WO2022032467A1 - Quality of service event indication - Google Patents

Quality of service event indication Download PDF

Info

Publication number
WO2022032467A1
WO2022032467A1 PCT/CN2020/108354 CN2020108354W WO2022032467A1 WO 2022032467 A1 WO2022032467 A1 WO 2022032467A1 CN 2020108354 W CN2020108354 W CN 2020108354W WO 2022032467 A1 WO2022032467 A1 WO 2022032467A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
data flow
indication
qos
communication
Prior art date
Application number
PCT/CN2020/108354
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108354 priority Critical patent/WO2022032467A1/en
Publication of WO2022032467A1 publication Critical patent/WO2022032467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0838User device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements

Definitions

  • aspects of the present disclosure generally relate to wireless communications and to techniques and apparatuses for quality of service (QoS) event indication.
  • QoS quality of service
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a base station includes detecting an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmitting an indication of the event to the UE.
  • QoS quality of service
  • a method of wireless communication performed by a UE includes receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjusting a communication configuration based at least in part the indication of the event.
  • a base station for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to detect an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmit an indication of the event to the UE.
  • a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjust a communication configuration based at least in part the indication of the event.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to detect an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmit an indication of the event to the UE.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjust a communication configuration based at least in part the indication of the event.
  • an apparatus for wireless communication includes means for detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and means for transmitting an indication of the event to the UE.
  • an apparatus for wireless communication includes: means for receiving an indication of an event related to a QoS data flow associated with the apparatus, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and means for adjusting a communication configuration based at least in part the indication of the event.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of an environment including a UE, a base station, a core network with one or more core network devices, and a data network, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example associated with quality of service (QoS) event indication, in accordance with various aspects of the present disclosure.
  • QoS quality of service
  • Figs. 5-6 are diagrams illustrating example processes associated with QoS event indication, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with quality of service (QoS) event indication, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • base station 110 may include means for detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; means for transmitting an indication of the event to the UE; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • UE 120 may include means for receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; means for adjusting a communication configuration based at least in part the indication of the event; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of an environment including a UE, a BS, a core network including one or more core network devices, and a data network, in accordance with various aspects of the present disclosure.
  • the example 300 includes a UE 305 in communication with a BS 310.
  • the UE 305 and the BS 310 may be in communication with one another in a wireless network, which communication may include an uplink and a downlink.
  • the BS 310 may be in communication with one or more core network devices 315 of a core network, and the one or more core network devices 315 may be in communication with a data network 320 and/or one or more other devices or networks.
  • Core network devices 315 may include one or more servers, gateways, switches, hubs, routers, and/or the like that provide, for example, an application function (AF) , a policy control function (PCF) , a session management function (SMF) , and/or the like for the core network.
  • AF application function
  • PCF policy control function
  • SMF session management function
  • BS 310 may establish a data flow, such as a communication bearer (e.g., a radio bearer) , with UE 305 to enable communication on the uplink, on the downlink, and/or the like.
  • the communication bearer may have endpoints at UE 305 and a core network device 315.
  • UE 305 may communicate, via a communication bearer, with a gateway device, which may be an example of a core network device 315, and the gateway device may further direct communication to one or more other devices or networks (e.g., to one or more other core network devices 315, to data network 320, and/or the like) .
  • BS 310 in connection with one or more core network devices 315) may establish a communication bearer to enable end-to-end transmission of the streaming video from UE 120 to the application server.
  • a data flow may be associated with a quality of service (QoS) and may be termed a QoS data flow.
  • QoS quality of service
  • the QoS may define a guarantee of a minimum level of service that BS 310, core network devices 315, and/or the like provide for data communicated using, for example, a communication bearer.
  • some types of communication services may be associated with a QoS. For example, for a UE 305 operating in an ultra-reliable low-latency communication (URLLC) mode, BS 310 and core network devices 315 may establish a QoS level that guarantees greater than a threshold reliability, less than a threshold latency, and/or the like.
  • URLLC ultra-reliable low-latency communication
  • BS 310 and/or core network devices 315 may associate a data flow with a QoS when the data flow is established. Additionally, or alternatively, BS 310 and/or core network devices 315 may periodically change the QoS for the data flow, such as based at least in part on a change to network conditions, a change to a mode of UE 305, a change to a type of data that UE 305 is transmitting, and/or the like.
  • BS 310 and/or core network devices 315 may communicate to alter the QoS for the data flow. For example, during usage of a streaming video data flow by UE 305, BS 310 may detect that a level of network traffic prevents BS 310 from providing sufficient bandwidth to maintain a QoS that has been established for the data flow.
  • the QoS may be a guaranteed flow bitrate (GFBR) of, for example, 10 megabits per second (Mbps) .
  • GFBR guaranteed flow bitrate
  • BS 310 may communicate with core network devices 315 to reduce the QoS to a GFBR of, for example, 8 Mbps and reduce a bandwidth that is allocated to UE 305 for transmission using a data flow for which the QoS is established.
  • BS 310 and core network devices 315 ensure that the data flow can continue for UE 305, thereby avoiding a complete interruption of communication between UE 305 and an endpoint for the data flow (e.g., an application server) .
  • UE 305 may lack visibility regarding the change to the QoS and the bandwidth. For example, UE 305 may encode the streaming video data for transmission at the original GFBR of 10 Mbps, but may only be granted bandwidth and associated resources for the new GFBR of 8 Mbps. In this case, UE 305 may experience excessive queuing of data for transmission, may drop one or more data packets, and/or the like, which may result in interruptions to the streaming video data that UE 305 is providing. Similarly, for other QoS dependent use cases, UE 305 may be unable to transmit time-sensitive data, high-importance data, emergency communication data, and/or the like when a QoS for a data flow is downgraded without UE 305 being aware of the downgrade.
  • Some aspects described herein enable notification of a QoS data flow event to a UE (e.g., the UE 120) so that an application of the UE may adjust a communication parameter associated with the QoS data flow as a response to the event.
  • a BS e.g., the BS 110
  • the BS may monitor for an event that is to cause a change to a QoS and may communicate with one or more core network devices to change the QoS.
  • the BS may also communicate with a UE (e.g., the UE 120) to notify the UE of the event and/or of the change to the QoS.
  • the UE may adjust one or more communication parameters. For example, with regard to the streaming video data example above, the UE (and/or an application thereof) may adjust, in real-time or near-real-time, a video encoding rate based at least in part on being granted an 8 Mbps GFBR in a new QoS rather than a 10 Mbps GFBR as was originally specified by the original QoS. In this way, the UE may avoid unnecessary communication interruptions, delayed data, dropped data packets, excessive queuing, and/or the like.
  • the BS reduces an amount of time before the UE adapts to the new QoS relative to other techniques where the UE is to detect the new QoS based at least in part on detecting dropped data packets, excessive queueing, and/or the like.
  • Fig. 4 is a diagram illustrating an example 400 associated with QoS event indication, in accordance with various aspects of the present disclosure.
  • the example 400 includes a UE (e.g., the UE 120) in communication with a BS (e.g., the BS 110) .
  • the UE 120 and the BS 110 may be in communication with one another in a wireless network (e.g., the wireless network 100) , which communication may include an uplink and a downlink.
  • the BS 110 may be in communication with one or more core network devices (e.g., the core network device (s) 315) .
  • UE 120 may communicate, in a particular data flow, using a first QoS.
  • BS 110 and core network devices 315 may establish a first QoS for a data flow that UE 120 is to use to, for example, transmit data on an uplink to BS 110, core network devices 315, one or more devices of a data network, and/or the like.
  • BS 110 and core network devices 315 may establish the first QoS for reception on a downlink, a combination of transmission on the uplink and reception on the downlink, and/or the like.
  • an application of UE 120 may use the particular data flow for communication.
  • a streaming video application of the UE may transmit streaming video, in real-time, to BS 110, via the particular data flow, and BS 110 may direct the streaming video to a core network device 315, an application server, another UE 120, and/or the like.
  • the particular data flow may be associated with a QoS data flow criterion associated with the QoS.
  • BS 110 and core network devices 315 may establish a GFBR for the QoS of, for example, 10 Mbps, 20 Mbps, 50 Mbps, and/or the like, on the uplink and/or downlink. In this case, if a bitrate between the UE 120 and the BS 110 falls below the GFBR, the QoS data flow criterion is not met.
  • other QoS data flow criteria are possible, such as a packet loss rate threshold, a bit error rate threshold, a bandwidth threshold, signal to interference plus noise ratio (SINR) threshold, and/or the like.
  • SINR signal to interference plus noise ratio
  • BS 110 may monitor for, and may subsequently detect, an event that impacts the QoS data flow.
  • the event may indicate an inability of the communication between the UE 120 and BS 110 to satisfy the QoS data flow criterion.
  • the BS 110 may detect the event by monitoring one or more parameters associated with the QoS data flow.
  • BS 110 may monitor one or more parameters to detect an interruption of a communication, such as between the UE 120 and the one or more core network devices 315 (and communication onward with devices of a data network, other UEs, and/or the like) , which may cause a bitrate between the UE 120 and the BS 110 to fall below the GFBR (e.g., falling below 10 Mbps to 8 Mbps) . Additionally, or alternatively, BS 110 may detect a threshold bit error rate, a threshold packet delay, a threshold quantity of dropped data packets, and/or the like. Additionally, or alternatively, BS 110 may determine that resources for supporting the QoS are not available (e.g., before detecting a drop to a bitrate) .
  • BS 110 may determine that an amount of data that is to be transmitted to or by UEs in a cell exceeds a threshold, which may result in BS 110 being unable to allocate a threshold bandwidth to UE 120 in one or more upcoming communication periods. Additionally, or alternatively, BS 110 may receive an indication of the event. For example, UE 120 may monitor one or more communication parameters, such as a block error rate (BLER) , a SINR, a reference signal received power (RSRP) , and/or the like, and may notify BS 110 of the one or more communication parameters, which may cause BS 110 to determine that an event that impacts the QoS data flow has occurred. Additionally, or alternatively, a core network device 315 may monitor a communication parameter, determine that an event that impacts the QoS data flow has occurred, and may notify BS 110 of the event.
  • BLER block error rate
  • SINR SINR
  • RSRP reference signal received power
  • a core network device 315 may monitor a communication parameter, determine that an event that impacts the Q
  • BS 110 may notify the one or more core network devices 315 of the event. For example, as described above, BS 110 may notify an SMF, a PCF, and/or an AF of the event and the SMF, PCF, and/or AF may establish, modify, and/or release one or more data flows as a response to the event.
  • the SMF may adjust a communication configuration, such as by altering the data flow of UE 120 from the first QoS to a second QoS.
  • the PCF may store a QoS rule associated with the second QoS, and associate the QoS rule with the data flow of UE 120.
  • the SMF may adjust the communication configuration to lower the GFBR to 8 Mbps, thereby accounting for, for example, a reduced bandwidth that can be allocated to UE 120.
  • the SMF, PCF, AF, and/or the like may adjust a bandwidth, a downlink bitrate, an uplink bitrate, and/or the like associated with the data flow of UE 120.
  • BS 110 may notify the UE 120 of the event and UE 120 may adjust a communication parameter.
  • BS 110 may notify the UE 120 of the event before, concurrent with, or after notifying the one or more core network devices 315 of the event.
  • the BS 110 may notify the UE 120 of the event to permit the application of the UE 120 to adjust a communication parameter associated with the QoS data flow.
  • BS 110 may transmit a notification of the event to UE 120 to enable UE 120 and/or an application thereof to adjust the communication parameter to match the second QoS.
  • UE 120 may adjust, for example, a video encoding rate, such that an amount of data that is generated by a streaming video application of UE 120 can be transmitted using the 8 Mbps GFBR without causing excessive queueing, dropped data packets, and/or the like.
  • BS 110 may notify UE 120 of the event, which may cause the bandwidth gap of 2 Mbps.
  • UE 120 may pass the notification to an application of UE 120 (e.g., the streaming video application) and the application may adjust a communication parameter to change a bandwidth use, in real-time, to resolve the bandwidth gap. In this case, the application may lower the bandwidth use by 2.5 Mbps (e.g., lowering from 10 Mbps to 7.5 Mbps) .
  • the application may adjust the bandwidth by adjusting a video encoding bitrate associated with a video which the application is streaming in real-time.
  • communication parameter adjustments based at least in part on QoS event notifications may be applicable to other communication scenarios, such as video calls, augment reality, and virtual reality.
  • BS 110 may transmit information to UE 120 that identifies a cause of the event. For example, BS 110 may transmit information indicating that BS 110 cannot allocate a threshold downlink bandwidth, a threshold uplink bandwidth, and/or the like. Additionally, or alternatively, BS 110 may transmit information indicating that an amount of interference, noise, communication density, and/or the like in a cell results in greater than a threshold packet loss rate, bit error rate, block error rate, and/or the like. In this way, BS 110 enables UE 120 to adapt communication parameters to network conditions, such as by enabling UE 120 to include additional redundancy bits in a communication or to increase repetitions of a communication to adapt to a threshold level of interference, noise, and/or the like.
  • BS 110 may transmit information to UE 120 that identifies an adjustment to a communication configuration as a response to the event. For example, BS 110 may transmit information identifying the second QoS and UE 120 may adjust one or more communication parameters in accordance with the second QoS. Additionally, or alternatively, UE 120 may infer the second QoS based at least in part on the information identifying the event, which may enable UE 120 to adjust the communication parameters without waiting for information explicitly identifying the second QoS. In other words, BS 110 may transmit a notification of the event before the second QoS is established, but UE 120 may predict the second QoS based at least in part on information identifying the event. In some aspects, BS 110 may transmit information identifying a plurality of events.
  • BS 110 may transmit a notification with a plurality of identifiers of a plurality events (e.g., a plurality of events relating to a plurality of data flows, a plurality of events relating to a single data flow, and/or the like) .
  • UE 120 may adjust one or more communication parameters based at least in part on the plurality of events, based at least in part on an event with a largest impact to QoS, and/or the like.
  • UE 120 may communicate in a data flow with the second QoS. For example, after the one or more core network devices 315 adjust the communication configuration and UE 120 adjusts the communication parameter, UE 120 may, for example, transmit streaming video in a data flow that is provided the second QoS. As a result, UE 120 may avoid communication interruptions from excessive queueing, dropped data packets, and/or the like, thereby improving communication relative to other techniques where the UE responds to events in worse-than-real-time by detecting the events as a result of detecting excessive queuing, dropped data packets, and/or the like.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the BS (e.g., BS 110) performs operations associated with quality of service event indication (e.g., the UE 120) .
  • the BS e.g., BS 110
  • quality of service event indication e.g., the UE 120
  • process 500 may include detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow (block 510) .
  • the BS e.g., antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, and/or scheduler 246
  • process 500 may include transmitting an indication of the event to the UE (block 520) .
  • the BS e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit an indication of the event to the UE, as described above.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
  • the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
  • transmitting the indication of the event comprises transmitting, in connection with the indication, information identifying a cause of the event.
  • the information identifying the cause of the event identifies at least one of an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, an inability to satisfy a maximum packet loss threshold, and/or the like.
  • transmitting the indication of the event comprises transmitting, in connection with the indication, an identifier associated with the event.
  • process 500 includes transmitting an indication of the event to a core network, and communicating with the core network to adjust a communication configuration associated with the QoS data flow.
  • transmitting the indication of the event to the core network comprises transmitting the indication of the event to at least one of a session management function, an application function, or a policy control function of the core network.
  • process 500 includes transmitting an indication of the communication configuration to the UE.
  • adjusting the communication configuration comprises adjusting at least one of a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
  • the QoS data flow relates to an ultra-reliable low-latency real time communication.
  • the QoS data flow relates to a real time streaming video communication.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., the UE 120) performs operations associated with quality of service event indication to the UE.
  • the UE e.g., the UE 120
  • process 600 may include receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow (block 610) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • process 600 may include adjusting a communication configuration based at least in part the indication of the event (block 620) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
  • the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
  • receiving the indication of the event comprises receiving, in connection with the indication, information identifying a cause of the event.
  • the information identifying the cause of the event identifies at least one of an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, an inability to satisfy a maximum packet loss threshold, and/or the like.
  • receiving the indication of the event comprises receiving, in connection with the indication, an identifier associated with the event.
  • process 600 includes receiving an indication of the event from a BS, and communicating with the BS to adjust a communication configuration associated with the QoS data flow.
  • receiving the indication of the event from the BS comprises receiving the indication of the event from the BS which receives the indication of the event from core network including at least one of a session management function, an application function, or a policy control function of the core network.
  • process 600 includes receiving an indication of the communication configuration from the BS.
  • adjusting the communication configuration comprises adjusting at least one of a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
  • the QoS data flow relates to an ultra-reliable low-latency real time communication.
  • the QoS data flow relates to a real time streaming video communication.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may detect an event related to a quality of service (QoS) data flow associated with a user equipment (UE), the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow. The base station may transmit an indication of the event to the UE. Numerous other aspects are provided.

Description

QUALITY OF SERVICE EVENT INDICATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communications and to techniques and apparatuses for quality of service (QoS) event indication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a base station (BS) includes detecting an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmitting an indication of the event to the UE.
In some aspects, a method of wireless communication performed by a UE includes receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjusting a communication configuration based at least in part the indication of the event.
In some aspects, a base station for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to detect an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmit an indication of the event to the UE.
In some aspects, a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjust a communication configuration based at least in part the indication of the event.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to detect an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and transmit an indication of the event to the UE.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and adjust a communication configuration based at least in part the indication of the event.
In some aspects, an apparatus for wireless communication includes means for detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and means for transmitting an indication of the event to the UE.
In some aspects, an apparatus for wireless communication includes: means for receiving an indication of an event related to a QoS data flow associated with the apparatus, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and means for adjusting a communication configuration based at least in part the indication of the event.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of an environment including a UE, a base station, a core network with one or more core network devices, and a data network, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example associated with quality of service (QoS) event indication, in accordance with various aspects of the present disclosure.
Figs. 5-6 are diagrams illustrating example processes associated with QoS event indication, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined  with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area  and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a  given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The  transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with quality of service (QoS) event indication, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, base station 110 may include means for detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; means for transmitting an indication of the event to the UE; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, UE 120 may include means for receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; means  for adjusting a communication configuration based at least in part the indication of the event; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of an environment including a UE, a BS, a core network including one or more core network devices, and a data network, in accordance with various aspects of the present disclosure. As shown in Fig. 3, the example 300 includes a UE 305 in communication with a BS 310. The UE 305 and the BS 310 may be in communication with one another in a wireless network, which communication may include an uplink and a downlink. In support of the wireless network, the BS 310 may be in communication with one or more core network devices 315 of a core network, and the one or more core network devices 315 may be in communication with a data network 320 and/or one or more other devices or networks. Core network devices 315 may include one or more servers, gateways, switches, hubs, routers, and/or the like that provide, for example, an application function (AF) , a policy control function (PCF) , a session management function (SMF) , and/or the like for the core network.
BS 310 may establish a data flow, such as a communication bearer (e.g., a radio bearer) , with UE 305 to enable communication on the uplink, on the downlink, and/or the like. In some cases, the communication bearer may have endpoints at UE 305 and a core network device 315. For example, UE 305 may communicate, via a communication bearer, with a gateway device, which may be an example of a core network device 315, and the gateway device may further direct communication to one or more other devices or networks (e.g., to one or more other core network devices 315,  to data network 320, and/or the like) . As an example, when an application of UE 305 is generating streaming video data for transmission to an application server of the core network and/or of data network 320, BS 310 (in connection with one or more core network devices 315) may establish a communication bearer to enable end-to-end transmission of the streaming video from UE 120 to the application server.
A data flow may be associated with a quality of service (QoS) and may be termed a QoS data flow. The QoS may define a guarantee of a minimum level of service that BS 310, core network devices 315, and/or the like provide for data communicated using, for example, a communication bearer. Similarly, some types of communication services may be associated with a QoS. For example, for a UE 305 operating in an ultra-reliable low-latency communication (URLLC) mode, BS 310 and core network devices 315 may establish a QoS level that guarantees greater than a threshold reliability, less than a threshold latency, and/or the like. BS 310 and/or core network devices 315 may associate a data flow with a QoS when the data flow is established. Additionally, or alternatively, BS 310 and/or core network devices 315 may periodically change the QoS for the data flow, such as based at least in part on a change to network conditions, a change to a mode of UE 305, a change to a type of data that UE 305 is transmitting, and/or the like.
When BS 310 and/or core network devices 315 detect an event associated with a change to a QoS for a data flow, BS 310 and core network devices 315 may communicate to alter the QoS for the data flow. For example, during usage of a streaming video data flow by UE 305, BS 310 may detect that a level of network traffic prevents BS 310 from providing sufficient bandwidth to maintain a QoS that has been established for the data flow. In this case, the QoS may be a guaranteed flow bitrate (GFBR) of, for example, 10 megabits per second (Mbps) . As a result, BS 310 may communicate with core network devices 315 to reduce the QoS to a GFBR of, for example, 8 Mbps and reduce a bandwidth that is allocated to UE 305 for transmission using a data flow for which the QoS is established. In this way, BS 310 and core network devices 315 ensure that the data flow can continue for UE 305, thereby avoiding a complete interruption of communication between UE 305 and an endpoint for the data flow (e.g., an application server) .
However, UE 305 may lack visibility regarding the change to the QoS and the bandwidth. For example, UE 305 may encode the streaming video data for transmission at the original GFBR of 10 Mbps, but may only be granted bandwidth and associated  resources for the new GFBR of 8 Mbps. In this case, UE 305 may experience excessive queuing of data for transmission, may drop one or more data packets, and/or the like, which may result in interruptions to the streaming video data that UE 305 is providing. Similarly, for other QoS dependent use cases, UE 305 may be unable to transmit time-sensitive data, high-importance data, emergency communication data, and/or the like when a QoS for a data flow is downgraded without UE 305 being aware of the downgrade.
Some aspects described herein enable notification of a QoS data flow event to a UE (e.g., the UE 120) so that an application of the UE may adjust a communication parameter associated with the QoS data flow as a response to the event. For example, a BS (e.g., the BS 110) may monitor for an event that is to cause a change to a QoS and may communicate with one or more core network devices to change the QoS. In this case, the BS may also communicate with a UE (e.g., the UE 120) to notify the UE of the event and/or of the change to the QoS. Based at least in part on receiving a notification of the event and/or the change to the QoS, the UE may adjust one or more communication parameters. For example, with regard to the streaming video data example above, the UE (and/or an application thereof) may adjust, in real-time or near-real-time, a video encoding rate based at least in part on being granted an 8 Mbps GFBR in a new QoS rather than a 10 Mbps GFBR as was originally specified by the original QoS. In this way, the UE may avoid unnecessary communication interruptions, delayed data, dropped data packets, excessive queuing, and/or the like. Moreover, by providing an explicit notification of the event, the BS reduces an amount of time before the UE adapts to the new QoS relative to other techniques where the UE is to detect the new QoS based at least in part on detecting dropped data packets, excessive queueing, and/or the like.
Fig. 4 is a diagram illustrating an example 400 associated with QoS event indication, in accordance with various aspects of the present disclosure. As shown in Fig. 4, the example 400 includes a UE (e.g., the UE 120) in communication with a BS (e.g., the BS 110) . The UE 120 and the BS 110 may be in communication with one another in a wireless network (e.g., the wireless network 100) , which communication may include an uplink and a downlink. In support of the wireless network 100, the BS 110 may be in communication with one or more core network devices (e.g., the core network device (s) 315) .
As further shown in Fig. 4, and by reference number 410, UE 120 may communicate, in a particular data flow, using a first QoS. For example, BS 110 and core network devices 315 may establish a first QoS for a data flow that UE 120 is to use to, for example, transmit data on an uplink to BS 110, core network devices 315, one or more devices of a data network, and/or the like. Additionally, or alternatively, BS 110 and core network devices 315 may establish the first QoS for reception on a downlink, a combination of transmission on the uplink and reception on the downlink, and/or the like. In some aspects, an application of UE 120 may use the particular data flow for communication. For example, in a URLLC use case, a streaming video application of the UE may transmit streaming video, in real-time, to BS 110, via the particular data flow, and BS 110 may direct the streaming video to a core network device 315, an application server, another UE 120, and/or the like.
In some aspects, the particular data flow may be associated with a QoS data flow criterion associated with the QoS. For example, BS 110 and core network devices 315 may establish a GFBR for the QoS of, for example, 10 Mbps, 20 Mbps, 50 Mbps, and/or the like, on the uplink and/or downlink. In this case, if a bitrate between the UE 120 and the BS 110 falls below the GFBR, the QoS data flow criterion is not met. In some aspects, other QoS data flow criteria are possible, such as a packet loss rate threshold, a bit error rate threshold, a bandwidth threshold, signal to interference plus noise ratio (SINR) threshold, and/or the like.
As further shown in Fig. 4, and by reference number 420, BS 110 may monitor for, and may subsequently detect, an event that impacts the QoS data flow. For example, the event may indicate an inability of the communication between the UE 120 and BS 110 to satisfy the QoS data flow criterion. In some aspects, the BS 110 may detect the event by monitoring one or more parameters associated with the QoS data flow. For example, BS 110 may monitor one or more parameters to detect an interruption of a communication, such as between the UE 120 and the one or more core network devices 315 (and communication onward with devices of a data network, other UEs, and/or the like) , which may cause a bitrate between the UE 120 and the BS 110 to fall below the GFBR (e.g., falling below 10 Mbps to 8 Mbps) . Additionally, or alternatively, BS 110 may detect a threshold bit error rate, a threshold packet delay, a threshold quantity of dropped data packets, and/or the like. Additionally, or alternatively, BS 110 may determine that resources for supporting the QoS are not available (e.g., before detecting a drop to a bitrate) . For example, BS 110 may  determine that an amount of data that is to be transmitted to or by UEs in a cell exceeds a threshold, which may result in BS 110 being unable to allocate a threshold bandwidth to UE 120 in one or more upcoming communication periods. Additionally, or alternatively, BS 110 may receive an indication of the event. For example, UE 120 may monitor one or more communication parameters, such as a block error rate (BLER) , a SINR, a reference signal received power (RSRP) , and/or the like, and may notify BS 110 of the one or more communication parameters, which may cause BS 110 to determine that an event that impacts the QoS data flow has occurred. Additionally, or alternatively, a core network device 315 may monitor a communication parameter, determine that an event that impacts the QoS data flow has occurred, and may notify BS 110 of the event.
As shown by  reference numbers  430 and 440, based at least in part on detecting the event, BS 110 may notify the one or more core network devices 315 of the event. For example, as described above, BS 110 may notify an SMF, a PCF, and/or an AF of the event and the SMF, PCF, and/or AF may establish, modify, and/or release one or more data flows as a response to the event. In this case, the SMF may adjust a communication configuration, such as by altering the data flow of UE 120 from the first QoS to a second QoS. Further, the PCF may store a QoS rule associated with the second QoS, and associate the QoS rule with the data flow of UE 120. In other words, with regard to the example of the GFBR of 10 Mbps, the SMF may adjust the communication configuration to lower the GFBR to 8 Mbps, thereby accounting for, for example, a reduced bandwidth that can be allocated to UE 120. Additionally, or alternatively, the SMF, PCF, AF, and/or the like may adjust a bandwidth, a downlink bitrate, an uplink bitrate, and/or the like associated with the data flow of UE 120.
As further shown in Fig. 4, and by reference numbers 450 and 460, BS 110 may notify the UE 120 of the event and UE 120 may adjust a communication parameter. For example, BS 110 may notify the UE 120 of the event before, concurrent with, or after notifying the one or more core network devices 315 of the event. In some aspects, the BS 110 may notify the UE 120 of the event to permit the application of the UE 120 to adjust a communication parameter associated with the QoS data flow. For example, BS 110 may transmit a notification of the event to UE 120 to enable UE 120 and/or an application thereof to adjust the communication parameter to match the second QoS. In this case, UE 120 may adjust, for example, a video encoding rate, such that an amount of data that is generated by a streaming video application of UE 120 can be transmitted  using the 8 Mbps GFBR without causing excessive queueing, dropped data packets, and/or the like. Further to the example, BS 110 may notify UE 120 of the event, which may cause the bandwidth gap of 2 Mbps. UE 120 may pass the notification to an application of UE 120 (e.g., the streaming video application) and the application may adjust a communication parameter to change a bandwidth use, in real-time, to resolve the bandwidth gap. In this case, the application may lower the bandwidth use by 2.5 Mbps (e.g., lowering from 10 Mbps to 7.5 Mbps) . By lowering the bandwidth use by more than the bandwidth gap (e.g., 0.5 Mbps more than the bandwidth gap) , UE 120 and the application may provide a factor of safety when handling the event. In some aspects, the application may adjust the bandwidth by adjusting a video encoding bitrate associated with a video which the application is streaming in real-time. Although some aspects are described herein in terms of URLLC and streaming video, communication parameter adjustments based at least in part on QoS event notifications may be applicable to other communication scenarios, such as video calls, augment reality, and virtual reality.
In some aspects, BS 110 may transmit information to UE 120 that identifies a cause of the event. For example, BS 110 may transmit information indicating that BS 110 cannot allocate a threshold downlink bandwidth, a threshold uplink bandwidth, and/or the like. Additionally, or alternatively, BS 110 may transmit information indicating that an amount of interference, noise, communication density, and/or the like in a cell results in greater than a threshold packet loss rate, bit error rate, block error rate, and/or the like. In this way, BS 110 enables UE 120 to adapt communication parameters to network conditions, such as by enabling UE 120 to include additional redundancy bits in a communication or to increase repetitions of a communication to adapt to a threshold level of interference, noise, and/or the like.
In some aspects, BS 110 may transmit information to UE 120 that identifies an adjustment to a communication configuration as a response to the event. For example, BS 110 may transmit information identifying the second QoS and UE 120 may adjust one or more communication parameters in accordance with the second QoS. Additionally, or alternatively, UE 120 may infer the second QoS based at least in part on the information identifying the event, which may enable UE 120 to adjust the communication parameters without waiting for information explicitly identifying the second QoS. In other words, BS 110 may transmit a notification of the event before the second QoS is established, but UE 120 may predict the second QoS based at least in  part on information identifying the event. In some aspects, BS 110 may transmit information identifying a plurality of events. For example, BS 110 may transmit a notification with a plurality of identifiers of a plurality events (e.g., a plurality of events relating to a plurality of data flows, a plurality of events relating to a single data flow, and/or the like) . In this case, UE 120 may adjust one or more communication parameters based at least in part on the plurality of events, based at least in part on an event with a largest impact to QoS, and/or the like.
As further shown in Fig. 4, and by reference number 470, UE 120 may communicate in a data flow with the second QoS. For example, after the one or more core network devices 315 adjust the communication configuration and UE 120 adjusts the communication parameter, UE 120 may, for example, transmit streaming video in a data flow that is provided the second QoS. As a result, UE 120 may avoid communication interruptions from excessive queueing, dropped data packets, and/or the like, thereby improving communication relative to other techniques where the UE responds to events in worse-than-real-time by detecting the events as a result of detecting excessive queuing, dropped data packets, and/or the like.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 500 is an example where the BS (e.g., BS 110) performs operations associated with quality of service event indication (e.g., the UE 120) .
As shown in Fig. 5, in some aspects, process 500 may include detecting an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow (block 510) . For example, the BS (e.g., antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, and/or scheduler 246) may detect an event related to a QoS data flow associated with a UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting an indication of the event to the UE (block 520) . For example, the BS (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna  234, controller/processor 240, memory 242, and/or scheduler 246) may transmit an indication of the event to the UE, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
In a second aspect, alone or in combination with the first aspect, the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
In a third aspect, alone or in combination with one or more of the first and second aspects, transmitting the indication of the event comprises transmitting, in connection with the indication, information identifying a cause of the event.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the information identifying the cause of the event identifies at least one of an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, an inability to satisfy a maximum packet loss threshold, and/or the like.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, transmitting the indication of the event comprises transmitting, in connection with the indication, an identifier associated with the event.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 500 includes transmitting an indication of the event to a core network, and communicating with the core network to adjust a communication configuration associated with the QoS data flow.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, transmitting the indication of the event to the core network comprises transmitting the indication of the event to at least one of a session management function, an application function, or a policy control function of the core network.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 500 includes transmitting an indication of the communication configuration to the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, adjusting the communication configuration comprises adjusting at least one of a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the QoS data flow relates to an ultra-reliable low-latency real time communication.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the QoS data flow relates to a real time streaming video communication.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., the UE 120) performs operations associated with quality of service event indication to the UE.
As shown in Fig. 6, in some aspects, process 600 may include receiving an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow (block 610) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive an indication of an event related to a QoS data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include adjusting a communication configuration based at least in part the indication of the event (block 620) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may adjust a communication configuration based at least in part the indication of the event, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
In a second aspect, alone or in combination with the first aspect, the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
In a third aspect, alone or in combination with one or more of the first and second aspects, receiving the indication of the event comprises receiving, in connection with the indication, information identifying a cause of the event.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the information identifying the cause of the event identifies at least one of an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, an inability to satisfy a maximum packet loss threshold, and/or the like.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, receiving the indication of the event comprises receiving, in connection with the indication, an identifier associated with the event.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 600 includes receiving an indication of the event from a BS, and communicating with the BS to adjust a communication configuration associated with the QoS data flow.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, receiving the indication of the event from the BS comprises receiving the indication of the event from the BS which receives the indication of the event from core network including at least one of a session management function, an application function, or a policy control function of the core network.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 600 includes receiving an indication of the communication configuration from the BS.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, adjusting the communication configuration comprises adjusting at least  one of a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the QoS data flow relates to an ultra-reliable low-latency real time communication.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the QoS data flow relates to a real time streaming video communication.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways  not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A method of wireless communication performed by a base station, comprising:
    detecting an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    transmitting an indication of the event to the UE.
  2. The method of claim 1, wherein the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
  3. The method of claim 1, wherein the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
  4. The method of claim 1, wherein transmitting the indication of the event comprises:
    transmitting, in connection with the indication, information identifying a cause of the event.
  5. The method of claim 4, wherein the information identifying the cause of the event identifies at least one of: an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, or an inability to satisfy a maximum packet loss threshold.
  6. The method of claim 1, wherein transmitting the indication of the event comprises:
    transmitting, in connection with the indication, an identifier associated with the event.
  7. The method of claim 1, further comprising:
    transmitting an indication of the event to a core network; and
    communicating with the core network to adjust a communication configuration associated with the QoS data flow.
  8. The method of claim 7, wherein transmitting the indication of the event to the core network comprises:
    transmitting the indication of the event to at least one of: a session management function, an application function, or a policy control function of the core network.
  9. The method of claim 7, further comprising:
    transmitting an indication of the communication configuration to the UE.
  10. The method of claim 7, wherein adjusting the communication configuration comprises:
    adjusting at least one of: a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
  11. The method of claim 1, wherein the QoS data flow relates to an ultra-reliable low-latency real time communication.
  12. The method of claim 1, wherein the QoS data flow relates to a real time streaming video communication.
  13. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving an indication of an event related to a quality of service (QoS) data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    adjusting a communication configuration based at least in part the indication of the event.
  14. The method of claim 13, wherein the indication of the event enables an application associated with the UE to adjust a communication parameter associated with the QoS data flow.
  15. The method of claim 13, wherein the indication of the event enables an ultra-reliable low-latency communication application associated with the UE to adjust a bitrate.
  16. The method of claim 13, wherein receiving the indication of the event comprises:
    receiving, in connection with the indication, information identifying a cause of the event.
  17. The method of claim 16, wherein the information identifying the cause of the event identifies at least one of: an inability to satisfy a downlink bandwidth threshold, an inability to satisfy an uplink bandwidth threshold, or an inability to satisfy a maximum packet loss threshold.
  18. The method of claim 13, wherein receiving the indication of the event comprises:
    receiving, in connection with the indication, an identifier associated with the event.
  19. The method of claim 13, further comprising:
    receiving an indication of the event from a base station; and
    communicating with the base station to adjust a communication configuration associated with the QoS data flow.
  20. The method of claim 19, wherein receiving the indication of the event from the base station comprises:
    receiving the indication of the event from the base station which receives the indication of the event from core network including at least one of: a session management function, an application function, or a policy control function of the core network.
  21. The method of claim 19, further comprising:
    receiving an indication of the communication configuration from the base station.
  22. The method of claim 19, wherein adjusting the communication configuration comprises:
    adjusting at least one of: a bandwidth, a downlink bitrate, or an uplink bitrate associated with the QoS data flow.
  23. The method of claim 13, wherein the QoS data flow relates to an ultra-reliable low-latency real time communication.
  24. The method of claim 13, wherein the QoS data flow relates to a real time streaming video communication.
  25. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    detect an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    transmit an indication of the event to the UE.
  26. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive an indication of an event related to a quality of service (QoS) data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    adjust a communication configuration based at least in part the indication of the event.
  27. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    detect an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    transmit an indication of the event to the UE.
  28. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    receive an indication of an event related to a quality of service (QoS) data flow associated with the UE, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    adjust a communication configuration based at least in part the indication of the event.
  29. An apparatus for wireless communication, comprising:
    means for detecting an event related to a quality of service (QoS) data flow associated with a user equipment (UE) , the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    means for transmitting an indication of the event to the UE.
  30. An apparatus for wireless communication, comprising:
    means for receiving an indication of an event related to a quality of service (QoS) data flow associated with the apparatus, the event indicating an inability to satisfy a QoS data flow criterion associated with the QoS data flow; and
    means for adjusting a communication configuration based at least in part the indication of the event.
PCT/CN2020/108354 2020-08-11 2020-08-11 Quality of service event indication WO2022032467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108354 WO2022032467A1 (en) 2020-08-11 2020-08-11 Quality of service event indication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108354 WO2022032467A1 (en) 2020-08-11 2020-08-11 Quality of service event indication

Publications (1)

Publication Number Publication Date
WO2022032467A1 true WO2022032467A1 (en) 2022-02-17

Family

ID=80247538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108354 WO2022032467A1 (en) 2020-08-11 2020-08-11 Quality of service event indication

Country Status (1)

Country Link
WO (1) WO2022032467A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324628A1 (en) * 2001-12-13 2003-07-02 Sony International (Europe) GmbH Adaptive quality-of-service reservation and pre-allocation for mobile systems
EP1892882A1 (en) * 2006-08-25 2008-02-27 Alcatel Lucent Method of providing QoS for a flow
US20170324652A1 (en) * 2016-05-09 2017-11-09 Qualcomm Incorporated In-flow packet prioritization and data-dependent flexible qos policy
EP3582544A1 (en) * 2017-05-05 2019-12-18 Huawei Technologies Co., Ltd. Communication method, base station, and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324628A1 (en) * 2001-12-13 2003-07-02 Sony International (Europe) GmbH Adaptive quality-of-service reservation and pre-allocation for mobile systems
EP1892882A1 (en) * 2006-08-25 2008-02-27 Alcatel Lucent Method of providing QoS for a flow
US20170324652A1 (en) * 2016-05-09 2017-11-09 Qualcomm Incorporated In-flow packet prioritization and data-dependent flexible qos policy
EP3582544A1 (en) * 2017-05-05 2019-12-18 Huawei Technologies Co., Ltd. Communication method, base station, and terminal device

Similar Documents

Publication Publication Date Title
US11050536B2 (en) Default channel state information reference signal (CSI-RS) quasi-colocation (QCL)
US11477811B2 (en) Granularity and adjustment accuracy in an integrated access backhaul network
WO2019195771A1 (en) Radio link management under bandwidth part switching
US11470516B2 (en) Multi transmit/receive point make before break handover
WO2021163717A1 (en) Channel state information (csi) processing unit procedures for csi report pre-emption
EP4049382A1 (en) Techniques for channel state information processing unit occupancy determination for layer 1 signal to interference plus noise ratio reporting
WO2020232291A1 (en) Capability-based bandwidth part switching
WO2022036490A1 (en) Modifying a quality of service flow packet delay budget
EP4111759A1 (en) Determining an applicable time for a pathloss reference signal
EP3785386B1 (en) Non-orthogonal multiple access (noma)-based channel quality indicator (cqi) reporting
WO2023014481A1 (en) Inter-cell downlink (dl) interference measurement
WO2022036664A1 (en) Delay sensitive uplink transmissions
WO2022032467A1 (en) Quality of service event indication
WO2021003660A1 (en) Data transfer for integrated access and backhaul system using full-duplex
US11425766B2 (en) Determining a link association for a device
WO2023082210A1 (en) Physical uplink shared channel (pusch) repetitions after idle period in frame-based equipment (fbe)
US11646851B2 (en) Channel state information reporting prioritization
US11197203B2 (en) Adaptive control exclusion configuration
WO2022027544A1 (en) Sounding reference signal (srs) antenna switching for multiple transceiver user equipment (ue)
WO2022000224A1 (en) Backhaul aware bandwidth management
WO2021138880A1 (en) Mixed mode broadcast/multicast communication
EP3991335A1 (en) Feedback message control
WO2022076732A1 (en) Physical uplink control channel (pucch) repetition across multiple component carriers

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948966

Country of ref document: EP

Kind code of ref document: A1