WO2021201612A1 - Novel vaccine composition for prevention and treatment of coronavirus - Google Patents

Novel vaccine composition for prevention and treatment of coronavirus Download PDF

Info

Publication number
WO2021201612A1
WO2021201612A1 PCT/KR2021/004025 KR2021004025W WO2021201612A1 WO 2021201612 A1 WO2021201612 A1 WO 2021201612A1 KR 2021004025 W KR2021004025 W KR 2021004025W WO 2021201612 A1 WO2021201612 A1 WO 2021201612A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
vaccine composition
protein
glycoprotein
cov
Prior art date
Application number
PCT/KR2021/004025
Other languages
French (fr)
Korean (ko)
Inventor
서용복
이수연
Original Assignee
주식회사 에스엘백시젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200128069A external-priority patent/KR20210122025A/en
Application filed by 주식회사 에스엘백시젠 filed Critical 주식회사 에스엘백시젠
Publication of WO2021201612A1 publication Critical patent/WO2021201612A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention relates to a vaccine composition, and more particularly, to a vaccine composition for preventing and treating novel coronaviruses.
  • Coronavirus is a spike glycoprotein (abbreviated as “S glycoprotein” hereinafter), hemagglutinin-acetyltransferase glycoprotein, membrane glycoprotein and small envelope It is composed of several glycoproteins, such as glycoproteins (Fig. 1).
  • the S glycoprotein mediates receptor recognition and membrane fusion of coronaviruses and serves as a primary target for humoral immune responses during infection.
  • the CoV S glycoprotein consists of two subunits, one containing the receptor binding domain (RBD) (S1) and the other, the fusion machinery subunit (S2). So far, only S glycoprotein is known to be able to induce neutralizing antibodies, which is a decisive effector against coronavirus ( FIG. 2 ).
  • Korean Patent No. 1242757 discloses a spike recombinant protein comprising a canine CoV neutralizing antigen determinant and a vaccine composition comprising the same
  • Japanese Patent No. 4160201 discloses DNA encoding a feline infectious peritonitis virus nucleic acid capsid protein.
  • a DNA vaccine for preventing corona virus infection that can confer immunity against cat or canine corona virus containing Vaccine is being launched.
  • the present invention aims to solve various problems including the above problems, and to provide a vaccine composition for the prevention and treatment of CoV including CoV 19.
  • the scope of the present invention is not limited by the above purpose.
  • a vaccine composition for preventing and treating SARS Cov containing a polynucleotide encoding a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov as an active ingredient.
  • a vaccine composition for preventing and treating SARS CoV comprising a polynucleotide encoding a fusion protein comprising a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov and a trimer forming protein as an active ingredient do.
  • a method for preventing and treating SARS-CoV infection in the subject comprising administering the vaccine composition to the subject.
  • the vaccine composition according to an embodiment of the present invention can be effectively used for the prevention and treatment of SARS-CoV infection by not only exhibiting a high antibody titer value in the inoculated individual but also effectively causing the individual's T cell response.
  • 1 is a schematic diagram schematically showing the virion structure of CoV.
  • Figure 2 is a schematic diagram schematically showing the domain structure of the spike glycoprotein of CoV.
  • 3 is a representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors.
  • Figure 4 is the result of confirming the signal sequence position in the representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors through the prediction program.
  • 5 is a result showing the position of each domain in the representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors in the amino acid sequence.
  • FIG. 6 is a genetic map schematically showing various structures of a DNA vaccine for CoV prevention and infection according to an embodiment of the present invention.
  • T4 bacteriophage fibritin A
  • surfectin D protein B
  • CD40L CD40L
  • FIG. 12a is a schematic diagram showing the structure of a gene construct prepared to express various COVID19 antigens (pGX27-S: S1S2 full , pGX27-S ⁇ TM : S1S2 ⁇ TM/IC) prepared according to an embodiment of the present invention
  • Figure 12b is a photograph showing the result of analyzing the expression of SARS CoV-2 antigen produced in cells transformed with the gene construct by Western blot analysis.
  • FIG. 13 is a schematic diagram showing administration information (top) and administration schedule for mice (bottom) of the DNA vaccine composition according to an embodiment of the present invention.
  • FIG. 14 is a graph showing the results of measuring the immune response after administration of various vaccine compositions prepared according to an embodiment of the present invention to a mouse model.
  • a vaccine composition for preventing and treating SARS Cov containing a polynucleotide encoding a water-soluble fragment polypeptide of S glycoprotein of SARS Cov (Severe acute respiratory syndrome coronavirus) as an active ingredient.
  • a water-soluble fragment of SARS Cov S glycoprotein refers to a polymorph in which the transmembrane domain (TM) and/or intracellular domain (IC) portion of the envelope glycoprotein of SARS coronavirus has been removed.
  • the SARS Cov may be SARS Cov-1 or SARS Cov-2, but is preferably SARS Cov-2.
  • the water-soluble fragment polypeptide comprises i) a fragment comprising the S1 protein or its receptor binding domain, or ii) a fragment comprising the S1 protein or its receptor binding domain, and an S2 protein from which the transmembrane domain has been removed. It may be a fusion protein comprising
  • the receptor binding domain may include a polypeptide corresponding to amino acid residues 319 to 541 based on the SARS Cov-2 S glycoprotein (SEQ ID NO: 40), and the transmembrane domain may include a SARS Cov-2 S glycoprotein (SEQ ID NO: 40). It may be a polypeptide corresponding to amino acid residues 1214 to 1234 on a protein basis.
  • the S2 protein from which the transmembrane domain is removed may be a polypeptide corresponding to amino acid residues 685 to 1213 based on SARS Cov-2 S glycoprotein or an immunogenic fragment thereof.
  • the water-soluble fragment polypeptide may include a polypeptide corresponding to amino acid residues 16 to 1213 based on SARS Cov-2 S glycoprotein.
  • the vaccine composition may include a water-soluble fragment polypeptide of SARS Cov S glycoprotein as an active ingredient instead of the polynucleotide.
  • a vaccine composition for preventing and treating SARS CoV comprising a polynucleotide encoding a fusion protein comprising a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov and a trimer forming protein as an active ingredient do.
  • the S1 glycoprotein may include the amino acid sequence set forth in SEQ ID NO: 1.
  • the polynucleotide encoding the S1 glycoprotein may include any one of the nucleic acid sequences set forth in SEQ ID NOs: 27 to 29.
  • the S2 glycoprotein or immunogenic fragment thereof may have a transmembrane domain and an intracellular domain removed.
  • the S2 glycoprotein may include an amino acid sequence set forth in SEQ ID NO: 2.
  • the S2 glycoprotein may be encoded by a polynucleotide having a nucleic acid sequence set forth in SEQ ID NO: 30 or 31.
  • the polynucleotide encoding the fusion protein comprising the S1 glycoprotein and the S2 glycoprotein may include a nucleic acid sequence set forth in SEQ ID NO: 36 or 37.
  • the trimer forming protein may be CD40L ectodomain, T4 bacteriophage fibritin, Fas ligand, 41BB, OX40L, CD70, TRAIL, or serfectin, and the CD40L ectodomain is N - It may be a soluble CD40L (sCD40L) from which the terminal domain (1-112 aa) has been removed, and may include the amino acid sequence shown in SEQ ID NO: 3.
  • the surfectin may be surfectin A or surfectin D.
  • the polynucleotide encoding the fusion protein comprising the S1 glycoprotein and the CD40L protein may include the nucleic acid sequence set forth in SEQ ID NO: 38.
  • the S1 glycoprotein, and the S2 glycoprotein; And the polynucleotide encoding the fusion protein comprising the trimer forming protein may include a nucleic acid sequence set forth in SEQ ID NO: 38 or 39.
  • immunogenic fragment refers to a fragment capable of inducing an immune response in vivo among fragments generated by cleaving an antigenic protein.
  • the smallest unit of such a fragment may be an epitope.
  • fusion protein refers to a recombinant protein in which two or more proteins or domains responsible for specific functions within the protein are linked.
  • a linker peptide having a generally flexible structure may be inserted between the two or more proteins or domains, if it is a flexible peptide linker that does not limit the original function of the linked polypeptide and does not inhibit the expression of the fusion protein Any one can be used, and specific examples are as described above.
  • the S2 glycoprotein or immunogenic fragment thereof may have a transmembrane domain and an intracytoplasmic domain removed.
  • the CD40L ectodomain may be soluble CD40L (sCD40L) from which the N-terminal domain (1-112 a.a) has been removed.
  • the fusion protein may include one or more linker peptides between fusion partners, and any known linker peptide may be used.
  • linkers include (GS) 5 (SEQ ID NO: 4), (G 4 S, SEQ ID NO: 5) n , (GSSGGS, SEQ ID NO: 6) n , KESGSVSSEQLAQFRSLD (SEQ ID NO: 7), EGKSSGSGSESKST (SEQ ID NO: 8), GSAGSAAGSGEF (SEQ ID NO: 9), (EAAAK, SEQ ID NO: 10) n, CRRRRRREAEAC (SEQ ID NO: 11), A (EAAAK) 4 ALEA (EAAAK) 4 A (SEQ ID NO: 12), GGGGGGGG (SEQ ID NO: 13), GGGGGG (SEQ ID NO: 11) 14), AEAAAKEAAAAKA (SEQ ID NO: 15), PAPAPAP
  • the S1 protein or the fusion protein may include a secretion signal sequence for protein secretion at the N-terminus.
  • Any known secretion signal sequence may be used, for example, a tissue plasminogen activator (tPA) signal sequence (SEQ ID NO: 24), an HSV gDs (herpes simplex virus glycoprotein Ds) signal sequence, or a growth hormone signal sequence. .
  • operably linked to means that a nucleic acid sequence of interest (eg, in an in vitro transcription/translation system or in a host cell) is regulated in such a way that its expression can be achieved. It means that it is connected to the sequence.
  • regulatory sequence is meant to include promoters, enhancers and other regulatory elements (eg, polyadenylation signals). Regulatory sequences include instructing that a target nucleic acid can be constitutively expressed in many host cells, instructing the expression of a target nucleic acid only in specific tissue cells (eg, tissue-specific regulatory sequences), and This includes directing expression to be induced by a specific signal (eg, an inducible regulatory sequence).
  • the design of the expression vector may vary depending on factors such as the selection of the host cell to be transformed and the level of desired protein expression.
  • the expression vector of the present invention can be introduced into a host cell to express the fusion protein. Regulatory sequences enabling expression in eukaryotic and prokaryotic cells are well known to those skilled in the art. As described above, they usually contain regulatory sequences responsible for initiation of transcription and, optionally, poly-A signals responsible for termination and stabilization of transcripts. Additional regulatory sequences may include, in addition to transcriptional regulators, translation enhancers and/or natively-combined or heterologous promoter regions.
  • Possible regulatory sequences enabling expression in mammalian host cells include the CMV-HSV thymidine kinase promoter, SV40, RSV (Rous sarcoma virus)-promoter, human elongation element 1 ⁇ (hEF1 ⁇ )-promoter, glucocorticoid-inducing promoters such as the sexual MMTV-promoter (Moloni mouse tumor virus), metallothionein-inducible or tetracycline-inducible promoter, or CMV promoter or SV40 promoter.
  • CMV-HSV thymidine kinase promoter SV40
  • RSV Rat sarcoma virus
  • hEF1 ⁇ human elongation element 1 ⁇
  • glucocorticoid-inducing promoters such as the sexual MMTV-promoter (Moloni mouse tumor virus), metallothionein-inducible or tetracycline-inducible promote
  • neurofilament-promoter For expression in neurons, it is contemplated that neurofilament-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter may be used.
  • Such promoters are known in the art and are described in Charron, J. Biol. Chem. 270: 25739-25745, 1995.
  • a number of promoters have been disclosed, including the lac promoter, the tac promoter or the trp promoter.
  • the regulatory sequences include transcription termination signals such as SV40-poly-A site or TK-poly-A site downstream of the polynucleotide according to an embodiment of the present invention. You may.
  • suitable expression vectors are known in the art, for example, Okayama-Berg cDNA expression vectors pcDV1 (Parmacia), pRc/CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL) ), pGX27 (Patent No. 1442254), pX (Pagano, Science 255: 1144-1147, 1992), yeast two-hybrid vectors such as pEG202 and dpJG4-5 (Gyuris, Cell 75: 791-803) , 1995) or prokaryotic expression vectors such as lambda gt11 or pGEX (Amersham-Pharmacia).
  • the vector may further comprise a polynucleotide encoding a secretion signal.
  • the secretion signals are well known to those skilled in the art.
  • a leader sequence capable of directing the fusion protein to the cell compartment is combined with the coding sequence of the polynucleotide according to an embodiment of the present invention, preferably the translated protein or its It is a leader sequence capable of directly secreting a protein into the periplasmic or extracellular medium.
  • the vaccine composition may further comprise a polynucleotide encoding one or more immuno-enhancing peptides, in which case the immuno-enhancing peptide may be expressed in the form of a fusion protein linked to the S1 glycoprotein or fusion protein,
  • the immuno-enhancing peptide may be added to the N-terminus or C-terminus of the S1 glycoprotein or the fusion protein or inserted in the middle, and the immuno-enhancing peptide may be CD28, ICOS (inducible costimulator), CTLA4 (cytotoxic T lymphocyte).
  • PD1 programmed cell death protein 1
  • BTLA B and T lymphocyte associated protein
  • DR3 death receptor 3
  • 4-1BB CD2, CD40, CD40L, CD30, CD27, SLAM (signaling lymphocyte activation) molecule
  • 2B4 CD244
  • TIM1 T-Cell immunoglobulin and mucin domain containing protein 1
  • TIM2, TIM3, TIGIT CD226
  • CD160 LAG3
  • LAG3 lymphocyte activation gene 3
  • B7-1, B7-H1, GITR glucocorticoid-induced TNFR family related protein
  • Flt3 ligand fms-like tyrosine kinase 3 ligand
  • flagellin HVEM ( herpesvirus entry mediator) or the cytoplasmic domain of OX40L [ligand for CD134 (OX40), CD25
  • the Flt3 ligand may be a polypeptide consisting of SEQ ID NO: 25.
  • gene construct may be provided in the form of an expression vector such as a plasmid vector for convenience of manufacture and manipulation.
  • the vector used in the present invention can be prepared by, for example, standard recombinant DNA technology, and standard recombinant DNA technology includes, for example, blunt-end and adherent-end ligation, restriction enzyme treatment to provide an appropriate end. , phosphate group removal by alkaline phosphatase treatment and enzymatic ligation by T4 DNA ligase to prevent improper binding.
  • the vector of the present invention can be prepared by recombination of a DNA encoding a signal peptide obtained by chemical synthesis or genetic recombination technology, or a DNA encoding a fusion protein according to an embodiment of the present invention, into a vector containing an appropriate regulatory sequence. have.
  • the vector containing the control sequence can be purchased or manufactured commercially, and in an embodiment of the present invention, pGX27 (Korean Patent No. 1442254), which is a vector for preparing a DNA vaccine, was used.
  • the expression vector according to an embodiment of the present invention may be an expression vector capable of expressing the fusion protein in a host cell, and the expression vector is a plasmid vector, a viral vector, a cosmid vector, a phagemid vector, or an artificial human. Any form, such as chromosomes, may be represented.
  • a transformed host cell in which the host cell is transformed with the vector.
  • the host cell may be a bacterium, a fungus, a plant cell, or an animal cell, the bacterium may be a gram-negative bacteria or a gram-positive bacteria, and the animal cell may be an insect cell or a mammalian cell.
  • the mammalian cells may be primary cells or established cell lines isolated from rats, mice, monkeys, hamsters, dogs, horses, cattle, cats, pigs, elephants, monkeys, primates or humans. Such host cells can be used for the production of antigenic proteins that can be used in vaccines by transformation of the gene construct according to an embodiment of the present invention.
  • the vaccine composition may include one or more pharmaceutically acceptable vaccine adjuvants.
  • the vaccine adjuvant includes aluminum hydroxide, aluminum phosphate, alum (potassium aluminum sulfate), MF59, virosome, AS04 [a mixture of aluminum hydroxide and monophosphoryl lipid A (MPL)], AS03 ( DL- ⁇ -tocopherol, a mixture of squalene and the emulsifier polysorbate 80), CpG, flagellin, Poly I:C, AS01, AS02, ISCOMs and ISCOMMATRIX, etc. can be used.
  • the term “adjuvant” or “vaccine adjuvant” refers to a pharmaceutical or immunological agent administered for the purpose of enhancing the immune response of a vaccine.
  • the vaccine composition comprises IL-12 protein and IL-21 protein as active ingredients together with or instead of the above-described vaccine adjuvant, or a polynucleotide encoding the IL-12 protein and a polynucleotide encoding the IL-21 protein. It may include a vaccine adjuvant for promoting a T lymphocyte-specific immune response comprising a polynucleotide as an active ingredient.
  • composition may further include a pharmaceutically acceptable adjuvant, excipient or diluent in addition to the carrier.
  • the term "pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions when administered to humans.
  • carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • the vaccine composition according to an embodiment of the present invention may be formulated using methods known in the art to enable rapid, sustained or delayed release of the active ingredient when administered to a mammal.
  • Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
  • the vaccine composition according to an embodiment of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intravertebral administration
  • routes for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intravertebral administration
  • it can be administered using an implantation device for sustained release or continuous or repeated release.
  • the number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
  • the vaccine composition according to an embodiment of the present invention may be administered by general systemic administration or local administration, for example, intramuscular injection or intravenous injection, but when provided as a DNA vaccine composition, most preferably an electroporator can be injected using
  • the electroporation machine is a commercially available electroporator for DNA drug injection, such as Glinporator TM of IGEA of Italy, CUY21EDIT of JCBIO of Korea, SP-4a of Supertech of Switzerland, OrbiJector ® of SL Vaxigen (Korea), etc. can be used
  • the route of administration of the vaccine composition according to an embodiment of the present invention may be administered through any general route as long as it can reach the target tissue.
  • Such administration route may be parenteral administration, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intrasynovial administration, but is not limited thereto.
  • the vaccine composition according to an embodiment of the present invention may be formulated in a suitable form together with a commonly used pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycol, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives are benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • composition according to the present invention may contain a suspending agent, a solubilizing agent, a stabilizer, an isotonic agent, a preservative, an adsorption inhibitor, a surfactant, a diluent, an excipient, a pH adjuster, an analgesic agent, a buffer, Antioxidants and the like may be included as appropriate.
  • a suspending agent e.g., a solubilizing agent, a stabilizer, an isotonic agent, a preservative, an adsorption inhibitor, a surfactant, a diluent, an excipient, a pH adjuster, an analgesic agent, a buffer, Antioxidants and the like may be included as appropriate.
  • Pharmaceutically acceptable carriers and agents suitable for the present invention including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
  • the vaccine composition of the present invention is administered in an amount necessary for prevention or a therapeutically effective amount.
  • the term "therapeutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and effective dose level includes the subject type and severity, age, sex, drug activity, sensitivity to drugs, administration time, administration route and excretion rate, duration of treatment, factors including concurrent drugs, and other factors well known in the medical field.
  • the vaccine composition or pharmaceutical composition of the present invention may be administered at a dose of 0.05 mg/dose to 100 mg/dose, more preferably 0.1 mg/dose to 10 mg/dose. Meanwhile, the dosage may be appropriately adjusted according to the patient's age, sex, and condition.
  • a method for preventing and treating SARS-CoV infection in the subject comprising administering the vaccine composition to the subject.
  • the SARS CoV may be Severe Acute Respiratory Syndrome (SARS) Cov-1, or SARS Cov-2, in particular, SARS Cov-2 is a novel coronavirus disease (COVID-19) that is currently prevalent worldwide. 30 January 2020 the World Health Organization declared Coronavirus Disease 2019).
  • the vaccine composition may be administered by in vivo electroporation.
  • the present inventors consider that the most important point in developing an effective vaccine is to determine to what position the antigen is designed based on the sequence and the position of the domain.
  • GenBank http://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs.
  • a representative amino acid sequence of the S glycoprotein of CoV was derived using Jalview software (http://www.jalview.org/) (FIG. 3).
  • the representative amino acid sequence of the S glycoprotein of CoV identified by the present inventors was confirmed to be 100% identical to the NCBI reference sequence (NCBI Reference Sequence: YP_009724390.1) disclosed later.
  • the amino acid positions of the domains of the CoV S glycoprotein were determined based on SEQ ID NO: 40, which is the same as the representative sequence.
  • CoV genus Middle East respiratory syndrome-related coronavirus (isolated United Kingdom/H123990006) in which the S glycoprotein domain structure for the position of the S1 subunit, S2 subunit, and transmembrane domain (TM) has already been identified /2012)
  • Betacoronavirus England 1 Human coronavirus EMC
  • Human SARS coronavirus SARS-CoV, Severe acute respiratory syndrome coronavirus
  • Human coronavirus OC43 HCoV-OC43
  • Human coronavirus HKU1 isolatedate N5)
  • HoV-HKU1 Human coronavirus 229E
  • HoV-229E Human coronavirus NL63
  • HCoV-NL63 Human coronavirus NL63
  • the CoV S glycoprotein exists in a trimer pre-fusion form, the CoV S glycoprotein produced in the vaccine must be in the trimer pre-fusion form.
  • trimerizing the target protein for example, a method of linking a T4 bacteriophage fibritin trimerization motif (FT) or surfactant protein D (SPD). There is (Fig. 7).
  • CD40 ligand CD40 L
  • TNFRSF tumor necrosis factor receptor superfamily
  • the present inventors designed a vaccine comprising a polynucleotide encoding a fusion protein in the form of linking CoV S glycoprotein and soluble CD40L, so that the CoV S glycoprotein is efficiently expressed in the trimeric pre-fusion form, as well as the vaccine to increase the immune response of (Figs. 6c and 6d, Examples 3 and 4).
  • Example secretory signal sequence (corresponding nucleic acid sequence) antigen (corresponding nucleic acid sequence) linker peptide (corresponding nucleic acid sequence) trimerization domain (corresponding nucleic acid sequence)
  • an expression vector for a DNA vaccine was prepared by inserting it into the pGX27 vector (Genexine, Inc., Korea) (FIG. 6), which It was called a DNA vaccine.
  • COS-7 cells 1 x 10 7 cells were seeded in a 100 mm culture dish and cultured for 16 hours. After 24 ⁇ g of 4 types of COVID-19 DNA vaccine and 60 ⁇ L of lipofectamine 2000 were mixed and added to the cells, 37 °C CO 2 In an incubator for 4 to 5 hours, the gene was introduced and the culture medium was exchanged. After culture for 48 hours after medium exchange, the cultured cells were lysed to extract proteins. Then, 4x SDS sample buffer was mixed with the extracted protein and boiled at 72 °C for 10 minutes.
  • the SARS-CoV-2 full-length S protein or the S1 subunit protein in the COS-7 sample introduced with the COVID-19 DNA vaccine was confirmed through a specific band at the predicted position when expressed using the CMV promoter, and negative No specific protein was detected in the control group (FIG. 8). Through this, it was confirmed that the expression system of the antigen gene construct of the present invention operates normally.
  • mice 50 ⁇ L/head of the administration was administered to the femoral muscle of BALB/c mice, and the administration was repeated twice at an interval of 2 weeks. All administration groups were subjected to electroporation (200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles) using an electroporation device with an EP cartridge injection needle inserted. Two weeks after the last administration (week 4), the spleen was removed and the spike antigen-specific T cell response was analyzed using the ELISPOT method.
  • the efficacy of the COVID-19 vaccine was confirmed by evaluating the SARS Cov-2 spike antigen-specific T cell response by the IFN- ⁇ ELISPOT method, and the experimental results were (1) efficacy of increasing vaccine immune response by binding of CD40L (CD40 ligand) Analysis was divided into evaluation, (2) determining the range of use of the spike protein subunit (S1 subunit or S1/S2 subunit).
  • the coronavirus to which SARS Cov-2 belongs infects the host cell through angiotensin-converting enzyme 2 (ACE2), and it is known that the receptor binding domain (RBD) is located in the S1 subunit. Therefore, it is understood that it is important to induce an antibody response well to the S1 subunit.
  • COVID-19 DNA vaccines designed by the present inventors pGX27-COVID-19/S1, pGX27-COVID-19/S1S2, pGX27-COVID-19/S1-CD40L and pGX27-COVID-19/S1S2-CD40L
  • the antibody response was at a similar level, indicating that the antibody response to the vaccine was mainly directed to the S1 subunit.
  • the S2 subunit includes a hepted repeat region involved in trimerization and a transmembrane domain penetrating the surface membrane.
  • a gene construct including the S2 subunit in the full-length form of the S1 protein antigen was additionally designed as shown in FIG. 12a.
  • the gene constructs were transfected into COS-7, and protein expression patterns were analyzed by Western blot analysis using an anti-S glycoprotein antibody. As a result, as shown in FIG. 12B , it was confirmed that both the S1S2 full gene construct and the S1S2 ⁇ TM/IC gene construct normally express the S glycoprotein. However, the expression level of the S glycoprotein in the form in which the transmembrane domain has been removed was significantly increased. This is interpreted to be because the S glycoprotein is produced in the form of a water-soluble protein rather than a membrane-bound form.
  • the antibody response after one administration did not differ significantly depending on the antigen type, but the S1S2 ⁇ TM/IC type vaccine showed the highest antibody titer value, and after the second administration, the antibody response of the S1S2 ⁇ TM/IC type vaccine showed the highest antibody titer value. It was confirmed that the vaccine administration group showed a statistically significantly higher antibody titer value than the other two types of vaccine administration group (FIG. 14).
  • the vaccine composition according to an embodiment of the present invention can be used to develop a medicament for preventing and treating SARS CoV infection.

Abstract

The present invention relates to a novel vaccine composition for preventing and treating CoV. More specifically, the present invention provides a vaccine composition for preventing and treating CoV comprising, as an active ingredient, an S1 glycoprotein of CoV or an immunogenic fragment thereof, or a polynucleotide encoding the S1 glycoprotein or an immunogenic fragment thereof.

Description

신규 코로나바이러스 예방 및 치료용 백신 조성물Vaccine composition for prevention and treatment of novel coronavirus
본 발명은 백신 조성물에 관한 것으로서, 보다 구체적으로는 신규 코로나바이러스 예방 및 치료용 백신 조성물에 관한 것이다.The present invention relates to a vaccine composition, and more particularly, to a vaccine composition for preventing and treating novel coronaviruses.
최근 코로나바이러스 19의 세계적 대유행(pandemic)으로 인해 인류는 심각한 공중보건학적 위기를 맞고 있다. 코로나바이러스 19는 건강한 사람은 걸리더라도 큰 문제가 없으나, 기저질환을 갖고 있거나 고령자에게는 큰 위협이 될 수 있고, 간혹 건강하고 젊은 사람일지라도 사이토카인 폭풍과 같은 비정상적인 면역반응이 유발될 경우 매우 심각한 상황을 초래할 수 있다. 코로나바이러스(Coronavirus, 이하, "CoV"로 약칭함)는 스파이크 당단백질(spike glycoprotein, 이하 "S 당단백질"로 약칭함), 헤마글루티닌-아세틸트랜스퍼레이즈 당단백질, 막 당단백질 및 작은 외피 당단백질과 같은 몇몇 당단백질로 구성되어 있다(도 1). 상기 S 당단백질은 코로나바이러스의 수용체 인식과 막융합을 매개하고 감염 동안 체액성 면역반응의 일차적인 표적이 된다. CoV S 당단백질은 두 개의 서브유닛으로 구성되어 있는데, 하나는 수용체 결합 도메인(RBD)을 포함하는 서브유닛(S1)이고 다른 하나는 융합 조직 서브유닛(fusion machinery subunit, S2)이다. 현재까지 오직 S 당단백질만 중화 항체를 유도할 수 있을 것으로 알려지고 있으며, 이는 코로나바이러스에 대항할 수 있는 결정적인 효과기이다(도 2). Due to the recent global pandemic of COVID-19, humanity is facing a serious public health crisis. Although there is no problem with COVID-19 in healthy people, it can pose a great threat to the elderly or those with underlying diseases, and sometimes even in healthy and young people, when an abnormal immune response such as a cytokine storm is induced, it is a very serious situation. can cause Coronavirus (hereinafter abbreviated as “CoV”) is a spike glycoprotein (abbreviated as “S glycoprotein” hereinafter), hemagglutinin-acetyltransferase glycoprotein, membrane glycoprotein and small envelope It is composed of several glycoproteins, such as glycoproteins (Fig. 1). The S glycoprotein mediates receptor recognition and membrane fusion of coronaviruses and serves as a primary target for humoral immune responses during infection. The CoV S glycoprotein consists of two subunits, one containing the receptor binding domain (RBD) (S1) and the other, the fusion machinery subunit (S2). So far, only S glycoprotein is known to be able to induce neutralizing antibodies, which is a decisive effector against coronavirus ( FIG. 2 ).
최근 화이자社, 아스트라제네카社 및 모더나社와 같은 다국적 제약회사에서COVID-19 예방용 백신을 개발하였고, 이들 백신들이 긴급 임상시험을 통과하여 판매 및 접종이 이루어지고 있는 상황이다. 그러나, 아스트라제네카社의 백신의 경우 발열이나 오한, 근육통 등의 부작용이 다수 발생하며, 기저질환이 있는 노약자의 경우 심한 경우에는 사망 사고도 발생하고 있어서, 노약층에 대한 접종에 부담이 되고 있고, 화이자社의 백신의 경우 백신 방어효율이 더 높고 부작용이 아스트라제네카社의 백신에 비해서 상대적으로 적기는 하나, 여전히 독감백신에 비해서 부작용 확률이 10배 정도 높을 뿐만 아니라, mRNA 백신이기 때문에 저장 및 수송에 있어서 문제가 발생할 가능성이 다분하다는 문제점을 가지고 있다. Recently, multinational pharmaceutical companies such as Pfizer, AstraZeneca, and Moderna have developed vaccines for preventing COVID-19, and these vaccines have passed emergency clinical trials and are being sold and vaccinated. However, in the case of AstraZeneca's vaccine, a number of side effects such as fever, chills, and muscle pain occur, and in the case of the elderly with underlying diseases, fatal accidents occur in severe cases, making it a burden for the elderly to be vaccinated, In the case of Pfizer's vaccine, the vaccine defense efficiency is higher and side effects are relatively few compared to AstraZeneca's vaccine, but the probability of side effects is 10 times higher than that of the flu vaccine, and because it is an mRNA vaccine, it is difficult to store and transport. There is a problem that there is a lot of potential for problems to occur.
인간이 아닌 개나 소 등의 다른 동물의 CoV 감염을 예방하기 위한 백신 조성물은 다수 존재하고 있다. 예컨대, 대한민국 등록특허 제1242757호는 개 CoV 중화항원 결정기를 포함하는 스파이크 재조합 단백질 및 이를 포함하는 백신 조성물을 개시하고 있고, 일본 등록특허 제4160201호는 고양이 전염성 복막염 바이러스 핵산 캡시드 단백질을 암호화하는 DNA를 포함하는 고양이 또는 개 코로나 바이러스에 대하여 면역을 부여할 수 있는 코로나 바이러스 감염증 예방용 DNA 백신을 개시하고 있으며, 일본 등록특허 제2091446호는 CoV에 감염된 HAL 감염세포의 배양상청액을 포함하는 소 코로나 바이러스 감염증 백신을 개시하고 있다.There are many vaccine compositions for preventing CoV infection in other animals, such as dogs and cattle, other than humans. For example, Korean Patent No. 1242757 discloses a spike recombinant protein comprising a canine CoV neutralizing antigen determinant and a vaccine composition comprising the same, and Japanese Patent No. 4160201 discloses DNA encoding a feline infectious peritonitis virus nucleic acid capsid protein. Disclosed is a DNA vaccine for preventing corona virus infection that can confer immunity against cat or canine corona virus containing Vaccine is being launched.
한편, 인간에 감염되는 CoV 예방용 백신도 일부 존재하는데 이들은 대부분 2000년대 중반 유행하였던 중증급성호흡기증후군(SARS) CoV를 대상으로 한 것들로서 2020년 유행하고 있는 SARS CoV-2에 대하여 작동할지 여부는 미지수이다.On the other hand, there are some vaccines for preventing CoV infecting humans. Most of these vaccines target the severe acute respiratory syndrome (SARS) CoV that was prevalent in the mid-2000s. Whether or not it will work against SARS CoV-2, which is prevalent in 2020 It is unknown.
따라서, 인체에 적합한 SARS CoV-2에 대한 면역화를 가능하게 하는 보다 효과적인 백신의 개발이 절실히 요구되고 있는 실정이다. Therefore, there is an urgent need for the development of a more effective vaccine that enables immunization against SARS CoV-2 suitable for the human body.
본 발명은 상기 문제점을 포함한 다양한 문제점을 해결하기 위한 것으로서, CoV 19를 포함한 CoV의 예방 및 치료를 위한 백신 조성물의 제공을 목적으로 한다. 그러나, 상기 목적에 의해 본 발명의 범위가 제한되는 것은 아니다.The present invention aims to solve various problems including the above problems, and to provide a vaccine composition for the prevention and treatment of CoV including CoV 19. However, the scope of the present invention is not limited by the above purpose.
본 발명의 일 관점에 따르면, SARS Cov의 S 당단백질의 수용성 단편 폴리펩타이드를 암호화하는 폴리뉴클레오타이드를 유효성분으로 함유하는 SARS Cov 예방 및 치료용 백신 조성물이 제공된다.According to one aspect of the present invention, there is provided a vaccine composition for preventing and treating SARS Cov containing a polynucleotide encoding a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov as an active ingredient.
본 발명의 일 관점에 따르면, SARS Cov의 S 당단백질의 수용성 단편 폴리펩타이드 및 삼량체 형성 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드를 유효성분으로 포함하는 SARS CoV 예방 및 치료용 백신 조성물이 제공된다.According to one aspect of the present invention, there is provided a vaccine composition for preventing and treating SARS CoV comprising a polynucleotide encoding a fusion protein comprising a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov and a trimer forming protein as an active ingredient do.
본 발명의 다른 일 관점에 따르면, 상기 백신 조성물을 개체에 투여하는 단계를 포함하는 상기 개체의 SARS CoV 감염증 예방 및 치료방법이 제공된다.According to another aspect of the present invention, there is provided a method for preventing and treating SARS-CoV infection in the subject, comprising administering the vaccine composition to the subject.
본 발명의 일 실시예에 따른 백신 조성물은 접종된 개체에서 높은 항체 역가 값을 나타낼 뿐만 아니라 개체의 T 세포 반응을 유효하게 야기함으로써 SARS CoV 감염증의 예방 및 치료에 효과적으로 사용될 수 있다.The vaccine composition according to an embodiment of the present invention can be effectively used for the prevention and treatment of SARS-CoV infection by not only exhibiting a high antibody titer value in the inoculated individual but also effectively causing the individual's T cell response.
도 1는 CoV의 비리온 구조를 개략적으로 나타낸 개요도이다.1 is a schematic diagram schematically showing the virion structure of CoV.
도 2는 CoV의 스파이크 당단백질의 도메인 구조를 개략적으로 나타낸 개요도이다.Figure 2 is a schematic diagram schematically showing the domain structure of the spike glycoprotein of CoV.
도 3은 본 발명자에 의해 도출된 COVID19 S 당단백질의 대표 아미노산 서열이다.3 is a representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors.
도 4는 본 발명자에 의해 도출된 COVID19 S 당단백질의 대표 아미노산 서열 내 신호서열 위치를 예측 프로그램을 통해 확인한 결과이다.Figure 4 is the result of confirming the signal sequence position in the representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors through the prediction program.
도 5는 본 발명자들에 의해 도출된 COVID19 S 당단백질의 대표 아미노산 서열에서 개별 도메인의 위치를 아미노산 서열에 표시하여 나타낸 결과이다. 5 is a result showing the position of each domain in the representative amino acid sequence of the COVID19 S glycoprotein derived by the present inventors in the amino acid sequence.
도 6은 본 발명의 일 실시예에 따른 CoV 예방 및 감염용 DNA 백신의 다양한 구조를 개략적으로 나타낸 유전자 맵이다.6 is a genetic map schematically showing various structures of a DNA vaccine for CoV prevention and infection according to an embodiment of the present invention.
도 7은 본 발명의 S 당단백질의 삼량체화 유도를 위해 사용되는 삼량체 형성 재조합 단백질인 T4 박테리오파지 fibritin(A), 서펙틴 D 단백질(B) 및 CD40L(C)를 이용한 재조합 단백질 삼량체화 전략을 개략적으로 나타낸 개요도이다.7 is a recombinant protein trimerization strategy using T4 bacteriophage fibritin (A), surfectin D protein (B) and CD40L (C), which are trimer-forming recombinant proteins used for inducing trimerization of S glycoprotein of the present invention. It is a schematic schematic diagram.
도 8은 본 발명의 실시예에 따른 COVID19 백신 컨스트럭트로부터 단백질의 발현 여부를 확인한 결과이다.8 is a result of confirming whether the protein is expressed from the COVID19 vaccine construct according to an embodiment of the present invention.
도 9 내지 도 11은 마우스 모델에서 COVID19 백신의 효능(항체 반응, T 세포 반응)을 확인한 실험 방법 및 상기 실험 결과를 나타낸다.9 to 11 show the experimental method and the experimental results confirming the efficacy (antibody response, T cell response) of the COVID19 vaccine in a mouse model.
도 12a는 본 발명의 일 실시예에 따라 제조된 다양한 COVID19 항원(pGX27-S: S1S2full, pGX27-SΔTM: S1S2ΔTM/IC)을 발현시키기 위해 제조된 유전자 컨스트럭트의 구조를 나타내는 개요도이고, 도 12b는 상기 유전자 컨스트럭트로 형질전환된 세포에서 생산된 SARS CoV-2 항원의 발현을 웨스턴블랏 분석으로 분석한 결과를 나타내는 사진이다. 12a is a schematic diagram showing the structure of a gene construct prepared to express various COVID19 antigens (pGX27-S: S1S2 full , pGX27-S ΔTM : S1S2 ΔTM/IC) prepared according to an embodiment of the present invention; , Figure 12b is a photograph showing the result of analyzing the expression of SARS CoV-2 antigen produced in cells transformed with the gene construct by Western blot analysis.
도 13은 본 발명의 일 실시예에 따른 DNA 백신 조성물의 투여 정보(상단) 및 마우스에 대한 투여스케쥴(하단)을 나타내는 개요도이다.13 is a schematic diagram showing administration information (top) and administration schedule for mice (bottom) of the DNA vaccine composition according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따라 제조된 다양한 백신 조성물을 마우스 모델에 투여한 후 면역반응을 측정한 결과를 나타내는 그래프이다.14 is a graph showing the results of measuring the immune response after administration of various vaccine compositions prepared according to an embodiment of the present invention to a mouse model.
본 발명의 일 관점에 따르면, SARS Cov(Severe acute respiratory syndrome coronavirus)의 S 당단백질의 수용성 단편 폴리펩타이드를 암호화하는 폴리뉴클레오타이드를 유효성분으로 함유하는 SARS Cov 예방 및 치료용 백신 조성물이 제공된다.According to one aspect of the present invention, there is provided a vaccine composition for preventing and treating SARS Cov containing a polynucleotide encoding a water-soluble fragment polypeptide of S glycoprotein of SARS Cov (Severe acute respiratory syndrome coronavirus) as an active ingredient.
본 문서에서 사용된 "SARS Cov S 당단백질의 수용성 단편"은 SARS 코로나 바이러스의 외피 당단백질 중 막통과 도메인(transmembrane domain; TM) 및/또는 세포내 도메인(intracellular domain; IC) 부분이 제거된 폴리펩타이드 단편, 상기 폴리펩타이드 단편이 단백질 절단효소에 의해 절단되어 생성된 절편(예컨대, S1 단백질 및 S2 단백질), 또는 S1 단백질의 수용체 결합 도메인을 포함하는 단편으로서 막에 결합이 된 상태가 아니라 수용성으로 발현이 되는 면역반응을 유발하는 최소한의 단편을 의미한다.As used herein, "a water-soluble fragment of SARS Cov S glycoprotein" refers to a polymorph in which the transmembrane domain (TM) and/or intracellular domain (IC) portion of the envelope glycoprotein of SARS coronavirus has been removed. Peptide fragments, fragments produced by cleavage of the polypeptide fragment by proteolytic enzymes (eg, S1 protein and S2 protein), or fragments containing the receptor binding domain of S1 protein, which are water-soluble rather than membrane-bound. It refers to the smallest fragment that induces an immune response to be expressed.
상기 백신 조성물에 있어서, 상기 SARS Cov는 SARS Cov-1 또는 SARS Cov-2일 수 있으나, SARS Cov-2인 것이 바람직하다.In the vaccine composition, the SARS Cov may be SARS Cov-1 or SARS Cov-2, but is preferably SARS Cov-2.
상기 백신 조성물에 있어서, 상기 수용성 단편 폴리펩타이드는 i) S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편 또는 ii) 상기 S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편 및 막통과 도메인이 제거된 S2 단백질을 포함하는 융합단백질일 수 있다.In the vaccine composition, the water-soluble fragment polypeptide comprises i) a fragment comprising the S1 protein or its receptor binding domain, or ii) a fragment comprising the S1 protein or its receptor binding domain, and an S2 protein from which the transmembrane domain has been removed. It may be a fusion protein comprising
이 경우, 상기 수용체 결합 도메인은 SARS Cov-2 S 당단백질(서열번호 40) 기준으로 319 내지 541 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함할 수 있고, 상기 막통과 도메인은 SARS Cov-2 S 당단백질 기준으로 1214 내지 1234번째 아미노산 잔기에 상응하는 폴리펩타이드일 수 있다. 상기 막통과 도메인이 제거된 S2 단백질은 SARS Cov-2 S 당단백질 기준으로 685 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드 또는 그의 면역원성 단편일 수 있다. 상기 수용성 단편 폴리펩타이드는 SARS Cov-2 S 당단백질 기준으로 16 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함할 수 있다.In this case, the receptor binding domain may include a polypeptide corresponding to amino acid residues 319 to 541 based on the SARS Cov-2 S glycoprotein (SEQ ID NO: 40), and the transmembrane domain may include a SARS Cov-2 S glycoprotein (SEQ ID NO: 40). It may be a polypeptide corresponding to amino acid residues 1214 to 1234 on a protein basis. The S2 protein from which the transmembrane domain is removed may be a polypeptide corresponding to amino acid residues 685 to 1213 based on SARS Cov-2 S glycoprotein or an immunogenic fragment thereof. The water-soluble fragment polypeptide may include a polypeptide corresponding to amino acid residues 16 to 1213 based on SARS Cov-2 S glycoprotein.
상기 백신 조성물은 상기 폴리뉴클레오타이드 대신에 SARS Cov S 당단백질의 수용성 단편 폴리펩타이드를 유효성분으로 포함할 수도 있다.The vaccine composition may include a water-soluble fragment polypeptide of SARS Cov S glycoprotein as an active ingredient instead of the polynucleotide.
본 발명의 일 관점에 따르면, SARS Cov의 S 당단백질의 수용성 단편 폴리펩타이드 및 삼량체 형성 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드를 유효성분으로 포함하는 SARS CoV 예방 및 치료용 백신 조성물이 제공된다.According to one aspect of the present invention, there is provided a vaccine composition for preventing and treating SARS CoV comprising a polynucleotide encoding a fusion protein comprising a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov and a trimer forming protein as an active ingredient do.
상기 백신 조성물에 있어서, 상기 S1 당단백질은 서열번호 1로 기재되는 아미노산 서열을 포함할 수 있다.In the vaccine composition, the S1 glycoprotein may include the amino acid sequence set forth in SEQ ID NO: 1.
상기 백신 조성물에 있어서, 상기 S1 당단백질을 암호화하는 폴리뉴클레오타이드는 서열번호 27 내지 29로 기재되는 핵산서열 중 어느 하나를 포함할 수 있다.In the vaccine composition, the polynucleotide encoding the S1 glycoprotein may include any one of the nucleic acid sequences set forth in SEQ ID NOs: 27 to 29.
상기 백신 조성물에 있어서, 상기 S2 당단백질 또는 그의 면역원성 단편은 막통과 도메인 및 세포내 도메인이 제거된 것일 수 있다.In the vaccine composition, the S2 glycoprotein or immunogenic fragment thereof may have a transmembrane domain and an intracellular domain removed.
상기 백신 조성물에 있어서 상기 S2 당단백질은 서열번호 2로 기재되는 아미노산 서열을 포함할 수 있다.In the vaccine composition, the S2 glycoprotein may include an amino acid sequence set forth in SEQ ID NO: 2.
상기 S2 당단백질은 서열번호 30 또는 31로 기재되는 핵산서열을 갖는 폴리뉴클레오타이드에 의해 암호화될 수 있다.The S2 glycoprotein may be encoded by a polynucleotide having a nucleic acid sequence set forth in SEQ ID NO: 30 or 31.
상기 백신 조성물에 있어서, 상기 S1 당단백질 및 S2 당단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드는 서열번호 36 또는 37로 기재되는 핵산서열을 포함할 수 있다.In the vaccine composition, the polynucleotide encoding the fusion protein comprising the S1 glycoprotein and the S2 glycoprotein may include a nucleic acid sequence set forth in SEQ ID NO: 36 or 37.
상기 백신 조성물에 있어서, 상기 삼량체 형성 단백질은, CD40L 엑토도메인, T4 박테리오파지 피브리틴(fibritin), Fas 리간드, 41BB, OX40L, CD70, TRAIL, 또는 서펙틴일 수 있고, 상기 CD40L 엑토도메인은 N-말단 도메인(1-112 a.a.)이 제거된 가용성 CD40L(sCD40L)일 수 있으며, 서열번호 3으로 기재되는 아미노산 서열을 포함할 수 있다. 상기 서펙틴은 서펙틴 A 또는 서펙틴 D일 수 있다.In the vaccine composition, the trimer forming protein may be CD40L ectodomain, T4 bacteriophage fibritin, Fas ligand, 41BB, OX40L, CD70, TRAIL, or serfectin, and the CD40L ectodomain is N - It may be a soluble CD40L (sCD40L) from which the terminal domain (1-112 aa) has been removed, and may include the amino acid sequence shown in SEQ ID NO: 3. The surfectin may be surfectin A or surfectin D.
상기 백신 조성물에 있어서, 상기 S1 당단백질 및 CD40L 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드는 서열번호 38로 기재되는 핵산서열을 포함할 수 있다.In the vaccine composition, the polynucleotide encoding the fusion protein comprising the S1 glycoprotein and the CD40L protein may include the nucleic acid sequence set forth in SEQ ID NO: 38.
상기 백신 조성물에 있어서 상기 S1 당단백질, 및 S2 당단백질; 및 삼량체 형성 단백질을 포함하는 융합단백질을 암호화하는 폴리뉴클레오타이드는 서열번호 38 또는 39로 기재되는 핵산서열을 포함할 수 있다.In the vaccine composition, the S1 glycoprotein, and the S2 glycoprotein; And the polynucleotide encoding the fusion protein comprising the trimer forming protein may include a nucleic acid sequence set forth in SEQ ID NO: 38 or 39.
본 문서에서 사용되는 용어 "면역원성 단편"은 항원 단백질을 절단하여 생성된 단편 중 생체 내에서 면역반응을 유발할 수 있는 단편을 의미한다. 이러한 단편의 최소단위로는 에피토프(epitope)를 들 수 있다.As used herein, the term “immunogenic fragment” refers to a fragment capable of inducing an immune response in vivo among fragments generated by cleaving an antigenic protein. The smallest unit of such a fragment may be an epitope.
본 문서에서 사용되는 용어 "융합단백질"은 둘 이상의 단백질 또는 단백질 내 특정 기능을 담당하는 도메인이 연결된 재조합 단백질(recombinant protein)을 의미한다. 상기 둘 이상의 단백질 또는 도메인 사이에는 통상적으로 유연한 구조를 갖는 링커(linker) 펩타이드가 삽입될 수 있는데, 연결되는 폴리펩타이드의 본래의 기능을 제한하지 않고, 융합단백질의 발현을 저해하지 않는 유연성 펩타이드 링커라면 어느 것이라도 사용이 가능하며, 구체적인 예시는 상술한 바와 같다.As used herein, the term “fusion protein” refers to a recombinant protein in which two or more proteins or domains responsible for specific functions within the protein are linked. A linker peptide having a generally flexible structure may be inserted between the two or more proteins or domains, if it is a flexible peptide linker that does not limit the original function of the linked polypeptide and does not inhibit the expression of the fusion protein Any one can be used, and specific examples are as described above.
상기 조성물에 있어서, 상기 S2 당단백질 또는 그의 면역원성 단편은 막통과 도메인 및 세포질내 도메인이 제거된 것일 수 있다. 상기 CD40L 엑토도메인은 N-말단 도메인(1-112 a.a)이 제거된 가용성 CD40L(sCD40L)일 수 있다. In the composition, the S2 glycoprotein or immunogenic fragment thereof may have a transmembrane domain and an intracytoplasmic domain removed. The CD40L ectodomain may be soluble CD40L (sCD40L) from which the N-terminal domain (1-112 a.a) has been removed.
상기 백신 조성물이 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함할 경우 상기 융합 단백질은 융합파트너 사이에 하나 이상의 링커 펩타이드를 포함할 수 있으며, 상기 링커 펩타이드는 공지된 그 어떠한 것이라도 사용하는 것이 가능하다. 이러한 링커의 예로는 (GS)5(서열번호 4), (G4S, 서열번호 5)n, (GSSGGS, 서열번호 6)n, KESGSVSSEQLAQFRSLD(서열번호 7), EGKSSGSGSESKST(서열번호 8), GSAGSAAGSGEF(서열번호 9), (EAAAK, 서열번호 10)n, CRRRRRREAEAC(서열번호 11), A(EAAAK)4ALEA(EAAAK)4A(서열번호 12), GGGGGGGG(서열번호 13), GGGGGG(서열번호 14), AEAAAKEAAAAKA(서열번호 15), PAPAP(서열번호 16), (Ala-Pro)n, VSQTSKLTRAETVFPDV(서열번호 17), PLGLWA(서열번호 18), TRHRQPRGWE(서열번호 19), AGNRVRRSVG(서열번호 20), RRRRRRRR(서열번호 21), GFLG(서열번호 22), 및 GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE(서열번호 23) 등이 사용될 수 있다.When the vaccine composition includes a polynucleotide encoding a fusion protein, the fusion protein may include one or more linker peptides between fusion partners, and any known linker peptide may be used. Examples of such linkers include (GS) 5 (SEQ ID NO: 4), (G 4 S, SEQ ID NO: 5) n , (GSSGGS, SEQ ID NO: 6) n , KESGSVSSEQLAQFRSLD (SEQ ID NO: 7), EGKSSGSGSESKST (SEQ ID NO: 8), GSAGSAAGSGEF (SEQ ID NO: 9), (EAAAK, SEQ ID NO: 10) n, CRRRRRREAEAC (SEQ ID NO: 11), A (EAAAK) 4 ALEA (EAAAK) 4 A (SEQ ID NO: 12), GGGGGGGG (SEQ ID NO: 13), GGGGGG (SEQ ID NO: 11) 14), AEAAAKEAAAAKA (SEQ ID NO: 15), PAPAP (SEQ ID NO: 16), (Ala-Pro) n , VSQTSKLTRAETVFPDV (SEQ ID NO: 17), PLGLWA (SEQ ID NO: 18), TRHRQPRGWE (SEQ ID NO: 19), AGNRVRRSVG (SEQ ID NO: 20) ), RRRRRRRR (SEQ ID NO: 21), GFLG (SEQ ID NO: 22), and GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE (SEQ ID NO: 23) can be used.
아울러, 상기 S1 단백질 또는 상기 융합 단백질은 N-말단에 단백질 분비를 위한 분비 신호서열을 포함할 수 있다. 상기 분비 신호서열은 공지된 그 어떠한 것이든 사용할 수 있는데 예컨대, tPA(tissue plasminogen activator) 신호서열(서열번호 24), HSV gDs(단순포진 바이러스 당단백질 Ds) 신호서열 또는 성장호르몬 신호서열일 수 있다. In addition, the S1 protein or the fusion protein may include a secretion signal sequence for protein secretion at the N-terminus. Any known secretion signal sequence may be used, for example, a tissue plasminogen activator (tPA) signal sequence (SEQ ID NO: 24), an HSV gDs (herpes simplex virus glycoprotein Ds) signal sequence, or a growth hormone signal sequence. .
본 문서에서 사용되는 용어 "작동 가능하게 연결된(operably linked to)"이란 목적으로 하는 핵산서열(예컨대, 시험관내 전사/번역 시스템에서 또는 숙주세포에서)이 그의 발현이 이루어질 수 있도록 하는 방식으로 상기 조절서열에 연결되어 있다는 것을 의미한다. 상기 "조절서열"이란 용어는 프로모터, 인핸서 및 다른 조절 요소(예, 폴리아데닐화 신호)를 포함하는 의미이다. 조절서열에는 많은 숙주세포에서 목적으로 하는 핵산이 항상적으로 발현될 수 있도록 지시하는 것, 특정한 조직세포에서만 목적으로 하는 핵산이 발현될 수 있도록 지시하는 것(예, 조직특이적 조절서열), 그리고 특정 신호에 의해 발현이 유도되도록 지시하는 것(예, 유도성 조절서열)이 포함된다. 발현벡터의 설계는 형질전환될 숙주세포의 선택 및 원하는 단백질 발현의 수준 등과 같은 인자에 따라 달라질 수 있다는 것은 당업자라면 이해할 수 있다. 본 발명의 발현벡터는 숙주세포에 도입되어 상기 융합 단백질을 발현할 수 있다. 상기 진핵세포 및 원핵세포에서 발현을 가능하게 하는 조절서열들은 당업자에게 잘 알려져 있다. 상술한 바와 같이, 이들은 보통 전사개시를 담당하는 조절서열들 및, 선택적으로 전사물의 전사종결 및 안정화를 담당하는 폴리-A 신호를 포함한다. 추가적인 조절서열들은 전사조절인자 외에도 번역 증진인자 및/또는 천연-조합 또는 이종성 프로모터 영역을 포함할 수 있다. 예를 들어 포유류 숙주세포에서 발현을 가능하게 하는 가능한 조절서열들은 CMV-HSV 티미딘 키나아제 프로모터, SV40, RSV(로우스 육종 바이러스)-프로모터, 인간 연장 요소 1α(hEF1α)-프로모터, 글루코코르티코이드-유도성 MMTV-프로모터(몰로니 마우스 종양 바이러스), 메탈로티오네인-유도성 또는 테트라사이클린-유도성 프로모터 또는, CMV 프로모터 또는 SV40 프로모터와 같은 프로모터를 포함한다. 신경 세포 내 발현을 위해, 신경미세섬유-프로모터(neurofilament-promoter), PGDF-프로모터, NSE-프로모터, PrP-프로모터 또는 thy-1-프로모터들이 사용될 수 있다는 것이 고려되고 있다. 상기 프로모터들은 당 분야에 알려져 있으며, 문헌(Charron, J. Biol. Chem. 270: 25739-25745, 1995)에 기술되어 있다. 원핵세포 내 발현을 위해, lac 프로모터, tac 프로모터 또는 trp 프로모터를 포함하는 다수의 프로모터들이 개시되어 있다. 전사를 개시할 수 있는 인자들 외에, 상기 조절서열들은 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 하류(downstream)에 SV40-폴리-A 부위 또는 TK-폴리-A 부위와 같은 전사 종결 신호를 포함할 수도 있다. 본 문서에서, 적당한 발현 벡터들은 당 분야에 알려져 있으며, 그 예로는 오카야마-베르그(Okayama-Berg) cDNA 발현 벡터 pcDV1(Parmacia), pRc/CMV, pcDNA1, pcDNA3(In-vitrogene), pSPORT1(GIBCO BRL), pGX27(특허 제1442254호), pX(Pagano, Science 255: 1144-1147, 1992), 효모 2-혼성(two-hybrid) 벡터, 가령 pEG202 및 dpJG4-5(Gyuris, Cell 75: 791-803, 1995) 또는 원핵 발현 벡터, 가령 람다 gt11 또는 pGEX(Amersham-Pharmacia)가 있다. 본 발명의 핵산 분자들 외에, 벡터는 분비신호를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 상기 분비신호들은 당업자에게 잘 알려져 있다. 그리고, 사용된 발현 시스템에 따라, 융합 단백질을 세포 구획으로 이끌 수 있는 리더서열(leader sequence)이 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 코딩 서열에 조합되며, 바람직하게는 해독된 단백질 또는 이의 단백질을 세포질 주변 또는 세포외 매질로 직접 분비할 수 있는 리더서열이다. As used herein, the term "operably linked to" means that a nucleic acid sequence of interest (eg, in an in vitro transcription/translation system or in a host cell) is regulated in such a way that its expression can be achieved. It means that it is connected to the sequence. The term "regulatory sequence" is meant to include promoters, enhancers and other regulatory elements (eg, polyadenylation signals). Regulatory sequences include instructing that a target nucleic acid can be constitutively expressed in many host cells, instructing the expression of a target nucleic acid only in specific tissue cells (eg, tissue-specific regulatory sequences), and This includes directing expression to be induced by a specific signal (eg, an inducible regulatory sequence). It can be understood by those skilled in the art that the design of the expression vector may vary depending on factors such as the selection of the host cell to be transformed and the level of desired protein expression. The expression vector of the present invention can be introduced into a host cell to express the fusion protein. Regulatory sequences enabling expression in eukaryotic and prokaryotic cells are well known to those skilled in the art. As described above, they usually contain regulatory sequences responsible for initiation of transcription and, optionally, poly-A signals responsible for termination and stabilization of transcripts. Additional regulatory sequences may include, in addition to transcriptional regulators, translation enhancers and/or natively-combined or heterologous promoter regions. Possible regulatory sequences enabling expression in mammalian host cells, for example, include the CMV-HSV thymidine kinase promoter, SV40, RSV (Rous sarcoma virus)-promoter, human elongation element 1α (hEF1α)-promoter, glucocorticoid-inducing promoters such as the sexual MMTV-promoter (Moloni mouse tumor virus), metallothionein-inducible or tetracycline-inducible promoter, or CMV promoter or SV40 promoter. For expression in neurons, it is contemplated that neurofilament-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter may be used. Such promoters are known in the art and are described in Charron, J. Biol. Chem. 270: 25739-25745, 1995. For expression in prokaryotes, a number of promoters have been disclosed, including the lac promoter, the tac promoter or the trp promoter. In addition to factors capable of initiating transcription, the regulatory sequences include transcription termination signals such as SV40-poly-A site or TK-poly-A site downstream of the polynucleotide according to an embodiment of the present invention. You may. In this document, suitable expression vectors are known in the art, for example, Okayama-Berg cDNA expression vectors pcDV1 (Parmacia), pRc/CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL) ), pGX27 (Patent No. 1442254), pX (Pagano, Science 255: 1144-1147, 1992), yeast two-hybrid vectors such as pEG202 and dpJG4-5 (Gyuris, Cell 75: 791-803) , 1995) or prokaryotic expression vectors such as lambda gt11 or pGEX (Amersham-Pharmacia). In addition to the nucleic acid molecules of the present invention, the vector may further comprise a polynucleotide encoding a secretion signal. The secretion signals are well known to those skilled in the art. And, depending on the expression system used, a leader sequence capable of directing the fusion protein to the cell compartment is combined with the coding sequence of the polynucleotide according to an embodiment of the present invention, preferably the translated protein or its It is a leader sequence capable of directly secreting a protein into the periplasmic or extracellular medium.
상기 백신 조성물은 하나 또는 둘 이상의 면역증진 펩타이드를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있고, 이 경우 상기 면역증진 펩타이드는 상기 S1 당단백질 또는 융합 단백질에 연결된 융합 단백질의 형태로 발현될 수 있는데, 이 경우 상기 면역증진 펩타이드는 상기 S1 당단백질 또는 융합 단백질의 N-말단 또는 C-말단에 부가되거나 중간에 삽입될 수 있으며, 상기 면역증진 펩타이드는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD40, CD40L, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKG2D(natural-killer group 2, member D)/DAP12(DNAX-activating protein 12), TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), Flt3 리간드(fms-like tyrosine kinase 3 ligand), 플라겔린(flagellin), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체일 수 있다.The vaccine composition may further comprise a polynucleotide encoding one or more immuno-enhancing peptides, in which case the immuno-enhancing peptide may be expressed in the form of a fusion protein linked to the S1 glycoprotein or fusion protein, In this case, the immuno-enhancing peptide may be added to the N-terminus or C-terminus of the S1 glycoprotein or the fusion protein or inserted in the middle, and the immuno-enhancing peptide may be CD28, ICOS (inducible costimulator), CTLA4 (cytotoxic T lymphocyte). associated protein 4), PD1 (programmed cell death protein 1), BTLA (B and T lymphocyte associated protein), DR3 (death receptor 3), 4-1BB, CD2, CD40, CD40L, CD30, CD27, SLAM (signaling lymphocyte activation) molecule), 2B4 (CD244), NKG2D (natural-killer group 2, member D)/DAP12 (DNAX-activating protein 12), TIM1 (T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226 , CD160, LAG3 (lymphocyte activation gene 3), B7-1, B7-H1, GITR (glucocorticoid-induced TNFR family related protein), Flt3 ligand (fms-like tyrosine kinase 3 ligand), flagellin, HVEM ( herpesvirus entry mediator) or the cytoplasmic domain of OX40L [ligand for CD134 (OX40), CD252], or a linkage of two or more thereof.
상기 조성물에 있어서, 상기 Flt3 리간드는 서열번호 25로 구성되는 폴리펩타이드일 수 있다.In the composition, the Flt3 ligand may be a polypeptide consisting of SEQ ID NO: 25.
아울러, 상기 유전자 컨스트럭트는 제조 및 조작의 편의를 위해 플라스미드 벡터와 같은 발현벡터의 형태로 제공될 수 있다.In addition, the gene construct may be provided in the form of an expression vector such as a plasmid vector for convenience of manufacture and manipulation.
또한, 본 발명에서 사용되는 벡터는 예를 들면, 표준 재조합 DNA 기술에 의하여 제조될 수 있으며, 표준 재조합 DNA 기술에는 예를 들면, 평활말단 및 접착말단 라이게이션, 적절한 말단을 제공하기 위한 제한 효소 처리, 부적합한 결합을 방지하기 위하여 알칼리 포스파테이즈 처리에 의한 인산기 제거 및 T4 DNA 라이게이즈에 의한 효소적 연결 등이 포함된다. 화학적 합성 또는 유전자 재조합 기술에 의하여 얻어진 신호 펩타이드를 코딩하는 DNA, 본 발명의 일 실시예에 따른 융합단백질을 암호화하는 DNA를 적절한 조절서열이 포함되어 있는 벡터에 재조합함으로써 본 발명의 벡터가 제조될 수 있다. 상기 조절 서열이 포함되어 있는 벡터는 상업적으로 구입 또는 제조할 수 있으며, 본 발명의 일 실시예에서는 DNA 백신 제조용 벡터인 pGX27(한국 등록특허 제1442254호)을 사용하였다.In addition, the vector used in the present invention can be prepared by, for example, standard recombinant DNA technology, and standard recombinant DNA technology includes, for example, blunt-end and adherent-end ligation, restriction enzyme treatment to provide an appropriate end. , phosphate group removal by alkaline phosphatase treatment and enzymatic ligation by T4 DNA ligase to prevent improper binding. The vector of the present invention can be prepared by recombination of a DNA encoding a signal peptide obtained by chemical synthesis or genetic recombination technology, or a DNA encoding a fusion protein according to an embodiment of the present invention, into a vector containing an appropriate regulatory sequence. have. The vector containing the control sequence can be purchased or manufactured commercially, and in an embodiment of the present invention, pGX27 (Korean Patent No. 1442254), which is a vector for preparing a DNA vaccine, was used.
본 발명의 일 실시예에 따른 상기 발현벡터는 숙주세포에서 상기 융합단백질을 발현하도록 할 수 있는 발현벡터일 수 있으며, 상기 발현벡터는 플라스미드 벡터, 바이러스 벡터, 코스미드 벡터, 파지미드 벡터, 인공 인간 염색체 등 그 어떠한 형태를 나타내더라도 무방하다.The expression vector according to an embodiment of the present invention may be an expression vector capable of expressing the fusion protein in a host cell, and the expression vector is a plasmid vector, a viral vector, a cosmid vector, a phagemid vector, or an artificial human. Any form, such as chromosomes, may be represented.
본 발명의 다른 일 관점에 따르면, 상기 벡터로 숙주세포를 형질전환시킨 형질전환 숙주세포가 제공된다. 상기 숙주세포는 세균, 진균, 식물 세포 또는 동물 세포일 수 있고, 상기 세균은 그람음성균, 그람양성균일 수 있으며, 상기 동물 세포는 곤충세포 또는 포유동물 세포일 수 있다. 상기 포유동물 세포는 쥐, 생쥐, 원숭이, 햄스터, 개, 말, 소, 고양이, 돼지, 코끼리, 원숭이, 영장류 또는 인간으로부터 분리된 초도배양 세포 또는 확립된 세포주일 수 있다. 이러한 숙주세포는 본 발명의 일 실시예에 따른 유전자 컨스트럭트의 형질전환에 의해 백신에 사용될 수 있는 항원 단백질의 생산에 사용될 수 있다.According to another aspect of the present invention, there is provided a transformed host cell in which the host cell is transformed with the vector. The host cell may be a bacterium, a fungus, a plant cell, or an animal cell, the bacterium may be a gram-negative bacteria or a gram-positive bacteria, and the animal cell may be an insect cell or a mammalian cell. The mammalian cells may be primary cells or established cell lines isolated from rats, mice, monkeys, hamsters, dogs, horses, cattle, cats, pigs, elephants, monkeys, primates or humans. Such host cells can be used for the production of antigenic proteins that can be used in vaccines by transformation of the gene construct according to an embodiment of the present invention.
상기 백신 조성물은 하나 이상의 약학적으로 허용 가능한 백신 면역보조제를 포함할 수 있다. 상기 백신 면역보조제로는 알루미늄 하이드록사이드, 알루미늄 포스페이트, 알룸(포타슘 알루미늄 설페이트), MF59, 비로좀(virosome), AS04[알루미늄 하이드록사이드 및 모노포스포릴 리피드 A(MPL)의 혼합물], AS03(DL-α-tocopherol, squalene 및 유화제인 polysorbate 80의 혼합물), CpG, 플라겔린(flagellin), Poly I:C, AS01, AS02, ISCOMs 및 ISCOMMATRIX 등이 사용될 수 있다. 본 문서에서 사용되는 용어 "보조제(adjuvant)" 또는 "백신 면역보조제(vaccine adjuvant)"는 백신의 면역반응을 향상시킬 목적으로 투여되는 약학적 또는 면역학적 제제를 의미한다.The vaccine composition may include one or more pharmaceutically acceptable vaccine adjuvants. The vaccine adjuvant includes aluminum hydroxide, aluminum phosphate, alum (potassium aluminum sulfate), MF59, virosome, AS04 [a mixture of aluminum hydroxide and monophosphoryl lipid A (MPL)], AS03 ( DL-α-tocopherol, a mixture of squalene and the emulsifier polysorbate 80), CpG, flagellin, Poly I:C, AS01, AS02, ISCOMs and ISCOMMATRIX, etc. can be used. As used herein, the term “adjuvant” or “vaccine adjuvant” refers to a pharmaceutical or immunological agent administered for the purpose of enhancing the immune response of a vaccine.
선택적으로 상기 백신 조성물은 상술한 백신 면역보조제와 함께 또는 대신에 IL-12 단백질 및 IL-21 단백질을 유효성분으로 포함하거나 상기 IL-12 단백질을 암호화하는 폴리뉴클레오타이드 및 상기 IL-21 단백질을 암호화하는 폴리뉴클레오타이드를 유효성분으로 포함하는 T 림프구 특이적 면역반응 촉진용 백신 면역보조제를 포함할 수 있다.Optionally, the vaccine composition comprises IL-12 protein and IL-21 protein as active ingredients together with or instead of the above-described vaccine adjuvant, or a polynucleotide encoding the IL-12 protein and a polynucleotide encoding the IL-21 protein. It may include a vaccine adjuvant for promoting a T lymphocyte-specific immune response comprising a polynucleotide as an active ingredient.
상기 조성물은 상기 담체 외에 약학적으로 허용가능한 보조제, 부형제 또는 희석제를 추가적으로 포함할 수 있다.The composition may further include a pharmaceutically acceptable adjuvant, excipient or diluent in addition to the carrier.
본 문서에서 사용되는 용어 "약학적으로 허용가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. As used herein, the term "pharmaceutically acceptable" refers to a composition that is physiologically acceptable and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions when administered to humans. Examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
또한, 본 발명에 일 실시예에 따른 백신 조성물은 포유동물에 투여 시, 활성 성분의 신속한 방출, 또는 지속 또는 지연된 방출이 가능하도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 형태를 포함한다. In addition, the vaccine composition according to an embodiment of the present invention may be formulated using methods known in the art to enable rapid, sustained or delayed release of the active ingredient when administered to a mammal. Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
본 발명의 일 실시예에 따른 백신 조성물은 다양한 경로로 투여될 수 있으며, 예를 들면, 경구, 비경구, 예를 들면 좌제, 경피, 정맥, 복강, 근육내, 병변내, 비강, 척추관내 투여로 투여될 수 있으며, 또한 서방형 또는 연속적 또는 반복적 방출을 위한 이식장치를 사용하여 투여될 수 있다. 투여횟수는 원하는 범위 내에서 하루에 1회, 또는 수회로 나누어 투여할 수 있으며, 투여 기간도 특별히 한정되지 않는다. The vaccine composition according to an embodiment of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intravertebral administration In addition, it can be administered using an implantation device for sustained release or continuous or repeated release. The number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
본 발명의 일 실시예에 따른 백신 조성물은 일반적인 전신성 투여 또는 국소성 투여, 예컨대, 근육내 주사 또는 정맥 주사 방식으로 투여될 수 있으나, DNA 백신 조성물로 제공되는 경우, 가장 바람직하게는 전기천공기(electroporator)를 이용하여 주입될 수 있다. 상기 전기천공기는 시판 중인 DNA 약물 체내 주입용 전기천공기, 예컨대, 이탈리아의 IGEA 사의 GlinporatorTM, 한국의 JCBIO사의 CUY21EDIT, 스위스의 Supertech사의 SP-4a, 에스엘백시젠 사(대한민국)의 OrbiJector® 등이 사용될 수 있다.The vaccine composition according to an embodiment of the present invention may be administered by general systemic administration or local administration, for example, intramuscular injection or intravenous injection, but when provided as a DNA vaccine composition, most preferably an electroporator can be injected using The electroporation machine is a commercially available electroporator for DNA drug injection, such as Glinporator TM of IGEA of Italy, CUY21EDIT of JCBIO of Korea, SP-4a of Supertech of Switzerland, OrbiJector ® of SL Vaxigen (Korea), etc. can be used
본 발명의 일 실시예에 따른 백신 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 이와 같은 투여경로는 비경구 투여, 예를 들어, 복강 내 투여, 정맥 내 투여, 근육내 투여, 피하 투여, 활막강 내 투여될 수 있으나, 이에 제한되지는 않는다. The route of administration of the vaccine composition according to an embodiment of the present invention may be administered through any general route as long as it can reach the target tissue. Such administration route may be parenteral administration, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intrasynovial administration, but is not limited thereto.
본 발명에 일 실시예에 따른 백신 조성물은 일반적으로 사용되는 약학적으로 허용가능한 담체와 함께 적합한 형태로 제형화될 수 있다. 약학적으로 허용되는 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 또한 본 발명에 따른 조성물은 그 투여방법이나 제형에 따라 필요한 경우, 현탁제, 용해보조제, 안정화제, 등장화제, 보존제, 흡착방지제, 계면활성화제, 희석제, 부형제, pH 조정제, 무통화제, 완충제, 산화방지제 등을 적절히 포함할 수 있다. 상기에 예시된 것들을 비롯하여 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 최신판]에 상세히 기재되어 있다. The vaccine composition according to an embodiment of the present invention may be formulated in a suitable form together with a commonly used pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycol, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives are benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. In addition, the composition according to the present invention may contain a suspending agent, a solubilizing agent, a stabilizer, an isotonic agent, a preservative, an adsorption inhibitor, a surfactant, a diluent, an excipient, a pH adjuster, an analgesic agent, a buffer, Antioxidants and the like may be included as appropriate. Pharmaceutically acceptable carriers and agents suitable for the present invention, including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
아울러 본 발명의 백신 조성물은 예방을 위해 필요한 양 또는 치료적으로 유효한 양으로 투여된다.In addition, the vaccine composition of the present invention is administered in an amount necessary for prevention or a therapeutically effective amount.
본 문서에서 사용되는 용어 "치료적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 백신 조성물 또는 약학적 조성물은 0.05 mg/dose 내지 100 mg/dose의 용량으로 투여될 수 있으며, 더 바람직하게는 0.1 mg/dose 내지 10 mg/dose의 투여량으로 투여된다. 한편, 상기 투여량은 환자의 나이, 성별 및 상태에 따라 적절히 조절될 수 있다.As used herein, the term "therapeutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and effective dose level includes the subject type and severity, age, sex, drug activity, sensitivity to drugs, administration time, administration route and excretion rate, duration of treatment, factors including concurrent drugs, and other factors well known in the medical field. The vaccine composition or pharmaceutical composition of the present invention may be administered at a dose of 0.05 mg/dose to 100 mg/dose, more preferably 0.1 mg/dose to 10 mg/dose. Meanwhile, the dosage may be appropriately adjusted according to the patient's age, sex, and condition.
본 발명의 다른 일 관점에 따르면, 상기 백신 조성물을 개체에 투여하는 단계를 포함하는 상기 개체의 SARS CoV 감염증 예방 및 치료방법이 제공된다.According to another aspect of the present invention, there is provided a method for preventing and treating SARS-CoV infection in the subject, comprising administering the vaccine composition to the subject.
상기 치료방법에 있어서, 상기 SARS CoV는 중증급성호흡기증후군(SARS) Cov-1, 또는 SARS Cov-2일 수 있으며, 특히 SARS Cov-2는 최근 전세계적으로 유행하는 신종코로나 바이러스 질환(COVID-19; 30 January 2020 the World Health Organization declared Coronavirus Disease 2019)을 유발하는 병원성 바이러스이다.In the treatment method, the SARS CoV may be Severe Acute Respiratory Syndrome (SARS) Cov-1, or SARS Cov-2, in particular, SARS Cov-2 is a novel coronavirus disease (COVID-19) that is currently prevalent worldwide. 30 January 2020 the World Health Organization declared Coronavirus Disease 2019).
상기 방법에 있어서, 상기 백신 조성물은 생체 내 전기천공법에 의해 투여될 수 있다.In the above method, the vaccine composition may be administered by in vivo electroporation.
이하, 실시예 및 실험예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail through Examples and Experimental Examples. However, the present invention is not limited to the examples and experimental examples disclosed below, but can be implemented in various different forms, and the following examples and experimental examples make the disclosure of the present invention complete, and to which the present invention belongs. It is provided to fully inform those of ordinary skill in the art the scope of the invention.
실시예: CoV DNA 백신의 고안Example: Design of CoV DNA Vaccines
CoV S 당단백질을 항원으로 하여 효과적인 면역 반응을 유도할 수 있는 백신 조성물의 제조를 위해서는 CoV S 당단백질의 항원 유전자 컨스트럭트의 고안이 필요하지만, COVID-19의 병원성 바이러스인 SARS Cov-2 S 당단백질의 아미노산 서열과 개별 도메인에 대한 구체적인 위치 정보는 아직까지 알려져 있지 않다. In order to prepare a vaccine composition that can induce an effective immune response using CoV S glycoprotein as an antigen, it is necessary to design an antigen gene construct of CoV S glycoprotein, but SARS Cov-2 S, the pathogenic virus of COVID-19 Specific positional information for the amino acid sequence and individual domains of glycoproteins is not yet known.
이에, 본 발명자들은 항원 유전자 컨스트럭트를 고안함에 있어 그 서열과 도메인의 위치를 토대로 어느 위치까지 항원으로 디자인할 지 결정하는 것이 효과적인 백신을 개발하는 데 가장 중요한 포인트임을 고려하여, 우선적으로 미국 국립보건원(NIH)의 유전자 서열 데이터베이스인 GenBank(//www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs)에서 확인된 45종의 SARS-CoV-2 뉴클레오티드 서열을 기반으로 Jalview 소프트웨어(//www.jalview.org/)를 이용하여 CoV의 S 당단백질의 대표 아미노산 서열을 도출하였다(도 3). 본 발명자들이 규명한 상기 CoV의 S 당단백질의 대표 아미노산 서열은 추후 공개된 NCBI 등재 대표 서열(NCBI Reference Sequence: YP_009724390.1)과 100% 동일한 것으로 확인하였으며, 이에, 본 발명자들은 본 문서에서 사용된 CoV S 당단백질의 도메인들의 아미노산 위치를 상기 대표서열과 동일한 서열번호 40을 기준으로 정하였다.Therefore, in designing the antigen gene construct, the present inventors consider that the most important point in developing an effective vaccine is to determine to what position the antigen is designed based on the sequence and the position of the domain. Based on 45 SARS-CoV-2 nucleotide sequences identified in the National Institutes of Health (NIH) gene sequence database, GenBank (http://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs). A representative amino acid sequence of the S glycoprotein of CoV was derived using Jalview software (http://www.jalview.org/) (FIG. 3). The representative amino acid sequence of the S glycoprotein of CoV identified by the present inventors was confirmed to be 100% identical to the NCBI reference sequence (NCBI Reference Sequence: YP_009724390.1) disclosed later. The amino acid positions of the domains of the CoV S glycoprotein were determined based on SEQ ID NO: 40, which is the same as the representative sequence.
이후, S1 서브유닛, S2 서브유닛, 막통과 도메인(TM)의 위치에 대한 S 당단백질 도메인 구조가 이미 규명되어 있는 다른 CoV 속(CoV genus; Middle East respiratory syndrome-related coronavirus(isolate United Kingdom/H123990006/2012) (Betacoronavirus England 1) (Human coronavirus EMC), Human SARS coronavirus(SARS-CoV, Severe acute respiratory syndrome coronavirus), Human coronavirus OC43(HCoV-OC43), Human coronavirus HKU1 (isolate N5)(HCoV-HKU1), Human coronavirus 229E(HCoV-229E), Human coronavirus NL63(HCoV-NL63))들의 도메인 서열을 비교 분석함과 동시에 문헌(Kleine-Weber H et al., Sci. Rep. 8(1): 16597, 2018)을 통해 밝혀진 보존된 아미노산 서열 정보와 SignalP-5.0 소프트웨어를 토대로 한 신호서열 절단 부위 예측 정보(도 4)를 모두 종합함으로써 상기 도출된 S 당단백질의 대표 아미노산 서열을 기준으로 각 도메인의 위치를 결정하였다(도 5). Then, another CoV genus (CoV genus; Middle East respiratory syndrome-related coronavirus (isolated United Kingdom/H123990006) in which the S glycoprotein domain structure for the position of the S1 subunit, S2 subunit, and transmembrane domain (TM) has already been identified /2012) (Betacoronavirus England 1) (Human coronavirus EMC), Human SARS coronavirus (SARS-CoV, Severe acute respiratory syndrome coronavirus), Human coronavirus OC43 (HCoV-OC43), Human coronavirus HKU1 (isolate N5) (HCoV-HKU1) , Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63)) and at the same time comparing and analyzing the domain sequences of the literature (Kleine-Weber H et al ., Sci. Rep . 8(1): 16597, 2018 ) to determine the position of each domain based on the representative amino acid sequence of the derived S glycoprotein by synthesizing both the conserved amino acid sequence information revealed through and SignalP-5.0 software-based signal sequence cleavage site prediction information (FIG. 4) was done (FIG. 5).
그런 다음, 도 5에 기재된 결정된 도메인 정보를 바탕으로 네 가지 형태의 유전자 컨스트럭트를 고안하였다(표 1 및 도 6). 구체적으로, S1 서브유닛 단독만 포함한 형태(도 6a, 실시예 1) 또는 S1/S2 서브유닛 모두 포함한 형태(도 6b, 실시예 2)로 구분하여 고안하였다. S2 서브유닛의 경우 세포 내에서 발현된 항원이 효과적으로 세포 밖으로 노출될 수 있도록 막통과 도메인 및 세포질 내 꼬리(intracellular tail, IC) 부분은 제거하도록 고안하였다(S2ΔTM/IC). Then, based on the determined domain information described in FIG. 5, four types of gene constructs were devised (Table 1 and FIG. 6). Specifically, the design was divided into a form including only the S1 subunit (FIG. 6a, Example 1) or a form including both S1/S2 subunits (FIG. 6b, Example 2). In the case of the S2 subunit, the transmembrane domain and the intracellular tail (IC) part were designed to be removed so that the antigen expressed in the cell can be effectively exposed outside the cell (S2 ΔTM/IC ).
아울러, 효과적인 중화 항체 반응을 유도하기 위해서는 온전한 형태(intact form)의 항원이 체내에 형성 및 노출되도록 하는 것이 매우 중요하다. CoV S 당단백질은 삼량체 사전-융합 형태(trimer pre-fusion form)으로 존재하기 때문에 백신에서 만들어지는 CoV S 당단백질은 삼량체 사전-융합 형태이어야 한다. 표적 단백질을 삼량체화할 수 있는 여러 방법이 있을 수 있는데, 가령, T4 박테리오파지 피브리틴 삼량체화 모티프(bacteriophage fibritin trimerization motif(FT) 또는 계면활성 단백질 D(surfactant protein D, SPD)를 연결하는 방법이 있다(도 7).In addition, in order to induce an effective neutralizing antibody response, it is very important to form and expose the antigen in an intact form in the body. Since the CoV S glycoprotein exists in a trimer pre-fusion form, the CoV S glycoprotein produced in the vaccine must be in the trimer pre-fusion form. There may be several methods for trimerizing the target protein, for example, a method of linking a T4 bacteriophage fibritin trimerization motif (FT) or surfactant protein D (SPD). There is (Fig. 7).
본 발명자들은 CoV DNA 백신의 S 당단백질이 삼량체 사전-융합 형태로 생성될 뿐 아니라, 동시에 면역반응을 증가시킬 수 있는 구조가 될 수 있는 방안을 고안하였다. 구체적으로, 종양 괴사 인자 수용체 슈퍼패밀리(TNFRSF)의 리간드 중 하나인 CD40 리간드(CD40L)는 삼량체 형태로 CD40에 신호 전달을 주는 것으로 알려져 있고, 항체 면역 반응뿐만 아니라 세포성 면역반응까지 증가시키는 것으로 알려져 있다. 따라서 본 발명자들은 CoV S 당단백질과 가용성 CD40L을 연결한 형태의 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 백신을 고안하여 CoV S 당단백질이 효율적으로 삼량체 사전-융합 형태로 발현될 뿐만 아니라, 백신의 면역반응을 증가시킬 수 있도록 하였다(도 6c 및 6d, 실시예 3 및 4). The present inventors have devised a method in which the S glycoprotein of the CoV DNA vaccine can not only be produced in a trimeric pre-fusion form, but also have a structure capable of increasing the immune response at the same time. Specifically, CD40 ligand (CD40L), one of the ligands of the tumor necrosis factor receptor superfamily (TNFRSF), is known to signal transduction to CD40 in a trimeric form, and has been shown to increase not only the antibody immune response but also the cellular immune response. is known Therefore, the present inventors designed a vaccine comprising a polynucleotide encoding a fusion protein in the form of linking CoV S glycoprotein and soluble CD40L, so that the CoV S glycoprotein is efficiently expressed in the trimeric pre-fusion form, as well as the vaccine to increase the immune response of (Figs. 6c and 6d, Examples 3 and 4).
실시예Example 분비 신호서열
(상응 핵산서열)
secretory signal sequence
(corresponding nucleic acid sequence)
항원
(상응 핵산서열)
antigen
(corresponding nucleic acid sequence)
링커 펩타이드
(상응 핵산서열)
linker peptide
(corresponding nucleic acid sequence)
삼량체화 도메인
(상응 핵산서열)
trimerization domain
(corresponding nucleic acid sequence)
1One tPA(26)tPA (26) S1(27)S1(27) -- --
22 tPA(26)tPA (26) S1/S2△TM/IC(36)S1/S2 △TM/IC (36) -- --
33 tPA(26)tPA (26) S1(29)S1(29) (GS)5(32)(GS) 5 (32) sCD40L113-261(34)sCD40L 113-261 (34)
44 tPA(26)tPA (26) S1/S2△TM/IC(37)S1/S2 △TM/IC (37) (GS)5(33)(GS) 5 (33) sCD40L113-261(35)sCD40L 113-261 (35)
상기 실시예 1 내지 4와 같이 고안된 CoV DNA 백신 유전자 컨스트럭트를 합성한 후 pGX27 벡터(Genexine, Inc., 대한민국)에 삽입함으로써 DNA 백신용 발현벡터를 제조하였고(도 6), 이를 COVID-19 DNA 백신이라 칭하였다. After synthesizing the CoV DNA vaccine gene construct designed as in Examples 1 to 4, an expression vector for a DNA vaccine was prepared by inserting it into the pGX27 vector (Genexine, Inc., Korea) (FIG. 6), which It was called a DNA vaccine.
실험예 1: COVID-19 DNA 백신에 의한 단백질 발현 확인Experimental Example 1: Confirmation of protein expression by COVID-19 DNA vaccine
COS-7 세포 1 x 107 cells를 100 mm 배양접시에 파종하여 16시간 배양 후 4종의 COVID-19 DNA 백신 24 μg과 리포펙타민(lipofectamine) 2000 60 μL를 혼합하여 세포에 첨가한 뒤 37℃ CO2 배양기에서 4 ~ 5시간 반응시켜 유전자를 도입하고 배양배지를 교환하였다. 배지 교환 후 48시간 동안 배양한 뒤, 배양세포를 용해시켜 단백질을 추출하였다. 이후 추출된 단백질에 4x SDS 시료 완충액을 혼합하고 72 ℃에서 10분간 끓여주었다. 이 후 SDS gel을 이용하여 전기영동을 실시하였고, Gel 상의 단백질을 iBlot Gel transfer stacks nitrocellulose(Invitrogen)을 이용하여 이동시킨 후 SARS-CoV-2 spike에 특이적인 항체를 1 차 항체로 이용하여 4℃에서 밤새 반응하고, HRP-결합 2차 항체를 1:5000으로 희석하여 상온에서 1 시간 반응 시켰다. 위 항체와 반응성이 있는 밴드를 ECL(Enhanced chemiluminencence solution) 용액으로 발색시켜 COVID-19 DNA 백신에 도입된 유전자에 의해 발현되는 단백질 생성물을 검출하였다. 그 결과, COVID-19 DNA 백신이 도입된 COS-7 검체에서 SARS-CoV-2 전장 S 단백질 또는 S1 서브유닛 단백질을 CMV 프로모터를 이용하여 발현 시 예측되는 위치의 특이적 밴드를 통해 확인하였으며, 음성대조군에서는 특이적인 단백질이 검출되지 않았다(도 8). 이를 통해 본 발명의 항원 유전자 컨스트럭트의 발현 시스템이 정상적으로 작동함을 확인할 수 있었다.COS-7 cells 1 x 10 7 cells were seeded in a 100 mm culture dish and cultured for 16 hours. After 24 μg of 4 types of COVID-19 DNA vaccine and 60 μL of lipofectamine 2000 were mixed and added to the cells, 37 ℃ CO 2 In an incubator for 4 to 5 hours, the gene was introduced and the culture medium was exchanged. After culture for 48 hours after medium exchange, the cultured cells were lysed to extract proteins. Then, 4x SDS sample buffer was mixed with the extracted protein and boiled at 72 °C for 10 minutes. After that, electrophoresis was performed using SDS gel, and the protein on the gel was moved using iBlot Gel transfer stacks nitrocellulose (Invitrogen), and then an antibody specific for SARS-CoV-2 spike was used as the primary antibody at 4°C. overnight, and the HRP-conjugated secondary antibody was diluted 1:5000 and reacted at room temperature for 1 hour. The protein product expressed by the gene introduced into the COVID-19 DNA vaccine was detected by developing the band reactive with the above antibody with ECL (Enhanced chemiluminence solution) solution. As a result, the SARS-CoV-2 full-length S protein or the S1 subunit protein in the COS-7 sample introduced with the COVID-19 DNA vaccine was confirmed through a specific band at the predicted position when expressed using the CMV promoter, and negative No specific protein was detected in the control group (FIG. 8). Through this, it was confirmed that the expression system of the antigen gene construct of the present invention operates normally.
실험예 2: 마우스 모델에서 본 발명의 COVID-19 백신 효능 평가Experimental Example 2: Evaluation of the efficacy of the COVID-19 vaccine of the present invention in a mouse model
본 발명의 COVID-19 DNA 백신의 마우스 모델에서의 면역반응을 확인하기 위하여 도 9에 기재된 투여군과 스케줄을 토대로 마우스 실험을 수행하였다. In order to confirm the immune response in the mouse model of the COVID-19 DNA vaccine of the present invention, a mouse experiment was performed based on the administration group and schedule described in FIG. 9 .
2-1: 항체 반응2-1: Antibody reaction
BALB/c 마우스의 대퇴근육에 투여물을 50 μL/head씩 투여하고, 2주 간격으로 2회 반복 투여하였다. 모든 투여군에는 EP 카트리지 주사 바늘을 삽입한 채 EP device를 이용하여 EP(200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles)를 실시하였다. 백신 첫 투여시점을 기준으로 2주, 4주차에 혈청 내 항원 특이적 IgG 항체 역가 ELISA를 수행하여 COVID-19 백신의 면역원성을 평가하였다.50 μL/head of the administration was administered to the femoral muscle of BALB/c mice, and the administration was repeated twice at an interval of 2 weeks. In all administration groups, EP (200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles) was performed using an EP device with an EP cartridge injection needle inserted. The immunogenicity of the COVID-19 vaccine was evaluated by performing antigen-specific IgG antibody titer ELISA in serum at 2 and 4 weeks from the time of the first administration of the vaccine.
실험 결과는 (1) CD40L(CD40 ligand)의 결합에 의한 백신 면역반응증가 여부, (2) S 항원 구성요소(S1 서브유닛 또는 S1/S2 서브유닛) 사용 범위, 그리고 (3) 투여 횟수에 따른 면역원성 증가여부 등 총 4 가지의 비교항목으로 나누어 분석하였다. CD40L의 결합에 의한 백신 면역반응 증가 여부를 분석한 결과, 전반적으로 S 항원에 CD40L를 결합함에 따른 항체반응이 차이가 없거나 오히려 약간 감소하는 경향을 나타냈다(S1(25 μg) vs. S1-sCD40Lm(25 μg), p=0.075(2 weeks), p=0.69(4 weeks); S1/S2(25 μg) vs. S1/S2-sCD40Lm(25 μg), p=0.042(2 weeks), p=0.548(4 weeks)).Experimental results are based on (1) whether the vaccine immune response is increased by binding of CD40L (CD40 ligand), (2) the range of use of the S antigen component (S1 subunit or S1/S2 subunit), and (3) the frequency of administration. The analysis was divided into four comparison items, such as whether or not immunogenicity was increased. As a result of analyzing whether the vaccine immune response was increased by the binding of CD40L, there was no difference in overall antibody response due to the binding of CD40L to the S antigen, or rather, there was a tendency to decrease slightly (S1 (25 μg) vs. S1-sCD40Lm ( 25 μg), p=0.075 (2 weeks), p=0.69 (4 weeks);S1/S2 (25 μg) vs. S1/S2-sCD40Lm (25 μg), p=0.042 (2 weeks), p=0.548 (4 weeks)).
S 항원 서브유닛 사용범위에 따른 항원(S1+S2) 특이적 항체반응을 분석한 결과, S1 서브유닛 투여군과 S1/S2 서브유닛 투여군간의 S 항원에 대한 항체 반응에 유의한 차이가 나타내지 않았다(S1(25 μg) vs. S1/S2(25 μg), p=0.089(2 weeks), p=0.841(4 weeks); S1-sCD40Lm(25 μg) vs. S1/S2-sCD40Lm(25 μg), p=0.28(2 weeks), p=0.421(4 weeks)).As a result of analyzing the antigen (S1+S2) specific antibody response according to the range of use of the S antigen subunit, there was no significant difference in the antibody response to the S antigen between the S1 subunit administration group and the S1/S2 subunit administration group (S1). (25 μg) vs. S1/S2 (25 μg), p=0.089 (2 weeks), p=0.841 (4 weeks); S1-sCD40Lm (25 μg) vs. S1/S2-sCD40Lm (25 μg), p =0.28(2 weeks), p=0.421(4 weeks)).
투여 횟수(1회 또는 2회)에 따른 면역원성 증가여부를 관찰한 결과, 단회 투여만으로도 유의미한 항체 역가가 유도되었다. 부스팅 시 약간 증가하는 경향은 있으나 통계적으로 유의한 차이를 보이지는 않았다(Prime-boost: S1(25 μg), p=0.310; S1-sCD40Lm(25 μg), p=0.222; S1/S2(25 μg), p=0.056; S1/S2-sCD40Lm(25 μg), p=0.032). 다만 프라이밍 시 항체 역가가 낮았던 개체가 부스팅 후 항체반응이 증가하는 현상은 동일하게 나타났다. 이는 본 발명의 COVID-19 백신이 항체 반응을 증가시켜 바이러스 감염에 대한 예방 및 치료 효능을 나타낼 수 있는 효율적인 백신임을 입증하는 결과이다(도 10).As a result of observing whether immunogenicity increased according to the number of administrations (one or two), a significant antibody titer was induced only with a single administration. There was a tendency to slightly increase during boosting, but there was no statistically significant difference (Prime-boost: S1 (25 μg), p=0.310; S1-sCD40Lm (25 μg), p=0.222; S1/S2 (25 μg). ), p=0.056;S1/S2-sCD40Lm (25 μg), p=0.032). However, the phenomenon that the antibody reaction increased after boosting of the individual with low antibody titer during priming was the same. This is a result demonstrating that the COVID-19 vaccine of the present invention is an effective vaccine that can exhibit preventive and therapeutic efficacy against viral infection by increasing the antibody response (FIG. 10).
2-2: T 세포 반응2-2: T cell response
BALB/c 마우스의 대퇴근육에 투여물을 50 μL/head씩 투여하고, 2주 간격으로 2회 반복 투여하였다. 모든 투여군에는 EP 카트리지 주사 바늘을 삽입한 채 전기천공 장치를 이용하여 전기천공(electroporation, 200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles)을 실시하였다. 마지막 투여 후 2주일 뒤(4주 차)에 비장을 적출하여 스파이크 항원 특이적 T 세포 반응은 ELISPOT법을 이용해서 분석하였다. 50 μL/head of the administration was administered to the femoral muscle of BALB/c mice, and the administration was repeated twice at an interval of 2 weeks. All administration groups were subjected to electroporation (200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles) using an electroporation device with an EP cartridge injection needle inserted. Two weeks after the last administration (week 4), the spleen was removed and the spike antigen-specific T cell response was analyzed using the ELISPOT method.
COVID-19 백신의 효능은 SARS Cov-2 스파이크 항원 특이적 T 세포 반응을 IFN-γ ELISPOT 방법으로 평가함으로써 확인하였고, 실험 결과는 (1) CD40L(CD40 ligand)의 결합에 의한 백신 면역반응증가 효능 평가, (2) 스파이크 단백질 서브유닛(S1 서브유닛 또는 S1/S2 서브유닛) 사용 범위 결정으로 나누어 분석하였다. The efficacy of the COVID-19 vaccine was confirmed by evaluating the SARS Cov-2 spike antigen-specific T cell response by the IFN-γ ELISPOT method, and the experimental results were (1) efficacy of increasing vaccine immune response by binding of CD40L (CD40 ligand) Analysis was divided into evaluation, (2) determining the range of use of the spike protein subunit (S1 subunit or S1/S2 subunit).
CD40L 유무에 따른 백신특이적 T 세포 면역반응 유도능을 분석한 결과, S 항원에 CD40L의 결합에 따른 차이가 없었고(S1 vs. S1-sCD40Lm, p=0.151; S1/S2 vs. S1S2-sCD40Lm, p=0.841), S 항원 서브유닛 사용범위에 따른 백신 특이적 T 세포 면역반응을 분석한 결과, S1 서브유닛에 비해 S1/S2 서브유닛 투여군이 스파이크 단백질 전체 풀(pool)에 대한 T 세포 반응에 증가하는 경향을 보였다(S1 vs. S1/S2, p=0.548; S1-sCD40Lm vs. S1/S2-sCD40Lm, p=0.056)(도 11).As a result of analyzing the vaccine-specific T cell immune response induction ability with or without CD40L, there was no difference according to the binding of CD40L to the S antigen (S1 vs. S1-sCD40Lm, p=0.151; S1/S2 vs. S1S2-sCD40Lm, p = 0.841), as a result of analyzing the vaccine-specific T-cell immune response according to the range of use of the S antigen subunit, the S1/S2 subunit-administered group showed a positive effect on the T cell response to the entire spike protein pool compared to the S1 subunit. It showed an increasing trend (S1 vs. S1/S2, p=0.548; S1-sCD40Lm vs. S1/S2-sCD40Lm, p=0.056) (FIG. 11).
SARS Cov-2가 속해 있는 coronavirus는 숙주세포의 안지오텐신-변환 효소 2(angiotensin-converting enzyme 2, ACE2)를 통해 감염을 하며, 수용체 결합도메인(RBD)는 S1 서브유닛에 있는 것으로 알려져 있다. 따라서 항체 반응은 S1 서브유닛에 대해 잘 유도하는 것이 중요한 것으로 이해되고 있다. 본 발명자들이 고안한 COVID-19 DNA 백신 4종(pGX27-COVID-19/S1, pGX27-COVID-19/S1S2, pGX27-COVID-19/S1-CD40L 및 pGX27-COVID-19/S1S2-CD40L)의 항체 반응은 유사한 수준이었고, 이를 통해 백신에 대한 항체 반응은 주로 S1 서브유닛에 대한 것임을 알 수 있었다. 이때, 항체 반응뿐 아니라 T 세포 반응을 통해서 바이러스에 감염된 세포의 효율적인 제거를 통해 감염 이후의 빠른 회복을 돕는 것 또한 매우 중요한데, 도 11의 T 세포 반응 결과를 보면 S1/S2 서브유닛에 대한 반응이 모두 잘 유도됨을 확인할 수 있었고, 이를 통해 S2 서브유닛에는 치료면역 반응과 연관이 있는 T 세포 에피토프가 많이 분포할 수 있음을 알 수 있었다. The coronavirus to which SARS Cov-2 belongs infects the host cell through angiotensin-converting enzyme 2 (ACE2), and it is known that the receptor binding domain (RBD) is located in the S1 subunit. Therefore, it is understood that it is important to induce an antibody response well to the S1 subunit. Four types of COVID-19 DNA vaccines designed by the present inventors (pGX27-COVID-19/S1, pGX27-COVID-19/S1S2, pGX27-COVID-19/S1-CD40L and pGX27-COVID-19/S1S2-CD40L) The antibody response was at a similar level, indicating that the antibody response to the vaccine was mainly directed to the S1 subunit. At this time, it is also very important to help the rapid recovery after infection through the efficient removal of virus-infected cells through the T cell reaction as well as the antibody reaction. It was confirmed that all of them were well induced, and through this, it was confirmed that a large number of T cell epitopes related to the therapeutic immune response could be distributed in the S2 subunit.
따라서, 유사한 항체반응을 유도함과 동시에 S1, S2 서브유닛에 대한 효율적인 T 세포를 유도할 수 있는 컨스트럭트가 백신으로서 적용되는 데 더욱 적절할 것으로 생각되며, 결론적으로, 본 실험을 통해 S1, S2 서브유닛을 모두 포함하는 항원에 대해 CD40L 연결하는 구조적 변경이 없는 pGX27-COVID-19/S1S2가 COVID-19에 대한 최적의 DNA 백신 컨스트럭트 형태임을 확인하였다. Therefore, it is thought that a construct capable of inducing a similar antibody response and at the same time inducing efficient T cells for the S1 and S2 subunits would be more appropriate for application as a vaccine. It was confirmed that pGX27-COVID-19/S1S2 without structural alteration linking CD40L to the antigen containing all units is the optimal DNA vaccine construct form for COVID-19.
실험예 3: COVID-19 S 당단백질 항원 형태에 따른 면역원성 비교Experimental Example 3: Comparison of immunogenicity according to the form of COVID-19 S glycoprotein antigen
상기 실험예 2 및 3을 통해 COVID-19 백신으로 pGX27-COVID-19/S1S2가 COVID19 감염의 예방 및 치료를 위한 최적의 백신 컨스트럭트임을 확인하였다. 이때, S2 서브유닛에는 삼량체화에 관여하는 hepted 반복 지역과 표면 막을 관통하는 막통과 도메인(transmembrane domain)을 포함하게 되는데, SARS Cov-2 항원 DNA 컨스트럭트에 있어 이러한 막통과 도메인의 존재 여부가 면역원성에 어떤 영향을 주는 지 확인하기 위하여, 도 12a에 기재된 바와 같이 S1 단백질 항원에 S2 서브유닛을 전장 형태로 포함한 유전자 컨스트럭트를 추가로 고안하였다.Through the above Experimental Examples 2 and 3, it was confirmed that pGX27-COVID-19/S1S2 as a COVID-19 vaccine is an optimal vaccine construct for the prevention and treatment of COVID-19 infection. At this time, the S2 subunit includes a hepted repeat region involved in trimerization and a transmembrane domain penetrating the surface membrane. In order to confirm the effect on immunogenicity, a gene construct including the S2 subunit in the full-length form of the S1 protein antigen was additionally designed as shown in FIG. 12a.
상기 유전자 컨스트럭트가 정상적으로 발현되는지 여부를 확인하기 위해 상기 유전자 컨스트럭트들을 COS-7에 형질감염시킨 후 단백질 발현양상을 항-S 당단백질 항체를 이용한 웨스턴블랏 분석으로 분석하였다. 그 결과 도 12b에서 확인되는 바와 같이, S1S2full 유전자 컨스트럭트 및 S1S2ΔTM/IC 유전자 컨스트럭트 모두 S 당단백질을 정상적으로 발현하는 것으로 확인되었다. 그러나, 막통과 도메인이 제거된 형태의 S 당단백질의 발현 정도가 현저하게 증가하였다. 이는 막결합 형태가 아닌 수용성 단백질 형태로 S 당단백질이 생산이 되기 때문인 것으로 해석이 된다.To determine whether the gene construct is normally expressed, the gene constructs were transfected into COS-7, and protein expression patterns were analyzed by Western blot analysis using an anti-S glycoprotein antibody. As a result, as shown in FIG. 12B , it was confirmed that both the S1S2 full gene construct and the S1S2 ΔTM/IC gene construct normally express the S glycoprotein. However, the expression level of the S glycoprotein in the form in which the transmembrane domain has been removed was significantly increased. This is interpreted to be because the S glycoprotein is produced in the form of a water-soluble protein rather than a membrane-bound form.
이후, S1 서브유닛의 형태에 따른 COVID-19 DNA 백신의 마우스 모델에서의 면역반응을 확인하기 위하여 도 13에 기재된 투여군과 스케줄을 토대로 실험을 수행하였다. Then, in order to confirm the immune response in the mouse model of the COVID-19 DNA vaccine according to the shape of the S1 subunit, an experiment was performed based on the administration group and schedule described in FIG. 13 .
구체적으로, BALB/c 마우스의 대퇴 근육에 투여물을 50 μL/head씩 투여하고, 2주 간격으로 2회 반복 투여하였다. 모든 투여군에는 EP 카트리지 주사 바늘을 삽입한 채 전기천공 장치를 이용하여 전기천공(200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles)을 실시하였다. 백신 첫 투여시점을 기준으로 2주, 4주차에 혈청 내 항원 특이적 IgG 항체역가 ELISA를 수행하여 COVID-19 백신 후보물질의 면역원성을 평가하였다.Specifically, 50 μL/head of the administration was administered to the femoral muscle of BALB/c mice, and the administration was repeated twice at an interval of 2 weeks. All administration groups were subjected to electroporation (200 V/cm, (3 pulses at 10 ms/pulse and 10 ms between pulses) x 4 cycles) using an electroporation device with an EP cartridge injection needle inserted. Antigen-specific IgG antibody titer ELISA in serum was performed at the 2nd and 4th weeks from the time of the first vaccine administration to evaluate the immunogenicity of the COVID-19 vaccine candidate.
그 결과, 1회 투여 후 항체 반응은 항원의 형태에 따라 유의미하게 차이가 나지 않았으나 S1S2ΔTM/IC 형태의 백신에서 가장 높은 항체 역가 값을 보였고, 2회 투여 후 항체 반응에서는 S1S2ΔTM/IC 형태의 백신 투여군이 다른 두 가지 형태의 백신 투여군에 비해 통계적으로 유의미하게 높은 항체 역가 값을 나타냄을 확인하였다(도 14). As a result, the antibody response after one administration did not differ significantly depending on the antigen type, but the S1S2 ΔTM/IC type vaccine showed the highest antibody titer value, and after the second administration, the antibody response of the S1S2 ΔTM/IC type vaccine showed the highest antibody titer value. It was confirmed that the vaccine administration group showed a statistically significantly higher antibody titer value than the other two types of vaccine administration group (FIG. 14).
결론적으로, COVID19 백신 항원으로서 S1 서브유닛과 S2 서브유닛을 동시에 적용하면서 S2 서브유닛의 막통과 도메인을 제거한 형태가 더욱 효과적인 백신 컨스트럭트임을 알 수 있었고, 이를 통해 본 발명을 완성하였다.In conclusion, it was found that the form in which the transmembrane domain of the S2 subunit was removed while simultaneously applying the S1 subunit and the S2 subunit as a COVID19 vaccine antigen was a more effective vaccine construct, thereby completing the present invention.
본 발명은 상술한 실시예 및 실험예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the above-described examples and experimental examples, it will be understood that these are merely exemplary, and that various modifications and equivalent other embodiments are possible therefrom by those skilled in the art. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
본 발명의 일 실시예에 따른 백신 조성물은 SARS CoV 감염증 예방 및 치료용 의약의 개발에 사용될 수 있다.The vaccine composition according to an embodiment of the present invention can be used to develop a medicament for preventing and treating SARS CoV infection.

Claims (35)

  1. SARS Cov의 S 당단백질의 수용성 단편 폴리펩타이드를 암호화하는 폴리뉴클레오타이드를 유효성분으로 함유하는 SARS Cov 예방 및 치료용 백신 조성물.A vaccine composition for the prevention and treatment of SARS Cov comprising a polynucleotide encoding a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov as an active ingredient.
  2. 제1항에 있어서, According to claim 1,
    상기 SARS Cov는 SARS Cov-1 또는 SARS Cov-2인, 백신 조성물.The SARS Cov is SARS Cov-1 or SARS Cov-2, the vaccine composition.
  3. 제1항에 있어서, According to claim 1,
    상기 수용성 단편 폴리펩타이드는The water-soluble fragment polypeptide is
    i) S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편; 또는 i) a fragment comprising an S1 protein or a receptor binding domain thereof; or
    ii) 상기 S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편 및 막통과 도메인이 제거된 S2 단백질을 포함하는 융합단백질인, 백신 조성물.ii) a fusion protein comprising the S1 protein or a fragment containing the receptor binding domain thereof and the S2 protein from which the transmembrane domain has been removed, the vaccine composition.
  4. 제1항에 있어서,According to claim 1,
    상기 수용체 결합 도메인은 SARS Cov-2 S 당단백질 기준으로 319 내지 541 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함하는, 백신 조성물.Wherein the receptor binding domain comprises a polypeptide corresponding to amino acid residues 319 to 541 th based on the SARS Cov-2 S glycoprotein.
  5. 제3항에 있어서, 4. The method of claim 3,
    상기 막통과 도메인은 SARS Cov-2 S 당단백질 기준으로 1214 내지 1234번째 아미노산 잔기에 상응하는 폴리펩타이드인, 백신 조성물.The transmembrane domain is a polypeptide corresponding to amino acid residues 1214 to 1234 based on the SARS Cov-2 S glycoprotein, vaccine composition.
  6. 제3항에 있어서,4. The method of claim 3,
    상기 막통과 도메인이 제거된 S2 단백질은 SARS Cov-2 S 당단백질 기준으로 685 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드 또는 그의 면역원성 단편인, 백신 조성물.The S2 protein from which the transmembrane domain is removed is a polypeptide or an immunogenic fragment thereof corresponding to amino acid residues 685 to 1213 based on SARS Cov-2 S glycoprotein, or an immunogenic fragment thereof.
  7. 제3항에 있어서,4. The method of claim 3,
    상기 수용성 단편 폴리펩타이드는 SARS Cov-2 S 당단백질 기준으로 16 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함하는, 백신 조성물.The water-soluble fragment polypeptide comprises a polypeptide corresponding to amino acid residues 16-1213 based on SARS Cov-2 S glycoprotein, vaccine composition.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,8. The method according to any one of claims 1 to 7,
    상기 S1 단백질은 서열번호 1로 기재되는 아미노산 서열을 포함하는, 백신 조성물.The S1 protein is a vaccine composition comprising the amino acid sequence set forth in SEQ ID NO: 1.
  9. 제1항에 있어서,According to claim 1,
    상기 폴리뉴클레오타이드는 서열번호 27 내지 29로 기재되는 핵산서열 중 어느 하나를 포함하는, 백신 조성물.The polynucleotide is a vaccine composition comprising any one of the nucleic acid sequences set forth in SEQ ID NOs: 27 to 29.
  10. 제3항에 있어서,4. The method of claim 3,
    상기 막통과 도메인이 제거된 S2 단백질은 서열번호 2로 기재되는 아미노산 서열을 포함하는, 백신 조성물.S2 protein from which the transmembrane domain is removed comprises the amino acid sequence set forth in SEQ ID NO: 2, vaccine composition.
  11. SARS Cov의 S 당단백질의 수용성 단편 폴리펩타이드 및 삼량체 형성 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드를 유효성분으로 포함하는 SARS CoV 예방 및 치료용 백신 조성물.A vaccine composition for preventing and treating SARS-CoV comprising, as an active ingredient, a polynucleotide encoding a fusion protein comprising a water-soluble fragment polypeptide of the S glycoprotein of SARS Cov and a trimer-forming protein.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 SARS Cov는 SARS Cov-1 또는 SARS Cov-2인, 백신 조성물The SARS Cov is SARS Cov-1 or SARS Cov-2, vaccine composition
  13. 제11항에 있어서, 12. The method of claim 11,
    상기 수용성 단편 폴리펩타이드는The water-soluble fragment polypeptide is
    i) S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편; 또는 i) a fragment comprising an S1 protein or a receptor binding domain thereof; or
    ii) 상기 S1 단백질 또는 그의 수용체 결합 도메인을 포함하는 단편 및 막통과 도메인이 제거된 S2 단백질을 포함하는 융합단백질인, 백신 조성물.ii) a fusion protein comprising the S1 protein or a fragment containing the receptor binding domain thereof and the S2 protein from which the transmembrane domain has been removed, the vaccine composition.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 수용체 결합 도메인은 SARS Cov-2 S 당단백질 기준으로 319 내지 541 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함하는, 백신 조성물.Wherein the receptor binding domain comprises a polypeptide corresponding to amino acid residues 319 to 541 th based on the SARS Cov-2 S glycoprotein.
  15. 제13항에 있어서, 14. The method of claim 13,
    상기 막통과 도메인은 SARS Cov-2 S 당단백질 기준으로 1214 내지 1234번째 아미노산 잔기에 상응하는 폴리펩타이드인, 백신 조성물.The transmembrane domain is a polypeptide corresponding to amino acid residues 1214 to 1234 based on the SARS Cov-2 S glycoprotein, vaccine composition.
  16. 제13항에 있어서,14. The method of claim 13,
    상기 막통과 도메인이 제거된 S2 단백질은 SARS Cov-2 S 당단백질 기준으로 685 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드 또는 그의 면역원성 단편인, 백신 조성물.The S2 protein from which the transmembrane domain is removed is a polypeptide or an immunogenic fragment thereof corresponding to amino acid residues 685 to 1213 based on SARS Cov-2 S glycoprotein, or an immunogenic fragment thereof.
  17. 제13항에 있어서,14. The method of claim 13,
    상기 수용성 단편 폴리펩타이드는 SARS Cov-2 S 당단백질 기준으로 16 내지 1213 번째 아미노산 잔기에 상응하는 폴리펩타이드를 포함하는, 백신 조성물.The water-soluble fragment polypeptide comprises a polypeptide corresponding to amino acid residues 16-1213 based on SARS Cov-2 S glycoprotein, vaccine composition.
  18. 제11항에 있어서,12. The method of claim 11,
    상기 삼량체 형성 단백질은 CD40L 엑토도메인, T4 박테리오파지 fibritin, Fas 리간드, 41BB, OX40L, CD70, TRAIL, 또는 서펙틴인, 백신 조성물.wherein the trimer forming protein is CD40L ectodomain, T4 bacteriophage fibritin, Fas ligand, 41BB, OX40L, CD70, TRAIL, or serfectin.
  19. 제18항에 있어서,19. The method of claim 18,
    상기 CD40L 엑토도메인은 서열번호 3으로 기재되는 아미노산 서열을 포함하는, 백신 조성물.The CD40L ectodomain comprises the amino acid sequence set forth in SEQ ID NO: 3, vaccine composition.
  20. 제18항에 있어서,19. The method of claim 18,
    상기 서펙틴은 서펙틴 A 또는 서펙틴 D인, 백신 조성물.The surfectin is surfectin A or surfectin D, vaccine composition.
  21. 제11항에 있어서,12. The method of claim 11,
    상기 폴리뉴클레오타이드는 서열번호 38 또는 39로 기재되는 핵산서열을 포함하는, 백신 조성물.The polynucleotide comprises a nucleic acid sequence set forth in SEQ ID NO: 38 or 39, vaccine composition.
  22. 제3항 또는 제13항 중 어느 한 항에 있어서, 14. The method of any one of claims 3 or 13,
    상기 융합 단백질은 하나 이상의 링커 펩타이드를 포함하는, 백신 조성물.wherein the fusion protein comprises one or more linker peptides.
  23. 제22항에 있어서,23. The method of claim 22,
    상기 링커 펩타이드는 (GS)5(서열번호 4), (G4S, 서열번호 5)n, (GSSGGS, 서열번호 6)n, KESGSVSSEQLAQFRSLD(서열번호 7), EGKSSGSGSESKST(서열번호 8), GSAGSAAGSGEF(서열번호 9), (EAAAK, 서열번호 10)n, CRRRRRREAEAC(서열번호 11), A(EAAAK)4ALEA(EAAAK)4A(서열번호 12), GGGGGGGG(서열번호 13), GGGGGG(서열번호 14), AEAAAKEAAAAKA(서열번호 15), PAPAP(서열번호 16), (Ala-Pro)n, VSQTSKLTRAETVFPDV(서열번호 17), PLGLWA(서열번호 18), TRHRQPRGWE(서열번호 19), AGNRVRRSVG(서열번호 20), RRRRRRRR(서열번호 21), GFLG(서열번호 22), 또는 GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE(서열번호 23)인, 백신 조성물.The linker peptide is (GS) 5 (SEQ ID NO: 4), (G 4 S, SEQ ID NO: 5) n , (GSSGGS, SEQ ID NO: 6) n , KESGSVSSEQLAQFRSLD (SEQ ID NO: 7), EGKSSGSGSESKST (SEQ ID NO: 8), GSAGSAAGSGEF ( SEQ ID NO: 9), (EAAAK, SEQ ID NO: 10) n, CRRRRRREAEAC (SEQ ID NO: 11), A (EAAAK) 4 ALEA (EAAAK) 4 A (SEQ ID NO: 12), GGGGGGGG (SEQ ID NO: 13), GGGGGG (SEQ ID NO: 14 ), AEAAAKEAAAAKA (SEQ ID NO: 15), PAPAP (SEQ ID NO: 16), (Ala-Pro) n , VSQTSKLTRAETVFPDV (SEQ ID NO: 17), PLGLWA (SEQ ID NO: 18), TRHRQPRGWE (SEQ ID NO: 19), AGNRVRRSVG (SEQ ID NO: 20) , RRRRRRRR (SEQ ID NO: 21), GFLG (SEQ ID NO: 22), or GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE (SEQ ID NO: 23).
  24. 제1항 또는 제11항에 있어서,12. The method of claim 1 or 11,
    상기 폴리펩타이드는 N-말단에 단백질 분비를 위한 분비 신호서열을 포함한 것인, 백신 조성물.Wherein the polypeptide comprises a secretion signal sequence for protein secretion at the N-terminus, vaccine composition.
  25. 제24항에 있어서, 25. The method of claim 24,
    상기 분비 신호서열은 tPA(tissue plasminogen activator) 신호서열(서열번호 24), HSV gDs(단순포진 바이러스 당단백질 Ds) 신호서열 또는 성장호르몬 신호서열인, 백신 조성물. The secretion signal sequence is a tPA (tissue plasminogen activator) signal sequence (SEQ ID NO: 24), HSV gDs (herpes simplex virus glycoprotein Ds) signal sequence or a growth hormone signal sequence, vaccine composition.
  26. 제1항 또는 제11항에 있어서,12. The method of claim 1 or 11,
    상기 폴리뉴클레오타이드는 프로모터에 작동가능하게 연결되는 유전자 컨스트럭트를 포함하는 발현벡터로 제공되는, 백신 조성물.The polynucleotide is provided as an expression vector comprising a gene construct operably linked to a promoter, vaccine composition.
  27. 제26항에 있어서,27. The method of claim 26,
    상기 프로모터는 CMV-HSV 티미딘 키나아제 프로모터, SV40, RSV-프로모터(로우스 육종 바이러스), 인간 신장 요소 1α-프로모터, 글루코코르티코이드-유도성 MMTV-프로모터(몰로니 마우스 종양 바이러스), 메탈로티오네인-유도성 또는 테트라사이클린-유도성 프로모터 또는, CMV 프로모터 또는 SV40 프로모터, 신경미세섬유-프로모터(neurofilament-promoter), PGDF-프로모터, NSE-프로모터, PrP-프로모터 또는 thy-1-프로모터인, 백신 조성물.Said promoters are CMV-HSV thymidine kinase promoter, SV40, RSV-promoter (Loews sarcoma virus), human kidney element 1α-promoter, glucocorticoid-inducible MMTV-promoter (Moloney mouse tumor virus), metallothionein -inducible or tetracycline-inducible promoter or, CMV promoter or SV40 promoter, neurofilament-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter, vaccine composition .
  28. 제27항에 있어서,28. The method of claim 27,
    상기 발현벡터는 오카야마-베르그(Okayama-Berg) cDNA 발현 벡터 pcDV1(Parmacia), pRc/CMV, pcDNA1, pcDNA3, pSPORT1, pGX27, pX, pEG202, pJG4-5람다 gt11, pGEX(Amersham-Pharmacia)인, 백신 조성물.The expression vector is Okayama-Berg cDNA expression vector pcDV1 (Parmacia), pRc/CMV, pcDNA1, pcDNA3, pSPORT1, pGX27, pX, pEG202, pJG4-5 lambda gt11, pGEX (Amersham-Pharmacia), vaccine composition.
  29. 제1항 또는 제11항에 있어서,12. The method of claim 1 or 11,
    하나 또는 둘 이상의 면역증진 펩타이드를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는, 백신 조성물.A vaccine composition, further comprising a polynucleotide encoding one or more immuno-enhancing peptides.
  30. 제29항에 있어서,30. The method of claim 29,
    상기 면역증진 펩타이드는 상기 폴리펩타이드에 연결된 융합 단백질의 형태로 발현되거나 별도의 유전자 컨스트럭트를 통해 발현되는, 백신 조성물.The immune enhancing peptide is expressed in the form of a fusion protein linked to the polypeptide or is expressed through a separate gene construct, vaccine composition.
  31. 제30항에 있어서,31. The method of claim 30,
    상기 면역증진 펩타이드는 상기 폴리펩타이드의 N-말단 또는 C-말단에 부가되거나 중간에 삽입되는, 백신 조성물.The immuno-enhancing peptide is added to or inserted in the middle of the N-terminus or C-terminus of the polypeptide.
  32. 제29항에 있어서, 30. The method of claim 29,
    상기 면역증진 펩타이드는 CD28, ICOS(inducible costimulator), CTLA4(cytotoxic T lymphocyte associated protein 4), PD1(programmed cell death protein 1), BTLA(B and T lymphocyte associated protein), DR3(death receptor 3), 4-1BB, CD2, CD40, CD40L, CD30, CD27, SLAM(signaling lymphocyte activation molecule), 2B4(CD244), NKG2D(natural-killer group 2, member D)/DAP12(DNAX-activating protein 12), TIM1(T-Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3(lymphocyte activation gene 3), B7-1, B7-H1, GITR(glucocorticoid-induced TNFR family related protein), Flt3 리간드(fms-like tyrosine kinase 3 ligand), 플라젤린(flagellin), HVEM(herpesvirus entry mediator) 또는 OX40L[ligand for CD134(OX40), CD252]의 세포질 도메인 또는 이들 중 둘 이상의 연결체인, 백신 조성물.The immunostimulating peptide is CD28, ICOS (inducible costimulator), CTLA4 (cytotoxic T lymphocyte associated protein 4), PD1 (programmed cell death protein 1), BTLA (B and T lymphocyte associated protein), DR3 (death receptor 3), 4 -1BB, CD2, CD40, CD40L, CD30, CD27, SLAM (signaling lymphocyte activation molecule), 2B4 (CD244), NKG2D (natural-killer group 2, member D)/DAP12 (DNAX-activating protein 12), TIM1 (T) -Cell immunoglobulin and mucin domain containing protein 1), TIM2, TIM3, TIGIT, CD226, CD160, LAG3 (lymphocyte activation gene 3), B7-1, B7-H1, GITR (glucocorticoid-induced TNFR family related protein), Flt3 ligand (fms-like tyrosine kinase 3 ligand), flagellin, a herpesvirus entry mediator (HVEM), or a cytoplasmic domain of OX40L [ligand for CD134(OX40), CD252] or a linkage of two or more thereof, a vaccine composition.
  33. 제1항 또는 제11항의 백신 조성물을 개체에 투여하는 단계를 포함하는 상기 개체의 SARS CoV 감염증 예방 및 치료방법.A method for preventing and treating SARS-CoV infection in an individual comprising administering the vaccine composition of claim 1 or 11 to the individual.
  34. 제33항에 있어서,34. The method of claim 33,
    상기 SARS CoV는 SARS Cov-1 또는 SARS Cov-2인, 치료방법.The SARS CoV is SARS Cov-1 or SARS Cov-2, the method of treatment.
  35. 제33항에 있어서,34. The method of claim 33,
    상기 조성물은 생체내 전기천공법에 의해 투여되는, 치료방법.wherein the composition is administered by in vivo electroporation.
PCT/KR2021/004025 2020-03-31 2021-03-31 Novel vaccine composition for prevention and treatment of coronavirus WO2021201612A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0039497 2020-03-31
KR20200039497 2020-03-31
KR10-2020-0128069 2020-10-05
KR1020200128069A KR20210122025A (en) 2020-03-31 2020-10-05 A novel vaccine composition for preventing and treating coronavirus

Publications (1)

Publication Number Publication Date
WO2021201612A1 true WO2021201612A1 (en) 2021-10-07

Family

ID=77928753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004025 WO2021201612A1 (en) 2020-03-31 2021-03-31 Novel vaccine composition for prevention and treatment of coronavirus

Country Status (1)

Country Link
WO (1) WO2021201612A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547673B1 (en) 2020-04-22 2023-01-10 BioNTech SE Coronavirus vaccine
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056585A2 (en) * 2003-12-10 2005-06-23 Agency For Science Technology And Research Sars coronavirus s proteins and uses thereof
KR20070052273A (en) * 2004-06-30 2007-05-21 아이디 바이오메디컬 코포레이션 오브 퀘벡 Vaccine compositions for treating coronavirus infection
KR20160079920A (en) * 2013-11-26 2016-07-06 베이롤 칼리지 오브 메드신 A novel sars immunogenic composition
WO2018115527A2 (en) * 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056585A2 (en) * 2003-12-10 2005-06-23 Agency For Science Technology And Research Sars coronavirus s proteins and uses thereof
KR20070052273A (en) * 2004-06-30 2007-05-21 아이디 바이오메디컬 코포레이션 오브 퀘벡 Vaccine compositions for treating coronavirus infection
KR20160079920A (en) * 2013-11-26 2016-07-06 베이롤 칼리지 오브 메드신 A novel sars immunogenic composition
WO2018115527A2 (en) * 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASHEM ANWAR M, ALGAISSI ABDULLAH, AGRAWAL ANURODH SHANKAR, AL-AMRI SAWSAN S, ALHABBAB ROWA Y, SOHRAB SAYED S, S. ALMASOUD ABDULRA: "Conclusions", JOURNAL OF INFECTIOUS DISEASES, vol. 220, no. 10, 8 October 2019 (2019-10-08), US, pages 1558 - 1567, XP055855073, ISSN: 0022-1899, DOI: 10.1093/infdis/jiz137 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547673B1 (en) 2020-04-22 2023-01-10 BioNTech SE Coronavirus vaccine
US11925694B2 (en) 2020-04-22 2024-03-12 BioNTech SE Coronavirus vaccine
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Similar Documents

Publication Publication Date Title
EP4163291A1 (en) Polypeptide vaccine coupled with tlr7 agonist for novel coronavirus and use thereof
CN114096675A (en) Coronavirus immunogenic compositions and uses thereof
JP3602448B2 (en) Nucleic acid respiratory syncytial virus vaccine
Suárez et al. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus
US20150150960A1 (en) Protection against dengue virus and prevention of severe dengue disease
WO2021201612A1 (en) Novel vaccine composition for prevention and treatment of coronavirus
JP2006104216A (en) Dampening of immunodominant epitope of antigen for use in plant, animal or human vaccine and immunotherapy
KR20210133888A (en) Vaccine composition for preventing or treating infection of SARS-CoV-2
JPH09512172A (en) Compounds and methods for stimulating and promoting a protective immune response and IL-12 production
JP2019163253A (en) Vaccines against chlamydia sp.
KR19990022654A (en) How to boost a protective immune response
Luther et al. Mouse mammary tumor virus: immunological interplays between
US20230338510A1 (en) Novel coronavirus tandem epitope polypeptide vaccine and use thereof
KR20220157969A (en) Coronavirus vaccine and how to use it
US20230192813A1 (en) Antibody that binds specifically to the sars cov 2 spike protein, and methods for its manufacture
CN102027003A (en) Chlamydia antigens
WO2022131832A1 (en) Novel vaccine composition for prevention and treatment of coronavirus
US11291714B2 (en) Recombinant antigen derived from Zika virus E protein and use thereof
KR20210122196A (en) A novel vaccine composition for preventing and treating coronavirus
EA004794B1 (en) Vaccine
WO2012178196A2 (en) Protection against dengue virus and prevention of severe dengue disease
WO2018009047A2 (en) A dna vaccine for preventing and treating hsv-2 infection
AU2011269729A1 (en) Constrained immunogenic compositions and uses therefor
KR20210084125A (en) A novel DNA vaccine construct for CMV and use thereof
US20190231862A1 (en) Gene vaccine for preventing and treating severe fever with thrombocytopenia syndrome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779193

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 21779193

Country of ref document: EP

Kind code of ref document: A1