WO2022032475A1 - 信道切换方法和通信设备 - Google Patents
信道切换方法和通信设备 Download PDFInfo
- Publication number
- WO2022032475A1 WO2022032475A1 PCT/CN2020/108411 CN2020108411W WO2022032475A1 WO 2022032475 A1 WO2022032475 A1 WO 2022032475A1 CN 2020108411 W CN2020108411 W CN 2020108411W WO 2022032475 A1 WO2022032475 A1 WO 2022032475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel switching
- connection
- information
- under
- message frame
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000004891 communication Methods 0.000 title claims abstract description 42
- 230000004044 response Effects 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 11
- 230000000717 retained effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 3
- OVGWMUWIRHGGJP-WVDJAODQSA-N (z)-7-[(1s,3r,4r,5s)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@H](O)CCCCC)C[C@@H]2S[C@H]1C2 OVGWMUWIRHGGJP-WVDJAODQSA-N 0.000 description 2
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 2
- 101000988961 Escherichia coli Heat-stable enterotoxin A2 Proteins 0.000 description 2
- 101000752249 Homo sapiens Rho guanine nucleotide exchange factor 3 Proteins 0.000 description 2
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 2
- 102100021689 Rho guanine nucleotide exchange factor 3 Human genes 0.000 description 2
- 101150081243 STA1 gene Proteins 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/06—Reselecting a communication resource in the serving access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the present invention relates to the field of communication, and more particularly, to a channel switching method and a communication device.
- IEEE Institute of Electrical and Electronic Engineers, Institute of Electrical and Electronics Engineers
- IEEE802.11a/b/g/n/ac Wi- Fi technology
- the research scope is: 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc. It is expected to increase the rate and throughput by at least four times compared to the existing IEEE802.11ax standard.
- Its main application scenarios are Video transmission, AR (Augmented Reality, augmented reality), VR (Virtual Reality, virtual reality), etc.
- the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5.8GHz and 6-7GHz frequency bands.
- a new MAC Media Access Control, media access control
- control control
- the maximum bandwidth that will be supported is 320MHz (160MHz+160MHz), and it may also support 240MHz (160MHz+80MHz) and the bandwidth supported in the IEEE802.11ax standard.
- channel switching announcement (CSA: channel switching announcement) or extended channel switching announcement (ECSA: extended channel switching announcement) under single connection are defined for channel switching operation, as shown in Table 1 and Table 2 below. shown.
- the station (STA: Station) and the access point (AP: Access Point) can be multi-connection devices (MLD: multi-link device), that is, to support simultaneous transmission under multiple connections at the same time and/or receive functionality. Therefore, in the IEEE802.11be standard, there may be multiple connections between the STA and the AP.
- MLD multi-connection device
- the existing CSA/ECSA is only suitable for communication under a single connection, while in the IEEE802.11be standard or other standards, devices may communicate under multiple connections.
- the AP may have channel switching under multiple connections, so the existing CSA/ECSA mechanism cannot meet the multi-connection communication requirements in the IEEE802.11be standard or other standards.
- An exemplary embodiment of the present disclosure provides a channel switching method, the channel switching method comprising: determining a first message frame under one connection, wherein the first message frame includes channel switching information under multiple connections; The first message frame is sent under the multiple connections.
- the plurality of connections include a first connection and other connections different from the first connection, wherein the first connection is a connection that needs to perform channel switching.
- the channel switching information under a plurality of connections includes channel switching information under the first connection.
- the channel switching information under a plurality of connections includes channel switching information under the other connections.
- the channel switching method further includes: in response to the existence of a first device that does not support multi-connection communication, sending the first message frame under the first connection, wherein the first The channel switching information of the message frame has a format that can be recognized by the first device.
- the channel switch information includes channel switch count information, wherein the channel switch count information is different under each connection of the plurality of connections.
- the channel switching count information includes: a first time determined according to a wake-up period of a device for receiving the first message frame under each of the plurality of connections.
- the channel switching count information further includes an offset time corresponding to each of the plurality of connections.
- the channel switching information further includes a connection identifier corresponding to the first connection.
- the channel switching information further includes: an element identifier for indicating the type of the channel switching information.
- the channel switching information under multiple connections indicates that the channel switching information corresponding to at least one connection that needs to perform channel switching has changed.
- the channel switching method includes sending corresponding channel switching information under the at least one connection.
- the channel switching method includes sending channel switching information under each of the plurality of connections, wherein the channel switching information is in a format similar to a channel switching announcement CSA or an extended channel switching announcement ECSA is the same.
- a channel switching method includes: receiving a first message frame, wherein the first message frame includes channel switching information, and the channel switching information includes channel switching count information determined according to multiple connections; and according to the channel switching count information Perform channel switching.
- the channel switching count information includes: a first time determined according to a wake-up period of a device for receiving the first message frame under each of the plurality of connections.
- the channel switching count information further includes an offset time corresponding to each of the plurality of connections.
- the channel switching method further includes: in response to receiving the first message frame under a plurality of connections, respectively, retaining the first message frame received first.
- performing channel switching according to the channel switching count information includes: in response to receiving the first message frame under a connection other than the first connection, waiting for channel switching of the first message frame After the second time indicated by the counting information, switch to a new channel, wherein the first connection is a connection that needs to perform channel switching.
- a communication device is provided according to another example embodiment of the present disclosure.
- the communication device includes: a processing module configured to: determine a first message frame under one connection, wherein the first message frame includes channel switching information under multiple connections; a sending module configured to: under all connections The first message frame is sent under the multiple connections.
- a communication device is provided according to another example embodiment of the present disclosure.
- the communication device includes: a receiving module configured to: receive a first message frame, wherein the first message frame includes channel switching information, wherein the channel switching information includes channel switching count information determined according to multiple connections ; a processing module configured to: perform channel switching according to the channel switching count information.
- the electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
- the processor executes the computer program to implement the method as described above.
- a computer-readable storage medium is provided according to example embodiments of the present disclosure.
- a computer program is stored on the computer-readable storage medium.
- the computer program when executed by a processor, implements the method as described above.
- the technical solutions provided by the exemplary embodiments of the present disclosure enable the device to switch channels under multiple connections, thereby improving the throughput of the network.
- FIG. 1 is an exemplary diagram illustrating a communication scenario under multiple connections
- FIG. 2 is a flowchart illustrating a channel switching method according to an example embodiment of the present disclosure
- FIG. 3 is a flowchart illustrating another channel switching method according to an example embodiment of the present disclosure.
- FIG. 4 is a block diagram illustrating a communication device according to an example embodiment of the present disclosure.
- FIG. 5 is a block diagram illustrating another communication device according to an example embodiment of the present disclosure.
- CSA Channel Switch Announcement
- ECSA Extended Channel Switch Announcement
- Element ID represents the element identification number of the CSA or ECSA. Length indicates the length.
- Channel Switch Mode represents the channel switch mode, and can specifically indicate the restriction on transmission until the channel switch, for example, the AP or the Independent Basic Service Set (IBSS) STA can set the Channel Switch Mode to 0 or 1.
- New Channel Number represents the new channel number, specifically, it can be set to the number of the channel to which the STA will switch.
- Channel Switch Count represents the channel switch count.
- BSS Basis service set
- CSA channel switch announcement
- ECSA ECSA
- TBTT target beacon transmission time
- Channel Switch Count is set to 1 to indicate that the switch is performed immediately before the next TBTT
- Channel Switch Count is set to 0 to indicate that the The switching occurs at any time after the frame of the element is sent.
- New Operating Class represents a new operation type, which is set to the number of operation types after channel switching.
- the existing CSA/ECSA is only suitable for communication under a single connection, while in the IEEE802.11be standard or other standards, devices may communicate under multiple connections.
- the AP may have channel switching under multiple connections.
- a newly defined CSA/ECSA information element is provided to meet the requirements of multiple connection communication.
- FIG. 1 is an exemplary diagram illustrating a communication scenario under multiple connections.
- the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate with the outside and inside the wireless network through the AP.
- APs can communicate with stations on different time-frequency resources.
- the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, wireless fidelity) chip.
- a site may include, but is not limited to, cellular phones, smart phones, wearable devices, computers, personal digital assistants (PDAs), personal communication system (PCS) devices, personal information managers (PIMs), personal navigation devices (PNDs) ), global positioning systems, multimedia devices, Internet of Things (IoT) devices, etc.
- PDAs personal digital assistants
- PCS personal communication system
- PIMs personal information managers
- PNDs personal navigation devices
- global positioning systems multimedia devices
- multimedia devices Internet of Things (IoT) devices, etc.
- the STA and the AP may support the function of multi-connection.
- the STA and the AP may support the function of multi-connection.
- an example in which one AP communicates with one STA under multiple connections is mainly described, however, exemplary embodiments of the present disclosure are not limited thereto.
- the AP-MLD may represent an access point supporting the multi-connection communication function
- the STA-MLD may represent a station supporting the multi-connection communication function, only as an example.
- AP MLD can work under three connections, such as AP1, AP2 and AP3 shown in Fig. 1
- STA MLD can also work under three connections, such as STA1, STA2 and STA3 shown in Fig. 1.
- AP1 and STA1 communicate through the corresponding connection Link 1
- AP2 and AP3 communicate with STA2 and STA3 through Link 2 and Link 3, respectively.
- Link 1 to Link 3 may be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, 6GHz, and so on. Furthermore, multiple channels can exist under each connection.
- an AP MLD may be connected to multiple STA MLDs or may be connected to a STA that only supports a single connection (ie , sites that only support existing standards, can be referred to simply as: legacy sites), or under each connection, the AP can communicate with multiple sites.
- the CSA/ECSA information elements under this connection can be broadcast in Link 2 and Link 3, for example, through beacon (beacon) frames or Probe response frame (probe response) to broadcast.
- the newly defined CSA/ECSA information element may be included in the beacon frame or probe response frame.
- the newly defined CSA/eCSA information element is MLD level, not link level, which will be described in detail later with reference to FIGS. 2 and 3 .
- FIG. 2 is a flowchart illustrating a channel switching method according to an example embodiment of the present disclosure.
- the AP may determine a first message frame. Specifically, the AP may determine the first message frame under one connection.
- the first message frame may be a beacon frame or a probe response frame broadcast by the AP, however, example embodiments of the present disclosure are not limited thereto, and the first message frame may be any other type according to a communication environment frame.
- the first message frame may be determined according to the communication capability of the AP and the current communication environment.
- the pre-stored or pre-written first message frame may be directly obtained.
- the first message frame may include channel switching information under multiple connections.
- Channel switching information under multiple connections may be a newly defined CSA/eCSA information element, which may be referred to as enhanced CSA (eCSA: enhanced channel switching announcement) or enhanced ECSA (eeCSA: enhanced extended channel in an exemplary embodiment of the present disclosure) switching announcement).
- enhanced CSA enhanced channel switching announcement
- ECSA enhanced extended channel in an exemplary embodiment of the present disclosure
- the first connection (eg, Link 1 above) may be a connection that needs to perform channel switching.
- the plurality of connections may include a first connection (eg, Link 1 above) and other connections than the first connection (eg, Link 2 and Link3 above).
- the channel switching information under the plurality of connections includes channel switching information under the first connection.
- channel switching information under multiple connections includes channel switching information under other connections. This will be described in detail later.
- the AP may determine the first message frame under a connection that needs to perform channel switching (eg, Link 1), or may determine the first message frame under any one of a plurality of connections, for which the present disclosure No specific limitation is made.
- channel switching eg, Link 1
- the eCSA according to an exemplary embodiment of the present disclosure may be a redefinition of the CSA in Table 1, and its specific format may be shown in Table 3 below.
- the eeCSA according to an exemplary embodiment of the present disclosure may be a redefinition of the ECSA in Table 2, and its specific format may be shown in Table 4 below.
- channel switch information (eg, eCSA and eeCSA) under multiple connections may include channel switch count information (Channel Switch Count).
- the channel switch count information is different under each connection of the plurality of connections.
- a non-AP STA MLD associated with an AP MLD operating under an active connection can maintain its own power supply state/mode. That is, the PS states of stations under each connection are independent of each other.
- the non-AP STA MLD and AP MLD support the ability to transmit and/or receive simultaneously over multiple connections at the same time.
- channel switching should be scheduled so that all STAs in the Basic Service Set (BSS) (including STAs in power saving mode) have the opportunity to receive at least one channel switching announcement element prior to switching.
- BSS Basic Service Set
- STAs in power saving mode should also receive channel switching information to perform channel switching, whether in existing standards or in more advanced standards (eg, IEEE802.11be standard).
- the channel switching count information may include: according to each connection in the plurality of connections for receiving the first message frame The first time determined by the wake-up period of the device.
- the device for receiving the first message frame may be the station described above.
- the value of the channel switching count information includes the part T (ie, the first time) represented by Equation 1 below:
- Equation 1 Min represents a function that takes a minimum value
- MAX represents a function that takes a maximum value.
- wake up period of each associated MLD STA in link 1 means: under connection 1
- wake up period of each associated MLD STA in link 2 means: under connection 2
- the wake up period of each associated MLD STA in link 2 the wake up period of each associated MLD STA in link 2
- the wake up period of each associated MLD STA in link n represents the wake up period of each associated MLD STA in link n: the wake up period of each associated multi-connection-supporting site under connection n.
- Equation 1 the first time included in the channel switching count information is related to multiple connections, and more specifically, is related to the wake-up time period of each site under each of the multiple connections.
- the channel switch count information may also include an offset time corresponding to each of the plurality of connections.
- the channel switching count information may be set as: T+time offset (eg, may be represented as a second time).
- the time offset between the various connections may be set to be different.
- one of the plurality of connections eg, the first connection that needs to perform channel switching may be set as a reference connection
- the time offset is set with reference to the reference connection.
- the channel switching information may further include a connection identifier corresponding to the first connection. That is to say, the channel switching information may further include a connection identifier corresponding to a connection for which channel switching needs to be performed.
- the Link ID in Table 3 and Table 4 may be a connection identifier corresponding to the first connection.
- the channel switching information indicated in Table 3 or Table 4 may include connection identifiers corresponding to the multiple connections respectively.
- the channel switching information according to an exemplary embodiment of the present disclosure may not include a connection identification.
- the connection that needs to perform channel switching can be automatically determined according to the offset time and the setting of the reference connection.
- the channel switching information may further include: an element identifier for indicating the type of the channel switching information.
- the element IDs (Element IDs) in Tables 3 and 4 may be used to indicate whether the channel switching information of the present disclosure is an enhanced channel switching announcement (eCSA) or an enhanced extended channel switching announcement (eeCSA).
- eCSA enhanced channel switching announcement
- eeCSA enhanced extended channel switching announcement
- at least one bit in the reserved value of the Element ID of the existing standard may be used to indicate the eCSA or eeCSA newly defined by the present disclosure.
- the channel switching information may also include: Length, Channel Switch Mode, Channel Switch Mode and/or New Operating Class, the meanings of which are similar to those described above with reference to Table 1 and Table 2, and repeated descriptions are omitted here for brevity.
- the first message frame may be sent over multiple connections.
- the first message frame may be broadcast in the form of a beacon frame or a probe response frame under the above-mentioned first connection or other connections.
- the eCSA or eeCSA included in the first message frame broadcast under each connection may have a format as defined in Table 3 or Table 4.
- connection where the channel switch occurs may also be identified in an implicit manner. Implicit may refer to other information that is not an indicator to indicate the connection for which channel switching occurs. Specifically, the CSA or ECSA under which connection changes can be identified under one connection, but the specific information of the changed CSA or ECSA needs to be sent under the corresponding connection. A connection here can refer to any connection among multiple connections. A change in CSA or ECSA may indicate that its corresponding connection needs to perform a channel switch.
- the channel switching information under the multiple connections in step 210 may indicate that the channel switching information corresponding to at least one connection that needs to perform channel switching has changed. That is to say, the channel switching information under the multiple connections in step 210 is implicitly identified in the channel switching information of which connections have changed.
- a channel switching method may include: sending corresponding channel switching information under the at least one connection.
- the sent corresponding channel switching information indicates specific channel switching information under at least one connection that needs to perform channel switching.
- Link 2 and Link 3 in Figure 1 are connections that need to perform channel switching, that is, the channel switching information sent under Link 2 and Link 3 changes. It can be identified that the channel switching information corresponding to Link 2 and Link 3 has changed under any connection of Link 1, Link 2 and Link 3, and the specific channel switching information corresponding to Link 2 is sent under Link 2 (For example, CSA or ECSA under Link 2), and send specific channel switching information corresponding to Link 2 under Link 3 (for example, CSA or ECSA under Link 3).
- a channel switching method may include transmitting channel switching information under each of a plurality of connections.
- the format of the channel switching information is the same as the channel switching announcement CSA or the extended channel switching announcement ECSA. That is to say, when the channel switching information of which connections are implicitly identified in the above embodiment has changed, the format of the channel switching information sent under each connection does not need to be redefined as in the above explicit manner , but can directly use the format under the existing standard (as shown in Table 1 or Table 2).
- the channel switching method shown in FIG. 2 is only exemplary, and exemplary embodiments of the present disclosure are not limited thereto, and may include more or less steps, for example.
- the channel switching method according to an example embodiment of the present disclosure may further include: in response to the existence of the first device that does not support multi-connection communication, sending the first message frame under the first connection.
- the channel switching information of the first message frame has a format that can be recognized by the first device.
- a first device that does not support multi-connectivity communication may indicate a site that only supports existing standards (ie, legacy sites). That is, when only existing standard stations are supported among the stations connected to the AP MLD, for example, when the AP MLD communicates with legacy stations under one connection (eg, the first connection that needs to perform channel switching above) , the channel switching method according to the exemplary embodiment of the present disclosure can also achieve backward compatibility with legacy stations. Specifically, when there is a first device (ie, a legacy site) that does not support multi-connection communication, the channel switching information that can be identified by the first device (for example, those listed in Table 1 or Table 2) may be converted in the form of an independent information element.
- the channel switching information in the format defined by the existing standard can be sent under the connection that needs to perform channel switching, so as to prevent the old station from being unable to parse the channel switching information under the multi-connection newly defined according to the present disclosure.
- FIG. 3 is a flowchart illustrating another channel switching method according to an example embodiment of the present disclosure.
- the STA may receive the first message frame.
- the first message frame includes channel switching information.
- the format of the channel switching information in the first message frame may be similar to Table 3/Table 4 above (for MLD STAs), or Table 1/Table 2 (for legacy stations).
- the channel switching information may include channel switching count information determined from a plurality of connections.
- the channel switching count information of the channel switching information may be as described with reference to Equation 1 and the offset time. That is, according to an example embodiment of the present disclosure, the channel switching count information may include: a first time determined according to a wake-up period of a device for receiving the first message frame under each of the multiple connections, and a The offset time corresponding to each of the connections.
- the channel switching information may be in a format that can be recognized by the first device that does not support multi-connection communication.
- channel switching may be performed according to the channel switching count information.
- the STA may wait for the time defined in the channel switch count information, and then switch to the new channel.
- Information about the new channel to be switched to can be obtained from the channel switching information described in Table 3/Table 4 or Table 1/Table 2.
- the channel switching method shown in FIG. 3 is only exemplary, and exemplary embodiments of the present disclosure are not limited thereto, for example, more or less steps may be included.
- the channel switching method according to an example embodiment of the present disclosure may further include: in response to respectively receiving the first message frame under a plurality of connections, retaining the first received first message frame. In this case, channel switching may be performed in step 320 according to the reserved first message frame.
- the present disclosure is not limited thereto, for example, no matter which connection the STA receives the first message frame including the channel switching information, it can perform the channel switching according to the channel switching information therein without waiting for receiving the channel switching information under other connections. Channel switching information.
- step 320 may include: in response to receiving the first message frame under a connection other than the first connection (the first connection is the connection that needs to perform channel switching as described above), Switch to the new channel after waiting for the second time indicated by the channel switching count information of the first message frame.
- the STA does not receive the first message frame under the first connection, but receives the first message under other connections (eg, the second connection). frame, then the STA can switch to the new channel after waiting for the second time (eg, T+offset time) indicated by the handover count information under the second connection through internal operations.
- the second time eg, T+offset time
- the offset time in the second time is the offset corresponding to the connection in which the first message frame is received.
- the channel switching method according to the exemplary embodiment of the present disclosure enables a device to perform channel switching under multiple connections, while achieving backward compatibility and improving network throughput.
- FIG. 4 is a block diagram illustrating a communication device 400 according to an example embodiment of the present disclosure.
- the communication device 400 may include a processing module 410 and a sending module 430 .
- the processing module 410 may be configured to determine the first message frame under one connection.
- the first message frame includes channel switching information under multiple connections.
- the sending module 430 may be configured to send the first message frame under multiple connections.
- the plurality of connections include a first connection and other connections different from the first connection, and the first connection is a connection that needs to perform channel switching.
- the channel switching information under the multiple connections includes the channel switching information under the first connection.
- the channel switching information under multiple connections includes channel switching information under other connections.
- the processing module 410 may be further configured to control the sending module 430 to send the first message frame under the first connection in response to the existence of the first device that does not support multi-connection communication.
- the channel switching information of the first message frame has a format that can be recognized by the first device.
- the channel switching information includes channel switching count information.
- the channel switch count information is different under each of the multiple connections.
- the channel switching count information includes: the first time determined according to the wake-up period of the device for receiving the first message frame under each of the multiple connections.
- the channel switching count information further includes an offset time corresponding to each of the plurality of connections.
- the channel switching information further includes a connection identifier corresponding to the first connection.
- the channel switching information further includes: an element identifier for indicating the type of the channel switching information.
- the processing module 410 and the sending module 430 may respectively perform the operations of step 210 and step 220 shown in FIG. 2 , and repeated descriptions are omitted here for brevity.
- FIG. 5 is a block diagram illustrating another communication device 500 according to an example embodiment of the present disclosure.
- the communication device 500 may include a processing module 510 and a receiving module 530 .
- the receiving module 530 may be configured to: receive the first message frame.
- the first message frame includes channel switching information.
- the channel switching information includes channel switching count information determined according to a plurality of connections.
- the processing module 510 may be configured to perform channel switching according to the channel switching count information.
- the processing module 510 may be further configured to: in response to receiving the first message frame under multiple connections respectively, retain the first message frame received first.
- the processing module 510 may be further configured to: in response to receiving the first message frame under a connection other than the first connection, wait for the first message frame indicated by the channel switching count information of the first message frame. After two times, switch to the new channel.
- the processing module 510 and the sending module 530 may perform the operations of step 320 and step 310 shown in FIG. 3 , respectively. For brevity, repeated descriptions are omitted here.
- FIGS. 4 and 5 the configuration of the communication device shown in FIGS. 4 and 5 is only exemplary, the present disclosure is not limited thereto, and the communication device 400 and the communication device 500 may include more or less modules.
- the communication device enables the device to perform channel switching under multiple connections, while achieving backward compatibility and improving the throughput of the network.
- module may be implemented by a combination of software and/or hardware, which is not specifically limited by the embodiment of the present disclosure.
- the embodiments of the present disclosure further provide an electronic device, the electronic device includes a processor and a memory; wherein, the memory stores machine-readable instructions (or may referred to as a "computer program"); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 2 and 3 .
- the memory stores machine-readable instructions (or may referred to as a "computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 2 and 3 .
- Embodiments of the present disclosure also provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described with reference to FIG. 2 and FIG. 3 is implemented.
- a processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in connection with the present disclosure, for example, a CPU (Central Processing Unit, central processing unit), general processing device, DSP (Digital Signal Processor, data signal processor), ASIC (Application Specific Integrated Circuit, application-specific integrated circuit), FPGA (Field Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
- a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
- the memory may be, for example, ROM (Read Only Memory), RAM (Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory) Read memory), CD-ROM (Compact Disc Read Only Memory, CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
- ROM Read Only Memory
- RAM Random Access Memory
- EEPROM Electrically Erasable Programmable Read Only Memory
- CD-ROM Compact Disc Read Only Memory
- CD-ROM Compact Disc Read Only Memory
- optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
- magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开提供信道切换方法和通信设备。所述信道切换方法包括:在一个连接下确定第一消息帧,其中,所述第一消息帧包括多个连接下的信道切换信息;在所述多个连接下发送所述第一消息帧。本公开的示例实施例提供的技术方案使得设备能够在多连接下进行信道的切换,提高网络的吞吐量。
Description
本涉及通信领域,更具体地说,涉及一种信道切换方法以及通信设备。
在2018年5月份,IEEE(Institute of Electrical and Electronic Engineers,电气与电子工程师协会)成立了SG(study group)IEEE802.11be来研究下一代(IEEE802.11a/b/g/n/ac)Wi-Fi技术,所研究的范围为:320MHz的带宽传输、多个频段的聚合及协同等,期望能够相对于现有的IEEE802.11ax标准提高至少四倍的速率以及吞吐量,其主要的应用场景为视频传输、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等。
多个频段的聚合及协同是指设备间同时在2.4GHz、5.8GHz及6-7GHz的频段下进行通信,对于设备间同时在多个频段下通信需要定义新的MAC(Media Access Control,介质访问控制)机制来进行管理。此外,在IEEE802.11be中还期望能够支持低时延传输。
在IEEE802.11be标准的讨论中,将支持的最大带宽为320MHz(160MHz+160MHz),此外还可能会支持240MHz(160MHz+80MHz)及IEEE802.11ax标准中所支持的带宽。
在现有的标准中,为了进行信道切换操作定义了单连接下的信道切换通告(CSA:channel switching announcement)或扩展信道切换通告(ECSA:extended channel switching announcement),如下文的表格1和表格2所示。
在IEEE802.11be标准中,站点(STA:Station)和接入点(AP:Access Point)可以是多连接设备(MLD:multi-link device),即,支持在同一时刻能够在多连接下同时发送和/或接收的功能。因此,在IEEE802.11be 标准中,STA与AP之间可以存在多个连接。
现有的CSA/ECSA只适用在单连接下的通信,而在IEEE802.11be标准或其他标准中,设备可能在多连接下进行通信。在多连接下进行通信时,AP可能存在多个连接下的信道切换,因此现有的CSA/ECSA机制不能满足IEEE802.11be标准或其他标准中的多连接通信的需求。
发明内容
本公开的各方面将至少解决上述问题和/或缺点。本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供一种信道切换方法,所述信道切换方法包括:在一个连接下确定第一消息帧,其中,所述第一消息帧包括多个连接下的信道切换信息;在所述多个连接下发送所述第一消息帧。
根据本公开的示例实施例,所述多个连接包括第一连接以及不同于所述第一连接的其他连接,其中,所述第一连接为需要执行信道切换的连接。
根据本公开的示例实施例,多个连接下的所述信道切换信息包括所述第一连接下的信道切换信息。
根据本公开的示例实施例,多个连接下的所述信道切换信息包括所述其他连接下的信道切换信息。
根据本公开的示例实施例,所述信道切换方法还包括:响应于存在不支持多连接通信的第一设备,在所述第一连接下发送所述第一消息帧,其中,所述第一消息帧的所述信道切换信息具有所述第一设备能够识别的格式。
根据本公开的示例实施例,所述信道切换信息包括信道切换计数信息,其中,所述信道切换计数信息在所述多个连接中的每一连接下不同。
根据本公开的示例实施例,所述信道切换计数信息包括:根据所述多个连接中的每一连接下的用于接收所述第一消息帧的设备的唤醒周期确定的第一时间。
根据本公开的示例实施例,所述信道切换计数信息还包括:与所述多个连接中的每一连接相对应的偏移时间。
根据本公开的示例实施例,所述信道切换信息还包括与所述第一连接相对应的连接标识。
根据本公开的示例实施例,所述信道切换信息还包括:用于指示所述信道切换信息的类型的元素标识。
根据本公开的示例实施例,多个连接下的所述信道切换信息指示:与需要执行信道切换的至少一个连接相对应的信道切换信息发生了变化。
根据本公开的示例实施例,所述信道切换方法包括:在所述至少一个连接下发送对应的信道切换信息。
根据本公开的示例实施例,所述信道切换方法包括:在所述多个连接中的每个连接下发送信道切换信息,其中,该信道切换信息的格式与信道切换公告CSA或扩展信道切换公告ECSA相同。
根据本公开的另一示例实施例提供一种信道切换方法。所述信道切换方法包括:接收第一消息帧,其中,所述第一消息帧包括信道切换信息,所述信道切换信息包括根据多个连接确定的信道切换计数信息;根据所述信道切换计数信息执行信道切换。
根据本公开的示例实施例,所述信道切换计数信息包括:根据所述多个连接中的每一连接下的用于接收所述第一消息帧的设备的唤醒周期确定的第一时间。
根据本公开的示例实施例,所述信道切换计数信息还包括:与所述多个连接中的每一连接相对应的偏移时间。
根据本公开的示例实施例,所述信道切换方法还包括:响应于在多个连接下分别接收到所述第一消息帧,保留最先接收到的所述第一消息帧。
根据本公开的示例实施例,根据所述信道切换计数信息执行信道切换,包括:响应于在除了第一连接之外的其他连接下接收到第一消息帧,等待该第一消息帧的信道切换计数信息指示的第二时间之后,切换至新信道,其中,所述第一连接为需要执行信道切换的连接。
根据本公开的另一示例实施例提供一种通信设备。所述通信设备包括:处理模块,被配置为:在一个连接下确定第一消息帧,其中,所述第一消息帧包括多个连接下的信道切换信息;发送模块,被配置为:在所述多个 连接下发送所述第一消息帧。
根据本公开的另一示例实施例提供一种通信设备。所述通信设备包括:接收模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括信道切换信息,其中,所述信道切换信息包括根据多个连接确定的信道切换计数信息;处理模块,被配置为:根据所述信道切换计数信息执行信道切换。
根据本公开的示例实施例提供了一种电子设备。所述电子设备包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案使得设备能够在多连接下进行信道的切换,提高网络的吞吐量。
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出多连接下的通信场景的示例性示图;
图2是示出根据本公开的示例实施例的信道切换方法的流程图;
图3是示出根据本公开的示例实施例的另一信道切换方法的流程图;
图4是示出根据本公开的示例实施例的通信设备的框图;
图5是示出根据本公开的示例实施例的另一通信设备的框图。
供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用, 以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
在现有标准中对信道切换通告(CSA)以及扩展信道切换通告(ECSA)的定义如下面的表格1和表格2所示。
表格1.信道切换公告(CSA:channel switching announcement)
表格2.扩展信道切换公告(ECSA:extended channel switching announcement)
在表格1和表格2中,Element ID表示CSA或ECSA的元素标识号。Length表示长度。Channel Switch Mode表示信道切换模式,具体地可以指示直到信 道切换为止对传输的限制,例如,AP或独立基本服务集(IBSS)STA可以将Channel Switch Mode设置为0或1。New Channel Number表示新信道编号,具体地,其可以被设置为STA将要切换到的信道的编号。Channel Switch Count表示信道切换计数,具体地,对于处于基本服务集(BSS:Basis service set)中的站点其可以被设置为:发送信道切换公告(CSA或ECSA)到STA切换到新信道为止的目标信标帧传输时间(TBTT:target beacon transmission time)的数量或者被设置为0,此外,Channel Switch Count被设置为1指示在下一TBTT之前立即进行切换,Channel Switch Count被设置为0指示在包含该元素的帧被发送之后的任意时间进行切换。New Operating Class表示新操作类型,其被设置为在信道切换之后操作类型的数量。
如上所述,现有的CSA/ECSA只适用于单连接下的通信,而在IEEE802.11be标准或其他标准中,设备可能在多连接下进行通信。在多连接下进行通信时,AP可能存在多个连接下的信道切换,根据本公开的示例实施例提供了新定义的CSA/ECSA信息元素,以满足多连接通信的需求。
下面将结合附图详细描述本公开的示例性实施方式。
图1是示出多连接下的通信场景的示例性示图。
在本公开的示例实施例中,AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。AP可以在不同的时频资源上与站点进行通信。作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。作为示例,站点可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
在本公开的示例实施例中,STA和AP可以支持多连接的功能。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
在图1中,仅作为示例性的,AP-MLD可以表示支持多连接通信功能的接入点,STA-MLD可以表示支持多连接通信功能的站点。参照图1,AP MLD可以工作在三个连接下,如图1所示的AP1、AP2和AP3,STA MLD也可以工 作在三个连接下,如图1所示的STA1、STA2和STA3。在图1的示例中,假设AP1与STA1通过对应的连接Link 1进行通信,类似地,AP2和AP3分别通过Link 2和Link 3与STA2和STA3进行通信。此外,Link 1至Link 3可以是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接等。此外,在每个连接下可以存在多个信道。然而,应该理解的是,图1所示的通信场景仅是示例性的,本发明构思不限于此,例如,AP MLD可以连接到多个STA MLD或者可以连接到仅支持单连接的STA(即,仅支持现有标准的站点,可以简称为:旧式站点),或者在每个连接下,AP可以与多个站点进行通信。
在多连接下进行通信时,如果AP1是将要切换信道,在这个连接(Link 1)下的CSA/ECSA信息元素可以在Link 2及Link 3中进行广播,例如,通过信标(beacon)帧或探测响应帧(probe response)进行广播。可以在beacon帧或探测响应帧中包括新定义的CSA/ECSA信息元素。根据本公开的示例实施例,新定义的CSA/eCSA信息元素为MLD级,非link(连接)级,稍后将参照图2和图3进行详细描述。
图2是示出根据本公开的示例实施例的信道切换方法的流程图。
参照图2,在步骤210中,AP可以确定第一消息帧。具体地,AP可以在一个连接下确定第一消息帧。根据本公开的示例实施例,第一消息帧可以是AP广播的beacon帧或探测响应帧,然而,本公开的示例实施例不限于此,根据通信环境,第一消息帧可以是任何其他类型的帧。在一个示例实施例中,可以根据AP的通信能力、当前的通信环境来确定第一消息帧。在另一示例实施例中,可以直接获得预先存储或预先写入的第一消息帧。
在本公开的示例实施例中,第一消息帧(例如,beacon帧或探测响应帧)可以包括多个连接下的信道切换信息。多个连接下的信道切换信息可以是新定义的CSA/eCSA信息元素,在本公开的示例实施例中,可以称为增强CSA(eCSA:enhanced channel switching announcement)或增强ECSA(eeCSA:enhanced extended channel switching announcement)。这种以新定义的CSA/eCSA信息元素来标识信道切换的方法可以称为显式的标识方式,下面将对这种显式的标识方式进行描述。
根据本公开的示例实施例,第一连接(例如,上文中的Link 1)可以是需要执行信道切换的连接。多个连接可以包括第一连接(例如,上文中的Link 1)以及不同于第一连接的其他连接(例如,上文中的Link 2和Link3)。根据 本公开的示例实施例,多个连接下的信道切换信息包括第一连接下的信道切换信息。此外,多个连接下的信道切换信息包括其他连接下的信道切换信息。稍后将在下文进行详细描述。
在一个示例中,AP可以在需要执行信道切换的连接(例如,Link 1)下确定第一消息帧,也可以在多个连接中的任一连接下确定第一消息帧,对此,本公开不做具体限定。
根据本公开示例实施例的eCSA可以是对表格1中的CSA进行的重新定义,其具体格式可以如下面的表格3所示。根据本公开示例实施例的eeCSA可以是对表格2中的ECSA进行的重新定义,其具体格式可以如下面的表格4所示。
表格3.增强信道切换公告(eCSA:enhanced channel switching announcement)
表格4.增强扩展信道切换公告(eECSA:enhanced extended channel switching announcement)
参照表格3和表格4,多个连接下的信道切换信息(例如,eCSA和eeCSA)可以包括信道切换计数信息(Channel Switch Count)。根据本公开的示例实施例,信道切换计数信息在多个连接中的每一连接下不同。
在IEEE802.11be标准的制定过程中,对于节能(PS:power save)的站点可以形成如下结论:与工作在一个激活的连接下的AP MLD相关联的non-AP STA MLD可以保持其自身的电源状态/模式。也就是说,站点在每个连接下的PS状态是相互独立的。non-AP STA MLD和AP MLD支持在同一时刻能够在多连接下同时发送和/或接收的功能。
在现有标准中,信道切换进行应被调度,以便基本服务集(BSS)中的所有STA(包括处于节能模式的STA)都有机会在切换之前接收至少一个信道切换公告元素。
根据上文描述,可以知晓无论在现有标准还是在更先进的标准(例如, IEEE802.11be标准)中,处于节能模式的STA也应该接收到信道切换信息以执行信道切换。
考虑到在本公开中eCSA/eeCSA为MLD级的信息元素,在本公开的示例实施例中,信道切换计数信息可以包括:根据多个连接中的每一连接下的用于接收第一消息帧的设备的唤醒周期确定的第一时间。作为一个示例,用于接收第一消息帧的设备可以是上文描述的站点。
作为一个示例,根据本公开的示例实施例的信道切换计数信息的值包括下面的式1所表示的部分T(即,第一时间):
T=Min(MAX(wake up period of each associated MLD STA in link 1),MAX(wake up period of each associated MLD STA in link 2),…,MAX(wake up period of each associated MLD STA in link n)) ……(式1)
在式1中,Min表示取最小值的函数,MAX表示取最大值的函数。wake up period of each associated MLD STA in link 1表示:在连接1下,每个相关联的支持多连接的站点的唤醒时间周期,wake up period of each associated MLD STA in link 2表示:在连接2下,每个相关联的支持多连接的站点的唤醒时间周期,wake up period of each associated MLD STA in link n表示:在连接n下,每个相关联的支持多连接的站点的唤醒时间周期。
根据式1可知,信道切换计数信息中包括的第一时间与多个连接相关,更具体地,与多个连接中的每一连接下的各站点的唤醒时间周期相关。
此外,由于MLD AP在每个连接下发送第一消息帧(例如,beacon帧或探测响应帧)的时间点不一样,其存在着时间上的偏移(offset)。因此,信道切换计数信息还可以包括:与多个连接中的每一连接相对应的偏移时间。
作为一个示例,根据本公开的示例实施例的信道切换计数信息可以被设置为:T+时间偏移(例如,可以表示为第二时间)。
根据示例实施例,各个连接之间的时间偏移可以设置为不同。根据另一示例实施例,可以将多个连接中的一个连接(例如,可以将需要执行信道切换的第一连接)设置为基准连接,在其他连接下,参照该基准连接来设置时间偏移。
继续参照表格3和表格4,信道切换信息还可以包括与第一连接相对应的连接标识。也就是说,信道切换信息还可以包括与需要执行信道切换的连接相对应的连接标识。例如,当第一连接为需要执行信道切换的连接时, 表格3和表格4中的Link ID可以为与第一连接对应的连接标识。此外,多个连接需要执行信道切换时,表格3或表格4所指示的信道切换信息可以包括分别与多个连接相对应的连接标识。
然而,这仅是示例性的,根据本公开的示例实施例的信道切换信息可以不包括连接标识。例如,可以根据偏移时间和基准连接的设置来自动的确定需要进行信道切换的连接。
继续参照表格3和表格4,信道切换信息还可以包括:用于指示信道切换信息的类型的元素标识。例如,可以利用表格3和表格4中的元素标识(Element ID)来表示本公开的信道切换信息的类型是增强信道切换公告(eCSA)还是增强扩展信道切换公告(eeCSA)。在一个示例中,可以利用现有标准的Element ID的保留值中的至少一比特来指示本公开新定义的eCSA或eeCSA。
信道切换信息还可以包括:Length、Channel Switch Mode、Channel Switch Mode和/或New Operating Class,其含义与上文参照表格1和表格2描述的相似,为了简明,在此省略重复的描述。
返回参照图2,在步骤220中,可以在多个连接下发送第一消息帧。例如,可以在上文所述的第一连接或其他连接下以beacon帧或探测响应帧的方式来广播第一消息帧。每个连接下广播的第一消息帧所包括的eCSA或eeCSA可以具有如表格3或表格4所定义的格式。
此外,根据本公开的示例实施例,还可以以隐式的方式来标识发生信道切换的连接。隐式可以是指通过非指示符的其他信息来指示发生信道切换的连接。具体地,可以在一个连接下标识哪些连接下的CSA或ECSA发生变化,然而发生变化的CSA或ECSA的具体信息需要在相应的连接下去发送。这里的一个连接可以指多个连接中的任意连接。CSA或ECSA发生变化可以表示其对应的连接需要执行信道切换。
在此情况下,步骤210中的多个连接下的信道切换信息可以指示:与需要执行信道切换的至少一个连接相对应的信道切换信息发生了变化。也就是说,在步骤210中的多个连接下的信道切换信息中隐式地标识了哪些连接的信道切换信息发生了变化。
根据本公开的示例实施例信道切换方法可以包括:在所述至少一个连接下发送对应的信道切换信息。这里,发送的对应的信道切换信息指示需要执行信道切换的至少一个连接下的具体的信道切换信息。
例如,图1中的Link 2和Link 3是需要执行信道切换的连接,也就是说,Link 2和Link 3下发送的信道切换信息发生变化。可以在Link 1、Link 2和Link 3中的任一连接下标识与Link 2和Link 3相对应的信道切换信息发生了变化,并且在Link 2下发送与Link 2相对应的具体的信道切换信息(例如,Link 2下的CSA或ECSA),在Link 3下发送与Link 2相对应的具体的信道切换信息(例如,Link 3下的CSA或ECSA)。
根据本公开的示例实施例信道切换方法可以包括:在多个连接中的每个连接下发送信道切换信息。该信道切换信息的格式与信道切换公告CSA或扩展信道切换公告ECSA相同。也就是说,当在上述实施例中隐式地标识了哪些连接的信道切换信息发生了变化时,在每个连接下发送的信道切换信息的格式不需要如上文的显式的方式那样重新定义,而是可以直接使用现有标准下的格式(如表格1或表格2所示的)。
图2所示的信道切换方法仅是示例性的,本公开的示例实施例不限于此,例如可以包括更多或更少的步骤。在一个示例中,根据本公开的示例实施例的信道切换方法还可以包括:响应于存在不支持多连接通信的第一设备,在第一连接下发送第一消息帧。第一消息帧的信道切换信息具有第一设备能够识别的格式。
不支持多连接通信的第一设备可以指示仅支持现有标准的站点(即,旧式站点)。也就是说,当与AP MLD连接的站点中仅支持现有标准的站点时,例如,当AP MLD在一个连接(例如,上文需要执行信道切换的第一连接)下与旧式站点进行通信时,根据本公开的示例实施例的信道切换方法也可以实现对旧式站点的后向兼容。具体地说,当存在不支持多连接通信的第一设备(即,旧式站点)时,可以以独立的信息元素的形式将第一设备可以识别的信道切换信息(例如,表格1或表格2所示的CSA或ECSA)包括在第一消息帧(例如,beacon帧或探测响应帧)中。换言之,当存在旧式站点时,可以在需要执行信道切换的连接下发送具有现有标准定义的格式的信道切换信息,避免旧式站点无法解析根据本公开新定义的多连接下的信道切换信息,从而实现后向兼容。
图3是示出根据本公开的示例实施例的另一信道切换方法的流程图。
参照图3,在步骤310中,STA可以接收第一消息帧。第一消息帧包括信 道切换信息。此外,第一消息帧中的信道切换信息的格式可以类似于上文的表格3/表格4(对于MLD STA而言)、或者表格1/表格2(对于旧式站点而言)。
例如,信道切换信息可以包括根据多个连接确定的信道切换计数信息。根据本公开的示例实施例,在每个连接下接收到的第一信息帧中,信道切换信息的信道切换计数信息可以如参照式1和偏移时间所描述的。也就是说,根据本公开的示例实施例,信道切换计数信息可以包括:根据多个连接中的每一连接下的用于接收第一消息帧的设备的唤醒周期确定的第一时间以及与多个连接中的每一连接相对应的偏移时间。例如,信道切换信息可以具有不支持多连接通信的第一设备能够识别的格式。
继续参照图3,在步骤320中,可以根据信道切换计数信息执行信道切换。例如,STA可以等待在信道切换计数信息中定义的时间,然后切换到新信道。关于将要切换到的新信道的信息可以从表格3/表格4或者表格1/表格2所述的信道切换信息获得。
图3所示的信道切换方法仅是示例性的,本公开的示例实施例不限于此,例如可以包括更多或更少的步骤。在一个示例中,根据本公开的示例实施例的信道切换方法还可以包括:响应于在多个连接下分别接收到第一消息帧,保留最先接收到的第一消息帧。在此情况下,在步骤320中可以根据保留的第一消息帧执行信道切换。然而,本公开不限于此,例如,无论STA在哪个连接下接收到包括信道切换信息的第一消息帧,就可以根据其中的信道切换信息来执行信道切换,而无需再等待接收其他连接下的信道切换信息。
根据本公开的示例实施例,步骤320可以包括:响应于在除了第一连接(第一连接为上文所述的需要执行信道切换的连接)之外的其他连接下接收到第一消息帧,等待该第一消息帧的信道切换计数信息指示的第二时间之后,切换至新信道。
也就是说,虽然第一连接为需要执行信道切换的连接,但是STA并不是在第一连接下接收到第一消息帧,而是在其他连接下(例如,第二连接)接收到第一消息帧,那么STA可以通过内部操作,等待第二连接下的切换计数信息指示的第二时间(例如,T+偏移时间)之后,切换至新信 道。其中,第二时间中的偏移时间是与接收到第一消息帧的连接相对应的偏移。
根据本公开的示例实施例的信道切换方法使得设备能够在多连接下进行信道的切换,同时实现后向兼容,提高网络的吞吐量。
图4是示出根据本公开的示例实施例的通信设备400的框图。
参照图4,通信设备400可以包括处理模块410和发送模块430。
处理模块410可以被配置为:在一个连接下确定第一消息帧。第一消息帧包括多个连接下的信道切换信息。发送模块430可以被配置为:在多个连接下发送第一消息帧。
根据本公开的实施例,多个连接包括第一连接以及不同于第一连接的其他连接,并且第一连接为需要执行信道切换的连接。
根据本公开的实施例,多个连接下的信道切换信息包括第一连接下的信道切换信息。
根据本公开的实施例,多个连接下的信道切换信息包括其他连接下的信道切换信息。
根据本公开的实施例,处理模块410还可以被配置为:响应于存在不支持多连接通信的第一设备,控制发送模块430在第一连接下发送第一消息帧。第一消息帧的信道切换信息具有第一设备能够识别的格式。
根据本公开的实施例,信道切换信息包括信道切换计数信息。信道切换计数信息在多个连接中的每一连接下不同。
根据本公开的实施例,信道切换计数信息包括:根据多个连接中的每一连接下的用于接收第一消息帧的设备的唤醒周期确定的第一时间。
根据本公开的实施例,信道切换计数信息还包括:与多个连接中的每一连接相对应的偏移时间。
根据本公开的实施例,信道切换信息还包括与第一连接相对应的连接标识。
根据本公开的实施例,信道切换信息还包括:用于指示信道切换信息的类型的元素标识。
处理模块410和发送模块430可以分别执行图2所示的步骤210和步 骤220的操作,为了简明,在此省略重复的描述。
图5是示出根据本公开的示例实施例的另一通信设备500的框图。
通信设备500可以包括处理模块510和接收模块530。
接收模块530可以被配置为:接收第一消息帧。第一消息帧包括信道切换信息。信道切换信息包括根据多个连接确定的信道切换计数信息。处理模块510可以被配置为:根据信道切换计数信息执行信道切换。
根据本公开的实施例,处理模块510还可以被配置为:响应于在多个连接下分别接收到第一消息帧,保留最先接收到的第一消息帧。
根据本公开的实施例,处理模块510还可以被配置为:响应于在除了第一连接之外的其他连接下接收到第一消息帧,等待该第一消息帧的信道切换计数信息指示的第二时间之后,切换至新信道。
处理模块510和发送模块530可以分别执行图3所示的步骤320和步骤310的操作,为了简明,在此省略重复的描述。
将理解,图4和图5所示的通信设备的配置仅是示例性的,本公开不限于此,通信设备400和通信设备500可以包括更多或更少的模块。
根据本公开的示例实施例的通信设备使得设备能够在多连接下进行信道的切换,同时实现后向兼容,提高网络的吞吐量。
此外,上述的“模块”可以通过软件和/或硬件的结合来实现,对此本公开实施例不进行具体限制。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子设备,该电子设备包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图2和图3描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图2和图3描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据 信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。
Claims (22)
- 一种信道切换方法,包括:在一个连接下确定第一消息帧,其中,所述第一消息帧包括多个连接下的信道切换信息;在所述多个连接下发送所述第一消息帧。
- 根据权利要求1所述的信道切换方法,其中,所述多个连接包括第一连接以及不同于所述第一连接的其他连接,其中,所述第一连接为需要执行信道切换的连接。
- 根据权利要求2所述的信道切换方法,其中,多个连接下的所述信道切换信息包括所述第一连接下的信道切换信息。
- 根据权利要求3所述的信道切换方法,其中,多个连接下的所述信道切换信息包括所述其他连接下的信道切换信息。
- 根据权利要求3所述的信道切换方法,其中,所述信道切换方法还包括:响应于存在不支持多连接通信的第一设备,在所述第一连接下发送所述第一消息帧,其中,所述第一消息帧的所述信道切换信息具有所述第一设备能够识别的格式。
- 根据权利要求2所述的信道切换方法,其中,所述信道切换信息包括信道切换计数信息,其中,所述信道切换计数信息在所述多个连接中的每一连接下不同。
- 根据权利要求6所述的信道切换方法,其中,所述信道切换计数信息包括:根据所述多个连接中的每一连接下的用于接收所述第一消息帧 的设备的唤醒周期确定的第一时间。
- 根据权利要求7所述的信道切换方法,其中,所述信道切换计数信息还包括:与所述多个连接中的每一连接相对应的偏移时间。
- 根据权利要求6所述的信道切换方法,其中,所述信道切换信息还包括与所述第一连接相对应的连接标识。
- 根据权利要求6所述的信道切换方法,其中,所述信道切换信息还包括:用于指示所述信道切换信息的类型的元素标识。
- 根据权利要求1所述的信道切换方法,其中,多个连接下的所述信道切换信息指示:与需要执行信道切换的至少一个连接相对应的信道切换信息发生了变化。
- 根据权利要求11所述的信道切换方法,其中,所述信道切换方法包括:在所述至少一个连接下发送对应的信道切换信息。
- 根据权利要求11所述的信道切换方法,其中,所述信道切换方法包括:在所述多个连接中的每个连接下发送信道切换信息,其中,该信道切换信息的格式与信道切换公告CSA或扩展信道切换公告ECSA相同。
- 一种信道切换方法,包括:接收第一消息帧,其中,所述第一消息帧包括信道切换信息,所述信道切换信息包括根据多个连接确定的信道切换计数信息;根据所述信道切换计数信息执行信道切换。
- 根据权利要求14所述的信道切换方法,其中,所述信道切换计数信息包括:根据所述多个连接中的每一连接下的用于接收所述第一消息 帧的设备的唤醒周期确定的第一时间。
- 根据权利要求15所述的信道切换方法,其中,所述信道切换计数信息还包括:与所述多个连接中的每一连接相对应的偏移时间。
- 根据权利要求14所述的信道切换方法,所述信道切换方法还包括:响应于在多个连接下分别接收到所述第一消息帧,保留最先接收到的所述第一消息帧。
- 根据权利要求14至16中的任一项所述的信道切换方法,其中,根据所述信道切换计数信息执行信道切换,包括:响应于在除了第一连接之外的其他连接下接收到第一消息帧,等待该第一消息帧的信道切换计数信息指示的第二时间之后,切换至新信道,其中,所述第一连接为需要执行信道切换的连接。
- 一种通信设备,所述通信设备包括:处理模块,被配置为:在一个连接下确定第一消息帧,其中,所述第一消息帧包括多个连接下的信道切换信息;发送模块,被配置为:在所述多个连接下发送所述第一消息帧。
- 一种通信设备,所述通信设备包括:接收模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括信道切换信息,其中,所述信道切换信息包括根据多个连接确定的信道切换计数信息;处理模块,被配置为:根据所述信道切换计数信息执行信道切换。
- 一种电子设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程 序时实现权利要求1-18任一项所述的方法。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1-18任一项所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/017,046 US20230328619A1 (en) | 2020-08-11 | 2020-08-11 | Methods for channel switching and electronic device |
CN202080001588.6A CN114342481B (zh) | 2020-08-11 | 2020-08-11 | 信道切换方法和通信设备 |
PCT/CN2020/108411 WO2022032475A1 (zh) | 2020-08-11 | 2020-08-11 | 信道切换方法和通信设备 |
EP20948974.9A EP4199595A4 (en) | 2020-08-11 | 2020-08-11 | CHANNEL SWITCHING METHOD AND COMMUNICATION DEVICE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/108411 WO2022032475A1 (zh) | 2020-08-11 | 2020-08-11 | 信道切换方法和通信设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022032475A1 true WO2022032475A1 (zh) | 2022-02-17 |
Family
ID=80247558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/108411 WO2022032475A1 (zh) | 2020-08-11 | 2020-08-11 | 信道切换方法和通信设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230328619A1 (zh) |
EP (1) | EP4199595A4 (zh) |
CN (1) | CN114342481B (zh) |
WO (1) | WO2022032475A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022260486A1 (ko) * | 2021-06-10 | 2022-12-15 | 주식회사 윌러스표준기술연구소 | 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
US20220417809A1 (en) * | 2021-06-23 | 2022-12-29 | Apple Inc. | Channel Switching |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621836A (zh) * | 2008-06-30 | 2010-01-06 | 华为技术有限公司 | Mesh网络中信道切换方法、装置和mesh网络 |
CN109379772A (zh) * | 2018-12-12 | 2019-02-22 | 乐鑫信息科技(上海)股份有限公司 | 网络信道的切换方法、装置、设备和存储介质 |
CN110049521A (zh) * | 2018-01-16 | 2019-07-23 | 联发科技(新加坡)私人有限公司 | 广播信道切换时间的方法和设备以及连接到无线ap的方法 |
US20200163141A1 (en) * | 2018-11-19 | 2020-05-21 | Mediatek Inc. | Method and apparatus for link enablement and disablement during multi-link operation in a wireless network |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100515415B1 (ko) * | 2002-12-02 | 2005-09-15 | 엘지전자 주식회사 | 이동 통신 시스템에서 채널 자원 통계 방법 |
US9210624B2 (en) * | 2010-08-17 | 2015-12-08 | Google Technology Holdings LLC | Method and apparatus for change of primary cell during carrier aggregation |
FR2979784A1 (fr) * | 2011-09-02 | 2013-03-08 | France Telecom | Procede de selection de canal, equipement wifi et programme d'ordinateur correspondants |
US20160345345A1 (en) * | 2015-05-21 | 2016-11-24 | Qualcomm Incorporated | Methods and apparatus for signal timing detection, sharing, and interference avoidance |
KR101640054B1 (ko) * | 2015-06-24 | 2016-07-22 | 현대자동차주식회사 | 게이트웨이 장치, 이를 포함하는 차량, 및 그 제어방법 |
EP3386240B1 (en) * | 2015-12-31 | 2021-08-11 | Huawei Technologies Co., Ltd. | Switchover method in master-slave network, master device, slave device, and system |
WO2018054169A1 (zh) * | 2016-09-26 | 2018-03-29 | 华为技术有限公司 | 一种频道切换的方法及设备 |
WO2018119664A1 (en) * | 2016-12-27 | 2018-07-05 | Nokia Solutions And Networks System Technology (Beijing) Co., Ltd. | A connection setup method, user equipment, common central control node and communication system |
US10959153B2 (en) * | 2017-09-11 | 2021-03-23 | Qualcomm Incorporated | Techniques for multi-link aggregation signaling |
US11595884B2 (en) * | 2020-02-12 | 2023-02-28 | Mediatek Singapore Pte. Ltd. | Apparatus and methods for EHT multi-link BBS parameter update |
-
2020
- 2020-08-11 WO PCT/CN2020/108411 patent/WO2022032475A1/zh unknown
- 2020-08-11 EP EP20948974.9A patent/EP4199595A4/en active Pending
- 2020-08-11 US US18/017,046 patent/US20230328619A1/en active Pending
- 2020-08-11 CN CN202080001588.6A patent/CN114342481B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621836A (zh) * | 2008-06-30 | 2010-01-06 | 华为技术有限公司 | Mesh网络中信道切换方法、装置和mesh网络 |
CN110049521A (zh) * | 2018-01-16 | 2019-07-23 | 联发科技(新加坡)私人有限公司 | 广播信道切换时间的方法和设备以及连接到无线ap的方法 |
US20200163141A1 (en) * | 2018-11-19 | 2020-05-21 | Mediatek Inc. | Method and apparatus for link enablement and disablement during multi-link operation in a wireless network |
CN109379772A (zh) * | 2018-12-12 | 2019-02-22 | 乐鑫信息科技(上海)股份有限公司 | 网络信道的切换方法、装置、设备和存储介质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4199595A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN114342481A (zh) | 2022-04-12 |
EP4199595A1 (en) | 2023-06-21 |
EP4199595A4 (en) | 2024-05-15 |
CN114342481B (zh) | 2024-04-09 |
US20230328619A1 (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022032475A1 (zh) | 信道切换方法和通信设备 | |
WO2022226841A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022047636A1 (zh) | 一种多连接下的通信方法和通信设备 | |
WO2022087913A1 (zh) | 通信方法和通信设备 | |
WO2022016527A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022151486A1 (zh) | 通信方法和通信设备 | |
WO2022205324A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022116150A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022094940A1 (zh) | 通信方法和通信设备 | |
WO2022056846A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022032662A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022217587A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022094774A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022110035A1 (zh) | 通信方法和通信设备 | |
WO2023019406A1 (zh) | 用于基本服务集切换的通信方法和通信装置 | |
WO2022198596A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022267033A1 (zh) | 通信方法和通信装置 | |
WO2022213387A1 (zh) | 通信方法和通信装置 | |
WO2022133654A1 (zh) | 多连接下的通信方法和通信设备 | |
WO2022256985A1 (zh) | 通信方法和通信装置 | |
WO2022188044A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022217586A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022165680A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2022213391A1 (zh) | 多连接下的通信方法和通信装置 | |
WO2023004644A1 (zh) | 多连接下的通信方法和通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20948974 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020948974 Country of ref document: EP Effective date: 20230313 |