WO2022032402A1 - Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables - Google Patents

Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables Download PDF

Info

Publication number
WO2022032402A1
WO2022032402A1 PCT/CL2020/050089 CL2020050089W WO2022032402A1 WO 2022032402 A1 WO2022032402 A1 WO 2022032402A1 CL 2020050089 W CL2020050089 W CL 2020050089W WO 2022032402 A1 WO2022032402 A1 WO 2022032402A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble
solvent
composition according
antimicrobial
Prior art date
Application number
PCT/CL2020/050089
Other languages
Spanish (es)
French (fr)
Inventor
Roberto MOSER
Original Assignee
Moser Roberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moser Roberto filed Critical Moser Roberto
Priority to PCT/CL2020/050089 priority Critical patent/WO2022032402A1/en
Publication of WO2022032402A1 publication Critical patent/WO2022032402A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/16Coating with a protective layer; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the invention is an Antimicrobial Composition that preserves the organoleptic conditions of vegetables, formed by mixing a solution of a polymer and a solution of a solid solute that is soluble in water, which, when the solvent evaporates, forms a polymeric coating that is permeable to gases, with small precipitated solute particles contained in the polymeric mesh, which react in the presence of moisture, returning to have an antimicrobial behavior.
  • plastic containers that contain in their structure some type of material with the property of substantially reducing or eliminating the passage of these substances are called barrier. These can be divided into static and active. The former are materials that act as barriers to the passage of substances that are to be left out and that have a constant behavior over time.
  • a container is antimicrobial when it incorporates several active substances in it, so that they are effective in inhibiting or retarding microbial growth (altering or pathogenic). These substances can be incorporated directly into the containers, so that they are released in a controlled manner to the head space (volatile substances such as essential oils). Another option is to immobilize the active agents (eg bacteriocins) on the surface of the container, exerting their action through direct contact with the product. (Magazine: Food, Equipment and Technology).
  • patent WO 2013149356 Al refers to containers that extend the shelf life of foods by incorporating an antifungal agent on their surface, particularly for berry containers.
  • the containers that contain antimicrobial elements on their inner face do not maintain the organoleptic characteristics of the products since these elements migrate to the surface of the food. This does not occur with antimicrobial elements contained in a polymeric matrix such as copper and/or its derivatives. These materials act as antimicrobial materials since when they react with moisture they oxidize, releasing Cu2+ ions which, when they reach the microorganisms, damage their cell walls, which has the effect of killing them. (Borkow and Gavia 2005). Materials capable of releasing sufficient Cu 2+ are then classified as antimicrobials. This behavior also occurs for metals such as silver, zinc and tin, and/or mixtures and salts of these elements, which classifies them the same as copper as an antimicrobial agent.
  • Inorganic biocidal agents are defined as compounds based on copper, silver, zinc, gold, bismuth, mercury, tin, antimony, cadmium, chromium, tantalum, iron, manganese and lead, their oxides, hydroxides, acetates, carbonates, chlorides, nitrates, phosphates, sulfates, sulfides, and mixtures thereof, presenting biocidal activities (WO 2015011630).
  • the bactericidal and fungicidal action of the elements described above can be introduced into the polymer matrix at the time of manufacturing the sheets that make up these plastic containers, such as polypropylene, polyethylene, polyester resins, etc.
  • antimicrobial compositions that employ zeolite particles as a carrier for the antimicrobial metal ions. That is, when treating the zeolite with metal ion solutions, a cationic exchange is produced where ions are incorporated. antimicrobial metals in it acquiring the antimicrobial properties of these, which is called loading. This occurs in both naturally occurring and synthetic zeolites. In these cases where the antimicrobial properties are incorporated into another element, as is the case with zeolite, the microporous mineral used is called a support.
  • the support or carrier material (B) corresponds to organic or inorganic materials, selected from zeolite, silicates, sepiolite and dolomite, wollastonite, mica, ceramic, carbon, activated carbon, clay, hydroxyapatite, kaolin, talc, calcium carbonate, stone pumice, natural or synthetic fibres, coconut fiber (WO 2015011630).
  • Controlled Atmosphere is used as a complementary technology to cold to extend the shelf life of fresh vegetables by reducing metabolic processes, retarding microbial growth and delaying the senescence process.
  • This technology regulates the composition of the air in the container in order to slow down the metabolism of the fruit, which it does by modifying the composition of the air inside the container, Nitrogen (N), Oxygen (02), Carbon Dioxide (CO2) and Ethylene, a natural gas produced by fruits and vegetables during their metabolic process, and also controlling humidity and temperature. All this to achieve the optimal combination of the atmosphere of the container so that the metabolism of the fruit is slowed down.
  • the product is a carrier of pathogens, during the controlled atmosphere they are inhibited from multiplying, but once the atmosphere is controlled, they present a more aggressive behavior than normal, which shortens the time it remains in optimal conditions after the container is opened. .
  • This technology is expensive, requires active monitoring and regulation of the composition of the atmosphere during the trip, in addition to having to carry out the logistics of recovering the equipment that is added to the containers.
  • Controlled Atmosphere which is Modified Atmosphere.
  • Modified Atmosphere This is also complementary to the cold and consists of putting an airtight polymeric membrane around the pallet that contains the boxes of fruit, modifying the atmosphere of this enclosed space by adding a predefined amount of CO2 and/or Nitrogen N2, this being defined at the beginning of the process. trip and marginally modified by the permeability of this membrane to let 02 enter, CO2 and ethylene leave.
  • the margin of action is much smaller and it also has the problem that when the membrane is opened in the presence of pathogens, these will develop very quickly after opening the package, lasting less time in optimal conditions than without the modified atmosphere process.
  • the result is a polymer coating with small particles of precipitated solute inside.
  • a necessary characteristic of the solute is that it be soluble in water, so the Precipitated particles, contained in this polymer coating, upon receiving the action of humidity, which is the necessary condition for the proliferation of pathogens, once again have antimicrobial properties.
  • the permeability to gases and water vapor of the resulting polymeric coating is responsible for the humidity activating the solute particles, making them antimicrobial, in addition to modifying the respiration of the fruit, slowing down its metabolism in order to prolong its organoleptic characteristics until become consumed.
  • the polymeric coating with antimicrobial properties will remain on the surface of the fruit until it is consumed by the end customer, so its composition must be edible.
  • the polymeric coating by slowing down their metabolism, will produce a delay in their ripening, but will always keep them protected from the action of pathogens due to the antimicrobial characteristics of the precipitated particles, throughout this longer period of storage. time in which the maturation is extended and that is exposed to the action of these.
  • this Antimicrobial Composition when applied to fruit, vegetables or vegetables, is in a first stage the elimination of the pathogens that are on the surface of this by the action of the solutions that compose it, for later when the solvent evaporates, leaving a polymeric coating that reduces the metabolism of the fruit, prolonging its organoleptic properties for a longer period while protecting them from the action of pathogens through the action of the solute precipitated inside, which is activated when they give the humidity conditions that are the ones that allow pathogens to develop.
  • a characteristic of each polymeric matrix is that it can be permeated by some gases and water vapour, allowing it to be breathed through, as is the case with fruit that needs oxygen for its metabolism and exhales it as CO2, in addition to exhaling ethylene from its metabolic process.
  • the permeability of the polymeric coating allows the precipitated particles to be reached by the activating element of its antimicrobial characteristic, which is humidity and whose activity is limited to the area where it is permeated, and which is the condition in which microorganisms develop and multiply. . That is, the precipitated particles of the ionic solute are a passive antimicrobial that is activated by the effect of humidity.
  • the concentrations of each one of the components of the Antimicrobial Composition define the thickness of the coating, the size and the quantity of precipitated particles contained in it, which in turn will define the permeability of the polymeric coating to gases and humidity, which will be the key of the modification of the metabolism of the fruit.
  • Another factor that affects the coating is the form of application, which is basically by spraying and by immersion.
  • the time it takes for the coating to dry It must be pre-established in order to have a specific antimicrobial effect without producing any negative effect on the surface of the fruit.
  • this Antimicrobial Composition is not limited to post-harvest, since it can be applied in the field, both to the fruit and to the tree or plant that produces it, since it generates an effect of eliminating pathogens in their liquid state and then it maintains a passive protection over time. This is important in the case of some fruits that are not recommended to be washed in the postharvest process, to which the Antimicrobial Composition can be applied while the fruit is in the bush. In the case of grapes, it could be applied to the vine prior to the closing of the bunch, where botrytis develops mainly inside. Another aspect that should be highlighted is in the case of being applied to fruits with stems such as cherries and grapes, the polymeric coating will delay the dehydration process of these, so they will maintain their appearance of color and freshness for a longer time.
  • a practical example of this Antimicrobial Composition is the mixture of a polymeric aqueous solution of PVOH and an aqueous solution of Citric Acid, both in concentrations less than 5% p/p.
  • the concentration of the acid defines how strong or active the solution is going to be in the elimination of surface pathogens, also taking into account how strong or weak the outer layer of the fruit on which it is applied is.
  • the concentration of the polymer in the composition will define the thickness of the resulting film or coating on the fruit and its degree of permeability to gases that slow down its metabolism and maintain its organoleptic qualities for longer in fresh conditions.
  • the active antimicrobial effect is significant, recovering a healthy state from 16.1% of the fruit to 40.7%. That is to say, 29.3% of the infected avocados achieved healthy maturation, in a longer maturation time, without the activation of the anthracnose pathogen with which they were contaminated.
  • This passive protection is the one shown in the following tables and which measured the result of applying a solution of sucrose and dextrose with anthracnose conidia on a slide where the Antimicrobial Composition had been applied and which had been allowed to dry completely, which it is the condition that the pathogens will find when they are deposited on the fruit with the applied coating, and the controls that are slides with the application only of the polymer solution of the composition.
  • Results Anthracnose (Cg) Distribution % of the states of the conidia of each sample in each temporal observation.
  • This antimicrobial behavior is perfectly compatible with pre-harvest, both applied by spraying to the plant and only on the fruit, since it generates an environment that is not conducive to the appearance of pathogens. It should be considered that since the polymeric coating is soluble in water, it can be washed off the fruit by rain, so some form of less soluble polymer compatible with the characteristics of the Antimicrobial Combination could be defined.
  • the concept implicit in this innovation is to use the antimicrobial characteristics of some water-soluble solid solutes that, once precipitated in the polymer mesh of the coating, react in the presence of moisture.
  • This concept does not exclude its use in products that are not going to be for human consumption, such as freshly sawn wood, which is attacked by multiple pathogens, which can be eliminated with the application of this invention, without necessarily being edible the polymer with the resulting precipitate inside.
  • An example of this is the solution of methylcellulose in water at 1% w/w with a solution of sodium hydroxide in water at a low concentration (less than 4%). It is applied by spraying on freshly sawn wood, where it eliminates the pathogens found on the surface and leaves a thin polymeric coating that allows the wood to continue breathing and with precipitated particles inside, which maintains its antimicrobial characteristics in the presence of humidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

The invention relates to an antimicrobial composition that preserves the organoleptic conditions of vegetables, formed by mixing a solution of a polymer and a solution of a solid water-soluble solute, which, when the solvent evaporates, forms a gas-permeable polymer coating, with small precipitated particles of the solute, which are contained in a polymer mesh and react in the presence of moisture, regaining antimicrobial behaviour.

Description

MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
La invención es una Composición Antimicrobiana que preserva las condiciones organolépticas de los vegetales, formada por la mezcla de una disolución de un polímero y una disolución de un soluto sólido que es soluble en agua, que al evaporarse el solvente forma un recubrimiento polimérico permeable a los gases, con pequeñas partículas del soluto precipitadas contenida en la malla polimérica, las que reaccionan en presencia de humedad, volviendo a tener un comportamiento antimicrobiano. The invention is an Antimicrobial Composition that preserves the organoleptic conditions of vegetables, formed by mixing a solution of a polymer and a solution of a solid solute that is soluble in water, which, when the solvent evaporates, forms a polymeric coating that is permeable to gases, with small precipitated solute particles contained in the polymeric mesh, which react in the presence of moisture, returning to have an antimicrobial behavior.
ESTADO DE LA TÉCNICA STATE OF THE ART
Los productos agrícolas como las frutas, las verduras y las hortalizas, permanecen vivos después de cosechados. El desafío que se presenta entonces es mantener estos vegetales en las mejores condiciones posibles para que al momento de ser consumidas tengan el mayor valor nutricional. El largo camino que realizan los productos agrícolas hasta llegar a la mesa hace que muchas veces no lo consigan en las mejores condiciones deseadas y en algunos casos deban ser desechados. Según la Organización de las Naciones Unidas para la Agricultura y la Alimentación, el 30 por ciento de los alimentos se desperdicia a nivel mundial en toda la cadena de suministro, lo que contribuye con el 8 por ciento de las emisiones globales de gases de efecto invernadero (Global AG Investing). En la actualidad la cera, los fungicidas, los productos químicos, los paquetes frescos y los envases de plástico se presentan como soluciones para extender la vida útil de los alimentos, pero su efectividad es limitada además de que hay una serie de requisitos que imponen los mercados y las normas sanitarias de los diferentes países, que hacen a estos cada día más difícil de satisfacer.Agricultural products such as fruits, vegetables and vegetables remain alive after they are harvested. The challenge that arises then is to keep these vegetables in the best possible conditions so that when they are consumed they have the highest nutritional value. The long way that agricultural products take to reach the table means that many times they do not get it in the best desired conditions and in some cases they must be discarded. According to the Food and Agriculture Organization of the United Nations, 30 percent of food is wasted globally throughout the supply chain, contributing 8 percent of global greenhouse gas emissions. (Global AG Investing). At present, wax, fungicides, chemical products, fresh packages and plastic containers are presented as solutions to extend the shelf life of food, but their effectiveness is limited, in addition to the fact that there are a series of requirements imposed by the markets and the sanitary regulations of the different countries, which make it more difficult to satisfy them every day.
El camino de los envases plásticos ha llevado al desarrollo de nuevos materiales caracterizados por combinar el uso de materiales termoplásticos, de fácil fabricación, con la introducción de otros polímeros o cargas de distinta naturaleza dentro de la estructura de la pared del envase, (WO201 1045455) PACKAGING FOR PERISHABLE PRODUCTS, para lograr ser una barrera a los gases tales como el oxígeno, dióxido de carbono, vapor de agua y etileno entre otros, que en contacto con los vegetales alteran sus cualidades, desde cambiar el aspecto hasta la aparición de patógenos dañinos para la salud. Los envases plásticos que contienen en su estructura algún tipo de material con la propiedad de disminuir sustancialmente o eliminar el paso de estas sustancias son denominados de barrera. Estos los podemos dividir en estáticos y activos. Los primeros son materiales que hacen de barreras al paso de las sustancias que se desea dejar fuera y que tienen un comportamiento constante en el tiempo. En el segundo caso se trata de materiales que además de hacer de barrera como el primero, tienen incorporados aditivos con actividad química que capturan la sustancia que se desea detener. Aquí destacan los secuestradores de oxígeno, que permiten extender la protección de la barrera contra el paso de este. Esto alarga la vida de la barrera y por ende del producto que se desea conservar. (Patent EP0349440B1) Un ejemplo de aditivo secuestrador de oxígeno son los materiales nanocompuestos activos basados en nanoarcillas modificadas con óxido de cerio o cerio metálico (WO 2013186416 A2). The path of plastic containers has led to the development of new materials characterized by combining the use of thermoplastic materials, which are easy to manufacture, with the introduction of other polymers or fillers of a different nature within the structure of the container wall, (WO201 1045455 ) PACKAGING FOR PERISHABLE PRODUCTS, to become a barrier to gases such as oxygen, carbon dioxide, water vapor and ethylene, among others, which in contact with vegetables alter their qualities, from changing their appearance to the appearance of pathogens harmful to health. Plastic containers that contain in their structure some type of material with the property of substantially reducing or eliminating the passage of these substances are called barrier. These can be divided into static and active. The former are materials that act as barriers to the passage of substances that are to be left out and that have a constant behavior over time. In the second case, these are materials that, in addition to acting as a barrier like the first, have incorporated additives with chemical activity that capture the substance to be stopped. Here the oxygen scavengers stand out, which allow extending the protection of the barrier against the passage of this. This lengthens the life of the barrier and therefore of the product to be preserved. (Patent EP0349440B1) An example of an oxygen scavenger additive is active nanocomposite materials based on nanoclays modified with cerium oxide or metallic cerium (WO 2013186416 A2).
Un envase es antimicrobiano cuando incorpora varias sustancias activas en él, de manera que sean eficaces en la inhibición o retardo del crecimiento microbiano (alterante o patógeno). Estas sustancias se pueden incorporar directamente en los envases, de manera que se van liberando de forma controlada al espacio de cabeza (sustancias volátiles como aceites esenciales). Otra opción es la de inmovilizar los agentes activos (ej. bacteriocinas) en la superficie del envase, ejerciendo su acción mediante el contacto directo con el producto. (Revista: Alimentación, Equipos y Tecnología ). A container is antimicrobial when it incorporates several active substances in it, so that they are effective in inhibiting or retarding microbial growth (altering or pathogenic). These substances can be incorporated directly into the containers, so that they are released in a controlled manner to the head space (volatile substances such as essential oils). Another option is to immobilize the active agents (eg bacteriocins) on the surface of the container, exerting their action through direct contact with the product. (Magazine: Food, Equipment and Technology).
Un ejemplo de esto es la patente WO 2013149356 Al que se refiere a envases que extienden la vida útil de alimentos al incorporar en su superficie un agente antifúngico, particularmente para envases de berries. En general, los envases que contienen en su cara interior elementos antimicrobianos no mantienen las características organolépticas de los productos ya que se produce una migración de estos elementos a la superficie de los alimentos. Esto no se produce con los elementos antimicrobianos contenidos en una matriz polimérica como cobre y/o sus derivados. Estos materiales actúan como materiales antimicrobianos ya que al reaccionar con la humedad se oxidan, liberando iones Cu2+ que cuando alcanzan a los microorganismos les daña su pared celular lo que tiene como efecto la muerte de estos. (Borkow y Gavia 2005). Luego los materiales capaces de liberar suficiente Cu 2+ se clasifican como antimicrobianos. Este comportamiento también se produce para metales como plata, zinc y estaño, y/o mezclas y sales de estos elementos, lo que los clasifica igual que al cobre como agente antimicrobiano. An example of this is patent WO 2013149356 Al, which refers to containers that extend the shelf life of foods by incorporating an antifungal agent on their surface, particularly for berry containers. In general, the containers that contain antimicrobial elements on their inner face do not maintain the organoleptic characteristics of the products since these elements migrate to the surface of the food. This does not occur with antimicrobial elements contained in a polymeric matrix such as copper and/or its derivatives. These materials act as antimicrobial materials since when they react with moisture they oxidize, releasing Cu2+ ions which, when they reach the microorganisms, damage their cell walls, which has the effect of killing them. (Borkow and Gavia 2005). Materials capable of releasing sufficient Cu 2+ are then classified as antimicrobials. This behavior also occurs for metals such as silver, zinc and tin, and/or mixtures and salts of these elements, which classifies them the same as copper as an antimicrobial agent.
Los agentes biocida inorgánico se definen como compuestos a base de cobre, plata, zinc, oro, bismuto, mercurio, estaño, antimonio, cadmio, cromo, tántalo, hierro, manganeso y plomo, sus óxidos, hidróxidos, acetatos, carbonates, cloruros, nitratos, fosfatos, sulfatos, sulfuros, y mezclas de los mismos, presentando actividades biocidas (WO 2015011630). La acción bactericida y fungicida de los elementos antes descritos es posible introducirlas en la matriz de los polímeros, al momento de la fabricación de las láminas que componen estos envases de plásticos, como son las resinas de polipropileno, polietileno, poliéster, etc. Inorganic biocidal agents are defined as compounds based on copper, silver, zinc, gold, bismuth, mercury, tin, antimony, cadmium, chromium, tantalum, iron, manganese and lead, their oxides, hydroxides, acetates, carbonates, chlorides, nitrates, phosphates, sulfates, sulfides, and mixtures thereof, presenting biocidal activities (WO 2015011630). The bactericidal and fungicidal action of the elements described above can be introduced into the polymer matrix at the time of manufacturing the sheets that make up these plastic containers, such as polypropylene, polyethylene, polyester resins, etc.
Hay composiciones antimicrobianas que emplean partículas de zeolita como soporte para los iones metálicos antimicrobianos. Es decir al tratar la zeolita con soluciones de iones metálicos se produce un intercambio catiónico donde se incorporan iones metálicos antimicrobianos en ella adquiriendo las propiedades antimicrobianas de estos, lo que se denomina cargar. Esto se produce tanto en las zeolitas de origen natural como las sintéticas. En estos casos donde las propiedades antimicrobianas se incorporan a otro elemento, como es el caso de la zeolita, al mineral microporoso utilizado se le denomina soporte. El material de soporte o portador (B) corresponden a materiales orgánicos o inorgánicos, seleccionados entre zeolita, silicatos, sepiolita y dolomita, wollastonita, mica, cerámica, carbono, carbón activado, arcilla, hidroxiapatita, caolín, talco, carbonato de calcio, piedra pómez, natural o fibras sintéticas, fibra de coco (WO 2015011630). There are antimicrobial compositions that employ zeolite particles as a carrier for the antimicrobial metal ions. That is, when treating the zeolite with metal ion solutions, a cationic exchange is produced where ions are incorporated. antimicrobial metals in it acquiring the antimicrobial properties of these, which is called loading. This occurs in both naturally occurring and synthetic zeolites. In these cases where the antimicrobial properties are incorporated into another element, as is the case with zeolite, the microporous mineral used is called a support. The support or carrier material (B) corresponds to organic or inorganic materials, selected from zeolite, silicates, sepiolite and dolomite, wollastonite, mica, ceramic, carbon, activated carbon, clay, hydroxyapatite, kaolin, talc, calcium carbonate, stone pumice, natural or synthetic fibres, coconut fiber (WO 2015011630).
Toda esta gama de productos y soluciones descritas son un complemento a los tratamientos de frío y transportes refrigerados y deberán ser retirados o desechados de los productos antes de su consumo, con su consiguiente generación de desechos, muchos de ellos no reciclables, lo que pasa a ser un factor negativo al momento de evaluarlos como alternativas. All this range of products and solutions described are a complement to cold treatments and refrigerated transport and must be removed or discarded from the products before consumption, with the consequent generation of waste, many of them non-recyclable, which becomes be a negative factor when evaluating them as alternatives.
Sabemos que el frío es la tecnología base que se usa para retardar la maduración de la fruta y lograr llegar a los mercados en óptimas condiciones. Como tecnología complementaria al frío para extender la vida útil de los vegetales frescos, al reducir los procesos metabólicos, retardar el crecimiento microbiano y retardar el proceso de senescencia, se utiliza la Atmósfera Controlada. Esta tecnología regula la composición del aire del contenedor de manera de ralentizar el metabolismo de la fruta, lo que hace modificando la composición del aire dentro del contenedor, el Nitrógeno (N), el Oxígeno (02), el Dióxido de Carbono (CO2) y el Etileno, gas de origen natural que producen las frutas y verduras durante su proceso metabólico, y controlando además la humedad y la temperatura. Todo esto para alcanzar la combinación óptima de la atmósfera del contenedor para que se ralentice el metabolismo de la fruta. Si el producto es portador de patógenos, durante la atmósfera controlada se ven inhibidos de multiplicarse, pero terminado el control de la atmósfera, presentan un comportamiento más agresivo de lo normal, lo que acorta el tiempo de permanencia en óptimas condiciones luego de abierto el contenedor. Esta tecnología es costosa, requiere de un monitoreo y regulación activa de la composición de la atmósfera durante el viaje, además de tener que realizar la logística de recuperación de los equipos que se agregan a los contenedores. We know that cold is the basic technology used to delay fruit ripening and reach the markets in optimal conditions. Controlled Atmosphere is used as a complementary technology to cold to extend the shelf life of fresh vegetables by reducing metabolic processes, retarding microbial growth and delaying the senescence process. This technology regulates the composition of the air in the container in order to slow down the metabolism of the fruit, which it does by modifying the composition of the air inside the container, Nitrogen (N), Oxygen (02), Carbon Dioxide (CO2) and Ethylene, a natural gas produced by fruits and vegetables during their metabolic process, and also controlling humidity and temperature. All this to achieve the optimal combination of the atmosphere of the container so that the metabolism of the fruit is slowed down. If the product is a carrier of pathogens, during the controlled atmosphere they are inhibited from multiplying, but once the atmosphere is controlled, they present a more aggressive behavior than normal, which shortens the time it remains in optimal conditions after the container is opened. . This technology is expensive, requires active monitoring and regulation of the composition of the atmosphere during the trip, in addition to having to carry out the logistics of recovering the equipment that is added to the containers.
Existe una variante más económica a Atmósfera Controlada que es la Atmósfera Modificada. Esta también es complementaria al frío y consiste en poner una membrana polimérica hermética alrededor del pallet que contiene las cajas de fruta, se modifica la atmosfera de este espacio acotado agregando una cantidad predefinida de CO2 y/o Nitrógeno N2, quedando ésta definida al comienzo del viaje y modificada marginalmente por la permeabilidad que tiene esta membrana para dejar entrar 02, salir CO2 y etileno. El margen de acción es mucho menor y tiene también el problema de que a la apertura de la membrana en presencia de patógenos, estos se van a desarrollar muy rápidamente después de abierto el empaque, durando menos tiempo en condiciones óptimas que sin el proceso de atmósfera modificada. There is a cheaper variant of Controlled Atmosphere which is Modified Atmosphere. This is also complementary to the cold and consists of putting an airtight polymeric membrane around the pallet that contains the boxes of fruit, modifying the atmosphere of this enclosed space by adding a predefined amount of CO2 and/or Nitrogen N2, this being defined at the beginning of the process. trip and marginally modified by the permeability of this membrane to let 02 enter, CO2 and ethylene leave. The margin of action is much smaller and it also has the problem that when the membrane is opened in the presence of pathogens, these will develop very quickly after opening the package, lasting less time in optimal conditions than without the modified atmosphere process.
Existe una tendencia global en buscar la solución a este problema mediante la aplicación en el proceso de postcosecha de recubrimientos de origen natural que modifiquen la respiración de la fruta, además con algún complemento también natural que tenga un efecto antifúngico. Este recubrimiento y sus complementos antifúngico deben ser comestibles ya que quedan adheridos a la superficie de la fruta. Esta es una forma directa de regular la respiración y que consiste en aplicar un recubrimiento polimérico, que dadas sus características de permeabilidad a los gases, modifica el paso de estos, haciéndolo más lentos. Hablamos entonces de recubrimientos biopoliméricos naturales biodegradables que pueden incorporar en su interior elementos que tengan propiedades antimicrobianas y antioxidantes. Dentro de estos recubrimientos comestibles podemos destacar aquellos que utilizan la matriz polimérica del quitosano, del almidón de yuca, almidón de avena, el aloe vera, combinaciones de estos como el almidón de maíz y quitosano, o capas sucesivas de quitosano, poli-L-lisina, alginato, pectina, con la incorporación de elementos anti fungicidas naturales como los aceites esenciales, y antioxidantes naturales. Como se puede apreciar la cantidad de combinaciones son muchas y cada una de ellas con sus características. Además, las formas de aplicación agregan otra gama de combinaciones, que puede ser inmersión o aspersión, mayoritariamente, aunque hay aplicaciones manuales para algunas frutas. Otra característica que deben tener las frutas a las que se le aplican estos recubrimientos es que deben ser lavadas y secadas previamente. There is a global trend to seek a solution to this problem through the application of natural coatings in the postharvest process that modify the respiration of the fruit, in addition to some other natural complement that has an antifungal effect. This coating and its antifungal supplements must be edible as they adhere to the surface of the fruit. This is a direct way of regulating breathing and it consists of applying a polymeric coating, which, given its characteristics of permeability to gases, modifies the passage of these, making it slower. We speak then of biodegradable natural biopolymeric coatings that can incorporate elements that have antimicrobial and antioxidant properties into their interior. Within these edible coatings we can highlight those that use the polymeric matrix of chitosan, cassava starch, oat starch, aloe vera, combinations of these such as corn starch and chitosan, or successive layers of chitosan, poly-L- lysine, alginate, pectin, with the addition of natural anti-fungal elements such as essential oils, and natural antioxidants. As you can see the number of combinations are many and each of them with its characteristics. In addition, the forms of application add another range of combinations, which can be immersion or spray, mostly, although there are manual applications for some fruits. Another characteristic that the fruits to which these coatings are applied must have is that they must be previously washed and dried.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
El objetivo de preservar las condiciones organolépticas de los vegetales después de cosechados sin producir contaminación de los campos con productos químicos, sin dejar rastros de pesticidas sobre los vegetales, sin generar desechos plásticos de un uso, es decir en armonía con la vida y con el medio ambiente es lo que se pretende lograr con esta nueva invención. Esta es una Composición Antimicrobiana que preserva las condiciones organolépticas de los vegetales, formada por una disolución de un polímero y una disolución de un soluto sólido, que es soluble en agua y aporta las características de antimicrobiano, que al evaporarse el solvente forma un recubrimiento polimérico, que es permeable a los gases, con pequeñas partículas del soluto precipitadas y contenida en la malla polimérica, las que reaccionan en presencia de humedad, volviendo a tener un comportamiento antimicrobiano. El resultado es un recubrimiento polimérico con pequeñas partículas de soluto precipitado en su interior. Una característica necesaria del soluto es que sea soluble en agua, por lo que las partículas precipitadas, contenidas en este recubrimiento polimérico, al recibir la acción de la humedad, que es la condición necesaria para la proliferación de los patógenos, vuelven a tener propiedades antimicrobianas. La permeabilidad a los gases y al vapor de agua del revestimiento polimérico resultante es responsable de que la humedad active las partículas del soluto haciéndolas antimicrobianas, además de modificar la respiración de la fruta, ralentizando su metabolismo a fin de prolongar las características organolépticas de esta hasta llegar a ser consumida. El recubrimiento polimérico con propiedades antimicrobianas va a permanecer en la superficie de la fruta hasta ser consumida por el cliente final, por lo que su composición deberá ser comestible. En el caso de las frutas climatéricas, el revestimiento polimérico al ralentizar su metabolismo va a producir un retraso en su maduración, pero las mantendrá siempre protegida de la acción de los patógenos por las características antimicrobianas de las partículas precipitadas, durante todo este mayor período de tiempo en que se alarga la maduración y que queda expuesta a la acción de estos. Luego el efecto completo que produce esta Composición Antimicrobiana al ser aplicada sobre la fruta, vegetales u hortalizas, es en una primera etapa la eliminación de los patógenos que se encuentran sobre la superficie de esta por la acción de las disoluciones que la componen, para luego al evaporarse el solvente, dejar un recubrimiento polimérico que reduce el metabolismo de la fruta prolongando sus propiedades organolépticas por un período mayor mientras las protege de la acción de los patógenos por medio de la acción del soluto precipitado en su interior, que se activa cuando se dan las condiciones de humedad que son las que permiten a los patógenos desarrollarse. The objective of preserving the organoleptic conditions of the vegetables after harvesting without contaminating the fields with chemical products, without leaving traces of pesticides on the vegetables, without generating single-use plastic waste, that is, in harmony with life and with the environment is what is intended to achieve with this new invention. This is an Antimicrobial Composition that preserves the organoleptic conditions of vegetables, formed by a solution of a polymer and a solution of a solid solute, which is soluble in water and provides antimicrobial characteristics, which when the solvent evaporates forms a polymeric coating , which is permeable to gases, with small solute particles precipitated and contained in the polymeric mesh, which react in the presence of moisture, returning to have an antimicrobial behavior. The result is a polymer coating with small particles of precipitated solute inside. A necessary characteristic of the solute is that it be soluble in water, so the Precipitated particles, contained in this polymer coating, upon receiving the action of humidity, which is the necessary condition for the proliferation of pathogens, once again have antimicrobial properties. The permeability to gases and water vapor of the resulting polymeric coating is responsible for the humidity activating the solute particles, making them antimicrobial, in addition to modifying the respiration of the fruit, slowing down its metabolism in order to prolong its organoleptic characteristics until become consumed. The polymeric coating with antimicrobial properties will remain on the surface of the fruit until it is consumed by the end customer, so its composition must be edible. In the case of climacteric fruits, the polymeric coating, by slowing down their metabolism, will produce a delay in their ripening, but will always keep them protected from the action of pathogens due to the antimicrobial characteristics of the precipitated particles, throughout this longer period of storage. time in which the maturation is extended and that is exposed to the action of these. Then the complete effect produced by this Antimicrobial Composition when applied to fruit, vegetables or vegetables, is in a first stage the elimination of the pathogens that are on the surface of this by the action of the solutions that compose it, for later when the solvent evaporates, leaving a polymeric coating that reduces the metabolism of the fruit, prolonging its organoleptic properties for a longer period while protecting them from the action of pathogens through the action of the solute precipitated inside, which is activated when they give the humidity conditions that are the ones that allow pathogens to develop.
Una característica de cada matriz polimérica es que puede ser permeada por algunos gases y vapor de agua, permitiendo que se respire a través de ella, como es el caso de la fruta que necesita oxígeno para su metabolismo y lo exhala como CO2, además de exhalar el etileno propio de su proceso metabólico. La permeabilidad del revestimiento polimérico permite que las partículas precipitadas sean alcanzadas por el elemento activador de su característica antimicrobiana que es la humedad y cuya actividad queda circunscrita a la zona donde es permeado, y que es la condición en la que los microorganismos se desarrollan y multiplican. Es decir, las partículas precipitadas del soluto iónico son un antimicrobiano pasivo que se activa por efecto de la humedad. Las concentraciones de cada uno de los componentes de la Composición Antimicrobiana definen el espesor del recubrimiento, el tamaño y la cantidad de partículas precipitadas contenidas en este, lo que a su vez definirá la permeabilidad del revestimiento polimérico a los gases y humedad, que será la clave de la modificación del metabolismo de la fruta. A characteristic of each polymeric matrix is that it can be permeated by some gases and water vapour, allowing it to be breathed through, as is the case with fruit that needs oxygen for its metabolism and exhales it as CO2, in addition to exhaling ethylene from its metabolic process. The permeability of the polymeric coating allows the precipitated particles to be reached by the activating element of its antimicrobial characteristic, which is humidity and whose activity is limited to the area where it is permeated, and which is the condition in which microorganisms develop and multiply. . That is, the precipitated particles of the ionic solute are a passive antimicrobial that is activated by the effect of humidity. The concentrations of each one of the components of the Antimicrobial Composition define the thickness of the coating, the size and the quantity of precipitated particles contained in it, which in turn will define the permeability of the polymeric coating to gases and humidity, which will be the key of the modification of the metabolism of the fruit.
Otro factor que incide en el recubrimiento es la forma de aplicación y que básicamente son por aspersión y por inmersión. El tiempo que demore en secarse el recubrimiento debe ser preestablecido para poder tener un concreto efecto antimicrobiano sin producir algún efecto negativo sobre la superficie de la fruta. Another factor that affects the coating is the form of application, which is basically by spraying and by immersion. The time it takes for the coating to dry It must be pre-established in order to have a specific antimicrobial effect without producing any negative effect on the surface of the fruit.
La acción de esta Composición Antimicrobiana no se limita a la post cosecha, ya que puede ser aplicada en el campo, tanto a la fruta como al árbol o planta que la produce, ya que genera un efecto de eliminación de patógenos en su estado líquido y luego mantiene una protección pasiva en el tiempo. Esto es importante en el caso de algunos frutos que no se aconseja lavar en el proceso de postcosecha, a los cuales se les pueda aplicar la Composición Antimicrobiana mientras el fruto está en la mata. En el caso de las uvas se podría aplicar en la parra en el tiempo previo al cierre del racimo, donde en su interior es donde se desarrolla mayoritariamente la botrytis. Otro aspecto que cabe destacar es en el caso de ser aplicado sobre frutas con tallo como la cereza y la misma uva, el recubrimiento polimerico retrasará el proceso de deshidratación de estos, por lo que mantendrán su aspecto de color y frescor durante un mayor tiempo. The action of this Antimicrobial Composition is not limited to post-harvest, since it can be applied in the field, both to the fruit and to the tree or plant that produces it, since it generates an effect of eliminating pathogens in their liquid state and then it maintains a passive protection over time. This is important in the case of some fruits that are not recommended to be washed in the postharvest process, to which the Antimicrobial Composition can be applied while the fruit is in the bush. In the case of grapes, it could be applied to the vine prior to the closing of the bunch, where botrytis develops mainly inside. Another aspect that should be highlighted is in the case of being applied to fruits with stems such as cherries and grapes, the polymeric coating will delay the dehydration process of these, so they will maintain their appearance of color and freshness for a longer time.
Un ejemplo práctico de esta Composición Antimicrobiana es la mezcla de una disolución acuosa polimérica de PVOH y una disolución acuosa de Ácido Cítrico, ambas en concentraciones menores al 5% p/p. La concentración del ácido define lo fuerte o activa que va a ser la solución en la eliminación de los patógenos superficiales, teniendo además en consideración lo fuerte o débil que es la capa exterior de la fruta sobre la que se aplica. La concentración del polímero de la composición definirá el grosor de la película o revestimiento resultante sobre la fruta y su grado de permeabilidad a los gases que ralentizan el metabolismo de esta y que mantienen las cualidades organolépticas por mayor tiempo en condiciones de frescas. A practical example of this Antimicrobial Composition is the mixture of a polymeric aqueous solution of PVOH and an aqueous solution of Citric Acid, both in concentrations less than 5% p/p. The concentration of the acid defines how strong or active the solution is going to be in the elimination of surface pathogens, also taking into account how strong or weak the outer layer of the fruit on which it is applied is. The concentration of the polymer in the composition will define the thickness of the resulting film or coating on the fruit and its degree of permeability to gases that slow down its metabolism and maintain its organoleptic qualities for longer in fresh conditions.
En una prueba práctica de la Composición Antimicrobiana, realizada en 1.500 paltas con una alta incidencia de antracnosis, se vieron significativos cambios en la incidencia del patógeno y un retraso importante de la maduración de la fruta. Después de un período de refrigeración, se aplicó a la fruta por medio de aspersión una mezcla de una disolución acuosa de ácido cítrico al 3% p/p y una disolución de alcohol polivinílico (PVOH) al 2% p/p. Esto produjo como resultado, un recubrimiento de aproximadamente 9 gr/m2, el que se dejó secar, para luego dejar la fruta madurar en condiciones ambientales, donde la temperatura osciló entre los 14°C y los 24°C. y los estados de maduración fueron informadas diariamente. La incidencia de la antracnosis en los testigos fue de 83,9% y donde se pudo apreciar una diferencia visible en el resultado de la fruta con la Composición Antimicrobiana, la que arrojó un 59,3% de incidencia, lo que se aprecia claramente el cuadro a continuación. (Composición Antimicrobiana se denomina PIRojo) . Distribución de niveles de severidad de Antracnosis en Paltas
Figure imgf000008_0001
In a practical test of the Antimicrobial Composition, carried out on 1,500 avocados with a high incidence of anthracnose, significant changes were seen in the incidence of the pathogen and a significant delay in the ripening of the fruit. After a cooling period, a mixture of a 3% w/w aqueous citric acid solution and a 2% w/w polyvinyl alcohol (PVOH) solution was applied to the fruit by spraying. As a result, this produced a coating of approximately 9 gr/m2, which was allowed to dry, and then the fruit was allowed to ripen under ambient conditions, where the temperature ranged between 14°C and 24°C. and maturation stages were reported daily. The incidence of anthracnose in the controls was 83.9% and where a visible difference could be seen in the result of the fruit with the Antimicrobial Composition, which showed a 59.3% incidence, which clearly shows the chart below. (Antimicrobial Composition is called PIRojo). Distribution of severity levels of Anthracnose in Avocados
Figure imgf000008_0001
El efecto antimicrobiano activo es significativo, al recuperar a un estado sano de un 16,1% de la fruta a un 40,7%. Es decir, un 29,3% de las paltas infectadas lograron su maduración sanas, en un tiempo más prolongado de maduración, sin la activación del patógeno antracnosis con que estaban contaminadas. The active antimicrobial effect is significant, recovering a healthy state from 16.1% of the fruit to 40.7%. That is to say, 29.3% of the infected avocados achieved healthy maturation, in a longer maturation time, without the activation of the anthracnose pathogen with which they were contaminated.
El retraso de la maduración que se pudo observar, entre el testigo y la fruta con la Composición Antimicrobiana aplicada, fueron también significativos. De un tiempo promedio de maduración de 13,6 días a un promedio de 20,2 días, que es un 48,5 % más con respecto al testigo, como se muestra a continuación. The delay of the maturation that could be observed, between the control and the fruit with the applied Antimicrobial Composition, were also significant. From an average maturation time of 13.6 days to an average of 20.2 days, which is 48.5% more than the control, as shown below.
Días de madurez de consumo de Paltas evaluada
Figure imgf000008_0002
Days of avocado consumption maturity evaluated
Figure imgf000008_0002
Es importante tener en cuenta que alargar el tiempo de maduración lleva implícito dar más tiempo a los patógenos para que se activen. Luego el resultado de la aplicación de la Composición Antimicrobiana es doble, ya que rescató un 29,3% de las paltas infectadas por un periodo de maduración de un 48,5% más prolongado, en condiciones ambientales. La protección activa eliminó los patógenos durante el estado líquido de la Composición Antimicrobiana para luego actuar el revestimiento polimérico como ralentizador de la maduración, mientras seguía estando la fruta protegida por el efecto pasivo de las partículas precipitadas del ácido cítrico en el revestimiento. It is important to bear in mind that lengthening the maturation time implicitly gives pathogens more time to become active. Then the result of the application of the Antimicrobial Composition is double, since it rescued 29.3% of the infected avocados for a longer maturation period of 48.5%, under ambient conditions. The active protection eliminated the pathogens during the liquid state of the Antimicrobial Composition and then the polymeric coating acted as a retarder of ripening, while the fruit continued to be protected by the passive effect of the precipitated particles of citric acid in the coating.
Esta protección pasiva es la que se muestra en los cuadros siguientes y que midieron el resultado de la aplicación de una solución de sucrosa y dextrosa con conidias de antracnosis sobre un portaobjetos donde se había aplicado la Composición Antimicrobiana y que se había dejado secar completamente, que es la condición que encontrarán los patógenos al depositarse sobre la fruta con el recubrimiento aplicado, y los testigos que son portaobjetos con la aplicación sólo de la disolución de polímero de la composición. Resultados Antracnosis (Cg) Distribución % de los estados de las conidias de cada muestra en cada observación temporal.
Figure imgf000009_0001
This passive protection is the one shown in the following tables and which measured the result of applying a solution of sucrose and dextrose with anthracnose conidia on a slide where the Antimicrobial Composition had been applied and which had been allowed to dry completely, which it is the condition that the pathogens will find when they are deposited on the fruit with the applied coating, and the controls that are slides with the application only of the polymer solution of the composition. Results Anthracnose (Cg) Distribution % of the states of the conidia of each sample in each temporal observation.
Figure imgf000009_0001
Continuación
Figure imgf000009_0002
Continuation
Figure imgf000009_0002
Es apreciable el efecto de las partículas precipitadas de ácido cítrico en el revestimiento polimérico sobre las conidias de antracnosis, llegando al cabo de 7 días a tener una disminución de la germinación del patógeno desde un 97,3% del testigo a una de un 7,3% de la Composición Antimicrobiana. Esta altísima incidencia en la germinación de las conidias se dan en condiciones óptimas de aplicación que deberán de ser consideradas al elegir el método de aplicación, siendo el de inmersión claramente ventajoso con respectos a la aspersión por generar una presión de aplicación al sumergirse la fruta en el líquido. The effect of the precipitated particles of citric acid in the polymeric coating on the anthracnose conidia is appreciable, reaching a decrease in pathogen germination after 7 days from 97.3% of the control to one of 7, 3% of the Antimicrobial Composition. This very high incidence in the germination of the conidia occurs in optimal conditions of application that must be considered when choosing the application method, being the immersion method clearly advantageous with respect to the aspersion by generating an application pressure when submerging the fruit in the liquid.
Este comportamiento antimicrobiano es perfectamente compatible con la precosecha, tanto aplicado por aspersión a la planta como sólo sobre la fruta, ya que genera un ambiente poco propicio para la aparición de patógenos. Cabe considerar que al ser el revestimiento polimérico soluble en agua puede ser limpiado de la fruta por la lluvia, por lo que cabría definir alguna forma de polímero menos soluble, compatible con las características de la Combinación Antimicrobiana. This antimicrobial behavior is perfectly compatible with pre-harvest, both applied by spraying to the plant and only on the fruit, since it generates an environment that is not conducive to the appearance of pathogens. It should be considered that since the polymeric coating is soluble in water, it can be washed off the fruit by rain, so some form of less soluble polymer compatible with the characteristics of the Antimicrobial Combination could be defined.
Dentro de las diferentes posibilidades que existen de solutos sólidos solubles en agua para reaccionar en presencia de humedad, destacan por su disponibilidad el ácido cítrico, el cloruro de sodio y el bicarbonato de sodio, así como en el grupo de los polímeros el alcohol polivinílico y la metilcelulosa, todos aceptados por las oficinas internacionales que regulan estas sustancias. Among the different possibilities that exist for solid solutes soluble in water to react in the presence of moisture, citric acid, sodium chloride and sodium bicarbonate stand out for their availability, as well as in the group of polymers, polyvinyl alcohol and methylcellulose, all accepted by the international offices that regulate these substances.
El concepto que tiene implícito esta innovación es utilizar las características antimicrobianas que tienen algunos solutos sólidos solubles en agua que una vez precipitados en la malla polimérica del recubrimiento, reaccionan en presencia de humedad. Este concepto no excluye su uso en productos que no van a ser de consumo humano, como por ejemplo la madera recién aserrada, la cual es atacada por múltiples patógenos, los que pueden ser eliminados con la aplicación de esta invención, sin ser necesariamente comestible el polímero con el precipitado resultante en su interior. Un ejemplo de esto es la disolución de metilcelulosa en agua al 1% p/p con una disolución en agua de hidróxido de sodio en una concentración baja (menor al 4%). Se aplica por aspersión sobre la madera recién aserrada, donde elimina los patógenos que se encuentran en la superficie y dejando un delgado recubrimiento polimérico que permite que la madera siga respirando y con partículas precipitadas en su interior, las que mantiene sus características antimicrobianas en presencia de humedad. The concept implicit in this innovation is to use the antimicrobial characteristics of some water-soluble solid solutes that, once precipitated in the polymer mesh of the coating, react in the presence of moisture. This concept does not exclude its use in products that are not going to be for human consumption, such as freshly sawn wood, which is attacked by multiple pathogens, which can be eliminated with the application of this invention, without necessarily being edible the polymer with the resulting precipitate inside. An example of this is the solution of methylcellulose in water at 1% w/w with a solution of sodium hydroxide in water at a low concentration (less than 4%). It is applied by spraying on freshly sawn wood, where it eliminates the pathogens found on the surface and leaves a thin polymeric coating that allows the wood to continue breathing and with precipitated particles inside, which maintains its antimicrobial characteristics in the presence of humidity.

Claims

REIVINDICACIONES
1.- Composición Antimicrobiana que preserva las condiciones organolépticas de la fruta, vegetales y hortalizas, CARACTERIZADA porque comprende al menos un solvente, al menos un polímero soluble y al menos un soluto soluble en agua y en el solvente de la composición. 1.- Antimicrobial composition that preserves the organoleptic conditions of fruit, vegetables and vegetables, CHARACTERIZED because it comprises at least one solvent, at least one soluble polymer and at least one solute soluble in water and in the solvent of the composition.
2.- Composición según reivindicación 1, CARACTERIZADA porque el solvente es agua, alcohol etílico, o una mezcla de ambos. 2. Composition according to claim 1, CHARACTERIZED in that the solvent is water, ethyl alcohol, or a mixture of both.
3.- Composición según reivindicación 1, CARACTERIZADA porque el polímero soluble es acetato de polivinilo, alcohol polivinílico, metilcelulosa, etilcelulosa, hidroxipropilcelulosa, hidroxipropil- metilcelulosa, etilmetilcelulosa, carboximetilcelulosa, hemicelulosa de soja, polímeros derivados del alginato, del agar, del quitosano, del aloe vera, del almidón de yuca, del maíz, de la quinoa, del colágeno, o una mezcla de estos, o un biopolímero natural de alto peso molecular biodegradable soluble en agua. 3. Composition according to claim 1, CHARACTERIZED because the soluble polymer is polyvinyl acetate, polyvinyl alcohol, methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, ethylmethylcellulose, carboxymethylcellulose, soy hemicellulose, polymers derived from alginate, agar, chitosan, of aloe vera, cassava starch, corn, quinoa, collagen, or a mixture of these, or a natural biopolymer of high molecular weight biodegradable soluble in water.
4.- Composición según reivindicación 1, CARACTERIZADA porque el soluto soluble en agua y en el solvente de la composición es ácido cítrico, bicarbonato de sodio, cloruro de sodio, sales de citratos, ácido sórbico, sorbato de potasio, ácido benzoico y sus derivados solubles en agua, sulfato de sodio y sus derivados solubles en agua, metabisulfito sódico, metabisulfito potásico, sulfito cálcico, sulfito ácido de calcio, sulfito ácido de potasio, natamicina, dimetil dicarbonato, nitrito potásico, nitrito sódico, propionato sódico, propionato potásico, propionato cálcico, ácido bórico, ácido ascórbico y sus derivados solubles en agua, u otras sales o solutos solubles en agua que tienen comportamiento antimicrobiano al estar disueltas, o una mezcla de estos. 4. Composition according to claim 1, CHARACTERIZED because the solute soluble in water and in the solvent of the composition is citric acid, sodium bicarbonate, sodium chloride, citrate salts, sorbic acid, potassium sorbate, benzoic acid and its derivatives soluble in water, sodium sulfate and its water-soluble derivatives, sodium metabisulfite, potassium metabisulfite, calcium sulfite, calcium hydrogen sulfite, potassium hydrogen sulfite, natamycin, dimethyl dicarbonate, potassium nitrite, sodium nitrite, sodium propionate, potassium propionate, calcium propionate, boric acid, ascorbic acid and their water-soluble derivatives, or other water-soluble salts or solutes that have antimicrobial behavior when dissolved, or a mixture of these.
5.- Composición según las reivindicaciones 1 y 3, CARACTERIZADA porque la concentración del polímero en porcentaje peso/peso es menor al 7% con respecto al solvente. 5. Composition according to claims 1 and 3, CHARACTERIZED in that the concentration of the polymer in weight/weight percentage is less than 7% with respect to the solvent.
6.- Composición según las reivindicaciones 1 y 4, CARACTERIZADA porque la concentración del soluto soluble en agua es en porcentaje peso/peso menor al 5% con respecto al solvente. 6. Composition according to claims 1 and 4, CHARACTERIZED in that the concentration of the solute soluble in water is less than 5% in weight/weight percentage with respect to the solvent.
7.- Composición según las reivindicaciones 1, 5 y 6, CARACTERIZADA porque el solvente es alcohol, el polímero es nitrocelulosa y el soluto sólido es ácido cítrico. 7. Composition according to claims 1, 5 and 6, CHARACTERIZED in that the solvent is alcohol, the polymer is nitrocellulose and the solid solute is citric acid.
8.- Composición según las reivindicaciones 1, 5 y 6, CARACTERIZADA porque el solvente es alcohol, el polímero es nitrocelulosa y el soluto sólido es hidróxido de sodio. 8. Composition according to claims 1, 5 and 6, CHARACTERIZED in that the solvent is alcohol, the polymer is nitrocellulose and the solid solute is sodium hydroxide.
9.- Composición según reivindicación 1, 3, 5 y 6, CARACTERIZADA porque el solvente es agua y el soluto sólido es hidróxido de sodio. 9. Composition according to claim 1, 3, 5 and 6, CHARACTERIZED in that the solvent is water and the solid solute is sodium hydroxide.
9 9
PCT/CL2020/050089 2020-08-10 2020-08-10 Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables WO2022032402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050089 WO2022032402A1 (en) 2020-08-10 2020-08-10 Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050089 WO2022032402A1 (en) 2020-08-10 2020-08-10 Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables

Publications (1)

Publication Number Publication Date
WO2022032402A1 true WO2022032402A1 (en) 2022-02-17

Family

ID=80246878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050089 WO2022032402A1 (en) 2020-08-10 2020-08-10 Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables

Country Status (1)

Country Link
WO (1) WO2022032402A1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIRCK C., DEGOUTIN S., TABARY N., MIRI V., BACQUET M.: "New crosslinked cast films based on poly(vinyl alcohol): Preparation and physico-chemical properties", EXPRESS POLYMER LETTERS, vol. 8, no. 12, 1 January 2014 (2014-01-01), pages 941 - 952, XP055905767, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett.2014.95 *
CAMPOS DO NASCIMENTO FABIANA, LIZ CONTINO VIANNA DE AGUIAR ·, LARISSA APARECIDA TOLEDO COSTA ·, MÁRCIO TEODORO FERNANDES ·, RODRIG: "Formulation andcharacterization ofcrosslinked polyvinyl alcohol (PVA) membranes: effects ofthecrosslinking agents", POLYMER BULLETIN, 2 March 2020 (2020-03-02), pages 917 - 929, XP055905802, Retrieved from the Internet <URL:https://link.springer.com/content/pdf/10.1007/s00289-020-03142-2.pdf> [retrieved on 20220328] *
MENEZES JOSLIN, ATHMASELVI K.A.: "Study on Effect of Pectin Based Edible Coating on the Shelf Life of Sapota Fruits", BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, ORIENTAL SCIENTIFIC PUBLISHING COMPANY, IN, vol. 13, no. 2, 28 June 2016 (2016-06-28), IN , pages 1195 - 1199, XP055905808, ISSN: 0973-1245, DOI: 10.13005/bbra/2152 *
MUSETTI ALESSANDRO, PADERNI KATIA, FABBRI PAOLA, PULVIRENTI ANDREA, AL-MOGHAZY MARWA, FAVA PATRIZIA: "Poly(vinyl alcohol)-Based Film Potentially Suitable for Antimicrobial Packaging Applications : PVOH film for active packaging…", JOURNAL OF FOOD SCIENCE, WILEY-BLACKWELL PUBLISHING, INC, US, vol. 79, no. 4, 1 April 2014 (2014-04-01), US , pages E577 - E582, XP055905771, ISSN: 0022-1147, DOI: 10.1111/1750-3841.12375 *
ZHANG JIHONG, ZENG LI, SUN HELONG, ZHANG JUNHONG, CHEN SHAOYANG, USING ": "Using Chitosan Combined Treatment with Citric Acid as Edible Coatings to Delay Postharvest Ripening Process and Maintain Tomato (Solanum lycopersicon Mill) Quality ", JOURNAL OF FOOD AND NUTRITION RESEARCH JOURNAL OF FOOD AND NUTRITION RESEARCH, 1 January 2017 (2017-01-01), pages 144 - 150, XP055905817, Retrieved from the Internet <URL:https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1074.2736&rep=rep1&type=pdf> [retrieved on 20220328], DOI: 10.12691/jfnr-5-3-1 *

Similar Documents

Publication Publication Date Title
US11708506B2 (en) Nano-cellulose compositions, coatings, and uses thereof
Riseh et al. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review
ES2578996T3 (en) Packaging system for perishable goods
CN102823644B (en) Fresh-keeping method for muskmelon
JP6713116B2 (en) A composition of a freshness-maintaining material, a freshness-maintaining material having the composition, a packaging material, a coating material, a coating apparatus for the coating material, and a manufacturing method of the packaging material.
CA2905579A1 (en) Nano-cellulose edible coatings and uses thereof
US20080014306A1 (en) Preserving composition and product for harvesting fruits and vegetables, and method for its use
EP3223607B1 (en) Edible morpholine-free coating formulations
CN102422881B (en) Agaricus bisporus film-coating fresh-keeping method
WO2015104440A1 (en) Edible coating for preserving pieces of fruit, production method and application thereof
US9485918B2 (en) Treatment system to prolong life of cut flowers
WO2022032402A1 (en) Antimicrobial composition that preserves the organoleptic conditions of fruit and vegetables
WO2020080542A1 (en) Freshness-retaining film and freshness-retaining container
CN107856982B (en) Chinese chive fresh-keeping packaging film
WO2020080541A1 (en) Freshness-preserving film and freshness-preserving container
Kamil et al. The impact of nano chitosan and nano silicon coatings on the quality of canino apricot fruits during cold storage
López-Cervantes et al. Emitters of antimicrobials
JP2730497B2 (en) Freshness preservation method
US20180339834A1 (en) Treatment of modified atmosphere packaging
JP4296817B2 (en) Garlic preservation method and garlic packaging
JP3813947B2 (en) Bacteriostatic method of cut vegetables
AU2020102314A4 (en) Preservative solution for papayas and method for storing and preserving papayas
Rosenberger et al. Sea transport of ornamental branches: problems and solutions
Kalita et al. Introduction to Active Food Packaging System
JPS6322501A (en) Freshness preservative for agricultural products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948902

Country of ref document: EP

Kind code of ref document: A1