WO2022030831A1 - Process abnormality detection device and method using analysis of control section temperature signal - Google Patents
Process abnormality detection device and method using analysis of control section temperature signal Download PDFInfo
- Publication number
- WO2022030831A1 WO2022030831A1 PCT/KR2021/009532 KR2021009532W WO2022030831A1 WO 2022030831 A1 WO2022030831 A1 WO 2022030831A1 KR 2021009532 W KR2021009532 W KR 2021009532W WO 2022030831 A1 WO2022030831 A1 WO 2022030831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature signal
- signal
- segment
- unit
- divided
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000005856 abnormality Effects 0.000 title claims abstract description 46
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 238000004458 analytical method Methods 0.000 title claims abstract description 27
- 238000007781 pre-processing Methods 0.000 claims abstract description 22
- 238000010801 machine learning Methods 0.000 claims abstract description 16
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 60
- 238000004519 manufacturing process Methods 0.000 claims description 33
- 238000011084 recovery Methods 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000007637 random forest analysis Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 14
- 238000003745 diagnosis Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/05—Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
- G05B19/058—Safety, monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0221—Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a programmable logic controller (PLC) control, and more particularly, to a technology capable of accurately detecting defects and abnormalities through analysis of a control section.
- PLC programmable logic controller
- PLC is an industrial computer programmed in a low level language and used to control an automation system.
- the PLC program which is the internal logic of PLC, controls the automation system through Boolean operation.
- the PLC program designed in the general manufacturing process goes through the verification process, and when the accuracy of the program is guaranteed, it controls the actual automation system.
- the control logic is vast and very complexly designed as the complexity of the manufacturing line increases. Accordingly, the PLC program is also complicatedly logicized. For this reason, it is also becoming more and more difficult to diagnose and monitor the PLC program, and accordingly, the time it takes to find and correct an error is gradually increasing. According to Operational Diagnostics, The holy grail of control automation, the delay due to the time it takes to identify these diagnostic methods and errors accounts for more than 80% of the total equipment downtime. In particular, in the case of an automobile body assembly line, the average cycle time is about 1 minute, and therefore, when the line is stopped due to equipment failure, a large loss of profit is caused for a short period of time.
- a typical automation system consists of numerous robots and automated transport devices.
- the robot and the transfer device perform various tasks such as welding or transfer according to the logic of the PLC program.
- automation systems have high complexity due to the construction of large-scale automated production lines, and include various work failure factors such as errors of the equipment itself or errors caused by external factors such as interference with the range of motion of the robot. Delay due to failure during operation causes huge economic loss due to error detection and increase in device set-up time.
- the automation system is monitored by adding a code for diagnosis inside the PLC program that controls the flow of process and logistics.
- the PLC program is monitored through the predicted abnormality display module. That is, the conventional monitoring method cannot monitor all signals because a code according to the target of error diagnosis is separately written and added in anticipation of a high error occurrence area. Therefore, it can be said that the process to be monitored is very limited, and there is a limit to the monitoring method to detect errors that occur gradually. That is, there is a problem in that it is difficult to respond in advance to the operation failure phenomenon that occurs due to the gradual wear of devices or accessories.
- the present invention extracts characteristic information from a PLC analog signal, and applies the extracted characteristic information to a machine learning model to detect a process abnormality with respect to a PLC analog signal.
- a process abnormality detection method according to the analysis of a control section signal and systems.
- an apparatus for detecting process anomalies through analysis of a temperature signal in a control section of the present invention includes: a pre-processing unit for performing data pre-processing on an analog temperature signal corresponding to a PLC control process; a feature information extraction unit for extracting feature information from the pre-processed analog temperature signal; and a process abnormality detection unit for detecting whether there is an abnormality in a PLC control process corresponding to the analog temperature signal by applying the extracted characteristic information to a machine learning model.
- the pre-processing unit may include: a signal dividing module dividing the analog temperature signal into segments; and a loss recovery module for restoring a loss section for the analog temperature signal divided into segments.
- the signal division module is characterized in that the product production cycle unit is divided as the segment unit in the analog temperature signal.
- the signal division module divides each detailed process unit in the product production cycle from the analog temperature signal as the segment unit.
- the loss recovery module includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to the segment signals in which the analog temperature signal is divided into segments, and sampling temperature data of a second segment signal adjacent to the first segment signal It is characterized in that the sampling temperature data of the loss section for the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data.
- the loss recovery module divides each of the segment signals divided into the segment unit into a predetermined sampling period, and restores the sampling temperature data divided by the predetermined sampling period using a linear relationship between the original sampling temperature data. characterized in that
- the feature information extracting unit is, in the analog temperature signal, a total integral area, a bow-shaped integral area, a Y-axis parallel movement integral area, an integral area of a temperature rise section, an integral area of a temperature fall section, a start end slope, a start in one product production cycle unit It is characterized in that at least one of the highest displacement difference, the highest final displacement difference, the mean, the standard deviation, the root mean square, and the shape coefficient is extracted as the feature information.
- the feature information extraction unit is characterized in that by using a random forest algorithm among the machine learning method, it is characterized in that the selection of some of the feature information of the extracted feature information.
- a process abnormality detection method through analysis of a temperature signal in a control section of the present invention, comprising: performing data pre-processing on an analog temperature signal corresponding to a PLC control process; extracting characteristic information from the pre-processed analog temperature signal; and detecting an abnormality in a PLC control process corresponding to the analog temperature signal by applying the extracted feature information to a machine learning model.
- the pre-processing of the data may include: dividing the analog temperature signal into segments; and restoring a loss section for the analog temperature signal divided into segments.
- the dividing into segments may include dividing a product production cycle unit in the analog temperature signal as the segment unit.
- the dividing into segments may include dividing each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
- the restoring of the loss section includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to segment signals in which the analog temperature signal is divided into segments, and a second segment signal adjacent to the first segment signal. It is characterized in that the sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
- the step of restoring the loss section includes dividing each of the segment signals divided into the segment unit into a certain sampling section, and using a linear relationship between the original sampling temperature data, the sampling temperature divided by the predetermined sampling section It is characterized in that the data is restored.
- the total integral area, the bow-shaped integral area, the Y-axis parallel movement integral area, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end from the analog temperature signal in one product production cycle unit It is characterized in that at least one or more of a slope, a starting highest displacement difference, a highest ending displacement difference, a mean, a standard deviation, a root mean square root, and a shape coefficient is extracted as the feature information.
- the extracting of the feature information may include selecting some of the extracted feature information using a random forest algorithm among machine learning methods.
- data pre-processing is performed using an analog temperature signal corresponding to the PLC control process, and feature information is extracted from the pre-processed analog temperature signal to detect an abnormality in the PLC control process corresponding to the analog temperature signal.
- FIG. 1 is a block diagram of an embodiment for explaining an apparatus for detecting process anomalies through analysis of a temperature signal in a control section of the present invention.
- FIG. 2 is a block diagram of an embodiment for explaining the preprocessing unit shown in FIG. 1 .
- FIG. 3 is a reference diagram for an example illustrating that an analog temperature signal is divided into segments by a signal dividing module.
- FIG. 4 is a reference diagram of another example illustrating that an analog temperature signal is divided into segments by a signal dividing module.
- FIG. 5 is a reference diagram illustrating an example that a loss section for a segment signal is applied by a loss recovery module.
- FIG. 6 is a reference diagram illustrating an example that a loss section for a segment signal is applied by a loss recovery module.
- FIG. 7 is a reference diagram illustrating characteristic information that the characteristic information extraction unit can extract from an analog temperature signal.
- FIG. 8 is a flowchart of an embodiment for explaining a process abnormality detection method through analysis of a temperature signal in a control section of the present invention.
- FIG. 9 is a flowchart of an embodiment for explaining a step of performing data preprocessing shown in FIG. 8 .
- MPFDT Manufacturing Process Failure Diagnosis Tool
- FIG. 1 is a block diagram of an embodiment for explaining an apparatus 100 for detecting process anomalies through analysis of a temperature signal in a control section of the present invention.
- the process anomaly detection apparatus 100 includes a pre-processing performing unit 110 , a feature information extracting unit 120 , and a process anomaly detecting unit 130 .
- the preprocessing unit 110 performs data preprocessing on the collected analog temperature signal corresponding to the PLC control process.
- FIG. 2 is a block diagram of an embodiment for explaining the preprocessing unit 110 shown in FIG. 1 .
- the preprocessing unit 110 includes a signal division module 110-1 and a loss recovery module 110-2.
- the signal division module 110-1 divides the analog temperature signal into segments.
- the signal division module 110-1 may divide a product production cycle unit as the segment unit in the analog temperature signal.
- 3 is a reference diagram for an example illustrating that an analog temperature signal is divided into segments by the signal dividing module 110-1.
- the analog temperature signal is divided by dividing the entire analog temperature signal at a predetermined time interval (eg, 1 minute interval) without considering the control section for the analog temperature signal, and the divided signal analysis method is used. According to this, since the pattern is different for each analysis point, it cannot accurately reflect the data pattern change of the analog temperature signal. In addition, when a process abnormality occurs in the analog temperature signal, it is difficult to have reliability in the data analysis result because it is impossible to detect the exact time when the process abnormality occurs.
- a predetermined time interval eg, 1 minute interval
- the signal dividing module 110-1 divides the analog temperature signal into product production cycle units (eg, 74 second units) among segment units in consideration of the control section. According to this, since the analog temperature signal is divided into product production cycle units by the signal dividing module 110-1, each analysis point has a constant pattern, it is possible to easily distinguish a normal pattern from an abnormal pattern. In addition, data parts that do not require analysis, that is, parts in which process abnormalities occur, can be easily purified.
- the signal dividing module 110-1 may divide each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
- FIG. 4 is a reference diagram of another example illustrating that the analog temperature signal is divided into segments by the signal dividing module 110-1.
- the signal dividing module 110-1 may divide the analog temperature signal into each detailed process unit within a product production cycle based on PLC I/O log information. By dividing each detailed process in the product production cycle into segments, it is possible to specify which process section in the product production cycle has an error. For example, the operation of process A in the product production cycle takes about 5 seconds on average for every cycle, but when it takes 7 seconds due to an abnormality, it can be determined that the analog temperature signal of the process A is abnormal.
- the loss recovery module 110-2 restores a loss section for the analog temperature signal divided into segments.
- the loss recovery module 110-2 includes an endpoint temperature data among sampling temperature data of a first segment signal belonging to the segment signals in which the analog temperature signal is divided into segments and a second segment signal adjacent to the first segment signal.
- the sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
- 5 is a reference diagram illustrating an example that a loss section for a segment signal is applied by the loss recovery module 110-2.
- the start time and end time of the segment signal and the start time and end time of the sampling temperature data of the analog temperature signal do not exactly match. Therefore, since the degree of loss is different for each segment, it is impossible to pre-process data under the same conditions, and the values of the start time and end time of the sampling temperature data are unreliable. The smaller the size of the segment unit, the greater the effect of the loss.
- the loss restoration module 110-2 selects the end point data or start point data based on the start time or end time of the segment signals so that the straight line passing through the end point data and the start point data is New sampling temperature data can be created at the point where it meets the reference point divided into segments.
- the loss recovery module 110-2 calculates the sampling temperature data RP1 corresponding to the dividing point, thereby generating an analog temperature signal for the section (eg, 0.5 second section) lost in the second segment signal. can do.
- sampling temperature data RP2 corresponding to the division point of the second segment signal or the third segment signal divided in units of segments may be calculated using the relational expression. Accordingly, the loss restoration module 110-2 calculates the sampling temperature data RP2 corresponding to the dividing point, thereby converting the analog temperature signal for the section lost in the second segment signal (for example, the section for 1.5 seconds). can do.
- the loss recovery module 110-2 divides each of the segment signals divided into segments into a predetermined sampling period, and uses a linear relationship between the original sampling temperature data to separate each of the segment signals divided by the predetermined sampling period. Restore sampling temperature data.
- 6 is a reference diagram of another example illustrating that a loss section for a segment signal is applied by the loss recovery module 110-2.
- the number of points of the sampling temperature data may be different for each segment, and even if the number of points of the sampling temperature data is constant, the points The collection time may not be constant.
- the loss recovery module 110-2 collects data points at regular time intervals so that sampling temperature data can be extracted from all segment signals under the same conditions.
- the loss recovery module 110 - 2 divides the sampling period into predetermined time units for each of the segment signals and calculates a data point value corresponding to each time unit.
- the loss recovery module 110-2 calculates the sampling temperature data RP10 divided by the predetermined sampling section by using a linear relational expression of a straight line passing through each of the original sampling temperature data EP10 and EP11. Accordingly, the loss recovery module 110-2 can be referred to as an analog temperature signal in which the number of data points and the collection interval are constant in all segment signals.
- the feature information extraction unit 120 extracts feature information from the pre-processed analog temperature signal.
- the feature information extraction unit 120 includes the total integral area for one product production cycle in the analog temperature signal, the arc integral area, the Y-axis parallel movement integral area, the integral area for the temperature rise section, the integral area for the temperature drop section, the starting and ending slope, At least one of a starting maximum displacement difference, a maximum ending displacement difference, a mean, a standard deviation, a root mean square root, and a shape coefficient may be extracted as feature information.
- FIG. 7 is a reference diagram illustrating characteristic information that the characteristic information extraction unit 120 can extract from an analog temperature signal.
- the total integral area for the product production cycle, the integral area of the bow, the integral area of the Y-axis parallel movement, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end slope, the start maximum displacement difference, the highest The end displacement difference, the mean, the standard deviation, the root mean square, and the shape coefficient may be calculated through the following equations, respectively.
- the total integral area can be calculated using Equation 1 below.
- the arc integral area can be calculated using Equation 2 below.
- the Y-axis translation integral area can be calculated using Equation 3 below.
- the integral area of the temperature rise section can be calculated using Equation 4 below.
- the integral area of the temperature drop section can be calculated using Equation 5 below.
- the starting and ending slope can be calculated using Equation 6 below.
- the starting maximum displacement difference can be calculated using the following Equation (7).
- the highest end displacement difference can be calculated using the following Equation (8).
- the average can be calculated using Equation 9 below.
- the standard deviation can be calculated using Equation 10 below.
- the root mean square can be calculated using Equation 11 below.
- the shape coefficient can be calculated using Equation 12 below.
- the feature information extraction unit 120 may select some feature information from among the feature information calculated in this way by using a random forest algorithm of a machine learning method.
- the random forest algorithm refers to a method of generating a single model by randomly selecting elements used in making a decision tree to create multiple decision trees and combining the multiple decision trees. By selecting some of the feature information from among all the feature information using a random forest algorithm, more accurate classification of feature information can be achieved compared to regression analysis.
- the feature information extracting unit 120 uses a forest (random forest) algorithm to list the ranks of the feature information according to the importance of the feature, and from among these ranks, the feature information for accurately classifying whether there is an abnormality in the process is selected in order.
- feature importance is a measure to evaluate which variable is most important in the process of creating a tree.
- the process abnormality detection unit 130 detects whether there is an abnormality in the PLC control process corresponding to the analog temperature signal by applying the selected characteristic information to the machine learning model.
- a machine learning model includes an input layer, a hidden layer, and an output layer, and is a model trained in advance using training data, and the output layer can function as a classifier to determine whether there is an abnormality in the PLC control process.
- a detailed description of the machine learning model used in the process anomaly detection unit 130 is omitted in that it is a general model, however, the process anomaly detection unit 130 reshapes the selected characteristic information and applies it to the input layer. It has a structure that can output the result value through the output layer that determines whether there is an abnormality through the hidden layer learned through training.
- the following Table 1 is a table for explaining that the selected characteristic information is applied to the process abnormality detection unit 130 to determine whether there is a process abnormality.
- 3 pieces of feature information selected using a random forest algorithm from among 12 kinds of feature information that is, (b) circular integral area, (f) start and end slope, (k) root mean square process It is applied to the abnormality detection unit 130 to exemplify the detection of the presence or absence of an abnormality (no abnormality: OK, abnormal occurrence: NG) for the corresponding process for each product production cycle.
- FIG. 8 is a flowchart of an embodiment for explaining a process abnormality detection method through analysis of a temperature signal in a control section of the present invention.
- Data preprocessing is performed on the analog temperature signal corresponding to the PLC control process (step S1000).
- FIG. 9 is a flowchart of an embodiment for explaining a step of performing data preprocessing shown in FIG. 8 .
- the analog temperature signal is divided into segments (step S1010).
- the dividing into segments may include dividing a product production cycle unit in the analog temperature signal as the segment unit.
- the dividing into segments may include dividing each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
- step S1010 a loss section for the analog temperature signal divided into segments is restored (step S1012).
- the restoring of the loss section includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to segment signals in which the analog temperature signal is divided into segments, and a second segment signal adjacent to the first segment signal.
- the sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit may be restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
- each of the segment signals divided into the segment unit is divided into a predetermined sampling interval, and divided by the predetermined sampling interval using a linear relationship between the original sampling temperature data. Sampling temperature data can be restored.
- step S1000 feature information is extracted from the preprocessed data (step S1002).
- the total integral area, the bow-shaped integral area, the Y-axis parallel movement integral area, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end from the analog temperature signal in one product production cycle unit At least one of a slope, a starting maximum displacement, a maximum ending displacement, a mean, a standard deviation, a root mean square root, and a shape coefficient may be extracted as the feature information.
- the extracting of the feature information may include selecting some of the extracted feature information by using a random forest algorithm among machine learning methods.
- the extracted feature information is applied to the machine learning model to detect whether there is an abnormality in the PLC control process corresponding to the analog temperature signal (step S1004).
- the selected feature information may be reshaped and applied to the input layer, and the result value regarding the presence or absence of abnormality may be output through the output layer through the hidden layer learned through training.
- the present invention may be implemented as a software program and may be implemented by a computer-readable recording medium.
- the recording medium may be a hard disk, flash memory, RAM, ROM, etc. built-in to each playback device, or an optical disk such as a CD-R or CD-RW, compact flash card, smart media, memory stick, or multimedia card as an external type. have.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
A process abnormality detection device using the analysis of a control section temperature signal, of the present invention, comprises: a preprocessing unit for performing data preprocessing on an analog temperature signal corresponding to a PLC control process; a feature information extraction unit for extracting pieces of feature information from the preprocessed analog temperature signal; and a process abnormality detection unit, which applies the extracted pieces of feature information to a machine learning model to detect the abnormality of the PLC control process corresponding to the analog temperature signal.
Description
본 발명은 PLC(Programmable Logic Controller) 제어에 관한 것으로, 보다 상세하게는 제어 구간의 분석을 통한 결함 및 이상을 정확하게 탐지할 수 있도록 하는 기술에 관한 것이다.The present invention relates to a programmable logic controller (PLC) control, and more particularly, to a technology capable of accurately detecting defects and abnormalities through analysis of a control section.
PLC는 low level 언어로 프로그램 되며 자동화 시스템을 제어하는데 사용되는 산업용 컴퓨터이다. PLC의 내부로직인 PLC 프로그램은 Boolean 연산을 통해 자동화 시스템을 제어한다. 일반적인 제조 공정에서 설계된 PLC 프로그램은 검증과정을 거치며 프로그램의 정확성이 보장되면 실제 자동화 시스템을 제어하게 된다.PLC is an industrial computer programmed in a low level language and used to control an automation system. The PLC program, which is the internal logic of PLC, controls the automation system through Boolean operation. The PLC program designed in the general manufacturing process goes through the verification process, and when the accuracy of the program is guaranteed, it controls the actual automation system.
최근 자동화된 제조 산업은 제조 라인의 복잡성 증대에 따라 제어 로직이 방대하며 또한 매우 복잡하게 설계되어 있다. 이에 따라 PLC 프로그램도 복잡하게 로직화 되어 있다. 이러한 이유로 PLC 프로그램을 진단 및 모니터링 하는 것 또한 점점 더 어려워지고 있으며, 이에 따라 에러를 발견하고 수정하는데 걸리는 시간이 점진적으로 증가하는 추세이다. Operational Diagnostics, The holy grail of control automation에 따르면 이러한 진단 방법과 에러를 규명하는데 걸리는 시간으로 인한 작업 지연은 전체 설비 고장 시간의 80%를 넘는 것으로 나타나 있다. 특히 자동차 차체 조립 라인의 경우, 평균 사이클 타임(Cycle Time)은 1분 안팎이며 따라서 설비 고장에 의한 라인 정지시, 짧은 시간 동안 큰 이익의 손실을 야기하게 된다.In the recent automated manufacturing industry, the control logic is vast and very complexly designed as the complexity of the manufacturing line increases. Accordingly, the PLC program is also complicatedly logicized. For this reason, it is also becoming more and more difficult to diagnose and monitor the PLC program, and accordingly, the time it takes to find and correct an error is gradually increasing. According to Operational Diagnostics, The holy grail of control automation, the delay due to the time it takes to identify these diagnostic methods and errors accounts for more than 80% of the total equipment downtime. In particular, in the case of an automobile body assembly line, the average cycle time is about 1 minute, and therefore, when the line is stopped due to equipment failure, a large loss of profit is caused for a short period of time.
일반적인 자동화 시스템은 수많은 로봇과 자동화된 이송장치로 이루어져 있다. 로봇과 이송장치는 PLC 프로그램의 로직에 따라 용접이나 이송 등의 다양한 작업을 하게 된다. 최근 자동화 시스템은 대단위의 자동화 생산라인을 구축하고 있어 복잡도가 높아 설비 자체의 에러, 또는 로봇 운동 범위 간섭과 같은 외부 요인에 의한 에러 등의 다양한 작업 실패 요소를 포함하고 있다. 작업 중 실패에 의한 지연은 에러 발견 및 장치의 셋 업(set-up) 시간 증가로 인한 막대한 경제적 손실을 야기한다.A typical automation system consists of numerous robots and automated transport devices. The robot and the transfer device perform various tasks such as welding or transfer according to the logic of the PLC program. Recently, automation systems have high complexity due to the construction of large-scale automated production lines, and include various work failure factors such as errors of the equipment itself or errors caused by external factors such as interference with the range of motion of the robot. Delay due to failure during operation causes huge economic loss due to error detection and increase in device set-up time.
이러한 에러들을 진단하기 위해서 공정 및 물류의 흐름을 제어하는 PLC 프로그램 내부에 진단을 위한 코드를 추가하는 방법으로 자동화 시스템을 모니터링 한다. 일반적으로 자동화 시스템의 대표격인 자동차 산업은 자동화가 이루어진 제조라인에서 오류가 발생하였을 경우, 미리 예상한 이상표시모듈을 통해 PLC 프로그램을 모니터링 한다. 즉, 종래 모니터링 방법은 에러발생 가능이 높은 영역을 예상하여, 에러 진단 목적 대상에 따른 코드를 별도로 작성하여 추가하는 것이기 때문에 모든 신호를 모니터링 할 수 없다. 그러므로 모니터링 대상이 되는 공정은 매우 제한적이라 할 수 있으며 점진적으로 발생하는 에러를 발견하기 위한 모니터링 방법으로는 한계가 있다. 즉, 장치나 부속품의 점진적인 마모로 발생하는 작업 실패 현상에는 사전에 대응하기 어렵다는 문제점을 가진다.In order to diagnose these errors, the automation system is monitored by adding a code for diagnosis inside the PLC program that controls the flow of process and logistics. In general, when an error occurs in an automated manufacturing line in the automobile industry, which is a representative of the automation system, the PLC program is monitored through the predicted abnormality display module. That is, the conventional monitoring method cannot monitor all signals because a code according to the target of error diagnosis is separately written and added in anticipation of a high error occurrence area. Therefore, it can be said that the process to be monitored is very limited, and there is a limit to the monitoring method to detect errors that occur gradually. That is, there is a problem in that it is difficult to respond in advance to the operation failure phenomenon that occurs due to the gradual wear of devices or accessories.
특히, PLC 제어 시스템의 동작에 큰 영향을 미치지 않는 시스템 이상의 경우에는 제어 프로세스 모델을 통해 이상여부를 판단할 수 없어서, 아날로그 입출력 신호와 관련된 모든 유형의 오류를 검출할 수는 없다는 문제점이 있다. 본 발명과 관련된 선행문헌으로는 대한민국 등록특허 제10-0414437호(등록일: 2003년 12월 24일)가 있다.In particular, in the case of a system abnormality that does not significantly affect the operation of the PLC control system, there is a problem in that it is impossible to detect all types of errors related to analog input/output signals because it is not possible to determine whether there is an abnormality through the control process model. As a prior document related to the present invention, there is Republic of Korea Patent Registration No. 10-0414437 (registration date: December 24, 2003).
본 발명은 PLC 아날로그 신호에 대해 특징 정보들을 추출하고, 추출된 특징 정보들을 머신러닝 모델에 인가하여 PLC 아날로그 신호에 대한 공정 이상 유무를 탐지할 수 있도록 하는 제어 구간 신호의 분석에 따른 공정 이상 탐지방법 및 시스템에 관한 것이다.The present invention extracts characteristic information from a PLC analog signal, and applies the extracted characteristic information to a machine learning model to detect a process abnormality with respect to a PLC analog signal. A process abnormality detection method according to the analysis of a control section signal and systems.
상기의 과제를 해결하기 위한 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지장치는 PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행하는 전처리 수행부; 전처리된 아날로그 온도신호로부터 특징 정보들을 추출하는 특징정보 추출부; 및 상기 추출된 특징 정보들을 머신러닝 모델에 인가하여 상기 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지하는 공정이상 탐지부를 포함하는 것을 특징으로 한다.In order to solve the above problems, an apparatus for detecting process anomalies through analysis of a temperature signal in a control section of the present invention includes: a pre-processing unit for performing data pre-processing on an analog temperature signal corresponding to a PLC control process; a feature information extraction unit for extracting feature information from the pre-processed analog temperature signal; and a process abnormality detection unit for detecting whether there is an abnormality in a PLC control process corresponding to the analog temperature signal by applying the extracted characteristic information to a machine learning model.
상기 전처리 수행부는, 상기 아날로그 온도신호에 대해 세그먼트 단위로 분할하는 신호 분할모듈; 및 상기 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원하는 손실 복원모듈을 포함하는 것을 특징으로 한다.The pre-processing unit may include: a signal dividing module dividing the analog temperature signal into segments; and a loss recovery module for restoring a loss section for the analog temperature signal divided into segments.
상기 신호 분할모듈은, 상기 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 한다.The signal division module is characterized in that the product production cycle unit is divided as the segment unit in the analog temperature signal.
상기 신호 분할모듈은, 상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 한다.The signal division module divides each detailed process unit in the product production cycle from the analog temperature signal as the segment unit.
상기 손실 복원모듈은, 상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원하는 것을 특징으로 한다.The loss recovery module includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to the segment signals in which the analog temperature signal is divided into segments, and sampling temperature data of a second segment signal adjacent to the first segment signal It is characterized in that the sampling temperature data of the loss section for the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data.
상기 손실 복원모듈은, 상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원하는 것을 특징으로 한다.The loss recovery module divides each of the segment signals divided into the segment unit into a predetermined sampling period, and restores the sampling temperature data divided by the predetermined sampling period using a linear relationship between the original sampling temperature data. characterized in that
상기 특징정보 추출부는, 상기 아날로그 온도신호에서 하나의 제품생산 사이클 단위로 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근, 및 모양 계수 중 적어도 하나 이상을 상기 특징 정보로 추출하는 것을 특징으로 한다.The feature information extracting unit is, in the analog temperature signal, a total integral area, a bow-shaped integral area, a Y-axis parallel movement integral area, an integral area of a temperature rise section, an integral area of a temperature fall section, a start end slope, a start in one product production cycle unit It is characterized in that at least one of the highest displacement difference, the highest final displacement difference, the mean, the standard deviation, the root mean square, and the shape coefficient is extracted as the feature information.
상기 특징정보 추출부는, 머신러닝 방식 중 랜덤 포레스트 알고리즘을 이용하여, 상기 추출된 특징정보들 중 일부의 특징정보들을 선별하는 것을 특징으로 한다.The feature information extraction unit is characterized in that by using a random forest algorithm among the machine learning method, it is characterized in that the selection of some of the feature information of the extracted feature information.
상기의 과제를 해결하기 위한 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지방법은, PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행하는 단계; 전처리된 아날로그 온도신호로부터 특징 정보들을 추출하는 단계; 및 상기 추출된 특징 정보들을 머신러닝 모델에 인가하여 상기 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지하는 단계를 포함하는 것을 특징으로 한다.In order to solve the above problems, there is provided a process abnormality detection method through analysis of a temperature signal in a control section of the present invention, comprising: performing data pre-processing on an analog temperature signal corresponding to a PLC control process; extracting characteristic information from the pre-processed analog temperature signal; and detecting an abnormality in a PLC control process corresponding to the analog temperature signal by applying the extracted feature information to a machine learning model.
상기 데이터 전처리를 수행하는 단계는, 상기 아날로그 온도신호에 대해 세그먼트 단위로 분할하는 단계; 및 상기 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원하는 단계를 포함하는 것을 특징으로 한다.The pre-processing of the data may include: dividing the analog temperature signal into segments; and restoring a loss section for the analog temperature signal divided into segments.
상기 세그먼트 단위로 분할하는 단계는, 상기 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 한다.The dividing into segments may include dividing a product production cycle unit in the analog temperature signal as the segment unit.
상기 세그먼트 단위로 분할하는 단계는, 상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 한다.The dividing into segments may include dividing each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
상기 손실구간을 복원하는 단계는, 상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원하는 것을 특징으로 한다.The restoring of the loss section includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to segment signals in which the analog temperature signal is divided into segments, and a second segment signal adjacent to the first segment signal. It is characterized in that the sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
상기 손실구간을 복원하는 단계는, 상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원하는 것을 특징으로 한다.The step of restoring the loss section includes dividing each of the segment signals divided into the segment unit into a certain sampling section, and using a linear relationship between the original sampling temperature data, the sampling temperature divided by the predetermined sampling section It is characterized in that the data is restored.
상기 특징정보를 추출하는 단계는, 상기 아날로그 온도신호에서 하나의 제품생산 사이클 단위로 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근, 및 모양 계수 중 적어도 하나 이상을 상기 특징 정보로 추출하는 것을 특징으로 한다.In the step of extracting the feature information, the total integral area, the bow-shaped integral area, the Y-axis parallel movement integral area, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end from the analog temperature signal in one product production cycle unit It is characterized in that at least one or more of a slope, a starting highest displacement difference, a highest ending displacement difference, a mean, a standard deviation, a root mean square root, and a shape coefficient is extracted as the feature information.
상기 특징정보를 추출하는 단계는, 머신러닝 방식 중 랜덤 포레스트 알고리즘을 이용하여, 상기 추출된 특징정보들 중 일부의 특징정보들을 선별하는 것을 특징으로 한다.The extracting of the feature information may include selecting some of the extracted feature information using a random forest algorithm among machine learning methods.
본 발명에 따르면, PLC 제어 공정에 대응하는 아날로그 온도신호를 이용하여, 데이터 전처리를 수행하고, 전처리된 아날로그 온도신호로부터 특징 정보들을 추출하여, 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지함으로써, PLC 제어 공정에서 세부 제어 구간에 대한 프로세스의 이상 유무를 용이하게 검출할 수 있다. According to the present invention, data pre-processing is performed using an analog temperature signal corresponding to the PLC control process, and feature information is extracted from the pre-processed analog temperature signal to detect an abnormality in the PLC control process corresponding to the analog temperature signal. By doing so, it is possible to easily detect whether there is an abnormality in the process for the detailed control section in the PLC control process.
도 1은 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지장치를 설명하기 위한 일 실시예의 구성 블록도이다.1 is a block diagram of an embodiment for explaining an apparatus for detecting process anomalies through analysis of a temperature signal in a control section of the present invention.
도 2는 도 1에 도시된 전처리 수행부를 설명하기 위한 일 실시예의 구성블록도이다. FIG. 2 is a block diagram of an embodiment for explaining the preprocessing unit shown in FIG. 1 .
도 3은 신호 분할모듈에 의해 아날로그 온도신호가 세그먼트 단위로 분할되는 것을 예시하는 일 예의 참조도이다.3 is a reference diagram for an example illustrating that an analog temperature signal is divided into segments by a signal dividing module.
도 4는 신호 분할모듈에 의해 아날로그 온도신호가 세그먼트 단위로 분할되는 것을 예시하는 다른 예의 참조도이다.4 is a reference diagram of another example illustrating that an analog temperature signal is divided into segments by a signal dividing module.
도 5는 손실 복원모듈에 의해 세그먼트 신호에 대한 손실 구간이 본원되는 것을 예시하는 일 예의 참조도이다.5 is a reference diagram illustrating an example that a loss section for a segment signal is applied by a loss recovery module.
도 6은 손실 복원모듈에 의해 세그먼트 신호에 대한 손실 구간이 본원되는 것을 예시하는 일 예의 참조도이다.6 is a reference diagram illustrating an example that a loss section for a segment signal is applied by a loss recovery module.
도 7은 특징정보 추출부가 아날로그 온도신호로부터 추출할 수있는 특징정보들을 예시하는 참조도이다.7 is a reference diagram illustrating characteristic information that the characteristic information extraction unit can extract from an analog temperature signal.
도 8은 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지방법을 설명하기 위한 일 실시예의 흐름도이다.8 is a flowchart of an embodiment for explaining a process abnormality detection method through analysis of a temperature signal in a control section of the present invention.
도 9는 도 8에 도시된 데이터 전처리를 수행하는 단계를 설명하기 위한 일 실시예의 흐름도이다.FIG. 9 is a flowchart of an embodiment for explaining a step of performing data preprocessing shown in FIG. 8 .
이하, 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. Hereinafter, with reference to the drawings, embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar components throughout the specification.
일반적으로, PLC (Programmable Logic Controller) 제어 시스템의 결함 및 이상 탐지 및 격리는 까다롭다. 이 발명은 PLC 제어 시스템의 결함 및 이상을 정확하게 탐지하고 격리 할 수있는 MPFDT(Manufacturing Process Failure Diagnosis Tool)라는 제조 프로세스 실패진단을 위한 자동화 도구를 제시한다.In general, it is difficult to detect and isolate faults and anomalies in a PLC (Programmable Logic Controller) control system. This invention proposes an automation tool for manufacturing process failure diagnosis called MPFDT (Manufacturing Process Failure Diagnosis Tool) that can accurately detect and isolate defects and abnormalities of PLC control systems.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지장치(100)를 설명하기 위한 일 실시예의 구성 블록도이다.1 is a block diagram of an embodiment for explaining an apparatus 100 for detecting process anomalies through analysis of a temperature signal in a control section of the present invention.
도 1을 참조하면, 공정 이상 탐지장치(100)는 전처리 수행부(110), 특징정보 추출부(120) 및 공정이상 탐지부(130)를 포함한다.Referring to FIG. 1 , the process anomaly detection apparatus 100 includes a pre-processing performing unit 110 , a feature information extracting unit 120 , and a process anomaly detecting unit 130 .
전처리 수행부(110)는 수집된 PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행한다. The preprocessing unit 110 performs data preprocessing on the collected analog temperature signal corresponding to the PLC control process.
도 2는 도 1에 도시된 전처리 수행부(110)를 설명하기 위한 일 실시예의 구성블록도이다. FIG. 2 is a block diagram of an embodiment for explaining the preprocessing unit 110 shown in FIG. 1 .
도 2를 참조하면, 전처리 수행부(110)는 신호 분할모듈(110-1) 및 손실 복원모듈(110-2)를 포함한다.Referring to FIG. 2 , the preprocessing unit 110 includes a signal division module 110-1 and a loss recovery module 110-2.
신호 분할모듈(110-1)은 상기 아날로그 온도신호에 대해 세그먼트 단위로 분할한다.The signal division module 110-1 divides the analog temperature signal into segments.
신호 분할모듈(110-1)은 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할할 수 있다. The signal division module 110-1 may divide a product production cycle unit as the segment unit in the analog temperature signal.
도 3은 신호 분할모듈(110-1)에 의해 아날로그 온도신호가 세그먼트 단위로 분할되는 것을 예시하는 일 예의 참조도이다.3 is a reference diagram for an example illustrating that an analog temperature signal is divided into segments by the signal dividing module 110-1.
도 3의 (a)를 참조하면, 종래에는 일반적으로 아날로그 온도신호에 대해 제어 구간을 고려하지 않고, 전체 아날로그 온도신호를 일정 시간 간격(예를 들어, 1분 간격)으로 분할하여, 분할된 신호를 분석하는 방식을 사용한다. 이에 따르면, 분석 포인트마다 패턴이 다르므로 정확한 아날로그 온도 신호의 데이터 패턴 변화를 반영하지 못한다. 또한, 아날로그 온도신호에서 공정 이상이 발생하는 경우, 공정 이상이 발생한 정확한 시점을 탐지할 수 없으므로, 이로 인해 데이터 분석 결과에 신뢰성을 갖기 어렵다. Referring to (a) of FIG. 3 , in the related art, in general, the analog temperature signal is divided by dividing the entire analog temperature signal at a predetermined time interval (eg, 1 minute interval) without considering the control section for the analog temperature signal, and the divided signal analysis method is used. According to this, since the pattern is different for each analysis point, it cannot accurately reflect the data pattern change of the analog temperature signal. In addition, when a process abnormality occurs in the analog temperature signal, it is difficult to have reliability in the data analysis result because it is impossible to detect the exact time when the process abnormality occurs.
한편, 도 3의 (b)를 참조하면, 신호 분할모듈(110-1)은 제어 구간을 고려하여 세그먼트 단위 중 제품생산 사이클 단위(예를 들어, 74초 단위)로 아날로그 온도신호를 분할한다. 이에 따르면, 신호 분할모듈(110-1)에 의해 아날로그 온도신호가 제품생산 사이클 단위로 분할됨으로써, 분석 포인트마다 일정한 패턴을 가지므로 정상 패턴과 비정상 패턴을 용이하게 구분할 수 있다. 또한, 분석이 필요 없는 데이터 부분 즉, 공정 이상이 발생한 부분을 용이하게 정제할 수도 있다. Meanwhile, referring to FIG. 3B , the signal dividing module 110-1 divides the analog temperature signal into product production cycle units (eg, 74 second units) among segment units in consideration of the control section. According to this, since the analog temperature signal is divided into product production cycle units by the signal dividing module 110-1, each analysis point has a constant pattern, it is possible to easily distinguish a normal pattern from an abnormal pattern. In addition, data parts that do not require analysis, that is, parts in which process abnormalities occur, can be easily purified.
또한, 신호 분할모듈(110-1)은 상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할할 수 있다.In addition, the signal dividing module 110-1 may divide each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
도 4는 신호 분할모듈(110-1)에 의해 아날로그 온도신호가 세그먼트 단위로 분할되는 것을 예시하는 다른 예의 참조도이다.4 is a reference diagram of another example illustrating that the analog temperature signal is divided into segments by the signal dividing module 110-1.
도 4를 참조하면, 신호 분할모듈(110-1)은 PLC I/O 로그정보를 기준으로 제품생산 사이클 내의 각각의 세부 공정 단위로 아날로그 온도신호를 분할할 수 있다. 제품생산 사이클 내의 각각의 세부 공정들을 세그먼트 단위로 하여 분할함으로써, 제품생산 사이클 내에서 어느 공정 구간에 이상이 발생되었는지를 특정할 수 있다. 예를 들어, 제품생산 사이클 내의 프로세스 A 동작은 매 사이클마다 평균 5초 정도 소요되나, 이상 발생으로 7초가 소요된 경우, 해당 프로세스 A의 아날로그 온도신호가 이상이 있음을 판단할 수 있다. Referring to FIG. 4 , the signal dividing module 110-1 may divide the analog temperature signal into each detailed process unit within a product production cycle based on PLC I/O log information. By dividing each detailed process in the product production cycle into segments, it is possible to specify which process section in the product production cycle has an error. For example, the operation of process A in the product production cycle takes about 5 seconds on average for every cycle, but when it takes 7 seconds due to an abnormality, it can be determined that the analog temperature signal of the process A is abnormal.
손실 복원모듈(110-2)은 상기 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원한다.The loss recovery module 110-2 restores a loss section for the analog temperature signal divided into segments.
손실 복원모듈(110-2)은 상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원한다.The loss recovery module 110-2 includes an endpoint temperature data among sampling temperature data of a first segment signal belonging to the segment signals in which the analog temperature signal is divided into segments and a second segment signal adjacent to the first segment signal. The sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit is restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
도 5는 손실 복원모듈(110-2)에 의해 세그먼트 신호에 대한 손실 구간이 본원되는 것을 예시하는 일 예의 참조도이다.5 is a reference diagram illustrating an example that a loss section for a segment signal is applied by the loss recovery module 110-2.
도 5를 참조하면, 아날로그 온도신호를 세그먼트 단위으로 분할한 경우, 세그먼트 신호의 시작시간 및 종료시간과 아날로그 온도신호의 샘플링 온도데이터의 시작시간 및 종료시간이 정확히 일치하지는 않는다. 따라서, 세그먼트 단위로 손실 정도가 다르므로 같은 조건에서의 데이터 전처리가 불가능하고, 샘플링 온도 데이터의 시작시간 및 종료시간의 값을 신뢰할 수 없다. 세그먼트 단위의 크기가 작을수록 손실로 인한 영향이 커지게 된다.Referring to FIG. 5 , when the analog temperature signal is divided into segments, the start time and end time of the segment signal and the start time and end time of the sampling temperature data of the analog temperature signal do not exactly match. Therefore, since the degree of loss is different for each segment, it is impossible to pre-process data under the same conditions, and the values of the start time and end time of the sampling temperature data are unreliable. The smaller the size of the segment unit, the greater the effect of the loss.
이를 해소하기 위해, 도 5에 도시된 바와 같이, 손실 복원모듈(110-2)은 세그먼트 신호들의 시작시간 또는 종료 시간을 기준으로 종료점 데이터 또는 시작점 데이터를 선정하여 종료점 데이터 및 시작점 데이터를 지나는 직선이 세그먼트 단위로 분할된 기준점과 만나는 지점에 새로운 샘플링 온도데이터를 생성할 수 있다.In order to solve this, as shown in FIG. 5, the loss restoration module 110-2 selects the end point data or start point data based on the start time or end time of the segment signals so that the straight line passing through the end point data and the start point data is New sampling temperature data can be created at the point where it meets the reference point divided into segments.
예를 들어, 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터(EP1)와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터(SP1)를 지나는 직선에 대한 선형 관계식 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호의 분할점에 대응하는 샘플링 온도 데이터(RP1)를 산출할 수 있다. 따라서, 손실 복원모듈(110-2)은 분할점에 대응하는 샘플링 온도 데이터(RP1)를 산출함으로써, 제2 세그먼트 신호에서 손실된 구간(예를 들어, 0.5초 구간)에 대한 아날로그 온도신호를 본원할 수 있다. For example, using a linear relational expression for a straight line passing through the end point temperature data EP1 among the sampling temperature data of the first segment signal and the start point temperature data SP1 among the sampling temperature data of the second segment signal adjacent to the first segment signal Thus, it is possible to calculate the sampling temperature data RP1 corresponding to the division point of the divided first segment signal or the second segment signal divided in units of segments. Accordingly, the loss recovery module 110-2 calculates the sampling temperature data RP1 corresponding to the dividing point, thereby generating an analog temperature signal for the section (eg, 0.5 second section) lost in the second segment signal. can do.
또한, 제2 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터(EP2)와 상기 제2 세그먼트 신호에 인접한 제3 세그먼트 신호(미도시)의 샘플링 온도 데이터 중 시작점 온도 데이터(SP2)를 지나는 직선에 대한 선형 관계식 이용하여 상기 세그먼트 단위의 분할된 제2 세그먼트 신호 또는 제3 세그먼트 신호의 분할점에 대응하는 샘플링 온도 데이터(RP2)를 산출할 수 있다. 따라서, 손실 복원모듈(110-2)은 분할점에 대응하는 샘플링 온도 데이터(RP2)를 산출함으로써, 제2 세그먼트 신호에서 손실된 구간(예를 들어, 1.5초 구간)에 대한 아날로그 온도신호를 본원할 수 있다. In addition, linearity with respect to a straight line passing through the end point temperature data EP2 among the sampling temperature data of the second segment signal and the starting point temperature data SP2 among the sampling temperature data of the third segment signal (not shown) adjacent to the second segment signal The sampling temperature data RP2 corresponding to the division point of the second segment signal or the third segment signal divided in units of segments may be calculated using the relational expression. Accordingly, the loss restoration module 110-2 calculates the sampling temperature data RP2 corresponding to the dividing point, thereby converting the analog temperature signal for the section lost in the second segment signal (for example, the section for 1.5 seconds). can do.
또한, 손실 복원모듈(110-2)은 상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원한다.In addition, the loss recovery module 110-2 divides each of the segment signals divided into segments into a predetermined sampling period, and uses a linear relationship between the original sampling temperature data to separate each of the segment signals divided by the predetermined sampling period. Restore sampling temperature data.
도 6은 손실 복원모듈(110-2)에 의해 세그먼트 신호에 대한 손실 구간이 본원되는 것을 예시하는 다른 예의 참조도이다.6 is a reference diagram of another example illustrating that a loss section for a segment signal is applied by the loss recovery module 110-2.
도 6을 참조하면, 같은 크기의 세그먼트 신호를 기준으로 아날로그 온도신호를 분할하는 경우에, 세그먼트 단위로 샘플링 온도 데이터의 포인트 개수가 서로 다를 수 있고, 또한, 샘플링 온도 데이터의 포인트 개수가 일정하더라도 포인트의 수집 시점이 일정하지 않을 수 있다. Referring to FIG. 6 , when an analog temperature signal is divided based on a segment signal of the same size, the number of points of the sampling temperature data may be different for each segment, and even if the number of points of the sampling temperature data is constant, the points The collection time may not be constant.
이를 해소하기 위해, 손실 복원모듈(110-2)은 일정한 시간 간격으로 데이터 포인트를 수집하여, 모든 세그먼트 신호들에 대해서 동일한 조건 하에 샘플링 온도 데이터를 추출할 수 있도록 한다. In order to solve this problem, the loss recovery module 110-2 collects data points at regular time intervals so that sampling temperature data can be extracted from all segment signals under the same conditions.
예를 들어, 손실 복원모듈(110-2)은 세그먼트 신호들 각각에 대해, 샘플링 구간을 일정한 시간 단위로 쪼개어 각 시간 단위에 상응하는 데이터 포인트 값을 산출한다. 손실 복원모듈(110-2)은 원래의 샘플링 온도 데이터들(EP10 및 EP11) 각각을 지나는 직선의 선형 관계식을 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터(RP10)를 산출한다. 이에 따라, 손실 복원모듈(110-2)은 모든 세그먼트 신호들에 있어서 데이터 포인트의 수와 수집 간격이 일정한 아날로그 온도신호로 본원할 수 있다. For example, the loss recovery module 110 - 2 divides the sampling period into predetermined time units for each of the segment signals and calculates a data point value corresponding to each time unit. The loss recovery module 110-2 calculates the sampling temperature data RP10 divided by the predetermined sampling section by using a linear relational expression of a straight line passing through each of the original sampling temperature data EP10 and EP11. Accordingly, the loss recovery module 110-2 can be referred to as an analog temperature signal in which the number of data points and the collection interval are constant in all segment signals.
특징정보 추출부(120)는 전처리된 아날로그 온도신호로부터 특징 정보들을 추출한다. 특징정보 추출부(120)는 아날로그 온도신호에서 하나의 제품생산 사이클에 대한 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근 및 모양 계수 중 적어도 하나 이상을 특징정보로 추출할 수 있다.The feature information extraction unit 120 extracts feature information from the pre-processed analog temperature signal. The feature information extraction unit 120 includes the total integral area for one product production cycle in the analog temperature signal, the arc integral area, the Y-axis parallel movement integral area, the integral area for the temperature rise section, the integral area for the temperature drop section, the starting and ending slope, At least one of a starting maximum displacement difference, a maximum ending displacement difference, a mean, a standard deviation, a root mean square root, and a shape coefficient may be extracted as feature information.
도 7은 특징정보 추출부(120)가 아날로그 온도신호로부터 추출할 수있는 특징정보들을 예시하는 참조도이다. 도 7에 도시된 바와 같이, 제품생산 사이클에 대한 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근 및 모양 계수는 각각 다음의 수학식들을 통해 산출될 수 있다. 7 is a reference diagram illustrating characteristic information that the characteristic information extraction unit 120 can extract from an analog temperature signal. As shown in Figure 7, the total integral area for the product production cycle, the integral area of the bow, the integral area of the Y-axis parallel movement, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end slope, the start maximum displacement difference, the highest The end displacement difference, the mean, the standard deviation, the root mean square, and the shape coefficient may be calculated through the following equations, respectively.
전체 적분면적은 다음의 수학식 1을 이용해 산출할 수 있다. The total integral area can be calculated using Equation 1 below.
활꼴 적분면적은 다음의 수학식 2를 이용해 산출할 수 있다. The arc integral area can be calculated using Equation 2 below.
Y축 평행이동 적분면적은 다음의 수학식 3을 이용해 산출할 수 있다. The Y-axis translation integral area can be calculated using Equation 3 below.
온도상승구간 적분면적은 다음의 수학식 4를 이용해 산출할 수 있다. The integral area of the temperature rise section can be calculated using Equation 4 below.
온도하강구간 적분면적은 다음의 수학식 5를 이용해 산출할 수 있다. The integral area of the temperature drop section can be calculated using Equation 5 below.
시작 종료 기울기는 다음의 수학식 6을 이용해 산출할 수 있다. The starting and ending slope can be calculated using Equation 6 below.
시작 최고 변위차는 다음의 수학식 7을 이용해 산출할 수 있다. The starting maximum displacement difference can be calculated using the following Equation (7).
최고 종료 변위차는 다음의 수학식 8을 이용해 산출할 수 있다. The highest end displacement difference can be calculated using the following Equation (8).
평균은 다음의 수학식 9를 이용해 산출할 수 있다. The average can be calculated using Equation 9 below.
표준편차는 다음의 수학식 10을 이용해 산출할 수 있다.The standard deviation can be calculated using Equation 10 below.
제곰평균 제곱근은 다음의 수학식 11을 이용해 산출할 수 있다. The root mean square can be calculated using Equation 11 below.
모양 계수는 다음의 수학식 12를 이용해 산출할 수 있다. The shape coefficient can be calculated using Equation 12 below.
특징정보 추출부(120)는 이렇게 산출된 특징정보들 중에서 머신러닝 방식의 랜덤 포레스트(random forest) 알고리즘을 이용하여, 일부의 특징정보들을 선별할 수 있다. The feature information extraction unit 120 may select some feature information from among the feature information calculated in this way by using a random forest algorithm of a machine learning method.
랜덤 포레스트(random forest) 알고리즘은 의사 결정 트리를 만드는데 있어 쓰이는 요소들을 무작위적으로 선정하여 다수의 의사결정 트리를 만들고 그 다수의 의사결정 트리를 결합하여 하나의 모형을 생성하는 방법을 의미한다. 랜덤 포레스트(random forest) 알고리즘을 이용하여 전체 특징정보들 중에서 일부의 특징정보를 선별함으로 써, 회귀분석 등에 비해서 특징정보들에 대한 보다 정확한 분류를 달성할 수 있다. 특징정보 추출부(120)는 포레스트(random forest) 알고리즘을 이용함으로써, 특성 중요도에 따라 특징정보들의 순위를 나열하고, 이러한 순위 중에서 공정의 이상 유무를 정확한 분류하기 위한 특징정보들 순으로 선별한다. 여기서, 특성 중요도는 트리를 만드는 과정에 어떤 변수가 가장 중요한지 평가하는 척도이다. The random forest algorithm refers to a method of generating a single model by randomly selecting elements used in making a decision tree to create multiple decision trees and combining the multiple decision trees. By selecting some of the feature information from among all the feature information using a random forest algorithm, more accurate classification of feature information can be achieved compared to regression analysis. The feature information extracting unit 120 uses a forest (random forest) algorithm to list the ranks of the feature information according to the importance of the feature, and from among these ranks, the feature information for accurately classifying whether there is an abnormality in the process is selected in order. Here, feature importance is a measure to evaluate which variable is most important in the process of creating a tree.
공정이상 탐지부(130)는 선별된 특징 정보들을 머신러닝 모델에 인가하여 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지한다. 머신러닝 모델은 입력층, 은닉층 및 출력층을 포함하며, 훈련 데이터를 이용해 미리 학습된 모델이며, 출력층은 PLC 제어 공정의 이상 유무를 판별하기 위한 분류기로 기능할 수 있다. 공정이상 탐지부(130)에서 사용되는 머신러닝 모델은 일반적인 모델이라는 점에서 상세한 설명을 생략하며, 다만, 공정이상 탐지부(130)는 선별된 특징 정보들을 리쉐이프(reshape)하여 입력층에 인가하고, 훈련을 통해 학습된 은닉층을 거쳐서 이상 유무를 판단하는 출력층을 통해 결과값을 출력할 수 있는 구조를 갖는다. The process abnormality detection unit 130 detects whether there is an abnormality in the PLC control process corresponding to the analog temperature signal by applying the selected characteristic information to the machine learning model. A machine learning model includes an input layer, a hidden layer, and an output layer, and is a model trained in advance using training data, and the output layer can function as a classifier to determine whether there is an abnormality in the PLC control process. A detailed description of the machine learning model used in the process anomaly detection unit 130 is omitted in that it is a general model, however, the process anomaly detection unit 130 reshapes the selected characteristic information and applies it to the input layer. It has a structure that can output the result value through the output layer that determines whether there is an abnormality through the hidden layer learned through training.
다음의 표 1은 선별된 특징정보가 공정이상 탐지부(130)에 인가되어 공정 이상유무가 판별되는 것을 설명하기 위한 표이다.The following Table 1 is a table for explaining that the selected characteristic information is applied to the process abnormality detection unit 130 to determine whether there is a process abnormality.
표 1을 참조하면, 12가지의 특징정보 중에서 랜덤 포레스트(random forest) 알고리즘을 이용해 선별된 3개의 특징정보 즉, (b) 활꼴 적분면적, (f) 시작 종료 기울기, (k) 제곱 평균 제곱근가 공정이상 탐지부(130)에 인가되어 각각의 제품생산 사이클마다 해당 공정에 대한 이상 유무(이상없음: OK, 이상발생:NG)를 탐지하는 것에 대해 예시하고 있다.Referring to Table 1, 3 pieces of feature information selected using a random forest algorithm from among 12 kinds of feature information, that is, (b) circular integral area, (f) start and end slope, (k) root mean square process It is applied to the abnormality detection unit 130 to exemplify the detection of the presence or absence of an abnormality (no abnormality: OK, abnormal occurrence: NG) for the corresponding process for each product production cycle.
도 8은 본 발명의 제어구간 온도신호의 분석을 통한 공정이상 탐지방법을 설명하기 위한 일 실시예의 흐름도이다.8 is a flowchart of an embodiment for explaining a process abnormality detection method through analysis of a temperature signal in a control section of the present invention.
PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행한다(S1000 단계).Data preprocessing is performed on the analog temperature signal corresponding to the PLC control process (step S1000).
도 9는 도 8에 도시된 데이터 전처리를 수행하는 단계를 설명하기 위한 일 실시예의 흐름도이다.FIG. 9 is a flowchart of an embodiment for explaining a step of performing data preprocessing shown in FIG. 8 .
먼저, 아날로그 온도신호에서 세그먼트 단위로서 분할한다(S1010 단계). First, the analog temperature signal is divided into segments (step S1010).
상기 세그먼트 단위로 분할하는 단계는, 상기 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할할 수 있다. 또한, 상기 세그먼트 단위로 분할하는 단계는, 상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할할 수 있다.The dividing into segments may include dividing a product production cycle unit in the analog temperature signal as the segment unit. In addition, the dividing into segments may include dividing each detailed process unit in the product production cycle in the analog temperature signal as the segment unit.
S1010 단계 후에, 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원한다(S1012 단계).After step S1010, a loss section for the analog temperature signal divided into segments is restored (step S1012).
상기 손실구간을 복원하는 단계는, 상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원할 수 있다.The restoring of the loss section includes: endpoint temperature data among sampling temperature data of a first segment signal belonging to segment signals in which the analog temperature signal is divided into segments, and a second segment signal adjacent to the first segment signal. The sampling temperature data of the loss section with respect to the first segment signal or the second segment signal divided by the segment unit may be restored by using a linear relationship between the starting point temperature data among the sampling temperature data.
또한, 상기 손실구간을 복원하는 단계는, 상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원할 수 있다.In addition, in the step of restoring the loss section, each of the segment signals divided into the segment unit is divided into a predetermined sampling interval, and divided by the predetermined sampling interval using a linear relationship between the original sampling temperature data. Sampling temperature data can be restored.
한편, S1000 단계 후에, 전처리된 데이터로부터 특징 정보들을 추출한다(S1002 단계).Meanwhile, after step S1000, feature information is extracted from the preprocessed data (step S1002).
상기 특징정보를 추출하는 단계는, 상기 아날로그 온도신호에서 하나의 제품생산 사이클 단위로 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근, 및 모양 계수 중 적어도 하나 이상을 상기 특징 정보로 추출할 수 있다. 상기 특징정보를 추출하는 단계는, 머신러닝 방식 중 랜덤 포레스트 알고리즘을 이용하여, 상기 추출된 특징정보들 중 일부의 특징정보들을 선별할 수 있다. In the step of extracting the feature information, the total integral area, the bow-shaped integral area, the Y-axis parallel movement integral area, the integral area of the temperature rise section, the integral area of the temperature drop section, the start and end from the analog temperature signal in one product production cycle unit At least one of a slope, a starting maximum displacement, a maximum ending displacement, a mean, a standard deviation, a root mean square root, and a shape coefficient may be extracted as the feature information. The extracting of the feature information may include selecting some of the extracted feature information by using a random forest algorithm among machine learning methods.
S1002 단계 후에, 상기 추출된 특징 정보들을 머신러닝 모델에 인가하여 상기 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지한다(S1004 단계). 선별된 특징 정보들이 리쉐이프(reshape)되어 입력층에 인가되고, 훈련을 통해 학습된 은닉층을 거쳐서 출력층을 통해 이상 유무에 대한 결과값을 출력할 수 있다. After step S1002, the extracted feature information is applied to the machine learning model to detect whether there is an abnormality in the PLC control process corresponding to the analog temperature signal (step S1004). The selected feature information may be reshaped and applied to the input layer, and the result value regarding the presence or absence of abnormality may be output through the output layer through the hidden layer learned through training.
본 발명은 소프트웨어적인 프로그램으로 구현하여 컴퓨터로 읽을 수 있는 소정 기록매체에 의해 구현될 수 있다. 예컨대, 기록매체는 각 재생장치의 내장형으로 하드디스크, 플래시 메모리, RAM, ROM 등이거나, 외장형으로 CD-R, CD-RW와 같은 광디스크, 콤팩트 플래시 카드, 스마트 미디어, 메모리 스틱, 멀티미디어 카드일 수 있다.The present invention may be implemented as a software program and may be implemented by a computer-readable recording medium. For example, the recording medium may be a hard disk, flash memory, RAM, ROM, etc. built-in to each playback device, or an optical disk such as a CD-R or CD-RW, compact flash card, smart media, memory stick, or multimedia card as an external type. have.
이상과 같이 본 발명의 실시예를 설명하였으나, 본 발명의 명세서에 개시된 실시예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.Although the embodiments of the present invention have been described as described above, the embodiments disclosed in the specification of the present invention do not limit the present invention. The scope of the present invention should be construed by the following claims, and all technologies within the scope equivalent thereto should be construed as being included in the scope of the present invention.
Claims (16)
- PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행하는 전처리 수행부;a pre-processing unit for performing data pre-processing on an analog temperature signal corresponding to a PLC control process;전처리된 아날로그 온도신호로부터 특징 정보들을 추출하는 특징정보 추출부; 및a feature information extraction unit for extracting feature information from the pre-processed analog temperature signal; and상기 추출된 특징 정보들을 머신러닝 모델에 인가하여 상기 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지하는 공정이상 탐지부를 포함하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치. Process abnormality detection device through analysis of temperature signal in the control section, characterized in that it includes a process abnormality detection unit for detecting whether there is an abnormality in the PLC control process corresponding to the analog temperature signal by applying the extracted characteristic information to a machine learning model .
- 청구항 1에 있어서,The method according to claim 1,상기 전처리 수행부는,The pre-processing unit,상기 아날로그 온도신호에 대해 세그먼트 단위로 분할하는 신호 분할모듈; 및a signal dividing module that divides the analog temperature signal into segments; and상기 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원하는 손실 복원모듈을 포함하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치.Process abnormality detection device through the analysis of control section temperature signal, characterized in that it comprises a loss recovery module for restoring the loss section for the analog temperature signal divided into the segment unit.
- 청구항 2에 있어서,3. The method according to claim 2,상기 신호 분할모듈은,The signal dividing module,상기 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치.Process abnormality detection device through analysis of temperature signal in the control section, characterized in that dividing the product production cycle unit as the segment unit in the analog temperature signal.
- 청구항 2에 있어서,3. The method according to claim 2,상기 신호 분할모듈은,The signal dividing module,상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치.In the analog temperature signal, each detailed process unit in the product production cycle is divided as the segment unit.
- 청구항 2에 있어서,3. The method according to claim 2,상기 손실 복원모듈은,The loss recovery module,상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치. Between the end point temperature data of the sampling temperature data of the first segment signal belonging to the segment signals in which the analog temperature signal is divided by the segment unit and the start point temperature data of the sampling temperature data of the second segment signal adjacent to the first segment signal Process anomaly detection apparatus through analysis of a temperature signal in a control section, characterized in that by using a linear relationship, the sampling temperature data of the loss section for the divided first segment signal or the second segment signal divided in the segment unit is restored.
- 청구항 5에 있어서,6. The method of claim 5,상기 손실 복원모듈은,The loss recovery module,상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치. A control characterized in that each of the segment signals divided in the segment unit is divided into a predetermined sampling period, and the sampling temperature data divided by the predetermined sampling period is restored using a linear relationship between the original sampling temperature data. Process abnormality detection device through analysis of section temperature signal.
- 청구항 1에 있어서,The method according to claim 1,상기 특징정보 추출부는,The feature information extraction unit,상기 아날로그 온도신호에서 하나의 제품생산 사이클 단위로 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근, 및 모양 계수 중 적어도 하나 이상을 상기 특징 정보로 추출하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치.In the analog temperature signal, the total integral area, bow-shaped integral area, Y-axis parallel movement integral area, temperature rise section integral area, temperature fall section integral area, start and end slope, start maximum displacement difference, highest end in one product production cycle unit in the analog temperature signal Process anomaly detection device through analysis of temperature signal in control section, characterized in that at least one of displacement difference, mean, standard deviation, root mean square, and shape coefficient is extracted as the characteristic information.
- 청구항 7에 있어서,8. The method of claim 7,상기 특징정보 추출부는,The feature information extraction unit,머신러닝 방식 중 랜덤 포레스트 알고리즘을 이용하여, 상기 추출된 특징정보들 중 일부의 특징정보들을 선별하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지장치.Process anomaly detection apparatus through analysis of temperature signal in control section, characterized in that by using a random forest algorithm among machine learning methods, some of the extracted feature information is selected.
- PLC 제어 공정에 대응하는 아날로그 온도신호에 대해 데이터 전처리를 수행하는 단계;performing data pre-processing on an analog temperature signal corresponding to a PLC control process;전처리된 아날로그 온도신호로부터 특징 정보들을 추출하는 단계; 및extracting characteristic information from the pre-processed analog temperature signal; and상기 추출된 특징 정보들을 머신러닝 모델에 인가하여 상기 아날로그 온도신호에 대응하는 PLC 제어 공정의 이상 유무를 탐지하는 단계를 포함하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법. and detecting whether there is an abnormality in the PLC control process corresponding to the analog temperature signal by applying the extracted characteristic information to a machine learning model.
- 청구항 9에 있어서,10. The method of claim 9,상기 데이터 전처리를 수행하는 단계는,The data pre-processing step includes:상기 아날로그 온도신호에 대해 세그먼트 단위로 분할하는 단계; 및dividing the analog temperature signal into segments; and상기 세그먼트 단위로 분할된 상기 아날로그 온도신호에 대한 손실구간을 복원하는 단계를 포함하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법.and restoring a loss section for the analog temperature signal divided into segments.
- 청구항 10에 있어서,11. The method of claim 10,상기 세그먼트 단위로 분할하는 단계는,The step of dividing into segments is상기 아날로그 온도신호에서 제품생산 사이클 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법.A process abnormality detection method through analysis of a temperature signal in a control section, characterized in that dividing a product production cycle unit as the segment unit in the analog temperature signal.
- 청구항 10에 있어서,11. The method of claim 10,상기 세그먼트 단위로 분할하는 단계는,The step of dividing into segments is상기 아날로그 온도신호에서 상기 제품생산 사이클 내의 각각의 세부 공정 단위를 상기 세그먼트 단위로서 분할하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법.Process abnormality detection method through the analysis of the temperature signal in the control section, characterized in that in the analog temperature signal, each detailed process unit in the product production cycle is divided as the segment unit.
- 청구항 10에 있어서,11. The method of claim 10,상기 손실구간을 복원하는 단계는, Restoring the lost section comprises:상기 아날로그 온도신호가 상기 세그먼트 단위로 분할된 세그먼트 신호들에 속하는 제1 세그먼트 신호의 샘플링 온도 데이터 중 종료점 온도 데이터와 상기 제1 세그먼트 신호에 인접한 제2 세그먼트 신호의 샘플링 온도 데이터 중 시작점 온도 데이터 사이의 선형 관계를 이용하여 상기 세그먼트 단위의 분할된 제1 세그먼트 신호 또는 상기 제2 세그먼트 신호에 대한 손실 구간의 샘플링 온도 데이터를 복원하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법. Between the end point temperature data of the sampling temperature data of the first segment signal belonging to the segment signals in which the analog temperature signal is divided by the segment unit and the start point temperature data of the sampling temperature data of the second segment signal adjacent to the first segment signal Process anomaly detection method through analysis of temperature signal in control section, characterized in that the sampling temperature data of the loss section with respect to the divided first segment signal or the second segment signal divided in the segment unit is restored using a linear relationship.
- 청구항 13에 있어서,14. The method of claim 13,상기 손실구간을 복원하는 단계는, Restoring the lost section comprises:상기 세그먼트 단위로 분할된 상기 세그먼트 신호들 각각에 대해 일정 샘플링 구간으로 구분하고, 원래의 샘플링 온도 데이터 사이의 선형 관계를 이용하여 상기 일정 샘플링 구간별 구분된 샘플링 온도 데이터를 복원하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법. A control characterized in that each of the segment signals divided in the segment unit is divided into a predetermined sampling period, and the sampling temperature data divided by the predetermined sampling period is restored using a linear relationship between the original sampling temperature data Process abnormality detection method through analysis of section temperature signal.
- 청구항 9에 있어서,10. The method of claim 9,상기 특징정보를 추출하는 단계는,The step of extracting the feature information,상기 아날로그 온도신호에서 하나의 제품생산 사이클 단위로 전체 적분면적, 활꼴 적분면적, Y축 평행이동 적분면적, 온도상승구간 적분면적, 온도하강구간 적분면적, 시작 종료 기울기, 시작 최고 변위차, 최고 종료 변위차, 평균, 표준편차, 제곰평균 제곱근, 및 모양 계수 중 적어도 하나 이상을 상기 특징 정보로 추출하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법.In the analog temperature signal, the total integral area, bow-shaped integral area, Y-axis parallel movement integral area, temperature rise section integral area, temperature fall section integral area, start end slope, start maximum displacement difference, highest end in one product production cycle unit in the analog temperature signal A method for detecting process anomalies through analysis of a temperature signal in a control section, characterized in that at least one of displacement difference, mean, standard deviation, root mean square, and shape coefficient is extracted as the characteristic information.
- 청구항 15에 있어서,16. The method of claim 15,상기 특징정보를 추출하는 단계는, The step of extracting the feature information,머신러닝 방식 중 랜덤 포레스트 알고리즘을 이용하여, 상기 추출된 특징정보들 중 일부의 특징정보들을 선별하는 것을 특징으로 하는 제어구간 온도신호의 분석을 통한 공정이상 탐지방법.A process abnormality detection method through analysis of a temperature signal in a control section, characterized in that by using a random forest algorithm among machine learning methods, some of the extracted characteristic information is selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180057871.5A CN116249945A (en) | 2020-08-03 | 2021-07-23 | Process abnormality detection device and method using analysis of control part temperature signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200096717A KR102220138B1 (en) | 2020-08-03 | 2020-08-03 | Apparatus and method for detecting process abnormality according to analysis of control section temperature signal |
KR10-2020-0096717 | 2020-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030831A1 true WO2022030831A1 (en) | 2022-02-10 |
Family
ID=74687792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/009532 WO2022030831A1 (en) | 2020-08-03 | 2021-07-23 | Process abnormality detection device and method using analysis of control section temperature signal |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102220138B1 (en) |
CN (1) | CN116249945A (en) |
WO (1) | WO2022030831A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102220138B1 (en) * | 2020-08-03 | 2021-02-26 | 주식회사 유디엠텍 | Apparatus and method for detecting process abnormality according to analysis of control section temperature signal |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160179085A1 (en) * | 2013-07-30 | 2016-06-23 | Dmg Mori Aktiengesellschaft | Control system for controlling operation of a numerically controlled machine tool, and back-end and front-end control devices for use in such system |
KR20180010748A (en) * | 2016-07-22 | 2018-01-31 | 두산중공업 주식회사 | Apparatus and System for Simulating Core Protection system software |
US20180113442A1 (en) * | 2016-10-24 | 2018-04-26 | Fisher-Rosemount Systems, Inc. | Process device condition and performance monitoring |
US20180224821A1 (en) * | 2015-08-11 | 2018-08-09 | Siemens Aktiengesellschaft | Rich contextualization of automation data |
KR20200074677A (en) * | 2018-12-17 | 2020-06-25 | 주식회사 유디엠텍 | System for error detection according to plc control |
KR102220138B1 (en) * | 2020-08-03 | 2021-02-26 | 주식회사 유디엠텍 | Apparatus and method for detecting process abnormality according to analysis of control section temperature signal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100414437B1 (en) | 2001-04-06 | 2004-01-07 | 전영민 | Factory automation control method |
-
2020
- 2020-08-03 KR KR1020200096717A patent/KR102220138B1/en active IP Right Grant
-
2021
- 2021-07-23 WO PCT/KR2021/009532 patent/WO2022030831A1/en active Application Filing
- 2021-07-23 CN CN202180057871.5A patent/CN116249945A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160179085A1 (en) * | 2013-07-30 | 2016-06-23 | Dmg Mori Aktiengesellschaft | Control system for controlling operation of a numerically controlled machine tool, and back-end and front-end control devices for use in such system |
US20180224821A1 (en) * | 2015-08-11 | 2018-08-09 | Siemens Aktiengesellschaft | Rich contextualization of automation data |
KR20180010748A (en) * | 2016-07-22 | 2018-01-31 | 두산중공업 주식회사 | Apparatus and System for Simulating Core Protection system software |
US20180113442A1 (en) * | 2016-10-24 | 2018-04-26 | Fisher-Rosemount Systems, Inc. | Process device condition and performance monitoring |
KR20200074677A (en) * | 2018-12-17 | 2020-06-25 | 주식회사 유디엠텍 | System for error detection according to plc control |
KR102220138B1 (en) * | 2020-08-03 | 2021-02-26 | 주식회사 유디엠텍 | Apparatus and method for detecting process abnormality according to analysis of control section temperature signal |
Also Published As
Publication number | Publication date |
---|---|
CN116249945A (en) | 2023-06-09 |
KR102220138B9 (en) | 2023-05-11 |
KR102220138B1 (en) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102221473B1 (en) | System for error detection according to plc control | |
WO2010110597A2 (en) | Plc symbol structure for a plc code for automatically generating an input/output model, and simulation apparatus and simulation method for testing the plc code using same | |
US5123017A (en) | Remote maintenance monitoring system | |
US20090024239A1 (en) | Work management apparatus and work management method | |
WO2022030831A1 (en) | Process abnormality detection device and method using analysis of control section temperature signal | |
WO2018221948A1 (en) | Method for process management through big data analysis | |
WO2022225117A1 (en) | Gnn-based master state generation method for real-time anomaly detection | |
CN101241003A (en) | Bore rod straightness automatic detection straightening status monitoring and failure diagnosis system | |
CN102789405A (en) | Automated testing method and system for mainboard | |
Sekar et al. | Remote diagnosis design for a PLC-based automated system: 1-implementation of three levels of architectures | |
JP2002078200A (en) | Monitor control device and memory medium | |
CN112400194B (en) | System and method for triggering training events | |
WO2023128320A1 (en) | System and method for verifying artificial intelligence | |
KR20070104073A (en) | System and method for analyzing process of semiconductor manufacturing equipment | |
KR20210014452A (en) | Abnormal Data Detection System in Manufacturing Process | |
US20050075835A1 (en) | System and method of real-time statistical bin control | |
KR20200099863A (en) | Method for analyzing of object | |
JP2001306140A (en) | Abnormality detection system | |
KR20210011294A (en) | System for making PLC Input/Output of Cyber Physical System Hardware Platform | |
KR102201303B1 (en) | Method of Acquiring Plant Logic Model Using Visual Device | |
US11669065B2 (en) | Digital input edge detection with smart filtering algorithm | |
KR102315228B1 (en) | Apparatus and method System managing data for controlling of Programmable Logic Controller | |
KR102414537B1 (en) | Device for tracking defect location based on deep learning | |
JP2637774B2 (en) | Operation expert system | |
WO2024210424A1 (en) | Apparatus and method for determining abnormal device on basis of calculating distances between time series vectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21853150 Country of ref document: EP Kind code of ref document: A1 |