS to facilitate SCell selection for carrier aggregation and/or other purposes. For example, the UE may perform the measurements while in an RRC idle mode (e.g., RRC idle mode 304) , an RRC inactive state (e.g., RRC inactive mode 306) , and/or other operating modes.
  • a BS may configure a list of frequency carriers, that the UE is to measure, in an SCell measurement configuration (e.g., a measCellList field) .
  • the list of frequency carriers identified in an SCell measurement configuration may conflict with frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE, which in some cases may also be performed in an idle mode and/or inactive mode.
  • some frequency carriers identified in an SCell measurement configuration for a UE may not be included among the frequency carriers that are identified for purposes of inter-frequency mobility and/or cell reselection for the UE.
  • These frequency carriers may be referred to as non-overlapping frequency carriers, as opposed to overlapping frequency carriers that are included in the SCell measurement configuration and are identified for purposes of inter-frequency mobility and/or cell reselection.
  • a conflict may arise where the UE is instructed to perform measurements for the frequency carriers identified in the SCell measurement configuration while also being instructed to refrain from performing measurements for frequency carriers that are not included in the frequency carriers that are configured for inter-frequency mobility and/or cell reselection, and/or to refrain from performing measurements for frequency carriers that are configured for inter-frequency mobility and/or cell reselection but do not satisfy a priority threshold.
  • the UE may be unable to determine whether to perform idle mode and/or inactive mode measurements for some overlapping and/or non-overlapping frequency carriers.
  • a BS may configure one or more parameters for determining whether to perform idle mode and/or inactive mode measurements for frequency carriers indicated in an SCell measurement configuration.
  • the UE may be permitted to resolve conflicts between frequency carriers that are configured in an SCell measurement configuration and frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE.
  • Fig. 4 is a diagram illustrating one or more examples 400 of SCell measurement configuration, in accordance with various aspects of the present disclosure.
  • examples 400 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) .
  • the UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink.
  • the wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
  • the UE may be capable of operating in various operating modes (e.g., an RRC active mode 302, an RRC idle mode 304, an RRC inactive mode 306, and/or the like) and performing various types of measurements in the wireless network.
  • the UE may be capable of performing idle mode and/or inactive mode measurements of frequency carriers associated with SCell selection for carrier aggregation and/or other purposes.
  • the UE may be capable of performing idle mode and/or inactive mode measurements of frequency carriers that are configured for inter-frequency mobility and/or cell reselection.
  • the idle mode and/or inactive mode measurements may include RSRP measurements, RSSI measurements, RSRQ measurements, CQI measurements, and/or other types of measurements.
  • the BS may transmit an indication of an SCell measurement configuration to the UE.
  • the indication of an SCell measurement configuration may be included in system information (e.g., one or more system information blocks (SIBs) such as a SIB2, a SIB5, and/or another SIB) , in one or more signaling communications (e.g., one or more RRC communications and/or other types of signaling communications) , and/or the like.
  • SIBs system information blocks
  • signaling communications e.g., one or more RRC communications and/or other types of signaling communications
  • the SCell measurement configuration may identify a candidate SCell list one or more frequency carriers that are configured for SCell selection. Each of the one or more frequency carriers may be a frequency carrier on which a candidate SCell operates.
  • the BS may transmit an indication of a configuration for inter-frequency mobility and/or cell reselection that identifies one or more frequency carriers that are configured for inter-frequency mobility and/or cell reselection.
  • the BS may independently configure the SCell measurement configuration and the configuration for inter-frequency mobility and/or cell reselection.
  • the BS may independently configure frequency carriers that are included in the SCell measurement configuration and the frequency carriers that are included in the configuration for inter-frequency mobility and/or cell reselection.
  • the BS may independently configure one or more parameters that are included in the SCell measurement configuration and one or more parameters that are included in the configuration for inter-frequency mobility and/or cell reselection.
  • frequency carriers that are included in both the SCell measurement configuration and the configuration for inter-frequency mobility and/or cell reselection may be referred to as overlapping frequency carriers, and frequency carriers that are included in one of the SCell measurement configuration or the configuration for inter-frequency mobility and/or cell reselection but not both may be referred to as non-overlapping frequency carriers.
  • the BS may transmit the indication of the configuration for inter-frequency mobility and/or cell reselection in the same system information and/or signaling communications as the indication of the SCell measurement configuration and/or different system information and/or signaling communications.
  • the configuration for inter-frequency mobility and/or cell reselection may identify, and/or the UE may be configured with, parameters for determining frequency carriers identified in the configuration for inter-frequency mobility and/or cell reselection for which the UE is to perform idle mode and/or inactive mode measurements.
  • the frequency carriers identified in the configuration for inter-frequency mobility and/or cell reselection may each be associated with a respective priority, and the UE may perform idle mode and/or inactive mode measurements for a frequency carrier based at least in part on whether the priority associated with the frequency carrier satisfies a priority threshold.
  • the priority threshold may be based at least in part on whether one or more cell selection thresholds are satisfied.
  • the priority threshold may be a first priority threshold value if a cell selection quality value (Squal) of the serving cell of the UE satisfies an S nonIntraSearchP threshold and/or if a cell selection receive level value (Srxlev) of the serving cell of the UE satisfies an S nonIntraSearchQ threshold.
  • the priority threshold may be a second priority threshold value if the Squal of the serving cell of the UE does not satisfy the S nonIntraSearchP threshold and/or if the Srxlev of the serving cell of the UE does not satisfy the S nonIntraSearchQ threshold.
  • the priority threshold may be a first priority threshold value if an Squal of the serving cell of the UE satisfies an S IntraSearchP threshold and/or if an Srxlev of the serving cell of the UE satisfies an S IntraSearchQ threshold.
  • the priority threshold may be a second priority threshold value if the Squal of the serving cell of the UE does not satisfy the S IntraSearchP threshold and/or if the Srxlev of the serving cell of the UE does not satisfy the S IntraSearchQ threshold.
  • the SCell measurement configuration may identify one or more parameters for determining frequency carriers, identified in the candidate SCell list, for which the UE is to perform idle mode and/or inactive mode measurements.
  • the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for all frequency carriers identified in the candidate SCell list, regardless of whether a frequency carrier is an overlapping frequency carrier or a non-overlapping carrier, and regardless of whether the configuration for inter-frequency mobility and/or cell reselection indicates that the UE is to refrain from performing idle mode and/or inactive mode measurements for the frequency carrier.
  • the one or more parameters may include a frequency sampling rate, a time sampling rate, and/or other measurement parameters for the idle mode and/or inactive mode measurements.
  • the frequency sampling rate, time sampling rate, and/or other measurement parameters may be the same for all frequency carriers identified in the candidate SCell list. In some aspects, the frequency sampling rate, time sampling rate, and/or other measurement parameters may be different for one or more frequency carriers identified in the candidate SCell list. In this case, the SCell measurement configuration and/or other RRC signaling communications transmitted from the BS may identify a plurality of subsets of the frequency carriers identified in the SCell list.
  • a first subset of the frequency carriers may be associated with a first frequency sampling rate, a first time sampling rate, and/or other first measurement parameters for the idle mode and/or inactive mode measurements
  • a second subset of the frequency carriers may be associated with a second frequency sampling rate, a second time sampling rate, and/or other second measurement parameters for the idle mode and/or inactive mode measurements.
  • the first subset may include overlapping frequency carriers included in the candidate SCell list
  • the second subset may include non-overlapping frequency carriers included in the SCell list.
  • the second frequency sampling rate, second time sampling rate, and/or other second measurement parameters may be lower or reduced relative to the first frequency sampling rate, first time sampling rate, and/or other first measurement parameters.
  • the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for frequency carriers identified in the candidate SCell list based at least in part on a respective priority associated with each of the frequency carriers identified in the candidate SCell list.
  • the respective priority associated with each overlapping frequency carrier may be the priority indicated in the configuration for inter-frequency mobility and/or cell reselection.
  • the respective priority associated with each non-overlapping frequency carrier may be identified in the SCell measurement configuration, may be identified in the configuration for inter-frequency mobility and/or cell reselection, may be identified in the same system information and/or signaling communications as the SCell measurement configuration and/or the configuration for inter-frequency mobility and/or cell reselection, may be identified in other system information and/or signaling communications, and/or the like.
  • the BS may assign priorities to the overlapping frequency carriers and non-overlapping frequency carriers such that all of the overlapping frequency carriers are assigned a respective priority that is greater or higher relative to the respective priority assigned to all of the non-overlapping frequency carriers. In some aspects, the BS may assign a respective priority to one or more non-overlapping frequency carriers that is greater or higher relative to a respective priority assigned to one or more overlapping frequency carriers.
  • the one or more parameters may indicate that the UE is to determine whether to perform idle mode and/or inactive mode measurements, for the frequency carriers included in the candidate SCell list, based at least in part on whether the respective priorities for the frequency carriers included in the candidate SCell list satisfy one or more priority thresholds (e.g., the same priority thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different priority thresholds) , whether the serving cell of the UE satisfies one or more cell selection thresholds (e.g., the cell selection thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different cell selection thresholds) , and/or the like.
  • priority thresholds e.g., the same priority thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different priority thresholds
  • cell selection thresholds e.g., the cell selection thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different cell
  • the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for frequency carriers identified in the candidate SCell list based at least in part on one or more thresholds associated with the UE.
  • the one or more thresholds associated with the UE may include, for example, a battery life threshold, a memory threshold, a throughput threshold, a temperature threshold, and/or the like.
  • the UE may determine to perform idle mode and/or inactive mode measurements for overlapping frequency carriers and non-overlapping frequency carriers included in the candidate SCell list if the UE determines that one or a combination of the thresholds associated with the UE are satisfied, and/or may determine to perform idle mode and/or inactive mode measurements for overlapping frequency carriers only (e.g., and to refrain from performing idle mode and/or inactive mode measurements for non-overlapping frequency carriers) if the UE determines that one or a combination of the thresholds associated with the UE are not satisfied.
  • the UE may determine whether the battery life threshold is satisfied by determining whether a remaining battery life of the UE satisfies the battery life threshold, by determining whether the UE is connected to a charging source, and/or the like. In some aspects, the UE may determine whether the throughput threshold is satisfied by determining whether a throughput of the UE satisfies the throughput threshold.
  • the throughput of the UE may include a throughput capability of the UE (e.g., a peak or average throughput capability) , a measured throughput on the downlink and/or uplink between the UE and the BS (e.g., a peak or average measured throughput) , and/or the like.
  • the UE may determine whether the memory threshold is satisfied by determining whether an available memory of the UE satisfies the memory threshold. In some aspects, the UE may determine whether the temperature threshold is satisfied by determining whether an operating temperature of the UE (e.g., a processor temperature, a chassis temperature, and/or other operating temperatures associated with the UE) satisfies the temperature threshold.
  • an operating temperature of the UE e.g., a processor temperature, a chassis temperature, and/or other operating temperatures associated with the UE
  • the UE may receive the indication of the SCell configuration, the configuration for inter-frequency mobility and/or cell reselection, and/or other system information and/or signaling communications, and may determine whether to perform idle mode and/or inactive mode measurements for one or more frequency carriers indicated in the SCell measurement configuration (e.g., the candidate SCell list) .
  • the UE may determine, for each of the one or more frequency carriers, whether to perform idle mode and/or inactive mode measurements based at least in part on the one or more parameters indicated in the SCell measurement configuration and/or the other system information and/or signaling communications, the respective priorities for the one or more frequency carriers indicated in the SCell measurement configuration and/or the configuration for inter-frequency mobility and/or cell reselection, and/or the like.
  • the UE may selectively perform idle mode and/or inactive mode measurements based at least in part on determining whether to perform idle mode and/or inactive mode measurements for the one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may perform idle mode and/or inactive mode measurements, for a frequency carrier indicated in the SCell measurement configuration, based at least in part on determining to perform idle mode and/or inactive mode measurements for the frequency carrier. As another example, the UE may refrain from performing idle mode and/or inactive mode measurements, for a frequency carrier indicated in the SCell measurement configuration, based at least in part on determining to refrain from performing idle mode and/or inactive mode measurements for the frequency carrier. In some aspects, the UE may perform idle mode measurements while operating in an idle mode (e.g., RRC idle mode 304) and/or may perform inactive mode measurements while operating in an inactive mode (e.g., RRC inactive mode 306) .
  • an idle mode e.g., RRC idle mode 304
  • the UE may transmit, to the BS, an indication of idle mode and/or inactive mode measurement results for the idle mode and/or inactive mode measurements.
  • the UE may transmit the indication of the idle mode and/or inactive mode measurement results in one or more uplink communications, such as one or more uplink control information (UCI) communications and/or other types of uplink communications.
  • the BS may receive the indication of the idle mode and/or inactive mode measurement results and may select and configure one or more SCells for the UE based at least in part on the idle mode and/or inactive mode measurement results.
  • the BS may configure one or more parameters for determining whether to perform idle mode and/or inactive mode measurements for frequency carriers indicated in an SCell measurement configuration.
  • the UE may be permitted to resolve conflicts between frequency carriers that are configured in an SCell measurement configuration and frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE.
  • Fig. 4 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating one or more examples 500 of SCell measurement configuration, in accordance with various aspects of the present disclosure.
  • examples 500 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) .
  • the UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink.
  • the wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
  • Fig. 5 may illustrate examples of a UE performing idle mode measurements, for one or more frequency carriers identified in an SCell measurement configuration, associated with a random access channel (RACH) procedure for transitioning from an idle mode (e.g., RRC idle mode 304) to an active mode (e.g., RRC active mode 302) . While Fig. 5 illustrates the examples of the UE performing idle mode measurements in the context of a four-step RACH process, the examples may also apply to two-step RACH processes and/or other types of RACH processes.
  • RACH random access channel
  • the BS may transmit an SCell measurement configuration in a SIB5 (502-1) and/or an RRC release communication (502-2) .
  • the UE may receive the SCell measurement configuration and may transition from an active mode to an idle mode by releasing an RRC connection with the BS.
  • the UE may determine whether to perform idle mode measurements for one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may determine whether to perform idle mode measurements for the one or more frequency carriers using one or more of the techniques described above in connection with Fig. 4. In some aspects, the UE may determine, for each of the one or more frequency carriers, whether to perform idle mode measurements based at least in part on one or more parameters (e.g., one or more of the parameters described above in connection with Fig. 4) identified in the SCell measurement configuration, in a configuration for inter-frequency mobility and/or cell reselection, in other types of system information and/or signaling communications, and/or the like.
  • parameters e.g., one or more of the parameters described above in connection with Fig. 4
  • the UE may selectively perform the idle mode measurements for the one or more frequency carriers. For example, the UE may perform idle mode measurements for a frequency carrier based at least in part on determining to perform idle mode measurements for the frequency carrier. As another example, the UE may refrain from performing idle mode measurements for a frequency carrier based at least in part on determining to refrain from performing idle mode measurements for the frequency carrier.
  • the UE may subsequently transition from the idle mode back to the active mode, and may reestablish an RRC connection with the BS by transmitting a msg1 communication to the BS to initiate a RACH procedure with the BS.
  • the msg1 communication may include a RACH preamble communication that is transmitted in a RACH occasion (e.g., a particular set of time-frequency resources) , the combination of which may be referred to as a RACH signature.
  • the BS may respond to the msg1 communication with a msg2 communication, which may include a random access response (RAR) communication.
  • RAR random access response
  • the UE may respond to the msg2 communication with a msg3 communication, which may include an RRC connection request communication.
  • the BS may respond to the msg3 communication with a msg4 communication, which may include a medium access control (MAC) control element (MAC-CE) contention resolution identifier, an RRC setup command, and/or the like.
  • MAC medium access control
  • MAC-CE medium access control control element
  • the UE may transmit a msg5 communication to the BS, which may include an RRC setup complete communication.
  • the msg5 communication may further include an indication that the results for the idle mode measurements are available at the UE.
  • the BS may transmit an RRC security mode command communication to the UE.
  • the RRC security mode command communication may include an instruction for the UE to establish access stratum security for the RRC connection with the BS.
  • the UE may transmit an RRC security mode complete communication to the BS.
  • the BS may transmit a UE information request communication to the UE to request the results for the idle mode measurements.
  • the BS may transmit the UE information request based at least in part on receiving the msg5 communication that includes the idleMeasAvailable field set to True.
  • the UE may respond to the UE information request communication by transmitting a UE information response communication.
  • the UE information response communication may include the results for the idle mode measurements.
  • the results for the idle mode measurements may be included in a MeasResultsIdle field in the UE information response communication.
  • Fig. 5 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating one or more examples 600 of SCell measurement configuration, in accordance with various aspects of the present disclosure.
  • examples 600 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) .
  • the UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink.
  • the wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
  • Fig. 6 may illustrate examples of a UE performing inactive mode measurements, for one or more frequency carriers identified in an SCell measurement configuration, associated with a RACH procedure for transitioning from an inactive mode (e.g., RRC inactive mode 306) to an active mode (e.g., RRC active mode 302) . While Fig. 6 illustrates the examples of the UE performing inactive mode measurements in the context of a four-step RACH process, the examples may also apply to two-step RACH processes and/or other types of RACH processes.
  • an inactive mode e.g., RRC inactive mode 306
  • an active mode e.g., RRC active mode 302
  • Fig. 6 illustrates the examples of the UE performing inactive mode measurements in the context of a four-step RACH process, the examples may also apply to two-step RACH processes and/or other types of RACH processes.
  • the BS may transmit an SCell measurement configuration in a SIB5 (602-1) and/or an RRC release communication with a suspendConfig command (602-2) .
  • the UE may receive the SCell measurement configuration and may transition from an active mode to an inactive mode.
  • the suspendConfig command may indicate that the UE and/or the BS is to store a UE context associated with the UE prior to the UE transitioning into the inactive mode. This permits the UE and/or the BS to apply the stored UE context when the UE transitions from the inactive mode to the active mode in order to resume communications with the BS.
  • the UE may determine whether to perform inactive mode measurements for one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may determine whether to perform inactive mode measurements for the one or more frequency carriers using one or more of the techniques described above in connection with Fig. 4. In some aspects, the UE may determine, for each of the one or more frequency carriers, whether to perform inactive mode measurements based at least in part on one or more parameters (e.g., one or more of the parameters described above in connection with Fig. 4) identified in the SCell measurement configuration, in a configuration for inter-frequency mobility and/or cell reselection, in other types of system information and/or signaling communications, and/or the like.
  • parameters e.g., one or more of the parameters described above in connection with Fig. 4
  • the UE may selectively perform the inactive mode measurements for the one or more frequency carriers. For example, the UE may perform inactive mode measurements for a frequency carrier based at least in part on determining to perform inactive mode measurements for the frequency carrier. As another example, the UE may refrain from performing inactive mode measurements for a frequency carrier based at least in part on determining to refrain from performing inactive mode measurements for the frequency carrier.
  • the UE may subsequently transition from the inactive mode back to the active mode, and may resume the RRC connection with the BS, based at least in part on the stored UE context associated with the UE, by transmitting a msg1 communication to the BS to initiate a RACH procedure with the BS.
  • the msg1 communication may include a RACH preamble communication that is transmitted in a RACH occasion (e.g., a particular set of time-frequency resources) , the combination of which may be referred to as a RACH signature.
  • the BS may respond to the msg1 communication with a msg2 communication, which may include an RAR communication.
  • the UE may respond to the msg2 communication with a msg3 communication, which may include an RRC resume request communication.
  • the BS may respond to the msg3 communication with a msg4 communication, which may include an RRC resume command.
  • the stored UE context may include an access stratum context (e.g., access stratum security associated with the RRC connection between the UE and the BS)
  • the BS may request the results of the idle mode measurements in the msg4 communication.
  • the UE may transmit a msg5 communication to the BS, which may include an RRC resume complete communication.
  • the msg5 communication may further include an indication of the results for the inactive mode measurements.
  • the results for the inactive mode measurements may be included in a MeasResultsInactive field and/or another field in the msg5 communication.
  • Fig. 6 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where a UE (e.g., UE 120) performs operations associated with SCell measurement configuration.
  • a UE e.g., UE 120
  • process 700 may include determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration (block 710) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 700 may include selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements (block 720) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the SCell measurement configuration identifies a first subset of the one or more frequency carriers, and a second subset of the one or more frequency carriers, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements, and selectively performing the idle mode or inactive mode measurements comprises performing first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers and performing second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements.
  • process 700 further comprises receiving an indication of the SCell measurement configuration in at least one of one or more system information blocks or one or more radio resource control communications.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining whether to perform the idle mode or inactive mode measurements based at least in part on a respective priority associated with each of the one or more frequency carriers.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for at least one subset of the one or more frequency carriers based at least in part on the respective priority associated with each of the one or more frequency carriers.
  • a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility, and a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility.
  • a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers based at least in part on determining that the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to the respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers.
  • At least one of the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or the respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers is indicated in one or more radio resource control communications.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that a remaining battery life of the UE satisfies a battery life threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold.
  • process 700 further comprises receiving an indication of the battery life threshold in one or more radio resource control communications.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an available memory of the UE satisfies a memory threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the available memory of the UE does not satisfy the memory threshold.
  • process 700 further comprises receiving an indication of the memory threshold in one or more radio resource control communications.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that a throughput of the UE satisfies a throughput threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the throughput of the UE does not satisfy the throughput threshold.
  • process 700 further comprises receiving an indication of the throughput threshold in one or more radio resource control communications.
  • determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an operating temperature of the UE satisfies a temperature threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the operating temperature of the UE does not satisfy the temperature threshold.
  • process 700 further comprises receiving an indication of the operating temperature in one or more radio resource control communications.
  • the SCell measurement configuration is indicated in a measCellList field.
  • a first subset of the one or more frequency carriers are frequency carriers that are included in a configuration for inter-frequency mobility
  • a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility
  • the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where a BS (e.g., BS 110) performs operations associated with SCell measurement configuration.
  • a BS e.g., BS 110
  • process 800 may include transmitting an indication of an SCell measurement configuration (block 810) .
  • the BS e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • process 800 may include receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration (block 820) .
  • the BS e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the SCell measurement configuration identifies a first subset of the one or more frequency carriers and a second subset of the one or more frequency carriers, and receiving the idle mode or inactive mode measurements comprises receiving first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers and receiving second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements.
  • process 800 further comprises transmitting an indication of the SCell measurement configuration in at least one of: one or more system information blocks, or one or more radio resource control communications.
  • a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility, and a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility.
  • at least one of a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers is indicated in at least one of the SCell measurement configuration or one or more radio resource control communications.
  • receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether a remaining battery life of a UE satisfies a battery life threshold.
  • process 800 further comprises transmitting an indication of the battery life threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  • receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether an available memory of a UE satisfies a memory threshold.
  • process 800 further comprises transmitting an indication of the memory threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  • receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether a throughput of a UE satisfies a throughput threshold.
  • process 800 further comprises transmitting an indication of the throughput threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  • receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether an operating temperature of a UE satisfies a temperature threshold.
  • process 800 further comprises transmitting an indication of the temperature threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  • the SCell measurement configuration is indicated in a measCellList field.
  • a first subset of the one or more frequency carriers are frequency carriers that are included in a configuration for inter-frequency mobility
  • a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility
  • the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • a, b, c, a-b, a-c, b-c, and a-b-c are intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration. The UE may selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements. Numerous other aspects are provided.

Description

SCELL MEASUREMENT CONFIGURATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for secondary cell (SCell) measurement configuration.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. The memory and the one or more processors may be configured to determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
In some aspects, an apparatus for wireless communication may include means for determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration; and means for selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
In some aspects, a method of wireless communication, performed by a base station (BS) , may include transmitting an indication of an SCell measurement configuration; and receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
In some aspects, a BS for wireless communication may include memory and one or more processors coupled to the memory. The memory and the one or more processors may be configured to transmit an indication of an SCell measurement configuration; and receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to: transmit an indication of an SCell measurement configuration; and receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
In some aspects, an apparatus for wireless communication may include means for transmitting an indication of an SCell measurement configuration; and means for receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily  utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 illustrates an example of a wireless network in which a UE may support additional communication modes, in accordance with various aspects of the present disclosure.
Figs. 4-6 are diagrams illustrating one or more examples of secondary cell (SCell) measurement configuration, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a BS, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B,  a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” ? can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” ? may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These  different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230  may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and  further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with secondary cell (SCell) measurement configuration, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration, means for selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting an indication of an SCell measurement configuration, means for receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig.  2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 illustrates an example 300 of a wireless network (e.g., wireless network 100) in which a UE (e.g., UE 120) may support additional communication modes. The UE may be communicatively connected with one or more base stations in the wireless network. For example, the UE may be connected to the one or more base stations in a dual connectivity configuration. In this case, a first base station may serve the UE as a master node and a second base station may serve the UE as a secondary node.
As illustrated in Fig. 3, the UE may support a connected communication mode (e.g., an RRC active mode 302) , an idle communication mode (e.g., an RRC idle mode 304) , an inactive communication mode (e.g., an RRC inactive mode 306) , and/or the like. RRC inactive mode 306 may functionally reside between RRC active mode 302 and RRC idle mode 304.
The UE may transition between different modes based at least in part on various commands and/or communications received from the one or more base stations. For example, the UE may transition from RRC active mode 302 or RRC inactive mode 306 to RRC idle mode 304 based at least in part on receiving an RRCRelease communication. As another example, the UE may transition from RRC active mode 302 to RRC inactive mode 306 based at least in part on receiving an RRCRelease with suspendConfig communication. As another example, the UE may transition from RRC idle mode 304 to RRC active mode 302 based at least in part on receiving an RRCSetupRequest communication. As another example, the UE may transition from RRC inactive mode 306 to RRC active mode 302 based at least in part on receiving an RRCResumeRequest communication.
When transitioning to RRC inactive mode 306, the UE and/or the one or more base stations may store a UE context (e.g., an access stratum (AS) context, higher-layer configurations, and/or the like) . This permits the UE and/or the one or more base stations to apply the stored UE context when the UE transitions from RRC inactive mode 306 to RRC active mode 302 in order to resume communications with the one or  more base stations, which reduces latency of transitioning to RRC active mode 302 relative to transitioning to the RRC active mode 302 from RRC idle mode 304.
In some cases, the UE may communicatively connect with a new master node when transitioning from RRC idle mode 304 or RRC inactive mode 306 to RRC active mode 302 (e.g., a master node that is different from the last serving master node when the UE transitioned to RRC idle mode 304 or RRC inactive mode 306) . In this case, the new master node may be responsible for identifying a secondary node for the UE in the dual connectivity configuration.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
In some cases, a UE may perform measurements of one or more SCell frequency carriers (which may sometimes be referred to as “early measurements” ) , which may be used by a BS to facilitate SCell selection for carrier aggregation and/or other purposes. For example, the UE may perform the measurements while in an RRC idle mode (e.g., RRC idle mode 304) , an RRC inactive state (e.g., RRC inactive mode 306) , and/or other operating modes. In some cases, a BS may configure a list of frequency carriers, that the UE is to measure, in an SCell measurement configuration (e.g., a measCellList field) .
In some cases, the list of frequency carriers identified in an SCell measurement configuration may conflict with frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE, which in some cases may also be performed in an idle mode and/or inactive mode. For example, some frequency carriers identified in an SCell measurement configuration for a UE may not be included among the frequency carriers that are identified for purposes of inter-frequency mobility and/or cell reselection for the UE. These frequency carriers may be referred to as non-overlapping frequency carriers, as opposed to overlapping frequency carriers that are included in the SCell measurement configuration and are identified for purposes of inter-frequency mobility and/or cell reselection. In this case, a conflict may arise where the UE is instructed to perform measurements for the frequency carriers identified in the SCell measurement configuration while also being instructed to refrain from performing measurements for frequency carriers that are not included in the frequency carriers that are configured for inter-frequency mobility and/or cell reselection, and/or to refrain from performing measurements for frequency carriers that are configured for inter-frequency mobility and/or cell reselection but do not satisfy a priority threshold. As a  result, the UE may be unable to determine whether to perform idle mode and/or inactive mode measurements for some overlapping and/or non-overlapping frequency carriers.
Some aspects described herein provide techniques and apparatuses for SCell measurement configuration. In some aspects, a BS may configure one or more parameters for determining whether to perform idle mode and/or inactive mode measurements for frequency carriers indicated in an SCell measurement configuration. In this way, the UE may be permitted to resolve conflicts between frequency carriers that are configured in an SCell measurement configuration and frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE.
Fig. 4 is a diagram illustrating one or more examples 400 of SCell measurement configuration, in accordance with various aspects of the present disclosure. As shown in Fig. 4, examples 400 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) . The UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink. The wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
In some aspects, the UE may be capable of operating in various operating modes (e.g., an RRC active mode 302, an RRC idle mode 304, an RRC inactive mode 306, and/or the like) and performing various types of measurements in the wireless network. For example, the UE may be capable of performing idle mode and/or inactive mode measurements of frequency carriers associated with SCell selection for carrier aggregation and/or other purposes. As another example, the UE may be capable of performing idle mode and/or inactive mode measurements of frequency carriers that are configured for inter-frequency mobility and/or cell reselection. The idle mode and/or inactive mode measurements may include RSRP measurements, RSSI measurements, RSRQ measurements, CQI measurements, and/or other types of measurements.
As shown in Fig. 4, and by reference number 402, to configure the UE to perform idle mode and/or inactive mode measurements of frequency carriers associated with SCell selection, the BS may transmit an indication of an SCell measurement configuration to the UE. The indication of an SCell measurement configuration may be included in system information (e.g., one or more system information blocks (SIBs) such as a SIB2, a SIB5, and/or another SIB) , in one or more signaling communications  (e.g., one or more RRC communications and/or other types of signaling communications) , and/or the like. In some aspects, the SCell measurement configuration may identify a candidate SCell list one or more frequency carriers that are configured for SCell selection. Each of the one or more frequency carriers may be a frequency carrier on which a candidate SCell operates.
Moreover, the BS may transmit an indication of a configuration for inter-frequency mobility and/or cell reselection that identifies one or more frequency carriers that are configured for inter-frequency mobility and/or cell reselection. casein some aspects, the BS may independently configure the SCell measurement configuration and the configuration for inter-frequency mobility and/or cell reselection. For example, the BS may independently configure frequency carriers that are included in the SCell measurement configuration and the frequency carriers that are included in the configuration for inter-frequency mobility and/or cell reselection. As another example, the BS may independently configure one or more parameters that are included in the SCell measurement configuration and one or more parameters that are included in the configuration for inter-frequency mobility and/or cell reselection.
In some aspects, frequency carriers that are included in both the SCell measurement configuration and the configuration for inter-frequency mobility and/or cell reselection may be referred to as overlapping frequency carriers, and frequency carriers that are included in one of the SCell measurement configuration or the configuration for inter-frequency mobility and/or cell reselection but not both may be referred to as non-overlapping frequency carriers. The BS may transmit the indication of the configuration for inter-frequency mobility and/or cell reselection in the same system information and/or signaling communications as the indication of the SCell measurement configuration and/or different system information and/or signaling communications.
In some aspects, the configuration for inter-frequency mobility and/or cell reselection may identify, and/or the UE may be configured with, parameters for determining frequency carriers identified in the configuration for inter-frequency mobility and/or cell reselection for which the UE is to perform idle mode and/or inactive mode measurements. For example, the frequency carriers identified in the configuration for inter-frequency mobility and/or cell reselection may each be associated with a respective priority, and the UE may perform idle mode and/or inactive mode measurements for a frequency carrier based at least in part on whether the priority  associated with the frequency carrier satisfies a priority threshold. The priority threshold may be based at least in part on whether one or more cell selection thresholds are satisfied.
For example, the priority threshold may be a first priority threshold value if a cell selection quality value (Squal) of the serving cell of the UE satisfies an S nonIntraSearchP threshold and/or if a cell selection receive level value (Srxlev) of the serving cell of the UE satisfies an S nonIntraSearchQ threshold. As another example, the priority threshold may be a second priority threshold value if the Squal of the serving cell of the UE does not satisfy the S nonIntraSearchP threshold and/or if the Srxlev of the serving cell of the UE does not satisfy the S nonIntraSearchQ threshold. For an intra-frequency mobility example, the priority threshold may be a first priority threshold value if an Squal of the serving cell of the UE satisfies an S IntraSearchP threshold and/or if an Srxlev of the serving cell of the UE satisfies an S IntraSearchQ threshold. For another intra-frequency mobility example, the priority threshold may be a second priority threshold value if the Squal of the serving cell of the UE does not satisfy the S IntraSearchP threshold and/or if the Srxlev of the serving cell of the UE does not satisfy the S IntraSearchQ threshold.
In some aspects, the SCell measurement configuration may identify one or more parameters for determining frequency carriers, identified in the candidate SCell list, for which the UE is to perform idle mode and/or inactive mode measurements. As an example, the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for all frequency carriers identified in the candidate SCell list, regardless of whether a frequency carrier is an overlapping frequency carrier or a non-overlapping carrier, and regardless of whether the configuration for inter-frequency mobility and/or cell reselection indicates that the UE is to refrain from performing idle mode and/or inactive mode measurements for the frequency carrier. In this case, the one or more parameters may include a frequency sampling rate, a time sampling rate, and/or other measurement parameters for the idle mode and/or inactive mode measurements.
In some aspects, the frequency sampling rate, time sampling rate, and/or other measurement parameters may be the same for all frequency carriers identified in the candidate SCell list. In some aspects, the frequency sampling rate, time sampling rate, and/or other measurement parameters may be different for one or more frequency carriers identified in the candidate SCell list. In this case, the SCell measurement configuration and/or other RRC signaling communications transmitted from the BS may  identify a plurality of subsets of the frequency carriers identified in the SCell list. A first subset of the frequency carriers may be associated with a first frequency sampling rate, a first time sampling rate, and/or other first measurement parameters for the idle mode and/or inactive mode measurements, and a second subset of the frequency carriers may be associated with a second frequency sampling rate, a second time sampling rate, and/or other second measurement parameters for the idle mode and/or inactive mode measurements. In some aspects, the first subset may include overlapping frequency carriers included in the candidate SCell list, and the second subset may include non-overlapping frequency carriers included in the SCell list. The second frequency sampling rate, second time sampling rate, and/or other second measurement parameters may be lower or reduced relative to the first frequency sampling rate, first time sampling rate, and/or other first measurement parameters.
As another example, the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for frequency carriers identified in the candidate SCell list based at least in part on a respective priority associated with each of the frequency carriers identified in the candidate SCell list. For overlapping frequency carriers included in the candidate SCell list, the respective priority associated with each overlapping frequency carrier may be the priority indicated in the configuration for inter-frequency mobility and/or cell reselection. For non-overlapping frequency carriers included in the candidate SCell list, the respective priority associated with each non-overlapping frequency carrier may be identified in the SCell measurement configuration, may be identified in the configuration for inter-frequency mobility and/or cell reselection, may be identified in the same system information and/or signaling communications as the SCell measurement configuration and/or the configuration for inter-frequency mobility and/or cell reselection, may be identified in other system information and/or signaling communications, and/or the like.
In some aspects, the BS may assign priorities to the overlapping frequency carriers and non-overlapping frequency carriers such that all of the overlapping frequency carriers are assigned a respective priority that is greater or higher relative to the respective priority assigned to all of the non-overlapping frequency carriers. In some aspects, the BS may assign a respective priority to one or more non-overlapping frequency carriers that is greater or higher relative to a respective priority assigned to one or more overlapping frequency carriers.
In some aspects, the one or more parameters may indicate that the UE is to determine whether to perform idle mode and/or inactive mode measurements, for the frequency carriers included in the candidate SCell list, based at least in part on whether the respective priorities for the frequency carriers included in the candidate SCell list satisfy one or more priority thresholds (e.g., the same priority thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different priority thresholds) , whether the serving cell of the UE satisfies one or more cell selection thresholds (e.g., the cell selection thresholds identified in the configuration for inter-frequency mobility and/or cell reselection and/or different cell selection thresholds) , and/or the like.
As another example, the one or more parameters may indicate that the UE is to perform idle mode and/or inactive mode measurements for frequency carriers identified in the candidate SCell list based at least in part on one or more thresholds associated with the UE. The one or more thresholds associated with the UE may include, for example, a battery life threshold, a memory threshold, a throughput threshold, a temperature threshold, and/or the like. In this case, the UE may determine to perform idle mode and/or inactive mode measurements for overlapping frequency carriers and non-overlapping frequency carriers included in the candidate SCell list if the UE determines that one or a combination of the thresholds associated with the UE are satisfied, and/or may determine to perform idle mode and/or inactive mode measurements for overlapping frequency carriers only (e.g., and to refrain from performing idle mode and/or inactive mode measurements for non-overlapping frequency carriers) if the UE determines that one or a combination of the thresholds associated with the UE are not satisfied.
In some aspects, the UE may determine whether the battery life threshold is satisfied by determining whether a remaining battery life of the UE satisfies the battery life threshold, by determining whether the UE is connected to a charging source, and/or the like. In some aspects, the UE may determine whether the throughput threshold is satisfied by determining whether a throughput of the UE satisfies the throughput threshold. The throughput of the UE may include a throughput capability of the UE (e.g., a peak or average throughput capability) , a measured throughput on the downlink and/or uplink between the UE and the BS (e.g., a peak or average measured throughput) , and/or the like. In some aspects, the UE may determine whether the memory threshold is satisfied by determining whether an available memory of the UE  satisfies the memory threshold. In some aspects, the UE may determine whether the temperature threshold is satisfied by determining whether an operating temperature of the UE (e.g., a processor temperature, a chassis temperature, and/or other operating temperatures associated with the UE) satisfies the temperature threshold.
As further shown in Fig. 4, and by reference number 404, the UE may receive the indication of the SCell configuration, the configuration for inter-frequency mobility and/or cell reselection, and/or other system information and/or signaling communications, and may determine whether to perform idle mode and/or inactive mode measurements for one or more frequency carriers indicated in the SCell measurement configuration (e.g., the candidate SCell list) . For example, the UE may determine, for each of the one or more frequency carriers, whether to perform idle mode and/or inactive mode measurements based at least in part on the one or more parameters indicated in the SCell measurement configuration and/or the other system information and/or signaling communications, the respective priorities for the one or more frequency carriers indicated in the SCell measurement configuration and/or the configuration for inter-frequency mobility and/or cell reselection, and/or the like.
As further shown in Fig. 4, and by reference number 406, the UE may selectively perform idle mode and/or inactive mode measurements based at least in part on determining whether to perform idle mode and/or inactive mode measurements for the one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may perform idle mode and/or inactive mode measurements, for a frequency carrier indicated in the SCell measurement configuration, based at least in part on determining to perform idle mode and/or inactive mode measurements for the frequency carrier. As another example, the UE may refrain from performing idle mode and/or inactive mode measurements, for a frequency carrier indicated in the SCell measurement configuration, based at least in part on determining to refrain from performing idle mode and/or inactive mode measurements for the frequency carrier. In some aspects, the UE may perform idle mode measurements while operating in an idle mode (e.g., RRC idle mode 304) and/or may perform inactive mode measurements while operating in an inactive mode (e.g., RRC inactive mode 306) .
As further shown in Fig. 4, and by reference number 408, the UE may transmit, to the BS, an indication of idle mode and/or inactive mode measurement results for the idle mode and/or inactive mode measurements. The UE may transmit the indication of the idle mode and/or inactive mode measurement results in one or more  uplink communications, such as one or more uplink control information (UCI) communications and/or other types of uplink communications. The BS may receive the indication of the idle mode and/or inactive mode measurement results and may select and configure one or more SCells for the UE based at least in part on the idle mode and/or inactive mode measurement results.
In this way, the BS may configure one or more parameters for determining whether to perform idle mode and/or inactive mode measurements for frequency carriers indicated in an SCell measurement configuration. In this way, the UE may be permitted to resolve conflicts between frequency carriers that are configured in an SCell measurement configuration and frequency carriers that are configured for inter-frequency mobility and/or cell reselection for a UE.
As indicated above, Fig. 4 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating one or more examples 500 of SCell measurement configuration, in accordance with various aspects of the present disclosure. As shown in Fig. 5, examples 500 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) . The UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink. The wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
Fig. 5 may illustrate examples of a UE performing idle mode measurements, for one or more frequency carriers identified in an SCell measurement configuration, associated with a random access channel (RACH) procedure for transitioning from an idle mode (e.g., RRC idle mode 304) to an active mode (e.g., RRC active mode 302) . While Fig. 5 illustrates the examples of the UE performing idle mode measurements in the context of a four-step RACH process, the examples may also apply to two-step RACH processes and/or other types of RACH processes.
As shown in Fig. 5, and by reference number 502, the BS may transmit an SCell measurement configuration in a SIB5 (502-1) and/or an RRC release communication (502-2) . The UE may receive the SCell measurement configuration and may transition from an active mode to an idle mode by releasing an RRC connection with the BS.
As further shown in Fig. 5, and by reference number 504, the UE may determine whether to perform idle mode measurements for one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may determine whether to perform idle mode measurements for the one or more frequency carriers using one or more of the techniques described above in connection with Fig. 4. In some aspects, the UE may determine, for each of the one or more frequency carriers, whether to perform idle mode measurements based at least in part on one or more parameters (e.g., one or more of the parameters described above in connection with Fig. 4) identified in the SCell measurement configuration, in a configuration for inter-frequency mobility and/or cell reselection, in other types of system information and/or signaling communications, and/or the like.
As further shown in Fig. 5, and by reference number 506, while in the idle mode, the UE may selectively perform the idle mode measurements for the one or more frequency carriers. For example, the UE may perform idle mode measurements for a frequency carrier based at least in part on determining to perform idle mode measurements for the frequency carrier. As another example, the UE may refrain from performing idle mode measurements for a frequency carrier based at least in part on determining to refrain from performing idle mode measurements for the frequency carrier.
As further shown in Fig. 5, and by reference number 508, the UE may subsequently transition from the idle mode back to the active mode, and may reestablish an RRC connection with the BS by transmitting a msg1 communication to the BS to initiate a RACH procedure with the BS. The msg1 communication may include a RACH preamble communication that is transmitted in a RACH occasion (e.g., a particular set of time-frequency resources) , the combination of which may be referred to as a RACH signature. As shown by reference number 510, the BS may respond to the msg1 communication with a msg2 communication, which may include a random access response (RAR) communication. As shown by reference number 512, the UE may respond to the msg2 communication with a msg3 communication, which may include an RRC connection request communication. As shown by reference number 514, the BS may respond to the msg3 communication with a msg4 communication, which may include a medium access control (MAC) control element (MAC-CE) contention resolution identifier, an RRC setup command, and/or the like.
As further shown in Fig. 5, and by reference number 516, once the RRC setup between the UE and the BS is complete, the UE may transmit a msg5 communication to the BS, which may include an RRC setup complete communication. The msg5 communication may further include an indication that the results for the idle mode measurements are available at the UE. The indication may be included in an idleMeasAvailable field in the msg5 communication (e.g., idleMeasAvailable=True) .
As further shown in Fig. 5, and by reference number 518, the BS may transmit an RRC security mode command communication to the UE. The RRC security mode command communication may include an instruction for the UE to establish access stratum security for the RRC connection with the BS. As shown by reference number 520, once access stratum security for the RRC connection with the BS is established, the UE may transmit an RRC security mode complete communication to the BS.
As further shown in Fig. 5, and by reference number 522, the BS may transmit a UE information request communication to the UE to request the results for the idle mode measurements. The BS may transmit the UE information request based at least in part on receiving the msg5 communication that includes the idleMeasAvailable field set to True. The request for the results for the idle mode measurements may be included in an idlemodeMeasurementReq field in the UE information request communication (e.g., idlemodeMeasurementReq=True) .
As further shown in Fig. 5, and by reference number 524, the UE may respond to the UE information request communication by transmitting a UE information response communication. The UE information response communication may include the results for the idle mode measurements. The results for the idle mode measurements may be included in a MeasResultsIdle field in the UE information response communication.
As indicated above, Fig. 5 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating one or more examples 600 of SCell measurement configuration, in accordance with various aspects of the present disclosure. As shown in Fig. 6, examples 600 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) . The UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network, and may communicate via a wireless access link that includes an uplink and a downlink.  The wireless access link may be configured with a frame structure, such as frame structure 300 and/or another frame structure, and a slot format, such as slot format 410 and/or another slot format.
Fig. 6 may illustrate examples of a UE performing inactive mode measurements, for one or more frequency carriers identified in an SCell measurement configuration, associated with a RACH procedure for transitioning from an inactive mode (e.g., RRC inactive mode 306) to an active mode (e.g., RRC active mode 302) . While Fig. 6 illustrates the examples of the UE performing inactive mode measurements in the context of a four-step RACH process, the examples may also apply to two-step RACH processes and/or other types of RACH processes.
As shown in Fig. 6, and by reference number 602, the BS may transmit an SCell measurement configuration in a SIB5 (602-1) and/or an RRC release communication with a suspendConfig command (602-2) . The UE may receive the SCell measurement configuration and may transition from an active mode to an inactive mode. The suspendConfig command may indicate that the UE and/or the BS is to store a UE context associated with the UE prior to the UE transitioning into the inactive mode. This permits the UE and/or the BS to apply the stored UE context when the UE transitions from the inactive mode to the active mode in order to resume communications with the BS.
As further shown in Fig. 6, and by reference number 604, the UE may determine whether to perform inactive mode measurements for one or more frequency carriers indicated in the SCell measurement configuration. For example, the UE may determine whether to perform inactive mode measurements for the one or more frequency carriers using one or more of the techniques described above in connection with Fig. 4. In some aspects, the UE may determine, for each of the one or more frequency carriers, whether to perform inactive mode measurements based at least in part on one or more parameters (e.g., one or more of the parameters described above in connection with Fig. 4) identified in the SCell measurement configuration, in a configuration for inter-frequency mobility and/or cell reselection, in other types of system information and/or signaling communications, and/or the like.
As further shown in Fig. 6, and by reference number 606, while in the inactive mode, the UE may selectively perform the inactive mode measurements for the one or more frequency carriers. For example, the UE may perform inactive mode measurements for a frequency carrier based at least in part on determining to perform  inactive mode measurements for the frequency carrier. As another example, the UE may refrain from performing inactive mode measurements for a frequency carrier based at least in part on determining to refrain from performing inactive mode measurements for the frequency carrier.
As further shown in Fig. 6, and by reference number 608, the UE may subsequently transition from the inactive mode back to the active mode, and may resume the RRC connection with the BS, based at least in part on the stored UE context associated with the UE, by transmitting a msg1 communication to the BS to initiate a RACH procedure with the BS. The msg1 communication may include a RACH preamble communication that is transmitted in a RACH occasion (e.g., a particular set of time-frequency resources) , the combination of which may be referred to as a RACH signature. As shown by reference number 610, the BS may respond to the msg1 communication with a msg2 communication, which may include an RAR communication. As shown by reference number 612, the UE may respond to the msg2 communication with a msg3 communication, which may include an RRC resume request communication.
As further shown in Fig. 6, and by reference number 614, the BS may respond to the msg3 communication with a msg4 communication, which may include an RRC resume command. Since the stored UE context may include an access stratum context (e.g., access stratum security associated with the RRC connection between the UE and the BS) , the BS may request the results of the idle mode measurements in the msg4 communication. The request for the results of the idle mode measurements may be included in an inactiveModeMeasurementReq field (e.g., inactiveModeMeasurementReq=True) and/or another type of field in the msg4 communication.
As further shown in Fig. 6, and by reference number 616, once the RRC connection between the UE and the BS is resumed, the UE may transmit a msg5 communication to the BS, which may include an RRC resume complete communication. The msg5 communication may further include an indication of the results for the inactive mode measurements. For example, the results for the inactive mode measurements may be included in a MeasResultsInactive field and/or another field in the msg5 communication.
As indicated above, Fig. 6 is provided as one or more examples. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 700 is an example where a UE (e.g., UE 120) performs operations associated with SCell measurement configuration.
As shown in Fig. 7, in some aspects, process 700 may include determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration (block 710) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in an SCell measurement configuration, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements (block 720) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the SCell measurement configuration identifies a first subset of the one or more frequency carriers, and a second subset of the one or more frequency carriers, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements, and selectively performing the idle mode or inactive mode measurements comprises performing first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers and performing second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements. In a second aspect, alone or in combination with the first aspect, process 700 further comprises receiving an indication of the SCell measurement configuration in at least one of one or more system information blocks or one or more radio resource control communications.
In a third aspect, alone or in combination with one or more of the first and second aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining whether to perform the idle mode or inactive mode measurements based at least in part on a respective priority associated with each of the one or more frequency carriers. In a fourth aspect, alone or in combination with one or more of the first through third aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for at least one subset of the one or more frequency carriers based at least in part on the respective priority associated with each of the one or more frequency carriers. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility, and a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers, and determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers based at least in part on determining that the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to the respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, at least one of the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or the respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers is indicated in one or more radio resource control communications.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second  subset of the one or more frequency carriers based at least in part on determining that a remaining battery life of the UE satisfies a battery life threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 700 further comprises receiving an indication of the battery life threshold in one or more radio resource control communications.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an available memory of the UE satisfies a memory threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the available memory of the UE does not satisfy the memory threshold. In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 700 further comprises receiving an indication of the memory threshold in one or more radio resource control communications.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that a throughput of the UE satisfies a throughput threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the throughput of the UE does not satisfy the throughput threshold. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, process 700 further comprises receiving an indication of the throughput threshold in one or more radio resource control communications.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, determining whether to perform the idle mode or inactive mode measurements comprises determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an operating temperature of the UE satisfies a temperature threshold, or determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the operating temperature of the UE does not satisfy the temperature threshold.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 700 further comprises receiving an indication of the operating temperature in one or more radio resource control communications. In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the SCell measurement configuration is indicated in a measCellList field. In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, a first subset of the one or more frequency carriers are frequency carriers that are included in a configuration for inter-frequency mobility, a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility, and the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured 
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 800 is an example where a BS (e.g., BS 110) performs operations associated with SCell measurement configuration.
As shown in Fig. 8, in some aspects, process 800 may include transmitting an indication of an SCell measurement configuration (block 810) . For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240,  memory 242, and/or the like) may transmit an indication of an SCell measurement configuration, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration (block 820) . For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the SCell measurement configuration identifies a first subset of the one or more frequency carriers and a second subset of the one or more frequency carriers, and receiving the idle mode or inactive mode measurements comprises receiving first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers and receiving second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements. In a second aspect, alone or in combination with the first aspect, process 800 further comprises transmitting an indication of the SCell measurement configuration in at least one of: one or more system information blocks, or one or more radio resource control communications.
In a third aspect, alone or in combination with one or more of the first and second aspects, a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility, and a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility. In a fourth aspect, alone or in combination with one or more of the first through third aspects, at least one of a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers is indicated in at least one of the SCell measurement configuration or one or more radio resource control communications.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether a remaining battery life of a UE satisfies a battery life threshold. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 800 further comprises transmitting an indication of the battery life threshold in at least one of the SCell measurement configuration or one or more radio resource control communications. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether an available memory of a UE satisfies a memory threshold. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 800 further comprises transmitting an indication of the memory threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether a throughput of a UE satisfies a throughput threshold. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 800 further comprises transmitting an indication of the throughput threshold in at least one of the SCell measurement configuration or one or more radio resource control communications. In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, receiving the idle mode or inactive mode measurements comprises receiving the idle mode or inactive mode measurements based at least in part on whether an operating temperature of a UE satisfies a temperature threshold.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, process 800 further comprises transmitting an indication of the temperature threshold in at least one of the SCell measurement configuration or one or more radio resource control communications. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the SCell measurement configuration is indicated in a measCellList field. In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, a first subset of the one or more frequency carriers are frequency carriers that are included in a  configuration for inter-frequency mobility, a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility, and the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured 
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every  other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” ? is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” ? and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” ? and “group” ? are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” ? ? Where only one item is intended, the phrase “only one” ? or similar language is used. Also, as used herein, the terms “has, ” ? “have, ” ? “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” ? unless explicitly stated otherwise.

Claims (39)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and
    selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  2. The method of claim 1, wherein the SCell measurement configuration identifies:
    a first subset of the one or more frequency carriers, and
    a second subset of the one or more frequency carriers;
    wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements;and
    wherein selectively performing the idle mode or inactive mode measurements comprises:
    performing first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers; and
    performing second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements.
  3. The method of claim 2, further comprising:
    receiving an indication of the SCell measurement configuration in at least one of:
    one or more system information blocks, or
    one or more radio resource control communications.
  4. The method of claim 1, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining whether to perform the idle mode or inactive mode measurements based at least in part on a respective priority associated with each of the one or more frequency carriers.
  5. The method of claim 4, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for at least one subset of the one or more frequency carriers based at least in part on the respective priority associated with each of the one or more frequency carriers.
  6. The method of claim 4, wherein a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility; and
    wherein a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility.
  7. The method of claim 6, wherein a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers; and
    wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers based at least in part on determining that the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers is higher relative to the respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers.
  8. The method of claim 7, wherein at least one of the respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or the respective priority associated with each frequency carrier of the second subset of the  one or more frequency carriers is indicated in one or more radio resource control communications.
  9. The method of claim 6, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that a remaining battery life of the UE satisfies a battery life threshold, or
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold.
  10. The method of claim 9, further comprising:
    receiving an indication of the battery life threshold in one or more radio resource control communications.
  11. The method of claim 6, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an available memory of the UE satisfies a memory threshold, or
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the available memory of the UE does not satisfy the memory threshold.
  12. The method of claim 11, further comprising:
    receiving an indication of the memory threshold in one or more radio resource control communications.
  13. The method of claim 6, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that a throughput of the UE satisfies a throughput threshold, or
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the throughput of the UE does not satisfy the throughput threshold.
  14. The method of claim 13, further comprising:
    receiving an indication of the throughput threshold in one or more radio resource control communications.
  15. The method of claim 6, wherein determining whether to perform the idle mode or inactive mode measurements comprises:
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and the second subset of the one or more frequency carriers based at least in part on determining that an operating temperature of the UE satisfies a temperature threshold, or
    determining to perform the idle mode or inactive mode measurements for the first subset of the one or more frequency carriers and not the second subset of the one or more frequency carriers based at least in part on determining that the operating temperature of the UE does not satisfy the temperature threshold.
  16. The method of claim 15, further comprising:
    receiving an indication of the operating temperature in one or more radio resource control communications.
  17. The method of claim 1, wherein the SCell measurement configuration is indicated in a measCellList field.
  18. The method of claim 1, wherein a first subset of the one or more frequency carriers are frequency carriers that are included in a configuration for inter-frequency mobility;
    wherein a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility; and
    wherein the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured.
  19. A method of wireless communication performed by a base station (BS) , comprising:
    transmitting an indication of a secondary cell (SCell) measurement configuration; and
    receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  20. The method of claim 19, wherein the SCell measurement configuration identifies:
    a first subset of the one or more frequency carriers, and
    a second subset of the one or more frequency carriers; and
    wherein receiving the idle mode or inactive mode measurements comprises:
    receiving first idle mode or first inactive mode measurements for the first subset of the one or more frequency carriers; and
    receiving second idle mode or second inactive mode measurements for the second subset of the one or more frequency carriers at at least one of a lower time sampling rate or a lower frequency sampling rate relative to the first idle mode or inactive mode measurements.
  21. The method of claim 19, further comprising:
    transmitting an indication of the SCell measurement configuration in at least one of:
    one or more system information blocks, or
    one or more radio resource control communications.
  22. The method of claim 19, wherein a first subset of the one or more frequency carriers are frequency carriers that are configured for inter-frequency mobility; and
    wherein a second subset of the one or more frequency carriers are frequency carriers that are not configured for inter-frequency mobility.
  23. The method of claim 22, wherein at least one of a respective priority associated with each frequency carrier of the first subset of the one or more frequency carriers or a respective priority associated with each frequency carrier of the second subset of the one or more frequency carriers is indicated in at least one of the SCell measurement configuration or one or more radio resource control communications.
  24. The method of claim 19, wherein receiving the idle mode or inactive mode measurements comprises:
    receiving the idle mode or inactive mode measurements based at least in part on whether a remaining battery life of a user equipment (UE) satisfies a battery life threshold.
  25. The method of claim 24, further comprising:
    transmitting an indication of the battery life threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  26. The method of claim 19, wherein receiving the idle mode or inactive mode measurements comprises:
    receiving the idle mode or inactive mode measurements based at least in part on whether an available memory of a user equipment (UE) satisfies a memory threshold.
  27. The method of claim 26, further comprising:
    transmitting an indication of the memory threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  28. The method of claim 19, wherein receiving the idle mode or inactive mode measurements comprises:
    receiving the idle mode or inactive mode measurements based at least in part on whether a throughput of a user equipment (UE) satisfies a throughput threshold.
  29. The method of claim 28, further comprising:
    transmitting an indication of the throughput threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  30. The method of claim 19, wherein receiving the idle mode or inactive mode measurements comprises:
    receiving the idle mode or inactive mode measurements based at least in part on whether an operating temperature of a user equipment (UE) satisfies a temperature threshold.
  31. The method of claim 30, further comprising:
    transmitting an indication of the temperature threshold in at least one of the SCell measurement configuration or one or more radio resource control communications.
  32. The method of claim 19, wherein the SCell measurement configuration is indicated in a measCellList field.
  33. The method of claim 19, wherein a first subset of the one or more frequency carriers are frequency carriers that are included in a configuration for inter-frequency mobility;
    wherein a second subset of the one or more frequency carriers are frequency carriers that are not included in the configuration for inter-frequency mobility; and
    wherein the configuration for inter-frequency mobility and the SCell measurement configuration are independently configured.
  34. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors coupled to the memory, the memory and the one or more processors configured to:
    determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and
    selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  35. A base station (BS) for wireless communication, comprising:
    a memory; and
    one or more processors coupled to the memory, the memory and the one or more processors configured to:
    transmit an indication of a secondary cell (SCell) measurement configuration; and
    receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  36. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and
    selectively perform the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  37. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station (BS) , cause the one or more processors to:
    transmit an indication of a secondary cell (SCell) measurement configuration; and
    receive idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
  38. An apparatus for wireless communication, comprising:
    means for determining whether to perform idle mode or inactive mode measurements for one or more frequency carriers indicated in a secondary cell (SCell) measurement configuration; and
    means for selectively performing the idle mode or inactive mode measurements based at least in part on determining whether to perform the idle mode or inactive mode measurements.
  39. An apparatus for wireless communication, comprising:
    means for transmitting an indication of a secondary cell (SCell) measurement configuration; and
    means for receiving idle mode or inactive mode measurements for one or more frequency carriers based at least in part on the SCell measurement configuration.
PCT/CN2019/096470 2019-07-18 2019-07-18 Scell measurement configuration WO2021007829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096470 WO2021007829A1 (en) 2019-07-18 2019-07-18 Scell measurement configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096470 WO2021007829A1 (en) 2019-07-18 2019-07-18 Scell measurement configuration

Publications (1)

Publication Number Publication Date
WO2021007829A1 true WO2021007829A1 (en) 2021-01-21

Family

ID=74209674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096470 WO2021007829A1 (en) 2019-07-18 2019-07-18 Scell measurement configuration

Country Status (1)

Country Link
WO (1) WO2021007829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082104A1 (en) * 2021-11-10 2023-05-19 北京小米移动软件有限公司 Ue measurement triggering method and apparatus, communication device, and storage medium
WO2024072131A1 (en) * 2022-09-29 2024-04-04 Lg Electronics Inc. Selective serving cell configuration for mobility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152554A1 (en) * 2014-04-01 2015-10-08 주식회사 케이티 Method for controlling secondary cell operation of terminal, and apparatus therefor
WO2016119179A1 (en) * 2015-01-29 2016-08-04 华为技术有限公司 Measurement event configuration method and device
WO2017088499A1 (en) * 2015-11-24 2017-06-01 中兴通讯股份有限公司 Method and device for configuring carrier aggregation coordination relationship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152554A1 (en) * 2014-04-01 2015-10-08 주식회사 케이티 Method for controlling secondary cell operation of terminal, and apparatus therefor
WO2016119179A1 (en) * 2015-01-29 2016-08-04 华为技术有限公司 Measurement event configuration method and device
WO2017088499A1 (en) * 2015-11-24 2017-06-01 中兴通讯股份有限公司 Method and device for configuring carrier aggregation coordination relationship

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "R4-1804423 Discussion on open issues in Idle mode Scell candidate measurement", 3GPP TSG-RAN WG4 MEETING #86BIS, 20 April 2018 (2018-04-20), XP051431295, DOI: 20200327094239A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082104A1 (en) * 2021-11-10 2023-05-19 北京小米移动软件有限公司 Ue measurement triggering method and apparatus, communication device, and storage medium
WO2024072131A1 (en) * 2022-09-29 2024-04-04 Lg Electronics Inc. Selective serving cell configuration for mobility

Similar Documents

Publication Publication Date Title
WO2021031103A1 (en) Paging for mobile-terminated small data reception in idle and/or inactive mode
WO2021031112A1 (en) Paging for mobile-terminated small data reception in idle and/or inactive mode
US11991766B2 (en) Techniques for cell selection for dual-connectivity
US11419170B2 (en) Radio access technology ping-pong reselection and registration avoidance
EP3777316A1 (en) Carrier aggregation for low-latency handover
WO2022036671A1 (en) Measurement configuration during uplink data transfer over random access or dedicated uplink resources
WO2021159365A1 (en) Interruption measurement for dual active protocol stack handover and conditional handover
WO2021007829A1 (en) Scell measurement configuration
WO2021163722A1 (en) Indicating beam information in a random access channel procedure
EP4005275A1 (en) Time-division multiplexing of uplink communications during make-before-break handover
US11533219B2 (en) Prioritizing procedures for transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021226983A1 (en) Hysteresis increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021159265A1 (en) Reporting for maximum permissible exposure
WO2021203346A1 (en) New radio data connectivity from non-standalone network
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2022032510A1 (en) User equipment orientation information via wireless access point
WO2021226985A1 (en) Barring handover to cell for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021068869A1 (en) Two-step random access channel signaling
WO2021146888A1 (en) Responding to multiple random access procedures
WO2021212299A1 (en) Data service with dual subscriber identity modules
WO2021212452A1 (en) Restoration of data connectivity upon bearer removal after handover
WO2021232182A1 (en) Recovery from a problematic cell
WO2021159442A1 (en) Channel access enchancement for a fixed frame mode for unlicensed spectrum
WO2021056236A1 (en) Early measurement reporting for dual connectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937395

Country of ref document: EP

Kind code of ref document: A1