WO2022036490A1 - Modifying a quality of service flow packet delay budget - Google Patents

Modifying a quality of service flow packet delay budget Download PDF

Info

Publication number
WO2022036490A1
WO2022036490A1 PCT/CN2020/109466 CN2020109466W WO2022036490A1 WO 2022036490 A1 WO2022036490 A1 WO 2022036490A1 CN 2020109466 W CN2020109466 W CN 2020109466W WO 2022036490 A1 WO2022036490 A1 WO 2022036490A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet delay
delay budget
budget value
mobile station
base station
Prior art date
Application number
PCT/CN2020/109466
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/109466 priority Critical patent/WO2022036490A1/en
Publication of WO2022036490A1 publication Critical patent/WO2022036490A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for modifying a quality of service flow packet delay budget.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a mobile station includes: receiving, by the mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and transmitting, by the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • QoS quality of service
  • a method of wireless communication performed by a base station includes: transmitting, by the base station and to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receiving, by the base station and from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • a mobile station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive an indication of a packet delay budget value associated with a QoS flow; and transmit a request to modify the packet delay budget value to a different packet delay budget value.
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a mobile station, cause the mobile station to: receive an indication of a packet delay budget value associated with a QoS flow; and transmit a request to modify the packet delay budget value to a different packet delay budget value.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • an apparatus for wireless communication includes: means for receiving an indication of a packet delay budget value associated with a QoS flow; and means for transmitting a request to modify the packet delay budget value to a different packet delay budget value.
  • an apparatus for wireless communication includes: means for transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and means for receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 illustrates an example of a 5G network architecture, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure.
  • Figs. 5-6 are diagrams illustrating example processes associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure.
  • FIGs. 7-8 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with modifying a QoS flow packet delay budget, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a mobile station may include means for receiving an indication of a packet delay budget value associated with a QoS flow, means for transmitting a request to modify the packet delay budget value to a different packet delay budget value, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow, means for receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 illustrates an example 300 of a 5G network architecture, in accordance with various aspects of the present disclosure.
  • the 5G network architecture may include a next generation radio access network (NG-RAN) , which may include one or more base stations, such as base station 110, that communicate with a UE, such as UE 120 or a mobile station, over a Uu interface.
  • NG-RAN next generation radio access network
  • the Uu interface is a radio interface between the UE and the NG-RAN.
  • the 5G network architecture may include a 5G core network (5GC) that provides communications between the NG-RAN and the outside world, including devices that may act as servers for the 5GC, such as mobile network operator servers, cloud servers, third-party servers, servers of companies that may provide data and services to the UE through applications on the UE, and/or the like.
  • 5GC 5G core network
  • the 5GC may include a unified data management (UDM) entity that makes relevant data available to an access and mobility management function (AMF) entity and a session management function (SMF) entity.
  • the AMF entity manages UE network registration, manages mobility, maintains a non-access stratum (NAS) signaling connection with the UE, and manages a registration procedure of the UE with a network.
  • the SMF entity manages sessions and allocates internet protocol (IP) addresses to the UE.
  • the 5GC includes a user plane function (UPF) entity that manages user traffic to and from the UE through the NG-RAN and enforces a quality of service (QoS) .
  • UPF user plane function
  • the 5GC includes a policy and control function (PCF) entity that implements charging rules, implements flow control rules, manages traffic priority, and manages a QoS for user subscription services.
  • PCF policy and control function
  • the 5GC may include a unified data repository (UDR) entity that stores structured data for exposure to network functions and a network exposure function (NEF) entity that securely exposes services and capabilities provided by 3GPP network functions.
  • UDR unified data repository
  • NEF network exposure function
  • the 5GC also includes an application function (AF) entity that supports application functionality, influences traffic routing, and interacts with the PCF entity.
  • AF application function
  • 4G Long Term Evolution uses evolved packet system (EPS) bearers, each assigned an EPS bearer identifier (ID)
  • 5G uses QoS flows, each identified by a QoS flow ID (QFI) .
  • the QoS flow is where policy and charging are enforced. All traffic within the same QoS flow may receive the same treatment.
  • EPS evolved packet system
  • QFI QoS flow ID
  • the QoS flow is where policy and charging are enforced. All traffic within the same QoS flow may receive the same treatment.
  • GPRS general packet radio service
  • GTP general packet radio service
  • the gNB may map individual QoS flows to one more dedicated radio bearers (DRBs) .
  • DRBs dedicated radio bearers
  • a protocol data unit (PDU) session may contain multiple QoS flows and several DRBs, but only a single N3 GTP-U tunnel.
  • a DRB may transport one or more QoS flows. These entities permit user data traffic or other types of information to be transmitted on a user plane.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a QoS flow may include one or more QoS parameters, such as a priority level, a packet delay budget, a permitted packet error rate, and/or the like.
  • the one or more QoS parameters may be based at least in part on a traffic type associated with an application. For example, the one or more QoS parameters may be associated with particular values if the application traffic is voice traffic, may be associated with other particular values if the application traffic is video traffic, and/or the like.
  • the packet delay budget may define an upper bound for an amount of time that a packet may be delayed between a UE and a UPF of a 5GC.
  • the QoS parameters including the packet delay budget, may be determined by the 5GC and communicated to an NG-RAN (e.g., a base station) to coordinate the scheduling of radio resources by the NG-RAN for traffic associated with a particular QoS flow.
  • the 5GC may require a relatively low packet delay value (e.g., compared to a value of the packet delay budget for a QoS flow) .
  • the 5GC may determine (e.g., estimate) a value for the packet delay budget to enable the NG-RAN to schedule radio resources for traffic associated with the QoS flow.
  • traffic for a UE may be associated with strict latency requirements.
  • the UE, or an application of the UE may be associated with an ultra-reliable low latency communication (URLLC) service.
  • URLLC ultra-reliable low latency communication
  • the 5GC and/or the NG-RAN may be unaware of, or may have a limited knowledge of, the latency requirements of the UE (or the application of the UE) . Therefore, the packet delay budget of the QoS flow for traffic associated with the UE having strict latency requirements may be determined by the 5GC without a complete understanding of the strict latency requirements.
  • packets addressed for the UE associated with the QoS flow may be delayed by the 5GC and/or the NG-RAN, in accordance with the packet delay budget, such that the packets do not satisfy the latency requirement of the UE.
  • Those packets may be counted as lost by the UE, thereby degrading network performance and wasting network resources associated with transmitting (and/or re-transmitting) the lost packets.
  • Some techniques and apparatuses described herein enable a UE to modify a QoS flow packet delay budget.
  • the UE may be enabled to participate in a negotiation procedure associated with the QoS flow packet delay budget value.
  • the 5GC and/or the NG-RAN may communicate one or more QoS parameters (including the packet delay budget) for a QoS flow to the UE.
  • the UE may determine that the value of the packet delay budget for the QoS flow should be changed (e.g., based at least in part on a latency requirement of the UE) .
  • the UE may determine a different value for the packet delay budget (e.g., based at least in part on the latency requirement of the UE) .
  • the UE may transmit a request, to the 5GC and/or the NG-RAN, to modify the value of the packet delay budget to the different value. If the 5GC and/or the NG-RAN determine to accept the request to modify the value of the packet delay budget to the different value, the 5GC and/or the NG-RAN will schedule radio resources for traffic associated with the QoS flow using the different value of the packet delay budget. This enables the UE to participate in the determination of the packet delay budget and have control of a QoS flow latency. As a result, packets addressed for the UE associated with the QoS flow will not be delayed (e.g., based at least in part on the packet delay budget) longer than the latency requirement for the UE. This improves network performance and conserves network resources that would have otherwise been used transmitting (and/or re-transmitting) packets that would be counted as lost by the UE based at least in part on the latency requirements of the UE.
  • Fig. 4 is a diagram illustrating an example 400 associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure.
  • example 400 includes communication between a base station 110 and a UE 120.
  • the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may be associated with an NG-RAN.
  • the base station 110 may be associated with a 5GC (e.g., the base station 110 may be a core network device) .
  • the base station 110 may be associated with an AMF entity of the 5GC.
  • the UE 120 may be referred to herein as a mobile station.
  • the base station 110 may transmit, and the UE 120 may receive, an indication of a packet delay budget value for a QoS flow.
  • the base station 110 e.g., the 5GC and/or the NG-RAN
  • the base station 110 may identify the QoS flow in the indication using a QFI.
  • the base station 110 may transmit the indication of the packet delay budget value for the QoS flow using an N1 interface (e.g., the 5GC may transmit the indication directly to the UE 120) .
  • the base station 110 may transmit the indication of the packet delay budget value for the QoS flow using a Uu interface (e.g., the NG-RAN may transmit the indication to the UE 120 after receiving the QoS flow parameters from the 5GC) .
  • a Uu interface e.g., the NG-RAN may transmit the indication to the UE 120 after receiving the QoS flow parameters from the 5GC
  • the QoS flow may be a guaranteed bit rate (GBR) QoS flow associated with delay-critical traffic (e.g., URLLC traffic) .
  • the base station 110 may transmit the indication of the packet delay budget value for the QoS flow after determining the packet delay budget value for the QoS flow (e.g., after creating the QoS flow in a PDU session) .
  • GRR guaranteed bit rate
  • the UE 120 may determine that the packet delay budget value does not satisfy a latency requirement associated with the UE 120 (or a latency requirement associated with an application of the UE 120) .
  • the UE 120 may be a URLLC UE 120, or an application of the UE 120 may be associated with a URLLC service.
  • the UE 120 may determine that if a packet associated with the QoS flow is delayed in accordance with the packet delay budget, that the delay may cause the packet to not satisfy the latency requirement (e.g., and be counted as lost by the UE 120) .
  • the base station 110 may indicate that the packet delay budget value is 200 milliseconds.
  • the UE 120 may determine that if a packet is delayed by the base station 110 (e.g., by the 5GC and/or by the NG-RAN) for 200 milliseconds, then the packet will not satisfy the latency requirements of the UE 120. As a result, the UE 120 may determine that the packet delay budget value for the QoS flow should be changed.
  • the base station 110 e.g., by the 5GC and/or by the NG-RAN
  • the UE 120 may determine a different packet delay budget value for the QoS flow based at least in part on the latency requirement associated with the UE 120. For example, the UE 120 may determine a permissible amount of time that a packet can be delayed (e.g., by the 5GC and/or the NG-RAN) and still satisfy the latency requirements of the UE 120. In some aspects, the UE 120 may determine a maximum amount of time that a packet can be delayed (e.g., by the 5GC and/or the NG-RAN) and still satisfy the latency requirements of the UE 120.
  • the base station 110 may indicate the packet delay budget value is 200 milliseconds, as described in the example above. The UE 120 may determine that the packet delay budget value should be 50 milliseconds, to satisfy the latency requirements of the UE 120 (or the latency requirements of an application of the UE 120) .
  • the UE 120 may transmit, and the base station 110 may receive, a request to modify the packet delay budget value of the QoS flow to the different packet delay budget value.
  • the UE 120 may transmit the request to modify the packet delay budget value of the QoS flow to the different packet delay budget value using an N1 interface (e.g., the UE 120 may transmit the request directly to the 5GC) .
  • the UE 120 may transmit the request to modify the packet delay budget value of the QoS flow to the different packet delay budget value using a Uu interface (e.g., the UE 120 may transmit the request to the NG-RAN) .
  • the base station 110 may forward (e.g., transmit) the request to modify the packet delay budget value of the QoS flow to the different packet delay budget to the 5GC (e.g., using an N2 interface and/or the like) .
  • the base station 110 may determine whether to accept the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow based at least in part on scheduling requirements of an access network (e.g., the NG-RAN) .
  • the 5GC may determine whether to accept the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow based at least in part on scheduling requirements of the NG-RAN. For example, the NG-RAN may not be able to support scheduling radio resources using the different value for the packet delay budget for the QoS flow.
  • the base station 110 may modify the packet delay budget value in the QoS parameters associated with the QoS flow. For example, the 5GC may modify or update the packet delay budget value to the different value in a QoS profile associated with the QoS flow.
  • the 5GC may transmit, to the NG-RAN, an indication of the modified QoS profile that indicates the different value for the packet delay budget.
  • the base station 110 may transmit, and the UE 120 may receive, an indication of whether the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is accepted. For example, if the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is accepted, the base station 110 may transmit, to the UE 120, an indication of the modified QoS profile that indicates the different value for the packet delay budget. If the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is rejected, the base station 110 may not transmit any indications to the UE 120 or may transmit an indication to the UE 120 that the request is rejected.
  • the base station 110 may transmit, and the UE 120 may receive, scheduling information for traffic associated with the QoS flow.
  • the NG-RAN may schedule radio resources for traffic associated with the QoS flow.
  • the base station 110 may schedule the radio resources using the different packet delay budget value (e.g., the scheduling information transmitted to the UE 120 is based at least in part on the different packet delay budget value) .
  • the base station 110 e.g., the NG-RAN
  • the base station 110 may schedule the radio resources using the original packet delay budget value (e.g., that was indicated by the base station 110 as described above with respect to reference number 405) .
  • the UE 120 may participate in the determination of the packet delay budget value and have control of the QoS flow latency.
  • packets addressed for the UE 120 associated with the QoS flow will not be delayed (e.g., based at least in part on the packet delay budget value) longer than the latency requirement for the UE 120.
  • This improves network performance and conserves network resources that would have otherwise been used transmitting (and/or re-transmitting) packets that would be counted as lost by the UE 120 based at least in part on the latency requirements of the UE 120.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a mobile station, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the mobile station (e.g., UE 120) performs operations associated with modifying a QoS flow packet delay budget.
  • process 500 may include receiving an indication of a packet delay budget value associated with a QoS flow (block 510) .
  • the mobile station e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • process 500 may include transmitting a request to modify the packet delay budget value to a different packet delay budget value (block 520) .
  • the mobile station e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 500 includes receiving, by the mobile station, scheduling information for radio resources associated with the QoS flow, wherein the scheduling information is based at least in part on the different packet delay budget value.
  • process 500 includes determining, by the mobile station, that the packet delay budget value does not satisfy a latency requirement associated with the mobile station, and determining, by the mobile station, the different packet delay budget value based at least in part on the latency requirement associated with the mobile station.
  • process 500 includes receiving, by the mobile station, an indication that the packet delay budget value has been modified to the different packet delay budget value.
  • the QoS flow is a guaranteed bit rate QoS flow.
  • receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow comprises receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow from a core network.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the base station (e.g., base station 110) performs operations associated with modifying a QoS flow packet delay budget.
  • process 600 may include transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow (block 610) .
  • the base station e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow, as described above.
  • process 600 may include receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value (block 620) .
  • the base station e.g., using antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or memory 242
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 600 includes determining, by the base station, to accept or reject the different packet delay budget value based at least in part on scheduling requirements of an access network.
  • process 600 includes modifying, by the base station, the packet delay budget value of the QoS flow to the different packet delay budget value based at least in part on a determination to accept the different packet delay budget value.
  • process 600 includes transmitting, by the base station and to the mobile station, an indication that the packet delay budget value for the QoS flow has been modified to the different packet delay budget value.
  • process 600 includes determining, by the base station, scheduling information for radio resources associated with the QoS flow using the different packet delay budget value, and transmitting, by the base station and to the mobile station, the scheduling information for radio resources associated with the QoS flow.
  • the different packet delay budget value is based at least in part on a latency requirement associated with the mobile station.
  • the QoS flow is a guaranteed bit rate QoS flow.
  • the base station is associated with a core network.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a block diagram of an example apparatus 700 for wireless communication.
  • the apparatus 700 may be a mobile station, or a mobile station may include the apparatus 700.
  • the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704.
  • the apparatus 700 may include one or more of a determination component 708, among other examples.
  • the apparatus 700 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5, or a combination thereof.
  • the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the mobile station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706.
  • the reception component 702 may provide received communications to one or more other components of the apparatus 700.
  • the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706.
  • the reception component 702 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the mobile station (e.g., UE 120) described above in connection with Fig. 2.
  • the transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706.
  • one or more other components of the apparatus 706 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706.
  • the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706.
  • the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the mobile station described above in connection with Fig. 2. In some aspects, the transmission component 704 may be collocated with the reception component 702 in a transceiver.
  • the reception component 702 may receive an indication of a packet delay budget value associated with a QoS flow.
  • the transmission component 704 may transmit a request to modify the packet delay budget value to a different packet delay budget value.
  • the determination component 708 may determine that the packet delay budget value does not satisfy a latency requirement associated with the mobile station.
  • the determination component 708 may determine the different packet delay budget value based at least in part on the latency requirement associated with the mobile station.
  • the determination component 708 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the mobile station (e.g., UE 120) described above in connection with Fig. 2.
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
  • Fig. 8 is a block diagram of an example apparatus 800 for wireless communication.
  • the apparatus 800 may be a base station, or a base station may include the apparatus 800.
  • the apparatus 800 includes a reception component 802 and a transmission component 804, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 800 may communicate with another apparatus 806 (such as a UE, a base station, or another wireless communication device) using the reception component 802 and the transmission component 804.
  • the apparatus 800 may include one or more of a determination component 808, a modification component 810, among other examples.
  • the apparatus 800 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally or alternatively, the apparatus 800 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6, or a combination thereof.
  • the apparatus 800 and/or one or more components shown in Fig. 8 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 8 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 802 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 806.
  • the reception component 802 may provide received communications to one or more other components of the apparatus 800.
  • the reception component 802 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 806.
  • the reception component 802 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 804 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 806.
  • one or more other components of the apparatus 806 may generate communications and may provide the generated communications to the transmission component 804 for transmission to the apparatus 806.
  • the transmission component 804 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 806.
  • the transmission component 804 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 804 may be collocated with the reception component 802 in a transceiver.
  • the transmission component 804 may transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow.
  • the reception component 802 may receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  • the determination component 808 may determine to accept or reject the different packet delay budget value based at least in part on scheduling requirements of an access network.
  • the determination component 808 may include one or more of a receive processor, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the modification component 810 may modify the packet delay budget value of the QoS flow to the different packet delay budget value based at least in part on a determination to accept the different packet delay budget value.
  • the modification component 810 may include one or more of a receive processor, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • Fig. 8 The number and arrangement of components shown in Fig. 8 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 8. Furthermore, two or more components shown in Fig. 8 may be implemented within a single component, or a single component shown in Fig. 8 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 8 may perform one or more functions described as being performed by another set of components shown in Fig. 8.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a mobile station may receive an indication of a packet delay budget value associated with a quality of service flow. The mobile station may transmit a request to modify the packet delay budget value to a different packet delay budget value. Numerous other aspects are provided.

Description

MODIFYING A QUALITY OF SERVICE FLOW PACKET DELAY BUDGET
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for modifying a quality of service flow packet delay budget.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a mobile station includes: receiving, by the mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and transmitting, by the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, a method of wireless communication performed by a base station includes: transmitting, by the base station and to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receiving, by the base station and from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, a mobile station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive an indication of a packet delay budget value associated with a QoS flow; and transmit a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a mobile station, cause the mobile station to: receive an indication of a packet delay budget value associated with a QoS flow; and transmit a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, an apparatus for wireless communication includes: means for receiving an indication of a packet delay budget value associated with a QoS flow; and means for transmitting a request to modify the packet delay budget value to a different packet delay budget value.
In some aspects, an apparatus for wireless communication includes: means for transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow; and means for receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 illustrates an example of a 5G network architecture, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure.
Figs. 5-6 are diagrams illustrating example processes associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure.
Figs. 7-8 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in  the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large  geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with  the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a  frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The  transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-6.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with modifying a QoS flow packet delay budget, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, a mobile station (e.g., a UE 120) may include means for receiving an indication of a packet delay budget value associated with a QoS flow, means for transmitting a request to modify the packet delay budget value to a different packet delay budget value, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow, means for receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value, and/or the like. In some aspects,  such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 illustrates an example 300 of a 5G network architecture, in accordance with various aspects of the present disclosure. The 5G network architecture may include a next generation radio access network (NG-RAN) , which may include one or more base stations, such as base station 110, that communicate with a UE, such as UE 120 or a mobile station, over a Uu interface. The Uu interface is a radio interface between the UE and the NG-RAN. The 5G network architecture may include a 5G core network (5GC) that provides communications between the NG-RAN and the outside world, including devices that may act as servers for the 5GC, such as mobile network operator servers, cloud servers, third-party servers, servers of companies that may provide data and services to the UE through applications on the UE, and/or the like.
The 5GC may include a unified data management (UDM) entity that makes relevant data available to an access and mobility management function (AMF) entity and a session management function (SMF) entity. The AMF entity manages UE network registration, manages mobility, maintains a non-access stratum (NAS) signaling connection with the UE, and manages a registration procedure of the UE with a network. The SMF entity manages sessions and allocates internet protocol (IP) addresses to the UE. The 5GC includes a user plane function (UPF) entity that manages user traffic to and from the UE through the NG-RAN and enforces a quality of service (QoS) . The 5GC includes a policy and control function (PCF) entity that implements charging rules, implements flow control rules, manages traffic priority, and manages a QoS for user subscription services. The 5GC may include a unified data repository (UDR) entity that stores structured data for exposure to network functions and a  network exposure function (NEF) entity that securely exposes services and capabilities provided by 3GPP network functions. The 5GC also includes an application function (AF) entity that supports application functionality, influences traffic routing, and interacts with the PCF entity.
While 4G Long Term Evolution (LTE) uses evolved packet system (EPS) bearers, each assigned an EPS bearer identifier (ID) , 5G uses QoS flows, each identified by a QoS flow ID (QFI) . The QoS flow is where policy and charging are enforced. All traffic within the same QoS flow may receive the same treatment. In the 5GC, there is a single user plane network function –the UPF –for transport of data between a base station (e.g., gNB) and the 5GC. Each QoS flow on an N3 interface may be mapped to a single general packet radio service (GPRS) tunneling protocol (GTP) tunnel for the user plane (GTP-U) . The gNB may map individual QoS flows to one more dedicated radio bearers (DRBs) . A protocol data unit (PDU) session may contain multiple QoS flows and several DRBs, but only a single N3 GTP-U tunnel. A DRB may transport one or more QoS flows. These entities permit user data traffic or other types of information to be transmitted on a user plane.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
In some cases, a QoS flow may include one or more QoS parameters, such as a priority level, a packet delay budget, a permitted packet error rate, and/or the like. The one or more QoS parameters may be based at least in part on a traffic type associated with an application. For example, the one or more QoS parameters may be associated with particular values if the application traffic is voice traffic, may be associated with other particular values if the application traffic is video traffic, and/or the like.
The packet delay budget may define an upper bound for an amount of time that a packet may be delayed between a UE and a UPF of a 5GC. The QoS parameters, including the packet delay budget, may be determined by the 5GC and communicated to an NG-RAN (e.g., a base station) to coordinate the scheduling of radio resources by the NG-RAN for traffic associated with a particular QoS flow. In some cases, the 5GC may require a relatively low packet delay value (e.g., compared to a value of the packet delay budget for a QoS flow) . The 5GC may determine (e.g., estimate) a value for the packet delay budget to enable the NG-RAN to schedule radio resources for traffic associated with the QoS flow.
In some cases, traffic for a UE may be associated with strict latency requirements. For example, the UE, or an application of the UE, may be associated with an ultra-reliable low latency communication (URLLC) service. As a result, traffic associated with the URLLC service is subject to strict latency requirements. However, the 5GC and/or the NG-RAN may be unaware of, or may have a limited knowledge of, the latency requirements of the UE (or the application of the UE) . Therefore, the packet delay budget of the QoS flow for traffic associated with the UE having strict latency requirements may be determined by the 5GC without a complete understanding of the strict latency requirements. As a result, packets addressed for the UE associated with the QoS flow (e.g., for traffic that is associated with the strict latency requirements, such as URLLC traffic) may be delayed by the 5GC and/or the NG-RAN, in accordance with the packet delay budget, such that the packets do not satisfy the latency requirement of the UE. Those packets may be counted as lost by the UE, thereby degrading network performance and wasting network resources associated with transmitting (and/or re-transmitting) the lost packets.
Some techniques and apparatuses described herein enable a UE to modify a QoS flow packet delay budget. For example, the UE may be enabled to participate in a negotiation procedure associated with the QoS flow packet delay budget value. The 5GC and/or the NG-RAN may communicate one or more QoS parameters (including the packet delay budget) for a QoS flow to the UE. The UE may determine that the value of the packet delay budget for the QoS flow should be changed (e.g., based at least in part on a latency requirement of the UE) . The UE may determine a different value for the packet delay budget (e.g., based at least in part on the latency requirement of the UE) . The UE may transmit a request, to the 5GC and/or the NG-RAN, to modify the value of the packet delay budget to the different value. If the 5GC and/or the NG-RAN determine to accept the request to modify the value of the packet delay budget to the different value, the 5GC and/or the NG-RAN will schedule radio resources for traffic associated with the QoS flow using the different value of the packet delay budget. This enables the UE to participate in the determination of the packet delay budget and have control of a QoS flow latency. As a result, packets addressed for the UE associated with the QoS flow will not be delayed (e.g., based at least in part on the packet delay budget) longer than the latency requirement for the UE. This improves network performance and conserves network resources that would have otherwise been  used transmitting (and/or re-transmitting) packets that would be counted as lost by the UE based at least in part on the latency requirements of the UE.
Fig. 4 is a diagram illustrating an example 400 associated with modifying a QoS flow packet delay budget, in accordance with various aspects of the present disclosure. As shown in Fig. 4, example 400 includes communication between a base station 110 and a UE 120. In some aspects, the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink. In some aspects, the base station 110 may be associated with an NG-RAN. In some aspects, the base station 110 may be associated with a 5GC (e.g., the base station 110 may be a core network device) . For example, the base station 110 may be associated with an AMF entity of the 5GC. The UE 120 may be referred to herein as a mobile station.
As show by reference number 405, the base station 110 may transmit, and the UE 120 may receive, an indication of a packet delay budget value for a QoS flow. For the example, the base station 110 (e.g., the 5GC and/or the NG-RAN) may transmit an indication of one or more QoS parameters (including the packet delay budget) for the QoS flow to the UE 120. The base station 110 may identify the QoS flow in the indication using a QFI. In some aspects, the base station 110 may transmit the indication of the packet delay budget value for the QoS flow using an N1 interface (e.g., the 5GC may transmit the indication directly to the UE 120) . In some aspects, the base station 110 may transmit the indication of the packet delay budget value for the QoS flow using a Uu interface (e.g., the NG-RAN may transmit the indication to the UE 120 after receiving the QoS flow parameters from the 5GC) .
In some aspects, the QoS flow may be a guaranteed bit rate (GBR) QoS flow associated with delay-critical traffic (e.g., URLLC traffic) . The base station 110 may transmit the indication of the packet delay budget value for the QoS flow after determining the packet delay budget value for the QoS flow (e.g., after creating the QoS flow in a PDU session) .
As shown by reference number 410, the UE 120 may determine that the packet delay budget value does not satisfy a latency requirement associated with the UE 120 (or a latency requirement associated with an application of the UE 120) . For example, the UE 120 may be a URLLC UE 120, or an application of the UE 120 may be associated with a URLLC service. The UE 120 may determine that if a packet  associated with the QoS flow is delayed in accordance with the packet delay budget, that the delay may cause the packet to not satisfy the latency requirement (e.g., and be counted as lost by the UE 120) . For example, the base station 110 may indicate that the packet delay budget value is 200 milliseconds. The UE 120 may determine that if a packet is delayed by the base station 110 (e.g., by the 5GC and/or by the NG-RAN) for 200 milliseconds, then the packet will not satisfy the latency requirements of the UE 120. As a result, the UE 120 may determine that the packet delay budget value for the QoS flow should be changed.
As shown by reference number 415, the UE 120 may determine a different packet delay budget value for the QoS flow based at least in part on the latency requirement associated with the UE 120. For example, the UE 120 may determine a permissible amount of time that a packet can be delayed (e.g., by the 5GC and/or the NG-RAN) and still satisfy the latency requirements of the UE 120. In some aspects, the UE 120 may determine a maximum amount of time that a packet can be delayed (e.g., by the 5GC and/or the NG-RAN) and still satisfy the latency requirements of the UE 120. For example, the base station 110 may indicate the packet delay budget value is 200 milliseconds, as described in the example above. The UE 120 may determine that the packet delay budget value should be 50 milliseconds, to satisfy the latency requirements of the UE 120 (or the latency requirements of an application of the UE 120) .
As shown by reference number 420, the UE 120 may transmit, and the base station 110 may receive, a request to modify the packet delay budget value of the QoS flow to the different packet delay budget value. In some aspects, the UE 120 may transmit the request to modify the packet delay budget value of the QoS flow to the different packet delay budget value using an N1 interface (e.g., the UE 120 may transmit the request directly to the 5GC) . In some aspects, the UE 120 may transmit the request to modify the packet delay budget value of the QoS flow to the different packet delay budget value using a Uu interface (e.g., the UE 120 may transmit the request to the NG-RAN) . In that case, the base station 110 may forward (e.g., transmit) the request to modify the packet delay budget value of the QoS flow to the different packet delay budget to the 5GC (e.g., using an N2 interface and/or the like) .
As shown by reference number 425, the base station 110 may determine whether to accept the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow based at least in part on scheduling  requirements of an access network (e.g., the NG-RAN) . In some aspects, the 5GC may determine whether to accept the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow based at least in part on scheduling requirements of the NG-RAN. For example, the NG-RAN may not be able to support scheduling radio resources using the different value for the packet delay budget for the QoS flow.
If the base station 110 determines that the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow should be accepted, the base station 110 may modify the packet delay budget value in the QoS parameters associated with the QoS flow. For example, the 5GC may modify or update the packet delay budget value to the different value in a QoS profile associated with the QoS flow. The 5GC may transmit, to the NG-RAN, an indication of the modified QoS profile that indicates the different value for the packet delay budget.
In some aspects, the base station 110 may transmit, and the UE 120 may receive, an indication of whether the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is accepted. For example, if the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is accepted, the base station 110 may transmit, to the UE 120, an indication of the modified QoS profile that indicates the different value for the packet delay budget. If the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is rejected, the base station 110 may not transmit any indications to the UE 120 or may transmit an indication to the UE 120 that the request is rejected.
As shown by reference number 430, the base station 110 may transmit, and the UE 120 may receive, scheduling information for traffic associated with the QoS flow. For example, the NG-RAN may schedule radio resources for traffic associated with the QoS flow. If the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is accepted, the base station 110 may schedule the radio resources using the different packet delay budget value (e.g., the scheduling information transmitted to the UE 120 is based at least in part on the different packet delay budget value) . For example, the base station 110 (e.g., the NG-RAN) may determine the scheduling information for radio resources associated with the QoS flow using the different packet delay budget value. If the request to modify the packet delay budget value to the different packet delay budget value for the QoS flow is rejected, the  base station 110 may schedule the radio resources using the original packet delay budget value (e.g., that was indicated by the base station 110 as described above with respect to reference number 405) .
In this way, the UE 120 may participate in the determination of the packet delay budget value and have control of the QoS flow latency. As a result, packets addressed for the UE 120 associated with the QoS flow will not be delayed (e.g., based at least in part on the packet delay budget value) longer than the latency requirement for the UE 120. This improves network performance and conserves network resources that would have otherwise been used transmitting (and/or re-transmitting) packets that would be counted as lost by the UE 120 based at least in part on the latency requirements of the UE 120.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a mobile station, in accordance with various aspects of the present disclosure. Example process 500 is an example where the mobile station (e.g., UE 120) performs operations associated with modifying a QoS flow packet delay budget.
As shown in Fig. 5, in some aspects, process 500 may include receiving an indication of a packet delay budget value associated with a QoS flow (block 510) . For example, the mobile station (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive an indication of a packet delay budget value associated with a QoS flow, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting a request to modify the packet delay budget value to a different packet delay budget value (block 520) . For example, the mobile station (e.g., using antenna 252, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may transmit a request to modify the packet delay budget value to a different packet delay budget value, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 500 includes receiving, by the mobile station, scheduling information for radio resources associated with the QoS flow, wherein the  scheduling information is based at least in part on the different packet delay budget value.
In a second aspect, alone or in combination with the first aspect, process 500 includes determining, by the mobile station, that the packet delay budget value does not satisfy a latency requirement associated with the mobile station, and determining, by the mobile station, the different packet delay budget value based at least in part on the latency requirement associated with the mobile station.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 500 includes receiving, by the mobile station, an indication that the packet delay budget value has been modified to the different packet delay budget value.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the QoS flow is a guaranteed bit rate QoS flow.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow comprises receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow from a core network.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 600 is an example where the base station (e.g., base station 110) performs operations associated with modifying a QoS flow packet delay budget.
As shown in Fig. 6, in some aspects, process 600 may include transmitting, to a mobile station, an indication of a packet delay budget value associated with a QoS flow (block 610) . For example, the base station (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include receiving, from the mobile station, a request to modify the packet delay budget value to  a different packet delay budget value (block 620) . For example, the base station (e.g., using antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or memory 242) may receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 600 includes determining, by the base station, to accept or reject the different packet delay budget value based at least in part on scheduling requirements of an access network.
In a second aspect, alone or in combination with the first aspect, process 600 includes modifying, by the base station, the packet delay budget value of the QoS flow to the different packet delay budget value based at least in part on a determination to accept the different packet delay budget value.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 600 includes transmitting, by the base station and to the mobile station, an indication that the packet delay budget value for the QoS flow has been modified to the different packet delay budget value.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 600 includes determining, by the base station, scheduling information for radio resources associated with the QoS flow using the different packet delay budget value, and transmitting, by the base station and to the mobile station, the scheduling information for radio resources associated with the QoS flow.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the different packet delay budget value is based at least in part on a latency requirement associated with the mobile station.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the QoS flow is a guaranteed bit rate QoS flow.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the base station is associated with a core network.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a block diagram of an example apparatus 700 for wireless communication. The apparatus 700 may be a mobile station, or a mobile station may include the apparatus 700. In some aspects, the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704. As further shown, the apparatus 700 may include one or more of a determination component 708, among other examples.
In some aspects, the apparatus 700 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5, or a combination thereof. In some aspects, the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the mobile station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706. The reception component 702 may provide received communications to one or more other components of the apparatus 700. In some aspects, the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706. In some aspects, the reception component 702 may  include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the mobile station (e.g., UE 120) described above in connection with Fig. 2.
The transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706. In some aspects, one or more other components of the apparatus 706 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706. In some aspects, the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706. In some aspects, the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the mobile station described above in connection with Fig. 2. In some aspects, the transmission component 704 may be collocated with the reception component 702 in a transceiver.
The reception component 702 may receive an indication of a packet delay budget value associated with a QoS flow. The transmission component 704 may transmit a request to modify the packet delay budget value to a different packet delay budget value. The determination component 708 may determine that the packet delay budget value does not satisfy a latency requirement associated with the mobile station. The determination component 708 may determine the different packet delay budget value based at least in part on the latency requirement associated with the mobile station. In some aspects, the determination component 708 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the mobile station (e.g., UE 120) described above in connection with Fig. 2.
The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as  multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
Fig. 8 is a block diagram of an example apparatus 800 for wireless communication. The apparatus 800 may be a base station, or a base station may include the apparatus 800. In some aspects, the apparatus 800 includes a reception component 802 and a transmission component 804, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 800 may communicate with another apparatus 806 (such as a UE, a base station, or another wireless communication device) using the reception component 802 and the transmission component 804. As further shown, the apparatus 800 may include one or more of a determination component 808, a modification component 810, among other examples.
In some aspects, the apparatus 800 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally or alternatively, the apparatus 800 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6, or a combination thereof. In some aspects, the apparatus 800 and/or one or more components shown in Fig. 8 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 8 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 802 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 806. The reception component 802 may provide received communications to one or more other components of the apparatus 800. In some aspects, the reception component 802 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other  components of the apparatus 806. In some aspects, the reception component 802 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 804 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 806. In some aspects, one or more other components of the apparatus 806 may generate communications and may provide the generated communications to the transmission component 804 for transmission to the apparatus 806. In some aspects, the transmission component 804 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 806. In some aspects, the transmission component 804 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 804 may be collocated with the reception component 802 in a transceiver.
The transmission component 804 may transmit, to a mobile station, an indication of a packet delay budget value associated with a QoS flow. The reception component 802 may receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value. The determination component 808 may determine to accept or reject the different packet delay budget value based at least in part on scheduling requirements of an access network. In some aspects, the determination component 808 may include one or more of a receive processor, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. The modification component 810 may modify the packet delay budget value of the QoS flow to the different packet delay budget value based at least in part on a determination to accept the different packet delay budget value. In some aspects, the modification component 810 may include one or more of a receive processor, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The number and arrangement of components shown in Fig. 8 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 8. Furthermore, two or more components shown in Fig. 8 may be implemented within a single component, or a single component shown in Fig. 8 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 8 may perform one or more functions described as being performed by another set of components shown in Fig. 8.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers  to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (20)

  1. A method of wireless communication performed by a mobile station, comprising:
    receiving, by the mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    transmitting, by the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  2. The method of claim 1, further comprising:
    receiving, by the mobile station, scheduling information for radio resources associated with the QoS flow, wherein the scheduling information is based at least in part on the different packet delay budget value.
  3. The method of claim 1, further comprising:
    determining, by the mobile station, that the packet delay budget value does not satisfy a latency requirement associated with the mobile station; and
    determining, by the mobile station, the different packet delay budget value based at least in part on the latency requirement associated with the mobile station.
  4. The method of claim 1, further comprising:
    receiving, by the mobile station, an indication that the packet delay budget value has been modified to the different packet delay budget value.
  5. The method of claim 1, wherein the QoS flow is a guaranteed bit rate QoS flow.
  6. The method of claim 1, wherein receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow comprises:
    receiving, by the mobile station, the indication of the packet delay budget value associated with the QoS flow from a core network.
  7. A method of wireless communication performed by a base station, comprising:
    transmitting, by the base station and to a mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    receiving, by the base station and from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  8. The method of claim 7, further comprising:
    determining, by the base station, to accept or reject the different packet delay budget value based at least in part on scheduling requirements of an access network.
  9. The method of claim 7, further comprising:
    modifying, by the base station, the packet delay budget value of the QoS flow to the different packet delay budget value based at least in part on a determination to accept the different packet delay budget value.
  10. The method of claim 9, further comprising:
    transmitting, by the base station and to the mobile station, an indication that the packet delay budget value for the QoS flow has been modified to the different packet delay budget value.
  11. The method of claim 7, further comprising:
    determining, by the base station, scheduling information for radio resources associated with the QoS flow using the different packet delay budget value; and
    transmitting, by the base station and to the mobile station, the scheduling information for radio resources associated with the QoS flow.
  12. The method of claim 7, wherein the different packet delay budget value is based at least in part on a latency requirement associated with the mobile station.
  13. The method of claim 7, wherein the QoS flow is a guaranteed bit rate QoS flow.
  14. The method of claim 7, wherein the base station is associated with a core network.
  15. A mobile station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    transmit a request to modify the packet delay budget value to a different packet delay budget value.
  16. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  17. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a mobile station, cause the mobile station to:
    receive an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    transmit a request to modify the packet delay budget value to a different packet delay budget value.
  18. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    transmit, to a mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    receive, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
  19. An apparatus for wireless communication, comprising:
    means for receiving an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    means for transmitting a request to modify the packet delay budget value to a different packet delay budget value.
  20. An apparatus for wireless communication, comprising:
    means for transmitting, to a mobile station, an indication of a packet delay budget value associated with a quality of service (QoS) flow; and
    means for receiving, from the mobile station, a request to modify the packet delay budget value to a different packet delay budget value.
PCT/CN2020/109466 2020-08-17 2020-08-17 Modifying a quality of service flow packet delay budget WO2022036490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109466 WO2022036490A1 (en) 2020-08-17 2020-08-17 Modifying a quality of service flow packet delay budget

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109466 WO2022036490A1 (en) 2020-08-17 2020-08-17 Modifying a quality of service flow packet delay budget

Publications (1)

Publication Number Publication Date
WO2022036490A1 true WO2022036490A1 (en) 2022-02-24

Family

ID=80322407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109466 WO2022036490A1 (en) 2020-08-17 2020-08-17 Modifying a quality of service flow packet delay budget

Country Status (1)

Country Link
WO (1) WO2022036490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211704A1 (en) * 2022-04-25 2023-11-02 Qualcomm Incorporated Deadline-based data packets
WO2024040369A1 (en) * 2022-08-22 2024-02-29 Qualcomm Incorporated Flexible scheduling considering packet delay budget

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083653A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for air interface delay adjustment
CN109076399A (en) * 2016-05-09 2018-12-21 高通股份有限公司 Packet priority and the relevant flexible QOS strategy of data in flowing
WO2019201747A1 (en) * 2018-04-17 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic bearer validity
CN110476460A (en) * 2017-03-31 2019-11-19 英特尔Ip公司 For handling the communication equipment and method that receive data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076399A (en) * 2016-05-09 2018-12-21 高通股份有限公司 Packet priority and the relevant flexible QOS strategy of data in flowing
WO2018083653A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for air interface delay adjustment
CN110476460A (en) * 2017-03-31 2019-11-19 英特尔Ip公司 For handling the communication equipment and method that receive data
WO2019201747A1 (en) * 2018-04-17 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic bearer validity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211704A1 (en) * 2022-04-25 2023-11-02 Qualcomm Incorporated Deadline-based data packets
WO2024040369A1 (en) * 2022-08-22 2024-02-29 Qualcomm Incorporated Flexible scheduling considering packet delay budget

Similar Documents

Publication Publication Date Title
WO2021222918A1 (en) Rate matching for piggyback downlink control information
WO2022036490A1 (en) Modifying a quality of service flow packet delay budget
US11737010B2 (en) Techniques for exposure-based suspensions of communication attempts
US11641682B2 (en) Scheduling coordination in an integrated access and backhaul network
WO2022036664A1 (en) Delay sensitive uplink transmissions
WO2021232390A1 (en) Group common sounding reference signal downlink control information configuration
WO2021243688A1 (en) Reference signal orthogonality
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
EP4097856A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021119647A1 (en) Management of resources in integrated access and backhaul
WO2021232399A1 (en) Restoration of data service in a standalone network
WO2022056701A1 (en) Optimized protocol data unit session establishment procedure
WO2022000224A1 (en) Backhaul aware bandwidth management
WO2022073153A1 (en) Dual audio channels over dual quality of service flows
US11405156B2 (en) Techniques for tracking reference signal with concentrated power per tone
WO2022041181A1 (en) Duplication of packets associated with directional ranges
US20230145582A1 (en) Primary carrier and secondary carrier negotiation in sidelink
WO2022165747A1 (en) Transmission configuration indicator indication for non-serving cell information
WO2022041239A1 (en) Techniques for selecting cells using network slice selection assistance information
WO2022021061A1 (en) Downlink control information signaling with a resource repetition factor
US20240015813A1 (en) Indications associating layer 2 identifiers with a user equipment for sidelink
WO2022056664A1 (en) Determining size for downlink control information
WO2022094832A1 (en) Techniques for recovery from dual connectivity data stall
WO2022236689A1 (en) Time offset for implicit beam switch
US20230389012A1 (en) Obtaining uplink resources for a logical channel without an associated scheduling request configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949703

Country of ref document: EP

Kind code of ref document: A1