WO2022030872A1 - Composite pipe and composite panel which have improved adhesive properties by using thermoplastic treatment of polyurea, and manufacturing methods therefor - Google Patents
Composite pipe and composite panel which have improved adhesive properties by using thermoplastic treatment of polyurea, and manufacturing methods therefor Download PDFInfo
- Publication number
- WO2022030872A1 WO2022030872A1 PCT/KR2021/009839 KR2021009839W WO2022030872A1 WO 2022030872 A1 WO2022030872 A1 WO 2022030872A1 KR 2021009839 W KR2021009839 W KR 2021009839W WO 2022030872 A1 WO2022030872 A1 WO 2022030872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurea
- layer
- polyurea layer
- tube
- film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/0017—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/18—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using tubular layers or sheathings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/26—Lining or sheathing of internal surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/26—Lining or sheathing of internal surfaces
- B29C63/34—Lining or sheathing of internal surfaces using tubular layers or sheathings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/52—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
- B29D23/001—Pipes; Pipe joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/48—Preparation of the surfaces
- B29C2063/483—Preparation of the surfaces by applying a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/48—Preparation of the surfaces
- B29C2063/488—Preparation of the surfaces providing the surface with fixing elements on which the plastic liner is bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
- B29K2075/02—Polyureas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0097—Glues or adhesives, e.g. hot melts or thermofusible adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/22—Tubes or pipes, i.e. rigid
Definitions
- the present invention relates to a method for manufacturing a composite pipe and a composite panel.
- the first and second tubes are heated and adhered, but a composite tube in which bubbles contained in the polyurea layer (adhesive layer) between the first and second tubes are removed due to the difference in the coefficient of thermal expansion of the first and second tubes can be manufactured It is about the manufacturing method.
- the present invention also relates to a composite pipe and composite panel made by the above manufacturing method.
- polyurea has excellent water absorption resistance, has a general operating temperature range (normally -45°C ⁇ +80°C), is strong against heat and cold, is free from ambient temperature and humidity, has a very fast curing time from a few seconds to a few minutes, and has excellent water resistance. Because it is high, it is used as a waterproofing material in various fields, has excellent impact resistance, and is excellent in preventing corrosion of metal. In particular, the greatest advantage of polyurea is that it has excellent wear and chemical resistance and a very wide usable temperature.
- polyurea has excellent surface quality and higher environmental stability because it does not use a separate catalyst, release agent, solvent, or organometallic compound.
- epoxy and polyurethane have high reactivity to water and temperature
- polyurea has strong water resistance and almost no thermal deformation, excellent scratch resistance, light resistance, chemical resistance, and permanent resistance to UV rays. also have
- polyurea-coated steel pipe Due to these polyurea stability and excellent properties, polyurea-coated steel pipe has been judged to be suitable for 48 item tests according to the American Water Association standard AWWA C 222 and the American National Sanitation Association NSF 61 drinking water standards. have.
- Polyurea has the form of a divided block composite divided into microphases, and this form consists of hardened (hard segment) regions dispersed in a flexible (soft segment) matrix.
- the hardened part is extensively hydrogen-bonded and functions by reversible physical crosslinking, so it exhibits excellent mechanical properties, especially impact resistance and robustness, and is very valuable as a protective coating material for clothes and metal materials.
- the coating was applied to a thickness of at least 3 mm when coating 3-layer polyethylene, but polyurea has been known to express the performance of a coated steel pipe only with a coating of 0.63 mm thick.
- polyurea has a very short curing time from a few seconds to a few minutes.
- the copolymerization monomers are sprayed and collided with high pressure at a temperature of 40 to 70 ° C. can be obtained, and thus there is a problem in use.
- the spray-coated polyurea has very weak peel strength on the surface of the iron pipe. Therefore, when polyurea is applied to the surface of a metal tube or a metal panel, there is a problem in that the peel strength of the polyurea layer is very low.
- the present applicant knows that moisture that has penetrated for a long time through the air bubbles distributed in the coating layer according to the spray coating method may reach the interface between the adherend and the polyurea to gradually corrode the metal and cause layer separation accordingly.
- the current spray coating method is judged to be effective only when a minimum coating thickness of 3.0 mm or more, such as 3-layer polyethylene, is applied.
- polyurea is a very attractive and excellent coating material, but with the current spray coating method, only bonding with the metal to be adhered occurs, and due to the fast curing speed, sufficient wetting is not achieved, so the bonding performance is 100% It cannot be expressed, and a high value is shown in the Dolly Test, but the result is weak in peel strength.
- the present invention has been proposed to solve the above-mentioned problems, and by heating the polyurea layer to 180 ⁇ 320 °C to plasticize the polyurea to have high adhesion and peel strength, and to have high adhesion and peel strength, and the contact surface of the polyurea layer with the adherend
- An object of the present invention is to provide a method for manufacturing a composite pipe or composite panel, which improves moisture barrier properties by forming an interfacial film on the outer surface and improves elasticity and impact resistance by allowing a relatively large number of pores to be included in the polyurea coating layer have.
- Another object of the present invention is to combine through expansion and contraction by sequentially heating and cooling from one end to the other end of the first and second tubes using the difference in the coefficient of thermal expansion of the first and second tubes.
- An object of the present invention is to provide a method for manufacturing a composite pipe in which the adhesive properties (coupling force) between the first and second pipes are increased by removing air bubbles contained in the polyurea layer (adhesive layer) between the two pipes.
- Another object of the present invention is to provide a composite pipe and composite panel made by the above manufacturing method.
- polyurea can be applied by spraying copolymer monomers to the adherend at a high pressure at a temperature of 40 to 70 ° C.
- the peel strength on the surface of the metal tube or metal panel is very weak. has a problem.
- the present applicant found out that since the monomers for copolymerization are applied by spraying, the wetting area is small and sufficient bonding is not achieved. That is, when polyurea is spray-applied, sufficient wetting is not performed due to a fast curing speed, and thus sufficient adhesive strength cannot be exhibited, which results in low peel strength, that is, low adhesive strength.
- the space generated between the sprayed powder particles acts as a void in the coating film, and in the long term, these micropores act as a penetration path for moisture, which corrodes the adherend or causes layer separation between the adherend and the polyurea layer. .
- the present invention has been devised to solve the above problems.
- the present invention provides a step of forming a polyurea layer on an adherend by spraying (S1) an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more linear carbon atoms, for example, a metal pipe, a metal panel, a pipe connecting part, etc.; and, (S2) heat-treating the polyurea layer.
- the heat treatment is performed by spraying the aromatic diisocyanate and the amine to the adherend heated to a temperature at which plasticization occurs in step (S1), or by heating polyurea to a temperature at which plasticization occurs after step (S1). can be done A detailed explanation of this is as follows.
- the aromatic diisocyanate and the amine may be sprayed in a conventional ratio used for polyurea coating, for example, 1:1 (volume ratio).
- the polyurea according to the present invention is formed by polymerization of an aromatic diisocyanate and an aromatic or aliphatic amine having 3 or more linear carbon atoms.
- the polymerization reaction proceeds very quickly.
- an aromatic diisocyanate and a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms are simultaneously sprayed onto an adherend, the two monomers are polymerized on the adherend to form a polyurea layer.
- the aromatic amines may have 12 or more carbon atoms in the repeating unit.
- Polyurea has a temperature range of -40°C to +80°C, but in reality, it maintains thermal stability from about 180°C to less than 230°C, and thermal stability is reduced from around 280°C to 320°C or less.
- the upper limit of the operating temperature of polyurea is set to 80°C because the maximum temperature at which the physical properties are maintained is 120°C, and the breakage of hydrogen bonds usually starts around 62°C and most hydrogen bonds at 90°C or higher. This is because the separation indicates a weakening of physical rigidity, and the size of the pores increases and the appearance of the coated body becomes unstable. From about 180° C.
- the polyurea formed by spraying the aromatic diisocyanate and the amine consists of a hardening part and a flexible part, the flexible part has 3 or more straight-chain carbon atoms, and the flexible part is plasticized according to the plasticization so that the polyurea is partially plasticized.
- the plasticization or flow of the flexible part (soft segment) can macroscopically appear as the flow of polyurea, and when this plasticized flow is adjusted in an appropriate temperature range, damage to the crosslinking of the hardened part (hard segment) is minimized and polyurea flow is minimized. It is possible to secure the fluidity and plasticity of urea.
- a polyurea layer having high flexibility and easy plasticization can be formed by using a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms as a monomer of the polyurea as amines corresponding to the flexible part (soft segment).
- the aromatic or aliphatic amine having 3 or more carbon atoms is not particularly limited as long as it can form polyurea, and for example , ⁇ , ⁇ ′-diamino-m-xylene ( ⁇ , ⁇ ′-Diamino- m -xylene), hexa Methylenediamine (hexamethylene diamine), isophoronediamine, polyetheramines (polyetheramines), polyoxypropylene glycol diamine (propylene diamine), N,N-dialkylmethylenediamine (N, N-dialkylmethylenediamine), 4,4-diaminodiphenyl methane (4,4-Diamino diphenyl methane), 4,4-diaminodiphenyl ether (4,4-Diaminodi phenyl ether), diethyl toluenetriamine (di -ethyl-toluene triamine: DETDA), diethylenetriamine, etc. may be used alone or
- the straight-chain aromatic or aliphatic amine having 3 or more carbon atoms may have a molecular weight of 380 to 4000. If the molecular weight is less than 380, plasticization is not easily achieved, and if the molecular weight exceeds 4000, the flexibility is good, but the rigidity may be low.
- the aromatic or aliphatic amine may have 3 or more linear carbon atoms, and preferably 12 or more.
- the upper limit of carbon number is not particularly limited as long as polyurea can be formed, but if it is too short, plasticization is difficult, and if it is too long, flexibility is good but rigidity is low, so it may be, for example, 22.
- the number of carbon atoms in the repeating unit may be 2 to 6 carbon atoms.
- the aromatic diisocyanate is not particularly limited as long as it can form polyurea, for example, methylenediphenyldiisocyanate (MDI), hexamethylenediisocyanate (HMDI), methylenebisparacyclohexylisocyanate (H12MDI), xylenedi Isocyanate (XDI), naphthalene diisocyanate (NDI), isophorone diisocyanate (IPDI), etc. may be used alone or in combination of two or more.
- MDI methylenediphenyldiisocyanate
- HMDI hexamethylenediisocyanate
- H12MDI methylenebisparacyclohexylisocyanate
- XDI xylenedi Isocyanate
- NDI naphthalene diisocyanate
- IPDI isophorone diisocyanate
- additives such as a stability enhancer of polyurea, a crosslinking accelerator and an antifoaming agent may be partially used.
- the adherend is not particularly limited as long as polyurea can be applied thereto.
- it may be metal or plastic, and in the case of metal, it may be a steel plate, a stainless steel plate, a steel pipe, a stainless steel pipe, a pipe connection part, and the like.
- a metal oxide layer (oxidation protective film) may be formed on the surface thereof.
- the metal oxide layer may be a corrosion layer of a metal or an artificially formed corrosion resistance layer.
- a film (interfacial film) will be formed at the interface between the polyurea that has been sufficiently softened and flowed and the adherend has a sufficiently low viscosity, and unlike the case of spray application, the formed film has fewer voids, so the excellent waterproofness of polyurea and the adherend Water resistance is improved.
- the adherend is a metal
- the oxide protective film formed on the metal surface that is, oxygen and metal elements such as Fe 2 O 3 , Cr 2 O 3 , ZnO, and amine of polyurea, hydrogen or oxygen of urea are chemically combined or secondary Since bonding (eg, hydrogen bonding, van der Waals bonding, etc.) occurs, adhesion is remarkably increased through the heat treatment process of this step. Accordingly, the polyurea layer according to the present invention can also be utilized as an adhesive layer.
- the crosslinking reaction of the hardened part (hard segment) of polyurea and the hydrogen bond between hydrogen of amine and oxygen of the carbonyl group are reversible reactions.
- the broken cross-links and hydrogen bonds are re-formed, so the loss of the physical properties of the polyurea is very small.
- the plasticization temperature of polyurea may vary depending on specific types of monomers used for polymerization of polyurea, but when the polyurea reaches only the plasticization temperature, the viscosity is significantly lowered, so that in the present invention effect can be shown.
- polyurea synthesized by using a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms as a monomer of the copolymer may have a plasticization temperature of 180 to 320 ° C, preferably 200 to 280 ° C, and most Preferably it may be 230 to 280 °C, this point will be further described in Examples and Experimental Examples below.
- polyurea as an elastic protector are due to crosslinking that occurs in urea and urethane.
- a hydrogen bond occurs between oxygen contained in the carbonyl group of a molecule adjacent to hydrogen, and as the strength of the hydrogen bond is accumulated, it has stronger and tougher properties.
- urea Due to its molecular structure, urea has twice as many hydrogen bonds as urethane. This hydrogen bond maintains and stabilizes the rigidity of polyurea, and acts as a major factor along with crosslinking. When is lowered, it has plasticity to rejoin.
- the main temperature range of polyurea in the prior art is -40°C to +80°C, but in reality, it maintains thermal stability from about 180°C to less than 230°C depending on the comonomer, and from about 280°C to 320°C. Thermal stability is reduced.
- polyurea has a microphase divided block composite form and specifically consists of a hardened part (hard segment) region dispersed in a flexible part (soft segment) matrix.
- the flow can be macroscopically represented as a flow of polyurea, and if this plasticized flow is controlled in an appropriate temperature range, damage to crosslinking of the hardened part (hard segment) can be minimized and fluidity and plasticity of polyurea can be secured. found out that
- Polyurea synthesized by using aromatic or aliphatic amines having n (3) or more carbon atoms per repeating unit as monomers of the amines corresponding to the flexible part (soft segment) has high flexibility and is easy to plasticize at 180 ⁇ 320°C,
- the flexible part may be plasticized in the range of 200 to 280 °C, most preferably 230 to 280 °C.
- thermogravimetric reduction was confirmed using TGA to determine the thermal decomposition of polyurea.
- polyurea including most aliphatic amines had a weight reduction initiation temperature (5% weight loss occurred). If the temperature) exceeds about 280 °C and 320 °C or less, thermal decomposition is started in this temperature section, and if it exceeds 320 °C, excessive pyrolysis and decomposition is terminated at 435 ⁇ 460 °C.
- the adhesion when the temperature is 230 to 280° C., the adhesion (measured by the Dolly test) is 10 times or more and the peeling strength is 8 to 16 times compared to the spray application by the conventional method (that is, when there is no heat treatment). I could tell it was over. Furthermore, when the temperature is 200 ° C or more and less than 230 ° C, the adhesive force (measured by the Dolly test) is 6 to 10 times and the peel strength is 3 times or more than the spray application by the conventional method (that is, when there is no heat treatment) It was found that .
- the temperature is 180 ⁇ 320 °C, preferably 200 ⁇ 280 °C, most preferably 230 ⁇ 280 °C.
- a film (interfacial film) will be formed at the interface between the polyurea, which has been sufficiently softened and flowed, and the metal, which is the adherend, due to a sufficiently low viscosity. The effect of blocking the attack of moisture will increase.
- a polyurea layer may be formed on an adherend (metal tube, metal panel, etc.) heated to the plasticizing temperature.
- an interface film may be formed at the interface with the adherend.
- an interface film (external blocking film) may be formed by heating the outer surface of the polyurea layer.
- first polyurea layer when the first polyurea layer is thinly formed on the adherend and heated to the plasticizing temperature, air bubbles included in the first polyurea layer are removed and the tissue is densified to form an interfacial film (first interfacial film).
- second polyurea layer is formed on the first polyurea layer.
- an interface film second interface film may be formed by heating the outer surface of the second polyurea layer to the plasticizing temperature.
- the waterproofness may be improved and the effect of blocking moisture attack on the adherend may be increased.
- the polyurea layers may be applied at once to form the polyurea layers.
- the outer surface of the polyurea layer and the interface with the adherend may each be formed as an interface film by heating.
- the first polyurea layer may have a thickness of about 0.3 to 0.85 mm, preferably a thickness of about 0.35 to 0.7 mm. may have, and most preferably have a thickness of about 0.5 to 0.6 mm.
- the second polyurea layer is thicker than the first polyurea layer, and its thickness may be determined as necessary in consideration of the use of the product, the use, the environment, and the like.
- the method may further include moving the adherend during or after the heat treatment step.
- the adherend When the adherend is moved, the plasticized polyurea can be more evenly applied to the surface of the adherend, thereby further improving applicability and adhesion.
- the adherend When the adherend is plate-shaped, the movement may be performed in a vibrating or seesaw-type movement method.
- the seesaw movement refers to a movement in which the left and right sides are alternately raised and lowered around any one part of the adherend.
- the adherend is a pipe type, the movement may be performed in a rotational manner.
- the molten polyurea spreads uniformly, making the contact area more even and wider, effectively reducing the voids or bubbles in the film occurring at the interface between the coating agent and the adherend, and forming the film evenly.
- the polyurea surface is heated and melted by thermal radiation heating to the plasticizing temperature of the polyurea or using a heated roller or template, and an appropriate pressure (for example, a pressure sufficient to remove the pores (bubbles) of the polyurea layer) ) to form a film on the external surface, it blocks moisture penetration more effectively to protect the adherend, and incidentally increases the adhesion by pressure. ) improves barrier properties by forming a film through re-melting/re-crosslinking, and the intermediate layer maintains sufficient pores to improve elasticity and impact resistance.
- Methylenediphenyl diisocyanate (MDI) and polypropylene glycol are mixed in about 75 wt% and 25 wt%, and polypropylene glycol diamine, polyetheramine, and diethyltoluenetriamine are 75 wt%, 20 wt%, and 5 wt%, respectively.
- % is prepared, and the isocyanate and the amine are 1:1 (volume ratio) at a temperature of 70° C. and a pressure of 17.2 Mpa (172 bar).
- a polyurea layer was formed on one surface of the steel plate (steel plate) by simultaneously spraying on the steel plate (steel plate). Then, the steel plate (steel plate) was heated to a temperature of 250 °C.
- a steel plate coated with polyurea was prepared in the same manner as in Example 1.1 except for heat treatment at 250°C. That is, methylene diphenyl diisocyanate (MDI) and polypropylene glycol are mixed in about 75 wt% and 25 wt%, and polypropylene glycol diamine, polyetheramine, and diethyltoluenetriamine are 75 wt% 20 wt% and 5 wt%, respectively.
- MDI methylene diphenyl diisocyanate
- polypropylene glycol diamine, polyetheramine, and diethyltoluenetriamine are 75 wt% 20 wt% and 5 wt%, respectively.
- the mixed amine was sprayed with the isocyanate and the amine at a temperature of 70° C. and a pressure of 17.2 Mpa (172 bar) in a ratio of 1:1 (volume ratio), and no heat treatment was performed.
- Examples 1.2 to 1.4 differ from Example 1.1 only in the presence or absence of an adherend or undercoat, and the remaining conditions are the same. And, Comparative Examples 1.2 to 1.4 differ from Comparative Example 1.1 only in the presence or absence of an adherend or undercoat, and the remaining conditions are the same. Specific details of Examples 1.2 to 1.4 and Comparative Examples 1.2 to 1.4 are shown in Table 1.
- Example 2.1 is the same as Example 1.1 except that it was heat-treated at 180 ° C.
- Example 2.2 is the same as Example 1.1 except that heat treatment was performed at 200 ° C.
- Example 2.3 was heat-treated at 230 ° C.
- Example 1.1 is the same except that, Example 2.4 is the same as Example 1.1, except that the heat treatment at 280 °C.
- Example 2.5 is the same as Example 1.1, except that the heat treatment at 320 °C.
- Comparative Example 2.1 is the same as Comparative Example 1.1 except for heat treatment at 160 °C
- Comparative Example 2.2 is the same as Comparative Example 1.1 except that 340 °C heat treatment.
- Examples 2.1 to 2.5 have superior bonding strength and peel strength compared to Comparative Example 2.1 (when heat treated at 160 ° C.), and particularly, heat treatment temperature of 230 - It can be seen that the difference is more significant when it is 280 ° C. (Examples 2.2 to 2.4).
- Examples 2.1 to 2.5 showed no significant difference in bonding strength compared to Comparative Example 2.2 (when heat treated at 340 ° C.), but the peel strength was significantly higher.
- the heat treatment temperature was 230 to 280 ° C.
- Example 1.1 The results of microscopic analysis of Example 1.1 and Comparative Example 1.1 are shown in FIGS. 4 to 13 .
- FIG. 4 is a photograph taken at 1,000 times magnification of polyurea, and it can be seen that an adhesive film is formed on the interface, the inner metal surface is projected, and no air bubbles and pores are found.
- FIG. 5 is a photograph taken at 1,000 times magnification of the separation of the polyurea layer from the adherend after heat-melt bonding. Compared to Comparative Example 1.1, pores were significantly reduced, and traces (grooves) of the adherend were clearly visible on the separated surface. It can be seen that the wettability is significantly increased. And, FIG. 6 is a photograph of the surface remaining on the metal side during separation of FIG. 5 , and it can be seen that the film formation is clear.
- FIG. 7 to 8 are photographs of the bonding surface during heat-melting bonding. It can be seen that a dense sealing film (interfacial film) is formed at the bottom of the polyurea, and the density of the sealing film (interfacial film) part is high and the pores are It can be seen that there are few
- FIG. 9 is a photograph (planar) showing the polyurea layer, and it can be seen that the film is stretched by adhesion and pores outside the interfacial film can be confirmed.
- FIGS. 10 to 13 are photomicrographs (1,000 times) of Comparative Example 1.1 (polyurea was applied by the conventional method).
- FIG. 10 is a photograph taken at 1000 times magnification of the external exposed surface (outer side) of the polyurea layer, and it can be seen that bubbles of up to 0.043 mm are observed on the surface and inside.
- FIG. 11 is a photograph showing the bonding surface between the adherend and the polyurea layer, and bubbles with a maximum observed value of 0.028 mm were found on the surface and inside.
- FIG. 12 it can be seen that close adhesion is not made between the adherend and the polyurea, and a space appears clearly between the materials, and it can be seen that the polyurea does not sufficiently wet the adherend.
- FIG. 13 is a 100-fold magnification of the boundary portion between the adherend and polyurea, and it can be seen that air bubbles and pores are distributed throughout the cross section.
- the present invention has the following effects.
- the polyurea layer is heated to 180 to 320° C. and plasticized to have high adhesion and peel strength, and the contact surface with the adherend of the polyurea layer and the By forming an interfacial film on the outer surface, moisture barrier properties are improved, and elasticity and impact resistance are improved by allowing a relatively large number of pores to be included in the polyurea layer.
- the polyurea layer between the first and second tubes is heated and cooled sequentially from one end of the first and second tubes to the other end to bond the two tubes, but using the difference in the coefficient of thermal expansion of the first and second tubes Air bubbles contained in (adhesive layer) can be removed.
- 1 is a cross-sectional view showing polyurea sprayed onto an adherend (metal surface) according to the prior art.
- FIG. 2 is a cross-sectional view showing polyurea heat-treated after being sprayed onto an adherend (metal surface) according to the present invention.
- 3 is a graph showing the TGA result of measuring the thermal decomposition of polyurea.
- FIG. 6 is a photograph of the surface remaining on the metal side when the separation of FIG. 5 is performed.
- FIG. 9 is a photograph (planar view) showing a polyurea layer that is heat-melted bonded.
- FIG. 11 is a photograph showing a bonding surface between an adherend and a polyurea layer (applied by a conventional method).
- 13 is a 100-fold magnification of the boundary portion between the adherend and the polyurea layer.
- FIG. 14 is a cross-sectional view showing a composite pipe manufactured according to the present invention.
- 15 is a flowchart showing a method for manufacturing a composite pipe according to the present invention.
- 16A to 16F are views sequentially showing a heating method according to the present invention.
- 17A is a cross-sectional view showing a composite panel manufactured according to the present invention.
- 17B is a cross-sectional view showing another composite panel made in accordance with the present invention.
- the present invention can be applied to a composite pipe of various materials, and is not applied only to a composite pipe of a specific material. That is, the present invention can be applied to a composite pipe made by inserting a second pipe inside the first pipe.
- a case in which the stainless steel pipe 30 is inserted into the steel pipe 10 will be described as an example.
- FIG. 14 is a cross-sectional view showing a composite pipe manufactured according to the present invention
- FIG. 15 is a flowchart showing a process for manufacturing the composite pipe.
- the composite pipe 100 includes a steel pipe 10, a stainless steel pipe 30 inserted into the steel pipe 10, and at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30. It includes a first polyurea layer 20 formed, a first polyurea layer 22 formed on the outer surface of the steel pipe 10 , and a second polyurea layer 40 formed on the first polyurea layer 22 . do.
- the composite pipe 100 is mainly used as a water supply pipe, but is not necessarily limited thereto.
- the first polyurea layer 20 may be formed on at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30 , but below, for convenience of description, the first polyurea layer 20 ) is assumed to be formed on the inner surface of the steel pipe (10).
- the first polyurea layer 20 is formed on the outer surface of the stainless steel tube 30, its configuration will be easily understood with reference to the following description, and thus a description thereof will be omitted.
- the method for manufacturing the composite pipe includes the steps of forming a first polyurea layer 20 on the inner surface of the steel pipe 10 and forming the first polyurea layer 22 on the outer surface of the steel pipe 10 (S10); 1 Step of forming the second polyurea layer 40 on the polyurea layer 22 (S20), inserting the stainless steel pipe 30 into the steel pipe 10 (S30), the steel pipe 10 and The step of expanding the stainless steel pipe 30 (S40), heating the steel pipe 10 and the stainless steel pipe 30 to remove air bubbles in the first polyurea layer 20 and 22 to remove the air bubbles from the pipes 10 and 30 ) and increasing the adhesion between the first polyurea layer 22 and the steel pipe 10 ( S50 ), and heating the outer surface (outer surface) of the second polyurea layer 40 .
- step S20 may be performed at any time after step S10 and before step S60. 15 , the dotted line indicates that step S20 may be performed between steps S10 and S30, between steps S30 and S40, between steps S40 and S50, and between steps S50 and S60. However, below, for convenience of description, a case in which step S20 is performed between steps S10 and S30 will be described.
- the first polyurea layer 20 is formed on the inner surface of the steel pipe 10 and the first polyurea layer 22 is formed on the outer surface of the steel pipe 10 ( S10 ).
- the first polyurea layer 20 may be formed on at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30 .
- the first and second polyurea layers 20 and 22 may have a thickness of about 0.3 to 0.85 mm, preferably about 0.35 to 0.7 mm, and most preferably about 0.5 to 0.6 mm. may have a thickness of
- the thickness is less than the lower limit (0.3mm), adhesive strength and moisture barrier are not sufficient, and if it is larger than the upper limit (0.85mm), it is not preferable because it becomes too thick.
- the polyurea layers 20 and 22 may be formed by spraying an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more carbon atoms on the inner and outer surfaces of the steel pipe 10 in a 1:1 (volume ratio) ratio.
- aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more carbon atoms on the inner and outer surfaces of the steel pipe 10 in a 1:1 (volume ratio) ratio.
- the specific kind of the aromatic diisocyanate and the specific kind of the amine have been described above.
- a second polyurea layer 40 is formed on the first polyurea layer 22 (S20).
- the constituent components and application method of the second polyurea layer 40 are the same as the constituent components and application method of the polyurea layers 20 and 22 .
- the thickness of the second polyurea layer 40 may be determined according to the use and necessity of the product.
- the stainless steel pipe 30 is inserted into the steel pipe 10 (S30).
- the outer diameter of the stainless steel pipe 30 is slightly smaller than the inner diameter of the steel pipe 10 , but has a diameter difference to the extent that it can be closely coupled to the inner surface of the steel pipe 10 by a subsequent pipe expansion and heating process.
- the expansion is a method for bonding heterogeneous pipes to each other, and may be made by hydroforming or by an expansion mold. Since the hydroforming and expansion mold are known in the art, a description thereof will be omitted.
- the second polyurea layer 40 may be formed after the tube is expanded.
- the steel pipe 10 and the stainless steel pipe 30 are heated (S50).
- the heating is performed at 180°C to 320°C, preferably 200°C to 280°C, and most preferably 230°C to 280°C, which is the temperature at which the plasticization phenomenon occurs.
- the polyurea formed by spraying the aromatic diisocyanate and the amine consists of a hardening part and a flexible part, the flexible part has 3 or more straight-chain carbon atoms, and the flexible part is plasticized according to the plasticization so that the polyurea is partially plasticized.
- the plasticization or flow of the flexible part (soft segment) can macroscopically appear as the flow of polyurea, and when this plasticized flow is adjusted in an appropriate temperature range, damage to the crosslinking of the hardened part (hard segment) is minimized and polyurea flow is minimized. It is possible to secure the fluidity and plasticity of urea.
- the first polyurea layers 20 and 22 heat-treated at the above temperature have very high adhesion and peel strength compared to the polyurea layers applied by the conventional method. It can be used as an adhesive.
- a film (interfacial film) will be formed by a sufficiently low viscosity on the interface between the polyurea, which has been sufficiently softened and flowed, and the steel pipe 10, and unlike the case of spray application, the formed film has relatively few voids, so Water resistance and adhesion are improved.
- the steel pipe 10 and the stainless steel pipe 30 may be firmly coupled to the first polyurea layer 20 by the expansion of the pipe.
- first interfacial film (first interfacial film, 22) formed between the metal layer and the polyurea layer.
- the first polyurea layer 22 has very high adhesive strength and peel strength compared to the conventional polyurea layer, and this point has been described in Tables 1 and 2 and the like.
- the heating is sequentially performed from one end of the steel pipe 10 toward the other end, and cooling is performed while following the heating at a predetermined interval.
- the thermal expansion coefficient of the stainless steel pipe 30 is greater than that of the steel pipe 10, so when the steel pipe 10 and the stainless steel pipe 30 are heated, the bubbles of the first polyurea layer 20 are pushed and moved. . That is, when sequentially heated from one end of the steel pipe 10 toward the other end, the bubbles of the first polyurea layer 20 move from one end to the other end and then are discharged to the outside. At this time, when cooling while maintaining a predetermined distance from the heated portion, it is possible to prevent the backflow of air bubbles.
- cooling is performed, and cooling may be achieved by forcibly supplying cold air.
- the cooling can be performed by following a heating device (not shown in the drawing) or a heated part at a predetermined interval, which prevents the bubble 91 from moving (reverse flow) in the opposite direction (one end of the tube). This is to prevent it from moving to the other end of the tube.
- the steel pipe 10 Upon cooling, the steel pipe 10 has a greater force to return to its original shape than the stainless steel pipe 30 , so that the steel pipe 10 and the stainless steel pipe 30 may be closely coupled. That is, the steel pipe 10 and the stainless steel pipe 30 may be closely coupled by the expansion pipe and the adhesive layer.
- the tube expansion mold 300 may be inserted into the other end of the tube.
- the tube is expanded by expanding the tube expansion part 310 in the radial direction of the tube after the tube expansion mold 300 is inserted into the tube.
- the end of the tube may be finished with resin and metal (96). This closing can be done before or after the expansion.
- the outer surface of the second polyurea layer 40 is heated to remove air bubbles and the tissue is made dense to form the second interfacial film 45 (S60).
- the heating may be performed at the same temperature as the heating in step S50.
- the heating may be performed by conduction, radiation, ultrasonic heating, or the like, and a predetermined pressure may be applied to the second polyurea layer 40 together with heating.
- a large amount of air bubbles are removed and the first interface film 22 (a layer that blocks the inflow of moisture) with increased adhesion, a buffer layer 41 containing a relatively large amount of air bubbles, and A second interface film 45 (external shielding layer) from which many bubbles are removed is formed.
- a first polyurea coating layer 20 (adhesive layer) from which air bubbles are removed is formed between the steel pipe 10 and the stainless steel pipe 30 .
- it may further include the step of moving the composite pipe during the heating (heat treatment) step or after the heating (heat treatment) step.
- the plasticized polyurea can be applied more evenly to the surface of the tube, thereby further improving the applicability and adhesion.
- the molten polyurea is uniformly spread to make the contact area more even and wider, effectively reducing the voids or bubbles in the film occurring at the interface between the coating agent and the adherend, and forming the film evenly.
- the polyurea surface is heated and melted by thermal radiation heating to the plasticizing temperature of the polyurea or using a heated roller or template, and a film is formed on the external surface by applying an appropriate pressure, moisture penetration is blocked more effectively to protect the tube
- the effect of increasing the adhesion by pressure can be obtained incidentally, and the barrier properties of both sides of polyurea, i.e., the tube adhesion surface and the outer surface, are improved by film formation through re-melting/re-crosslinking, and the intermediate layer maintains sufficient voids.
- the effect of improving elasticity and impact resistance can be obtained.
- the movement may be made in various ways, but in the case of a composite pipe, it may be performed by applying rotation or vibration.
- 17A is a cross-sectional view showing a composite panel manufactured according to the present invention.
- the composite panel 200 includes a metal panel 50 and first and second polyurea layers 72 and 60 formed on the upper surface of the metal panel 50 .
- the composite panel 200 may be used for various purposes, for example, a water tank.
- the method for manufacturing the composite panel includes forming a first polyurea layer 72 on a metal panel 50 , and heating at least one of the metal panel 50 and the first polyurea layer 72 . to form a first interfacial film, forming a second polyurea layer 60 on the first polyurea layer 72 , and heating an outer surface (outer surface) of the second polyurea layer 60 to form the second interfacial layer 65 by removing air bubbles and making the tissue dense.
- a first polyurea layer 72 is formed on the metal panel 50 .
- the components (materials) used for the first polyurea layer 72, the formation method, and the thickness thereof are the same as the components, the formation method, and the thickness of the first and second polyurea layers 20 and 22 described above.
- a metal panel a steel plate, a stainless steel panel, etc. may be used.
- At least one of the metal panel 50 and the first polyurea layer 72 is heated to form a first interface layer.
- the heating may be performed by heating the metal panel 50 or may be performed by directly heating the first polyurea layer 72 .
- plasticization since the polyurea is applied in a state in which the metal panel 50 is previously heated to a plasticizing temperature, plasticization may be performed immediately after the polyurea is applied.
- the heating temperature is the same as the heating temperature of the first polyurea layers 20 and 22 described above.
- air bubbles or voids
- the principle of the polyurea coating layers 20 and 22 is the same.
- a second polyurea layer 60 is formed on the first polyurea layer 72 .
- the components (materials) used for the second polyurea layer 60 and the formation method are the same as those of the second polyurea layer 40 .
- the application of the second polyurea layer 60 may be performed after the first interfacial film is formed by heating the first polyurea layer 72 , or may be performed before the heating of the first polyurea layer 72 .
- first and second polyurea layers 72 and 60 may be formed at once instead of being formed separately.
- the metal panel 50 is heated to form a first interface film and the outer surface of the polyurea layer is formed.
- the second interface film may be formed by heating.
- the outer surface (outer surface) of the second polyurea layer 60 is heated to form the second interface layer 65 .
- the heating may be performed in the same way as the heating in step S60.
- the heating temperature is the same as the heating temperature for forming the first interface film 72 .
- the heating may be performed by conduction, radiation, ultrasonic heating, or the like, and a predetermined pressure may be applied to the second polyurea layer 60 together with heating.
- a second interfacial film 65 (external shielding layer) is formed.
- the method may further include moving the composite panel 200 during or after the heating (heat treatment) step.
- the plasticized polyurea can be more evenly applied to the panel surface, thereby further improving applicability and adhesion.
- the movement may be performed in various ways, and preferably, the panel 200 may be moved or vibrated on a seesaw.
- This seesaw movement is a movement that alternately raises and lowers the left and right sides of the panel around the center.
- the composite panel 200 may further include a metal panel 55 bonded to the second interface layer 65 .
- the metal panel 55 is coupled by the adhesive force of the second interface layer 65 .
- the metal panel 55 may be the same metal as the metal panel 50 or a different metal.
- the present invention can also be applied to pipe connecting parts such as fittings.
- pipe connecting parts such as fittings.
- an example of an existing pipe connection part is disclosed in Republic of Korea Public Utility Model No. 20-1991-0009356 and the like.
- a pipe connecting part according to the present invention a joint pipe (pipe); It may include; a polyurea layer formed on the outer surface of the joint and applied by the method described above.
- the joint pipe may be a steel pipe, a stainless steel pipe, or the like.
- the polyurea layer is plasticized heat treatment by heating to a plasticizing temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
A method for manufacturing a composite pipe or a composite panel, according to the present invention, heats a polyurea layer to 180-320°C to plasticize a polyurea, and thus provides high adhesive strength and peel strength and forms an interfacial film on the outer surface and the surface, in contact with a material to be coated, of the polyurea layer, so that a moisture barrier property is improved and a relatively large number of pores are included in the polyurea layer, and thus elasticity and impact strength can be improved. In addition, the present invention comprises a composite pipe and a composite panel that are manufactured by the manufacturing method.
Description
본 발명은 복합관과 복합패널의 제조방법에 대한 것이다.The present invention relates to a method for manufacturing a composite pipe and a composite panel.
구체적으로는, (i) 폴리우레아층을 180~320℃로 가열하여 폴리우레아를 가소화시킴으로써 높은 접착력과 박리강도를 갖고 폴리우레아층의 피착재와의 접촉면과 외부면에 계면막이 형성되어 수분 차단성이 향상되고 폴리우레아층의 내부에는 공극이 상대적으로 많이 포함됨으로써 탄성과 내충격성이 향상된 복합관과 복합패널을 제조할 수 있고, Specifically, (i) by heating the polyurea layer to 180 ~ 320 ℃ to plasticize the polyurea, it has high adhesion and peel strength, and an interfacial film is formed on the contact surface and the outer surface of the polyurea layer with the adherend to block moisture Since the properties are improved and the interior of the polyurea layer contains a relatively large number of voids, it is possible to manufacture a composite pipe and composite panel with improved elasticity and impact resistance,
(ii) 제1,2 관이 가열되어 접착되되, 제1,2 관의 열팽창 계수 차이에 의해 제1,2 관 사이의 폴리우레아층(접착층)에 포함된 기포가 제거된 복합관을 제조할 수 있는 제조방법에 대한 것이다. (ii) The first and second tubes are heated and adhered, but a composite tube in which bubbles contained in the polyurea layer (adhesive layer) between the first and second tubes are removed due to the difference in the coefficient of thermal expansion of the first and second tubes can be manufactured It is about the manufacturing method.
아울러, 본 발명은 상기 제조방법으로 만들어진 복합관과 복합패널에 대한 것이기도 하다.In addition, the present invention also relates to a composite pipe and composite panel made by the above manufacturing method.
본 출원은 대한민국 특허출원 제10-2020-0098229호(발명의 명칭 : 폴리우레아의 열가소화 처리를 이용한 접착 특성이 향상된 복합관, 복합패널, 및 그 제조 방법. 2020년 8월 5일 출원)를 기초로 우선권을 주장하면서 출원되는 것으로서, 대한민국 특허출원 제10-2020-0098229호의 출원 명세서와 도면에 포함된 모든 내용은 본 명세서에 포함된다. This application is based on Korean Patent Application No. 10-2020-0098229 (Title of the invention: Composite pipe, composite panel, and manufacturing method thereof with improved adhesive properties using thermoplastic treatment of polyurea. Filed on August 5, 2020) All contents included in the specification and drawings of Korean Patent Application No. 10-2020-0098229 are incorporated herein by reference.
일반적으로, 폴리우레아는 내흡수성이 뛰어나고 일반 사용온도 범위(통상 -45℃~ +80℃)를 가져 열과 추위에 강하고 주변 온도와 습도로부터 자유로우며, 경화 시간이 수초에서 수분으로 매우 빠르고, 내수성이 높아서 다양한 분야에서 방수재로 사용되고, 우수한 충격내성을 가지며, 금속의 부식 방지에 우수하다. 특히, 폴리우레아의 가장 큰 장점은 우수한 내마모성 및 내화학성을 갖고 매우 넓은 사용 가능 온도를 갖는다는 점이다.In general, polyurea has excellent water absorption resistance, has a general operating temperature range (normally -45℃ ~ +80℃), is strong against heat and cold, is free from ambient temperature and humidity, has a very fast curing time from a few seconds to a few minutes, and has excellent water resistance. Because it is high, it is used as a waterproofing material in various fields, has excellent impact resistance, and is excellent in preventing corrosion of metal. In particular, the greatest advantage of polyurea is that it has excellent wear and chemical resistance and a very wide usable temperature.
그리고, 폴리우레아는, 폴리우레탄과는 달리, 별도의 촉매제나 이형제, 용제, 유기 금속화합물을 사용하지 않으므로 표면 품질이 우수하고 환경 안정성이 더 높다. 아울러, 에폭시와 폴리우레탄이 물과 온도에 대한 반응성이 큰 반면에, 폴리우레아는 내수성이 강하면서 열변형도 거의 없고, 내스크래치성, 내광성, 내화학성이 뛰어나며, 자외선에 영구적 저항력을 갖는다는 특성도 갖고 있다.And, unlike polyurethane, polyurea has excellent surface quality and higher environmental stability because it does not use a separate catalyst, release agent, solvent, or organometallic compound. In addition, while epoxy and polyurethane have high reactivity to water and temperature, polyurea has strong water resistance and almost no thermal deformation, excellent scratch resistance, light resistance, chemical resistance, and permanent resistance to UV rays. also have
이러한 폴리우레아 안정성과 우수한 특성으로 인해 폴리우레아 도장 강관은 미국 수도 협회 규격 AWWA C 222와 미국국립위생협회 NSF 61 음용수 기준 48개 항목 시험에 적합하다는 판정을 받은 바 있을 만큼 안전성과 위생성 및 안정성을 갖고 있다.Due to these polyurea stability and excellent properties, polyurea-coated steel pipe has been judged to be suitable for 48 item tests according to the American Water Association standard AWWA C 222 and the American National Sanitation Association NSF 61 drinking water standards. have.
폴리우레아는 마이크로상으로 구분된 분할 블록 복합체 형태를 가지며, 이 형태는 유연부(소프트 세그먼트) 매트릭스에 분산된 경화부(하드 세그먼트) 영역으로 구성된다. Polyurea has the form of a divided block composite divided into microphases, and this form consists of hardened (hard segment) regions dispersed in a flexible (soft segment) matrix.
경화부는 광범위하게 수소 결합되며 가역 가능한 물리적 가교에 의해 기능하므로 우수한 기계적 특성, 특히 내충격성과 견고성을 나타내어, 도복장 재료 및 금속재료의 보호 코팅소재로서도 그 가치가 매우 높다. 대표적인 예로서, 도복장 강관의 경우 3-layer 폴리에틸렌을 피복할 때 최소 3mm이상의 두께로 코팅을 실시하였으나 폴리우레아는 0.63mm 두께의 코팅만으로도 도복장 강관의 성능을 발현하는 것으로 알려져 왔다.The hardened part is extensively hydrogen-bonded and functions by reversible physical crosslinking, so it exhibits excellent mechanical properties, especially impact resistance and robustness, and is very valuable as a protective coating material for clothes and metal materials. As a representative example, in the case of a coated steel pipe, the coating was applied to a thickness of at least 3 mm when coating 3-layer polyethylene, but polyurea has been known to express the performance of a coated steel pipe only with a coating of 0.63 mm thick.
그러나, 폴리우레아는 위에 기술한 바와 같이 경화 시간이 수초에서 수분으로 매우 짧기 때문에, 이를 극복하고 도포하기 위해서 40~70℃의 온도에서 고압으로 공중합용 단량체들을 분사 충돌시켜 반응하며 분무함으로써 그 도포 효과를 얻을 수 있고, 이에 따라 사용상에 문제점이 있다.However, as described above, polyurea has a very short curing time from a few seconds to a few minutes. In order to overcome this, the copolymerization monomers are sprayed and collided with high pressure at a temperature of 40 to 70 ° C. can be obtained, and thus there is a problem in use.
이와 같이 분사 코팅된 폴리우레아는 철관 표면의 부착면에 대해 박리강도(Peel strength)가 매우 취약하게 나타난다. 따라서, 금속관 또는 금속패널의 표면에 폴리우레아를 도포한 경우, 폴리우레아층의 박리강도가 매우 낮다는 문제점이 있다. The spray-coated polyurea has very weak peel strength on the surface of the iron pipe. Therefore, when polyurea is applied to the surface of a metal tube or a metal panel, there is a problem in that the peel strength of the polyurea layer is very low.
아울러, 폴리우레아층 내부에는 다수의 기포가 존재하는데, 이 기포를 통해 수분이 침투하여 금속관 또는 금속패널을 부식시키고 층 분리를 발생시킨다는 문제점이 있다. In addition, there are a number of bubbles inside the polyurea layer, but there is a problem that moisture penetrates through the bubbles to corrode the metal tube or metal panel and cause layer separation.
본 출원인은 상술한 문제점이 분무 도포에 의한 부착으로 인해 접촉 면적(wetting area)이 작고 접촉면에 대한 접합의 개념을 넘어서지 못하기 때문에 발생한다는 것을 알게 되었다.Applicants have found that the above-mentioned problem arises because the wetting area is small due to adhesion by spray application and it does not go beyond the concept of bonding to the contact surface.
그리고, 본 출원인은 분무 코팅 방식에 따른 도장층에 분포한 기포를 통해 장기적으로 침투한 수분이 피착재와 폴리우레아의 계면에 도달하여 서서히 금속을 부식시키고 이에 따른 층 분리를 야기할 수도 있음을 알게 되었고, 이를 방지하기 위해서 현재와 같은 분사 코팅 방식으로는 최소 도포 두께를 3-layer 폴리에틸렌과 같이 3.0mm 이상을 도포해야만 효과가 충분할 것으로 판단하고 있다. In addition, the present applicant knows that moisture that has penetrated for a long time through the air bubbles distributed in the coating layer according to the spray coating method may reach the interface between the adherend and the polyurea to gradually corrode the metal and cause layer separation accordingly. In order to prevent this, the current spray coating method is judged to be effective only when a minimum coating thickness of 3.0 mm or more, such as 3-layer polyethylene, is applied.
위와 같이, 폴리우레아는 매우 매력적이고 우수한 도복장 소재이지만 현재와 같은 분무 코팅 공법으로는 피착재인 금속과 접합만이 발생하며 빠른 경화 속도로 인해 충분한 적심(wetting)이 되지 않아서 그 접합 성능을 100% 발현할 수 없고 부착력 테스트(Dolly Test)에서는 높은 수치가 나타나지만 박리 강도에는 취약한 결과가 나타난다.As above, polyurea is a very attractive and excellent coating material, but with the current spray coating method, only bonding with the metal to be adhered occurs, and due to the fast curing speed, sufficient wetting is not achieved, so the bonding performance is 100% It cannot be expressed, and a high value is shown in the Dolly Test, but the result is weak in peel strength.
본 발명은 위에서 언급한 문제점을 해결하기 위해 제안된 것으로서, 폴리우레아층을 180~320℃로 가열하여 폴리우레아를 가소화시킴으로써 높은 접착력과 박리강도를 갖도록 하고 폴리우레아층의 피착재와의 접촉면과 외부면에 계면막이 형성되도록 하여 수분 차단성을 향상시키고 폴리우레아 도장층의 내부에는 공극이 상대적으로 많이 포함되도록 함으로써 탄성과 내충격성을 향상시킨, 복합관 또는 복합패널 제조방법을 제공하는 데 그 목적이 있다. The present invention has been proposed to solve the above-mentioned problems, and by heating the polyurea layer to 180 ~ 320 ℃ to plasticize the polyurea to have high adhesion and peel strength, and to have high adhesion and peel strength, and the contact surface of the polyurea layer with the adherend An object of the present invention is to provide a method for manufacturing a composite pipe or composite panel, which improves moisture barrier properties by forming an interfacial film on the outer surface and improves elasticity and impact resistance by allowing a relatively large number of pores to be included in the polyurea coating layer have.
본 발명의 또 다른 목적은 제1,2 관의 한쪽 끝단에서부터 다른쪽 끝단을 향해 순차적으로 가열 및 냉각을 함으로써 팽창과 수축을 통하여 결합시키되 제1,2 관의 열팽창 계수 차이를 이용하여 제1,2 관 사이의 폴리우레아층(접착제층)에 포함된 기포를 제거함으로써 제1,2 관 사이의 접착특성(결합력)이 증가된, 복합관의 제조방법을 제공하는 데 있다.Another object of the present invention is to combine through expansion and contraction by sequentially heating and cooling from one end to the other end of the first and second tubes using the difference in the coefficient of thermal expansion of the first and second tubes. An object of the present invention is to provide a method for manufacturing a composite pipe in which the adhesive properties (coupling force) between the first and second pipes are increased by removing air bubbles contained in the polyurea layer (adhesive layer) between the two pipes.
본 발명의 또 다른 목적은 상기 제조방법으로 만들어진 복합관과 복합패널을 제공하는데 있다.Another object of the present invention is to provide a composite pipe and composite panel made by the above manufacturing method.
상술한 바와 같이, 폴리우레아는 40~70℃의 온도에서 고압으로 공중합용 단량체들을 피착재에 분사하여 도포될 수 있는데, 이 경우 금속관 또는 금속패널의 표면에 대한 박리 강도(Peel strength)가 매우 약하다는 문제점을 갖고 있다. As described above, polyurea can be applied by spraying copolymer monomers to the adherend at a high pressure at a temperature of 40 to 70 ° C. In this case, the peel strength on the surface of the metal tube or metal panel is very weak. has a problem.
본 출원인은, 이러한 문제점을 연구한 결과, 공중합용 단량체들이 분사에 의해 도포되므로 접촉면적(wetting area)이 작고 충분한 접합이 이루어지지 않기 때문인 것을 알게 되었다. 즉, 폴리우레아를 분사 도포할 경우, 빠른 경화 속도로 인해 충분한 적심(wetting)이 되지 않으므로 충분한 접착력을 나타낼 수 없게 되며, 이는 낮은 박리 강도 즉, 낮은 접착력을 갖는 결과로 나타난다.As a result of studying this problem, the present applicant found out that since the monomers for copolymerization are applied by spraying, the wetting area is small and sufficient bonding is not achieved. That is, when polyurea is spray-applied, sufficient wetting is not performed due to a fast curing speed, and thus sufficient adhesive strength cannot be exhibited, which results in low peel strength, that is, low adhesive strength.
이것은, 도 1에 나타난 바와 같이, 폴리우레아가 미세한 분말 형태로 분사되어 도포됨으로써 입자 사이에 공간이 존재하고 그에 따라 피착재에 대해 젖음(wetting)을 발현할 수 없음에 따라 부착 표면적이 작고 분사된 분말 입자간에 발생한 공간이 공극으로 작용하여 더욱 피착재와의 부착 표면적을 감소시키므로 나타나는 현상으로 파악되었다.As shown in FIG. 1, as polyurea is sprayed and applied in the form of a fine powder, there is a space between the particles, and thus wetting cannot be expressed on the adherend, so the adhesion surface area is small and the sprayed surface area is small. It was identified as a phenomenon that occurs because the space between the powder particles acts as a void, further reducing the surface area of attachment with the adherend.
또한, 분사된 분말 입자간에 발생한 공간은 도막 내에 공극으로 작용하며, 장기적으로 이러한 미세 공극들이 수분의 침투 경로로 작용하여 피착재를 부식시키거나 피착재와 폴리우레아층 사이의 층분리를 야기하게 된다.In addition, the space generated between the sprayed powder particles acts as a void in the coating film, and in the long term, these micropores act as a penetration path for moisture, which corrodes the adherend or causes layer separation between the adherend and the polyurea layer. .
본 발명은 전술한 문제점을 해결하기 위해 안출된 것이다. 본 발명은 (S1) 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 피착재, 예를 들어 금속관, 금속패널, 관 연결부품 등에 분사하여 피착재 상에 폴리우레아 층을 형성하는 단계; 및, (S2) 상기 폴리우레아 층을 열처리하는 단계;를 포함할 수 있다. The present invention has been devised to solve the above problems. The present invention provides a step of forming a polyurea layer on an adherend by spraying (S1) an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more linear carbon atoms, for example, a metal pipe, a metal panel, a pipe connecting part, etc.; and, (S2) heat-treating the polyurea layer.
상기 열처리는 (S1) 단계에서 가소화 현상이 나타나는 온도로 가열된 피착재에 방향족 디이소시아네이트와 상기 아민을 분사하거나, 상기 (S1) 단계의 이후에 폴리우레아를 가소화 현상이 나타나는 온도로 가열하여 이루어질 수 있다. 이를 구체적으로 설명하면 아래와 같다. The heat treatment is performed by spraying the aromatic diisocyanate and the amine to the adherend heated to a temperature at which plasticization occurs in step (S1), or by heating polyurea to a temperature at which plasticization occurs after step (S1). can be done A detailed explanation of this is as follows.
상기 방향족 디이소시아네이트와 아민은 폴리우레아 도장에 사용되는 통상적인 비율 예를 들어 1:1(부피비)로 분사될 수 있다. The aromatic diisocyanate and the amine may be sprayed in a conventional ratio used for polyurea coating, for example, 1:1 (volume ratio).
본 발명에 따른 폴리우레아는 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 중합하여 형성된다. 중합 반응은 매우 빠르게 진행된다. 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 피착재에 동시에 분사하면 피착재 상에서 두 단량체가 중합되어 폴리우레아 층을 형성하게 된다. 상기 방향족 아민류는 반복단위에 탄소수가 12개 이상일 수 있다.The polyurea according to the present invention is formed by polymerization of an aromatic diisocyanate and an aromatic or aliphatic amine having 3 or more linear carbon atoms. The polymerization reaction proceeds very quickly. When an aromatic diisocyanate and a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms are simultaneously sprayed onto an adherend, the two monomers are polymerized on the adherend to form a polyurea layer. The aromatic amines may have 12 or more carbon atoms in the repeating unit.
폴리우레아는 사용 온도범위가 통상 -40℃~ +80℃이나, 실제로는 대략 약 180℃ 이상 230℃ 미만까지는 열안정성을 유지하며, 약 280℃ 초과 320℃ 이하 부근에서부터 열안정성이 저하된다. 일반적으로 폴리우레아의 사용온도 상한을 80℃로 설정하는 것은 물리적인 특성이 유지되는 최대 온도가 120℃이기 때문인데, 통상 수소결합의 파괴가 62℃ 근처에서부터 시작되어 90℃ 이상에서 대부분의 수소결합이 분리되어 물리적 강성의 약화를 나타내며, 기공의 크기가 증가하여 도포체 외관이 불안정해지기 때문이다. 약 180℃ 이상 230℃ 미만까지는 수소결합의 손실에 의한 물성의 감소 외에는 물성의 변화가 사용에 지장을 줄 정도로 크지 않다. 또한 수소 결합은 온도에 가역적이므로 온도가 상온으로 낮아지면 냉각과정에서 다시 수소결합이 발생한다.Polyurea has a temperature range of -40°C to +80°C, but in reality, it maintains thermal stability from about 180°C to less than 230°C, and thermal stability is reduced from around 280°C to 320°C or less. In general, the upper limit of the operating temperature of polyurea is set to 80°C because the maximum temperature at which the physical properties are maintained is 120°C, and the breakage of hydrogen bonds usually starts around 62°C and most hydrogen bonds at 90°C or higher. This is because the separation indicates a weakening of physical rigidity, and the size of the pores increases and the appearance of the coated body becomes unstable. From about 180° C. to less than 230° C., the change in physical properties is not so great that it interferes with use, except for a decrease in physical properties due to loss of hydrogen bonds. In addition, since hydrogen bonding is reversible with temperature, when the temperature is lowered to room temperature, hydrogen bonding occurs again in the cooling process.
상기 방향족 디이소시아네이트와 상기 아민이 분사되어 형성된 폴리우레아는 경화부와 유연부로 이루어지되, 유연부는 직쇄 탄소수 3개 이상을 가지며, 상기 가소화에 따라 유연부가 가소화되어 폴리우레아가 부분적으로 가소화될 수 있다.The polyurea formed by spraying the aromatic diisocyanate and the amine consists of a hardening part and a flexible part, the flexible part has 3 or more straight-chain carbon atoms, and the flexible part is plasticized according to the plasticization so that the polyurea is partially plasticized. can
유연부(소프트 세그먼트)의 가소화 혹은 유동은 거시적으로 폴리우레아의 유동으로 나타날 수 있고, 이러한 가소화된 유동을 적절한 온도 범위에서 조정하는 경우 경화부(하드 세그먼트)의 가교의 손상을 최소화하며 폴리우레아의 유동성과 가소성을 확보할 수 있게 된다.The plasticization or flow of the flexible part (soft segment) can macroscopically appear as the flow of polyurea, and when this plasticized flow is adjusted in an appropriate temperature range, damage to the crosslinking of the hardened part (hard segment) is minimized and polyurea flow is minimized. It is possible to secure the fluidity and plasticity of urea.
이에 본 발명은 유연부(소프트 세그먼트)에 해당하는 아민류로서 직쇄상 탄소수 3 이상의 방향족 혹은 지방족 아민을 폴리우레아의 단량체로 사용하여 유연성이 높고 가소화가 용이한 폴리우레아 층을 형성할 수 있다.Accordingly, according to the present invention, a polyurea layer having high flexibility and easy plasticization can be formed by using a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms as a monomer of the polyurea as amines corresponding to the flexible part (soft segment).
탄소수 3 이상인 방향족 또는 지방족 아민은 폴리우레아를 형성할 수 있는 것이라면 특별히 제한되지 않으며, 예를 들면 α,α′-디아미노-m-자일렌(α,α′-Diamino-m-xylene), 헥사메틸렌디아민(hexamethylene diamine), 이소포론디아민(Isophoronediamine), 폴리에테르아민(polyetheramines), 폴리옥시프로필렌 글리콜 디아민(Polyoxypropylene glycol diamine), 프로필렌디아민(propylene diamine), N,N-디알킬메틸렌디아민(N,N-dialkylmethylenediamine), 4,4-디아미노디페닐메탄(4,4-Diamino diphenyl methane), 4,4-디아미노디페닐에테르(4,4-Diaminodi phenyl ether), 디에틸 톨루엔트리아민(di-ethyl-toluene triamine : DETDA), 디에틸렌트리아민(diethylenetriamine) 등이 단독으로 또는 2종 이상 조합되어 사용될 수 있다. The aromatic or aliphatic amine having 3 or more carbon atoms is not particularly limited as long as it can form polyurea, and for example , α, α′-diamino-m-xylene ( α, α′-Diamino- m -xylene), hexa Methylenediamine (hexamethylene diamine), isophoronediamine, polyetheramines (polyetheramines), polyoxypropylene glycol diamine (propylene diamine), N,N-dialkylmethylenediamine (N, N-dialkylmethylenediamine), 4,4-diaminodiphenyl methane (4,4-Diamino diphenyl methane), 4,4-diaminodiphenyl ether (4,4-Diaminodi phenyl ether), diethyl toluenetriamine (di -ethyl-toluene triamine: DETDA), diethylenetriamine, etc. may be used alone or in combination of two or more.
본 발명의 일 실시예에 있어서, 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민은 분자량이 380 내지 4000인 것이 사용될 수 있다. 분자량이 380 미만이면 가소화가 쉽게 이루어지지 않고 분자량이 4000을 초과하면 유연성은 좋으나 강성이 낮아질 수 있다.In one embodiment of the present invention, the straight-chain aromatic or aliphatic amine having 3 or more carbon atoms may have a molecular weight of 380 to 4000. If the molecular weight is less than 380, plasticization is not easily achieved, and if the molecular weight exceeds 4000, the flexibility is good, but the rigidity may be low.
상기 방향족 또는 지방족 아민은 직쇄상 탄소수가 3 이상이고, 바람직하게는 12 이상일 수 있다. 탄소수의 상한은 폴리우레아를 형성할 수 있으면 특별한 제한은 없으나, 너무 짧으면 가소화가 어렵고, 너무 길면 유연성은 좋으나 강성이 낮아지므로 예를 들면 22일 수 있다. The aromatic or aliphatic amine may have 3 or more linear carbon atoms, and preferably 12 or more. The upper limit of carbon number is not particularly limited as long as polyurea can be formed, but if it is too short, plasticization is difficult, and if it is too long, flexibility is good but rigidity is low, so it may be, for example, 22.
본 발명의 일 실시예에 있어서, 방향족 또는 지방족 아민이 중합체인 경우는 반복 단위 내의 탄소 수가 2 내지 6일 수 있다. In one embodiment of the present invention, when the aromatic or aliphatic amine is a polymer, the number of carbon atoms in the repeating unit may be 2 to 6 carbon atoms.
방향족 디이소시아네이트로는 폴리우레아를 형성할 수 있는 것이라면 특별히 제한되지 않으며, 예를 들면 메틸렌디페닐디이소시아네이트(MDI), 헥사메틸렌디이소시아네이트(HMDI), 메틸렌비스파라사이클로 헥실이소시아네이트(H12MDI), 자일렌디이소시아네이트(XDI), 나프탈렌디이소시아네이트(NDI), 이소포론디이소시아네이트(IPDI) 등이 단독으로 또는 2종 이상 조합되어 사용될 수 있다.The aromatic diisocyanate is not particularly limited as long as it can form polyurea, for example, methylenediphenyldiisocyanate (MDI), hexamethylenediisocyanate (HMDI), methylenebisparacyclohexylisocyanate (H12MDI), xylenedi Isocyanate (XDI), naphthalene diisocyanate (NDI), isophorone diisocyanate (IPDI), etc. may be used alone or in combination of two or more.
이외에도 폴리우레아의 안정성 증가제와 가교 촉진제 및 소포제 등의 첨가제가 일부 사용될 수 있다.In addition, additives such as a stability enhancer of polyurea, a crosslinking accelerator and an antifoaming agent may be partially used.
피착재는 폴리우레아가 도포될 수 있는 것이면 특별히 제한되지 않는다. 예를 들면, 금속, 플라스틱 등일 수 있고, 금속의 경우에는 강판, 스테인리스 스틸판, 강관, 스테인리스 스틸관, 관 연결 부품 등일 수 있다. The adherend is not particularly limited as long as polyurea can be applied thereto. For example, it may be metal or plastic, and in the case of metal, it may be a steel plate, a stainless steel plate, a steel pipe, a stainless steel pipe, a pipe connection part, and the like.
본 발명의 일 실시예에 있어서, 피착재가 금속인 경우에는 그 표면에 금속산화물 층(산화보호막)이 형성될 수 있다. 금속산화물 층은 금속의 부식층일 수도 있고, 인공적으로 형성한 내부식층일 수도 있다.In one embodiment of the present invention, when the adherend is a metal, a metal oxide layer (oxidation protective film) may be formed on the surface thereof. The metal oxide layer may be a corrosion layer of a metal or an artificially formed corrosion resistance layer.
폴리우레아를 가소화 현상이 나타나는 온도로 열처리하게 되면, 도 2에 나타난 바와 같이, 폴리우레아의 점도가 낮아져 유동이 가능하므로 피착재 표면과의 밀착성 즉 젖음성(Wetting)이 향상되므로 피착재와 폴리우레아의 접촉 면적이 커지므로 접합강도가 현저하게 상승한다. When polyurea is heat-treated at a temperature at which plasticization occurs, as shown in FIG. 2, the viscosity of polyurea is lowered and flow is possible, so adhesion with the surface of the adherend, that is, wetting, is improved, so that the adherend and polyurea As the contact area of
충분히 연화되어 유동이 발생한 폴리우레아와 피착재의 계면에는 충분히 낮은 점도에 의하여 막(계면막)이 형성될 것이며 이렇게 형성된 막은 분사 도포하는 경우와는 달리 공극이 적어지므로 폴리우레아의 우수한 방수성과 함께 피착재의 내수성도가 개선된다.A film (interfacial film) will be formed at the interface between the polyurea that has been sufficiently softened and flowed and the adherend has a sufficiently low viscosity, and unlike the case of spray application, the formed film has fewer voids, so the excellent waterproofness of polyurea and the adherend Water resistance is improved.
또한, 피착재가 금속인 경우에는 금속 표면에 형성된 산화보호막 즉 Fe2O3, Cr2O3, ZnO 등의 산소 및 금속 원소와 폴리우레아의 아민, 우레아의 수소나 산소가 화학적으로 결합하거나 2차 결합(예를 들어 수소결합, 반데르발스 결합 등)이 발생하게 되므로 본 단계의 열처리 공정을 통해 접착성이 현저하게 증가된다. 따라서, 본 발명에 따른 폴리우레아 층은 접착제 층으로도 활용될 수 있다.In addition, when the adherend is a metal, the oxide protective film formed on the metal surface, that is, oxygen and metal elements such as Fe 2 O 3 , Cr 2 O 3 , ZnO, and amine of polyurea, hydrogen or oxygen of urea are chemically combined or secondary Since bonding (eg, hydrogen bonding, van der Waals bonding, etc.) occurs, adhesion is remarkably increased through the heat treatment process of this step. Accordingly, the polyurea layer according to the present invention can also be utilized as an adhesive layer.
한편, 폴리우레아의 경화부(하드 세그먼트)의 가교반응과 아민의 수소와 카르보닐기의 산소간의 수소 결합은 가역 반응이며, 대단히 빠른 속도로 반응이 발생하므로 본 단계의 열처리 공정이 완료되고 강제냉각 혹은 자연냉각 중에 끊어진 가교결합과 수소 결합이 재형성되어 폴리우레아의 물리적인 특성의 손실은 매우 적게 된다.On the other hand, the crosslinking reaction of the hardened part (hard segment) of polyurea and the hydrogen bond between hydrogen of amine and oxygen of the carbonyl group are reversible reactions. During cooling, the broken cross-links and hydrogen bonds are re-formed, so the loss of the physical properties of the polyurea is very small.
본 발명의 일 실시예에 있어서, 폴리우레아의 가소화 온도는 폴리우레아의 중합에 사용된 단량체의 구체적인 종류에 따라 달라질 수 있으나, 폴리우레아가 가소화 온도에만 도달하면 점도가 현저히 낮아지므로 본 발명에 따른 효과를 나타낼 수 있다. In one embodiment of the present invention, the plasticization temperature of polyurea may vary depending on specific types of monomers used for polymerization of polyurea, but when the polyurea reaches only the plasticization temperature, the viscosity is significantly lowered, so that in the present invention effect can be shown.
예를 들어, 직쇄상 탄소수 3 이상인 방향족 혹은 지방족 아민을 공중합체의 단량체로 사용하여 합성한 폴리우레아는 가소화 온도가 180 내지 320℃일 수 있고, 바람직하게는 200 내지 280℃일 수 있으며, 가장 바람직하게는 230 내지 280℃일 수 있는데, 이 점에 대해서는 아래의 실시예와 실험예에서 추가로 설명하기로 한다. For example, polyurea synthesized by using a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms as a monomer of the copolymer may have a plasticization temperature of 180 to 320 ° C, preferably 200 to 280 ° C, and most Preferably it may be 230 to 280 ℃, this point will be further described in Examples and Experimental Examples below.
180℃ 미만에서는 가소화가 충분히 이루어지지 않아 점도 하강이 충분하지 않을 수 있으며, 320℃를 초과하면 폴리우레아가 과도하게 열분해될 수 있으므로 바람직하지 않다. 이를 구체적으로 설명하면 아래와 같다. If the temperature is less than 180° C., plasticization may not be sufficiently performed, so that the viscosity drop may not be sufficient, and if it exceeds 320° C., polyurea may be excessively thermally decomposed, which is not preferable. A detailed explanation of this is as follows.
일반적으로 탄성 보호체로서 폴리우레아의 강인한 물리적, 열적 특성은 우레아 및 우레탄에서 발생하는 가교에 의한 것이며, 우레탄과는 달리 폴리우레아는 요소(우레아) 결합에 따라 아민의 질소와 이소시아네이트의 질소에 결합된 수소가 이웃한 분자의 카르보닐기에 함유된 산소 사이에 수소 결합이 발생하며, 이러한 수소결합의 힘이 축적됨에 따라 보다 강하고 질긴 특성을 가진다.In general, the strong physical and thermal properties of polyurea as an elastic protector are due to crosslinking that occurs in urea and urethane. A hydrogen bond occurs between oxygen contained in the carbonyl group of a molecule adjacent to hydrogen, and as the strength of the hydrogen bond is accumulated, it has stronger and tougher properties.
분자 구조에 의해서 우레아는 우레탄에 비하여 2배의 수소 결합을 가지는데 이러한 수소 결합은 폴리우레아의 견고성을 유지, 안정시키는데 가교와 더불어 큰 요인으로 작용하며 낮은 열에너지로도 쉽게 결합을 끊을 수 있고, 열에너지가 낮아지면 다시 결합하는 가소성을 가진다.Due to its molecular structure, urea has twice as many hydrogen bonds as urethane. This hydrogen bond maintains and stabilizes the rigidity of polyurea, and acts as a major factor along with crosslinking. When is lowered, it has plasticity to rejoin.
한편, 기존에 폴리우레아의 주된 사용 온도범위는 -40℃~ +80℃이지만, 실제로는 공단량체에 따라 대략 약 180℃ 이상 230℃ 미만까지는 열안정성을 유지하며, 약 280℃ 초과 320℃ 부근부터 열안정성이 저하된다.On the other hand, the main temperature range of polyurea in the prior art is -40°C to +80°C, but in reality, it maintains thermal stability from about 180°C to less than 230°C depending on the comonomer, and from about 280°C to 320°C. Thermal stability is reduced.
상술한 바와 같이, 폴리우레아는 마이크로상으로 구분된 분할 블록 복합체 형태를 갖고 구체적으로는 유연부(소프트 세그먼트) 매트릭스에 분산된 경화부(하드 세그먼트) 영역으로 구성되어 있으므로, 매트릭스인 유연부의 가소화 혹은 유동은 거시적으로 폴리우레아의 유동으로 나타날 수 있고, 이러한 가소화된 유동을 적절한 온도 범위에서 조절하면 경화부(하드 세그먼트)의 가교의 손상을 최소화하며 폴리우레아의 유동성과 가소성을 확보할 수 있다는 것을 알게 되었다.As described above, polyurea has a microphase divided block composite form and specifically consists of a hardened part (hard segment) region dispersed in a flexible part (soft segment) matrix. Alternatively, the flow can be macroscopically represented as a flow of polyurea, and if this plasticized flow is controlled in an appropriate temperature range, damage to crosslinking of the hardened part (hard segment) can be minimized and fluidity and plasticity of polyurea can be secured. found out that
유연부(소프트 세그먼트)에 해당하는 아민류를 반복 단위당 탄소수 n(3)개 이상인 방향족 혹은 지방족 아민류를 공중합체의 단량체로 사용하여 합성한 폴리우레아는 그 유연성이 높고 가소화가 용이하여 180~320℃, 바람직하게는 200~280℃, 가장 바람직하게는 230~280℃의 범위에서 유연부가 가소화될 수 있다. Polyurea synthesized by using aromatic or aliphatic amines having n (3) or more carbon atoms per repeating unit as monomers of the amines corresponding to the flexible part (soft segment) has high flexibility and is easy to plasticize at 180~320℃, Preferably, the flexible part may be plasticized in the range of 200 to 280 ℃, most preferably 230 to 280 ℃.
상술한 바와 같이, 상기 온도가 180℃ 미만에서는 가소화가 충분히 이뤄지지 않아 점도 하강이 충분하지 않을 수 있으므로 바람직하지 않고, 320℃를 초과하면 폴리우레아가 과도하게 열분해될 수 있으므로 바람직하지 않다. As described above, when the temperature is less than 180° C., plasticization is not sufficiently achieved, which is not preferable because the viscosity drop may not be sufficient, and when it exceeds 320° C., it is not preferable because the polyurea may be excessively thermally decomposed.
참고로, 폴리우레아의 열분해를 알기 위하여 TGA를 사용하여 열중량 감소를 확인한 바, 도 3에 나타난 바와 같이, 대부분의 지방족 아민류를 포함한 폴리우레아는 중량감소 개시 온도(5%의 중량 감소가 발생하는 온도)가 약 280℃ 초과 320℃ 이하로서 이 온도 구간에서 열분해가 개시되고 320℃를 넘어서면 너무 과도하게 열분해되며 435~460℃에서 분해가 종료된다. For reference, the thermogravimetric reduction was confirmed using TGA to determine the thermal decomposition of polyurea. As shown in FIG. 3, polyurea including most aliphatic amines had a weight reduction initiation temperature (5% weight loss occurred). If the temperature) exceeds about 280 ℃ and 320 ℃ or less, thermal decomposition is started in this temperature section, and if it exceeds 320 ℃, excessive pyrolysis and decomposition is terminated at 435 ~ 460 ℃.
본 발명에 따르면, 상기 온도가 230~280℃인 경우, 기존 방법에 의한 분사도포(즉, 열처리가 없는 경우) 보다 부착력(돌리 테스트로 측정됨)은 10배 이상이고 박리강도는 8~16배 이상임을 알 수 있었다. 나아가, 상기 온도가 200℃ 이상 230℃ 미만인 경우, 기존 방법에 의한 분사 도포(즉, 열처리가 없는 경우) 보다 부착력(돌리 테스트로 측정)은 6~10배이고 박리강도는 3배 이상임을 알 수 있었다. According to the present invention, when the temperature is 230 to 280° C., the adhesion (measured by the Dolly test) is 10 times or more and the peeling strength is 8 to 16 times compared to the spray application by the conventional method (that is, when there is no heat treatment). I could tell it was over. Furthermore, when the temperature is 200 ° C or more and less than 230 ° C, the adhesive force (measured by the Dolly test) is 6 to 10 times and the peel strength is 3 times or more than the spray application by the conventional method (that is, when there is no heat treatment) It was found that .
한편, 상기 온도가 180℃ 이상 200℃ 미만인 경우에는 200~280℃인 경우 보다 공정 시간이 오래 걸리기는 하지만 기존 방법에 의한 분사 도포 보다 부착력은 2~3배 이상이고 박리강도는 3배 이상임을 알 수 있었다. 그리고, 상기 온도가 280℃ 초과 320℃ 이하인 경우에는 반응속도가 너무 빨라서 공정제어가 어렵다는 단점이 있기는 하지만 접착강도 및 박리 강도가 기존 분사 도포의 경우 보다는 훨씬 큰 것으로 나타났다. On the other hand, when the temperature is 180 ° C or more and less than 200 ° C, the process takes longer than that of 200 to 280 ° C. could And, when the temperature is more than 280 ° C. and less than 320 ° C., the reaction rate is too fast, so there is a disadvantage that the process control is difficult, but the adhesive strength and peel strength are much larger than in the case of the conventional spray application.
따라서 폴리우레아의 취약점인 금속을 비롯한 피착재와의 접합력을 높이고 이를 단순한 접합이 아닌 접착이 되도록 하기 위해서는 180~320℃, 바람직하게는 200~280℃, 가장 바람직하게는 230~280℃의 온도로 접합체인 폴리우레아를 분사 후에 가열하거나 피착재(금속) 표면을 상기 온도로 가열한 후 폴리우레아를 분사하면 폴리우레아의 점도가 낮아져 유동이 가능하므로 피착재 표면에 밀착성 즉 젖음성(Wetting)이 향상되므로 피착재인 금속과 폴리우레아의 접촉 면적이 커지게 되어 접합 강도가 접촉 면적에 비례하여 상승할 것이다. Therefore, in order to increase the bonding strength with the adherend, including metal, which is a weak point of polyurea, and to make it adhesion rather than simple bonding, the temperature is 180 ~ 320 ℃, preferably 200 ~ 280 ℃, most preferably 230 ~ 280 ℃. When polyurea, which is a bonding body, is sprayed and then heated or the surface of the adherend (metal) is heated to the above temperature and then polyurea is sprayed, the viscosity of polyurea is lowered and flow is possible, so adhesion to the surface of the adherend is improved. The contact area between the metal as an adherend and the polyurea becomes large, so that the bonding strength will increase in proportion to the contact area.
충분히 연화되어 유동이 발생한 폴리우레아와 피착재인 금속의 계면에는 충분히 낮은 점도에 의하여 막(계면막)이 형성될 것이며 이렇게 형성된 막은 분사 도포시와 달리 공극이 적어지므로 폴리우레아의 우수한 방수성과 함께 피착재에 대한 수분의 공격을 차단하는 효과가 증가할 것이다.A film (interfacial film) will be formed at the interface between the polyurea, which has been sufficiently softened and flowed, and the metal, which is the adherend, due to a sufficiently low viscosity. The effect of blocking the attack of moisture will increase.
본 발명의 일 실시예에 따르면, 상기 가소화 온도로 가열된 피착재(금속관, 금속패널 등)에 폴리우레아층을 형성할 수 있다. 이 때, 피착재와의 계면에는 계면막이 형성될 수 있다. 그리고, 상기 폴리우레아층의 바깥쪽면을 가열하여 계면막(외부 차단막)을 형성할 수도 있다. According to an embodiment of the present invention, a polyurea layer may be formed on an adherend (metal tube, metal panel, etc.) heated to the plasticizing temperature. In this case, an interface film may be formed at the interface with the adherend. In addition, an interface film (external blocking film) may be formed by heating the outer surface of the polyurea layer.
구체적으로, 피착재에 제1 폴리우레아층을 얇게 형성하고 상기 가소화 온도로 가열하면 제1 폴리우레아층에 포함된 기포가 제거되고 조직이 치밀화되어 계면막(제1 계면막)으로 형성된다. 이어서, 제1 폴리우레아층의 위에 제2 폴리우레아층을 형성한다. 그리고, 제2 폴리우레아층의 바깥쪽면을 상기 가소화 온도로 가열하여 계면막(제2 계면막)을 형성할 수 있다. Specifically, when the first polyurea layer is thinly formed on the adherend and heated to the plasticizing temperature, air bubbles included in the first polyurea layer are removed and the tissue is densified to form an interfacial film (first interfacial film). Next, a second polyurea layer is formed on the first polyurea layer. Then, an interface film (second interface film) may be formed by heating the outer surface of the second polyurea layer to the plasticizing temperature.
제1,2 계면막은 기포가 제거되고 조직이 치밀화되므로 방수성이 우수해지고 피착재에 대한 수분 공격을 차단하는 효과가 증가될 수 있다. Since the first and second interfacial membranes remove air bubbles and densify the tissue, the waterproofness may be improved and the effect of blocking moisture attack on the adherend may be increased.
한편, 위와 같이 제1,2 폴리우레아층을 나누어서 도포하는 것에 대한 대안으로서, 폴리우레아층을 한꺼번에 도포하여 형성할 수도 있다. 이 경우, 폴리우레아층의 바깥쪽면 및 피착재와의 경계면은 가열에 의해 각각 계면막으로 형성될 수 있다. Meanwhile, as an alternative to applying the first and second polyurea layers separately as described above, the polyurea layers may be applied at once to form the polyurea layers. In this case, the outer surface of the polyurea layer and the interface with the adherend may each be formed as an interface film by heating.
폴리우레아층을 제1,2 폴리우레아층으로 나누어서 도포하는 경우, 제1 폴리우레아층(계면막)은 약 0.3~0.85mm의 두께를 가질 수 있고, 바람직하게는 약 0.35~0.7mm의 두께를 가질 수 있으며, 가장 바람직하게는 약 0.5~0.6mm의 두께를 가질 수 있다. 그리고, 제2 폴리우레아층은 제1 폴리우레아층 보다 두꺼운데, 제품의 용도, 사용 환경 등을 고려하여 필요에 따라 그 두께를 결정할 수 있다.When the polyurea layer is divided into the first and second polyurea layers and applied, the first polyurea layer (interfacial film) may have a thickness of about 0.3 to 0.85 mm, preferably a thickness of about 0.35 to 0.7 mm. may have, and most preferably have a thickness of about 0.5 to 0.6 mm. In addition, the second polyurea layer is thicker than the first polyurea layer, and its thickness may be determined as necessary in consideration of the use of the product, the use, the environment, and the like.
본 발명의 일 실시예에 따르면, 상기 열처리 단계 중 또는 열처리 단계 후에 피착재를 운동시키는 단계를 더 포함할 수 있다. 피착재를 운동시키면 가소화된 폴리우레아가 피착재 표면에 보다 고르게 도포될 수 있으므로 도포성, 접착성을 더욱 향상시킬 수 있다. 피착재가 판상형인 경우에는 상기 운동은 진동 또는 시소형 운동 방식으로 수행될 수 있다. 상기 시소형 운동은 피착재의 어느 한 부분을 중심으로 그 좌,우측을 교대로 승하강시키는 운동을 의미한다. 그리고, 피착재가 파이프형인 경우에는 상기 운동은 회전 방식으로 수행될 수 있다. According to an embodiment of the present invention, the method may further include moving the adherend during or after the heat treatment step. When the adherend is moved, the plasticized polyurea can be more evenly applied to the surface of the adherend, thereby further improving applicability and adhesion. When the adherend is plate-shaped, the movement may be performed in a vibrating or seesaw-type movement method. The seesaw movement refers to a movement in which the left and right sides are alternately raised and lowered around any one part of the adherend. And, when the adherend is a pipe type, the movement may be performed in a rotational manner.
구체적으로, 피착재를 운동시키면, 용융된 폴리우레아의 퍼짐을 균일하게 하여 접촉면적을 더 고르고 넓게 하며, 도포제와 피착재간의 계면에 발생하는 막의 공극이나 기포를 효과적으로 감소시키고 막을 고르게 형성시킬 수 있다. 그리고, 폴리우레아의 가소화 온도로 열방사 가열하거나 가열된 롤러나 형판 등을 이용하여 폴리우레아 표면을 가열 용융시키고, 적절한 압력(예를 들어 폴리우레아층의 공극(기포)이 제거될 정도의 압력)을 가하여 외부 표면에도 막을 형성시키면 수분 침투를 보다 효과적으로 차단하여 피착재를 보호하고 부수적으로 압력에 의한 접착성 증가 효과를 얻을 수 있으며, 폴리우레아의 양면 즉 피착재 접착면과 외층(외부쪽 면)은 재용융/재가교를 통한 막 형성에 의해서 차단성 증진을, 중간층은 충분한 공극을 유지함으로서 탄성과 내충격성을 향상시키는 효과를 얻을 수 있다. Specifically, if the adherend is moved, the molten polyurea spreads uniformly, making the contact area more even and wider, effectively reducing the voids or bubbles in the film occurring at the interface between the coating agent and the adherend, and forming the film evenly. . Then, the polyurea surface is heated and melted by thermal radiation heating to the plasticizing temperature of the polyurea or using a heated roller or template, and an appropriate pressure (for example, a pressure sufficient to remove the pores (bubbles) of the polyurea layer) ) to form a film on the external surface, it blocks moisture penetration more effectively to protect the adherend, and incidentally increases the adhesion by pressure. ) improves barrier properties by forming a film through re-melting/re-crosslinking, and the intermediate layer maintains sufficient pores to improve elasticity and impact resistance.
실시예 1.1Example 1.1
메틸렌디페닐디이소시아네이트(MDI)와 폴리프로필렌글리콜이 약 75wt%와 25wt%로 혼합된 이소시아네이트와, 폴리프로필렌글리콜디아민과 폴리에테르아민 및 디에틸톨루엔트리아민이 각각 75 wt%, 20 wt%, 5 wt%로 혼합된 아민을 준비하고, 70℃의 온도와 17.2Mpa(172bar)의 압력하에서 상기 이소시아네이트와 아민을 1:1(부피비)로 강판(스틸판)에 동시에 분사하여 강판(스틸판)의 일면에 폴리우레아 층을 형성하였다. 이후 강판(스틸판)을 250℃의 온도로 가열하였다. Methylenediphenyl diisocyanate (MDI) and polypropylene glycol are mixed in about 75 wt% and 25 wt%, and polypropylene glycol diamine, polyetheramine, and diethyltoluenetriamine are 75 wt%, 20 wt%, and 5 wt%, respectively. % is prepared, and the isocyanate and the amine are 1:1 (volume ratio) at a temperature of 70° C. and a pressure of 17.2 Mpa (172 bar). A polyurea layer was formed on one surface of the steel plate (steel plate) by simultaneously spraying on the steel plate (steel plate). Then, the steel plate (steel plate) was heated to a temperature of 250 ℃.
비교예 1.1Comparative Example 1.1
250℃의 열처리를 제외하고는 실시예 1.1과 동일하게 폴리우레아가 도포된 스틸판을 제조하였다. 즉, 메틸렌디페닐디이소시아네이트(MDI)와 폴리프로필렌글리콜이 약 75wt%와 25wt%로 혼합된 이소시아네이트와, 폴리프로필렌글리콜디아민과 폴리에테르아민 및 디에틸톨루엔트리아민이 각각 75wt% 20wt% 및 5wt%로 혼합된 아민을 70℃온도와 17.2Mpa(172bar)의 압력하에서 상기 이소시아네이트와 아민을 1:1(부피비)로 분사하고 열처리를 하지 않았다. A steel plate coated with polyurea was prepared in the same manner as in Example 1.1 except for heat treatment at 250°C. That is, methylene diphenyl diisocyanate (MDI) and polypropylene glycol are mixed in about 75 wt% and 25 wt%, and polypropylene glycol diamine, polyetheramine, and diethyltoluenetriamine are 75 wt% 20 wt% and 5 wt%, respectively. The mixed amine was sprayed with the isocyanate and the amine at a temperature of 70° C. and a pressure of 17.2 Mpa (172 bar) in a ratio of 1:1 (volume ratio), and no heat treatment was performed.
실시예 1.2 ~ 1.4 및, 비교예 1.2 ~ 1.4Examples 1.2 to 1.4 and Comparative Examples 1.2 to 1.4
실시예 1.2 ~ 1.4는 실시예 1.1과 비교하여 피착재 또는 하도 유무만 다르고 나머지 조건은 동일하다. 그리고, 비교예 1.2 ~ 1.4는 비교예 1.1과 비교하여 피착재 또는 하도 유무만 다르고 나머지 조건은 동일하다. 실시예 1.2 ~ 1.4와 비교예 1.2 ~ 1.4의 구체적인 내용은 표 1에 기재되어 있다. Examples 1.2 to 1.4 differ from Example 1.1 only in the presence or absence of an adherend or undercoat, and the remaining conditions are the same. And, Comparative Examples 1.2 to 1.4 differ from Comparative Example 1.1 only in the presence or absence of an adherend or undercoat, and the remaining conditions are the same. Specific details of Examples 1.2 to 1.4 and Comparative Examples 1.2 to 1.4 are shown in Table 1.
실시예 2.1 ~ 실시예 2.5Examples 2.1 to 2.5
실시예 2.1은 180℃로 열처리한 것을 제외하고는 실시예 1.1과 동일하고, 실시예 2.2는 200℃로 열처리한 것을 제외하고는 실시예 1.1과 동일하며, 실시예 2.3은 230℃로 열처리한 것을 제외하고는 실시예 1.1과 동일하며, 실시예 2.4는 280℃로 열처리한 것을 제외하고는 실시예 1.1과 동일하다. 아울러, 실시예 2.5는 320℃로 열처리한 것을 제외하고는 실시예 1.1과 동일하다. Example 2.1 is the same as Example 1.1 except that it was heat-treated at 180 ° C., Example 2.2 is the same as Example 1.1 except that heat treatment was performed at 200 ° C., and Example 2.3 was heat-treated at 230 ° C. Example 1.1 is the same except that, Example 2.4 is the same as Example 1.1, except that the heat treatment at 280 ℃. In addition, Example 2.5 is the same as Example 1.1, except that the heat treatment at 320 ℃.
비교예 2.1 ~ 비교예 2.2Comparative Example 2.1 ~ Comparative Example 2.2
비교예 2.1은 160℃로 열처리한 것을 제외하고는 비교예 1.1과 동일하고, 비교예 2.2는 340℃로 열처리한 것을 제외하고는 비교예 1.1과 동일하다.Comparative Example 2.1 is the same as Comparative Example 1.1 except for heat treatment at 160 ℃, Comparative Example 2.2 is the same as Comparative Example 1.1 except that 340 ℃ heat treatment.
실험예Experimental example
1. 접합강도 및 박리력1. Bonding strength and peeling force
실시예 1.1 ~ 1.4 및 비교예 1.1 ~ 1.4에 대해서 접합강도 (dolly test)와 박리강도(peel strength)를 측정하고, 그 결과를 하기 표 1에 기재하였다.For Examples 1.1 to 1.4 and Comparative Examples 1.1 to 1.4, a dolly test and a peel strength were measured, and the results are shown in Table 1 below.
(하도는 2액형 에폭시를 사용하였으며 0.05mm 두께로 분사 도포하고 24시간 경화한 후 폴리우레아를 분사 도포함)(A two-component epoxy was used for the undercoat, sprayed with a thickness of 0.05mm, cured for 24 hours, and then sprayed with polyurea)
상기 표 1을 참고하면, 실시예들이 비교예들에 비해 접합강도 및 박리강도가 모두 현저하게 높은 것을 확인할 수 있다.Referring to Table 1, it can be seen that the Examples have significantly higher bonding strength and peel strength than Comparative Examples.
표 2에 나타난 바와 같이, 실시예 2.1 ~ 2.5(열처리 온도가 180 ~ 320℃)는 비교예 2.1 (160℃로 열처리한 경우)에 비해 접합강도와 박리 강도가 우수하고, 특히 열처리 온도가 230 ~ 280℃(실시예 2.2~2.4)일 때는 그 차이가 더욱 현저함을 알 수 있다.As shown in Table 2, Examples 2.1 to 2.5 (heat treatment temperature of 180 to 320 ° C.) have superior bonding strength and peel strength compared to Comparative Example 2.1 (when heat treated at 160 ° C.), and particularly, heat treatment temperature of 230 - It can be seen that the difference is more significant when it is 280 ° C. (Examples 2.2 to 2.4).
한편, 실시예 2.1 ~ 2.5는 비교예 2.2 (340℃로 열처리한 경우)와 비교하여 접합강도는 크게 차이가 없지만 박리강도는 유의미하게 높음을 알 수 있고, 특히 열처리 온도가 230 ~ 280℃ (실시예 2.2~2.4)일 때는 박리강도의 차이가 더욱 현저함을 알 수 있다.On the other hand, Examples 2.1 to 2.5 showed no significant difference in bonding strength compared to Comparative Example 2.2 (when heat treated at 340 ° C.), but the peel strength was significantly higher. In particular, the heat treatment temperature was 230 to 280 ° C. In the case of Examples 2.2 to 2.4), it can be seen that the difference in peel strength is more remarkable.
2. 현미경 분석2. Microscopic Analysis
실시예 1.1 및 비교예 1.1에 대해서 현미경 분석 결과를 도 4 ~ 13에 나타내었다.The results of microscopic analysis of Example 1.1 and Comparative Example 1.1 are shown in FIGS. 4 to 13 .
도 4 ~ 9는 실시예 1.1의 현미경 사진이다. 4 to 9 are photomicrographs of Example 1.1.
구체적으로, 도 4는 폴리우레아를 1,000배 확대하여 촬영한 사진으로서, 계면에 접착막이 형성되었음을 알 수 있고, 내부 금속 면이 투영되며 기포 및 기공이 발견되지 않음을 알 수 있다.Specifically, FIG. 4 is a photograph taken at 1,000 times magnification of polyurea, and it can be seen that an adhesive film is formed on the interface, the inner metal surface is projected, and no air bubbles and pores are found.
도 5는 가열 용융 접합 후에 폴리우레아 층을 피착재로부터 분리한 것을 1,000배 확대하여 촬영한 사진으로서, 비교예 1.1에 비해 기공이 현저히 감소하였으며 분리된 표면에 피착재의 흔적(홈)이 확연히 나타남을 확인할 수 있는데, 이는 젖음성이 크게 증가하였음을 나타낸다. 그리고, 도 6은 도 5의 분리시, 금속측에 남은 면을 촬영한 사진으로서 막 형성이 뚜렷함을 알 수 있다. 5 is a photograph taken at 1,000 times magnification of the separation of the polyurea layer from the adherend after heat-melt bonding. Compared to Comparative Example 1.1, pores were significantly reduced, and traces (grooves) of the adherend were clearly visible on the separated surface. It can be seen that the wettability is significantly increased. And, FIG. 6 is a photograph of the surface remaining on the metal side during separation of FIG. 5 , and it can be seen that the film formation is clear.
도 7 ~ 8은 가열 용융 접합시 접합면을 촬영한 사진으로서, 폴리우레아 하단에 조밀한 밀폐막(계면막)이 형성됨을 알 수 있는데, 밀폐막(계면막) 부분의 조밀도가 높고 기공이 적음을 알 수 있다. 7 to 8 are photographs of the bonding surface during heat-melting bonding. It can be seen that a dense sealing film (interfacial film) is formed at the bottom of the polyurea, and the density of the sealing film (interfacial film) part is high and the pores are It can be seen that there are few
도 9는 폴리우레아층을 보여주는 사진(평면)으로서, 접착에 의해 막이 늘어진 것을 볼 수 있고 계면막 외부의 기공을 확인할 수 있다. 9 is a photograph (planar) showing the polyurea layer, and it can be seen that the film is stretched by adhesion and pores outside the interfacial film can be confirmed.
한편, 도 10 ~ 13은 비교예 1.1(기존 방법으로 폴리우레아를 도포함)의 현미경 사진(1,000배)이다. Meanwhile, FIGS. 10 to 13 are photomicrographs (1,000 times) of Comparative Example 1.1 (polyurea was applied by the conventional method).
구체적으로, 도 10은 폴리우레아 층의 외부 노출면(외부쪽 면)을 1000배 확대하여 촬영한 사진으로서 표면 및 내부에 최대 0.043mm의 기포가 관측됨을 알 수 있다. 그리고, 도 11은 피착재와 폴리우레아 층의 접합면을 보여주는 사진인데, 표면 및 내부에서 관측치 최대 0.028mm의 기포가 발견되었다.Specifically, FIG. 10 is a photograph taken at 1000 times magnification of the external exposed surface (outer side) of the polyurea layer, and it can be seen that bubbles of up to 0.043 mm are observed on the surface and inside. And, FIG. 11 is a photograph showing the bonding surface between the adherend and the polyurea layer, and bubbles with a maximum observed value of 0.028 mm were found on the surface and inside.
아울러, 도 12를 참조하면, 피착재와 폴리우레아 사이에 밀접한 접착이 이루어지지 못하고 소재 사이에 공간이 뚜렷하게 나타남을 확인할 수 있고 폴리우레아가 피착재를 충분히 적시지 못했음을 알 수 있다. 특히, 도 13은 피착재와 폴리우레아의 경계부분을 100배 확대한 사진으로서, 단면 전체에 기포와 기공이 분포함을 알 수 있다.In addition, referring to FIG. 12 , it can be seen that close adhesion is not made between the adherend and the polyurea, and a space appears clearly between the materials, and it can be seen that the polyurea does not sufficiently wet the adherend. In particular, FIG. 13 is a 100-fold magnification of the boundary portion between the adherend and polyurea, and it can be seen that air bubbles and pores are distributed throughout the cross section.
본 발명은 다음과 같은 효과를 갖는다.The present invention has the following effects.
첫째, 본 발명에 따른 복합관 또는 복합패널 또는 관 연결부품의 제조방법은 폴리우레아층을 180~320℃로 가열하여 가소화시킴으로써 높은 접착력과 박리강도를 갖도록 하고 폴리우레아층의 피착재와의 접촉면과 외부면에 계면막이 형성되도록 하여 수분 차단성을 향상시키고 폴리우레아층의 내부에는 공극이 상대적으로 많이 포함되도록 함으로써 탄성과 내충격성을 향상시킨다. First, in the method for manufacturing a composite pipe or composite panel or pipe connection part according to the present invention, the polyurea layer is heated to 180 to 320° C. and plasticized to have high adhesion and peel strength, and the contact surface with the adherend of the polyurea layer and the By forming an interfacial film on the outer surface, moisture barrier properties are improved, and elasticity and impact resistance are improved by allowing a relatively large number of pores to be included in the polyurea layer.
둘째, 제1, 2 관의 한쪽 끝단에서부터 다른쪽 끝단을 향해 순차적으로 가열 및 냉각하여 두 개의 관을 접착하되 제1,2 관의 열팽창 계수 차이를 이용하여 제1,2 관 사이의 폴리우레아층(접착제층)에 포함된 기포를 제거할 수 있다. Second, the polyurea layer between the first and second tubes is heated and cooled sequentially from one end of the first and second tubes to the other end to bond the two tubes, but using the difference in the coefficient of thermal expansion of the first and second tubes Air bubbles contained in (adhesive layer) can be removed.
셋째, 상기 제조방법으로 만들어진 복합관과 복합패널을 제공한다.Third, to provide a composite pipe and composite panel made by the above manufacturing method.
도 1은 종래기술에 따라 피착재(금속면)에 분사된 폴리우레아를 보여주는 단면도. 1 is a cross-sectional view showing polyurea sprayed onto an adherend (metal surface) according to the prior art.
도 2는 본 발명에 따라 피착재(금속면)에 분사된 후 열처리된 폴리우레아를 보여주는 단면도. 2 is a cross-sectional view showing polyurea heat-treated after being sprayed onto an adherend (metal surface) according to the present invention.
도 3은 폴리우레아의 열분해를 측정한 TGA 결과를 보여주는 그래프.3 is a graph showing the TGA result of measuring the thermal decomposition of polyurea.
도 4는 본 발명에 따라 금속면에 도포된 폴리우레아를 1,000배 확대하여 촬영한 사진.4 is a photograph taken at 1,000 times magnification of polyurea applied to a metal surface according to the present invention.
도 5는 가열 용융 접합 후에 폴리우레아 층을 피착재로부터 분리한 것을 1,000배 확대하여 촬영한 사진.5 is a photograph taken at 1,000 times magnification of the polyurea layer separated from the adherend after heat-melt bonding;
도 6은 도 5의 분리시, 금속측에 남은 면을 촬영한 사진. 6 is a photograph of the surface remaining on the metal side when the separation of FIG. 5 is performed.
도 7 ~ 8은 가열 용융 접합시 접합면을 촬영한 사진. 7 to 8 are photographs of the bonding surface during heat-melt bonding.
도 9는 가열 용융 접합된 폴리우레아층을 보여주는 사진(평면). 9 is a photograph (planar view) showing a polyurea layer that is heat-melted bonded.
도 10은 기존 방법으로 도포된 폴리우레아층의 외부 노출면(외부쪽 면)을 1000배 확대한 사진. 10 is a 1000-fold magnification of the externally exposed surface (outer surface) of the polyurea layer applied by the conventional method.
도 11은 피착재와 폴리우레아층(기존 방법으로 도포됨)의 접합면을 보여주는 사진. 11 is a photograph showing a bonding surface between an adherend and a polyurea layer (applied by a conventional method).
도 12는 피착재와 폴리우레아층(기존 방법으로 도포됨)의 경계부분을 촬영한 사진. 12 is a photograph taken of the boundary portion between the adherend and the polyurea layer (applied by the conventional method).
도 13은 피착재와 폴리우레아층의 경계부분을 100배 확대한 사진.13 is a 100-fold magnification of the boundary portion between the adherend and the polyurea layer.
도 14는 본 발명에 따라 제조된 복합관을 보여주는 단면도. 14 is a cross-sectional view showing a composite pipe manufactured according to the present invention.
도 15는 본 발명에 따른 복합관 제조방법을 보여주는 플로우차트. 15 is a flowchart showing a method for manufacturing a composite pipe according to the present invention.
도 16a~16f는 본 발명에 따른 가열 방법을 순차적으로 보여주는 도면. 16A to 16F are views sequentially showing a heating method according to the present invention.
도 17a는 본 발명에 따라 제조된 복합 패널을 보여주는 단면도.17A is a cross-sectional view showing a composite panel manufactured according to the present invention;
도 17b는 본 발명에 따라 제조된 또 다른 복합 패널을 보여주는 단면도. 17B is a cross-sectional view showing another composite panel made in accordance with the present invention;
[복합관, 및 그 제조방법][Composite pipe and its manufacturing method]
본 발명은 다양한 재질의 복합관에 적용될 수 있고, 특정한 재질의 복합관에만 적용되는 것은 아니다. 즉, 본 발명은 제1관의 내부에 제2 관이 삽입되어 이루어진 복합관에 적용될 수 있다. 하지만, 아래에서는 설명의 편의를 위해, 스테인리스 스틸관(30)이 강관(10)의 내부에 삽입된 경우를 예로 들어 설명하기로 한다. The present invention can be applied to a composite pipe of various materials, and is not applied only to a composite pipe of a specific material. That is, the present invention can be applied to a composite pipe made by inserting a second pipe inside the first pipe. However, below, for convenience of description, a case in which the stainless steel pipe 30 is inserted into the steel pipe 10 will be described as an example.
도 14는 본 발명에 따라 제조된 복합관을 보여주는 단면도이고, 도 15는 복합관을 제조하기 위한 공정을 보여주는 플로우차트이다.14 is a cross-sectional view showing a composite pipe manufactured according to the present invention, and FIG. 15 is a flowchart showing a process for manufacturing the composite pipe.
복합관(100)은 강관(10)과, 강관(10)의 내부에 삽입된 스테인리스 스틸관(30)과, 강관(10)의 내부면과 스테인리스 스틸관(30)의 외부면 중 적어도 어느 하나에 형성된 제1 폴리우레아층(20)과, 강관(10)의 외부면에 형성된 제1 폴리우레아층(22)과, 제1 폴리우레아층(22) 위에 형성된 제2 폴리우레아층(40)을 포함한다. 복합관(100)은 주로 상수관으로 사용되지만 반드시 이에 한정되는 것은 아니다. The composite pipe 100 includes a steel pipe 10, a stainless steel pipe 30 inserted into the steel pipe 10, and at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30. It includes a first polyurea layer 20 formed, a first polyurea layer 22 formed on the outer surface of the steel pipe 10 , and a second polyurea layer 40 formed on the first polyurea layer 22 . do. The composite pipe 100 is mainly used as a water supply pipe, but is not necessarily limited thereto.
제1 폴리우레아층(20)은 강관(10)의 내부면과 스테인리스 스틸관(30)의 외부면 중 적어도 어느 하나에 형성될 수 있지만, 아래에서는 설명의 편의를 위해 제1 폴리우레아층(20)이 강관(10)의 내부면에 형성된 것으로 한다. 제1 폴리우레아층(20)이 스테인리스 스틸관(30)의 외부면에 형성된 경우는 아래의 설명을 참조하면 쉽게 그 구성을 알 수 있을 것이므로 여기서는 설명을 생략하기로 한다. The first polyurea layer 20 may be formed on at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30 , but below, for convenience of description, the first polyurea layer 20 ) is assumed to be formed on the inner surface of the steel pipe (10). When the first polyurea layer 20 is formed on the outer surface of the stainless steel tube 30, its configuration will be easily understood with reference to the following description, and thus a description thereof will be omitted.
상기 복합관 제조방법은, 강관(10)의 내부면에 제1 폴리우레아층(20)을 형성하고 강관(10)의 외부면에 제1 폴리우레아층(22)을 형성하는 단계(S10), 제1 폴리우레아층(22) 위에 제2 폴리우레아층(40)을 형성하는 단계(S20), 스테인리스 스틸관(30)을 강관(10)의 내부에 삽입하는 단계(S30), 강관(10)과 스테인리스 스틸관(30)을 확관하는 단계(S40), 강관(10)과 스테인리스 스틸관(30)을 가열하여 제1 폴리우레아층(20)(22)의 기포를 제거하여 관(10)(30) 사이의 접착력을 향상시키고 제1 폴리우레아층(22)과 강관(10) 사이의 접착력을 증가시키는 단계(S50), 및, 제2 폴리우레아층(40)의 외부면(바깥쪽면)을 가열하여 기포를 제거하고 조직을 조밀하게 하여 제2 계면막(45)을 형성하는 단계(S60)를 포함할 수 있다. 한편, 상기 S20 단계는 S10 단계 후와 S60 단계 이전이라면 어느 시기이든지 이루어질 수 있다. 도 15에서 점선은 S20 단계가 S10 단계와 S30 단계 사이, S30 단계와 S40 단계 사이, S40 단계와 S50 단계 사이 및, S50 단계와 S60 단계 중 어느 한 시기에 이루어질 수 있음을 나타낸다. 다만, 아래에서는 설명의 편의를 위해, S20 단계가 S10 단계와 S30 단계 사이에 이루어지는 경우를 설명하기로 한다. The method for manufacturing the composite pipe includes the steps of forming a first polyurea layer 20 on the inner surface of the steel pipe 10 and forming the first polyurea layer 22 on the outer surface of the steel pipe 10 (S10); 1 Step of forming the second polyurea layer 40 on the polyurea layer 22 (S20), inserting the stainless steel pipe 30 into the steel pipe 10 (S30), the steel pipe 10 and The step of expanding the stainless steel pipe 30 (S40), heating the steel pipe 10 and the stainless steel pipe 30 to remove air bubbles in the first polyurea layer 20 and 22 to remove the air bubbles from the pipes 10 and 30 ) and increasing the adhesion between the first polyurea layer 22 and the steel pipe 10 ( S50 ), and heating the outer surface (outer surface) of the second polyurea layer 40 . to form the second interfacial layer 45 by removing air bubbles and making the tissue dense (S60). Meanwhile, step S20 may be performed at any time after step S10 and before step S60. 15 , the dotted line indicates that step S20 may be performed between steps S10 and S30, between steps S30 and S40, between steps S40 and S50, and between steps S50 and S60. However, below, for convenience of description, a case in which step S20 is performed between steps S10 and S30 will be described.
아래에서는 상기 각 단계를 설명하기로 한다. Each of the above steps will be described below.
먼저, 강관(10)의 내부면에 제1 폴리우레아층(20)을 형성하고 강관(10)의 외부면에 제1 폴리우레아층(22)을 형성한다(S10). 상술한 바와 같이, 제1 폴리우레아층(20)은 강관(10)의 내부면과 스테인리스 스틸관(30)의 외부면 중 적어도 어느 한 곳에 형성될 수 있다.First, the first polyurea layer 20 is formed on the inner surface of the steel pipe 10 and the first polyurea layer 22 is formed on the outer surface of the steel pipe 10 ( S10 ). As described above, the first polyurea layer 20 may be formed on at least one of the inner surface of the steel pipe 10 and the outer surface of the stainless steel pipe 30 .
제1,2 폴리우레아층(20)(22)은 약 0.3~0.85mm의 두께를 가질 수 있고, 바람직하게는 약 0.35~0.7mm의 두께를 가질 수 있으며, 가장 바람직하게는 약 0.5~0.6mm의 두께를 가질 수 있다.The first and second polyurea layers 20 and 22 may have a thickness of about 0.3 to 0.85 mm, preferably about 0.35 to 0.7 mm, and most preferably about 0.5 to 0.6 mm. may have a thickness of
상기 두께가 상기 하한치(0.3mm) 보다 작으면 접착력과 수분 차단이 충분하지 못하고 상기 상한치(0.85mm) 보다 크면 지나치게 두꺼워지므로 바람직하지 못하다.If the thickness is less than the lower limit (0.3mm), adhesive strength and moisture barrier are not sufficient, and if it is larger than the upper limit (0.85mm), it is not preferable because it becomes too thick.
상기 폴리우레아층(20)(22)은 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 1:1(부피비)로 강관(10)의 내부면과 외부면에 분사하여 이루어질 수 있다. 상기 방향족 디이소시아네이트의 구체적인 종류와 상기 아민의 구체적인 종류는 상술한 바와 있다.The polyurea layers 20 and 22 may be formed by spraying an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more carbon atoms on the inner and outer surfaces of the steel pipe 10 in a 1:1 (volume ratio) ratio. The specific kind of the aromatic diisocyanate and the specific kind of the amine have been described above.
S10에 이어서, 제1 폴리우레아층(22) 위에 제2 폴리우레아층(40)을 형성한다(S20). 제2 폴리우레아층(40)의 구성 성분과 도포 방법은 폴리우레아층(20)(22)의 구성 성분 및 도포 방법과 동일하다. 단, 제2 폴리우레아층(40)의 두께는 제품의 용도와 필요에 따라 결정될 수 있다. Following S10, a second polyurea layer 40 is formed on the first polyurea layer 22 (S20). The constituent components and application method of the second polyurea layer 40 are the same as the constituent components and application method of the polyurea layers 20 and 22 . However, the thickness of the second polyurea layer 40 may be determined according to the use and necessity of the product.
다음으로, 스테인리스 스틸관(30)을 강관(10)의 내부에 삽입한다(S30). 스테인리스 스틸관(30)의 외경은 강관(10)의 내경 보다 약간 작은데, 추후의 확관 및 가열 공정에 의해 강관(10)의 내부면에 밀착 결합될 수 있는 정도의 직경 차이를 갖는다. Next, the stainless steel pipe 30 is inserted into the steel pipe 10 (S30). The outer diameter of the stainless steel pipe 30 is slightly smaller than the inner diameter of the steel pipe 10 , but has a diameter difference to the extent that it can be closely coupled to the inner surface of the steel pipe 10 by a subsequent pipe expansion and heating process.
이어서, 강관(10)과 스테인리스 스틸관(30)을 확관하여 강관(10)과 스테인리스 스틸관(30)을 결합시킨다(S40). Next, the steel pipe 10 and the stainless steel pipe 30 are expanded to couple the steel pipe 10 and the stainless steel pipe 30 (S40).
상기 확관은 이종관을 서로 결합시키기 위한 방법으로서, 하이드로포밍에 의해서 이루어지거나 확관 금형에 의해 이루어질 수 있다. 상기 하이드로포밍과 확관 금형은 당업계에 공지된 것이므로 여기서는 설명을 생략하기로 한다. The expansion is a method for bonding heterogeneous pipes to each other, and may be made by hydroforming or by an expansion mold. Since the hydroforming and expansion mold are known in the art, a description thereof will be omitted.
한편, 위에서는 제2 폴리우레아층(40)을 형성한 후에 확관하는 것으로 설명되었으나, 확관 후에 제2 폴리우레아층(40)이 형성될 수도 있다. Meanwhile, although it has been described above that the tube is expanded after the second polyurea layer 40 is formed, the second polyurea layer 40 may be formed after the tube is expanded.
다음으로, 강관(10)과 스테인리스 스틸관(30)을 가열한다(S50). 상기 가열은 가소화 현상이 나타나는 온도인 180℃ ~ 320℃, 바람직하게는 200℃ ~ 280℃, 가장 바람직하게는 230℃ ~ 280℃로 이루어진다. Next, the steel pipe 10 and the stainless steel pipe 30 are heated (S50). The heating is performed at 180°C to 320°C, preferably 200°C to 280°C, and most preferably 230°C to 280°C, which is the temperature at which the plasticization phenomenon occurs.
상기 방향족 디이소시아네이트와 상기 아민이 분사되어 형성된 폴리우레아는 경화부와 유연부로 이루어지되, 유연부는 직쇄 탄소수 3개 이상을 가지며, 상기 가소화에 따라 유연부가 가소화되어 폴리우레아가 부분적으로 가소화될 수 있다.The polyurea formed by spraying the aromatic diisocyanate and the amine consists of a hardening part and a flexible part, the flexible part has 3 or more straight-chain carbon atoms, and the flexible part is plasticized according to the plasticization so that the polyurea is partially plasticized. can
유연부(소프트 세그먼트)의 가소화 혹은 유동은 거시적으로 폴리우레아의 유동으로 나타날 수 있고, 이러한 가소화된 유동을 적절한 온도 범위에서 조정하는 경우 경화부(하드 세그먼트)의 가교의 손상을 최소화하며 폴리우레아의 유동성과 가소성을 확보할 수 있게 된다.The plasticization or flow of the flexible part (soft segment) can macroscopically appear as the flow of polyurea, and when this plasticized flow is adjusted in an appropriate temperature range, damage to the crosslinking of the hardened part (hard segment) is minimized and polyurea flow is minimized. It is possible to secure the fluidity and plasticity of urea.
위 표 1, 2에서 설명한 바와 같이, 상기 온도로 열처리된 제1 폴리우레아층(20)(22)은, 기존의 방법으로 도포된 폴리우레아층에 비해, 그 접착력이 매우 크고 박리강도가 크므로 접착제로서 사용될 수 있다. As described in Tables 1 and 2 above, the first polyurea layers 20 and 22 heat-treated at the above temperature have very high adhesion and peel strength compared to the polyurea layers applied by the conventional method. It can be used as an adhesive.
즉, 충분히 연화되어 유동이 발생한 폴리우레아와 강관(10)의 경계면에는 충분히 낮은 점도에 의하여 막(계면막)이 형성될 것이며 이렇게 형성된 막은 분사 도포하는 경우와는 달리 공극이 상대적으로 적어지므로 방수성과 내수성 및 접착성이 개선된다. That is, a film (interfacial film) will be formed by a sufficiently low viscosity on the interface between the polyurea, which has been sufficiently softened and flowed, and the steel pipe 10, and unlike the case of spray application, the formed film has relatively few voids, so Water resistance and adhesion are improved.
그리고, 강관(10)의 표면에 산화보호막 또는 내부식층이 형성된 경우에는 Fe2O3, Cr2O3, ZnO 등의 산소 및 금속 원소와 폴리우레아의 아민, 우레아의 수소나 산소가 화학적으로 결합하거나 2차 결합이 발생하게 되므로, 열처리 공정을 통해 접착성이 현저하게 증가된다. 따라서, 강관(10)과 스테인리스 스틸관(30)은 제1 폴리우레아층(20)과 상기 확관에 의해서 견고하게 결합될 수 있다. And, when an oxidation protective film or corrosion-resistant layer is formed on the surface of the steel pipe 10, oxygen and metal elements such as Fe 2 O 3 , Cr 2 O 3 , ZnO, amine of polyurea, hydrogen or oxygen of urea are chemically combined or secondary bonding occurs, so that the adhesiveness is remarkably increased through the heat treatment process. Accordingly, the steel pipe 10 and the stainless steel pipe 30 may be firmly coupled to the first polyurea layer 20 by the expansion of the pipe.
그리고, 상기 가열에 의해서, 제1 폴리우레아층(22)의 기포가 제거되고 조직이 치밀해져서 제1 계면막으로 형성된다. 도 7은 금속층과 폴리우레아층 사이에 형성된 계면막(제1 계면막, 22)을 보여준다. 제1 폴리우레아층(22)은 기존의 폴리우레아층에 비해 접착강도와 박리강도가 매우 큰데, 이 점에 대해서는 표 1, 2 등에서 설명한 바 있다. Then, by the heating, air bubbles in the first polyurea layer 22 are removed, and the structure becomes dense to form a first interfacial film. 7 shows an interfacial film (first interfacial film, 22) formed between the metal layer and the polyurea layer. The first polyurea layer 22 has very high adhesive strength and peel strength compared to the conventional polyurea layer, and this point has been described in Tables 1 and 2 and the like.
한편, 도 16a~16f에 나타난 바와 같이, 상기 가열은 강관(10)의 한쪽 끝단에서부터 다른쪽 끝단을 향해 순차적으로 이루어지고 상기 가열과 소정 간격을 두고 뒤따라 가면서 냉각이 이루어지는 것이 바람직하다. 이것은 강관(10) 보다 스테인리스 스틸관(30)의 열팽창 계수가 크므로, 강관(10)과 스테인리스 스틸관(30)이 가열되었을 때 제1 폴리우레아층(20)의 기포가 밀려서 이동하기 때문이다. 즉, 강관(10)의 한쪽 끝단에서부터 다른쪽 끝단을 향해 순차적으로 가열하면 제1 폴리우레아층(20)의 기포가 상기 한쪽 끝단에서부터 다른쪽 끝단을 향해 이동한 후 외부로 배출된다. 이 때, 가열되는 부분과 소정 간격을 유지하면서 냉각하면 기포가 역류하는 것을 방지할 수 있다. On the other hand, as shown in Figs. 16a to 16f, it is preferable that the heating is sequentially performed from one end of the steel pipe 10 toward the other end, and cooling is performed while following the heating at a predetermined interval. This is because the thermal expansion coefficient of the stainless steel pipe 30 is greater than that of the steel pipe 10, so when the steel pipe 10 and the stainless steel pipe 30 are heated, the bubbles of the first polyurea layer 20 are pushed and moved. . That is, when sequentially heated from one end of the steel pipe 10 toward the other end, the bubbles of the first polyurea layer 20 move from one end to the other end and then are discharged to the outside. At this time, when cooling while maintaining a predetermined distance from the heated portion, it is possible to prevent the backflow of air bubbles.
상기 가열 후에는 냉각이 이루어지는데, 냉각은 냉풍을 강제 공급하여 이루어질 수도 있다. 바람직하게, 상기 냉각은 가열 장치(도면에 미도시) 또는 가열된 부분을 소정 간격을 두고 뒤따라 가면서 이루어질 수 있는데, 이것은 기포(91)가 반대쪽 방향(관의 한쪽 끝단)으로 이동(역류)하는 것을 방지하여 관의 다른쪽 끝단으로만 이동하도록 하기 위함이다. After the heating, cooling is performed, and cooling may be achieved by forcibly supplying cold air. Preferably, the cooling can be performed by following a heating device (not shown in the drawing) or a heated part at a predetermined interval, which prevents the bubble 91 from moving (reverse flow) in the opposite direction (one end of the tube). This is to prevent it from moving to the other end of the tube.
냉각시, 강관(10)은 스테인리스 스틸관(30) 보다 원래 형상으로 되도록 가려는 힘이 크므로 강관(10)과 스테인리스 스틸관(30)이 밀착 결합될 수 있다. 즉, 강관(10)과 스테인리스 스틸관(30)은 확관과 접착제층에 의해 밀착 결합될 수 있다. Upon cooling, the steel pipe 10 has a greater force to return to its original shape than the stainless steel pipe 30 , so that the steel pipe 10 and the stainless steel pipe 30 may be closely coupled. That is, the steel pipe 10 and the stainless steel pipe 30 may be closely coupled by the expansion pipe and the adhesive layer.
한편, 편수관을 제조하기 위해서는, 도 16e~16f에 나타난 바와 같이, 확관 금형(300)을 관의 다른쪽 끝단에 삽입할 수도 있다. 관이 가열된 상태에서, 확관 금형(300)이 관 내부에 삽입된 후 확관부(310)가 관의 반경 방향으로 확장됨으로써 관이 확관된다. 확관이 완료된 후에는 관의 끝단을 수지 및 금속으로 마감 처리(96)할 수 있다. 이 마감은 확관 전, 후에 이루어질 수 있다.On the other hand, in order to manufacture a single tube, as shown in FIGS. 16E to 16F , the tube expansion mold 300 may be inserted into the other end of the tube. In a state in which the tube is heated, the tube is expanded by expanding the tube expansion part 310 in the radial direction of the tube after the tube expansion mold 300 is inserted into the tube. After the tube expansion is completed, the end of the tube may be finished with resin and metal (96). This closing can be done before or after the expansion.
S50 단계 후에는 제2 폴리우레아층(40)의 외부면을 가열하여 기포를 제거하고 조직을 조밀하게 하여 제2 계면막(45)을 형성한다(S60).After the step S50, the outer surface of the second polyurea layer 40 is heated to remove air bubbles and the tissue is made dense to form the second interfacial film 45 (S60).
상기 가열은 S50 단계의 가열과 동일한 온도로 이루어질 수 있다. 그리고, 상기 가열은 전도, 복사, 초음파 가열 등으로 이루어질 수 있는데, 가열과 함께 소정의 압력을 제2 폴리우레아층(40)에 인가할 수도 있다. The heating may be performed at the same temperature as the heating in step S50. In addition, the heating may be performed by conduction, radiation, ultrasonic heating, or the like, and a predetermined pressure may be applied to the second polyurea layer 40 together with heating.
상기 과정을 통해, 강관(10)의 외부면에는 기포가 많이 제거되고 접착력이 증가된 제1 계면막(22, 수분 유입을 차단하는 층), 기포가 상대적으로 많이 포함된 완충층(41), 및 기포가 많이 제거된 제2 계면막(45, 외부 차폐층)이 형성된다. 그리고, 강관(10)과 스테인리스 스틸관(30) 사이에는 기포가 제거된 제1 폴리우레아 도포층(20, 접착제층)이 형성된다. Through the above process, on the outer surface of the steel pipe 10, a large amount of air bubbles are removed and the first interface film 22 (a layer that blocks the inflow of moisture) with increased adhesion, a buffer layer 41 containing a relatively large amount of air bubbles, and A second interface film 45 (external shielding layer) from which many bubbles are removed is formed. A first polyurea coating layer 20 (adhesive layer) from which air bubbles are removed is formed between the steel pipe 10 and the stainless steel pipe 30 .
한편, 상기 가열(열처리) 단계 중 또는 가열(열처리) 단계 후에 복합관을 운동시키는 단계를 더 포함할 수 있다. 복합관을 운동시키면 가소화된 폴리우레아가 관 표면에 보다 고르게 도포될 수 있으므로 도포성과 접착성을 더욱 향상시킬 수 있다. On the other hand, it may further include the step of moving the composite pipe during the heating (heat treatment) step or after the heating (heat treatment) step. When the composite tube is moved, the plasticized polyurea can be applied more evenly to the surface of the tube, thereby further improving the applicability and adhesion.
구체적으로, 복합관을 운동시키면, 용융된 폴리우레아의 퍼짐을 균일하게 하여 접촉면적을 더 고르고 넓게 하며, 도포제와 피착재간의 계면에 발생하는 막의 공극이나 기포를 효과적으로 감소시키고 막을 고르게 형성시킬 수 있다. 그리고, 폴리우레아의 가소화 온도로 열방사 가열하거나 가열된 롤러나 형판 등을 이용하여 폴리우레아 표면을 가열 용융시키고, 적절한 압력을 가하여 외부 표면에도 막을 형성시키면 수분 침투를 보다 효과적으로 차단하여 관을 보호하고 부수적으로 압력에 의한 접착성 증가 효과를 얻을 수 있으며, 폴리우레아의 양면 즉 관 접착면과 외부면은 재용융/재가교를 통한 막 형성에 의해 차단성 증진을, 중간층은 충분한 공극을 유지함으로서 탄성과 내충격을 향상시키는 효과를 얻을 수 있다.Specifically, when the composite pipe is moved, the molten polyurea is uniformly spread to make the contact area more even and wider, effectively reducing the voids or bubbles in the film occurring at the interface between the coating agent and the adherend, and forming the film evenly. In addition, if the polyurea surface is heated and melted by thermal radiation heating to the plasticizing temperature of the polyurea or using a heated roller or template, and a film is formed on the external surface by applying an appropriate pressure, moisture penetration is blocked more effectively to protect the tube In addition, the effect of increasing the adhesion by pressure can be obtained incidentally, and the barrier properties of both sides of polyurea, i.e., the tube adhesion surface and the outer surface, are improved by film formation through re-melting/re-crosslinking, and the intermediate layer maintains sufficient voids. The effect of improving elasticity and impact resistance can be obtained.
상기 운동은 다양하게 이루어질 수 있으나, 복합관인 경우에는 회전 또는 진동을 인가하는 것으로 수행될 수 있다. The movement may be made in various ways, but in the case of a composite pipe, it may be performed by applying rotation or vibration.
[복합 패널, 및 그 제조방법][Composite panel and its manufacturing method]
도 17a는 본 발명에 따라 제조된 복합 패널을 보여주는 단면도이다. 17A is a cross-sectional view showing a composite panel manufactured according to the present invention.
도면에 나타난 바와 같이, 복합 패널(200)은 금속 패널(50)과, 금속 패널(50)의 윗면에 형성된 제1,2폴리우레아층(72)(60)을 포함한다. 복합패널(200)은 다양한 용도, 예를 들어 물탱크 등에 사용될 수 있다. As shown in the drawing, the composite panel 200 includes a metal panel 50 and first and second polyurea layers 72 and 60 formed on the upper surface of the metal panel 50 . The composite panel 200 may be used for various purposes, for example, a water tank.
그리고, 상기 복합패널의 제조방법은, 금속 패널(50)에 제1 폴리우레아층(72)을 형성하는 단계와, 금속 패널(50)과 제1 폴리우레아층(72) 중 적어도 어느 하나를 가열하여 제1 계면막을 형성하는 단계와, 제1 폴리우레아층(72) 위에 제2 폴리우레아층(60)을 형성하는 단계와, 제2 폴리우레아층(60)의 외부면(바깥쪽면)을 가열하여 기포를 제거하고 조직을 조밀하게 함으로써 제2 계면막(65)을 형성하는 단계를 포함할 수 있다.In addition, the method for manufacturing the composite panel includes forming a first polyurea layer 72 on a metal panel 50 , and heating at least one of the metal panel 50 and the first polyurea layer 72 . to form a first interfacial film, forming a second polyurea layer 60 on the first polyurea layer 72 , and heating an outer surface (outer surface) of the second polyurea layer 60 to form the second interfacial layer 65 by removing air bubbles and making the tissue dense.
아래에서는 상기 각 단계를 설명하기로 한다.Each of the above steps will be described below.
먼저, 금속 패널(50)에 제1 폴리우레아층(72)을 형성한다. 제1 폴리우레아층(72)에 이용되는 성분(재료)과 형성 방법 및 그 두께는 상술한 제1,2 폴리우레아층(20)(22)의 성분, 형성 방법, 및 두께와 동일하다. 금속 패널로는 강판, 스테인리스 스틸 패널 등이 이용될 수 있다.First, a first polyurea layer 72 is formed on the metal panel 50 . The components (materials) used for the first polyurea layer 72, the formation method, and the thickness thereof are the same as the components, the formation method, and the thickness of the first and second polyurea layers 20 and 22 described above. As a metal panel, a steel plate, a stainless steel panel, etc. may be used.
이어서, 금속 패널(50)과 제1 폴리우레아층(72) 중 적어도 어느 하나를 가열하여 제1 계면막을 형성한다. 상기 가열은 금속 패널(50)을 가열하여 이루어질 수도 있지만 제1 폴리우레아층(72)을 직접 가열하여 이루어질 수도 있다. 한편, 금속 패널(50)이 가소화 온도로 미리 가열된 상태에서 폴리우레아가 도포됨으로써 폴리우레아 도포 후에 곧바로 가소화가 이루어질 수도 있다. Next, at least one of the metal panel 50 and the first polyurea layer 72 is heated to form a first interface layer. The heating may be performed by heating the metal panel 50 or may be performed by directly heating the first polyurea layer 72 . On the other hand, since the polyurea is applied in a state in which the metal panel 50 is previously heated to a plasticizing temperature, plasticization may be performed immediately after the polyurea is applied.
상기 가열 온도는 전술한 제1 폴리우레아층(20)(22)의 가열 온도와 동일하다. 그리고, 상기 가열에 의해서 형성되는 제1 계면막은 기포(또는 공극)가 제거되고 조직이 치밀화되어 수분 침투가 방지되며 금속 패널(50)과의 접착 강도와 박리강도가 향상되는데, 그 원리는 제1 폴리우레아 도장층(20)(22)의 원리와 동일하다.The heating temperature is the same as the heating temperature of the first polyurea layers 20 and 22 described above. In the first interface film formed by the heating, air bubbles (or voids) are removed, the tissue is densified, moisture penetration is prevented, and the adhesive strength and peel strength with the metal panel 50 are improved. The principle of the polyurea coating layers 20 and 22 is the same.
다음으로, 제1 폴리우레아층(72) 위에 제2 폴리우레아층(60)을 형성한다. 제2 폴리우레아층(60)에 이용되는 성분(재료)과 형성 방법은 제2 폴리우레아층(40)의 성분 및 형성방법과 동일하다. Next, a second polyurea layer 60 is formed on the first polyurea layer 72 . The components (materials) used for the second polyurea layer 60 and the formation method are the same as those of the second polyurea layer 40 .
이와 같이, 제2 폴리우레아층(60) 도포는 제1 폴리우레아층(72)을 가열하여 제1 계면막을 형성한 후에 이루어질 수도 있지만 제1 폴리우레아층(72)의 상기 가열 전에 이루어질 수도 있다. As described above, the application of the second polyurea layer 60 may be performed after the first interfacial film is formed by heating the first polyurea layer 72 , or may be performed before the heating of the first polyurea layer 72 .
한편, 제1,2 폴레우레아층(72)(60)을 각각 형성하지 않고 한꺼번에 형성할 수도 있는데, 이 경우에는 금속패널(50)을 가열하여 제1 계면막을 형성하고 폴리우레아층의 바깥쪽면을 가열하여 제2 계면막을 형성할 수도 있다. On the other hand, the first and second polyurea layers 72 and 60 may be formed at once instead of being formed separately. In this case, the metal panel 50 is heated to form a first interface film and the outer surface of the polyurea layer is formed. The second interface film may be formed by heating.
제2 폴리우레아층(60)을 형성한 후에는 제2 폴리우레아층(60)의 외부면(바깥쪽면)을 가열하여 제2 계면막(65)을 형성한다. 상기 가열은 S60 단계의 가열과 동일한 방법으로 이루어질 수 있다. After the second polyurea layer 60 is formed, the outer surface (outer surface) of the second polyurea layer 60 is heated to form the second interface layer 65 . The heating may be performed in the same way as the heating in step S60.
상기 가열 온도는 제1 계면막(72)을 형성하기 위한 가열 온도와 동일하다. 상기 가열은 전도, 복사, 초음파 가열 등으로 이루어질 수 있는데, 가열과 함께 소정의 압력을 제2 폴리우레아층(60)에 인가할 수도 있다. The heating temperature is the same as the heating temperature for forming the first interface film 72 . The heating may be performed by conduction, radiation, ultrasonic heating, or the like, and a predetermined pressure may be applied to the second polyurea layer 60 together with heating.
상기 과정을 통해, 금속 패널(50)의 외부면에는 기포가 제거되고 접착력이 증가된 제1 계면막(72, 수분 유입을 차단하는 층), 기포가 포함된 완충층(61), 및 기포가 제거된 제2 계면막(65, 외부 차폐층)이 형성된다. Through the above process, air bubbles are removed from the outer surface of the metal panel 50 and the first interfacial film 72 (a layer that blocks the inflow of moisture), the buffer layer 61 containing air bubbles, and air bubbles having increased adhesion are removed. A second interfacial film 65 (external shielding layer) is formed.
상기 가열(열처리) 단계 중 또는 가열(열처리) 단계 후에 복합 패널(200)을 운동시키는 단계를 더 포함할 수 있다. 복합 패널(200)을 운동시키면 가소화된 폴리우레아가 패널 표면에 보다 고르게 도포될 수 있으므로 도포성과 접착성을 더욱 향상시킬 수 있다. The method may further include moving the composite panel 200 during or after the heating (heat treatment) step. When the composite panel 200 is moved, the plasticized polyurea can be more evenly applied to the panel surface, thereby further improving applicability and adhesion.
상기 운동은 다양한 방법으로 이루어질 수 있는데, 바람직하게는 패널(200)을 시소 운동 또는 진동시킬 수 있다. 이 시소 운동은 패널의 중앙을 중심으로 그 좌, 우측을 교대로 승하강시키는 운동이다.The movement may be performed in various ways, and preferably, the panel 200 may be moved or vibrated on a seesaw. This seesaw movement is a movement that alternately raises and lowers the left and right sides of the panel around the center.
한편, 도 17b에 나타난 바와 같이, 복합 패널(200)은 제2 계면막(65) 위에 접착된 금속 패널(55)을 더 포함할 수도 있다. 금속패널(55)은 제2 계면막(65)의 접착력에 의해서 결합된다. 금속 패널(55)은 금속 패널(50)과 동일한 금속이거나 다른 금속일 수 있다. Meanwhile, as shown in FIG. 17B , the composite panel 200 may further include a metal panel 55 bonded to the second interface layer 65 . The metal panel 55 is coupled by the adhesive force of the second interface layer 65 . The metal panel 55 may be the same metal as the metal panel 50 or a different metal.
[관 연결부품][Pipe connection part]
본 발명은 이음관과 같은 관 연결부품에도 적용될 수 있다. 참고로, 기존의 관 연결부품의 일 예는 대한민국 공개실용신안 제20-1991-0009356호 등에 개시되어 있다. The present invention can also be applied to pipe connecting parts such as fittings. For reference, an example of an existing pipe connection part is disclosed in Republic of Korea Public Utility Model No. 20-1991-0009356 and the like.
본 발명에 따른 관 연결부품은, 이음관(파이프); 이음관의 외면에 형성되며 전술한 방법으로 도포된 폴리우레아 층;을 포함할 수 있다. 상기 이음관은 강관, 스테인리스 스틸관 등일 수 있다. 그리고, 상기 폴리우레아 층은 가소화 온도로 가열되어 가소화 열처리된 것이다. A pipe connecting part according to the present invention, a joint pipe (pipe); It may include; a polyurea layer formed on the outer surface of the joint and applied by the method described above. The joint pipe may be a steel pipe, a stainless steel pipe, or the like. And, the polyurea layer is plasticized heat treatment by heating to a plasticizing temperature.
Claims (19)
- (a1) 제1 관의 내부면과 제2 관의 외부면 중 적어도 어느 하나에 제1 폴리우레아층(20)을 형성하는 단계; (a1) forming a first polyurea layer 20 on at least one of the inner surface of the first tube and the outer surface of the second tube;(a2) 제1 관의 외부면에 제1 폴리우레아층(22)을 형성하는 단계;(a2) forming a first polyurea layer 22 on the outer surface of the first tube;(a3) 제1 폴리우레아층(22) 위에 제2 폴리우레아층(40)을 형성하는 단계;(a3) forming a second polyurea layer 40 on the first polyurea layer 22;(a4) 제2 관을 제1 관의 내부에 삽입하는 단계;(a4) inserting the second tube into the interior of the first tube;(a5) 상기 (a4) 단계 이후에, 제1,2 관을 확관하는 단계;(a5) after step (a4), expanding the first and second tubes;(a6) 제1,2 관을 가열하여 제1 폴리우레아층(20)(22)의 기포를 제거함으로써 제1,2 관의 접착력을 향상시키고 제1 관과의 외부면에 제1 계면막을 형성하는 단계; 및,(a6) By heating the first and second tubes to remove air bubbles in the first polyurea layers 20 and 22, the adhesive force of the first and second tubes is improved and a first interface film is formed on the outer surface with the first tube to do; and,(a7) 제2 폴리우레아층(40)의 외부면을 가열하여 기포를 제거하고 조직을 조밀하게 함으로써 제2 계면막(45)을 형성하는 단계;를 포함하고,(a7) forming the second interfacial film 45 by heating the outer surface of the second polyurea layer 40 to remove air bubbles and densify the tissue;상기 (a6), (a7) 단계의 가열은 폴리우레아의 가소화 현상이 나타나는 온도로 가열하여 접착하며, In the heating of steps (a6) and (a7), the polyurea is attached by heating to a temperature at which plasticization occurs,상기 (a3) 단계는 (a2) 단계와 (a4) 단계 사이, (a4) 단계와 (a5) 단계 사이, (a5) 단계와 (a6) 단계 사이, 및 (a6) 단계와 (a7) 단계 사이 중 어느 한 시기에 이루어지는 것을 특징으로 하는 복합관 제조방법.Step (a3) is performed between steps (a2) and (a4), between steps (a4) and (a5), between steps (a5) and (a6), and between steps (a6) and (a7). Composite pipe manufacturing method, characterized in that made at any one time.
- 제1항에 있어서, According to claim 1,제2 관은 제1 관 보다 열팽창 계수가 크고 상기 (a6) 단계의 가열은 복합관의 한쪽 끝단에서 다른쪽 끝단을 향해서 순차적으로 이루어지며, 상기 순차적 가열에 의해 제1 폴리우레아층(20)의 기포가 복합관의 한쪽 끝단에서 다른쪽 끝단을 향해 이동하여 외부로 배출되는 것을 특징으로 하는 복합관 제조방법.The second tube has a higher coefficient of thermal expansion than the first tube, and the heating in step (a6) is sequentially performed from one end to the other end of the composite tube, and the bubbles of the first polyurea layer 20 by the sequential heating A method for manufacturing a composite pipe, characterized in that it is discharged to the outside by moving from one end of the composite pipe to the other.
- 제2항에 있어서, 3. The method of claim 2,제1,2 폴리우레아층(20)(22)(40)은 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 분사하여 형성되는 것을 특징으로 하는 복합관 제조방법. The first and second polyurea layers 20, 22 and 40 are formed by spraying an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more carbon atoms.
- 제3항에 있어서, 4. The method of claim 3,제1,2 계면막은 재용융 또는 재가교를 통하여 기포가 제거되고 막이 형성되어 수분 차단성이 증가되며, 제1,2 계면막의 사이 부분(41)은 공극을 상대적으로 많이 포함하여 탄성과 내충격성이 향상된 것을 특징으로 하는 복합관 제조방법.In the first and second interfacial films, air bubbles are removed through re-melting or re-crosslinking, and moisture barrier properties are increased. Composite pipe manufacturing method, characterized in that this improved.
- 제4항에 있어서, 5. The method of claim 4,상기 가소화 현상이 나타나는 온도는 180℃ ~ 320℃인 것을 특징으로 하는 복합관 제조방법.The method for manufacturing a composite pipe, characterized in that the temperature at which the plasticization phenomenon appears is 180 ℃ ~ 320 ℃.
- 제1 관;first tube;제1 관에 삽입된 제2 관;a second tube inserted into the first tube;제1,2 관 사이에 형성되어 제1,2 관을 결합시키는 제1 폴리우레아층(20); a first polyurea layer 20 formed between the first and second tubes to couple the first and second tubes;제1 관의 외부면에 형성된 제1 폴리우레아층(22); 및,a first polyurea layer 22 formed on the outer surface of the first tube; and,제1 폴리우레아층(22) 위에 형성된 제2 폴리우레아층(40);을 포함하고, a second polyurea layer 40 formed on the first polyurea layer 22;제1 폴리우레아층(22)은 제1 계면막을 이루며, The first polyurea layer 22 forms a first interfacial film,제2 폴리우레아층(40)은,The second polyurea layer 40 is제2 폴리우레아층(40)의 바깥쪽 면에 형성된 제2 계면막(45); 및,a second interfacial film 45 formed on the outer surface of the second polyurea layer 40; and,제1 계면막과 제2 계면막(45) 사이에 형성된 완충층(41);을 포함하고, a buffer layer 41 formed between the first interfacial film and the second interfacial film 45;제1 폴리우레아층(20) 및 제1,2 계면막은 폴리우레아의 재용융 또는 재가교에 의해 기포가 제거되고 막이 형성되어 수분 차단성이 증가되며, 완충층(41)은 제1,2 계면막 보다 많은 기포를 포함하여 탄성과 내충격성이 향상된 것을 특징으로 하는 복합관.In the first polyurea layer 20 and the first and second interfacial films, air bubbles are removed by re-melting or re-crosslinking of the polyurea and a film is formed to increase moisture barrier properties, and the buffer layer 41 is formed by the first and second interfacial films. Composite pipe, characterized in that elasticity and impact resistance are improved by including more air bubbles.
- 제6항에 있어서, 7. The method of claim 6,제1,2 관은 제2 관을 제1 관에 삽입한 후 확관시키는 것과 제1 폴리우레아층(20)에 의해서 결합된 것을 특징으로 하는 복합관.The first and second tubes are a composite tube, characterized in that the second tube is inserted into the first tube and then the tube is expanded and the first polyurea layer (20) is coupled.
- 제7항에 있어서, 8. The method of claim 7,제1,2 관은 금속관이고, The first and second tubes are metal tubes,상기 금속관 표면에 형성된 산화보호막의 산소 및 금속 원소와 제1 폴리우레아층(20) 및 제1 계면막의 아민, 우레아의 수소나 산소가 화학적으로 결합하거나 2차 결합하고, 이에 따라 접착력이 향상된 것을 특징으로 하는 복합관.Oxygen and metal elements of the oxidation protective film formed on the surface of the metal tube, amine of the first polyurea layer 20 and the first interfacial film, and hydrogen or oxygen of urea are chemically bonded or secondary bonded, thereby improving adhesion complex pipe.
- 제6항 내지 제8항 중 어느 한 항에 있어서, 9. The method according to any one of claims 6 to 8,제1,2 폴리우레아층(20)(22)(40)은 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 분사하여 형성되는 것을 특징으로 하는 복합관.The first and second polyurea layers 20, 22 and 40 are composite pipe, characterized in that formed by spraying an aromatic diisocyanate and a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms.
- 제1항 내지 제5항 중 어느 한 항의 제조방법으로 제조된 복합관. A composite pipe manufactured by the manufacturing method of any one of claims 1 to 5.
- (c1) 금속 패널(50) 위에 제1 폴리우레아층(72)을 형성하는 단계; (c1) forming a first polyurea layer 72 on the metal panel 50;(c2) 금속 패널(50) 및 제1 폴리우레아층(72) 중 적어도 어느 하나를 가열하여 제1 폴리우레아층(72)의 기포를 제거함으로써 제1 계면막을 형성하는 단계;(c2) heating at least one of the metal panel 50 and the first polyurea layer 72 to remove air bubbles in the first polyurea layer 72 to form a first interface film;(c3) 제1 폴리우레아층(72) 위에 제2 폴리우레아층(60)을 형성하는 단계; 및, (c3) forming a second polyurea layer 60 on the first polyurea layer 72; and,(c4) 제2 폴리우레아층(60)의 외부면을 가열하여 기포를 제거하고 조직을 조밀하게 하여 제2 계면막(65)을 형성하는 단계;를 포함하고,(c4) heating the outer surface of the second polyurea layer 60 to remove air bubbles and dense the tissue to form the second interfacial film 65;상기 (c3) 단계는 (c1) 단계와 (c2) 단계 사이에 이루어지거나 (c2) 단계와 (c4) 단계 사이에 이루어지며, Step (c3) is made between steps (c1) and (c2) or is made between steps (c2) and (c4),상기 (c2), (c4) 단계의 가열은 폴리우레아의 가소화 현상이 나타나는 온도로 가열하는 것을 특징으로 하는 복합 패널 제조방법. The heating in the steps (c2) and (c4) is a method for manufacturing a composite panel, characterized in that heating to a temperature at which the plasticization phenomenon of polyurea occurs.
- 제11항에 있어서, 12. The method of claim 11,제1,2 폴리우레아층(72)(60)은 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 분사하여 형성되는 것을 특징으로 하는 복합 패널 제조방법. The first and second polyurea layers 72 and 60 are formed by spraying an aromatic diisocyanate and a linear aromatic or aliphatic amine having 3 or more carbon atoms.
- 제12항에 있어서, 13. The method of claim 12,제1,2 계면막은 재용융 또는 재가교를 통하여 기포가 제거되고 막이 형성되어 수분 차단성이 증가되고, 제1,2 계면막 사이의 부분(61)은 공극을 상대적으로 많이 포함하여 탄성과 내충격성이 향상된 것을 특징으로 하는 복합 패널 제조방법.In the first and second interfacial films, air bubbles are removed through re-melting or re-crosslinking, and moisture barrier properties are increased. A method for manufacturing a composite panel, characterized in that the impact property is improved.
- 제13항에 있어서, 14. The method of claim 13,상기 가소화 현상이 나타나는 온도는 180 내지 320℃인 것을 특징으로 하는 복합 패널 제조방법.The method for manufacturing a composite panel, characterized in that the temperature at which the plasticizing phenomenon appears is 180 to 320 ℃.
- 금속패널(50); 및,metal panel 50; and,금속패널(50) 위에 형성된 제1 폴리우레아층(72); 및,a first polyurea layer 72 formed on the metal panel 50; and,제1 폴리우레아층(72) 위에 형성된 제2 폴리우레아층(60);을 포함하고, a second polyurea layer 60 formed on the first polyurea layer 72;제2 폴리우레아층(60)은,The second polyurea layer 60 is제2 폴리우레아층(60)의 바깥면에 형성된 제2 계면막(65); 및,a second interfacial film 65 formed on the outer surface of the second polyurea layer 60 ; and,제1 폴리우레아층(72)과 제2 계면막(65) 사이에 형성된 완충층(61);을 포함하고, a buffer layer 61 formed between the first polyurea layer 72 and the second interfacial film 65;제1 폴리우레아층(72)은 제1 계면막을 이루며, The first polyurea layer 72 forms a first interfacial film,제1,2 계면막은 폴리우레아의 재용융 또는 재가교에 의해 기포가 제거되고 막이 형성되어 수분 차단성이 증가되며, 완충층(61)은 제1,2 계면막 보다 많은 기포를 포함하여 탄성과 내충격성이 향상된 것을 특징으로 하는 복합 패널.In the first and second interfacial films, air bubbles are removed by re-melting or re-crosslinking of polyurea and a film is formed to increase moisture barrier properties, and the buffer layer 61 contains more air bubbles than the first and second interfacial films to improve elasticity and resistance Composite panel, characterized in that the impact properties are improved.
- 제15항에 있어서, 16. The method of claim 15,제1,2 폴리우레아층(72)(60)은 방향족 디이소시아네이트와 직쇄상 탄소수 3 이상인 방향족 또는 지방족 아민을 분사하여 형성되고,The first and second polyurea layers 72 and 60 are formed by spraying an aromatic diisocyanate and a straight-chain aromatic or aliphatic amine having 3 or more carbon atoms,상기 재용융 또는 재가교는 180℃ ~ 320℃에서 이루어진 것을 특징으로 하는 복합 패널.The re-melting or re-crosslinking is a composite panel, characterized in that made at 180 ℃ ~ 320 ℃.
- 제16항에 있어서, 17. The method of claim 16,금속패널(50)에 형성된 산화보호막의 산소 및 금속 원소와 제1 계면막의 아민, 우레아의 수소나 산소가 화학적으로 결합하거나 2차 결합하고, 이에 따라 접착력이 향상된 것을 특징으로 하는 복합 패널.A composite panel, characterized in that the oxygen and metal elements of the oxidation protective film formed on the metal panel (50) are chemically bonded or secondary to hydrogen or oxygen of the amine and urea of the first interfacial film, and thus adhesion is improved.
- 제17항에 있어서, 18. The method of claim 17,제2 계면막(65)의 윗면에 결합된 금속패널(55)을 더 포함하고, Further comprising a metal panel 55 coupled to the upper surface of the second interface film 65,금속패널(55)은 제2 계면막(65)에 의해 결합된 것을 특징으로 하는 복합 패널.A composite panel, characterized in that the metal panel (55) is joined by a second interface film (65).
- 제11항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 복합 패널.A composite panel manufactured by the manufacturing method of any one of claims 11 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200098229A KR102264916B1 (en) | 2020-08-05 | 2020-08-05 | Composite pipe and composite panel having Improved adhesion properties by thermoplastic treatment of polyurea, and manufacturing methods for the same |
KR10-2020-0098229 | 2020-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030872A1 true WO2022030872A1 (en) | 2022-02-10 |
Family
ID=76417334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/009839 WO2022030872A1 (en) | 2020-08-05 | 2021-07-28 | Composite pipe and composite panel which have improved adhesive properties by using thermoplastic treatment of polyurea, and manufacturing methods therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102264916B1 (en) |
WO (1) | WO2022030872A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099896A (en) * | 2002-09-09 | 2004-04-02 | Byk Chem Gmbh | Urea-urethane polymer for rheology modifier and method for producing the same |
KR100626316B1 (en) * | 2005-06-09 | 2006-09-20 | 정태화 | Process of manufacture and device of corrosion prevention water pipe |
KR100899667B1 (en) * | 2008-10-24 | 2009-05-27 | 신광공업 주식회사 | Urea resin with polly and how to make steel pipes |
KR101680539B1 (en) * | 2016-02-24 | 2016-12-12 | 삼화페인트공업주식회사 | Low Scattering Polyurea-Polyurethan Composition For Underground Conduit Rehabilitation And Constructing Method Using The Same |
KR101870573B1 (en) * | 2017-06-16 | 2018-06-22 | 방만혁 | Composite pipe consisting of stainless steel pipe, steel pipe and anti-corrosion layer and, manufacturing methods for the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080063723A (en) * | 2008-03-26 | 2008-07-07 | 주식회사 비엠텍 | Mending method for water pipe |
KR101604609B1 (en) * | 2015-10-13 | 2016-03-18 | 양선화 | Double insulation pipe with polyurea or polyurethane coating layer, apparatus and method for manufacturing the double insulation pipe |
-
2020
- 2020-08-05 KR KR1020200098229A patent/KR102264916B1/en active IP Right Grant
-
2021
- 2021-07-28 WO PCT/KR2021/009839 patent/WO2022030872A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099896A (en) * | 2002-09-09 | 2004-04-02 | Byk Chem Gmbh | Urea-urethane polymer for rheology modifier and method for producing the same |
KR100626316B1 (en) * | 2005-06-09 | 2006-09-20 | 정태화 | Process of manufacture and device of corrosion prevention water pipe |
KR100899667B1 (en) * | 2008-10-24 | 2009-05-27 | 신광공업 주식회사 | Urea resin with polly and how to make steel pipes |
KR101680539B1 (en) * | 2016-02-24 | 2016-12-12 | 삼화페인트공업주식회사 | Low Scattering Polyurea-Polyurethan Composition For Underground Conduit Rehabilitation And Constructing Method Using The Same |
KR101870573B1 (en) * | 2017-06-16 | 2018-06-22 | 방만혁 | Composite pipe consisting of stainless steel pipe, steel pipe and anti-corrosion layer and, manufacturing methods for the same |
Also Published As
Publication number | Publication date |
---|---|
KR102264916B1 (en) | 2021-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5730764B2 (en) | Thermal spray masking tape | |
WO2018021623A1 (en) | Complex sheet for wireless charging and method for fabricating the same | |
WO2012111963A2 (en) | Substrate film and method for manufacturing same | |
WO2010002094A2 (en) | Bridge deck waterproofing construction method for bridge or concrete structure using bridge deck composite | |
WO2022030872A1 (en) | Composite pipe and composite panel which have improved adhesive properties by using thermoplastic treatment of polyurea, and manufacturing methods therefor | |
US4070224A (en) | Polymer backed silicone rubber molds and means for forming bonds with polyorganosiloxanes | |
WO2021045322A1 (en) | High-elasticity antibacterial mat including silicone cover and harmless to human body | |
WO2021251743A1 (en) | Polyurea coating method, and metal pipe, metal plate, and pipe connection fitting, each manufactured thereby | |
WO2010110528A1 (en) | Hard coating composition, multi-layered sheet using the same, and preparation method thereof | |
WO2017078488A1 (en) | Optical adhesive composition and optical adhesive film | |
CA2263038C (en) | Method for application of protective polymer coating | |
WO2015102336A1 (en) | Polyester film and method for manufacturing same | |
WO2020262980A1 (en) | Adhesive composition, coverlay film comprising same, and printed circuit board | |
JP2801788B2 (en) | Composite molded product of polyarylene sulfide resin composition and epoxy resin | |
WO2018016699A1 (en) | Thermal bonding adhesive composition, thermal bonding double-sided adhesive tape, method for manufacturing thermal bonding double-sided adhesive tape, and method for using thermal bonding double-sided adhesive tape | |
WO2022092424A1 (en) | Artificial reef | |
WO2017213478A1 (en) | Sandwich panel and method for manufacturing same | |
WO2024136114A1 (en) | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing same | |
WO2021125880A1 (en) | Sheet for automotive paint film protection, and manufacturing method therefor | |
WO2024136003A1 (en) | Protective film | |
WO2018160020A1 (en) | Decorative film and method for manufacturing decorative film | |
WO2020111812A1 (en) | Vehicle paint film protective sheet and manufacturing method therefor | |
WO2022197123A1 (en) | Hard coating composition, hard coating film obtained therefrom, laminate including hard coating film, method of forming hard coating film, and article including hard coating film | |
WO2022139059A1 (en) | Resin composition, for mobile display device bracket, comprising carbon fiber composite resin, and mobile display device using same | |
WO2022103143A1 (en) | Transfer film and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853769 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21853769 Country of ref document: EP Kind code of ref document: A1 |