WO2022030702A1 - Vaccine composition for preventing and treating middle east respiratory syndrome-coronavirus - Google Patents

Vaccine composition for preventing and treating middle east respiratory syndrome-coronavirus Download PDF

Info

Publication number
WO2022030702A1
WO2022030702A1 PCT/KR2020/018033 KR2020018033W WO2022030702A1 WO 2022030702 A1 WO2022030702 A1 WO 2022030702A1 KR 2020018033 W KR2020018033 W KR 2020018033W WO 2022030702 A1 WO2022030702 A1 WO 2022030702A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
mers
vaccine
recombinant
cell
Prior art date
Application number
PCT/KR2020/018033
Other languages
French (fr)
Korean (ko)
Inventor
장현
정보경
안용희
장진주
강민경
Original Assignee
리벤텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 리벤텍 주식회사 filed Critical 리벤텍 주식회사
Publication of WO2022030702A1 publication Critical patent/WO2022030702A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a method for preparing an antigen for preventing MERS-CoV infection and a vaccine composition using the same.
  • Middle East Respiratory Syndrome is an infectious disease caused by Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection.
  • Middle East Respiratory Syndrome (Middle East Respiratory Syndrome) is a bat-derived beta-coronavirus, a viral disease that infects humans through camels and enables human-to-human transmission.
  • the fatality rate due to MERS-CoV infection is over 35% (WHO statistics 27%), and the main symptoms are fever, cough, sputum, shortness of breath, muscle pain, diarrhea and abdominal pain. artificial respiration was required.
  • the average incubation period was 5.5 days, and the incubation period of 1.9 to 14.7 days was more than 95% of the total infections.
  • MERS-CoV severe acute respiratory syndrome coronavirus
  • the genome of MERS-CoV consists of 10 frequent reading frames (ORFs), and 2/3 of the entire genome is ORF1ab, which is a gene of 16 non-structural proteins (NSP).
  • ORF1ab is a gene of 16 non-structural proteins (NSP).
  • the remaining 3' end gene has four structural protein genes, including spike (S), envelope (E), matrix (M) and nucleocapsid (N) protein genes.
  • S spike
  • E envelope
  • M matrix
  • N nucleocapsid
  • ORF3, ORF4b, ORF5, ORF8b accessory protein genes
  • the helper protein is known to be involved in B cell activation by increasing the expression of NF- ⁇ B, which is mainly involved in the immune mechanism of the host cell.
  • the spike protein of MERS-CoV has a spike protein required for cell invasion of each virus on the surface of the envelope, such as SARS-CoV, infectious bronchitis coronavirus (IBV), and porcine epidemic diarrhea virus (PEDV).
  • the spike protein is composed of the S1 domain that binds to the host cell receptor and the S2 domain that binds the cell membrane.
  • the furin cleavage site is cut between the S1 and S2 domains and is separated into two domains.
  • the spike protein binds to angiotensin converting enzyme 2 (ACE2) expressed on the surface of the host cell to cause intracellular infection.
  • ACE2 angiotensin converting enzyme 2
  • S1-NTD S1-terminal domain
  • S1-CTD C-terminal domain
  • a vaccine using the S1 domain of the Spike protein can be used as a very useful protein for the formation of virus neutralization (VN) antibodies that can prevent intracellular infection of viruses.
  • VN virus neutralization
  • a treatment or vaccine for MERS-CoV has not yet been developed, but vaccine development using the receptor binding domain (RBD) of the spike protein as an antigen is underway.
  • RBD receptor binding domain
  • Various vaccine formulations such as vaccine development using viral vectors as antigen-expressing recombinant viruses, antigen genes or antigen carriers, and DNA vaccines are being studied.
  • a subunit vaccine using a Spike protein using recombinant animal cells or a viromolecule capable of improving immunity and some antigenic sites is being developed.
  • Monomeric vaccine development using recombinant animal cells has been used as a major protein expression system for antibody drug development and monomeric vaccine development since the 1980s.
  • the biggest disadvantage of the unit vaccine using a recombinant protein is that it requires an immune enhancing substance such as an adjuvant due to its weak immunogenicity. Therefore, it is very important to find an antigen essential for the formation of a neutralizing antibody for suppressing viral infection, to express it as a recombinant protein without structural change, and to develop a safe and effective vaccine antigen manufacturing technology using an immune enhancing material.
  • MERS disease has recently been limited to the Middle East, it is a disease that has the potential to spread to the world again. Therefore, it is necessary to develop a vaccine that is safe and effective.
  • the present invention has completed the present invention by confirming the immune and therapeutic response to the Middle East Respiratory Syndrome coronavirus of the Middle East Respiratory Syndrome coronavirus spike protein or a protein combining the S1 region and the human Fc (fragment crystallisation) region.
  • an object of the present invention is to provide a technology for developing a subunit vaccine using a novel Middle East Respiratory Syndrome coronavirus spike protein.
  • the present invention provides a gene encoding the MERS-CoV spike protein represented by the nucleotide sequence of SEQ ID NO: 1 or 2 and human IgG4 represented by the nucleotide sequence of SEQ ID NO: 3 or 4
  • a nucleic acid in which a gene encoding Fc is fused is provided.
  • the present invention provides a recombinant expression vector comprising the nucleic acid according to the present invention.
  • the present invention provides a cell line transformed with the recombinant expression vector according to the present invention.
  • the cell line may be a Chinese hamster ovary cell LV-MS1-Fc cell (KCTC14342BP).
  • the present invention provides a recombinant protein produced from the cell line according to the present invention.
  • the present invention comprises the steps of transforming a cell with the recombinant expression vector according to the present invention; recovering the recombinant protein from the cell or culture thereof; And it provides a method for producing a recombinant protein, comprising the step of purifying the recombinant protein.
  • the present invention provides a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus comprising the combination protein according to the present invention as an active ingredient.
  • the vaccine may be an inactivated vaccine.
  • the vaccine may further include an immune enhancing material or adjuvant.
  • the present invention provides a method for preventing or treating Middle East respiratory syndrome coronavirus infection comprising administering the vaccine composition to an individual.
  • the present invention provides a method for evaluating an immune response in an animal, comprising administering the recombinant expression vector or the recombinant protein to the animal.
  • the method can evaluate the immune response by measuring the IgG antibody titer from the animal's serum.
  • MERS LV-MS1-Fc antigen containing the spike protein of the Middle East Respiratory Syndrome coronavirus of the present invention can be usefully used as a vaccine for prevention and improvement of inducing an immune response that can fight MERS-CoV infection. .
  • FIG. 1 illustrates the structure of a recombinant expression vector.
  • FIG. 2 illustrates a genetic schematic diagram of a recombinantly expressed protein.
  • FIG. 3 shows the result of confirming the expression of MERS-CoV S recombinant protein (LV-MS1-Fc) by Western blot method.
  • Figure 6 depicts a mouse model for the evaluation of vaccine efficacy.
  • Figure 9 depicts body weight, food intake, water intake and anatomical observations of mice in the vaccinated group.
  • the spike protein gene is a coronavirus gene having DPP4 binding ability, preferably a spike protein gene of the Middle East Respiratory Syndrome coronavirus consisting of the nucleotide sequence shown in SEQ ID NO: 1, and the 2015 Korean MERS-CoV It is a spike protein gene established based on genetic information (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015). More preferably, it is a gene including the S1-CTD gene including the receptor binding domain (RBD) among the spike protein genes.
  • RBD receptor binding domain
  • the gene of the Fc protein is a gene of the Fc region of human Immunoglobulin G represented by SEQ ID NO: 3.
  • the gene of the Fc protein is a gene of subtype IgG4 of Immunoglobulin G. More preferably, it is a gene encoding the 238th to 457th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4.
  • the gene encoding the Spike protein 19-647 amino acid sequence is artificially synthesized using a gene synthesis device, or an oligonucleotide primer (oligo nucleotide primer) and can be produced using the PCR method.
  • the recombinant spike LV-MS1-Fc gene is the spike amino acid residue 19 of the Middle East Respiratory Syndrome coronavirus. It may exist in the form of various nucleotide sequences including 647.
  • the recombinant protein expression system should be easy to produce while maintaining the immunogenicity of the vaccine antigen, and it should be of a low risk factor to the human body. In addition, it should be selected in consideration of various factors such as the ease of production method and production cost.
  • the host cell of the present invention may be a prokaryotic or eukaryotic cell having a high DNA introduction rate and a high expression rate of the introduced DNA.
  • eukaryotic and prokaryotic hosts such as, but not limited to, Escherichia coli, mammalian cell lines, insect cell lines, fungi, and yeast can be used.
  • Escherichia coli mammalian cell lines, insect cell lines, fungi, and yeast
  • the recombinant protein expression system four methods are mainly used. Mammalian cells, insect cells, yeast. And bacterial systems are being used.
  • Each recombinant protein expression system has advantages and disadvantages, and depending on the type of protein, the optimal system should be considered as an optimal system. If posttranslational modification affects the protein properties, the expression system should be selected.
  • the LV-MS1-Fc antigen protein expression system may specifically use E. coli.
  • the E. coli expression system is a system capable of mass production at low cost by easily introducing protein genes.
  • a second recombinant baculovirus can also be used to produce protein antigens using the insect cell Spodoptera frugiperda (Sf) cell line. It is a method widely used for viral proteins and has the advantage of good expression, but has the disadvantage that recombinant virus seeds and cell lines must be prepared simultaneously according to GMP regulations.
  • the most used and verified (or commercialized product) recombinant protein expression system is a protein expression system using recombinant animal cells. It is a method to create a recombinant cell line by inserting a protein gene into a specific expression vector and transfecting the cell.
  • the mainly used cell lines are 293, 293T, BHK21, CHO, NS0 and Sp2 cell lines.
  • a recombinant cell line is prepared using a BHK21 or CHO cell line among cell lines, and more preferably, a recombinant cell line is prepared using a CHO cell line.
  • MERS-CoV recombinant expression vector can be prepared by cloning into pcDNA3.4 TOPO expression vector having CMV promoter for expression in CHO cell line. Finally, various signal peptide genes for secretion out of cells after protein synthesis can be introduced at the 5' end of the recombinant protein LV-S1SheFc gene.
  • NP-000468, AAA52897, AAA59018, NP-001691, NP-001890, AAC32752, BR14604, AAS93426, Alfa-galactosidase (mutant m3), CAA03658, Q766C3, ABF74624, 2205370A, AAM54023, which are known as signal peptides can be introduced More preferably, the signal peptide gp64 may be introduced.
  • a linker peptide can be inserted between the spike protein gene and the Fc gene. Linker peptides can be designed by various amino acid combinations. In the present invention, a linker peptide designed to prevent structural changes between protein domains was introduced.
  • it is designed as an amino acid sequence that is unlikely to affect the protein structure and is composed of cysteine, glycine, proline, and alanine. More preferably, a linker made of the GlyGlyGlyProGLyGlyGly amino acid sequence may be introduced.
  • the gene structure of the entire expression vector is shown in FIG. 1 .
  • transformation methods may be used for transformation into recombinant protein-expressing cells.
  • the transformation method includes an electroporation method and a heat shock method, and transformation is preferably performed using a heat shock method.
  • the recombinant expression vector means that a foreign gene can be introduced to express a recombinant spike gene consisting of the nucleotide sequence shown in SEQ ID NO: 1 and can operate protein synthesis. It can be a plasmid or a potential genomic insertion.
  • a variety of expression vectors are commercially available that effectively induce the expression of a foreign gene in a particular host cell.
  • pcDNA3.4 TOPO vector was used.
  • the recombinant spike gene LV-MS1-Fc of the present invention was operatively linked to the promoter region of the expression vector to obtain a recombinant expression vector.
  • the host cell that can be transformed with this vector is preferably a mammalian cell, and the pcDNA3.4 TOPO vector was transfected into ExpiCHO-S cells derived from the mammalian Chinese Hamster Ovary to produce a protein with a high protein expression rate. to provide.
  • the cell line is LV-MS1-Fc (Accession No.: KCTC 14342BP).
  • the present invention also provides a recombinant spike protein LV-MS1-Fc of Middle East Respiratory Syndrome coronavirus produced by the cell line.
  • the recombinant spike protein LV-MS1-Fc includes a recombinant spike protein of Middle East Respiratory Syndrome coronavirus having an amino acid sequence represented by SEQ ID NO: 5 or a material functionally equivalent thereto.
  • the "functionally equivalent substance” means at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably the amino acid sequence represented by SEQ ID NO: 5 as a result of amino acid substitution, deletion and addition. is 95% or more of sequence homology, and refers to a protein that exhibits substantially the same physiological activity as the protein having the amino acid sequence shown in SEQ ID NO: 5.
  • the human IgG4 Fc protein is linked to the S1Sh2 antigen through a peptide bond through an amino acid linker.
  • the IgG4 Fc protein consists of a sequence that is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more identical to the amino acid sequence of a normal human IgG4 Fc protein. Finally, it refers to the amino acid sequence from 99 to 326 of the IgG4 Fc (GeneBank accession No. AAB59394.1, immunoglobulin gamma-4 heavy chain, partial [Homo sapiens]) domain.
  • the recombinant spike protein LV-MS1-Fc can be isolated using a conventional protein isolation method.
  • the recombinant spike protein LV-MS1-Fc can be isolated from other cultures according to a variety of methods including, but not limited to, centrifugation, filtration, and precipitation.
  • Recombinant spike protein LV-MS1-Fc can be separated and precipitated from other cultures according to the fractional solubility of various salts.
  • the precipitation of a specific protein is the concentration of the protein to be separated from the culture medium, or the most optimal chemical and the chemical used to create a condition in which the protein to be separated is maximally dissolved or other proteins are precipitated. It depends on the optimum concentration.
  • the type of chemical used may include ammonium sulfate, acid for isoelectric precipitation, addition of a base, ethanol, polyethylene glycol, polyvalently charged ions, and the like.
  • ammonium sulfate can be used.
  • purification is performed by centrifugation. Purification may be performed by centrifugation or micro filtration. Centrifugation conditions were performed at 10,000 g, 10 minutes, and 4° C. so that the supernatant could be used for the next purification process.
  • a filter having a pore size between 1.0 ⁇ m and 0.2 ⁇ m may be used. Preferably, a filter having a pore size of 0.2 ⁇ m may be used.
  • a dead end filtration method or a cross flow filtration method can be used, and both methods are applicable. Centrifugation supernatant or filtrate (permeate) can be separated from other proteins through precipitation.
  • the ammonium sulfate concentration used may be 30-90%. Preferably, it may be 40 to 80%. More preferably, it may be 50 to 70%. Most preferably, it may be 70%. Ammonium sulfate precipitation can be left at 4° C. for 1 to 8 hours, preferably 2 to 7 hours, more preferably 3 to 6 hours, more preferably 4 to 5 hours until the supernatant and the precipitate are sufficiently separated. have. Most preferably, it can be left for 5 hours.
  • Centrifuge (4,500g, 30 minutes, 4°C) to separate the precipitate containing the precipitated recombinant antigen, discard the supernatant, and resuspend the precipitate with 5 mL of 20 mM sodium phosphate buffer (pH 7.4). After that, it can be dialyzed against 20 mM sodium phosphate buffer containing 0.15 M NaCl in NMWCO 20 kDa pore size dialysis bag at 4°C. Dialysis is stirred using a magnetic bar for 3 to 4 hours.
  • Dialysis can be performed using a total of 1L buffer, and after dialysis, for the next chromatography purification process, known methods including extraction through chromatography (affinity, ion exchange, size exclusion, hydrophobicity) or ultrafiltration method It can be purified through
  • the present invention comprises the steps of transforming the recombinant expression vector into a cell; recovering the recombinant protein from the cell or culture thereof; and purifying the recombinant protein; provides a method for producing a recombinant protein, including.
  • the description of the content overlapping with the vector and protein of the present invention is omitted in order to avoid excessive complexity of the present specification due to the description of the overlapped content. do.
  • the present invention provides a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus comprising a recombinant protein as an active ingredient.
  • the vaccine may be an inactivated vaccine.
  • the inactivated vaccine composition may be a fusion protein consisting of a protein among the spike proteins of the purified Middle East Respiratory Syndrome virus and a human IgG Fc protein and an appropriate immune activation agent.
  • a vaccine comprising the composition may be prepared by a method known in the art. For example, after obtaining purified antigens, they are treated with formalin, betapropriolactone (BPL), binary ethylenimine (BEI) or gamma rays, or inactivated by other methods known to those skilled in the art.
  • BPL betapropriolactone
  • BEI binary ethylenimine
  • gamma rays or inactivated by other methods known to those skilled in the art.
  • the inactivated virus is then mixed with a pharmaceutically acceptable carrier (eg saline solution) and optional adjuvants. Preferably, it may be inactivated at a final concentration of 0.1% formalin.
  • the vaccine may further include an immune enhancing material or an adjuvant.
  • Immunopotentiator or adjuvant refers to a compound or mixture that enhances the immune response and promotes the rate of absorption after inoculation, including, but not limited to, any absorption-promoting agent.
  • it may contain auxiliary molecules added to vaccines or oils such as aluminum hydroxide, mineral oil or generated by the body after each induction by these additional ingredients.
  • the auxiliary molecule includes interferon, interleukin, growth factor, and the like.
  • the vaccine composition of the present invention refers to a pharmaceutical composition containing at least one immunologically active ingredient that induces an immunological response in humans.
  • the immunologically active component of the vaccine is the known LV-MS1-Fc recombinant protein.
  • one or more additional antigens may be included to enhance the efficacy of the vaccine. It can also be prepared (polynucleotide vaccination) by induction of the above synthetic process in an animal.
  • a vaccine may comprise one or more than one of the elements described above at the same time.
  • the vaccine composition may be in any form known in the art, for example, in the form of solutions and injections, or in solid form suitable for suspension, but is not limited thereto. Such formulations may also be emulsified or encapsulated in liposomes or soluble glass, or may be prepared in the form of an aerosol or spray. They may also be incorporated into transdermal patches. Liquids or injectables may contain propylene glycol if necessary and sodium chloride in an amount sufficient to prevent hemolysis (eg, about 1%).
  • the vaccine composition of the present invention may further include a pharmaceutically acceptable carrier or diluent.
  • pharmaceutically acceptable means a non-toxic composition that is physiologically acceptable and does not inhibit the action of the active ingredient when administered to pigs and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions.
  • Suitable carriers for vaccines are known to those skilled in the art and include, but are not limited to, proteins, sugars, and the like. Such carriers may be aqueous or non-aqueous solutions, suspensions or emulsions.
  • a regular or atypical organic or inorganic polymer may be used as an adjuvant for increasing immunogenicity.
  • Adjuvants are generally known to promote immune responses through chemical and physical binding to antigens. For example, as an adjuvant, an atypical aluminum gel, an oil emulsion, or a double oil emulsion and an immunosol, etc. may be used.
  • various plant-derived saponins, levamisole, CpG dinucleotides, RNA, DNA, LPS, various types of cytokines, etc. may be used to promote the immune response.
  • the above immune composition can be used as a composition for inducing an optimal immune response by a combination of various adjuvants and immune response promoting additives.
  • a stabilizer, an inactivating agent, an antibiotic, a preservative, and the like may be used as the composition to be added to the vaccine.
  • the vaccine antigen may be mixed with distilled water or a buffer solution and used.
  • the vaccine composition may be administered through an oral, intramuscular, subcutaneous, etc. administration route, but is not limited thereto, and may preferably be administered via an intramuscular route.
  • the present invention provides a method for preventing or treating Middle East Respiratory Syndrome coronavirus infection comprising administering a vaccine composition to an individual.
  • the "subject" of the present invention means a subject in need of a method for preventing, controlling or treating a disease, and more specifically, a human or non-human primate, mouse, rat, dog, cat , which means mammals such as horses and cattle. In some cases, humans may be excluded.
  • Prevention of the present invention means any action that suppresses or delays the onset of Middle East Respiratory Syndrome coronavirus infection by administration of the composition according to the present invention.
  • Treatment of the present invention means any action in which the symptoms for Middle East Respiratory Syndrome coronavirus infection are improved or changed advantageously by administration of the composition according to the present invention.
  • the method of the present invention includes the above-described vaccine composition, descriptions of overlapping contents with the above-described vaccine composition of the present invention are omitted in order to avoid excessive complexity of the present specification due to description of overlapping contents.
  • the present invention provides a method for evaluating an immune response in an animal, comprising administering the recombinant expression vector or the recombinant protein to the animal.
  • the present invention provides a method for evaluating the immune response in small animals of the recombinant spike protein LV-MS1-Fc of Middle East Respiratory Syndrome coronavirus.
  • the animal is preferably a mammal, and the present invention includes the evaluation of immunogenicity in mice.
  • Inoculation may be performed within two times at regular time intervals through the muscle or subcutaneous or oral or nasal skin of the immunogen animal, and preferably, two inoculations may be performed with an interval of two weeks through intramuscular inoculation.
  • mouse serum is obtained through tail blood or cardiac blood collection, and the effect on immune induction can be confirmed by measuring the IgG antibody titer through the ELISA system.
  • viral infection A protective antibody titer can be measured by measuring a virus neutralization antibody titer that can inhibit .
  • the present invention also includes a method for measuring Middle East Respiratory Syndrome virus neutralizing antibody.
  • a method for indirectly measuring neutralizing antibody titer by measuring luciferase activity by virus neutralizing antibody by making Vesicular stomatitis virus luciferase (VSVluc)-MERSS pseudovirus.
  • VSVluc Vesicular stomatitis virus luciferase
  • the virus neutralizing antibody titer of the vaccine tested in the present invention can be 12 to 512 times. Preferably, it may be 128 times to 256 times. More preferably, a neutralizing antibody titer of 256 fold or more should be measured.
  • the present invention may provide methods for evaluating the efficacy of vaccines in mammals.
  • the test method may be a transgenic animal (DPP4 knock in) expressing a human DPP4 virus receptor susceptible to the Middle East Respiratory Syndrome virus.
  • DPP4 knock in a transgenic animal
  • a human DPP4 virus receptor susceptible to the Middle East Respiratory Syndrome virus Preferably, it may be a human DPP4 expressing mouse.
  • mice are generally not susceptible to MERS-CoV, so infection is impossible.
  • mice expressing Human DPP4 hDPP4 knock-in mice
  • mice expressing Human DPP4 are susceptible to MERS-CoV and can be infected, but human MERS-CoV does not cause disease in human DPP4 knock-in mice.
  • mouse-adapted MERS-CoV produced as a result of passage more than 30 times in hDPP4 knock-in mice caused infection in hDPP4 knock-in mice and a disease similar to that in humans.
  • hDPP4 knock-in mouse and mouse-adapted MERS-CoV were used as mouse models to evaluate vaccine efficacy.
  • the present invention provides a method for inducing a protective immune response comprising administering a vaccine composition to an animal.
  • the present invention provides a method of inducing a protective immune response against Middle East Respiratory Syndrome virus in an animal, the method comprising administering the vaccine composition to a human in an immune effective amount of the vaccine.
  • the vaccine may be an inactivated vaccine.
  • the animal may be a mammal such as a human or a non-human primate, a mouse, a rat, a dog, a cat, a horse, a cow, and preferably a human.
  • the immune response is a vaccine composition or an antigen or antigens contained in a vaccine containing the same, specifically directed to antibodies, B cells, helper T cells, suppressor T cells, cytotoxic T cells and gamma-delta T cells production or activation, exhibiting a therapeutic or protective immunological response in the host, thereby enhancing resistance to new infections or reducing the clinical severity of the disease.
  • it may be a protective immune response.
  • Such protection is evidenced by a reduction or absence of clinical signs normally exhibited by an infected host, a faster recovery time or lower duration, or a lower viral titer in the tissues or body fluids or feces of the infected host.
  • the immune effective amount means an amount of vaccine capable of inducing an immune response to reduce the frequency or severity of Middle East Respiratory Syndrome virus infection in humans, and those skilled in the art can appropriately select it.
  • the effective amount may be 100 ⁇ g to 10 ⁇ g of the purified antigen protein when the vaccine is an inactivated vaccine. More preferably, it may be 50 ⁇ g to 20 ⁇ g, and more preferably, it may be 20 ⁇ g or more.
  • the method for inducing an immune response is not limited thereto, but may be vaccination by oral, transdermal, intramuscular, intraperitoneal, intravenous, or subcutaneous routes.
  • the vaccine may be intramuscularly inoculated during the first and second inoculations.
  • Example 1 Use of spike protein for MERS-CoV vaccine
  • MERS-CoV has about 30 kb of positive-sense single-stranded RNA as genetic information. It is composed of 11 ORFs, and S gene, E gene, M gene, N gene, etc., which are proteins constituting the structure of the virus, are coded.
  • the S gene encodes a spike protein among proteins constituting the structure of MERS-CoV.
  • the spike protein binds to DPP4 (Dipeptidyl-peptidase 4) of the host cell and is involved in membrane fusion between the virus and the host cell.
  • DPP4 Dipeptidyl-peptidase 4
  • the RBD inside the S gene plays an important role in the binding of the viral spike protein to the host cell.
  • MERS-CoV spike protein was used as a vaccine to develop a prevention strategy that can control the further spread of MERS-CoV.
  • Example 2 Preparation and securing of a recombinant expression vector capable of protein expression in mammalian cells
  • the sequence of the spike protein was determined based on the 2015 Korean MERS gene information (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015).
  • MERS LV-MS1-Fc a fusion protein in which the Fc domain of human IgG4 was tagged with the gene, was designed as a MERS recombinant vaccine antigen.
  • the finally expressed recombinant vaccine antigen was designed to have a human Fc domain at the 3' end of the gene. In order to express it in mammalian cells, the following experiment was performed.
  • MERS LV-MS1-Fc codon-optimized MERS LV-MS1-Fc gene was cloned into pcDNA3.4 TOPO vector to construct a MERS recombinant expression vector and named MERS LV-MS1-Fc.
  • the pcDNA3.4 TOPO vector was inserted into the gene through TA cloning, and the inserted gene with 'A' added to the 3' end was secured through PCR amplification using taq polymerase.
  • the ratio of inserted gene: vector was 3 : 1, and TOPO cloning reaction was performed.
  • E. coli strain TOP10 strain was used as a host for general cloning, and transformation was performed. Thereafter, the strain into which the recombinant gene was inserted was selected using the ampicillin marker. From the selected strain, DNA was obtained by plasmid purification, and the final gene was confirmed through sequencing analysis. A vector map corresponding to this is shown in FIG. 1 .
  • the final gene schematic diagram obtained through cloning is shown in FIG. 2 .
  • the base sequence of the final gene is shown in SEQ ID NO: 6.
  • MERS LV-MS1-Fc-TOPO expression gene For the confirmed MERS LV-MS1-Fc-TOPO expression gene, sufficient genetic resources were obtained through plasmid midi scale purification. Genetic resources were used for transfection (transfection) of 1 ⁇ g of genes per ml into CHO-S cells.
  • Example 3 Transient transfection to express MERS LV-MS1-Fc in CHO cells
  • ExpiCHO-S cell derived from CHO-S (Chinese Hamster Ovary) cell is a CHO cell line with high protein expression efficiency. ExpiCHO-S cells were used for transient transfection. ExpiCHO-S cells were used for culture and transfection in ExpiCHO expression medium. A 125-mL or 250-mL Erlenmeyer flask was used as a periodic CHO-S cell culture flask. CHO-S cells were seeded in Erlenmeyer flask at a density of 0.5 x 10 6 cells/mL and grown in a suspension form in 8% CO 2 , orbital shaker platform conditions at 37° C. in a cell incubator. Cell growth was maintained by subculture when the cells reached a density of 3 to 4 x 10 6 cells/mL.
  • transfection was performed on a 250-ml Erlenmeyer flask scale as follows. The day before transfection, CHO-S cells were stained with trypan blue for pre-seeding, and then the cell density was measured by dispensing in a hemocytometer. CHO-S cells have a doubling time of approximately 17 hours, and seeded at 3 x 10 6 ⁇ 4 x 10 6 cells/mL to secure a cell density of 3.0 x 10 8 cells/50 mL during transfection and 7 the next day. It was made to reach a cell density of x 10 6 ⁇ 10 x 10 6 cells/mL.
  • Mixture A and mixture B prepared through the above method were mixed to make a MERS LV-MS1-Fc expression gene transfection mixture and incubated at room temperature for 5 minutes.
  • the cultured MERS LV-MS1-Fc expression gene transfection mixture was slowly aliquoted into CHO-S cells seeded in a 250-ml Erlenmeyer flask in advance and mixed well. After transfection, CHO-S cells were cultured on an orbital shaker platform at 8% CO 2 , 37°C. Twenty hours after transfection, 12 ml of ExpiCHO Feed and 300 ⁇ L of ExpiCHO Enhancer were added and cultured until day 8 to express MERS LV-MS1-Fc antigen.
  • the cell line transfected with the LV-MS1-Fc gene was named Chinese hamster ovary cell LV-MS1-Fc cell, and it was deposited with the Center for Biological Resources at the Korea Research Institute of Bioscience and Biotechnology and was given accession number KCTC14342BP on October 22, 2020.
  • the cultured cells were centrifuged at 1,500 rpm for 5 minutes to separate the cells and the expression solution.
  • the separated cells were washed twice with 1 X DPBS 20 mL. After that, 5 mL of 1 X DPBS and protease inhibitor were added, followed by 10 min ⁇ 30 sec on/off disruption by sonication to obtain a cell lysate.
  • MERS LV-MS1-Fc protein As shown in FIG. 3 , expression of recombinant MERS LV-MS1-Fc protein with a size of about 130-kDa was confirmed in both the CHO-S cell culture medium and the lysate.
  • the prepared MERS LV-MS1-Fc expression gene was prepared to include a signal peptide.
  • the gene was induced to be secreted after the protein was expressed in CHO-S cells, and it was confirmed that the MERS LV-MS1-Fc antigen was also present in the expression solution.
  • Protein purification was performed on the MERS LV-MS1-Fc antigen expression solution obtained in Example 3 using affinity chromatography as follows.
  • MERS LV-MS1-Fc antigen protein precipitation was performed through a pretreatment process of adding 90% ammonium sulfate prior to affinity chromatography.
  • MERS LV-MS1-Fc antigen protein was precipitated by adding 662 g/L of ammonium sulfate to the expression solution.
  • the precipitated protein was dissolved in 20 mM sodium phosphate buffer (pH 7.4) to obtain a pellet at 13,000 rpm, 30 min, 4°C.
  • the dissolved protein was placed in a cellulose membrane and dialysis was performed twice for 2 hours in 20 mM sodium phosphate buffer (pH 7.4).
  • purified protein was obtained through 0.45 ⁇ m filtration after centrifugation at 13,000 rpm, 30 min, and 4°C.
  • the column used for purification was HiTrapTM protein A HP. During elution, neutralization was performed with 0.1 M citric acid (pH 3.0) and 1 M Tris-H Cl (pH 9.0). The obtained protein was measured for protein concentration using BCA protein analysis. After separating the protein through 10% SDS-PAGE, the protein was confirmed through Coomassie blue staining. In addition, Western blotting was performed through the membrane electrophoresed with a nitrocellulose membrane. The results are shown in FIG. 3 . It was confirmed that the MERS LV-MS1-Fc antigen of approximately 130 kDa was secured through affinity chromatography.
  • the MERS LV-MS1-Fc antigen protein obtained by the above method was immunized with 5-week-old female BALB/c mice as follows. More specifically, as a group, the PBS group (negative control group), LV-MS1-Fc 0.5 ⁇ g, 2 ⁇ g, and 5 ⁇ g were divided into 4 groups, and immunization was carried out by 5 animals each. Inoculation was performed subcutaneously twice at an interval of 2 weeks at an amount of 100 ⁇ L/animal for each group. Antisera were obtained through blood sampling at the 2nd and 4th weeks of immunization from the day of the first inoculation. In order to confirm the antibody reaction of the obtained mouse antiserum and MERS spike protein, the following binding reaction was performed.
  • MERS LV-MS1-Fc To measure the antibody titer of MERS spike protein by MERS LV-MS1-Fc, 200 ng/100 ⁇ L of commercially purchased MERS Spike protein (Sino) was coated on a 96-well plate for ELISA measurement, followed by a general ELISA measurement method. Antibody titers were measured. The results are shown in FIG. 4 .
  • the MERS Spike protein IgG antibody titer of the group inoculated with the LV-MS1-Fc antigen protein showed a significant difference from the control group.
  • the antibody titer was further increased at the antigen concentration of 5 ⁇ g than at the antigen concentration of 2 ⁇ g.
  • Example 7 Evaluation of neutralizing antibodies against Middle East Respiratory Syndrome coronavirus spike protein
  • mice For the neutralizing antibody against the MERS LV-MS1-Fc antigen obtained in Example 5 and the challenge test, most mice generally do not have a sensitivity to MERS-CoV, so infection is impossible.
  • Mice expressing Human DPP4 hDPP4 knock-in mice
  • hDPP4 knock-in mice are susceptible to MERS-CoV and are susceptible to infection.
  • human MERS-CoV does not cause disease in human DPP4 knock-in mice.
  • the mouse-adapted MERS-CoV produced as a result of passage more than 30 times in hDPP4 knock-in mice causes infection in hDPP4 knock-in mice and a disease similar to that in humans.
  • hDPP4 knock-in mouse and mouse-adapted MERS-CoV were used as mouse models to evaluate vaccine efficacy.
  • the above mouse model and virus were developed at the University of Iowa, and mice and viruses were acquired from Seoul National University.
  • blood was collected using cardiac bleed, and serum was separated by centrifugation at 2,000 g for 10 minutes. The separated serum was incubated at 56°C for 30 minutes.
  • Huh7 cells were prepared in a 96-well microplate. Thereafter, the serum was diluted 1:10 and serially diluted two-fold. After the same amount of VSVluc-MERS was added, it was incubated at 37°C for 1 hour.
  • the virus and serum mixture was inoculated into Huh7 and incubated for 1 hour. After removing the virus and serum mixture, a fresh medium was added, and incubated at 37°C for 18 hours. After removing the medium, 50 ⁇ L of 1X luciferase lysis buffer was added to each well and stored at -80°C. The luciferase activity was measured using a luciferase substrate, and high neutralizing antibody results were confirmed as shown in FIG. 5 .
  • Example 8 Conducting an attack inoculation test against the Middle East Respiratory Syndrome coronavirus spike protein
  • transgenic mice expressing DPP4, known as an infection receptor of MERS-CoV were vaccinated ( FIG. 6 ). After vaccination, neutralizing antibodies were measured and the vaccine's defense was evaluated through a challenge test using a pathogenic virus.
  • Mouse-adapted MERS-CoV culture was performed in the BL3 laboratory of Chungbuk National University. After preparing VeroE6 cells in T-75, when the cells were attached to the flask, 10 6 PFU Mouse-adapted MERS-CoV was diluted in 2 mL media and inoculated. One hour after inoculation, the virus was removed and new media (10 mL) was added. It was cultured in an incubator at 37° C. until a cytopathic effect was observed. When 80-90% of the cytopathic effect was observed, the virus was released from the cells by Freeze-Thawing. The supernatant was centrifuged at 10,000 g for 10 minutes to remove cell suspension.
  • VeroE6 cells were prepared in a 6-well plate to measure the virus titer (performed in the BL3 laboratory of Chonbuk National University), and then the virus was diluted 10-fold. 200 ⁇ L of the serially diluted virus was inoculated into VeroE6 cells. One hour after inoculation, the virus was removed and a medium containing 0.8% agarose was added and cultured for 3 days. The virus concentration was calculated by counting the number of plaques generated after 3 days.
  • mice vaccinated 1 day before challenge inoculation were transferred to the BL3 laboratory of Chonbuk National University.
  • challenge inoculation conducted at Chonbuk National University BL3 laboratory
  • Isofluorane vaccinated mice were intranasally inoculated with 10 4 pfu/50 ⁇ L of the virus suspension.
  • the weight and clinical symptoms of mice were observed.
  • mice On the 7th day after challenge inoculation, euthanasia was induced by cervical dislocation after anesthesia. Euthanized mice were subjected to autopsy and lungs were removed. After the right lung was disrupted for virus isolation, only the supernatant was separated by centrifugation at 1,000 g for 10 minutes. The supernatant was assayed for virus titer by plaque assay. The left lung was fixed in 10% neutral formalin for more than 24 hours for histopathological examination. After that, it was transferred to the College of Veterinary Medicine, Chungnam National University, and H&E staining was performed.
  • mice inoculated with PBS started to gradually lose weight from 1 day after the virus challenge inoculation, and showed a decrease of 25% or more of the body weight before inoculation.
  • body weight there was no change in body weight in mice vaccinated with LV-MS1-Fc.
  • mice inoculated with PBS one died 4 days after challenge inoculation.
  • 6 days after challenge inoculation two animals died (mortality rate 75%).
  • Mortality was not observed in mice vaccinated with LV-MS1-Fc (mortality rate 0%).
  • activity decreased sharply from 1 day after challenge inoculation, and the amount of drinking water and feed intake significantly decreased.
  • mice vaccinated with LV-MS1-Fc No specific clinical symptoms were observed in mice vaccinated with LV-MS1-Fc.
  • the PBS inoculation group showed 1X10 4.2 PFU/mL
  • the LV-MS1-Fc inoculation group showed 1X10 2 PFU/mL. It was confirmed that the amount of virus detected in the LV-MS1-Fc inoculated group was lower.
  • histopathological symptoms in the lung tissue of mice inoculated with PBS were inflammatory cell infiltration, edema, exudate, and the like. However, no specific findings were observed in the lungs of mice vaccinated with LV-MS1-Fc.

Abstract

The present invention relates to a method for producing an antigen for preventing MERS-CoV infections and a vaccine composition produced by method, more specifically to a vaccine composition comprising a protein in which n-Coronavirus spike protein or S1 domain is bound with human fragment crystallization (Fc) domain, and to inducing immune responses and preventing viral infections by means of the vaccine composition.

Description

중동호흡기증후군 코로나바이러스 예방 및 치료용 백신 조성물Vaccine composition for prevention and treatment of Middle East respiratory syndrome coronavirus
본 발명은 MERS-CoV 감염을 예방하기 위한 항원의 제조 방법 및 이를 이용한 백신 조성물에 관한 것이다.The present invention relates to a method for preparing an antigen for preventing MERS-CoV infection and a vaccine composition using the same.
중동호흡기증후군은 중동호흡기증후군 코로나바이러스 (MERS-CoV) 감염에 의해 발병되는 감염병이고, 2012년 사우디아라비아에서 처음 발견된 뒤 중동 지역에서 집중적으로 발생하고 있는 중증 급성 호흡기 질환이다. 중동호흡기증후군 (Middle East Respiratory Syndrome)은 박쥐에서 유래한 베타코로나바이러스이며, 낙타를 통해 사람에게 감염되어 사람간 감염이 가능해진 바이러스 질병이다. MERS-CoV 감염으로 인한 치사율은 35% (WHO 통계 27%)를 넘을 정도로 매우 치명적이며 주요한 증상으로는 발열, 기침, 가래, 숨가뿜, 근육통, 설사 복통 등 다양한 증상을 동반하며 감염자의 72%가 인공호흡을 필요로 했다. 평균 잠복기는 5.5일이며 1.9일에서 14.7일간의 잠복기가 전체 감염자의 95% 이상이었다. 대부분의 사망원인은 급성호흡혼란증후군으로 이어지는 폐렴이 주원인이며 신장부전, 파종성혈관응고, 식막염 증상이 보고된 경우도 있다. 2015년 5월 대한민국에서 20일 첫 감염자가 발생한 이후 같은 해 7월 16일까지 186명이 MERS-CoV에 감염되었으며 이 중 38명이 사망하였다. 최근에도 중동의 사우디아라비아를 중심으로 매년 5만명 정도의 감염자가 발생하고 있으며 200명이 사망하는 것으로 보고되었다. 2012년 처음 분리된 MERS-CoV의 게놈 (Genome)을 분석한 결과 Severe acute respiratory syndrome coronavirus (SARS-CoV)와 같은 속 (Family)에 속하는 베타코로나바이러스로 30 kb 에 크기의 RNA 게놈을 가지고 있어 RNA 바이러스 중 가장 큰 RNA 게놈을 가진 것으로 밝혀졌다. MERS-CoV의 게놈은 10개의 often reading frame (ORF)으로 구성되어 있으며 전체 게놈의 2/3가 ORF1ab로 16개의 비구조단백질 (non structural protein, NSP)의 유전자이다. 나머지 3'말단의 유전자는 4개의 구조 단백질 유전자를 가지고 있는데 spike (S), envelope (E), matrix (M) 그리고 nucleocapsid (N) 단백질 유전자이다. 이외에도 5개의 보조 단백질 유전자 (accessory protein)를 가지고 있다 (ORF3, ORF4b, ORF5, ORF8b). 보조 단백질은 MERS-CoV의 게놈 복제나 바이러스 packaging에 역할을 하기보다는 바이러스 감염과 면역반응에 관련이 있는 것으로 추측된다. 보조 단백질은 주로 host cell의 면역 기전에 관여하는 NF-κB의 발현을 증가시켜 B세포 활성화에 관련된 것으로 알려져 있다.Middle East Respiratory Syndrome is an infectious disease caused by Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection. Middle East Respiratory Syndrome (Middle East Respiratory Syndrome) is a bat-derived beta-coronavirus, a viral disease that infects humans through camels and enables human-to-human transmission. The fatality rate due to MERS-CoV infection is over 35% (WHO statistics 27%), and the main symptoms are fever, cough, sputum, shortness of breath, muscle pain, diarrhea and abdominal pain. artificial respiration was required. The average incubation period was 5.5 days, and the incubation period of 1.9 to 14.7 days was more than 95% of the total infections. The main cause of death is pneumonia leading to acute respiratory distress syndrome, and kidney failure, disseminated vascular coagulation, and phlegmon have been reported in some cases. From the first case of infection on May 20, 2015 in Korea to July 16 of the same year, 186 people were infected with MERS-CoV, and 38 of them died. Even recently, it was reported that around 50,000 people are infected every year, mainly in Saudi Arabia in the Middle East, and 200 people die. As a result of analyzing the genome of MERS-CoV first isolated in 2012, it is a beta-coronavirus belonging to the same genus as the severe acute respiratory syndrome coronavirus (SARS-CoV). It has an RNA genome with a size of 30 kb. It was found to have the largest RNA genome of any virus. The genome of MERS-CoV consists of 10 frequent reading frames (ORFs), and 2/3 of the entire genome is ORF1ab, which is a gene of 16 non-structural proteins (NSP). The remaining 3' end gene has four structural protein genes, including spike (S), envelope (E), matrix (M) and nucleocapsid (N) protein genes. In addition, it has five accessory protein genes (ORF3, ORF4b, ORF5, ORF8b). It is speculated that the helper protein is related to viral infection and immune response rather than playing a role in genome replication or viral packaging of MERS-CoV. The helper protein is known to be involved in B cell activation by increasing the expression of NF-κB, which is mainly involved in the immune mechanism of the host cell.
MERS-CoV의 spike protein은 SARS-CoV, infectious bronchitis coronavirus (IBV), porcine epidemic diarrhea virus (PEDV) 등과 같이 envelope 표면에 각 바이러스의 세포 침입에 필요한 spike protein을 가지고 있다. spike protein은 host cell receptor와 결합하는 S1 도메인, cell membrane과 결합하는 S2 도메인으로 구성되며 바이러스가 세포내 감염이 일어나는 동안 S1과 S2 domain 사이에 furin cleavage site가 잘리면서 두 개의 도메인으로 분리된다. SARS-CoV의 경우 spike protein은 숙주세포 표면에 발현되어있는 angiotensin converting enzyme 2 (ACE2)와 결합하여 세포내 감염이 일어나고 MERS-CoV의 경우 spike protein은 dipeptidyl peptidase 4 (DPP4)에 결합하여 세포내 감염이 일어난다. 코로나바이러스의 S1 단백질의 두 개의 주요한 도메인 S1, N-terminal domain (S1-NTD)와 C-terminal domain (S1-CTD)은 세포의 receptor 결합에 중요한 역할을 하는 것으로 알려져 있으며 S1-NTD 도메인은 주로 세포 표면의 당분자 결합에 필요하며 S1-CTD 도메인은 ACE2, APN, DPP4 결합에 관련되어있다. 따라서 Spike protein의 S1 domain을 이용한 백신은 바이러스의 세포 내 감염을 막을 수 있는 virus neutralization (VN) 항체 형성에 매우 유용한 단백질로 이용될 수 있을 것이다. The spike protein of MERS-CoV has a spike protein required for cell invasion of each virus on the surface of the envelope, such as SARS-CoV, infectious bronchitis coronavirus (IBV), and porcine epidemic diarrhea virus (PEDV). The spike protein is composed of the S1 domain that binds to the host cell receptor and the S2 domain that binds the cell membrane. During intracellular infection of the virus, the furin cleavage site is cut between the S1 and S2 domains and is separated into two domains. In the case of SARS-CoV, the spike protein binds to angiotensin converting enzyme 2 (ACE2) expressed on the surface of the host cell to cause intracellular infection. In the case of MERS-CoV, the spike protein binds to dipeptidyl peptidase 4 (DPP4) and infects the cell. this happens Two major domains of the S1 protein of coronavirus are S1, N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD), which are known to play an important role in cell receptor binding, and the S1-NTD domain is mainly It is required for cell surface glycosylation and the S1-CTD domain is involved in ACE2, APN, and DPP4 binding. Therefore, a vaccine using the S1 domain of the Spike protein can be used as a very useful protein for the formation of virus neutralization (VN) antibodies that can prevent intracellular infection of viruses.
MERS-CoV에 대한 치료제와 백신은 아직 개발되지 않고 있으나 spike 단백질의 receptor binding domain (RBD)을 항원으로 하는 백신 개발이 이 이루어지고 있다. 항원 발현 재조합 바이러스나 항원 유전자 또는 항원 전달체로 바이러스 vector를 이용한 백신 개발, DNA 백신 등 다양한 백신 제형이 연구되고 있다. 이 중에 재조합 동물 세포를 이용한 Spike 단백질 또는 일부 항원 부위와 면역력을 향상시킬 수 있는 바이로분자를 이용한 단위체 (subunit) 백신이 개발되고 있다. 재조합 동물 세포를 이용한 단위체 백신 개발은 1980년대부터 항체 의약품 개발 및 단위체 백신 개발을 위한 주요한 단백질 발현 시스템으로 이용되어 왔으며, 이미 여러 제품의 상용화를 통해 안전성이 충분히 입증된 단백질 발현 시스템이다. 재조합 단백질을 이용한 단위체 백신의 가장 큰 단점은 면역원성이 약해 아쥬반트 (adjuvant)와 같은 면역증강 물질을 필요로 한다는 점이다. 따라서 바이러스 감염 억제를 위한 중화항체 형성에 필수적인 항원을 찾아내고 구조적 변화 없이 재조합 단백질로 발현하고 면역증강 물질을 이용하여 안전하고 효능이 우수한 백신항원 제조 기술의 개발이 매우 중요하다. A treatment or vaccine for MERS-CoV has not yet been developed, but vaccine development using the receptor binding domain (RBD) of the spike protein as an antigen is underway. Various vaccine formulations such as vaccine development using viral vectors as antigen-expressing recombinant viruses, antigen genes or antigen carriers, and DNA vaccines are being studied. Among them, a subunit vaccine using a Spike protein using recombinant animal cells or a viromolecule capable of improving immunity and some antigenic sites is being developed. Monomeric vaccine development using recombinant animal cells has been used as a major protein expression system for antibody drug development and monomeric vaccine development since the 1980s. The biggest disadvantage of the unit vaccine using a recombinant protein is that it requires an immune enhancing substance such as an adjuvant due to its weak immunogenicity. Therefore, it is very important to find an antigen essential for the formation of a neutralizing antibody for suppressing viral infection, to express it as a recombinant protein without structural change, and to develop a safe and effective vaccine antigen manufacturing technology using an immune enhancing material.
메르스 질병은 최근 중동지역에 한정되어 발생하고 있으나 다시 전세계에 전파될 가능성이 있는 질병으로 최근 백신 제조 기술의 발전에 따라 다양한 형태의 백신 개발 연구가 이루어지고 있으나 안전성이 가장 중용한 백신의 개발에 있어 안전하고 효능이 우수한 백신 개발 기술이 필요한 시점이다. Although MERS disease has recently been limited to the Middle East, it is a disease that has the potential to spread to the world again. Therefore, it is necessary to develop a vaccine that is safe and effective.
본 발명은 중동호흡기증후군 코로나바이러스 spike 단백질 또는 S1 부위와 사람 Fc (fragment crystallisation) 부위를 결합시킨 단백질의 중동호흡기증후군 코로나바이러스에 대한 면역 및 치료 반응을 확인함으로써 본 발명을 완성하였다. The present invention has completed the present invention by confirming the immune and therapeutic response to the Middle East Respiratory Syndrome coronavirus of the Middle East Respiratory Syndrome coronavirus spike protein or a protein combining the S1 region and the human Fc (fragment crystallisation) region.
이에, 본 발명의 목적은 신규한 중동호흡기증후군 코로나바이러스의 spike 단백질을 이용한 단위체 백신 (subunit vaccine) 개발 기술을 제공하는 것이다.Accordingly, an object of the present invention is to provide a technology for developing a subunit vaccine using a novel Middle East Respiratory Syndrome coronavirus spike protein.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1 또는 2의 염기 서열로 표시되는 MERS-CoV 스파이크 단백질을 코딩하는 유전자 및 서열번호 3 또는 4의 염기 서열로 표시되는 인간 IgG4의 Fc을 코딩하는 유전자가 융합된 핵산을 제공한다.In order to achieve the object of the present invention as described above, the present invention provides a gene encoding the MERS-CoV spike protein represented by the nucleotide sequence of SEQ ID NO: 1 or 2 and human IgG4 represented by the nucleotide sequence of SEQ ID NO: 3 or 4 A nucleic acid in which a gene encoding Fc is fused is provided.
또한, 본 발명은 본 발명에 따른 핵산을 포함하는 재조합 발현 벡터를 제공한다.In addition, the present invention provides a recombinant expression vector comprising the nucleic acid according to the present invention.
또한, 본 발명은 본 발명에 따른 재조합 발현 벡터에 의해 형질 전환된 세포주를 제공한다.In addition, the present invention provides a cell line transformed with the recombinant expression vector according to the present invention.
본 발명의 일 구현 예에 있어서, 상기 세포주는 Chinese hamster ovary cell LV-MS1-Fc 세포 (KCTC14342BP)인 것인 세포주일 수 있다.In one embodiment of the present invention, the cell line may be a Chinese hamster ovary cell LV-MS1-Fc cell (KCTC14342BP).
또한, 본 발명은 본 발명에 따른 세포주로부터 생산된 재조합 단백질을 제공한다.In addition, the present invention provides a recombinant protein produced from the cell line according to the present invention.
또한, 본 발명은 본 발명에 따른 재조합 발현 벡터를 세포에 형질전환시키는 단계; 상기 세포 또는 이의 배양물로부터 재조합 단백질을 회수하는 단계; 및 상기 재조합 단백질을 정제하는 단계를 포함하는, 재조합 단백질의 제조 방법을 제공한다.In addition, the present invention comprises the steps of transforming a cell with the recombinant expression vector according to the present invention; recovering the recombinant protein from the cell or culture thereof; And it provides a method for producing a recombinant protein, comprising the step of purifying the recombinant protein.
또한, 본 발명은 본 발명에 따른 조합 단백질을 유효성분으로 포함하는 중동호흡기증후군 코로나바이러스의 예방 또는 치료용 백신 조성물을 제공한다.In addition, the present invention provides a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus comprising the combination protein according to the present invention as an active ingredient.
본 발명의 일 구현예에 있어서, 상기 백신은 불활화 백신일 수 있다.In one embodiment of the present invention, the vaccine may be an inactivated vaccine.
본 발명의 일 구현예에 있어서, 상기 백신은 면역증강물질 또는 아쥬반트를 추가 포함할 수 있다.In one embodiment of the present invention, the vaccine may further include an immune enhancing material or adjuvant.
또한, 본 발명은 상기 백신 조성물 개체에 투여하는 단계를 포함하는 중동호흡기증후군 코로나바이러스 감염 예방 또는 치료방법을 제공한다.In addition, the present invention provides a method for preventing or treating Middle East respiratory syndrome coronavirus infection comprising administering the vaccine composition to an individual.
또한, 본 발명은 상기 재조합 발현 벡터 또는 상기 재조합 단백질을 동물에게 투여하는 단계를 포함하는, 동물에서의 면역반응 평가방법을 제공한다.In addition, the present invention provides a method for evaluating an immune response in an animal, comprising administering the recombinant expression vector or the recombinant protein to the animal.
본 발명의 일 구현예에 있어서, 상기 방법은 동물의 혈청으로부터 IgG 항체가를 측정하여 면역 반응을 평가할 수 있다.In one embodiment of the present invention, the method can evaluate the immune response by measuring the IgG antibody titer from the animal's serum.
본 발명의 중동호흡기증후군 코로나바이러스의 스파이크 단백질을 포함하는 MERS LV-MS1-Fc 항원의 이용은 MERS-CoV 감염에 대항할 수 있는 면역반응을 유도하는 예방, 개선을 위한 백신으로 유용하게 이용할 수 있다.The use of the MERS LV-MS1-Fc antigen containing the spike protein of the Middle East Respiratory Syndrome coronavirus of the present invention can be usefully used as a vaccine for prevention and improvement of inducing an immune response that can fight MERS-CoV infection. .
도 1은 재조합 발현 벡터를 구조를 예시한다.1 illustrates the structure of a recombinant expression vector.
도 2는 재조합 발현 단백질의 유전자 모식도를 예시한다.2 illustrates a genetic schematic diagram of a recombinantly expressed protein.
도 3은 MERS-CoV S 재조합 단백질 (LV-MS1-Fc)의 발현을 웨스턴 블랏법으로 확인한 결과를 나타낸다. 3 shows the result of confirming the expression of MERS-CoV S recombinant protein (LV-MS1-Fc) by Western blot method.
도 4는 MERS-CoV S 단백질 특이적 항체 생산 및 ELISA 역가를 도시한다.4 depicts MERS-CoV S protein specific antibody production and ELISA titers.
도 5는 MERS-CoV에 대한 중화항체가를 도시한다.5 shows neutralizing antibody titers against MERS-CoV.
도 6은 백신 효능 평가를 위한 마우스 모델을 도시한다.Figure 6 depicts a mouse model for the evaluation of vaccine efficacy.
도 7은 공격 접종 시험 후, 마우스 오른쪽 폐의 바이러스 역가를 나타낸다.7 shows the viral titers of the right lung of mice after challenge inoculation test.
도 8은 공격 접종 시험 후, 마우스 왼쪽 폐의 조직 병리학적 H&E 염색 결과를 나타낸다. 8 shows the histopathological H&E staining results of the left lung of a mouse after the challenge inoculation test.
도 9는 체중, 사료 섭취량, 음수량 및 백신 접종 그룹 마우스의 해부 관찰 사진을 도시한다.Figure 9 depicts body weight, food intake, water intake and anatomical observations of mice in the vaccinated group.
본 발명에 있어, spike protein 유전자는 DPP4 결합 능력이 있는 코로나바이러스의 유전자로서 바람직하게는 상기 서열 번호 1로 표시되는 염기서열로 이루어진 중동호흡기증후군 코로나 바이러스의 spike protein 유전자이며, 2015년 한국형 MERS-CoV 유전자 정보 (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015)를 바탕으로 확립된 spike protein 유전자이다. 더 바람직하게는 spike protein 유전자 중 receptor binding domain (RBD)을 포함하는 S1-CTD 유전자를 포함하는 유전자이다. 더 바람직하게는 서열번호 2로 표시되는 중동호흡기증후군 코로나바이러스의 스파이크 아미노산 잔기 19 ~ 647을 포함하는 유전자이다. 더 바람직하게는 포유류 세포에 코돈 최적화를 진행한 염기서열이다. 또한, Fc 단백질의 유전자는 서열번호 3으로 표시되는 인간 Immunoglobulin G의 Fc 부위의 유전자이다. 바람직하게는 Immunoglobulin G의 subtype IgG4의 Fc 유전자이다. 더 바람직하게는 서열번호 4로 표시되는 아미노산 서열의 238~457번째 아미노산 서열을 코딩하는 유전자이다. Spike protein 19~647 아미노산 서열을 코딩하는 유전자는, 유전자 합성 기기 등을 이용하여 인공적으로 합성하거나, 중동호흡기증후군 코로나 바이러스 게놈을 주형으로 스파이크 유전자의 양 말단에 상보적인 서열을 가지는 올리고 뉴클레오티드 프라이머 (oligo nucleotide primer)로 사용하여 PCR 방법을 사용 제작할 수 있다. 한편, 발현 시스템에 따른 코돈 (codon)-최적화로 인하여 중동호흡기증후군 코로나바이러스의 스파이크 유전자와 상이함이 있을 수 있으므로, 재조합 스파이크 LV-MS1-Fc 유전자는 중동호흡기증후군 코로나바이러스의 스파이크 아미노산 잔기 19 ~ 647을 포함하는 다양한 염기 서열 형태로 존재할 수 있다.In the present invention, the spike protein gene is a coronavirus gene having DPP4 binding ability, preferably a spike protein gene of the Middle East Respiratory Syndrome coronavirus consisting of the nucleotide sequence shown in SEQ ID NO: 1, and the 2015 Korean MERS-CoV It is a spike protein gene established based on genetic information (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015). More preferably, it is a gene including the S1-CTD gene including the receptor binding domain (RBD) among the spike protein genes. More preferably, it is a gene comprising the spike amino acid residues 19 to 647 of the Middle East respiratory syndrome coronavirus represented by SEQ ID NO: 2. More preferably, it is a nucleotide sequence that has undergone codon optimization in mammalian cells. In addition, the gene of the Fc protein is a gene of the Fc region of human Immunoglobulin G represented by SEQ ID NO: 3. Preferably, it is an Fc gene of subtype IgG4 of Immunoglobulin G. More preferably, it is a gene encoding the 238th to 457th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4. The gene encoding the Spike protein 19-647 amino acid sequence is artificially synthesized using a gene synthesis device, or an oligonucleotide primer (oligo nucleotide primer) and can be produced using the PCR method. On the other hand, since there may be differences from the spike gene of the Middle East Respiratory Syndrome coronavirus due to codon-optimization according to the expression system, the recombinant spike LV-MS1-Fc gene is the spike amino acid residue 19 of the Middle East Respiratory Syndrome coronavirus. It may exist in the form of various nucleotide sequences including 647.
코돈 최적화 과정을 거쳐 합성된 LV-MS1-Fc 유전자는 상기 유전자를 최적의 단백질 발현 시스템을 이용하여 단백질 생산을 하기 위해 재조합 단백질 발현 시스템을 이용하였다. 또한, 상기 유전자는 인간 IgG의 Fc 도메인을 포함한다. 재조합 단백질 발현 시스템은 백신 항원의 면역원성이 유지되면서 생산이 용이하고 인체에 위험 요소가 적은 것이어야 한다. 또한, 생산 방법의 용이성과 생산단가 등 다양한 요소를 고려하여 선정되어야 한다. 본 발명의 숙주 세포는 DNA 도입율이 높고, 도입된 DNA의 발현율이 높은 원핵생물 또는 진핵생물 세포일 수 있다. 예를 들어, 대장균, 포유류 세포주, 곤충 세포주, 진균, 효모와 같은 진핵 및 원핵 숙주들을 사용할 수 있으며, 이에 제한되지 않는다. 재조합 단백질 발현 시스템은 크게 4가지 방법이 주로 많이 사용되고 있다. 포유동물 세포, 곤충 세포, 효모. 그리고 박테리아 시스템이 사용되고 있다. 각각의 재조합 단백질 발현 시스템은 장점과 단점을 가지고 있으며 단백질의 종류에 따라 최적의 시스템으로 또 크게 고려되어야 할 것은 posttranslational modification에 따라 단백질의 특성에 영향이 있는 경우 발현 시스템을 선정해야 한다. LV-MS1-Fc 항원 단백질 발현 시스템은 구체적으로 E.coli 를 이용할 수 있다. E.coli 발현 시스템은 쉽게 단백질 유전자를 도입 적은 비용으로 대량의 생산이 가능한 시스템이다. 다만 바이러스 단백질이 발현 고정 중 misfolding에 의해 구조 변성, 심하게는 불용성 침전물 (inclusion body) 가 생성되기도 하는 위험성이 있다. 또한, E.coli 균체에서 유래하는 lipopolysaccharide (LPS)를 제거하는 공정이 까다로운 문제점이 있다. 두 번째 재조합 베큘로바이러스 (baculovirus)를 이용하여 곤충 세포인 Spodoptera frugiperda (Sf) 세포주를 이용하여 단백질 항원을 생산할 수도 있다. 바이러스 단백질에 많이 사용되는 방법으로 발현량이 좋은 이점이 있으나 재조합 바이러스 seed와 세포주를 동시에 GMP 규정에 따라 준비해야 하는 단점이 있다. 발현 시스템 중 가장 많이 사용되고 검증된 (또는 상업화된 제품) 재조합 단백질 발현 시스템은 재조합 동물세포를 이용한 단백질 발현 시스템이다. 단백질 유전자를 특정한 발현 벡터에 삽입 제작하여 세포에 transfection하여 재조합 세포주를 작성하는 방법이다. 주로 사용되는 세포주는 293, 293T, BHK21, CHO, NS0 그리고 Sp2 세포주 등이 주로 사용된다. 바람직하게는 세포주 중 BHK21, CHO 세포주를 이용하여 재조합 세포주를 제작하는 것이며 더 바람직하게는 CHO 세포주를 이용하여 재조합 세포주를 만드는 것이다.For the LV-MS1-Fc gene synthesized through codon optimization, a recombinant protein expression system was used for protein production using the optimal protein expression system. In addition, the gene includes the Fc domain of human IgG. The recombinant protein expression system should be easy to produce while maintaining the immunogenicity of the vaccine antigen, and it should be of a low risk factor to the human body. In addition, it should be selected in consideration of various factors such as the ease of production method and production cost. The host cell of the present invention may be a prokaryotic or eukaryotic cell having a high DNA introduction rate and a high expression rate of the introduced DNA. For example, eukaryotic and prokaryotic hosts such as, but not limited to, Escherichia coli, mammalian cell lines, insect cell lines, fungi, and yeast can be used. As for the recombinant protein expression system, four methods are mainly used. Mammalian cells, insect cells, yeast. And bacterial systems are being used. Each recombinant protein expression system has advantages and disadvantages, and depending on the type of protein, the optimal system should be considered as an optimal system. If posttranslational modification affects the protein properties, the expression system should be selected. The LV-MS1-Fc antigen protein expression system may specifically use E. coli. The E. coli expression system is a system capable of mass production at low cost by easily introducing protein genes. However, there is a risk of structural denaturation or, in severe cases, the formation of insoluble precipitates (inclusion bodies) due to misfolding during expression fixation of viral proteins. In addition, there is a difficult problem in the process of removing lipopolysaccharide (LPS) derived from E. coli cells. A second recombinant baculovirus can also be used to produce protein antigens using the insect cell Spodoptera frugiperda (Sf) cell line. It is a method widely used for viral proteins and has the advantage of good expression, but has the disadvantage that recombinant virus seeds and cell lines must be prepared simultaneously according to GMP regulations. Among the expression systems, the most used and verified (or commercialized product) recombinant protein expression system is a protein expression system using recombinant animal cells. It is a method to create a recombinant cell line by inserting a protein gene into a specific expression vector and transfecting the cell. The mainly used cell lines are 293, 293T, BHK21, CHO, NS0 and Sp2 cell lines. Preferably, a recombinant cell line is prepared using a BHK21 or CHO cell line among cell lines, and more preferably, a recombinant cell line is prepared using a CHO cell line.
CHO 세포주에서 발현하기 위해 CMV 프로모터를 가지는 pcDNA3.4 TOPO 발현 벡터에 클로닝하여 MERS-CoV 재조합 발현 벡터를 제조할 수 있다. 최종적으로, 상기 재조합 단백질 LV-S1SheFc 유전자 5' 말단에 단백질 합성 후 세포 밖으로 분비를 위한 다양한 signal peptide 유전자를 도입할 수 있다. 바람직하게는 signal peptide로 알려져 있는 NP-000468, AAA52897, AAA59018, NP-001691, NP-001890, AAC32752, BR14604, AAS93426, Alfa-galactosidase (mutant m3), CAA03658, Q766C3, ABF74624, 2205370A, AAM54023, BAA06291을 도입할 수 있다. 더 바람직하게는 signal peptide gp64를 도입할 수 있다. Fc 유전자 도입에 있어 spike protein 유전자와 Fc 유전자 사이에 linker peptide를 삽입할 수 있다. Linker peptide의 종류는 다양한 아미노산 조합에 의해 고안될 수 있다. 본 발명에서는 protein domain 상호간의 구조적 변화를 막기 위해 고안된 linker peptide를 도입하였다. 바람직하게는 단백질 구조에 영향을 미치지 않을 가능성이 큰 아미노산 서열로 고안된 것이며 cysteine, glycine, proline, alanine으로 구성된다. 더 바람직하게는 GlyGlyGlyProGLyGlyGly 아미노산 서열로 만들어진 linker를 도입할 수 있다. MERS-CoV recombinant expression vector can be prepared by cloning into pcDNA3.4 TOPO expression vector having CMV promoter for expression in CHO cell line. Finally, various signal peptide genes for secretion out of cells after protein synthesis can be introduced at the 5' end of the recombinant protein LV-S1SheFc gene. Preferably, NP-000468, AAA52897, AAA59018, NP-001691, NP-001890, AAC32752, BR14604, AAS93426, Alfa-galactosidase (mutant m3), CAA03658, Q766C3, ABF74624, 2205370A, AAM54023, which are known as signal peptides can be introduced More preferably, the signal peptide gp64 may be introduced. In introducing the Fc gene, a linker peptide can be inserted between the spike protein gene and the Fc gene. Linker peptides can be designed by various amino acid combinations. In the present invention, a linker peptide designed to prevent structural changes between protein domains was introduced. Preferably, it is designed as an amino acid sequence that is unlikely to affect the protein structure and is composed of cysteine, glycine, proline, and alanine. More preferably, a linker made of the GlyGlyGlyProGLyGlyGly amino acid sequence may be introduced.
전체 발현 vector의 유전자 구조는 도 1과 같다. The gene structure of the entire expression vector is shown in FIG. 1 .
재조합 단백질 발현 세포로 형질전환하는 방법은 통상의 형질전환 방법들을 사용할 수 있다. 형질전환 방법은 전기천공법, 열충격법이 있으며 바람직하게는 열충격법을 사용하여 형질전환을 한다. Conventional transformation methods may be used for transformation into recombinant protein-expressing cells. The transformation method includes an electroporation method and a heat shock method, and transformation is preferably performed using a heat shock method.
본 발명에 있어서, 재조합 발현 벡터는 서열번호 1로 표시되는 염기서열로 이루어진 재조합 스파이크 유전자를 발현하기 위해 외래 유전자를 도입하고 단백질 합성을 작동 할 수 있는 것을 의미한다. 플라스미드 또는 잠재적 게놈 삽입일 수 있다. 특정한 숙주 세포에서 외래 유전자의 발현을 효과적으로 유도하는 다양한 발현 벡터가 상업적으로 이용가능하다. 본 발명에서는 pcDNA3.4 TOPO 벡터를 이용하였다. 이러한 발현 벡터의 프로모터 부위에 본 발명의 재조합 스파이크 유전자 LV-MS1-Fc가 작동 가능하도록 연결시켜 재조합 발현 벡터를 확보하였다. 본 벡터로 형질 전환될 수 있는 숙주세포로는 포유류 세포인 것이 바람직하며, 포유류 세포인 Chinese Hamster Ovary로부터 유래된 ExpiCHO-S 세포에 pcDNA3.4 TOPO 벡터를 트랜스펙션시켜 높은 단백질 발현율을 가진 단백질을 제공한다. 상기 세포주는 LV-MS1-Fc (수탁번호: KCTC 14342BP)이다.In the present invention, the recombinant expression vector means that a foreign gene can be introduced to express a recombinant spike gene consisting of the nucleotide sequence shown in SEQ ID NO: 1 and can operate protein synthesis. It can be a plasmid or a potential genomic insertion. A variety of expression vectors are commercially available that effectively induce the expression of a foreign gene in a particular host cell. In the present invention, pcDNA3.4 TOPO vector was used. The recombinant spike gene LV-MS1-Fc of the present invention was operatively linked to the promoter region of the expression vector to obtain a recombinant expression vector. The host cell that can be transformed with this vector is preferably a mammalian cell, and the pcDNA3.4 TOPO vector was transfected into ExpiCHO-S cells derived from the mammalian Chinese Hamster Ovary to produce a protein with a high protein expression rate. to provide. The cell line is LV-MS1-Fc (Accession No.: KCTC 14342BP).
다음으로, 재조합 세포주 Chinese hamster ovary cell LV-MS1-Fc (이하 재조합 세포주) 배양 방법과 배양 중 생산되는 스파이크 단백질 LV-MS1-Fc (이하 재조합 항원) 발현에 대해 기술한다.Next, a method for culturing the recombinant cell line Chinese hamster ovary cell LV-MS1-Fc (recombinant cell line) and the expression of the spike protein LV-MS1-Fc (recombinant antigen) produced during the culture will be described.
또한 본 발명은 상기 세포주에 의해 생산된 중동호흡기증후군 코로나 바이러스의 재조합 스파이크 단백질 LV-MS1-Fc을 제공한다. The present invention also provides a recombinant spike protein LV-MS1-Fc of Middle East Respiratory Syndrome coronavirus produced by the cell line.
상기 재조합 스파이크 단백질 LV-MS1-Fc은 서열번호 5로 표시되는 아미노산 서열을 가지는 중동호흡기증후군 코로나 바이러스의 재조합 스파이크 단백질 또는 이와 기능적으로 동등한 물질을 포함한다. 상기 "기능적 동등한 물질"이란 아미노산의 치환, 결손과 부가의 결과로 상기 서열번호 5로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 5로 표시되는 아미노산 서열을 갖는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. 또한, 인간 IgG4 Fc 단백질은 S1Sh2 항원과 아미노산 링커 (linker)를 통해 펩타이드 결합을 통해 연결되어 있다. IgG4 Fc 단백질은 통상의 인간 IgG4 Fc 단백질의 아미노산 서열과 바람직하게는 80% 이상, 더 바람직하게는 90% 이상, 가장 바람직하게는 95 % 이상 동일한 서열로 이루어진다. 최종적으로 IgG4 Fc (GeneBank accession No. AAB59394.1, immunoglobulin gamma-4 heavy chain, partial [Homo sapiens]) 도메인의 99~326까지의 아미노산 서열을 말한다. The recombinant spike protein LV-MS1-Fc includes a recombinant spike protein of Middle East Respiratory Syndrome coronavirus having an amino acid sequence represented by SEQ ID NO: 5 or a material functionally equivalent thereto. The "functionally equivalent substance" means at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably the amino acid sequence represented by SEQ ID NO: 5 as a result of amino acid substitution, deletion and addition. is 95% or more of sequence homology, and refers to a protein that exhibits substantially the same physiological activity as the protein having the amino acid sequence shown in SEQ ID NO: 5. In addition, the human IgG4 Fc protein is linked to the S1Sh2 antigen through a peptide bond through an amino acid linker. The IgG4 Fc protein consists of a sequence that is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more identical to the amino acid sequence of a normal human IgG4 Fc protein. Finally, it refers to the amino acid sequence from 99 to 326 of the IgG4 Fc (GeneBank accession No. AAB59394.1, immunoglobulin gamma-4 heavy chain, partial [Homo sapiens]) domain.
본 발명에 있어서, 상기 재조합 스파이크 단백질 LV-MS1-Fc는 통상의 단백질 분리 방법을 이용하여 분리할 수 있다. 예를 들어, 재조합 스파이크 단백질 LV-MS1-Fc는 이에 제한된 것은 아니지만, 원심분리, 여과, 침전을 포함하는 다양한 방법에 따라 다른 배양물로부터 분리될 수 있다. 재조합 스파이크 단백질 LV-MS1-Fc는 다양한 염의 분별 용해도에 따라 다른 배양물과 분리 침전될 수 있다. 특정 단백질의 침전은 배양액에서 분리해 내고자 하는 단백질이 최대로 침전되는 농도 또는 다른 단백질이 침전되고 분리해 내고자 하는 단백질이 최대로 용해되어 있는 조건을 만들기 위해 가장 최적의 화학물질과 사용되는 화학물질의 최적 농도에 따라 결정된다. 사용되는 화학물의 종류는 암모늄 설페이트 (ammonium sulfate), 등전하 침전 (isoelectric precipitation)을 위한 산, 염기 첨가, 에탄올, 폴리에틸렌 글리콜 (polyethylene glycol), 다가 전하 이온 등이 사용될 수 있다. 예를 들어 암모늄 설페이트를 사용할 수 있다.In the present invention, the recombinant spike protein LV-MS1-Fc can be isolated using a conventional protein isolation method. For example, the recombinant spike protein LV-MS1-Fc can be isolated from other cultures according to a variety of methods including, but not limited to, centrifugation, filtration, and precipitation. Recombinant spike protein LV-MS1-Fc can be separated and precipitated from other cultures according to the fractional solubility of various salts. The precipitation of a specific protein is the concentration of the protein to be separated from the culture medium, or the most optimal chemical and the chemical used to create a condition in which the protein to be separated is maximally dissolved or other proteins are precipitated. It depends on the optimum concentration. The type of chemical used may include ammonium sulfate, acid for isoelectric precipitation, addition of a base, ethanol, polyethylene glycol, polyvalently charged ions, and the like. For example, ammonium sulfate can be used.
재조합 세포주 배양액을 harvest 한 후 원심분리하여 정제 (purification)을 진행한다. 정제는 원심분리나 정밀 여과 (micro filtration) 방법을 사용할 수 있다. 원심분리 조건은 10,000g, 10분, 4℃ 조건에서 실행하여 상등액 (supernatant)을 다음 정제 과정에 사용할 수 있다. 정밀 여과 방법의 경우 1.0 ㎛ 에서 0.2 ㎛ 사이의 기공 크기 (pore size)를 가지는 필터 (filter)를 사용할 수 있다. 바람직하게는 0.2 ㎛ 기공 크기를 가지는 필터를 사용할 수 있다. 여과 (filtration) 방법은 전량여과 방식 (dead end filtration)이나 십자흐름여과 방식 (cross flow filtration) 방법을 사용할 수 있으며 두 방법 모두 적용 가능하다. 원심분리 상층액 또는 여과액 (permeate)은 침전법을 통하여 다른 단백질 등과 분리할 수 있다. 사용되는 암모늄 설페이트 농도는 30~90% 일 수 있다. 바람직하게는 40~80% 일 수 있다. 더 바람직하게는 50~70% 일 수 있다. 가장 바람직하게는 70% 일 수 있다. 암모늄 설페이트 침전은 상등액과 침전물이 충분히 분리될 때까지 4℃에서 1~8시간, 바람직하게는 2~7시간, 더 바람직하게는 3~6시간, 더 바람직하게는 4~5시간 동안 방치할 수 있다. 가장 바람직하게는 5시간 방치할 수 있다. 침전된 재조합 항원이 포함된 침전물을 분리하기 위해 원심분리 (4,500g, 30분, 4℃)하여 상등액을 버리고 침전물을 5 mL, 20 mM sodium phosphate buffer (pH 7.4)로 재부유한다. 그 후 4℃에서 NMWCO 20 kDa 기공 크기 (pore size) 투석백에 넣어 0.15 M NaCl을 포함하는 20 mM 인산 나트륨 버퍼 (sodium phosphate buffer)에 투석할 수 있다. 투석은 3~4 시간동안 마그네틱 바를 이용하여 교반 (stirring) 한다. 총 1L buffer를 사용하여 투석할 수 있으며, 투석한 이후 다음 chromatography 정제 공정을 위해 크로마토그래피 (친화성, 이온 교환, 크기별 배제, 소수성)나 한외 여과 (ultrafiltration) 방법을 통해 추출을 포함하여 공지된 방법을 통해 정제 가능하다.After harvesting the recombinant cell line culture, purification is performed by centrifugation. Purification may be performed by centrifugation or micro filtration. Centrifugation conditions were performed at 10,000 g, 10 minutes, and 4° C. so that the supernatant could be used for the next purification process. In the case of the microfiltration method, a filter having a pore size between 1.0 μm and 0.2 μm may be used. Preferably, a filter having a pore size of 0.2 μm may be used. As the filtration method, a dead end filtration method or a cross flow filtration method can be used, and both methods are applicable. Centrifugation supernatant or filtrate (permeate) can be separated from other proteins through precipitation. The ammonium sulfate concentration used may be 30-90%. Preferably, it may be 40 to 80%. More preferably, it may be 50 to 70%. Most preferably, it may be 70%. Ammonium sulfate precipitation can be left at 4° C. for 1 to 8 hours, preferably 2 to 7 hours, more preferably 3 to 6 hours, more preferably 4 to 5 hours until the supernatant and the precipitate are sufficiently separated. have. Most preferably, it can be left for 5 hours. Centrifuge (4,500g, 30 minutes, 4℃) to separate the precipitate containing the precipitated recombinant antigen, discard the supernatant, and resuspend the precipitate with 5 mL of 20 mM sodium phosphate buffer (pH 7.4). After that, it can be dialyzed against 20 mM sodium phosphate buffer containing 0.15 M NaCl in NMWCO 20 kDa pore size dialysis bag at 4°C. Dialysis is stirred using a magnetic bar for 3 to 4 hours. Dialysis can be performed using a total of 1L buffer, and after dialysis, for the next chromatography purification process, known methods including extraction through chromatography (affinity, ion exchange, size exclusion, hydrophobicity) or ultrafiltration method It can be purified through
본 발명은 상기 재조합 발현 벡터를 세포에 형질전환시키는 단계; 상기 세포 또는 이의 배양물로부터 재조합 단백질을 회수하는 단계; 및 상기 재조합 단백질을 정제하는 단계;를 포함하는, 재조합 단백질의 제조방법을 제공한다.The present invention comprises the steps of transforming the recombinant expression vector into a cell; recovering the recombinant protein from the cell or culture thereof; and purifying the recombinant protein; provides a method for producing a recombinant protein, including.
본 발명의 방법은 상술한 재조합 발현 벡터 및 재조합 단백질을 포함하기 때문에, 상술한 본 발명의 벡터 및 단백질과 중복된 내용은 중복된 내용의 기재에 의한 본 명세서의 과도한 복잡성을 피하기위해 그 기재를 생략한다.Since the method of the present invention includes the above-described recombinant expression vector and recombinant protein, the description of the content overlapping with the vector and protein of the present invention is omitted in order to avoid excessive complexity of the present specification due to the description of the overlapped content. do.
본 발명은 재조합 단백질을 유효성분으로 포함하는 중동호흡기증후군 코로나바이러스의 예방 또는 치료용 백신 조성물을 제공한다.The present invention provides a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus comprising a recombinant protein as an active ingredient.
또한, 상기 백신은 불활화 백신일 수 있다.In addition, the vaccine may be an inactivated vaccine.
불활화 백신 조성물은 정제된 중동호흡기증후군 바이러스의 spike 단백질 중 단백질과 인간 IgG Fc 단백질로 구성된 퓨전 단백질과 적절한 면역 활성물일 수 있다. 상기 조성물을 포함하는 백신은 당업계에 알려져 있는 방법에 의해 제조될 수 있다. 예를 들어, 정제된 항원을 수득한 후 이들을 포르말린, 베타프로프리오락톤 (BPL), 이성분 에틸렌이민 (BEI) 또는 감마선으로 처리하거나, 당업자에게 공지된 기타 방법에 의해 비활성화 시킨다. 이어서 비활성화된 바이러스를 제약상 허용 가능한 캐리어 (예컨대 염수 용액) 및 임의의 보조제와 함께 혼합한다. 바람직하게는 최종농도 0.1% 포르말린에서 불활화한 것일 수 있다. The inactivated vaccine composition may be a fusion protein consisting of a protein among the spike proteins of the purified Middle East Respiratory Syndrome virus and a human IgG Fc protein and an appropriate immune activation agent. A vaccine comprising the composition may be prepared by a method known in the art. For example, after obtaining purified antigens, they are treated with formalin, betapropriolactone (BPL), binary ethylenimine (BEI) or gamma rays, or inactivated by other methods known to those skilled in the art. The inactivated virus is then mixed with a pharmaceutically acceptable carrier (eg saline solution) and optional adjuvants. Preferably, it may be inactivated at a final concentration of 0.1% formalin.
또한, 상기 백신은 면역증강물질 또는 아쥬반트를 더 포함할 수 있다.In addition, the vaccine may further include an immune enhancing material or an adjuvant.
면역강화제 또는 아쥬반트는 면역반응의 향상 및 접종 후 흡수 속도를 촉진하는 화합물 또는 혼합물을 칭하는 것으로 임의의 흡수-촉진제를 포함하며, 이에 한정되는 것은 아니다. 예를 들어 수산화알루미늄, 광유와 같은 오일 또는 백신에 첨가되거나 이러한 추가의 성분에 의해 각각의 유도 후 신체에 의해 발생되는 보조 분자를 포함할 수 있다. 상기 보조 분자는 인터페론, 인터류킨, 성장인자 등이 있다.Immunopotentiator or adjuvant refers to a compound or mixture that enhances the immune response and promotes the rate of absorption after inoculation, including, but not limited to, any absorption-promoting agent. For example, it may contain auxiliary molecules added to vaccines or oils such as aluminum hydroxide, mineral oil or generated by the body after each induction by these additional ingredients. The auxiliary molecule includes interferon, interleukin, growth factor, and the like.
본 발명의 백신 조성물은 사람에서 면역학적 반응을 유도하는 적어도 하나의 면역학적으로 활성인 성분을 함유하는 약학적 조성물을 의미한다. 백신의 면역학적으로 활성인 성분은 공지된 LV-MS1-Fc 재조합 단백질이다. 또한, 백신의 효능 증대를 위해 하나 이상의 추가적인 항원이 포함될 수 있다. 또한, 동물에서 상기 합성 과정의 유도에 의해 (폴리뉴클레오타이드 백신화) 제조될 수 있다. 백신은 상기 기술된 요소의 하나 또는 동시에 하나 이상을 포함할 수 있다.The vaccine composition of the present invention refers to a pharmaceutical composition containing at least one immunologically active ingredient that induces an immunological response in humans. The immunologically active component of the vaccine is the known LV-MS1-Fc recombinant protein. In addition, one or more additional antigens may be included to enhance the efficacy of the vaccine. It can also be prepared (polynucleotide vaccination) by induction of the above synthetic process in an animal. A vaccine may comprise one or more than one of the elements described above at the same time.
상기 백신 조성물은 당업계에 알려진 임의의 형태, 예를 들면, 액제 및 주사제의 형태 또는 현탁액에 적합한 고체 형태일 수 있으나, 이에 한정되는 것은 아니다. 이러한 제제는 또한 리포좀이나 가용 유리 내로 유화 또는 캡슐화되거나 에어로졸이나 스프레이 형태로도 제조될 수 있다. 이들은 경피 (transdermal) 팻치에 함유시킬 수도 있다. 액체 또는 주사제의 경우, 필요시 프로필렌 글리콜 및 용혈 현상을 방지하는데 충분한 양 (예: 약 1%)의 염화나트륨을 함유할 수 있다.The vaccine composition may be in any form known in the art, for example, in the form of solutions and injections, or in solid form suitable for suspension, but is not limited thereto. Such formulations may also be emulsified or encapsulated in liposomes or soluble glass, or may be prepared in the form of an aerosol or spray. They may also be incorporated into transdermal patches. Liquids or injectables may contain propylene glycol if necessary and sodium chloride in an amount sufficient to prevent hemolysis (eg, about 1%).
본 발명의 백신 조성물은 추가로 약학적으로 허용 가능한 담체 또는 희석제를 포함할 수 있다. 상기에서 "약학적으로 허용 가능한" 이란 생리학적으로 허용되고 돼지에게 투여될 때, 활성성분의 작용을 저해하지 않으며 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 비독성의 조성물을 말한다. The vaccine composition of the present invention may further include a pharmaceutically acceptable carrier or diluent. In the above, "pharmaceutically acceptable" means a non-toxic composition that is physiologically acceptable and does not inhibit the action of the active ingredient when administered to pigs and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions. say
백신에 적합한 담체는 기술분야의 당업자에게 공지되어 있으며, 단백질, 당 등을 포함하지만, 이에 한정되는 것은 아니다. 상기의 담체는 수용액, 또는 비-수용액, 현탁액 또는 에멀젼일 수 있다. 면역원성을 증가시키기 위한 면역보조제로서 정형 또는 비정형 유기 또는 무기 고분자등이 사용될 수 있다. 면역보조제는 일반적으로 항원에 대한 화학적 물리적 결합을 통해 면역반응을 촉진시키는 역할을 하는 것으로 알려져 있다. 예를 들어, 면역보조제로서는 비정형 알루미늄 겔, 오일 에멀젼, 또는 이중 오일 에멀젼 그리고 이뮤노졸 등이 사용될 수 있다. 또한 면역반응의 촉진을 위해 다양한 식물 유래 사포닌, 레바미솔, CpG 다이뉴클레오티드, RNA, DNA, LPS, 다양한 종류의 싸이토카인 등이 사용될 수 있다. 위와 같은 면역 조성물은 다양한 보조제와 면역반응 촉진 첨가물의 조합에 의해 최적의 면역반응 유도를 위한 조성으로 사용될 수 있다. 또한 백신에 추가될 있는 조성물로는 안정제, 불활화제, 항생제, 보존제, 등이 사용될 수 있다. 백신의 투여 경로에 따라 백신 항원은 증류수, 완충용액 등과도 혼합하여 사용될 수 있다.Suitable carriers for vaccines are known to those skilled in the art and include, but are not limited to, proteins, sugars, and the like. Such carriers may be aqueous or non-aqueous solutions, suspensions or emulsions. As an adjuvant for increasing immunogenicity, a regular or atypical organic or inorganic polymer may be used. Adjuvants are generally known to promote immune responses through chemical and physical binding to antigens. For example, as an adjuvant, an atypical aluminum gel, an oil emulsion, or a double oil emulsion and an immunosol, etc. may be used. In addition, various plant-derived saponins, levamisole, CpG dinucleotides, RNA, DNA, LPS, various types of cytokines, etc. may be used to promote the immune response. The above immune composition can be used as a composition for inducing an optimal immune response by a combination of various adjuvants and immune response promoting additives. In addition, as the composition to be added to the vaccine, a stabilizer, an inactivating agent, an antibiotic, a preservative, and the like may be used. Depending on the route of administration of the vaccine, the vaccine antigen may be mixed with distilled water or a buffer solution and used.
상기 백신 조성물은 경구, 근육, 피하, 등의 투여경로를 통해 투여될 수 있으나 이에 한정되지 않으며, 바람직하게는 근육 투여경로를 통해 투여될 수 있다.The vaccine composition may be administered through an oral, intramuscular, subcutaneous, etc. administration route, but is not limited thereto, and may preferably be administered via an intramuscular route.
본 발명은 백신 조성물을 개체에 투여하는 단계를 포함하는 중동호흡기증후군 코로나바이러스 감염 예방 또는 치료방법을 제공한다.The present invention provides a method for preventing or treating Middle East Respiratory Syndrome coronavirus infection comprising administering a vaccine composition to an individual.
본 발명의 "개체"는 질병의 예방, 조절 또는 치료방법을 필요로 하는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 생쥐 (mouse), 쥐 (rat), 개, 고양이, 말, 소 등의 포유류를 의미한다. 때에 따라 인간을 제외할 수 있다.The "subject" of the present invention means a subject in need of a method for preventing, controlling or treating a disease, and more specifically, a human or non-human primate, mouse, rat, dog, cat , which means mammals such as horses and cattle. In some cases, humans may be excluded.
본 발명의 "예방"은 본 발명에 따른 조성물의 투여에 의해 중동호흡기증후군 코로나바이러스 감염을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다."Prevention" of the present invention means any action that suppresses or delays the onset of Middle East Respiratory Syndrome coronavirus infection by administration of the composition according to the present invention.
본 발명의 "치료"는 본 발명에 따른 조성물의 투여에 의해 중동호흡기증후군 코로나바이러스 감염증에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다."Treatment" of the present invention means any action in which the symptoms for Middle East Respiratory Syndrome coronavirus infection are improved or changed advantageously by administration of the composition according to the present invention.
본 발명의 방법은 상술한 백신 조성물을 포함하기 때문에, 상술한 본 발명의 백신 조성물과 중복된 내용은 중복된 내용의 기재에 의한 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.Since the method of the present invention includes the above-described vaccine composition, descriptions of overlapping contents with the above-described vaccine composition of the present invention are omitted in order to avoid excessive complexity of the present specification due to description of overlapping contents.
본 발명은 상기 재조합 발현 벡터 또는 상기 재조합 단백질을 동물에 투여하는 단계를 포함하는 동물에서의 면역반응 평가방법을 제공한다.The present invention provides a method for evaluating an immune response in an animal, comprising administering the recombinant expression vector or the recombinant protein to the animal.
또한, 본 발명은 중동호흡기증후군 코로나바이러스의 재조합 스파이크 단백질 LV-MS1-Fc 의 소동물에서의 면역반응 평가에 대한 방법을 제공한다.In addition, the present invention provides a method for evaluating the immune response in small animals of the recombinant spike protein LV-MS1-Fc of Middle East Respiratory Syndrome coronavirus.
상기 동물은 바람직하게는 포유류이며, 본 발명에서는 마우스에서의 면역원성 평가를 포함한다. 상기 피면역원 동물의 근육 또는 피하 또는 경구, 비강 피부를 통해 일정 시간 간격으로 2회 이내 접종을 수행할 수 있으며 바람직하게는 근육 접종을 통해 2주 간격으로 2회 접종을 할 수 있다. 피면역 동물을 면역시킨 2주 후 꼬리 채혈 또는 심장채혈을 통해 마우스 혈청을 확보하며, ELISA 시스템을 통해 IgG 항체가 (antibody titer)를 측정하여 면역 유도에 대한 효과를 확인할 수 있으며 바람직하게는 바이러스 감염을 억제할 수 있는 바이러스 중화항체가 (virus neutralization antibody titer)를 측정하는 것으로 방어 항체가 (neutralizing antibody titer)를 측정할 수 있다.The animal is preferably a mammal, and the present invention includes the evaluation of immunogenicity in mice. Inoculation may be performed within two times at regular time intervals through the muscle or subcutaneous or oral or nasal skin of the immunogen animal, and preferably, two inoculations may be performed with an interval of two weeks through intramuscular inoculation. Two weeks after immunization of the immunized animal, mouse serum is obtained through tail blood or cardiac blood collection, and the effect on immune induction can be confirmed by measuring the IgG antibody titer through the ELISA system. Preferably, viral infection A protective antibody titer can be measured by measuring a virus neutralization antibody titer that can inhibit .
또한, 본 발명은 중동호흡기증후군 바이러스 중화항체가 측정을 위해 방법을 포함한다. Vesicular stomatitis virus luciferase (VSVluc)-MERSS pseudovirus를 제작하여 바이러스 중화항체에 의한 luciferase 활성을 측정하여 중화항체가를 간접적으로 측정하는 방법을 제공한다. 위 방법을 통해 본 발명에서 시험한 백신의 바이러스 중화항체가는 12배에서 512배 일 수 있다. 바람직하게는 128배에서 256배 일 수 있다. 더 바람직하게는 256배 이상의 중화항체가가 측정되어야 한다.The present invention also includes a method for measuring Middle East Respiratory Syndrome virus neutralizing antibody. We provide a method for indirectly measuring neutralizing antibody titer by measuring luciferase activity by virus neutralizing antibody by making Vesicular stomatitis virus luciferase (VSVluc)-MERSS pseudovirus. Through the above method, the virus neutralizing antibody titer of the vaccine tested in the present invention can be 12 to 512 times. Preferably, it may be 128 times to 256 times. More preferably, a neutralizing antibody titer of 256 fold or more should be measured.
본 발명은 포유류 중 백신의 효능 평가를 위한 방법을 제공할 수 있다. 시험 방법은 중동호흡기증후군 바이러스에 감수성이 있는 인간의 DPP4 바이러스 리셉터를 발현하는 유전자변형 동물 (DPP4 knock in)일 수 있다. 바람직하게는 인간 DPP4 발현 마우스일 수 있다. 정확히 설명하면 마우스는 일반적으로 MERS-CoV에 감수성을 가지고 있지 않아 감염이 불가능한 것으로 알려져 있다. 또한, Human DPP4를 발현하는 마우스 (hDPP4 knock-in mouse)는 MERS-CoV에 감수성을 가지며 감염이 가능하지만 사람의 MERS-CoV는 human DPP4 knock-in mouse에서 질병을 일으키지 않는 것으로 알려져 있다. 그러나 hDPP4 knock-in mouse에서 30회 이상 계대시킨 결과 만들어진 mouse-adapted MERS-CoV는 hDPP4 knock-in mouse에서 감염을 일으키고 사람에서와 유사한 질병을 일으키는 것이 확인되었다. 본 연구에서는 백신의 효능을 평가하기 위한 마우스모델로 hDPP4 knock-in mouse와 mouse-adapted MERS-CoV를 사용하였다.The present invention may provide methods for evaluating the efficacy of vaccines in mammals. The test method may be a transgenic animal (DPP4 knock in) expressing a human DPP4 virus receptor susceptible to the Middle East Respiratory Syndrome virus. Preferably, it may be a human DPP4 expressing mouse. To be precise, it is known that mice are generally not susceptible to MERS-CoV, so infection is impossible. In addition, it is known that mice expressing Human DPP4 (hDPP4 knock-in mice) are susceptible to MERS-CoV and can be infected, but human MERS-CoV does not cause disease in human DPP4 knock-in mice. However, it was confirmed that the mouse-adapted MERS-CoV produced as a result of passage more than 30 times in hDPP4 knock-in mice caused infection in hDPP4 knock-in mice and a disease similar to that in humans. In this study, hDPP4 knock-in mouse and mouse-adapted MERS-CoV were used as mouse models to evaluate vaccine efficacy.
본 발명은 백신 조성물을 동물에게 투여하는 단계를 포함하는 보호 면역반응 유도방법을 제공한다.The present invention provides a method for inducing a protective immune response comprising administering a vaccine composition to an animal.
구체적으로, 본 발명은 동물에서 중동호흡기증후군 바이러스에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 백신 조성물을 사람에게 백신의 면역 유효량만큼 투여하는 단계를 포함하는 보호 면역반응 유도방법을 제공한다. 상기 백신은 불활화 백신일 수 있다.Specifically, the present invention provides a method of inducing a protective immune response against Middle East Respiratory Syndrome virus in an animal, the method comprising administering the vaccine composition to a human in an immune effective amount of the vaccine. The vaccine may be an inactivated vaccine.
상기 동물은 인간 또는 비-인간인 영장류, 생쥐 (mouse), 쥐 (rat), 개, 고양이, 말, 소 등의 포유류일 수 있으며, 바람직하게는 인간일 수 있다.The animal may be a mammal such as a human or a non-human primate, a mouse, a rat, a dog, a cat, a horse, a cow, and preferably a human.
상기 면역반응은 백신 조성물 또는 이를 포함하는 백신에 포함된 항원 또는 항원들에 대해 특이적으로 지시된 항체, B 세포, 헬퍼 T 세포, 서프레서 T 세포, 세포독성 T 세포 및 감마-델타 T 세포의 생산 또는 활성화, 숙주에서 치료학적 또는 보호 면역학적 반응을 나타내어 새로운 감염에 대한 내성이 증진되거나 질환의 임상적 중증도가 감소되는 효과 중 하나 이상을 포함하지만 이에 제한되지는 않는다. 바람직하게는 보호 면역반응일 수 있다. The immune response is a vaccine composition or an antigen or antigens contained in a vaccine containing the same, specifically directed to antibodies, B cells, helper T cells, suppressor T cells, cytotoxic T cells and gamma-delta T cells production or activation, exhibiting a therapeutic or protective immunological response in the host, thereby enhancing resistance to new infections or reducing the clinical severity of the disease. Preferably, it may be a protective immune response.
상기 보호는 감염된 숙주가 통상적으로 나타내는 임상적 징후의 감소 또는 부재, 보다 신속한 회복 시간 또는 보다 낮아진 지속시간 또는 감염된 숙주의 조직 또는 체액 또는 배설물에서 보다 낮은 바이러스 역가에 의해 입증된다.Such protection is evidenced by a reduction or absence of clinical signs normally exhibited by an infected host, a faster recovery time or lower duration, or a lower viral titer in the tissues or body fluids or feces of the infected host.
상기 면역 유효량은 면역 반응을 유도하여 사람에서 중동호흡기증후군 바이러스 감염의 빈도수 또는 이의 중증도를 감소시킬 수 있는 백신의 양을 의미하며, 당업자라면 적절하게 선택할 수 있다. 예를 들면, 유효량은 상기 백신이 불활화 백신일 경우 정제된 항원 단백질의 양은 100 μg 내지 10 μg 일수 있다. 더 바람직하게는 50 μg에서 20 μg 일수 있으며 더 바람직하게는 20 μg 이상일 수 있다. The immune effective amount means an amount of vaccine capable of inducing an immune response to reduce the frequency or severity of Middle East Respiratory Syndrome virus infection in humans, and those skilled in the art can appropriately select it. For example, the effective amount may be 100 μg to 10 μg of the purified antigen protein when the vaccine is an inactivated vaccine. More preferably, it may be 50 μg to 20 μg, and more preferably, it may be 20 μg or more.
상기 면역 반응 유도법은 이것에 한정되는 것은 아니지만, 경구, 경피, 근육내, 복막내, 정맥내, 피하내 경로로 백신을 접종하는 것일 수 있다. 바람직하게는, 1차 및 2차 접종 시 백신을 근육내 접종하는 것일 수 있다. The method for inducing an immune response is not limited thereto, but may be vaccination by oral, transdermal, intramuscular, intraperitoneal, intravenous, or subcutaneous routes. Preferably, the vaccine may be intramuscularly inoculated during the first and second inoculations.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명하기로 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention in more detail, and the scope of the present invention is not limited to these examples.
실시예 1 : MERS-CoV 백신을 위한 spike protein의 활용Example 1: Use of spike protein for MERS-CoV vaccine
MERS-CoV는 약 30 kb 정도의 positive-sense 단일 가닥 RNA를 유전 정보로 가진다. 이는 11개의 ORFs으로 구성되어 있는데, 바이러스의 구조를 이루는 단백질인 S 유전자, E 유전자, M 유전자, N 유전자 등이 코딩 되어 있다. 여기서 S 유전자는 MERS-CoV의 구조를 이루는 단백질 중 스파이크 단백질을 코딩한다. 스파이크 단백질은 Host cell의 DPP4 (Dipeptidyl-peptidase 4)와 결합하여 바이러스와 host cell 간의 막 융합에 관여한다. 특히 S 유전자 내부의 RBD는 바이러스의 스파이크 단백질과 host cell의 결합에 중요한 역할을 한다. 또한, 상기 RBD는 독자적으로 병원성을 나타내지 않기 때문에 MERS-CoV의 치료 및 백신 개발의 중요한 타깃으로 평가된다. 본 발명에서 MERS-CoV의 추가 확산을 통제할 수 있는 예방 전략을 개발하기 위해 MERS-CoV 스파이크 단백질을 백신으로 활용하였다.MERS-CoV has about 30 kb of positive-sense single-stranded RNA as genetic information. It is composed of 11 ORFs, and S gene, E gene, M gene, N gene, etc., which are proteins constituting the structure of the virus, are coded. Here, the S gene encodes a spike protein among proteins constituting the structure of MERS-CoV. The spike protein binds to DPP4 (Dipeptidyl-peptidase 4) of the host cell and is involved in membrane fusion between the virus and the host cell. In particular, the RBD inside the S gene plays an important role in the binding of the viral spike protein to the host cell. In addition, since the RBD is not pathogenic on its own, it is evaluated as an important target for the treatment and vaccine development of MERS-CoV. In the present invention, MERS-CoV spike protein was used as a vaccine to develop a prevention strategy that can control the further spread of MERS-CoV.
실시예 2 : 포유류 세포에서 단백질 발현 가능한 재조합 발현 벡터 제작 및 확보Example 2: Preparation and securing of a recombinant expression vector capable of protein expression in mammalian cells
2015년 한국형 MERS 유전자 정보 (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015)를 바탕으로 스파이크 단백질의 서열을 결정하였다. 상기 유전자를 인간 IgG4의 Fc 도메인이 태그된 융합 단백질인 MERS LV-MS1-Fc 를 MERS 재조합 백신 항원으로 디자인하였다. 최종적으로 발현되는 재조합 백신 항원은 유전자의 3' 말단에 인간 Fc 도메인을 가지도록 설계하였다. 이를 포유류 세포에서 발현하기 위해 하기와 같은 실험을 수행하였다. 하기 실험과정을 거쳐 코돈-최적화된 MERS LV-MS1-Fc 유전자를 pcDNA3.4 TOPO 벡터에 클로닝하여 MERS 재조합 발현 벡터를 제작하여 MERS LV-MS1-Fc 라고 명명하였다.The sequence of the spike protein was determined based on the 2015 Korean MERS gene information (GeneBank accession No. KT029139, Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002 05 2015). MERS LV-MS1-Fc, a fusion protein in which the Fc domain of human IgG4 was tagged with the gene, was designed as a MERS recombinant vaccine antigen. The finally expressed recombinant vaccine antigen was designed to have a human Fc domain at the 3' end of the gene. In order to express it in mammalian cells, the following experiment was performed. Through the following experimental procedure, the codon-optimized MERS LV-MS1-Fc gene was cloned into pcDNA3.4 TOPO vector to construct a MERS recombinant expression vector and named MERS LV-MS1-Fc.
보다 구체적으로, pcDNA3.4 TOPO 벡터는 TA 클로닝을 통해 유전자를 삽입하는 방식으로 taq polymerase를 이용한 PCR amplification 과정을 통해 3' 말단에 'A' 가 첨가된 삽입 유전자를 확보하였다. 삽입 유전자 : 벡터의 비율은 3 : 1 기준으로 TOPO cloning reaction 진행하였다. E. coli 주 TOP10 strain을 일반 클로닝의 호스토로 사용하여 형질전환 (transformation)을 진행하였다. 이후 ampicillin marker를 이용하여 재조합 유전자가 삽입된 균주를 selection하였다. 선별한 균주는 plasmid purification으로 DNA를 확보하여 sequencing 분석을 통해 최종 유전자를 확인하였다. 이에 해당하는 벡터 지도는 도 1에 나타내었다. 클로닝을 통해 확보한 최종 유전자 모식도는 도 2에 나타내었다. 최종 유전자의 염기서열은 서열번호 6에 나타내었다.More specifically, the pcDNA3.4 TOPO vector was inserted into the gene through TA cloning, and the inserted gene with 'A' added to the 3' end was secured through PCR amplification using taq polymerase. The ratio of inserted gene: vector was 3 : 1, and TOPO cloning reaction was performed. E. coli strain TOP10 strain was used as a host for general cloning, and transformation was performed. Thereafter, the strain into which the recombinant gene was inserted was selected using the ampicillin marker. From the selected strain, DNA was obtained by plasmid purification, and the final gene was confirmed through sequencing analysis. A vector map corresponding to this is shown in FIG. 1 . The final gene schematic diagram obtained through cloning is shown in FIG. 2 . The base sequence of the final gene is shown in SEQ ID NO: 6.
확인한 MERS LV-MS1-Fc-TOPO 발현 유전자는 plasmid midi scale purification을 통해 충분한 유전자원을 확보하였다. 유전자원은 CHO-S cell에 ml 당 1 μg의 유전자를 형질주입 (transfection) 하는 데 사용하였다.For the confirmed MERS LV-MS1-Fc-TOPO expression gene, sufficient genetic resources were obtained through plasmid midi scale purification. Genetic resources were used for transfection (transfection) of 1 μg of genes per ml into CHO-S cells.
실시예 3 : CHO cell에서 MERS LV-MS1-Fc 를 발현하기 위한 transient transfectionExample 3: Transient transfection to express MERS LV-MS1-Fc in CHO cells
(1) 세포 배양 (1) cell culture
CHO-S (Chinese Hamster Ovary) cell로부터 유래된 ExpiCHO-S cell은 높은 단백질 발현효율을 가지는 CHO 세포주이다. ExpiCHO-S cell은 transient transfection을 위해 사용하였다. ExpiCHO-S cell은 ExpiCHO expression medium을 배양 및 형질주입 진행에 사용하였다. 125-mL 또는 250-mL Erlenmeyer flask는 주기적인 CHO-S cell 배양 flask로 사용하였다. Erlenmeyer flask에 CHO-S cell 0.5 x 106 cells/mL density로 seeding하여 suspension 형태로 8% CO2, 37℃의 orbital shaker platform 조건의 세포배양기에서 성장시켰다. 세포는 3~4 x 106 cells/mL density에 도달하였을 때 계대 배양하여 세포 성장을 유지하였다. ExpiCHO-S cell derived from CHO-S (Chinese Hamster Ovary) cell is a CHO cell line with high protein expression efficiency. ExpiCHO-S cells were used for transient transfection. ExpiCHO-S cells were used for culture and transfection in ExpiCHO expression medium. A 125-mL or 250-mL Erlenmeyer flask was used as a periodic CHO-S cell culture flask. CHO-S cells were seeded in Erlenmeyer flask at a density of 0.5 x 10 6 cells/mL and grown in a suspension form in 8% CO 2 , orbital shaker platform conditions at 37° C. in a cell incubator. Cell growth was maintained by subculture when the cells reached a density of 3 to 4 x 10 6 cells/mL.
(2) MERS LV-MS1-Fc 형질주입 (Transient Transfection) (2) MERS LV-MS1-Fc transfection (Transient Transfection)
CHO cell에서 MERS LV-MS1-Fc 항원을 발현하기 위해 다음과 같은 방법으로 250-ml Erlenmeyer flask scale로 형질주입을 진행하였다. 형질주입 하루 전날, pre-seeding을 위해 CHO-S cell을 trypan blue staining 후, hemocytometer에 분주하여 cell density를 측정하였다. CHO-S cell은 대략 17 시간의 doubling time을 가지며, 형질주입 진행에 3.0 x 108 cells/50 mL의 cell density를 확보하기 위해 3 x 106~4 x 106 cells/mL로 seeding하여 다음날 7 x 106~10 x 106 cells/mL의 cell density에 도달할 수 있도록 하였다. 형질주입을 진행하는 당일, trypan blue staining을 이용하여 동일한 방식으로 cell density 측정하였다. 그 후 6 x 106 cells/mL로 seeding하여 전체 3.0 x 108 cells/50mL의 cell density를 확보하고 형질주입을 진행하였다. 형질주입에 사용한 reagent는 ExpiFectamine CHO reagent를 사용하였다. ExpiFectamine CHO reagent 160 μL와 OptiPRO SFM 1.84 mL을 혼합하여 2 mL의 mixture A를 준비하였다. MERS LV-MS1-Fc-TOPO 발현 유전자 50 μg을 OptiPRO SFM과 혼합하여 2 mL의 mixture B를 준비하였다. 상기 방법을 통해 준비한 mixture A와 mixture B를 혼합하여 MERS LV-MS1-Fc 발현 유전자 형질주입 mixture를 만들어 실온에서 5 분간 배양하였다. 배양한 MERS LV-MS1-Fc 발현 유전자 형질주입 mixture를 미리 250-ml Erlenmeyer flask에 seeding해둔 CHO-S cell에 천천히 분주하며 잘 섞어 주었다. 형질주입을 마친 CHO-S 세포는 8% CO2, 37℃의 orbital shaker platform에 배양하였다. 형질주입 20 시간 후, ExpiCHO Feed 12 ml과 ExpiCHO Enhancer 300 μL를 첨가하여 8일차까지 배양하여 MERS LV-MS1-Fc 항원을 발현하였다.In order to express the MERS LV-MS1-Fc antigen in CHO cells, transfection was performed on a 250-ml Erlenmeyer flask scale as follows. The day before transfection, CHO-S cells were stained with trypan blue for pre-seeding, and then the cell density was measured by dispensing in a hemocytometer. CHO-S cells have a doubling time of approximately 17 hours, and seeded at 3 x 10 6 ~4 x 10 6 cells/mL to secure a cell density of 3.0 x 10 8 cells/50 mL during transfection and 7 the next day. It was made to reach a cell density of x 10 6 ~ 10 x 10 6 cells/mL. On the day of transfection, cell density was measured in the same manner using trypan blue staining. After that, seeding was performed at 6 x 10 6 cells/mL to secure a cell density of 3.0 x 10 8 cells/50mL in total, and transfection was performed. The reagent used for transfection was ExpiFectamine CHO reagent. 2 mL of mixture A was prepared by mixing 160 μL of ExpiFectamine CHO reagent and 1.84 mL of OptiPRO SFM. 50 μg of the MERS LV-MS1-Fc-TOPO expression gene was mixed with OptiPRO SFM to prepare 2 mL of mixture B. Mixture A and mixture B prepared through the above method were mixed to make a MERS LV-MS1-Fc expression gene transfection mixture and incubated at room temperature for 5 minutes. The cultured MERS LV-MS1-Fc expression gene transfection mixture was slowly aliquoted into CHO-S cells seeded in a 250-ml Erlenmeyer flask in advance and mixed well. After transfection, CHO-S cells were cultured on an orbital shaker platform at 8% CO 2 , 37°C. Twenty hours after transfection, 12 ml of ExpiCHO Feed and 300 μL of ExpiCHO Enhancer were added and cultured until day 8 to express MERS LV-MS1-Fc antigen.
LV-MS1-Fc 유전자를 형질 주입한 세포주를 Chinese hamster ovary cell LV- MS1-Fc 세포라 명칭하고, 한국생명공학연구원 생물자원센터에 국제기탁하여 수탁번호 KCTC14342BP를 2020년 10월 22일에 부여받았다. The cell line transfected with the LV-MS1-Fc gene was named Chinese hamster ovary cell LV-MS1-Fc cell, and it was deposited with the Center for Biological Resources at the Korea Research Institute of Bioscience and Biotechnology and was given accession number KCTC14342BP on October 22, 2020.
실시예 4 : LV-MS1-Fc 항원 발현 확인Example 4: Confirmation of LV-MS1-Fc antigen expression
(1) 발현된 LV-MS1-Fc 항원 확보 (1) Securing the expressed LV-MS1-Fc antigen
형질주입 8일 차에 배양세포를 1,500 rpm, 5분 원심분리하여 세포와 발현액을 분리하였다. 분리한 세포는 1 X DPBS 20 mL 세척 과정을 두 번 진행하였다. 그 후 1 X DPBS 5 mL과 protease inhibitor를 첨가하여 sonication으로 10 min ~ 30 sec on/off 파쇄하여 세포 용해액을 확보하였다. On the 8th day of transfection, the cultured cells were centrifuged at 1,500 rpm for 5 minutes to separate the cells and the expression solution. The separated cells were washed twice with 1 X DPBS 20 mL. After that, 5 mL of 1 X DPBS and protease inhibitor were added, followed by 10 min ~ 30 sec on/off disruption by sonication to obtain a cell lysate.
(2) 발현된 MERS LV-MS1-Fc 항원 확인 (2) Identification of the expressed MERS LV-MS1-Fc antigen
상기에서 확보한 발현액과 세포 용해액에서 MERS LV-MS1-Fc 항원의 발현을 확인하기 위해, 하기와 같은 실험을 수행하였다.In order to confirm the expression of the MERS LV-MS1-Fc antigen in the obtained expression solution and the cell lysate, the following experiment was performed.
BCA 단백질 분석을 이용하여 단백질 농도 측정 후, 발현액과 세포 용해액의 20 μg의 단백질을 10% SDS-PAGE를 통해 분리하였으며 니트로셀룰로즈 막으로 전기이동 (transfer)하였다. 상기 멤브레인은 MERS spike 단백질의 381-505 아미노산 잔기에 특이적으로 결합하는 α-MERS 스파이크 단백질 다클론성 항체 특이적 반응과 염소 항-인간 IgG-HRP (goat anti-human IgG-HRP) 항체를 이용해 단백질 발현 확인을 수행하였다. 단백질을 확인한 결과를 도 3에 나타내었다.After measuring the protein concentration using BCA protein analysis, 20 μg of protein from the expression solution and the cell lysate was separated through 10% SDS-PAGE and electrophoresed on a nitrocellulose membrane. The membrane was prepared using an α-MERS spike protein polyclonal antibody-specific reaction that specifically binds to amino acid residues 381-505 of the MERS spike protein and a goat anti-human IgG-HRP (goat anti-human IgG-HRP) antibody. Protein expression verification was performed. The results of confirming the protein are shown in FIG. 3 .
도 3에서 나타낸 바와 같이, CHO-S 세포 배양액과 용해액 모두에서 약 130-kDa 크기의 재조합 MERS LV-MS1-Fc 단백질 발현을 확인할 수 있었다. 제작한 MERS LV-MS1-Fc 발현 유전자는 signal peptide를 포함하도록 제작되었다. 또한, 상기 유전자는 CHO-S 세포에서 단백질이 발현된 후 분비되도록 유도되어 MERS LV-MS1-Fc 항원이 발현액에도 존재하는 것을 확인할 수 있었다.As shown in FIG. 3 , expression of recombinant MERS LV-MS1-Fc protein with a size of about 130-kDa was confirmed in both the CHO-S cell culture medium and the lysate. The prepared MERS LV-MS1-Fc expression gene was prepared to include a signal peptide. In addition, the gene was induced to be secreted after the protein was expressed in CHO-S cells, and it was confirmed that the MERS LV-MS1-Fc antigen was also present in the expression solution.
실시예 5 : MERS LV-MS1-Fc 항원 정제Example 5: MERS LV-MS1-Fc antigen purification
상기 실시예 3을 통해 확보한 MERS LV-MS1-Fc 항원 발현액을 하기와 같이 affinity chromatography를 이용하여 단백질 정제를 수행하였다.Protein purification was performed on the MERS LV-MS1-Fc antigen expression solution obtained in Example 3 using affinity chromatography as follows.
보다 구체적으로, affinity chromatography를 진행하기에 앞서 90% ammonium sulfate를 첨가하는 전처리 과정을 거쳐 MERS LV-MS1-Fc 항원 단백질 침전을 진행하였다. 662 g/L의 ammonium sulfate를 발현액에 첨가하여 MERS LV-MS1-Fc 항원 단백질을 침전하였다. 침전시킨 단백질은 13,000 rpm, 30 min, 4℃로 pellet을 확보하여 20 mM sodium phosphate buffer (pH 7.4)로 용해시켰다. 용해한 단백질은 cellulose membrane에 담아 20mM sodium phosphate buffer (pH 7.4)에서 2시간 Dialysis 2회를 진행하였다. 최종적으로 13,000 rpm, 30 min, 4℃ 원심분리 후 0.45 μm filtration을 통해 정제 단백질을 확보하였다. 정제에 사용한 컬럼은 HiTrapTM protein A HP를 이용하였다. Elution 시 0.1 M citric acid (pH 3.0)와 1 M Tris-H Cl (pH 9.0)로 중화를 진행하였다. 수득한 단백질은 BCA 단백질 분석을 이용하여 단백질 농도를 측정하였다. 10% SDS-PAGE를 통해 단백질을 분리시킨 후, 쿠마시블루 염색을 통한 단백질 확인하였다. 또한, 니트로셀룰로즈 막으로 전기이동한 멤브레인을 통해 웨스턴 블롯을 수행하였다. 그 결과를 도 3에 나타내었다. affinity chromatography를 통해 대략 130 kDa의 MERS LV-MS1-Fc 항원이 확보된 것을 확인하였다.More specifically, MERS LV-MS1-Fc antigen protein precipitation was performed through a pretreatment process of adding 90% ammonium sulfate prior to affinity chromatography. MERS LV-MS1-Fc antigen protein was precipitated by adding 662 g/L of ammonium sulfate to the expression solution. The precipitated protein was dissolved in 20 mM sodium phosphate buffer (pH 7.4) to obtain a pellet at 13,000 rpm, 30 min, 4°C. The dissolved protein was placed in a cellulose membrane and dialysis was performed twice for 2 hours in 20 mM sodium phosphate buffer (pH 7.4). Finally, purified protein was obtained through 0.45 μm filtration after centrifugation at 13,000 rpm, 30 min, and 4°C. The column used for purification was HiTrap™ protein A HP. During elution, neutralization was performed with 0.1 M citric acid (pH 3.0) and 1 M Tris-H Cl (pH 9.0). The obtained protein was measured for protein concentration using BCA protein analysis. After separating the protein through 10% SDS-PAGE, the protein was confirmed through Coomassie blue staining. In addition, Western blotting was performed through the membrane electrophoresed with a nitrocellulose membrane. The results are shown in FIG. 3 . It was confirmed that the MERS LV-MS1-Fc antigen of approximately 130 kDa was secured through affinity chromatography.
실시예 6 : MERS 항원의 mouse 면역원성 확인Example 6: Confirmation of mouse immunogenicity of MERS antigen
상기의 방법으로 확보한 MERS LV-MS1-Fc 항원 단백질을 5주령, 암컷인 BALB/c 마우스에 다음과 같이 면역하였다. 보다 구체적으로, 그룹으로는 PBS 그룹 (음성대조군), LV-MS1-Fc 0.5 μg, 2 μg, 5 μg의 총 4 그룹으로 나누어 각 5 마리씩 면역화 진행하였다. 각 그룹별로 100 μL/마리의 양으로 2주 간격, 2회 피하 접종을 진행하였다. 최초의 접종일로부터 면역화 2 주차와 4 주차의 채혈을 통해 항혈청을 수득하였다. 수득한 마우스 항혈청과 MERS spike protein의 항체 반응을 확인하기 위하여, 다음과 같은 결합 반응을 진행하였다. MERS LV-MS1-Fc에 의한 MERS spike protein 항체가를 측정하기 위해 상업적을 구입한 MERS Spike protein (Sino사)을 200 ng/100 μL씩 ELISA 측정용 96 well plate에 coating 하여 일반적인 ELISA 측정 방법에 따라 항체가를 측정하였다. 그 결과를 도 4에 나타내었다.The MERS LV-MS1-Fc antigen protein obtained by the above method was immunized with 5-week-old female BALB/c mice as follows. More specifically, as a group, the PBS group (negative control group), LV-MS1-Fc 0.5 μg, 2 μg, and 5 μg were divided into 4 groups, and immunization was carried out by 5 animals each. Inoculation was performed subcutaneously twice at an interval of 2 weeks at an amount of 100 μL/animal for each group. Antisera were obtained through blood sampling at the 2nd and 4th weeks of immunization from the day of the first inoculation. In order to confirm the antibody reaction of the obtained mouse antiserum and MERS spike protein, the following binding reaction was performed. To measure the antibody titer of MERS spike protein by MERS LV-MS1-Fc, 200 ng/100 μL of commercially purchased MERS Spike protein (Sino) was coated on a 96-well plate for ELISA measurement, followed by a general ELISA measurement method. Antibody titers were measured. The results are shown in FIG. 4 .
도 4에 나타낸 바와 같이, LV-MS1-Fc 항원 단백질을 접종한 그룹의 MERS Spike protein IgG 항체가가 대조군과 유의한 차이를 나타내는 것을 확인하였다. 또한 2 μg의 항원 농도에서보다 5 μg의 항원농도에서 항체가가 더욱 증가하는 것을 확인하였다. 이러한 결과를 통해서 MERS LV-MS1-Fc 항원 단백질을 통해 MERS Spike protein에 대한 마우스 IgG 항체 형성이 효과적인 것을 확인하였다.As shown in FIG. 4 , it was confirmed that the MERS Spike protein IgG antibody titer of the group inoculated with the LV-MS1-Fc antigen protein showed a significant difference from the control group. In addition, it was confirmed that the antibody titer was further increased at the antigen concentration of 5 μg than at the antigen concentration of 2 μg. Through these results, it was confirmed that the mouse IgG antibody formation against the MERS Spike protein was effective through the MERS LV-MS1-Fc antigen protein.
실시예 7 : 중동호흡기증후군 코로나바이러스 스파이크 단백질에 대한 중화항체가 평가 Example 7: Evaluation of neutralizing antibodies against Middle East Respiratory Syndrome coronavirus spike protein
상기의 실시예 5를 통해 확보한 MERS LV-MS1-Fc 항원에 대한 중화항체가 및 챌린지 시험을 위해 대부분의 마우스는 일반적으로 MERS-CoV에 감수성을 가지고 있지 않아 감염이 불가능하다. Human DPP4를 발현하는 마우스 (hDPP4 knock-in mouse)는 MERS-CoV에 감수성을 가지며 감염이 가능하다. 하지만, 사람의 MERS-CoV는 human DPP4 knock-in mouse에서 질병을 일으키지 않는다. 도 6에서와 같이 hDPP4 knock-in mouse에서 30회 이상 계대시킨 결과 만들어진 mouse-adapted MERS-CoV는 hDPP4 knock-in mouse에서 감염을 일으키고 사람에서와 유사한 질병을 일으킨다. 그러므로 본 연구에서는 백신의 효능을 평가하기 위한 마우스모델로 hDPP4 knock-in mouse와 mouse-adapted MERS-CoV를 사용하였다. 위의 마우스 모델 및 바이러스는 University of Iowa에서 개발되었으며, 서울대학교로부터 마우스와 바이러스를 분양받았다. 백신 접종 4주 후, 심장채혈을 이용해 혈액을 채취하고 2,000g에서 10분간 원심분리하여 혈청을 분리하였다. 분리된 혈청은 56℃에서 30분동안 incubation하였다. 중화항체가를 측정하기 위하여 96 well microplate에 Huh7 세포를 준비시켰다. 그 후 혈청을 1:10으로 희석하고, 2배 단계 희석하였다. 동량의 VSVluc-MERS를 넣은 후, 37℃에서 1시간 동안 배양하였다. 다음으로 바이러스와 혈청 mixture를 Huh7에 접종하고 1시간 동안 배양하였다. 바이러스와 혈청 mixture를 제거하고 새로운 배지를 넣어 준 뒤, 37℃에서 18시간 동안 배양하였다. 배지를 제거한 뒤, 1X luciferase lysis buffer를 각 well 당 50 μL씩 넣어 -80℃에서 보관하였다. luciferase substrate를 이용하여 luciferase activity를 측정하였으며, 도 5에 나타낸 것과 같이 높은 중화항체가 결과를 확인하였다. For the neutralizing antibody against the MERS LV-MS1-Fc antigen obtained in Example 5 and the challenge test, most mice generally do not have a sensitivity to MERS-CoV, so infection is impossible. Mice expressing Human DPP4 (hDPP4 knock-in mice) are susceptible to MERS-CoV and are susceptible to infection. However, human MERS-CoV does not cause disease in human DPP4 knock-in mice. As shown in FIG. 6 , the mouse-adapted MERS-CoV produced as a result of passage more than 30 times in hDPP4 knock-in mice causes infection in hDPP4 knock-in mice and a disease similar to that in humans. Therefore, in this study, hDPP4 knock-in mouse and mouse-adapted MERS-CoV were used as mouse models to evaluate vaccine efficacy. The above mouse model and virus were developed at the University of Iowa, and mice and viruses were acquired from Seoul National University. Four weeks after vaccination, blood was collected using cardiac bleed, and serum was separated by centrifugation at 2,000 g for 10 minutes. The separated serum was incubated at 56°C for 30 minutes. To measure the neutralizing antibody titer, Huh7 cells were prepared in a 96-well microplate. Thereafter, the serum was diluted 1:10 and serially diluted two-fold. After the same amount of VSVluc-MERS was added, it was incubated at 37°C for 1 hour. Next, the virus and serum mixture was inoculated into Huh7 and incubated for 1 hour. After removing the virus and serum mixture, a fresh medium was added, and incubated at 37°C for 18 hours. After removing the medium, 50 μL of 1X luciferase lysis buffer was added to each well and stored at -80°C. The luciferase activity was measured using a luciferase substrate, and high neutralizing antibody results were confirmed as shown in FIG. 5 .
실시예 8 : 중동호흡기증후군 코로나바이러스 스파이크 단백질에 대한 공격 접종 시험 수행Example 8: Conducting an attack inoculation test against the Middle East Respiratory Syndrome coronavirus spike protein
시험 제조된 백신의 효능을 평가하기 위해, MERS-CoV의 감염 리셉터로 알려진 DPP4가 발현된 유전자변형 마우스에 백신을 접종하였다 (도 6). 백신 접종 이후 중화항체가 측정 및 병원성 바이러스를 이용한 공격 시험 (challenge test)을 통해 백신의 방어력을 평가하였다.To evaluate the efficacy of the tested vaccine, transgenic mice expressing DPP4, known as an infection receptor of MERS-CoV, were vaccinated ( FIG. 6 ). After vaccination, neutralizing antibodies were measured and the vaccine's defense was evaluated through a challenge test using a pathogenic virus.
Mouse-adapted MERS-CoV 배양은 충북대 BL3 실험실에서 수행하였다. VeroE6 세포를 T-75에 준비시킨 후, 세포가 Flask에 부착되면 106 PFU Mouse-adapted MERS-CoV를 2 mL media에 희석하여 접종하였다. 접종 1시간 후, 바이러스를 제거하고 새로운 media (10 mL)를 넣어주었다. 세포변성효과가 관찰될 때까지 37℃ 인큐베이터에서 배양하였다. 세포변성효과가 80~90% 정도 관찰되면 Freeze-Thawing에 의해 세포로부터 바이러스를 release하였다. 상층액은 10,000g에서 10분 동안 원심분리하여 세포 부유물을 제거하였다. 상층액은 1 mL씩 분주하여 -80℃ 초저온냉동고에 보관하였다. 바이러스 역가 (전북대 BL3 실험실에서 수행)측정을 위해 VeroE6 세포를 6-well plate에 준비시킨 후, 바이러스를 10배 단계 희석시켰다. 단계 희석한 바이러스를 200 μL씩 VeroE6 세포에 접종하였다. 접종 1시간 후, 바이러스를 제거하고 0.8% agarose를 함유한 배지를 넣어 3일 동안 배양하였다. 3일 후 생성된 plaque의 개수를 세어 바이러스 농도를 계산하였다.Mouse-adapted MERS-CoV culture was performed in the BL3 laboratory of Chungbuk National University. After preparing VeroE6 cells in T-75, when the cells were attached to the flask, 10 6 PFU Mouse-adapted MERS-CoV was diluted in 2 mL media and inoculated. One hour after inoculation, the virus was removed and new media (10 mL) was added. It was cultured in an incubator at 37° C. until a cytopathic effect was observed. When 80-90% of the cytopathic effect was observed, the virus was released from the cells by Freeze-Thawing. The supernatant was centrifuged at 10,000 g for 10 minutes to remove cell suspension. The supernatant was aliquoted by 1 mL and stored in a -80°C ultra-low temperature freezer. VeroE6 cells were prepared in a 6-well plate to measure the virus titer (performed in the BL3 laboratory of Chonbuk National University), and then the virus was diluted 10-fold. 200 μL of the serially diluted virus was inoculated into VeroE6 cells. One hour after inoculation, the virus was removed and a medium containing 0.8% agarose was added and cultured for 3 days. The virus concentration was calculated by counting the number of plaques generated after 3 days.
백신접종을 위해 2.5 μg의 항원 (PBS, LV-MS1-Fc)을 alum과 함께 2주 간격으로 2회 근육 접종하였다. 공격접종 1일 전 백신 접종된 마우스를 전북대학교 BL3 실험실로 이송하였다. 공격접종 (전북대 BL3 실험실에서 수행)을 수행하기 위해 - Isofluorane를 사용하여 마우스를 마취시킨 후, 백신 접종된 마우스에 104 pfu/50 μL 의 바이러스 부유액을 비강 접종하였다. 바이러스 접종 후 7일 동안, 마우스의 체중 및 임상증상 관찰하였다. 공격접종 7일 째, 마취 후 경추탈골로 안락사 유도하였다. 안락사된 마우스는 부검을 수행하여 폐를 적출하였다. 오른쪽 폐는 바이러스 분리를 위해 파쇄 후 1,000 g에서 10분간 원심분리하여 상층액만을 분리하였다. 상층액은 plaque assay를 통해 바이러스 역가 측정을 수행하였다. 왼쪽 폐는 병리조직학적 검사를 위해 10% 중성포르말린에 24시간 이상 고정시켰다. 그 후 충남대학교 수의과대학으로 이송하여 H&E 염색을 수행하였다.For vaccination, 2.5 μg of antigen (PBS, LV-MS1-Fc) was intramuscularly inoculated twice with alum at an interval of 2 weeks. The mice vaccinated 1 day before challenge inoculation were transferred to the BL3 laboratory of Chonbuk National University. To perform challenge inoculation (conducted at Chonbuk National University BL3 laboratory) - After anesthetizing the mice using Isofluorane, vaccinated mice were intranasally inoculated with 10 4 pfu/50 μL of the virus suspension. For 7 days after virus inoculation, the weight and clinical symptoms of mice were observed. On the 7th day after challenge inoculation, euthanasia was induced by cervical dislocation after anesthesia. Euthanized mice were subjected to autopsy and lungs were removed. After the right lung was disrupted for virus isolation, only the supernatant was separated by centrifugation at 1,000 g for 10 minutes. The supernatant was assayed for virus titer by plaque assay. The left lung was fixed in 10% neutral formalin for more than 24 hours for histopathological examination. After that, it was transferred to the College of Veterinary Medicine, Chungnam National University, and H&E staining was performed.
공격접종 결과, PBS를 접종한 마우스는 바이러스 공격접종 1일 후부터 점차 체중이 감소되기 시작하여 접종 전 체중의 25% 이상 감소를 보였다. 하지만 LV-MS1-Fc 백신을 접종한 마우스는 체중의 변화가 없었다. PBS를 접종한 4 마리의 마우스 중 공격접종 4일 후에 1마리가 폐사하였다. 이어서, 공격접종 6일 후에 2마리가 폐사하였다 (폐사율 75%). LV-MS1-Fc 백신을 접종한 마우스에서는 폐사가 관찰되지 않았다 (폐사율 0%). PBS를 접종한 마우스는 공격접종 1일 후부터 활동량이 급격히 줄고 음수량 및 사료섭취량이 현저히 줄었다. LV-MS1-Fc 백신을 접종한 마우스에서는 특이 임상증상이 관찰되지 않았다. 도 7에 나타낸 바와 같이, 공격접종 후 왼쪽 폐에서 바이러스 역가를 측정한 결과, PBS 접종군은 1X104.2 PFU/mL, LV-MS1-Fc 접종군은 1X102 PFU/mL로 나타났다. LV-MS1-Fc 접종군의 바이러스 검출량이 더 낮은 것을 확인하였다. 도 8에서와 같이 PBS를 접종한 마우스의 폐 조직에서 조직병리학적 증상은 염증세포 침윤, 부종, 삼출물 등이 관찰되었다. 그러나 LV-MS1-Fc 백신을 접종한 마우스의 폐에서는 특이 소견이 관찰되지 않았다.As a result of the challenge inoculation, the mice inoculated with PBS started to gradually lose weight from 1 day after the virus challenge inoculation, and showed a decrease of 25% or more of the body weight before inoculation. However, there was no change in body weight in mice vaccinated with LV-MS1-Fc. Of the 4 mice inoculated with PBS, one died 4 days after challenge inoculation. Then, 6 days after challenge inoculation, two animals died (mortality rate 75%). Mortality was not observed in mice vaccinated with LV-MS1-Fc (mortality rate 0%). In mice inoculated with PBS, activity decreased sharply from 1 day after challenge inoculation, and the amount of drinking water and feed intake significantly decreased. No specific clinical symptoms were observed in mice vaccinated with LV-MS1-Fc. As shown in FIG. 7 , as a result of measuring the virus titer in the left lung after challenge inoculation, the PBS inoculation group showed 1X10 4.2 PFU/mL, and the LV-MS1-Fc inoculation group showed 1X10 2 PFU/mL. It was confirmed that the amount of virus detected in the LV-MS1-Fc inoculated group was lower. As shown in FIG. 8, histopathological symptoms in the lung tissue of mice inoculated with PBS were inflammatory cell infiltration, edema, exudate, and the like. However, no specific findings were observed in the lungs of mice vaccinated with LV-MS1-Fc.
실시예 9 : 항원의 독성 및 안전성 평가Example 9: Antigen toxicity and safety evaluation
항원의 독성 및 안전성 평가를 위해 50 μL의 PBS에 20 μg의 LV-MS1-Fc 항원을 동량의 alum과 혼합한 후 C57BL/6 마우스의 대퇴 근육에 2주 간격으로 2회 접종한 후 4주간 체중 변화와 사료섭취량, 음수량을 측정하였다. 음성대조군은 동량의 PBS를 같은 방법으로 접종하였다. 각각의 시험 그룹당 마우스는 10마리로 수행하였다. 그 결과는 도 9에 나타내었다. 도 9에서와 같이 PBS 접종군과 LV-MS1-Fc 항원 접종군 사이에 체중 변화, 사료섭취량 및 음수량에서 큰 차이가 없음을 확인하였다.For antigen toxicity and safety evaluation, 20 μg of LV-MS1-Fc antigen in 50 μL of PBS was mixed with the same amount of alum, and then inoculated twice at 2-week intervals into the femoral muscle of C57BL/6 mice and body weight for 4 weeks Changes, feed intake, and drinking water were measured. The negative control group was inoculated with the same amount of PBS in the same way. Ten mice per each test group were run. The results are shown in FIG. 9 . As shown in FIG. 9, it was confirmed that there was no significant difference in body weight change, feed intake and drinking water between the PBS inoculation group and the LV-MS1-Fc antigen inoculation group.
이상에서 살펴본 바와 같이, 본 발명의 구체적인 실시예를 상세하게 설명되었으나, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, although specific embodiments of the present invention have been described in detail, those skilled in the art who understand the spirit of the present invention may add, change, delete, etc. other components within the scope of the same spirit, and other degenerate inventions However, other embodiments included within the scope of the present invention may be easily proposed. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention. should be interpreted as
[미생물기탁증][Certificate of deposit of microorganisms]
기탁기관명 : 한국생명공학연구원 생물자원센터 (KCTC)Name of depositary institution: Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC)
수탁번호 : KCTC 14342BPAccession number: KCTC 14342BP
수탁일자 : 20201022Deposit date: 20201022
Figure PCTKR2020018033-appb-I000001
Figure PCTKR2020018033-appb-I000001

Claims (12)

  1. 서열번호 1 또는 2의 염기서열로 표시되는 MERS-CoV 스파이크 단백질을 코딩하는 유전자 및 서열번호 3 또는 4의 염기서열로 표시되는 인간 IgG4의 Fc을 코딩하는 유전자가 융합된 핵산.A nucleic acid in which a gene encoding a MERS-CoV spike protein represented by the nucleotide sequence of SEQ ID NO: 1 or 2 and a gene encoding a human IgG4 Fc represented by the nucleotide sequence of SEQ ID NO: 3 or 4 are fused.
  2. 제1항의 핵산을 포함하는 재조합 발현 벡터.A recombinant expression vector comprising the nucleic acid of claim 1.
  3. 제2항의 재조합 발현 벡터에 의해 형질전환된 세포주.A cell line transformed with the recombinant expression vector of claim 2.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 세포주는 Chinese hamster ovary cell LV-MS1-Fc 세포 (KCTC 14342BP)인 것인, 세포주.The cell line is a Chinese hamster ovary cell LV-MS1-Fc cell (KCTC 14342BP), the cell line.
  5. 제3항의 세포주로부터 생산된 재조합 단백질.A recombinant protein produced from the cell line of claim 3 .
  6. 제2항의 재조합 발현 벡터를 세포에 형질전환시키는 단계;transforming the cells with the recombinant expression vector of claim 2;
    상기 세포 또는 이의 배양물로부터 재조합 단백질을 회수하는 단계; 및 recovering the recombinant protein from the cell or culture thereof; and
    상기 재조합 단백질을 정제하는 단계;를 포함하는, 재조합 단백질의 제조방법.Purifying the recombinant protein; comprising, a method for producing a recombinant protein.
  7. 제5항의 재조합단백질을 유효성분으로 포함하는, 중동호흡기증후군 코로나바이러스의 예방 또는 치료용 백신 조성물.A vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus, comprising the recombinant protein of claim 5 as an active ingredient.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 백신은 불활화 백신인 것을 특징으로 하는, 중동호흡기증후군 코로나바이러스의 예방 또는 치료용 백신 조성물.The vaccine is a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus, characterized in that it is an inactivated vaccine.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 백신은 면역증강물질 또는 아쥬반트 (adjuvant)를 더 포함하는 것인, 중동호흡기증후군 코로나바이러스의 예방 또는 치료용 백신 조성물.The vaccine is a vaccine composition for preventing or treating Middle East respiratory syndrome coronavirus, which further comprises an immune enhancing material or adjuvant.
  10. 제7항의 백신 조성물을 개체에 투여하는 단계를 포함하는, 중동호흡기증후군 코로나바이러스 감염 예방 또는 치료방법.A method for preventing or treating Middle East respiratory syndrome coronavirus infection, comprising administering the vaccine composition of claim 7 to an individual.
  11. 제2항의 재조합 발현 벡터 또는 제5항의 재조합 단백질을 동물에 투여하는 단계를 포함하는, 동물에서의 면역반응 평가방법.A method for evaluating an immune response in an animal, comprising administering the recombinant expression vector of claim 2 or the recombinant protein of claim 5 to the animal.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 방법은 동물의 혈청으로부터 IgG 항체가 (antibody titer)를 측정하여 면역 반응을 평가하는 것인, 동물에서의 면역반응 평가방법.The method is to evaluate the immune response by measuring the antibody titer (antibody titer) from the animal's serum, immune response evaluation method in animals.
PCT/KR2020/018033 2020-08-06 2020-12-10 Vaccine composition for preventing and treating middle east respiratory syndrome-coronavirus WO2022030702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200098651A KR102213402B1 (en) 2020-08-06 2020-08-06 Vaccine composition for preventing or treating of middle east respiratory syndrome coronavirus
KR10-2020-0098651 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030702A1 true WO2022030702A1 (en) 2022-02-10

Family

ID=74560124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018033 WO2022030702A1 (en) 2020-08-06 2020-12-10 Vaccine composition for preventing and treating middle east respiratory syndrome-coronavirus

Country Status (2)

Country Link
KR (1) KR102213402B1 (en)
WO (1) WO2022030702A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138160A1 (en) * 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
US20190328865A1 (en) * 2014-02-28 2019-10-31 New York Blood Center, Inc. Immunogenic composition for mers coronavirus infection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047072B1 (en) 2018-04-12 2019-11-20 한국생명공학연구원 WHOLE PROTEIN GENE OF MERS-CoV NUCLEOPROTEIN AND VACCINE COMPOSITION FOR PREVENTING INFECTION OF MERS-CoV COMPRISING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190328865A1 (en) * 2014-02-28 2019-10-31 New York Blood Center, Inc. Immunogenic composition for mers coronavirus infection
WO2016138160A1 (en) * 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN JUNGMIN, CHO YEONDONG, PARK KI HOON, CHOI HANUL, CHO HANSAM, LEE HEE-JUNG, JANG HYUN, KIM KYUNG HYUN, OH YU-KYOUNG, KIM YOUNG: "Effect of Fc Fusion on Folding and Immunogenicity of Middle East Respiratory Syndrome Coronavirus Spike Protein", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, HAN'GUG MI'SAENGMUL SAENGMYEONG GONG HAGHOE,KOREAN SOCIETY FOR MICROBIOLOGY AND BIOTECHNOLOGY, KOREA, vol. 29, no. 5, 28 May 2019 (2019-05-28), Korea, pages 813 - 819, XP055895118, ISSN: 1017-7825, DOI: 10.4014/jmb.1903.03043 *
DATABASE NUCLEOTIDE 1 August 2016 (2016-08-01), ANONYMOUS : "Homo sapiens immunoglobulin gamma-2 heavy chain (IgH), immunoglobulin gamma-4 heavy chain (IgH), immunoglobulin epsilon chain constant region (IgH), and immunoglobulin alpha2 heavy chain (IgH) genes, partial cds", XP055895126, retrieved from NCBI Database accession no. AH005273 *
DATABASE NUCLEOTIDE 2 September 2015 (2015-09-02), ANONYMOUS: "Middle East respiratory syndrome coronavirus isolate MERS-CoV/KOR/KNIH/002_05_2015, complete genome", XP055811624, retrieved from NCBI Database accession no. KT029139 *

Also Published As

Publication number Publication date
KR102213402B1 (en) 2021-02-08

Similar Documents

Publication Publication Date Title
EP4050035A1 (en) Beta-coronavirus antigen, preparation method therefor and use thereof
EP0390799B1 (en) Respiratory syncytial virus: vaccines
JP7088841B2 (en) Stabilized soluble pre-fusion RSVF protein
KR20210133888A (en) Vaccine composition for preventing or treating infection of SARS-CoV-2
JPH04501058A (en) Paramyxovirus fusion protein, method for producing the protein using a recombinant baculovirus expression vector, vaccine containing the protein, and use thereof
KR20140108603A (en) Combination vaccine comprising an attenuated bovine viral diarrhea virus
KR20070012862A (en) Vaccine comprising an attenuated pestivirus
TW202140519A (en) Vaccine
JP2022515271A (en) Recombinant varicella-zoster virus vaccine
CN102256997A (en) Torque teno virus (ttv) isolates and compositions
JPH03504963A (en) Preparation of recombinant subunit vaccine against pseudorabies infection
WO2022110099A1 (en) Coronavirus vaccines and uses thereof
KR102336158B1 (en) Vaccine Composition Against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus
CN115819616A (en) Gene recombination VZV fusion protein and preparation method and application thereof
JP5190383B2 (en) Chimeric vaccine antigen against swine fever virus (CLASSIC SINE FEVER)
CN109078179A (en) Hendra and Nipah viral G glycoprotein immunogenic composition
WO2021201612A1 (en) Novel vaccine composition for prevention and treatment of coronavirus
TW202206598A (en) A vaccine against sars-cov-2 and preparation thereof
WO2022030702A1 (en) Vaccine composition for preventing and treating middle east respiratory syndrome-coronavirus
WO2023138333A1 (en) Recombinant sars-cov-2 protein vaccine, and preparation method therefor and use thereof
US8183220B2 (en) Double-effective vaccine vector against foot-and-mouth disease virus (FMDV), methods of preparing and using the same
US20200093919A1 (en) Modified pedv spike protein
WO2022163902A1 (en) Vaccine composition for preventing human infectious sars coronavirus and alleviating infection symptoms
WO2023017945A1 (en) Formulation of corona virus vaccine
HU208494B (en) Process for producing serum and active component against pig-cholera virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948755

Country of ref document: EP

Kind code of ref document: A1