WO2022030646A1 - 薬物送達制御可能なリポソーム - Google Patents

薬物送達制御可能なリポソーム Download PDF

Info

Publication number
WO2022030646A1
WO2022030646A1 PCT/JP2021/029550 JP2021029550W WO2022030646A1 WO 2022030646 A1 WO2022030646 A1 WO 2022030646A1 JP 2021029550 W JP2021029550 W JP 2021029550W WO 2022030646 A1 WO2022030646 A1 WO 2022030646A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particle
lipid
liposome
mol
preparation
Prior art date
Application number
PCT/JP2021/029550
Other languages
English (en)
French (fr)
Inventor
堅次 杉林
浩明 藤堂
祥子 板倉
一郎 土黒
Original Assignee
株式会社ファルネックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファルネックス filed Critical 株式会社ファルネックス
Priority to JP2022541768A priority Critical patent/JPWO2022030646A1/ja
Publication of WO2022030646A1 publication Critical patent/WO2022030646A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to liposomes capable of controlling drug delivery.
  • Liposomes which are closed vesicles with a lipid bilayer, can contain both hydrophilic drugs and hydrophobic drugs, and are generally excellent in biocompatibility and biodegradability. Its use in drug delivery systems (DDS) as a drug delivery tool has attracted attention.
  • DDS drug delivery systems
  • Liposomes are known to accumulate in tumor tissues due to the EPR effect (Enhanced permeation and retention effect). In tumor tissue, there are gaps between vascular endothelial cells, and vascular permeability is significantly enhanced compared to normal tissue. Therefore, a polymer substance that does not penetrate the normal blood vessel wall leaks out of the blood vessel and becomes tumor tissue. Accumulation is the EPR effect. Therefore, liposomes have a drug delivery function to tumor tissue. However, the accumulation in tumor tissue due to the EPR effect alone in general liposomes is not so high.
  • Patent Document 1 describes a pH response that releases a target substance in a basic environment containing a cationic amphipathic molecule and at least one of an anionic amphipathic molecule and an amphipathic amphipathic molecule as a constituent lipid.
  • the sex liposomes are disclosed.
  • Patent Document 2 discloses a temperature-sensitive liposome composed of a liposome membrane-constituting lipid, a polymer compound having a heat-sensitive moiety and a hydrophobic moiety, and PEG.
  • non-lamellar liquid crystals have advantages such as high drug content, ease of preparation, and high stability in polymer drugs as compared with conventional DDS carriers.
  • non-lamellar liquid crystal forming lipids have been reported to have a hemolytic effect, and systemic administration has been considered difficult.
  • Patent Document 3 reports a skin external preparation containing a low-viscosity non-lamellar liquid crystal forming lipid, which retains the drug in the non-lamellar liquid crystal and releases it slowly. However, Patent Document 3 does not describe a method for more highly controlling drug delivery for such a preparation.
  • the present inventors have made liposomes capable of effective drug delivery into cells and cell nuclei using amphipathic lipids having isoprenoid-type fat chains. Furthermore, they have found that liposomes capable of controlling drug delivery by being temperature-responsive and liposomes exhibiting an antitumor effect can be produced, and have completed the present invention.
  • the present invention includes the following aspects.
  • the amphipathic lipids having isoprenoid-type fat chains are mono-O- (5,9,13-trimethyltetradeca-4-enoyl) glycerol and mono-O- (5,9,13,17-tetramethylocta).
  • the liposome according to any one of the above [1] to [3], which is propylene glycol.
  • a preparation for delivering nucleic acid into the nucleus of a cell which comprises the liposome according to the above [12] or [13].
  • liposomes having controllable drug delivery and preferably having temperature responsiveness, and liposomes exhibiting an antitumor effect.
  • FIG. 1 shows the fine particle product No. It is a photograph which shows the image taken by the cryo TEM of 4 at a magnification of 15,000 times. The bar represents 100 nm.
  • FIG. 2 shows the fine particle pharmaceutical product No. 2 as a membrane fluidity evaluation index. It is a graph which shows the change of the fluorescence intensity ratio F / F 0 according to the temperature of 6-12.
  • FIG. 3 shows the fine particle product No. It is a photograph which shows the temperature responsiveness (temperature sensitivity) of 1 to 4.
  • FIG. 4 shows the fine particle product No. It is a graph which shows the interaction (hemolytic) between 1-5 and a biological membrane. A: 37 ° C, B: 45 ° C.
  • FIG. 5 shows the fine particle product No.
  • FIG. 6 shows the fine particle product No. It is a graph which shows the time-dependent change of the fluorescence intensity of the tumor site after intravenous administration of 13 or 14.
  • FIG. 7 shows the fine particle product No. 6 is a photograph showing a fluorescence image of an excised organ from a mouse to which 13 or 14 was administered.
  • FIG. 8 shows the fine particle product No. It is a photograph which shows the image taken by the cryo TEM of 27 at a magnification of 15,000 times. The bar represents 100 nm.
  • FIG. 9 shows the fine particle product No.
  • FIG. 3 is a graph showing the intracellular uptake efficiency of fluorescently labeled molecules in the 31-33-added group and the untreated (untreated) group.
  • A Relationship between the number of cells detected for fluorescence and its fluorescence intensity
  • B Fine particle preparation No. compared with the average fluorescence intensity in the untreated group. Relative value of the average fluorescence intensity of the 31-33 addition group (average fluorescence intensity ratio).
  • FIG. 10 shows the fine particle product No. 6 is a photograph of an electrophoretic image showing a nucleic acid complex state in a nucleic acid-fine particle complex derived from 15 or 20.
  • FIG. 11 is a graph showing the ratio of the luminance intensities of the bands of nucleic acid (pcDNA3-EGFP) released from the nucleic acid-fine particle complex.
  • FIG. 12 is a photograph showing a fluorescence image of cells treated with each pharmaceutical product.
  • FIG. 13 shows a dot plot obtained by FACS analysis.
  • FIG. 14 shows a dot plot obtained by FACS analysis.
  • FIG. 15 shows a dot plot obtained by FACS analysis.
  • FIG. 16 shows the product No. It is a photograph which shows the time-dependent fluorescence observation result of the cancer-bearing mouse after intravenous administration of 37-40.
  • C Pharmaceutical No. 39
  • D Formulation No. 40.
  • FIG. 17 shows changes over time in luminescence intensity, which is an index of tumor cell mass, in cancer-bearing mice with or without warming treatment after administration of the pharmaceutical product.
  • B Tumor on the right side of the back, no heating.
  • the present invention relates to a liposome containing a lamella-forming lipid and an amphipathic lipid having an isoprenoid-type fat chain as a membrane-constituting lipid.
  • the liposome refers to a closed vesicle having a lipid bilayer membrane.
  • the lipid bilayer membrane of the liposome of the present invention is mainly composed of lipids, but may further contain components other than lipids.
  • the liposome of the present invention may have a single lamellar structure or a multilamellar structure having two or three or more lipid bilayer membranes. In the present invention, liposomes may be referred to as fine particles.
  • the liposome of the present invention is mainly composed of a lipid bilayer membrane containing a lamellar-forming lipid and an amphipathic lipid having an isoprenoid-type fat chain (in one embodiment, a non-lamellar liquid crystal-forming lipid having an isoprenoid-type fat chain). Will be done.
  • Lamella-forming lipids as liposome membrane-constituting lipids are sometimes also referred to as liposome-constituting lipids.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention is not particularly limited, but preferably contains at least one selected from the group consisting of phospholipids, steroids and cationic lipids.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention comprises or comprises one selected from the group consisting of phospholipids, steroids, and cationic lipids. May be.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention may contain phospholipids and steroids, or may consist of phospholipids and steroids.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention may contain a phospholipid and a cationic lipid, or may be composed of a phospholipid and a cationic lipid.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention may contain a steroid and a cationic lipid, or may consist of a steroid and a cationic lipid.
  • the lamella-forming lipid as the membrane-constituting lipid used in the present invention may contain a phospholipid, a steroid and a cationic lipid, or may consist of a phospholipid, a steroid and a cationic lipid.
  • the liposome of the present invention may contain one or more (for example, two, three, four, five, or six or more) lamella-forming lipids as membrane-constituting lipids.
  • the lamella-forming lipid used for the liposome of the present invention may contain one kind or two or more kinds of phospholipids.
  • Phospholipids include, but are not limited to, one or more phosphorus selected from the group consisting of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerin, phosphatidylate, and sphingomyelin. Examples include lipids.
  • phosphatidylcholine examples include dimyristylphosphatidylcholine (DMPC), dioleylphosphatidylcholine (DOPC), dipalmitoylphatidylcholine (DPPC), soybean phosphatidylcholine (SPC; also known as soybean lecithin), hydrogenated soybean phosphatidylcholine (HSPC; hydrogenated soybean lecithin). Also referred to as), egg yolk phosphatidylcholine (EPC; also referred to as egg yolk lecithin) and the like, but are not limited thereto.
  • DMPC dimyristylphosphatidylcholine
  • DOPC dioleylphosphatidylcholine
  • DPPC dipalmitoylphatidylcholine
  • SPC soybean phosphatidylcholine
  • SPC also known as soybean lecithin
  • HSPC hydrogenated soybean phosphatidylcholine
  • EPC egg yolk phosphatidylcho
  • phosphatidylethanolamine examples include, but are not limited to, diorail phosphatidylethanolamine (DOPE), distearoylphosphatidylethanolamine (DSPE) and the like.
  • phosphatidylglycerin examples include, but are not limited to, dioleyl phosphatidylglycerin sodium (DOPG-Na).
  • halides such as chlorides and bromides
  • phospholipids in the form of alkali metal salts or salts such as alkaline earth metal salts, sulfates and nitrates can also be used. Included in the range of individual corresponding phospholipids as listed above.
  • the liposomes of the present invention may contain phospholipids in the form of salts thereof.
  • the salt of the phospholipid may be a pharmaceutically acceptable salt.
  • Liposomes containing phospholipids in the form of salts thereof are also included in the scope of liposomes according to the present invention.
  • the phospholipid used in the present invention may be a phospholipid modified with a water-soluble polymer.
  • the water-soluble polymer is not limited to the following, and may be, for example, polyethylene glycol (PEG), polyethylene glycol (PEG) derivative, polyvinylpyrrolidone, polylactic acid, polyglycolic acid and the like.
  • the phospholipid modified with the water-soluble polymer is a PEGylated phospholipid.
  • PEGylated phospholipid refers to a phospholipid to which polyethylene glycol (PEG) or a derivative thereof is added (bonded).
  • the polyethylene glycol (PEG) derivative may be PEG having any functional group and / or multi-arm.
  • the polyethylene glycol (PEG) derivative may be polyethylene glycol having a functional group at the terminal, for example, alkoxyethylene glycol (monoalkoxypolyethylene glycol).
  • alkoxyethylene glycol include methoxypolyethylene glycol (MPEG) and ethoxypolyethylene glycol.
  • the polyethylene glycol may have any molecular weight, for example, polyethylene having a molecular weight of 100,000 or less, 200 to 800,000, 300 to 15,000, or 500 to 5,000 (for example, 2,000). It may be glycol.
  • the phospholipid modified with the water-soluble polymer may be any of the above phospholipids.
  • the phospholipid modified with the water-soluble polymer may be, for example, PEGylated phosphatidylethanolamine such as PEGylated distearoylphosphatidylethanolamine, and a preferred example is DSPE-PEG2000.
  • the phospholipid used in the present invention may be a synthetic product or a naturally derived phospholipid.
  • the phospholipid used in the present invention is, for example, phosphatidylcholine such as dimyristylphosphatidylcholine (DMPC), soybean phosphatidylcholine, hydrogenated soybean phosphatidylcholine, or egg yolk phosphatidylcholine, or phosphatidylethanolamine such as distearoylphosphatidylethanolamine.
  • phosphatidylcholine such as dimyristylphosphatidylcholine (DMPC), soybean phosphatidylcholine, hydrogenated soybean phosphatidylcholine, or egg yolk phosphatidylcholine
  • phosphatidylethanolamine such as distearoylphosphatidylethanolamine.
  • the liposome of the present invention promotes interaction with cells even if it is modified with a water-soluble polymer by using an amphipathic lipid having an isoprenoid-type fat chain as a membrane constituent together with a lamella-forming lipid. Will be done.
  • the lamella-forming lipid used for the liposome of the present invention may contain one kind or two or more kinds of steroids.
  • the steroid include, but are not limited to, any steroid such as sterol, bile acid, and steroid hormone, but sterol is preferable.
  • sterols include, but are not limited to, cholesterol, lanosterol, ergosterol and the like.
  • the lamella-forming lipid used for the liposome of the present invention may contain one kind or two or more kinds of cationic lipids.
  • the cationic lipid is not limited to the following, but is limited to 1,2-dialkylcarbonyloxy-3-mono, di or trialkylammonium propane (1,2-dialkylcarbonyloxy-3-alkylammonium propane, 1, 2-Dialkylcarbonyloxy-3-dialkylammonium propane, or 1,2-dialkylcarbonyloxy-3-trialkylammonium propane), such as 1,2-dioleoyloxy-3-trimethylammonium propane (DOTAP) (eg, DOTAP).
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propane
  • cationic lipids in the form of halides such as chloride (chloride) and bromide (chloride), alkali metal salts or alkaline earth metal salts, sulfates, nitrates and the like can also be used. Is included in the range of individual corresponding cationic lipids as listed above.
  • the liposomes of the present invention may contain a cationic lipid in the form of a salt thereof.
  • the salt of the cationic lipid may be a pharmaceutically acceptable salt.
  • Liposomes containing cationic lipids in the form of salts thereof are also included in the scope of liposomes according to the present invention.
  • the liposome of the present invention contains nucleic acid as a drug described later, it is more preferable to contain a cationic lipid, but in other cases, it may contain a cationic lipid.
  • the lamella-forming lipid used for the liposome of the present invention preferably has a phase transition temperature of more than 20 ° C., for example, 21 ° C. to 42 ° C., 23 ° C. to 42 ° C., or 23 ° C. to 40 ° C. It's okay.
  • the lamella-forming lipids used in the liposomes of the invention may include phosphatidylcholine (eg, dimyristylphosphatidylcholine), cholesterol, and PEGylated phosphatidylethanolamine (eg, PEGylated distearoylphosphatidylethanolamine).
  • phosphatidylcholine eg, dimyristylphosphatidylcholine
  • cholesterol eg, dimyristylphosphatidylcholine
  • PEGylated phosphatidylethanolamine eg, PEGylated distearoylphosphatidylethanolamine
  • the lamella-forming lipids used in the liposomes of the invention are phosphatidylethanolamine (eg, dioleylphosphatidylethanolamine) and 1,2-dialkylcarbonyloxy-3-mono, di or trialkylammoniumpropane (eg, eg). , 1,2-dioleoyloxy-3-trimethylammonium propane; 1,2-dioreoiloxy-3-trimethylammonium propane chloride, etc.).
  • phosphatidylethanolamine eg, dioleylphosphatidylethanolamine
  • 1,2-dialkylcarbonyloxy-3-mono, di or trialkylammoniumpropane eg, 1,2-dioleoyloxy-3-trimethylammonium propane; 1,2-dioreoiloxy-3-trimethylammonium propane chloride, etc.
  • the liposome of the present invention contains an amphipathic lipid having an isoprenoid-type fat chain in addition to the lamella-forming lipid.
  • the amphipathic lipid having an isoprenoid-type fat chain in the present invention is a lipid having the ability to form a non-lamellar liquid crystal by itself in the presence of water without the need for other lipids (non-lamellar liquid crystal forming lipid). ) May be.
  • amphipathic lipid having an isoprenoid-type fat chain used in the liposome of the present invention is an amphipathic compound represented by the following general formula (I).
  • X and Y each represent a hydrogen atom or together represent an oxygen atom.
  • n represents an integer of 0 to 2 (preferably 1 or 2), and m represents 1 or 2.
  • R in the general formula (I) represents a hydrophilic group having one or more hydroxyl groups (one or two or more hydroxyl groups), and is not limited to, for example, glycerol, erythritol, pentaerythritol, and the like. Selected from the group consisting of diglycerol, glycerinic acid, triglycerol, xylose, sorbitol, ascorbic acid, glucose, galactose, mannose, dipentaerythritol, maltose, mannitol, xylitol, sorbitol, glycol (eg, propylene glycol), and isosorbide.
  • glycerol erythritol
  • pentaerythritol and the like.
  • hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them examples thereof include hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them.
  • the hydrophilic group from which one hydroxyl group (OH) has been removed from glyceric acid may be a group from which OH (hydroxyl group) contained in the carboxyl group of glyceric acid has been removed.
  • glycol means a compound consisting of chain or cyclic carbon, oxygen, and hydrogen in which two hydroxyl groups are bonded to two different carbon atoms.
  • amphoteric lipid having an isoprenoid type fat chain used in the present invention preferred examples of glycol are propylene glycol, ethylene glycol, butylene glycol, isoprene glycol (also known as 3-methyl-1,3-butanediol), diethylene glycol, and the like. And isosorbide, but not limited to these.
  • the notation in the general formula (I) Means that the amphipathic compound is an E-form (cis-form) or Z-form (trans-form) of geometric isomers or a mixture thereof.
  • the group consisting of, for example, glycerol, erythritol, pentaerythritol, diglycerol, glyceric acid, xylose, sorbitol, ascorbic acid, glucose, galactose, mannose, mannitol, xylitol, sorbitol, and isosorbide as R in the general formula (I).
  • the amphoteric compound having a hydrophilic group from which one hydroxylose (OH) has been removed from any one selected from the above is a non-lamellar liquid crystal forming lipid.
  • m 1 in the general formula (I).
  • amphipathic compound represented by the general formula (I) examples include an amphipathic compound represented by the following general formula (II).
  • X and Y each represent a hydrogen atom or together represent an oxygen atom, n represents an integer of 0 to 2 (0, 1 or 2), and m represents 1 or 2. show.
  • R in the general formula (II) represents a hydrophilic group having one or more hydroxyl groups (one or two or more hydroxyl groups), and is not limited to, for example, glycerol, erythritol, pentaerythritol, and the like. Selected from the group consisting of diglycerol, glycerinic acid, triglycerol, xylose, sorbitol, ascorbic acid, glucose, galactose, mannose, dipentaerythritol, maltose, mannitol, xylitol, sorbitol, glycol (eg, propylene glycol), and isosorbide.
  • the hydrophilic group from which one hydroxyl group (OH) has been removed from glyceric acid may be a group from which OH (hydroxyl group) contained in the carboxyl group of glyceric acid has been removed.
  • amphipathic compound represented by the general formula (I) is an amphipathic compound represented by the following general formula (III).
  • X and Y each represent a hydrogen atom or together represent an oxygen atom
  • n represents an integer of 0 to 2 (preferably 1 or 2)
  • m represents 1 or 2.
  • R in the general formula (III) represents a hydrophilic group having one or more hydroxyl groups (one or two or more hydroxyl groups), and is not limited to, for example, glycerol, erythritol, pentaerythritol, and the like. Selected from the group consisting of diglycerol, glycerinic acid, triglycerol, xylose, sorbitol, ascorbic acid, glucose, galactose, mannose, dipentaerythritol, maltose, mannitol, xylitol, sorbitol, glycol (eg, propylene glycol), and isosorbide.
  • hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them examples thereof include hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them.
  • the hydrophilic group from which one hydroxyl group (OH) has been removed from glyceric acid may be a group from which OH (hydroxyl group) contained in the carboxyl group of glyceric acid has been removed.
  • amphipathic compound represented by the general formula (I) there is an amphipathic compound represented by the following general formula (IV).
  • X and Y each represent a hydrogen atom or together represent an oxygen atom
  • n represents an integer of 0 to 2 (preferably 1 or 2)
  • m represents 1 or 2. Represents.
  • R in the general formula (IV) represents a hydrophilic group having one or more hydroxyl groups (one or two or more hydroxyl groups), and is not limited to, for example, glycerol, erythritol, pentaerythritol, and the like. Selected from the group consisting of diglycerol, glycerinic acid, triglycerol, xylose, sorbitol, ascorbic acid, glucose, galactose, mannose, dipentaerythritol, maltose, mannitol, xylitol, sorbitol, glycol (eg, propylene glycol), and isosorbide.
  • hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them examples thereof include hydrophilic groups in which one hydroxyl group (OH) is removed from any one of them.
  • the hydrophilic group from which one hydroxyl group (OH) has been removed from glyceric acid may be a group from which OH (hydroxyl group) contained in the carboxyl group of glyceric acid has been removed.
  • amphipathic compound represented by the general formula (I) examples include, for example, a glycerol-based compound, a sorbitan-based compound, or a propylene glycol-based compound: Mono O- (5,9,13-trimethyltetradeca-4-enoyl) glycerol, Mono O- (5,9,13-trimethyltetradecanoyl) glycerol, Mono O- (5,9,13-trimethyltetradeca-4,8,12-trienoyl) glycerol, Mono O- (5,9,13,17-tetramethyloctadeca-4-enoyl) glycerol, Mono O- (5,9,13,17-tetramethyloctadecanoyl) glycerol, Mono O- (5,9,13,17-tetramethyloctadecanoyl) glycerol, Mono O- (5,9,13,17-tetramethyloctadecan
  • a salt of the amphoteric compound represented by the general formula (I) for example, a halide such as chloride (chloride) or bromide (bromide), an alkali metal salt or an alkaline earth. Metal salts, sulfates, nitrates and the like can also be used. Those salts are included in the range of individual corresponding amphipathic compounds as listed above.
  • the liposome of the present invention may contain an amphipathic compound represented by the general formula (I) in the form of a salt thereof.
  • the salt of the amphipathic compound represented by the general formula (I) may be a pharmaceutically acceptable salt. Liposomes containing an amphipathic compound represented by the general formula (I) in the form of a salt thereof are also included in the scope of liposomes according to the present invention.
  • amphipathic compound represented by the general formula (I) used in the present invention is described in reference to the description of Examples described later, or described in WO2014 / 178256 or WO2020 / 050423 (Patent Document 3). It can be synthesized according to the synthetic method. Alternatively, the amphipathic compound represented by the general formula (III) can be synthesized, for example, according to the synthetic method described in International Publication WO2011 / 078383. Further, the amphipathic compound represented by the general formula (IV) can be synthesized, for example, according to the synthetic method described in International Publication WO 2006/043705.
  • the liposome of the present invention relates an amphipathic lipid having an isoprenoid-type lipid chain to the total amount of membrane-constituting lipids (the number of moles of lamella-forming lipid + the number of moles of amphipathic lipid having an isoprenoid-type lipid chain). It may be contained in an amount of 50 mol% or less, 40 mol% or less, 35 mol% or less, 30 mol% or less, 25 mol% or less, or 20 mol% or less in terms of mole fraction (mol%).
  • the liposome of the present invention contains amphipathic lipids having isoprenoid-type lipid chains (total amount when two or more of the amphipathic lipids are used) in a molar fraction with respect to the total amount of membrane-constituting lipids, for example, from 5 mol%. 50 mol%, 5 mol% to 40 mol%, 10 mol% to 50 mol%, 20 mol% to 50 mol%, 10 mol% to 40 mol%, 5 mol% to 25 mol%, 5 mol% to 30 mol%, 5 mol% to 35 mol%, 10 mol% to 35 mol%. , 20 mol% to 35 mol%, 20 mol% to 30 mol%, 10 mol% to 25 mol%, or 20 mol% to 25 mol% may be contained.
  • the liposome of the present invention may contain a phospholipid as a lamella-forming lipid.
  • the liposome of the present invention measures phospholipids (total amount when two or more kinds of phospholipids are used) with respect to the total amount of membrane-constituting lipids (the number of moles of lamella-forming lipids + the number of moles of amphoteric lipids having isoprenoid-type lipid chains).
  • mol% for example, 5 mol% to 65 mol%, 20 mol% to 65 mol%, 25 mol% to 50 mol%, 25 mol% to 40 mol%, 30 mol% to 40 mol%, 10 mol% to 35 mol%, or 20 mol%. It may be contained in an amount of up to 35 mol%.
  • the liposome of the present invention may contain a steroid as a lamella-forming lipid.
  • the steroid (the total amount when two or more kinds of steroids are used) is added to the total amount of membrane-constituting lipids (the number of moles of lamella-forming lipids + the number of moles of amphipathic lipids having isoprenoid-type lipid chains).
  • the rate (mol%) may be, for example, 5 mol% to 70 mol%, 20 mol% to 50 mol%, 30 mol% to 50 mol%, or 30 mol% to 40 mol%.
  • the liposomes of the present invention are cationic lipids (total amounts when two or more cationic lipids are used), for example, 1,2-dioleoyloxy-3-trimethylammonium propanechloride (DOTAP).
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propanechloride
  • mol% with respect to the total amount of membrane-constituting lipids (number of moles of lamella-forming lipid + number of moles of amphipathic lipid having isoprenoid-type lipid chain), for example, 40 mol% to 70 mol%, 50 mol% to 70 mol. %, 55 mol% to 65 mol%, or 45 mol% to 55 mol% may be contained.
  • the liposomes of the present invention contain amphipathic lipids (eg, C17MGE) and phospholipids (eg, DOPE) having isoprenoid-type lipid chains, and the total amount of membrane-constituting lipids (number of moles of lamella-forming lipid + isoprenoid-type). Based on the mole fraction (mol%) relative to the number of moles of amphipathic lipid having a fat chain, it is preferably 1: 2 to 2: 1, more preferably 1: 1.5 to 1.5: 1, and further. It may be preferably contained in a ratio of 1: 1.1 to 1.1: 1.
  • amphipathic lipids eg, C17MGE
  • DOPE phospholipids
  • the liposome of the present invention may contain a cationic lipid as the lamella-forming lipid.
  • the liposome of the present invention contains a cationic lipid, for example, 1,2-dioleoyloxy-3-trimethylammonium propanechloride (DOTAP), and has a total amount of membrane-constituting lipid (number of moles of lamella-forming lipid + isoprenoid-type fat chain).
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propanechloride
  • the amphipathic lipid having an isoprenoid type lipid chain (for example, C17MGE) is composed of a membrane.
  • the molar fraction (mol%) with respect to the total amount of lipid may be 20 mol% to 25 mol%, and phospholipid (for example, DOPE) may be contained in 20 mol% to 35 mol%.
  • the liposomes of the invention are amphipathic lipids with isoprenoid-type fat chains, such as mono-O- (5,9,13-trimethyltetradeca-4-enoyl) glycerol and lamella-forming lipids. It may contain myristylphosphatidylcholine (DMPC), cholesterol, and PEGylated distearoylphosphatidylethanolamine.
  • DMPC myristylphosphatidylcholine
  • cholesterol cholesterol
  • PEGylated distearoylphosphatidylethanolamine PEGylated distearoylphosphatidylethanolamine
  • Such a liposome of the present invention comprises an isoprenoid-type lipid chain at a molar fraction (mol%) with respect to the total amount of membrane-constituting lipids (number of moles of lamella-forming lipid + number of moles of amphipathic lipid having isoprenoid-type lipid chain).
  • amphipathic lipids such as monoO- (5,9,13-trimethyltetradeca-4-enoyl) glycerol from 5 mol% to 35 mol%, DMPC from 25 mol% to 55 mol%, cholesterol from 30 mol% to 50 mol%, and It may contain 4 mol% to 10 mol% of PEGylated distearoyl phosphatidylethanolamine (eg, DSPE-PEG2000).
  • Such liposomes of the present invention are also amphipathic lipids having an isoprenoid-type lipid chain in mole fraction (mol%) with respect to the total amount of membrane-constituting lipids, such as mono-O- (5,9,13-trimethyltetradeca-).
  • 4-Enoyl) Glycerol 5 mol% to 25 mol% or 20 mol% to 35 mol%, DMPC 35 mol% to 55 mol%, cholesterol 30 mol% to 50 mol%, and PEGylated distearoyl phosphatidylethanolamine (eg DSPE-PEG2000). It may contain 4 mol% to 10 mol%.
  • the liposomes of the invention are amphipathic lipids having isoprenoid-type fat chains, such as monoO- (5,9,13-trimethyltetradeca-4-enoyl) glycerol and geo, which is a lamella-forming lipid. It may contain rail phosphatidylethanolamine (DOPE) and 1,2-dioleoyloxy-3-trimethylammonium propanechloride (DOTAP).
  • DOPE rail phosphatidylethanolamine
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propanechloride
  • Such liposomes of the present invention have an isoprenoid-type lipid chain in terms of mole fraction (mol%) with respect to the total amount of membrane-constituting lipids (number of moles of lamella-forming lipid + number of moles of amphipathic lipid having isoprenoid-type lipid chain).
  • Amphiphilic lipids such as monoO- (5,9,13-trimethyltetradeca-4-enoyl) glycerol 5 mol% to 35 mol% or 20 mol% to 40 mol%, DOPE 15 mol% to 35 mol%, and DOTAP. It may contain 40 mol% to 70 mol%.
  • Such liposomes of the present invention are also amphipathic lipids having isoprenoid-type lipid chains in molar fraction (mol%) relative to the total amount of membrane-constituting lipids, such as mono-O- (5,9,13-trimethyltetradeca-).
  • 4-Enoyl) Glycerol may be contained in an amount of 5 mol% to 30 mol% or 10 mol% to 20 mol%
  • DOPE may be contained in an amount of 10 mol% to 35 mol%
  • DOTAP may be contained in an amount of 55 mol% to 65 mol%.
  • the liposomes of the invention are amphipathic lipids having isoprenoid-type fat chains, such as mono-O- (5,9,13-trimethyltetradeca-4-enoyl) glycerol and 1,2-diore. It may contain oil oxy-3-trimethylammonium propane chloride (DOTAP).
  • DOTAP oil oxy-3-trimethylammonium propane chloride
  • Such liposomes of the present invention have an isoprenoid-type lipid chain in terms of mole fraction (mol%) with respect to the total amount of membrane-constituting lipids (number of moles of lamella-forming lipid + number of moles of amphipathic lipid having isoprenoid-type lipid chain).
  • Such liposomes of the present invention do not have to contain phospholipids or steroids.
  • the liposome of the present invention may or may not contain other substances in addition to the lamella-forming lipid and the amphipathic lipid having an isoprenoid-type fat chain.
  • the liposome of the present invention may or may not contain a surfactant, but does not need to contain a surfactant.
  • surfactants are block copolymers of hydrophilic ethylene oxide and hydrophobic propylene oxide (polyoxyethylene polyoxypropylene glycol), polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, and polyoxyethylene hydrogenated castor oil. Examples thereof include nonionic surfactants.
  • block copolymer of ethylene oxide and propylene oxide examples include polyoxyethylene (200) polyoxypropylene (70) glycol, polyoxyethylene (196) polyoxypropylene (67) glycol, and polyoxyethylene (160) polyoxypropylene ( 30) Glycol, polyoxyethylene (120) polyoxypropylene (40) glycol and the like can be mentioned.
  • block copolymers of ethylene oxide and propylene oxide are commercially available under various names such as Pluronic (R) , Poloxamer (R) , Unilube (R) , and Pronon (R) .
  • nonionic surfactants are polyoxyethylene (200) polyoxypropylene (70) glycol, polyoxyethylene (196) polyoxypropylene (67) glycol (also known as Pluronic (R) F127; Unilube 70DP). -950B, poloxamer (R) 407) and the like.
  • P80 polyoxyethylene sorbitan monooleate (20EO)
  • the liposome of the present invention usually has an internal aqueous phase containing an aqueous solvent inside the liposome.
  • an aqueous solvent examples include phosphate buffered physiological saline (PBS), citrate buffer, citrate-phosphate buffer, acetate buffer, Tris-HCl buffer, hypotonic phosphate buffer and the like. Buffer solution, water, etc., but are not limited to these.
  • the aqueous solvent may contain other substances such as the drugs described below.
  • the liposome of the present invention preferably does not contain a non-lamellar liquid crystal.
  • the liposome of the present invention may contain a non-lamellar liquid crystal forming lipid as a membrane-constituting lipid, but may not contain a non-lamellar liquid crystal.
  • the liposomes of the present invention are not non-lamellar liquid crystal fine particles.
  • the liposome of the present invention can be prepared by a usual liposome manufacturing method. Specifically, the liposome of the present invention dissolves a membrane-constituting lipid such as a lamella-forming lipid and an amphipathic lipid having an isoprenoid-type fat chain in an organic solvent (preferably ethanol, chloroform, etc.). After mixing them uniformly, the organic solvent (alcohol, etc.) is removed by treatment such as concentration under reduced pressure, and an aqueous solvent suitable for preparing liposomes such as a buffer solution (for example, phosphate buffered physiological saline) or water is added.
  • a buffer solution for example, phosphate buffered physiological saline
  • the dispersing for example, sonicating
  • an ultrasonic homogenizer for example, a high-pressure homogenizer, or the like.
  • the sonication is performed, for example, by performing 1 to 5 times (for example, 2 times) for 20 to 60 seconds (for example, 20 to 40 seconds, preferably 30 seconds) with an amplitude of 10 to 30% (20%). It may be carried out. It is preferable that the dispersion step such as dispersion by ultrasonic treatment is performed within a range in which the temperature does not rise too much.
  • the liposome of the present invention is preferably temperature responsive and can exert a cell membrane destabilizing effect in a predetermined temperature range.
  • the liposomes of the invention have little effect on the cell membrane at normal body temperature (approximately 35-38 ° C.), but at higher temperatures such as 39-60 ° C., eg 44-48 ° C. , Brings destabilization of cell membranes.
  • the destabilization of the cell membrane means that it interacts with the cell membrane to increase the membrane fluidity of the cell membrane, thereby improving the efficiency of introducing a substance into the cell, promoting the lysis of the cell, and the like.
  • the liposome of the present invention which is temperature-responsive, can be advantageously used for intracellular substance delivery and cytolysis induction based on the cell membrane destabilizing action.
  • the liposomes of the present invention which are temperature-responsive, can also be advantageously used to suppress tumor growth by utilizing heating.
  • the liposome of the present invention typically has an average particle size of 50 nm to 500 nm, preferably 80 nm to 400 nm, more preferably 80 nm to 300 nm, and even more preferably 100 nm to 300 nm.
  • the liposomes of the present invention typically have 0.05 to 0.4, preferably 0.05 to 0.35, or 0.1 to 0.35, more preferably 0.05 to 0.3, or. It has a PdI of 0.1-0.3, eg 0.15-0.25.
  • the liposome of the present invention has a property of accumulating at a tumor site due to an EPR effect (Enhanced permeation and retention effect) when administered systemically.
  • the liposomes of the present invention also accumulate in the liver and spleen by systemic administration.
  • the liposome of the present invention does not cause hemolysis at normal body temperature and can be safely administered systemically.
  • the liposome of the present invention preferably further contains a drug.
  • the drug is any substance (active ingredient) to be contained in or immobilized on the liposome, preferably retained inside or in the membrane of the liposome and delivered intracellularly.
  • the drug may be an organic compound or an inorganic compound.
  • the drug may be a water-soluble drug or a fat-soluble (lipophilic, water-insoluble or sparingly water-soluble) drug. Typically, the water-soluble drug is retained in the internal aqueous phase inside the liposome, and the lipophilic drug is embedded and retained in the membrane of the liposome.
  • the drug may be, but is not limited to, a physiologically active substance.
  • the drug may be, for example, proteins, peptides, amino acids, nucleic acids and the like, but is not limited thereto.
  • the drug may, but is not limited to, have a therapeutic or prophylactic effect.
  • the drug may be a fluorescent substance such as a fluorescent protein, a dye substance, or a labeling substance such as a radioisotope.
  • the liposome of the present invention containing a labeling substance as a drug can also be used as a labeling agent (imaging agent) for labeling cells by delivering the labeling substance to cells.
  • the drug may be DNA, RNA, a hybrid of DNA and RNA, or any nucleic acid such as DNA or RNA containing an artificial base, a modified nucleic acid, or the like.
  • the nucleic acid may contain any gene.
  • the nucleic acid may be an expression vector or expression cassette containing the transgene under the control of an expression promoter.
  • the expression vector may be a plasmid vector, a viral vector, or the like.
  • the transgene may be any gene and may be DNA, RNA or the like.
  • the introduced gene may be a gene having an antitumor effect such as a tumor suppressor gene, a cell proliferation regulator gene, an apoptosis-inducing gene, or a toxin protein gene.
  • Nucleic acid may also be siRNA, shRNA, dsRNA and the like. RNA interference-inducing nucleic acids such as siRNA and shRNA may be designed for genes whose expression should be suppressed. Liposomes of the invention can also facilitate nucleic acid delivery of such nucleic acids into the nucleus of cells.
  • the nucleic acid may be for the treatment or prevention of any disease. In one embodiment, it is preferable that the liposome of the present invention and the nucleic acid are bound to form a complex between the nucleic acid and the liposome.
  • the binding between the liposome and the nucleic acid is not particularly limited, but may be, for example, by electrostatic interaction.
  • the nucleic acid-liposome complex according to the present invention is particularly useful for delivery of nucleic acids to cells.
  • the nucleic acid-liposome complex according to the present invention contains the above-mentioned amphipathic lipid having an isoprenoid-type lipid chain and a lamella-forming lipid as membrane-constituting lipids.
  • the lamella-forming lipid used in the nucleic acid-liposomal complex contains at least one selected from the group consisting of phospholipids, steroids, and cationic lipids, but preferably contains cationic lipids, and cationic lipids and phospholipids. It is more preferable to include.
  • the cationic lipids are as described above, but 1,2-dioleoyloxy-3-trimethylammonium propanechloride (DOTAP) is particularly preferable.
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propanechloride
  • the phospholipids are also as described above, but phosphatidylethanolamine such as diorail phosphatidylethanolamine (DOPE) is particularly preferable.
  • DOPE diorail phosphatidylethanolamine
  • the drug may be an antitumor agent.
  • the drug may be a therapeutic agent for liver disease (eg, hepatitis, etc.) or spleen disease.
  • the antitumor agent is not particularly limited, and examples thereof include doxorubicin hydrochloride (DXR) and the like.
  • the liposome of the present invention can be advantageously used for intracellular drug delivery.
  • the present invention also provides an intracellular drug delivery preparation containing the liposome of the present invention.
  • the cell that delivers the drug may be any cell, but in the case of systemic administration, for example, it is a tumor cell.
  • the cells that deliver the drug may also be hepatocytes or splenocytes.
  • the liposome of the present invention containing the above nucleic acid can be advantageously used for nucleic acid delivery into cells, particularly into the nucleus of cells.
  • the present invention also provides a preparation for delivering nucleic acid into the nucleus of a cell, which comprises the liposome of the present invention containing the above nucleic acid.
  • the cell that delivers the nucleic acid may be any cell, but is preferably a tumor cell.
  • the cells that deliver the nucleic acid may also be hepatocytes or splenocytes.
  • the present invention provides a drug delivery system for drugs, for example nucleic acids such as genes.
  • the intracellular drug delivery preparation and the nucleic acid delivery preparation into the cell nucleus of the present invention are pharmaceutically acceptable additives (for example, carriers, excipients, buffers, pH adjusters, preservatives). , Coloring agent, flavoring agent, propellant, etc.) may be further contained.
  • the pharmaceutical product for delivering a drug into a cell or the pharmaceutical product for delivering a nucleic acid into the nucleus of a cell of the present invention may be a test reagent (in vitro nucleic acid-introducing reagent) in vitro or the like, or a pharmaceutical preparation. It may be.
  • the present invention provides a pharmaceutical preparation containing the liposome of the present invention.
  • the "pharmaceutical product" in the present invention can be a pharmaceutical composition.
  • the pharmaceutical preparation of the present invention is a pharmaceutically acceptable additive (for example, carrier, excipient, buffer, pH adjuster, preservative, colorant, flavoring agent, propellant, etc.) as long as the liposome morphology can be maintained. ) May be included.
  • the liposome of the present invention can exhibit an antitumor effect even when it does not contain a drug (for example, an antitumor agent). Therefore, the pharmaceutical preparation containing the liposome of the present invention can be an antitumor preparation regardless of whether or not it contains a drug (for example, an antitumor agent).
  • the pharmaceutical preparation according to the present invention may be in any dosage form, but is preferably a liquid agent, a capsule agent, a spray agent, an aerosol agent, an injection agent, a suppository, a depot agent or the like.
  • the pharmaceutical preparation according to the present invention may be for the treatment or prevention of any disease, for example, for the treatment or prevention of various diseases such as neoplastic diseases such as cancer and benign tumors, skin diseases and liver disorders. It may be.
  • the present invention also provides a method for slowly broadcasting a drug into the body, which comprises applying the above-mentioned pharmaceutical product according to the present invention to a body such as a subject (for example, a patient) (particularly, a biological tissue in the body).
  • a body such as a subject (for example, a patient) (particularly, a biological tissue in the body).
  • parenteral administration for example, systemic administration such as intravenous administration, intraarterial administration, intraperitoneal administration, intramuscular, transdermal, subcutaneous, intradermal, etc.
  • the route is not limited to that.
  • Parenteral administration can be performed by, for example, systemic administration or local administration, but systemic administration is more preferable.
  • the subject to which the above-mentioned preparation according to the present invention is administered may be any animal including mammals, birds and the like (for example, animals having the above-mentioned diseases), and for example, primates such as humans, chimpanzees, gorillas and orangutans. It may be a dog, a cat, a rabbit, a ferret, a panda, a cow, a horse, a sheep, a goat, a pig, a mouse, a rat or the like.
  • the subject is preferably a subject requiring administration of the liposome of the present invention or a pharmaceutical preparation containing the same.
  • the liposome of the present invention is preferably temperature-responsive, and more preferably, the membrane fluidity of the liposome is improved under a predetermined temperature condition higher than the body temperature, and the liposome acts on the cell membrane. Therefore, by warming the target site under predetermined temperature conditions after administration to the subject, it is possible to promote drug release from the liposome specifically to the site and induce cell membrane destabilization. can. That is, the liposome of the present invention can promote cell death by using a heating treatment in combination. Since the liposome of the present invention exhibits high tumor accumulation, it can bring about a higher antitumor effect when combined with a heating treatment.
  • the heating treatment can be performed at a temperature higher than the body temperature (approximately 35 to 38 ° C.), for example 39 to 60 ° C., for example 44 to 48 ° C.
  • the heating treatment may be performed, for example, by using any means that can heat the affected area intensively (preferably specifically to the affected area), but for example, ultrasonic treatment or near-range that can heat the affected area to a target temperature. It can be performed by infrared irradiation (wavelength 650 to 2,500 nm, for example, wavelength 700 to 1000 nm) or the like. It should be noted that the heating treatment is not always necessary in the present invention, and the drug delivery using the liposome of the present invention is possible without the heating treatment.
  • the temperature-responsive liposome of the present invention can be used, in particular, as a pharmaceutical preparation for producing an antitumor effect, that is, a therapeutic agent for tumor (cancer).
  • a pharmaceutical preparation for producing an antitumor effect that is, a therapeutic agent for tumor (cancer).
  • a person skilled in the art can appropriately determine the dose of the pharmaceutical preparation containing the liposome of the present invention based on the content of the drug in the liposome.
  • the present invention also provides a method for suppressing tumor growth, or a method for treating a tumor, which comprises administering the liposome of the present invention or a pharmaceutical preparation containing the same to a subject (for example, a patient).
  • the administration route of the liposome of the present invention or a drug-containing preparation, a nucleic acid delivery preparation, a pharmaceutical preparation, or the like containing the same is not particularly limited, but is parenteral administration (for example, systemic administration such as intravenous administration and intraarterial administration). , Intramuscular, transdermal, subcutaneous, intradermal, etc.), and the parenteral administration may be, for example, systemic or topical administration.
  • the subject to which the liposome of the present invention or the above-mentioned preparation containing the present invention is administered is preferably a subject requiring administration of the liposome of the present invention or the above-mentioned preparation containing the same, and has or is suspected to have a tumor. It is more preferable that it is an object to be treated.
  • the subject may be a subject for whom drug delivery to the liver or spleen is desired, such as, for example, a subject having a disease in the liver or spleen.
  • the target may be any animal including mammals, birds and the like (for example, animals having the above-mentioned diseases), for example, primates such as humans, chimpanzees, gorillas and orangutans, dogs, cats, rabbits, ferrets and pandas. , Cows, horses, sheep, goats, pigs, mice, rats and the like.
  • the dose of the liposome of the present invention or the above-mentioned preparation can be appropriately determined by those skilled in the art, and in the case of humans, for example, it may be an amount corresponding to the amount of liposome of 0.0001 mg to 100 g or 1 mg to 50 g. Not limited.
  • tumor includes malignant or benign neoplastic diseases.
  • Target tumors to which the liposomes of the present invention bring about drug delivery or antitumor effect are not limited to the following, but are, for example, breast cancer, liver cancer, spleen cancer, kidney cancer, pancreatic cancer, esophageal cancer. , Gastric cancer, colorectal cancer, lung cancer, head and neck cancer, brain tumor, biliary tract cancer, bladder cancer, uterine cancer (uterobody cancer, cervical cancer, etc.), ovarian cancer, oviduct cancer, prostate cancer, leukemia, malignant lymphoma, frequent occurrence Examples include sex myeloma.
  • organs to which the liposomes of the present invention are targeted for drug delivery include liver and spleen, and target diseases include liver or spleen diseases (eg, hepatitis).
  • the obtained residue was purified by silica gel column chromatography (mobile phase: ethyl acetate / hexane mixed solution) to obtain the title compound as a colorless transparent liquid.
  • the results of 1 H-NMR measurement and viscosity measurement of the obtained compound are as follows.
  • the obtained reaction solution was diluted with a mixed solvent of ethyl acetate / hexane (1: 1,200 mL), washed with water, saturated aqueous sodium hydrogen carbonate and saturated brine (twice), and dried over magnesium sulfate.
  • Example 2 Preparation of fine particle preparation A fine particle preparation was prepared using a thin film hydration method known as a method for preparing liposomes according to the composition shown in Table 1 below.
  • C17MGE (synthesized in Example 1), which is an amphipathic lipid having an isoprenoid-type fat chain, and dimyristylphosphatidylcholine (DMPC; COATSOME (R) MC-4040, which is a kind of phosphatidylcholine, Nichiyu Co., Ltd.), DSPE-PEG2000 (SUNBRIGHT (R) DSPE-020CN, Nichiyu Co., Ltd.), and cholesterol (Wako Special Grade, Fujifilm Wako Junyaku Co., Ltd.) were prepared as ethanol solutions having a lipid concentration of 10 mM, respectively. , They were mixed uniformly to prepare a mixed solution.
  • DMPC dimyristylphosphatidylcholine
  • COATSOME (R) MC-4040 dimyristylphosphatidylcholine
  • DSPE-PEG2000 SUNBRIGHT (R) DSPE-020CN, Nichiyu Co.,
  • DSPE distearoylphosphatidylethanolamine
  • PEG polyethylene glycol
  • this crude dispersion is sonicated twice for 30 seconds at a amplitude of 20% using an ultrasonic homogenizer (Sonics Vibra-Cell VCX-750, Sonics & Materials, Inc.) to make it lightly cloudy.
  • Fine particle preparation No. 1 to 5 were prepared. Each of these microparticulate preparations was prepared in an amount of 1 to 5 mL.
  • Example 3 Evaluation of physical properties of the fine particle product No. 2 of the fine particle product prepared in Example 2.
  • the particle size distribution of 1 to 5 and the zeta potential were measured by a dynamic light scattering method using a zeta sizar Nano-ZS (Malvern). Measurement samples were prepared by diluting each emulsion 1000-fold with PBS.
  • Table 1 shows the average particle size (nm) (Z-Average), PdI (multidisperse index), and zeta potential (mV) obtained as the average value of 5 to 6 measurements for each measurement sample.
  • the average particle size of the obtained fine particle preparation was in the range of 112 to 168 nm, and had an appropriate PdI and zeta potential. All of these fine particle formulations were stable with no visible agglomerates throughout the experimental process.
  • the fine particle product No. Structural analysis of 1 to 5 was performed by small-angle X-ray scattering (SAXS) using a NANO Viewer nanoscale X-ray structure evaluation device (Rigaku).
  • SAXS small-angle X-ray scattering
  • NANO Viewer nanoscale X-ray structure evaluation device Raku
  • Each fine particle product No. 1 to 5 were introduced into the capillary under atmospheric pressure, and measurements were performed in a device under reduced pressure (the sample itself was under atmospheric pressure).
  • the fine particle product No. It was shown that 1 to 5 did not form non-lamellar liquid crystals.
  • Fine particle formulation No. 4 the morphology of fine particles was observed using a low temperature transmission electron microscope (cryo TEM) (JEM-3100FEF, JEOL Ltd.). Specifically, first, the fine particle product No. 4 was diluted with PBS to a total lipid concentration of 0.5 mM. 1 ⁇ L of this diluted solution was added dropwise to a hydrophilized Cu microgrid (product number: 1643, 200 mesh, JEOL Ltd.) and blotted. Using a cryo sample preparation device (EM-CPC, Leica), the obtained grid was instantly frozen with liquefied ethane, and then bright-field observation was performed with a cryo TEM under liquid nitrogen temperature.
  • a cryo sample preparation device E-CPC, Leica
  • FIG. 1 shows a photographed image at a magnification of 15,000. As shown in FIG. 1, fine particles having a liposome-like membrane structure (single lamella) having a diameter of about 100 nm were observed.
  • fine particle product No. No. 5 showed a tendency of decreasing stability by the same observation by cryo TEM.
  • Example 4 Changes in physical properties of fine particles due to temperature changes (membrane fluidity)
  • Ethanol solutions of each lipid are mixed at a component ratio of 1 to 5, and 0.01 mol% of 1,6-diphenyl-1,3,5-hexatorien as a fluorescent dye with respect to the total amount of lipids (C17MGE + DMPC + Cho + DSPE-PEG2000).
  • an ethanol solution (0.025 mM) of (DPH) By adding an ethanol solution (0.025 mM) of (DPH) and operating in the same manner as in Example 2 so that the total final concentration of the lipid (C17MGE + DMPC + Cho + DSPE-PEG2000) and DPH is 1 mM, the fine particle preparation No.
  • DPH-containing fine particle product No. 1 corresponding to 1 to 5, respectively. 6 to 10 were prepared.
  • the fine particle product No. By replacing the DMPC in 6 with dipalmitoylphosphatidylcholine (DPPC; COATSOME MC-6060, NOF Corporation) or dioleylphosphatidylcholine (DOPC; COATSOME MC-8181, NOF Corporation), DPPC or DPC as a phospholipid, respectively.
  • DPPC dipalmitoylphosphatidylcholine
  • DOPC dioleylphosphatidylcholine
  • Fine particle product No. To each 1 mL of 6 to 12, add 5 ⁇ L of 1 M ethanol solution of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as a quenching agent, and raise the temperature from 25 ° C to 60 ° C. By observing the change in fluorescence intensity at the time, the membrane fluidity of the fine particles due to the temperature change was evaluated.
  • the DPH localized in the lipid bilayer membrane of the fine particles exhibits a constant intensity of fluorescence, but the fluorescence of the DPH disappears when the lipid bilayer membrane becomes loose and chemically reacts with TEMPO existing outside.
  • a fluorescence spectrophotometer (RF-6000, Shimadzu Corporation, Japan) was used to observe the measurement sample at an excitation wavelength of 353 nm and a fluorescence wavelength of 430 nm while raising the temperature from 25 ° C to 60 ° C. did.
  • the horizontal axis is the temperature (° C.) and the vertical axis is the fluorescence intensity ratio F / F 0 .
  • the change of the fluorescence intensity ratio according to the temperature of 6 to 12 is shown.
  • the fine particle pharmaceutical product No. 1 based on DPPC having a phase transition temperature of 42 ° C. without C17MGE added As shown in FIG. 2, the fine particle pharmaceutical product No. 1 based on DPPC having a phase transition temperature of 42 ° C. without C17MGE added.
  • the decrease in the fluorescence intensity ratio started from 35 ° C., the disappearance of the fluorescence intensity was completed by 50 ° C., and the fluorescence intensity stopped decreasing.
  • the fluorescence intensity ratio almost stopped decreasing at 25 ° C. at the start of measurement, and thereafter, the fluorescence intensity ratio was almost constant up to 60 ° C.
  • the fine particle pharmaceutical product No. 1 based on DMPC having a phase transition temperature of 23 ° C. without C17MGE added In No. 6, the decrease in the fluorescence intensity ratio gradually and continuously progressed from 25 ° C to 60 °
  • DMPC-based fine particle product No. containing C17MGE in a predetermined ratio In Nos. 7 to 10, the fine particle product No. 1 based on DMPC without the addition of C17MGE. Similar to No. 6, the decrease in the fluorescence intensity ratio gradually and continuously progressed from 25 ° C. to 60 ° C., but the larger the addition ratio of C17MGE, the lower the fluorescence intensity ratio at each temperature tended to be.
  • Example 5 Evaluation of interaction between the fine particle preparation and the cell membrane in response to a temperature change
  • an agglutination test was performed using erythrocytes.
  • a red blood cell solution was prepared as follows. As an anticoagulant, dissolve citric acid trisodium dihydrate at 22 mg / mL, citric acid monohydrate at 8 mg / mL, and glucose at 22 mg / mL in purified water to obtain a citric acid-dextrose solution (citric acid-dextrose solution). ACD solution) was prepared. Blood was collected from the left ventricle of WBN / ILA-Ht hairless rats (male, 8 weeks old) with a syringe coated with heparin solution (1000 units / mL). To the obtained blood, 1/5 volume of ACD solution was immediately added and mixed by inversion.
  • PBS (-) PBS containing no calcium and magnesium is referred to as PBS (-).
  • microtubes Capacity 1.5 mL, Eppendorf containing 50 ⁇ L of the above red blood cell solution were prepared.
  • This microtube was divided into 5 groups of 12 pieces each, and the fine particle pharmaceutical product No. prepared in Example 2 was divided into each group.
  • the mixture was stirred by pipetting.
  • Heating was performed at 12 points of temperature of 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 ° C. for 15 minutes.
  • the total amount of the solution in each microtube was transferred to each well of a 96-well round bottom plate, allowed to stand for 120 minutes, and then the state of erythrocytes in each well was visually observed.
  • erythrocytes do not interact with the mixed components, they aggregate and precipitate at the center of the bottom of the well, but when they interact with the mixed components, the colloid generated by the association between the components and the erythrocytes is in a dispersed state. It is observed throughout the well.
  • FIG. 3 shows an image taken by a digital camera of the state of the solution heat-treated at the above temperature of 12 points.
  • the microparticulate formulation No. 1 having a smaller mole fraction of C17MGE.
  • the fine particle product No. 1 containing no C17MGE.
  • amphipathic lipid having an isoprenoid-type fat chain blended in the fine particle preparation induces an interaction (association) between the cell membrane and the fine particles.
  • Example 6 Evaluation of cell membrane destabilizing effect of the fine particle preparation according to temperature change
  • a hemolysis test was conducted using erythrocytes.
  • a erythrocyte test solution having an appropriate absorbance was prepared as follows. An equal amount of PBS ( ⁇ ) was added to the washed erythrocyte fraction obtained in the same manner as in Example 5 to prepare an erythrocyte suspension. A 4-fold amount (1 mL) of hypotonic buffer (10-fold diluted solution of PBS ( ⁇ )) was added to 250 ⁇ L of the erythrocyte suspension to hemolyze the erythrocyte suspension, and the mixture was centrifuged at 3,000 rpm for 5 minutes. The obtained supernatant was measured for absorbance at 540 nm (hemoglobin absorption wavelength) and diluted with PBS ( ⁇ ) so that the absorbance was 2.0 to 2.5. The erythrocyte suspension was diluted with PBS ( ⁇ ) at the dilution ratio at this time so that the absorbance became 2.0 to 2.5 to obtain an erythrocyte test solution.
  • the supernatant was transferred to each well of a 96-well plate and used with a microplate reader (Spectra Max (R) M2e, MOLECULAR DEVICES).
  • the absorbance at 540 nm was measured to determine the hemolysis rate (%) of erythrocytes in each well.
  • the hemolysis rate (%) is obtained by dividing the absorbance obtained in each solution by the absorbance obtained using a hypotonic buffer solution (10-fold diluted solution of PBS (-)) instead of each solution. Calculated.
  • FIG. 4 shows the fine particle product No. 1 at 37 ° C. (FIG. 4A) and 45 ° C. (FIG. 4B).
  • the graph of the change according to the heating time of the hemolysis rate of 5 kinds of solutions containing any of 1 to 5 and a erythrocyte test solution is shown.
  • the horizontal axis shows the heating time [minutes], and the vertical axis shows the hemolysis rate [%].
  • the hemolysis rate value is the mean ⁇ standard deviation of the three measurements.
  • the fine particle product No. 1 containing no C17MGE. No. 1 of the fine particle product containing 1 and C17MGE was changed little. Fine particle formulation No. containing C17MGE. In No. 5, the hemolysis rate tended to increase according to the heating time at 37 ° C. On the other hand, at a heating temperature of 45 ° C., the fine particle pharmaceutical product No. 1 containing no C17MGE. Fine particle formulation No. 1 containing 1 and C17MGE in a lower mole fraction. The hemolysis rate did not change much between 2 and 3 as in the case of 37 ° C., whereas the microparticulate formulation No. containing C17MGE at a higher mole fraction. In 4 and 5, the hemolysis rate increased according to the heating time. This indicates that the addition of an amphipathic lipid having an isoprenoid-type fat chain to the fine particle preparation results in a cell membrane-destroying effect under warming conditions.
  • the fine particle preparation containing an amphipathic lipid having an isoprenoid-type fat chain such as C17MGE can be heated to increase the membrane fluidity of the preparation itself, and also. It has been shown to promote the interaction between the fine particles and the cell membrane, and in particular to induce the destabilization of the cell membrane.
  • a microparticulate preparation containing an amphipathic lipid having an isoprenoid-type fat chain such as C17MGE does not show interaction with the cell membrane and does not induce destabilization of the cell membrane even though the membrane fluidity of the preparation itself is increased. rice field.
  • Example 7 Pharmacokinetics of the fine particle preparation by in vivo administration
  • the fine particle preparation No. to which C17MGE was added. 1 and 4 are blended with 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindotricarbocyanine iodide (Dir), which is a hydrophobic near-infrared fluorescent dye.
  • Dir 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindotricarbocyanine iodide
  • the fine particle product No. shown in Table 1 The ethanol solutions of each lipid are mixed at the component ratios of 1 and 4, and 0.5 mol% of DiR ethanol solution is added to the total amount of lipids (C17MGE + DMPC + Cho + DSPE-PEG2000), and the lipids (C17MGE + DMPC + Cho + DSPE-PEG2000) and DiR are added.
  • the fine particle preparation No. DiR-containing fine particle pharmaceutical product No. corresponding to 1 and 4, respectively. 13 and 14 were prepared. It should be noted that the fine particle product No. 13 and 14 do not contain non-lamellar liquid crystals.
  • 4T1-Luc cells which are mouse breast cancer cells and stable expression strains of luciferase, were obtained from JCRB Cell Bank (Japan) under JCRB number JCRB1447, 1.2x106 cells.
  • JCRB Cell Bank Japan
  • JCRB number JCRB1447 1.2x106 cells.
  • a syringe equipped with a 27G needle (Termo syringe 1 mL) was used to prepare the fine particle preparation No. .. 13 or 14 100 ⁇ L was intravenously administered to the tail.
  • mice The entire mouse under general anesthesia 0.5, 1, 3, 6, 18, 24, and 45 hours after administration was observed with a fluorescence imaging device (IVIS Spectram), and the fluorescence intensity of the tumor site was observed over time. Tracked changes. Forty-five hours after administration, the mice were euthanized, and each organ (heart, liver, spleen, kidney, lung, pancreas, tumor) was removed from the abdomen and observed with a fluorescent imaging device. In this observation, a filter set having an excitation wavelength of 745 nm and a fluorescence wavelength of 800 nm was used. Living Image (R) (PerkinElmer) was used for data analysis.
  • R Living Image
  • FIG. 5 the fine particle product No. Fluorescence imaging images of the entire mouse at each time after administration of 13 or 14 are shown.
  • FIG. 6 shows the results of quantifying the fluorescence intensity of the tumor site using the ROI (Region Of Interests) function based on each fluorescence imaging image of FIG.
  • FIG. 7 the fine particle pharmaceutical product No. A fluorescence imaging image of an organ (45 hours after administration) removed from the abdomen of a mouse to which 13 or 14 was administered is shown.
  • No. 14 is a fine particle preparation No. 14 which corresponds to a typical liposome preparation containing no C17MGE. It was clarified that it showed the same accumulation behavior in organs as in 13. That is, the fine particle pharmaceutical product No. 1 administered to the mouse. Both 13 and 14 showed an increase in accumulation at the tumor site over time, and the accumulation at the tumor site peaked after about 24 hours, but continued to show high accumulation at the tumor site even after 45 hours, and further, It also showed high agglomeration in the liver and a slight agglomeration in the spleen. None of the microparticulate preparations was found to accumulate in other organs such as the lungs, which could cause side effects. In addition, no visual abnormalities were observed in the mice during this evaluation test.
  • the microparticulate preparation containing liposomes containing C17MGE (not containing non-lamellar liquid crystal) can be safely administered to a living body and can be accumulated at a tumor site. It is considered that the accumulation of the fine particle preparation of the present invention in the tumor site is due to the EPR effect (Enhanced permeation and retention effect). Further, as shown in the above examples, the fine particle pharmaceutical product of the present invention does not interact with cells at body temperature (around 37 ° C.), but interacts with cells by heating to 44 to 48 ° C. to form a cell membrane. Destabilize. Therefore, it was considered that the microparticulate preparation of the present invention can deliver a drug to tumor cells by temperature stimulation.
  • Example 8 Preparation of microparticle preparation No. of microparticle preparation containing non-lamellar liquid crystal to which a cationic lipid is added so that a negatively charged nucleic acid can be complexed.
  • No. 15 and the fine particle product No. 1 containing no non-lamellar liquid crystal. 16-30 were prepared.
  • the fine particle pharmaceutical product No. 1 containing a non-lamellar liquid crystal dispersion.
  • C17MGE having an isoprenoid type lipid chain, diorail phosphatidylethanolamine (DOPE; COATSOME ME-8181, a type of phosphatidylethanolamine), day Oil Co., Ltd.), 1,2-dioleoyloxy-3-trimethylammonium propanechloride (DOTAP; COATSOME CL-8181TA, Nichiyu Co., Ltd.), which is a cationic lipid, and Pluronic (R) F127 (Unilube (R)).
  • DOPE diorail phosphatidylethanolamine
  • DOPE diorail phosphatidylethanolamine
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propanechloride
  • Pluronic (R) F127 Unilube (R)
  • the fine particle product No. that does not contain non-lamellar liquid crystal.
  • C17MGE, DOPE, and DOTAP which were prepared as 10 mM ethanol solutions, were added to 5 to 20 mL so that the total weight after ethanol removal was 50 mg. It was uniformly mixed in a round bottom flask.
  • the ratio of each component in the lipid in the fine particle preparation was 50 mol% or 60 mol% with DOTAP as a molar fraction in an appropriate range, and the C17MGE: DOPE ratio was 0: 100 to 100: 0.
  • GMO fine particle preparation was prepared according to the same composition and preparation method as in 20. However, in this GMO fine particle preparation, aggregates were precipitated and layer-separated within at least half a day after preparation. Therefore, it was shown that GMO is not suitable as a lipid alternative to C17MGE in the preparation of the fine particle preparation of the present invention.
  • Example 9 Evaluation of physical properties of the fine particle product No. 2 of the fine particle product prepared in Example 8.
  • the particle size distribution of 15 to 30 and the zeta potential were measured in the same manner as in Example 3.
  • Tables 2 and 3 show the average particle size (nm) (Z-Average), PdI (multidisperse index), and zeta potential (mV) obtained as the average value of the three measurements for each measurement sample.
  • Fine particle formulation No. that does not contain non-lamellar liquid crystal.
  • the molar fraction of DOTAP in the lipid is 50 mol% or 60 mol%
  • the larger the ratio of C17MGE in the C17MGE: DOPE ratio the larger the average particle size and the larger the PdI.
  • the actual formulation tended to be unstable.
  • the preparation No. of C17MGE: DOPE 100: 0 with a mole fraction of DOTAP in the lipid of 60 mol%.
  • No. 30 had a smaller average particle size and a more stable formulation.
  • the fine particle product No. for 15 to 30 structural analysis was performed by small-angle X-ray scattering (SAXS) in the same manner as in Example 3.
  • SAXS small-angle X-ray scattering
  • No. In the scattering intensity distribution obtained from the 15 fine particle formulations, at least 3 scattering peaks were observed. Since the peak ratio showed a ratio of 1: ⁇ 3: 2, which is peculiar to the reverse hexagonal liquid crystal, it was shown that this pharmaceutical product is a liquid crystal emulsion (hexasome) in which fine particles of the reverse hexagonal liquid crystal are dispersed in the aqueous phase.
  • the scattering vector value of the peak located on the smallest angle side was 1.42 nm-1.
  • No. No peak peculiar to non-lamellar liquid crystal was observed in any of the 16 to 30 fine particle formulations.
  • Fine particle formulation No. 27 was observed using a cryoTEM in the same manner as in Example 3.
  • FIG. 8 shows the fine particle product No. The photographed image at a magnification of 15,000 times of 27 is shown. Fine particles having a liposome-like membrane structure (multi-lamella) of 100 nm or more were observed.
  • Example 10 Verification of intracellular introduction effect of fluorescent dye Using HaCaT cells (3000049-SF, Cellline Service Co., Ltd.), which is a human epidermal keratinized cell line, the intracellular introduction effect of a drug by a fluorescent dye was tested. ..
  • the fine particle product No. shown in Table 3 is shown. Ethanol solutions of each lipid were mixed at a component ratio of 16, 20, and 23, and 0.5 mol% of rhodamine-PE (810150, Avanti polar lipid) was added as a fluorescent labeling molecule to the total amount of lipid (C17MGE + DOPE + DOTAP). By adding the rhodamine-PE and the lipid (C17MGE + DOPE + DOTAP) to a total final concentration of 2 mM in the same manner as in Example 8, the fine particle preparation No. Fluorescently labeled fine particle product No. corresponding to 16, 20, and 23, respectively. 31-33 were prepared.
  • the fine particle pharmaceutical product No. 10 ⁇ L of each of any of 31 to 33 was added.
  • the intracellular uptake efficiency of fluorescently labeled molecules was measured by a flow cytometer (CytoFLEX,). Measured with Beckman Coulter). Data of 10,000 cell counts were obtained for each measurement.
  • the horizontal axis is the intracellular fluorescence intensity due to the fluorescently labeled molecule [a. u], the fine particle preparation No. with the vertical axis as the number of cells. It is a graph which shows the intracellular uptake amount of the fluorescently labeled molecule in the 31-33 addition group and the untreated group.
  • FIG. 9B the fine particle pharmaceutical product No. 1 with respect to the intracellular uptake amount of the untreated group calculated from FIG. 9A.
  • the ratio of the intracellular uptake amount (intracellular uptake efficiency) of the fluorescently labeled molecule of the 31-33 addition group is shown.
  • the fine particle product No. In each of the 31-33-added groups, the intracellular uptake efficiency of the fluorescently labeled molecule was improved to about twice that of the untreated group. Therefore, the fine particle product No. It was shown that 31 to 33 can efficiently deliver the drug into the cells, similar to the microparticulate preparation prepared in Example 2.
  • Example 11 Preparation of nucleic acid-fine particle complex and evaluation of the complex state
  • a plasmid expression vector (pDNA) containing the EGFP gene, pcDNA3-EGFP (provided under MTA from Addgene in the United States) was mixed with 15 to 30 at an N / P ratio of 0.5, 1, or 2.
  • the N / P ratio indicates the introduction ratio of the nucleic acid into the fine particle preparation, and is represented by a value obtained by dividing the amount (mol) of the cationic lipid (here, DOTAP) in the fine particle preparation by the amount of nucleic acid (mol). That is, the larger the N / P ratio, the higher the ratio of cationic lipid to nucleic acid.
  • FIG. 10 shows an electrophoretic image of a nucleic acid-fine particle complex.
  • FIG. 11 shows the ratio of the luminance intensity of the band of nucleic acid (pkDNA3-EGFP) released from the nucleic acid-fine particle complex to the luminance intensity of the band of pcDNA3-EGFP alone. The smaller the luminance-intensity ratio, the stronger the complex state of nucleic acid and fine particles.
  • the fine particle product No. 15 (A) and No. All of the nucleic acid-fine particle complexes derived from 20 (B) showed a tendency that the amount of nucleic acid retained in the complex state increased as the N / P ratio increased.
  • the nucleic acid-fine particle complex derived from 20 is the fine particle preparation No. Since more free nucleic acid was detected as compared with the nucleic acid-fine particle complex derived from 15, the fine particle preparation No. It was shown that the interaction between the microparticles and the nucleic acid was weaker than that of the nucleic acid-microparticle complex derived from 15.
  • Fine particle formulation No. containing C17MGE The nucleic acid-fine particle complexes derived from 15 and 20 have strength and weakness in the interaction between the nucleic acid and the fine particles, but are retained as a complex after electrophoresis, and therefore, both have bioavailability under a certain environment. It has been shown.
  • Example 12 Evaluation of nuclear nucleic acid introduction effect by gene expression Using HaCaT cells (300493-SF, Cellline Service Co., Ltd.), which is a human epidermal keratinized cell line, the nuclear nucleic acid introduction effect by gene expression was evaluated. ..
  • the fine particle pharmaceutical product No. 1 prepared in Example 11 in which pcDNA3-EGFP was mixed at an N / P ratio of 2 was used.
  • the fine particle pharmaceutical product No For each well (4x10 4 cells / well) containing HaCaT cells in advance in the 24-well plate, the fine particle pharmaceutical product No. After adding a nucleic acid-fine particle complex derived from 15 to 30, pcDNA3-EGFP alone, or LFN2000-nucleic acid mixture and incubating at 37 ° C. for 40 hours, the expression state of EGFP, which is a kind of green fluorescent protein (GFP), is fluorescent. Observation was performed with a microscope (BZ-X710, Keyence Co., Ltd. equipped with Plan Fluorite 4 ⁇ PH as a lens).
  • GFP green fluorescent protein
  • FIG. 12 shows fluorescent images of cells treated with each pharmaceutical product.
  • GFP was not expressed in cells treated with the negative control pcDNA3-EGFP alone, and GFP was strongly expressed in the cells treated with the positive control LFN2000-nucleic acid mixture.
  • Fine particle formulation No. containing non-lamellar liquid crystal Almost no expression of GFP was observed in the nucleic acid-fine particle complex derived from 15.
  • the fine particle pharmaceutical product No. which does not contain either C17MGE or DOPE and does not contain non-lamellar liquid crystal.
  • the expression intensity of GFP was lower than that in the LFN2000-nucleic acid mixture.
  • the fine particle pharmaceutical product No. 1 containing both C17MGE and DOPE and not containing non-lamellar liquid crystal.
  • GFP expression intensity equivalent to that of the LFN2000-nucleic acid mixture was observed.
  • the fine particle product No For each of the nucleic acid-fine particle complexes derived from 16 to 30, for pcDNA3-EGFP alone, fluorescence using a flow cytometer (CytoFLEX, Beckman Coulter) was used to quantitatively capture the expression state of GFP in treated cells. Activated cell sorting (FACS) analysis was performed. In this analysis, a laser wavelength of 488 nm was used, and the data analysis software CytoExpert was used to examine the GFP expression status of HaCaT cells in each well treated as described above.
  • FACS Activated cell sorting
  • the horizontal axis is the fluorescence intensity of FITC [a. u] (fluorescence intensity by a filter with a wavelength that can detect GFP fluorescence), FSC (forward scattered light) intensity on the vertical axis [a. As u], a dot plot obtained from HaCaT cells treated with a nucleic acid-fine particle complex derived from each fine particle preparation or pcDNA3-EGFP alone is shown. FSC intensity is proportional to cell diameter and represents cell size. Dots with a fluorescence intensity of FITC above a certain intensity (threshold value) represent cells expressing GFP, and dots with a fluorescence intensity below a certain intensity (threshold value) represent cells not expressing GFP.
  • FITC fluorescence intensity by a filter with a wavelength that can detect GFP fluorescence
  • FSC forward scattered light
  • the threshold value is 4000 for pcDNA3-EGFP alone, and the fine particle product No.
  • the origin of 16 to 30 was set to 5000. Dots that deviated significantly from the cell-specific population were excluded from the count of GFP expression as cells in poor condition such as dead cells.
  • the fine particle preparation No. of C17MGE: DOPE 50: 50.
  • the proportion of GFP-expressing cells in the nucleic acid-fine particle complex derived from 20 was the highest (17.2%), which was significantly improved as compared with cDNA3-EGFP alone.
  • the fine particle pharmaceutical product No. of C17MGE: DOPE 0: 100.
  • the proportion of GFP-expressing cells in the 16-derived nucleic acid-fine particle complex was low (7.9%).
  • the fine particle product No. 1 containing DOTAP having a molar fraction in lipid of 60 mol%.
  • the proportion of GFP-expressing cells in the nucleic acid-fine particle complex derived from 30 was high, 18.8% and 22.6%, respectively.
  • the fine particle formulation No. of C17MGE: DOPE 0: 100.
  • the percentage of GFP-expressing cells in the 24-derived nucleic acid-fine particle complex was low (9.0%).
  • C17MGE is indispensable for inducing GFP expression in cells, and small average particle size and high pharmaceutical stability are important. It was shown to be.
  • a fine particle preparation containing an amphipathic lipid having an isoprenoid-type fat chain such as C17MGE and not containing a non-lamellar liquid crystal can introduce the complexed nucleic acid into the cell (particularly into the cell nucleus). It was found to be useful for gene delivery and gene expression. Therefore, a fine particle preparation containing an amphipathic lipid having an isoprenoid type fat chain such as C17MGE and not containing a non-lamellar liquid crystal can be used for a nucleic acid delivery system, and is useful for producing a pharmaceutical preparation for gene therapy, for example. be.
  • Mono O- (5,9,13,17-tetramethyloctadecanoyl) glycerol is also referred to as saturated C22MGE.
  • the pressure was released with nitrogen, 2.2 g (40 mmol) of sodium methoxide and 0.04 g of sodium phosphinate monohydrate were added, and the mixture was stirred at 160 ° C. and 8 kPa for 1 hour.
  • the pressure was released with nitrogen, 1.1 g (20 mmol) of sodium methoxide was added, and the mixture was further stirred at 160 ° C. and 8 kPa for 1 hour.
  • the pressure was released with nitrogen, 1.1 g (20 mmol) of sodium methoxide was added again, and the mixture was further stirred at 160 ° C. and 8 kPa for 1.5 hours.
  • the obtained fractions were mono O- (5,9,13,17-tetramethyloctadeca-4-enoyl) sorbitan and mono O- (5,9,13) in a ratio (weight ratio) of about 8: 2. , 17-Tetramethyl octadeca-4-enoyl) Isosorbide (calculated from the area value of TIC by GC-MS measurement in ion mode EI +). The obtained fraction further contained a small amount of sorbitan-derived diester (estimated by GC-MS measurement and TLC analysis). The results of 1 H-NMR measurement of the obtained fraction are as follows.
  • the obtained fraction was used as a mono-O- (5,9,13,17-tetramethyloctadeca-4-enoyl) sorbitan fraction (C22 sorbitan ester fraction) in the examples described later.
  • the obtained reaction solution was diluted with a mixed solvent of ethyl acetate / hexane (1: 1,120 mL), washed with water, saturated aqueous sodium hydrogen carbonate and saturated brine (twice), and dried over magnesium sulfate.
  • Yield 63%) of the title compound was obtained as a pale yellow transparent liquid.
  • the results of 1 H-NMR measurement of the obtained compound are as follows.
  • Mono-O- (5,9,13,17-tetramethyloctadeca-4-enoyl) propylene glycol is also referred to as C22PGE.
  • Example 14 Preparation of fine particle preparation and evaluation of physical properties Fine particle preparation No. Except for replacing C17MGE in the composition of No. 4 (Table 1) with saturated C22MGE, C22SOE, or C22PGE (all are amphipathic lipids having an isoprenoid-type fat chain), the fine particle pharmaceutical product No. 1 described in Example 2 was used. According to the preparation method of No. 4, the fine particle product No. 2 shown in Table 5 below. 34-36 were prepared.
  • the fine particle product No The particle size distributions of 34 to 36 and the zeta potential were measured by a dynamic light scattering method using a zeta sizar Nano-ZS (Malvern).
  • Table 5 shows the average particle size (nm) (Z-Average), PdI (multidisperse index), and zeta potential (mV) obtained as the average value of 5 to 6 measurements for each measurement sample.
  • Example 15 Evaluation of the effect of heating the fine particle preparation on cytotoxicity No. By measuring the activity of lactate dehydrogenase (LDH) released from the cells into the medium in the presence of any of 4 and 34-36, with or without heating, those fine particles. The effect of heating the drug on cytotoxicity was evaluated. Cytotoxicity LDH Assay Kit-WST (Dojin Kagaku Kenkyusho) was used for the measurement of LDH activity.
  • 4T1-Luc cells (JCRB1447, luciferase-expressing breast cancer cell line) were seeded on 10 35 mm dishes ( 1.5x105 cells / dish) and incubated overnight at 37 ° C.
  • the fine particle product No. 4 and 34 to 36 were added in 100 ⁇ L each of two dishes per preparation.
  • one dish had near infrared rays (wavelength 980 nm, output 1.5 W.
  • Laser FC-W-980-1.5 W (Changchun New Industries Optoelectronics Technologies Tech. Co. Ltd.).
  • the cell damage rate [%] was calculated by the following formula.
  • Cellular damage rate [%] [(absorbance of the sample with or without heating with the addition of the fine particle preparation)-(absorbance of the sample without the addition of the fine particle preparation and without heating)] / [(Lysis buffer) was added. , Absorbance of sample without heating)-(Asorbance of sample without addition of fine particle preparation and without heating)] x100
  • the fine particle pharmaceutical product No. 1 containing C17MGE. In 4 the rate of cell damage was significantly increased by heating.
  • an increase in the rate of cell damage due to heating was also observed. It has been shown that the microparticulate preparation of the present invention provides an antitumor effect only with liposomes without encapsulation of an antitumor agent.
  • Example 16 Antitumor effect by in vivo administration of microparticulate preparation Doxorubicin hydrochloride (DXR) as an antitumor agent is encapsulated in a fine particle preparation containing C17MGE as an amphoteric lipid having an isoprenoid type fat chain to carry cancer. Its antitumor effect on mice was evaluated.
  • DXR Doxorubicin hydrochloride
  • the fine particle pharmaceutical product No. which contains DXR and does not contain C17MGE or contains C17MGE. 37 and 38 were prepared.
  • the fine particle product No. in Table 1 According to the same component ratio as 1 or 4, ethanol solutions of each lipid were mixed, and then ethanol was removed by concentration under reduced pressure to prepare a thin film.
  • a 250 mM ammonium sulfate aqueous solution was added so that the final concentration of the lipid (total amount) was 1 mM, and the mixture was allowed to stand at room temperature for 10 minutes.
  • the obtained sample solution was subjected to ultrasonic treatment in the same manner as in Example 2 to prepare each thinly cloudy fine particle preparation.
  • each fine particle preparation was centrifuged at 80,000 rpm for 30 minutes at 4 ° C. (CS120GX, Hitachi Koki) to remove the separated aqueous solution, and then 10% sucrose so that the concentration of the above lipid (total amount) was 10 mM. It was redispersed with an aqueous solution, and 0.7 times the amount of DXR (2 mg / mL) of the obtained redispersion solution was added with a 10% sucrose aqueous solution, and the mixture was incubated at 60 ° C. for 1 hour.
  • the redispersion solution to which DXR is added is again centrifuged at 80,000 rpm for 30 minutes at room temperature to remove the separated aqueous solution (“aqueous solution A”), and then the final concentration of the above lipid (total amount) becomes 10 mM.
  • aqueous solution A aqueous solution A
  • PBS -
  • the fine particle product No. 37 and 38 were prepared.
  • the fine particle product No. The particle size distributions of 37 and 38 and the zeta potential were measured by a dynamic light scattering method using a zeta sizar Nano-ZS (Malvern).
  • Fine particle product No. DXR concentrations (mg / mL) of 37 and 38, average particle size (nm) (Z-Average), PdI (multidisperse index), and zeta potential (mV) are shown in Table 7.
  • a PBS (-) solution having a DXR concentration of 0.5 mg / mL was prepared as the preparation No. 39, and a simple PBS (-) solution containing no DXR are prepared as No. 39. Prepared as 40.
  • the fine particle product No For the DXR concentration (mg / mL) in 37 and 38, the amount of DXR in the aqueous solution (“aqueous solution A”) separated / removed as described above is quantified using HPLC (high performance liquid chromatography), and the quantified value is determined. It was calculated based on the value subtracted from the amount of DXR added.
  • aqueous solution A For the amount of DXR in the separated / removed aqueous solution (“aqueous solution A”), add 1/20 volume of a mobile phase solution (0.1 mg / mL) of butyl paraoxybenzoate as an internal standard substance, and the peak area of the internal standard substance. The ratio of the peak area of DXR to DXR was used for quantification based on the calibration curve.
  • the analysis conditions are as follows.
  • 4T1-Luc cells (JCRB1447, 1x10 6 cells) were subcutaneously transplanted into two places on the left and right sides of the back as tumor cells, and a cancer-bearing mouse that had passed for 12 days was prepared.
  • the luminescence intensity of the tumor transplantation site was measured on the first day (day 0) of the test, and the preparation was administered on the first, fourth, seventh, and tenth days of the test, and 2, 5, 8, and.
  • the tumor transplantation site was heated on the 11th day, and the luminescence intensity of the tumor transplantation site was measured on the 3, 6, 9, and 12th days.
  • the tumor volume at the tumor transplant site was measured, the mouse was weighed, and the appearance was observed.
  • Tumor volume (mm 3 ) [(minor diameter) 2 x (major diameter)] / 2
  • the tumor transplantation site on the left side of the back of each mouse under general anesthesia was irradiated with near infrared rays (wavelength 980 nm, output 1.5 W) for 30 seconds in the same manner as in Example 15. Then, it was carried out by heating to about 45 ° C. The tumor transplant site on the right side of the back of each mouse was not heated.
  • luminescence intensity at the tumor transplantation site For the measurement of luminescence intensity at the tumor transplantation site for evaluation of antitumor effect, 100 ⁇ L of 30 mg / mL physiological saline solution of VivoGlo TM Luciferin (P1043, Promega) was administered intraperitoneally to mice, and fluorescence was performed 16 minutes later.
  • the luminescence intensity (Total Lux [photons / sec]) at two tumor transplantation sites on the left and right sides of the back was measured with a luminescence imaging device (IVIS Spectrum).
  • the luminescence intensity measured by this method indicates the level of activity of luciferase expressed by the cells, i.e., the amount of viable cells.
  • FIG. 16 shows the pharmaceutical product No.
  • the luminescence image image of the whole mouse of the test day 6 of the mouse to which 37-40 was administered is shown.
  • FIG. 17 shows a graph showing the results of measuring the luminescence intensity of two tumor transplantation sites on the left and right sides of the back over time.
  • Table 8 shows the amount of increase in luminescence intensity from the first day (day 0) to the 12th day of the tumor transplantation sites at the two tumor transplant sites on the left and right sides of the back.
  • the fine particle product No. 1 containing DXR and C17MGE. 38 greatly suppressed tumor growth at any of the two tumor transplantation sites on the left and right sides of the back, and in particular, the tumor growth was most suppressed at the tumor transplantation site on the left side of the warmed back.
  • Formulation No. of PBS solution containing DXR alone. No. 39 also suppressed tumor growth, but the fine particle preparation No. The suppression level was lower than 38.
  • Fine particle formulation No. containing DXR but not C17MGE. 37 did not sufficiently suppress tumor growth. As shown in the increase suppression rate by heating, the heating effect on the suppression of tumor growth is the fine particle preparation No. It was significantly larger at 38.
  • the fine particle product No. When 38 was administered, the increase in tumor volume (mm 3 ) at the tumor transplant site from the first day (day 0) to the 12th day of the study was 110 mm 3 at the tumor transplant site on the left back (warmed). The tumor was 323 mm 3 at the tumor transplant site on the right side of the back (without heating), indicating that the increase in tumor volume was greatly suppressed by heating.
  • Preparation No. No. 39 strongly attacks normal cells by DXR, whereas the pharmaceutical product No. 39 also strongly attacks normal cells. 38 has a high advantage in that it is safer for normal cells because DXR is retained in liposomes and has a property of easily accumulating in tumor cells.
  • a fine particle preparation containing an antitumor agent such as DXR and a bilateral lipid having an isoprenoid type fat chain such as C17MGE not only has tissue accumulation in tumor cells when administered in vivo.
  • Example 7 showed an effect of suppressing the growth of tumor cells, and it was shown that the antitumor effect can be more remarkably enhanced by the combined use of heating.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、薬物送達を制御可能なリポソーム、特に、ラメラ形成脂質とイソプレノイド型脂肪鎖を有する両親媒性脂質とを膜構成脂質として含むリポソームに関する。

Description

薬物送達制御可能なリポソーム
 本発明は、薬物送達制御可能なリポソームに関する。
 脂質二重膜を有する閉鎖小胞体であるリポソームは、親水性薬物、疎水性薬物のいずれをも内包することができ、一般的に生体適合性や生分解性にも優れることから、薬物送達(ドラッグデリバリー)ツールとしてのドラッグデリバリーシステム(DDS)への利用が注目されてきた。
 リポソームは、EPR効果(Enhanced permeation and retention effect)により、腫瘍組織に集積することが知られている。腫瘍組織では血管内皮細胞間に隙間ができており、正常組織に比べて血管透過性が著しく亢進しているため、正常の血管壁は透過しない高分子物質が血管外に漏出し、腫瘍組織に蓄積するというのがEPR効果である。したがってリポソームは腫瘍組織への薬物送達機能を有している。しかし一般的なリポソームにおけるEPR効果のみによる腫瘍組織への集積性はそれほど高いものではない。
 効果的なDDSの実現のため、薬物送達や薬物放出の精密な制御が望まれている。特許文献1は、カチオン性両親媒性分子と、アニオン性両親媒性分子及び両イオン性両親媒性分子の少なくとも1種とを構成脂質として含む、塩基性環境下で目的物質を放出するpH応答性リポソームを開示している。特許文献2は、リポソーム膜構成脂質と、感熱応答性部分及び疎水性部分を有する高分子化合物と、PEGとから構成される温度感受性リポソームを開示している。しかし従来のリポソームでは薬物送達量等の点でなお改善の余地が大きい。
 非ラメラ液晶(NLLC)は、従来のDDSキャリアと比して、高い薬物含有率、調製容易性、さらには高分子医薬における高い安定性などの利点を有することが報告されている。しかし非ラメラ液晶形成脂質には溶血作用が報告されており、全身投与は困難と考えられてきた。
 特許文献3には、低粘度の非ラメラ液晶形成脂質を含み、非ラメラ液晶内に薬物を保持し徐放させる皮膚外用剤が報告されている。しかし特許文献3には、そのような製剤について、薬物送達をより高度に制御する手法については記載されていない。
特開2010-209012号公報 特開2006-306794号公報 国際公開WO 2020/050423
 本発明は、薬物送達を制御可能なリポソームを提供することを課題とする。あるいは本発明は、抗腫瘍効果を示すリポソームを提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、イソプレノイド型脂肪鎖を有する両親媒性脂質を用いて、細胞内や細胞核への効果的な薬物送達が可能であるリポソームや、さらに温度応答性であることによって薬物送達を制御可能なリポソーム、また抗腫瘍効果を示すリポソームを製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1]ラメラ形成脂質とイソプレノイド型脂肪鎖を有する両親媒性脂質とを膜構成脂質として含むリポソーム。
[2]イソプレノイド型脂肪鎖を有する両親媒性脂質が、下記一般式(I)で表される両親媒性化合物である、上記[1]に記載のリポソーム。
Figure JPOXMLDOC01-appb-C000003
(式中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表し、nは0~2の整数を表し、mは1又は2を表し、
Figure JPOXMLDOC01-appb-I000004
は一重結合又は二重結合を表し、Rは1つ以上の水酸基を有する親水性基を表す)
[3] 前記式中のRがグリセロール、ソルビタン、又はプロピレングリコールから1つの水酸基が除かれた親水性基を表す、上記[2]に記載のリポソーム。
[4] イソプレノイド型脂肪鎖を有する両親媒性脂質が、モノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロール、モノO-(5,9,13,17-テトラメチルオクタデカノイル)グリセロール、モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタン、又はモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)プロピレングリコールである、上記[1]~[3]のいずれかに記載のリポソーム。
[5] ラメラ形成脂質がリン脂質、ステロイド及びカチオン性脂質からなる群から選択される少なくとも1つを含む、上記[1]~[4]のいずれかに記載のリポソーム。
[6] ラメラ形成脂質が水溶性高分子で修飾されたリン脂質を含む、上記[1]~[5]のいずれかに記載のリポソーム。
[7] ラメラ形成脂質が、ホスファチジルコリン、コレステロール、及びPEG化ホスファチジルエタノールアミンを含む、上記[1]~[6]のいずれかに記載のリポソーム。
[8] ラメラ形成脂質が、ホスファチジルエタノールアミン、及び1,2-ジアルキルカルボニルオキシ-3-モノ、ジ又はトリアルキルアンモニウムプロパンを含む、上記[1]~[6]のいずれかに記載のリポソーム。
[9] イソプレノイド型脂肪鎖を有する両親媒性脂質を、膜構成脂質総量に対するモル分率で5~40mol%となる量で含む、上記[1]~[8]のいずれかに記載のリポソーム。
[10] 温度応答性である、上記[1]~[9]のいずれかに記載のリポソーム。
[11] 薬物をさらに含む、上記[1]~[10]のいずれかに記載のリポソーム。
[12] 薬物が核酸である、上記[11]に記載のリポソーム。
[13] 核酸とリポソームが複合体を形成している、上記[12]に記載のリポソーム。
[14] 上記[11]~[13]のいずれかに記載のリポソームを含む、細胞内への薬物送達用製剤。
[15] 上記[12]又は[13]に記載のリポソームを含む、細胞の核内への核酸送達用製剤。
[16] 細胞が腫瘍細胞である、上記[14]又は[15]に記載の製剤。
[17] 上記[1]~[13]のいずれかに記載のリポソームを含む、医薬製剤。
[18] 抗腫瘍製剤である、上記[17]に記載の医薬製剤。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-135330号の開示内容を包含する。
 本発明によれば、薬物送達を制御可能であり好ましくは温度応答性を有するリポソームや、抗腫瘍効果を示すリポソームを提供することができる。
図1は微粒子製剤No.4のクライオTEMによる倍率15,000倍での撮影画像を示す写真である。バーは100nmを表す。 図2は、膜流動性評価指標としての、微粒子製剤No.6~12の温度に応じた蛍光強度比F/Fの変化を示すグラフである。 図3は微粒子製剤No.1~4の温度応答性(温度感受性)を示す写真である。 図4は微粒子製剤No.1~5と生体膜との相互作用(溶血性)を示すグラフである。A:37℃、B:45℃。 図5は微粒子製剤No.13又は14の静脈内投与後の担癌マウスの経時的な蛍光観察結果を示す写真である。A:微粒子製剤No.13、B:微粒子製剤No.14。 図6は微粒子製剤No.13又は14の静脈内投与後の腫瘍部位の蛍光強度の経時的変化を示すグラフである。 図7は微粒子製剤No.13又は14を投与したマウスからの摘出臓器の蛍光画像を示す写真である。 図8は微粒子製剤No.27のクライオTEMによる倍率15,000倍での撮影画像を示す写真である。バーは100nmを表す。 図9は微粒子製剤No.31~33添加群と無処置(未処理)群における蛍光標識分子の細胞内取り込み効率を示すグラフである。A:蛍光検出された細胞数とその蛍光強度の関係、B:無処置群における平均蛍光強度と比較した、微粒子製剤No.31~33添加群の平均蛍光強度の相対値(平均蛍光強度比)。 図10は微粒子製剤No.15又は20由来の核酸-微粒子複合体における核酸複合状態を示す電気泳動像の写真である。 図11は核酸-微粒子複合体から遊離した核酸(pcDNA3-EGFP)のバンドの輝度強度の比を示すグラフである。A:微粒子製剤No.15、A:微粒子製剤No.20。 図12は各製剤で処理した細胞の蛍光画像を示す写真である。A:微粒子製剤No.15(LCMGE)、B:微粒子製剤No.16(DOPE/DOTAP)、C:微粒子製剤No.20(MGE/DOPE/DOTAP(LNPMGE))、D:微粒子製剤No.23(MGE/DOTAP)、E:pcDNA3-EGFP単体、F:LFN2000-核酸混合物。蛍光:GFP、バー:100μm。倍率10倍。 図13はFACS解析により得られたドットプロットを示す。A:pcDNA3-EGFP単体、B:微粒子製剤No.16、C:微粒子製剤No.17、D:微粒子製剤No.18、E:微粒子製剤No.19、F:微粒子製剤No.20。 図14はFACS解析により得られたドットプロットを示す。A:微粒子製剤No.21、B:微粒子製剤No.22、C:微粒子製剤No.23、D:微粒子製剤No.24、E:微粒子製剤No.25。 図15はFACS解析により得られたドットプロットを示す。A:微粒子製剤No.26、B:微粒子製剤No.27、C:微粒子製剤No.28、D:微粒子製剤No.29、E:微粒子製剤No.30。 図16は製剤No.37~40の静脈内投与後の担癌マウスの経時的な蛍光観察結果を示す写真である。A:微粒子製剤No.37、B:微粒子製剤No.38、C:製剤No.39、D:製剤No.40。矢印は腫瘍を示す。 図17は製剤投与後の加温処理あり又は加温処理なしの担癌マウスにおける、腫瘍細胞量の指標である発光強度の経時的変化を示す。A:背部左側腫瘍、加温あり。B:背部右側腫瘍、加温なし。
 以下、本発明を詳細に説明する。
 本発明は、ラメラ形成脂質とイソプレノイド型脂肪鎖を有する両親媒性脂質とを膜構成脂質として含むリポソームに関する。
 本発明においてリポソームとは、脂質二重膜を有する閉鎖小胞を指す。本発明のリポソームの脂質二重膜は、主として脂質から構成されるが、脂質以外の成分をさらに含んでもよい。本発明のリポソームは、シングルラメラ構造であってもよいし、2つ又は3つ以上の脂質二重膜を有するマルチラメラ構造であってもよい。なお本発明では、リポソームを微粒子と称することがある。
 本発明のリポソームは、主に、ラメラ形成脂質とイソプレノイド型脂肪鎖を有する両親媒性脂質(一実施形態では、イソプレノイド型脂肪鎖を有する非ラメラ液晶形成脂質)とを含む脂質二重膜によって構成される。リポソームの膜構成脂質としてのラメラ形成脂質は、リポソーム構成脂質とも呼ばれることがある。本発明で用いる膜構成脂質としてのラメラ形成脂質は、特に限定されないが、リン脂質、ステロイド及びカチオン性脂質からなる群から選択される少なくとも1つを含むことが好ましい。一実施形態では、本発明で用いる膜構成脂質としてのラメラ形成脂質は、リン脂質、ステロイド、及びカチオン性脂質からなる群から選択される1つを含むか、又はその1つからなるものであってもよい。別の実施形態では、本発明で用いる膜構成脂質としてのラメラ形成脂質は、リン脂質とステロイドを含むか、又はリン脂質とステロイドからなるものであってもよい。別の実施形態では、本発明で用いる膜構成脂質としてのラメラ形成脂質は、リン脂質とカチオン性脂質を含むか、又はリン脂質とカチオン性脂質からなるものであってもよい。別の実施形態では、本発明で用いる膜構成脂質としてのラメラ形成脂質は、ステロイドとカチオン性脂質を含むか、又はステロイドとカチオン性脂質からなるものであってもよい。別の実施形態では、本発明で用いる膜構成脂質としてのラメラ形成脂質は、リン脂質とステロイドとカチオン性脂質を含むか、又はリン脂質とステロイドとカチオン性脂質からなるものであってもよい。本発明のリポソームは、1種又は2種以上(例えば、2種、3種、4種、5種、又は6種以上)のラメラ形成脂質を、膜構成脂質として含んでもよい。
 本発明のリポソームに用いるラメラ形成脂質は、1種又は2種以上のリン脂質を含んでもよい。リン脂質としては、以下に限定するものではないが、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセリン、ホスファチジン酸、及びスフィンゴミエリンからなる群から選択される1種若しくは2種以上のリン脂質が挙げられる。ホスファチジルコリンの例として、ジミリストイルホスファチジルコリン(DMPC)、ジオレイルホスファチジルコリン(DOPC)、ジパルミトイルホスファチジルコリン(DPPC)、大豆ホスファチジルコリン(SPC;大豆レシチンとも称される)、水素添加大豆ホスファチジルコリン(HSPC;水素添加大豆レシチンとも称される)、及び卵黄ホスファチジルコリン(EPC;卵黄レシチンとも称される)等が挙げられるが、これらに限定されない。ホスファチジルエタノールアミンの例として、ジオレイルホスファチジルエタノールアミン(DOPE)、ジステアロイルホスファチジルエタノールアミン(DSPE)等が挙げられるが、これに限定されない。ホスファチジルグリセリンの例として、ジオレイルホスファチジルグリセリンナトリウム(DOPG-Na)が挙げられるが、これらに限定されない。本発明では、クロリド(塩化物)やブロミド(臭化物)などのハロゲン化物、アルカリ金属塩又はアルカリ土類金属塩、硫酸塩、硝酸塩等の塩の形態のリン脂質も使用することができ、それらは上に列挙したような個々の対応するリン脂質の範囲に包含される。本発明のリポソームは、リン脂質をその塩の形態で含んでもよい。リン脂質の塩は、製薬上許容される塩であってよい。リン脂質をその塩の形態で含むリポソームも、本発明に係るリポソームの範囲に含まれる。
 本発明で用いるリン脂質は、水溶性高分子で修飾されたリン脂質であってもよい。水溶性高分子は、以下に限定されないが、例えば、ポリエチレングリコール(PEG)、ポリエチレングリコール(PEG)誘導体、ポリビニルピロリドン、ポリ乳酸、ポリグリコール酸等であってよい。好ましい一実施形態では、水溶性高分子で修飾されたリン脂質は、PEG化リン脂質である。PEG化リン脂質は、ポリエチレングリコール(PEG)又はその誘導体が付加(結合)されたリン脂質を指す。ポリエチレングリコール(PEG)誘導体は、任意の官能基及び/又はマルチアームを有するPEGであってもよい。ポリエチレングリコール(PEG)誘導体は、末端に官能基を有するポリエチレングリコール、例えば、アルコキシエチレングリコール(モノアルコキシポリエチレングリコール)であってもよい。アルコキシエチレングリコールとしては、例えば、メトキシポリエチレングリコール(MPEG)、エトキシポリエチレングリコールが挙げられる。ポリエチレングリコールは、任意の分子量を有するものであってよく、例えば、分子量100,000以下、200~800,000、300~15,000、又は500~5,000(例えば、2,000)のポリエチレングリコールであってもよい。水溶性高分子で修飾されるリン脂質は上記の任意のリン脂質であってよい。水溶性高分子で修飾されたリン脂質は、例えば、PEG化ジステアロイルホスファチジルエタノールアミンをはじめとするPEG化ホスファチジルエタノールアミンであってよく、好ましい例では、DSPE-PEG2000である。本発明で用いるリン脂質は、合成物であっても、天然由来であってもよい。一実施形態では、本発明で用いるリン脂質は、例えば、ジミリストイルホスファチジルコリン(DMPC)、大豆ホスファチジルコリン、水素添加大豆ホスファチジルコリン、又は卵黄ホスファチジルコリンなどのホスファチジルコリン、ジステアロイルホスファチジルエタノールアミンなどのホスファチジルエタノールアミンであってよい。一般的に、水溶性高分子により修飾されたリン脂質を用いたリポソーム、すなわち水溶性高分子により修飾され表面が水和したリポソームは、高い血中滞留性を示す一方、細胞と相互作用しにくく細胞に取り込まれにくい。しかし、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質を、ラメラ形成脂質とともに膜構成成分として用いることにより、水溶性高分子により修飾されていても、細胞との相互作用が促進される。
 本発明のリポソームに用いるラメラ形成脂質は、1種又は2種以上のステロイドを含んでもよい。ステロイドとしては、以下に限定するものではないが、ステロール、胆汁酸、ステロイドホルモン等の任意のステロイドが挙げられるが、ステロールが好ましい。ステロールとしては、コレステロール、ラノステロール、エルゴステロール等が挙げられるが、これらに限定されない。
 本発明のリポソームに用いるラメラ形成脂質は、1種又は2種以上のカチオン性脂質を含んでもよい。カチオン性脂質としては、以下に限定するものではないが、1,2-ジアルキルカルボニルオキシ-3-モノ、ジ又はトリアルキルアンモニウムプロパン(1,2-ジアルキルカルボニルオキシ-3-アルキルアンモニウムプロパン、1,2-ジアルキルカルボニルオキシ-3-ジアルキルアンモニウムプロパン、又は1,2-ジアルキルカルボニルオキシ-3-トリアルキルアンモニウムプロパン)、例えば、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパン(DOTAP)(例えば、クロリド)、1,2-ジオレオイルオキシ-3-ジメチルアンモニウムプロパン又は1,2-ジオレイルオキシ-3-ジメチルアミノプロパン(DODAP)、1,2-ジミリストイルオキシ-3-トリメチルアンモニウムプロパン(DMTAP)(例えば、クロリド)等が挙げられる。本発明では、クロリド(塩化物)やブロミド(臭化物)などのハロゲン化物、アルカリ金属塩又はアルカリ土類金属塩、硫酸塩、硝酸塩等の塩の形態のカチオン性脂質も使用することができ、それらは上に列挙したような個々の対応するカチオン性脂質の範囲に包含される。本発明のリポソームは、カチオン性脂質をその塩の形態で含んでもよい。カチオン性脂質の塩は、製薬上許容される塩であってよい。カチオン性脂質をその塩の形態で含むリポソームも、本発明に係るリポソームの範囲に含まれる。本発明のリポソームは、後述の薬物として核酸を含む場合には、カチオン性脂質を含むことがより好ましいが、それ以外の場合にカチオン性脂質を含んでもよい。
 本発明のリポソームに用いるラメラ形成脂質は、相転移温度が20℃を超えるものであることが好ましく、例えば、21℃~42℃、23℃~42℃、又は23℃~40℃のものであってよい。
 一実施形態では、本発明のリポソームに用いるラメラ形成脂質は、ホスファチジルコリン(例えば、ジミリストイルホスファチジルコリン)、コレステロール、及びPEG化ホスファチジルエタノールアミン(例えば、PEG化ジステアロイルホスファチジルエタノールアミン)を含み得る。
 一実施形態では、本発明のリポソームに用いるラメラ形成脂質は、ホスファチジルエタノールアミン(例えば、ジオレイルホスファチジルエタノールアミン)、及び1,2-ジアルキルカルボニルオキシ-3-モノ、ジ又はトリアルキルアンモニウムプロパン(例えば、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパン;1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリドなど)を含み得る。
 本発明のリポソームは、ラメラ形成脂質に加えて、イソプレノイド型脂肪鎖を有する両親媒性脂質を含む。一実施形態では、本発明におけるイソプレノイド型脂肪鎖を有する両親媒性脂質は、水存在下で他の脂質を必要とせずに単独で非ラメラ液晶を形成する能力を有する脂質(非ラメラ液晶形成脂質)であってよい。
 好ましい実施形態では、本発明のリポソームにおいて用いるイソプレノイド型脂肪鎖を有する両親媒性脂質は、下記一般式(I)で表される両親媒性化合物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(I)中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表す。一般式(I)中、nは0~2の整数(好ましくは、1又は2)を表し、mは1又は2を表す。一般式(I)で表される両親媒性化合物において、nとmの組み合わせは、n=0、m=1;n=0、m=2;n=1、m=1;n=1、m=2;n=2、m=1;又はn=2、m=2のいずれであってもよい。
 式中の:
Figure JPOXMLDOC01-appb-I000006
は一重結合又は二重結合を表す。
 一般式(I)中のRは1つ以上の水酸基(1つ又は2つ以上の水酸基)を有する親水性基を表し、以下に限定するものではないが、例えば、グリセロール、エリスリトール、ペンタエリスリトール、ジグリセロール、グリセリン酸、トリグリセロール、キシロース、ソルビトール、アスコルビン酸、グルコース、ガラクトース、マンノース、ジペンタエリスリトール、マルトース、マンニトール、キシリトール、ソルビタン、グリコール(例えば、プロピレングリコール)、及びイソソルバイドからなる群から選択されるいずれか1つから1つの水酸基(OH)が除かれた親水性基が挙げられる。なお、グリセリン酸から1つの水酸基(OH)が除かれた親水性基は、グリセリン酸のカルボキシル基に含まれるOH(水酸基)が除かれた基であってもよい。
 本発明に関して、グリコールとは、2個の水酸基が、2個の異なる炭素原子に結合している鎖状または環状の炭素、酸素、水素からなる化合物を意味する。本発明で用いるイソプレノイド型脂肪鎖を有する両親媒性脂質に関して、グリコールの好ましい例として、プロピレングリコール、エチレングリコール、ブチレングリコール、イソプレングリコール(別名:3-メチル-1,3-ブタンジオール)、ジエチレングリコール、及びイソソルバイドが挙げられるが、これらに限定されない。
 なお本発明において、一般式(I)中の表記:
Figure JPOXMLDOC01-appb-I000007
は当該両親媒性化合物が幾何異性体のE体(シス体)若しくはZ体(トランス体)又はそれらの混合物であることを意味する。
 なお一般式(I)中のRとして、例えば、グリセロール、エリスリトール、ペンタエリスリトール、ジグリセロール、グリセリン酸、キシロース、ソルビトール、アスコルビン酸、グルコース、ガラクトース、マンノース、マンニトール、キシリトール、ソルビタン、及びイソソルバイドからなる群から選択されるいずれか1つから1つの水酸基(OH)が除かれた親水性基を有する上記両親媒性化合物は、非ラメラ液晶形成脂質である。
 本発明のリポソームの好ましい一実施形態では、一般式(I)中、m=1である。本発明のリポソームのさらに好ましい一実施形態では、一般式(I)中、m=1であり、かつ、Rがグリセロールから1つの水酸基(OH)が除かれた親水性基である。
 一般式(I)で表される両親媒性化合物の例としては、下記一般式(II)で表される両親媒性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(II)中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表し、nは0~2の整数(0、1又は2)を表し、mは1又は2を表す。
 一般式(II)中のRは1つ以上の水酸基(1つ又は2つ以上の水酸基)を有する親水性基を表し、以下に限定するものではないが、例えば、グリセロール、エリスリトール、ペンタエリスリトール、ジグリセロール、グリセリン酸、トリグリセロール、キシロース、ソルビトール、アスコルビン酸、グルコース、ガラクトース、マンノース、ジペンタエリスリトール、マルトース、マンニトール、キシリトール、ソルビタン、グリコール(例えば、プロピレングリコール)、及びイソソルバイドからなる群から選択されるいずれか1つから1つの水酸基(OH)が除かれた親水性基を表す。グリセリン酸から1つの水酸基(OH)が除かれた親水性基は、グリセリン酸のカルボキシル基に含まれるOH(水酸基)が除かれた基であってもよい。
 一般式(I)で表される両親媒性化合物の別の例としては、下記一般式(III)で表される両親媒性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 一般式(III)中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表し、nは0~2の整数(好ましくは、1又は2)を表し、mは1又は2を表す。
 一般式(III)中のRは1つ以上の水酸基(1つ又は2つ以上の水酸基)を有する親水性基を表し、以下に限定するものではないが、例えば、グリセロール、エリスリトール、ペンタエリスリトール、ジグリセロール、グリセリン酸、トリグリセロール、キシロース、ソルビトール、アスコルビン酸、グルコース、ガラクトース、マンノース、ジペンタエリスリトール、マルトース、マンニトール、キシリトール、ソルビタン、グリコール(例えば、プロピレングリコール)、及びイソソルバイドからなる群から選択されるいずれか1つから1つの水酸基(OH)が除かれた親水性基が挙げられる。グリセリン酸から1つの水酸基(OH)が除かれた親水性基は、グリセリン酸のカルボキシル基に含まれるOH(水酸基)が除かれた基であってもよい。
 一般式(I)で表される両親媒性化合物のさらに別の例としては、下記一般式(IV)で表される両親媒性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(IV)中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表し、nは0~2の整数(好ましくは、1又は2)を表し、mは1又は2を表す。
 一般式(IV)中のRは1つ以上の水酸基(1つ又は2つ以上の水酸基)を有する親水性基を表し、以下に限定するものではないが、例えば、グリセロール、エリスリトール、ペンタエリスリトール、ジグリセロール、グリセリン酸、トリグリセロール、キシロース、ソルビトール、アスコルビン酸、グルコース、ガラクトース、マンノース、ジペンタエリスリトール、マルトース、マンニトール、キシリトール、ソルビタン、グリコール(例えば、プロピレングリコール)、及びイソソルバイドからなる群から選択されるいずれか1つから1つの水酸基(OH)が除かれた親水性基が挙げられる。グリセリン酸から1つの水酸基(OH)が除かれた親水性基は、グリセリン酸のカルボキシル基に含まれるOH(水酸基)が除かれた基であってもよい。
 一般式(I)で表される両親媒性化合物としては、例えばグリセロール系、ソルビタン系、又はプロピレングリコール系化合物の例として:
モノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロール、
モノO-(5,9,13-トリメチルテトラデカノイル)グリセロール、
モノO-(5,9,13-トリメチルテトラデカ-4,8,12-トリエノイル)グリセロール、
モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)グリセロール、
モノO-(5,9,13,17-テトラメチルオクタデカノイル)グリセロール、
モノO-(5,9,13,17-テトラメチルオクタデカ-4,8,12,16-テトラエノイル)グリセロール、
モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタン、及び
モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)プロピレングリコール
が挙げられるが、これらに限定されるものではない。
 本発明に係る両親媒性脂質として、一般式(I)で表される両親媒性化合物の塩、例えば、クロリド(塩化物)やブロミド(臭化物)などのハロゲン化物、アルカリ金属塩又はアルカリ土類金属塩、硫酸塩、硝酸塩等も使用することができる。それらの塩は、上に列挙したような個々の対応する両親媒性化合物の範囲に含まれる。本発明のリポソームは、一般式(I)で表される両親媒性化合物を、その塩の形態で含んでもよい。一般式(I)で表される両親媒性化合物の塩は、製薬上許容される塩であってよい。一般式(I)で表される両親媒性化合物をその塩の形態で含むリポソームも、本発明に係るリポソームの範囲に含まれる。
 本発明で用いる一般式(I)で表される両親媒性化合物は、後述の実施例の記載を参照して、又は国際公開WO2014/178256又は国際公開WO2020/050423(特許文献3)に記載された合成法に従って合成することができる。あるいは、一般式(III)で表される両親媒性化合物は、例えば、国際公開WO2011/078383に記載された合成法に従って合成することができる。さらに、一般式(IV)で表される両親媒性化合物は、例えば、国際公開WO2006/043705に記載された合成法に従って合成することができる。
 一実施形態では、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、50mol%以下、40mol%以下、35mol%以下、30mol%以下、25mol%以下、又は20mol%以下となる量で含んでもよい。本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質(2種以上の当該両親媒性脂質を用いる場合は合計量)を、膜構成脂質総量に対するモル分率で、例えば、5mol%~50mol%、5mol%~40mol%、10mol%~50mol%、20mol%~50mol%、10mol%~40mol%、5mol%~25mol%、5mol%~30mol%、5mol%~35mol%、10mol%~35mol%、20mol%~35mol%、20mol%~30mol%、10mol%~25mol%、又は20mol%~25mol%となる量で含んでもよい。
 一実施形態では、本発明のリポソームは、ラメラ形成脂質として、リン脂質を含んでもよい。本発明のリポソームはリン脂質(2種以上のリン脂質を用いる場合は合計量)を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、例えば、5mol%~65mol%、20mol%~65mol%、25mol%~50mol%、25mol%~40mol%、30mol%~40mol%、10mol%~35mol%、又は20mol%~35mol%となる量で含んでもよい。
 一実施形態では、本発明のリポソームは、ラメラ形成脂質として、ステロイドを含んでもよい。本発明のリポソームはステロイド(2種以上のステロイドを用いる場合は合計量)を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、例えば、5mol%~70mol%、20mol%~50mol%、30mol%~50mol%、又は30mol%~40mol%となる量で含んでもよい。
 一実施形態では、本発明のリポソームは、カチオン性脂質(2種以上のカチオン性脂質を用いる場合は合計量)、例えば、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP)を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、例えば、40mol%~70mol%、50mol%~70mol%、55mol%~65mol%、又は45mol%~55mol%となる量で含んでもよい。
 一実施形態では、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質(例えば、C17MGE)とリン脂質(例えば、DOPE)を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)に基づいて、好ましくは1:2~2:1、より好ましくは1:1.5~1.5:1、さらに好ましくは1:1.1~1.1:1の比率で含むものであってよい。
 好ましい一実施形態では、本発明のリポソームは、ラメラ形成脂質として、カチオン性脂質を含んでもよい。本発明のリポソームは、カチオン性脂質、例えば、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP)を、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で45mol%~55mol%(例えば、50mol%)含む場合、イソプレノイド型脂肪鎖を有する両親媒性脂質(例えば、C17MGE)を、膜構成脂質総量に対するモル分率(mol%)で20mol%~25mol%、リン脂質(例えば、DOPE)を、20mol%~35mol%含むものであってよい。
 一実施形態では、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールと、ラメラ形成脂質であるジミリストイルホスファチジルコリン(DMPC)、コレステロール、及びPEG化ジステアロイルホスファチジルエタノールアミンを含むものであり得る。このような本発明のリポソームは、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを5mol%~35mol%、DMPCを25mol%~55mol%、コレステロールを30mol%~50mol%、及びPEG化ジステアロイルホスファチジルエタノールアミン(例えば、DSPE-PEG2000)を4mol%~10mol%含んでもよい。このような本発明のリポソームはまた、膜構成脂質総量に対するモル分率(mol%)で、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを5mol%~25mol%又は20mol%~35mol%、DMPCを35mol%~55mol%、コレステロールを30mol%~50mol%、及びPEG化ジステアロイルホスファチジルエタノールアミン(例えば、DSPE-PEG2000)を4mol%~10mol%含んでもよい。
 一実施形態では、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールと、ラメラ形成脂質であるジオレイルホスファチジルエタノールアミン(DOPE)及び1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP)を含むものであり得る。このような本発明のリポソームは、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを5mol%~35mol%又は20mol%~40mol%、DOPEを15mol%~35mol%、及びDOTAPを40mol%~70mol%含んでもよい。このような本発明のリポソームはまた、膜構成脂質総量に対するモル分率(mol%)で、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを5mol%~30mol%又は10mol%~20mol%、DOPEを10mol%~35mol%、及びDOTAPを55mol%~65mol%含んでもよい。
 一実施形態では、本発明のリポソームは、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールと、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP)を含むものであり得る。このような本発明のリポソームは、膜構成脂質総量(ラメラ形成脂質のモル数+イソプレノイド型脂肪鎖を有する両親媒性脂質のモル数)に対するモル分率(mol%)で、イソプレノイド型脂肪鎖を有する両親媒性脂質、例えばモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを40mol%~50mol%、及びDOTAPを50mol%~60mol%含んでもよい。このような本発明のリポソームは、リン脂質やステロイドを含まなくてもよい。
 本発明のリポソームは、ラメラ形成脂質、及びイソプレノイド型脂肪鎖を有する両親媒性脂質に加えて、他の物質を含んでもよいし含まなくてもよい。
 本発明のリポソームは、界面活性剤を含んでも含まなくてもよいが、界面活性剤を含む必要はない。界面活性剤の例として、親水性のエチレンオキシドと疎水性のプロピレンオキシドのブロック共重合体(ポリオキシエチレンポリオキシプロピレングリコール)、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレン硬化ヒマシ油をはじめとする、非イオン性界面活性剤が挙げられる。非イオン性界面活性剤としては、分子量が1000以上(より好ましくは、5000以上)のものがより好ましい。エチレンオキシドとプロピレンオキシドのブロック共重合体としては、ポリオキシエチレン(200)ポリオキシプロピレン(70)グリコール、ポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリオキシエチレン(120)ポリオキシプロピレン(40)グリコールなどが挙げられる。これらエチレンオキシドとプロピレンオキシドのブロック共重合体は、プルロニック(R)、ポロキサマー(R)、ユニルーブ(R)、プロノン(R)などの様々な名称で市販されている。非イオン性界面活性剤の特に好ましい例として、ポリオキシエチレン(200)ポリオキシプロピレン(70)グリコール、ポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール(別名:プルロニック(R)F127;ユニルーブ70DP-950B、ポロキサマー(R)407)等が挙げられる。界面活性剤の別の例として、P80(ポリオキシエチレンソルビタンモノオレエート(20E.O.)も挙げられる。
 本発明のリポソームは、通常、リポソームの内部に水性溶媒を含む内水相を有する。そのような水性溶媒としては、例えば、リン酸緩衝生理食塩水(PBS)、クエン酸緩衝液、クエン酸-リン酸緩衝液、酢酸緩衝液、Tris-HCl緩衝液、低張リン酸緩衝液等の緩衝液、水等が挙げられるが、これらに限定されない。なお、水性溶媒中には後述の薬物などの他の物質を含み得る。
 本発明のリポソームは、非ラメラ液晶を含まないことが好ましい。一実施形態では、本発明のリポソームは、非ラメラ液晶形成脂質を膜構成脂質として含むが、非ラメラ液晶を含まないものであり得る。本発明のリポソームは、非ラメラ液晶微粒子ではない。
 本発明のリポソームは、通常のリポソーム製造方法により調製することができる。具体的には、本発明のリポソームは、例えば、ラメラ形成脂質、及びイソプレノイド型脂肪鎖を有する両親媒性脂質等の、膜構成脂質を、有機溶媒(好ましくは、エタノール、クロロホルム等)に溶解し、それらを均一に混合した後、減圧濃縮等の処理により有機溶媒(アルコールなど)を除去し、緩衝液(例えば、リン酸緩衝生理食塩液)や水などのリポソーム調製に適した水性溶媒を加えた後、超音波ホモジナイザー、高圧ホモジナイザー等で、分散させる(例えば、超音波処理する)ことにより、調製することができる。超音波処理は、例えば、10~30%(20%)の振幅で20~60秒間(例えば、20~40秒間、好ましくは30秒間)を1~5回(例えば、2回)行うことにより、実施してもよい。超音波処理による分散などの分散工程は、温度が上がり過ぎないような範囲で行うことが好ましい。
 本発明のリポソームは、好ましくは、温度応答性であり、所定の温度範囲で細胞膜不安定化作用を発揮することができる。好ましい実施形態では、本発明のリポソームは、正常な体温(およそ35~38℃)では細胞膜にほとんど影響を及ぼさないが、それよりも高い温度、例えば39~60℃、例えば、44~48℃において、細胞膜の不安定化をもたらす。本発明において、細胞膜不安定化とは、細胞膜と相互作用し、細胞膜の膜流動性を高め、それにより、細胞内への物質導入効率の向上、細胞の溶解促進などをもたらすことを意味する。温度応答性である本発明のリポソームは、細胞膜不安定化作用に基づき、細胞内への物質送達や細胞溶解誘導のために有利に使用できる。温度応答性である本発明のリポソームは、加温を利用して腫瘍増殖を抑制するためにも有利に使用できる。
 本発明のリポソームは、典型的には、50nm~500nm、好ましくは80nm~400nm、より好ましくは80nm~300nm、さらに好ましくは100nm~300nmの平均粒子径を有する。
 本発明のリポソームは、典型的には、0.05~0.4、好ましくは0.05~0.35、又は0.1~0.35、より好ましくは0.05~0.3、又は0.1~0.3、例えば0.15~0.25のPdIを有する。
 本発明のリポソームは、全身投与の際、EPR効果(Enhanced permeation and retention effect)により、腫瘍部位に集積する性質を有することが好ましい。本発明のリポソームはまた、全身投与により、肝臓及び脾臓にも集積する。本発明のリポソームは、通常の体温で溶血を引き起こすことはなく、安全に全身投与することができる。
 本発明のリポソームは、薬物をさらに含むことが好ましい。本発明において、薬物とは、リポソーム中に含有させるか又はリポソームに固定し、好ましくはリポソームの内部又は膜中に保持して細胞内に送達するための任意の物質(有効成分)である。薬物は、有機化合物であっても無機化合物であってもよい。薬物は、水溶性薬物であっても脂溶性(親油性、水不溶性又は水難溶性)薬物であってもよい。典型的には、水溶性薬物はリポソーム内部の内水相に保持され、脂溶性薬物はリポソームの膜内に埋め込まれて保持される。薬物は、生理活性物質であってよいが、それに限定されない。薬物は、例えば、タンパク質、ペプチド、アミノ酸、核酸等であってよいが、これらに限定されない。薬物は、治療又は予防効果をもたらすものであってよいが、それに限定されない。
 薬物は、蛍光タンパク質等の蛍光物質、色素物質、放射性同位元素のような標識物質であってもよい。薬物として標識物質を含む本発明のリポソームは、標識物質を細胞に送達することにより、細胞を標識するための標識剤(画像化剤)としても使用できる。
 薬物は、DNA、RNA、DNAとRNAのハイブリッド、又は人工塩基や修飾核酸等を含むDNA若しくはRNAなどの任意の核酸であってもよい。核酸は、任意の遺伝子を含むものであってよい。核酸は、導入遺伝子を発現プロモーターの制御下に含む、発現ベクター又は発現カセットであってもよい。発現ベクターは、プラスミドベクター、ウイルスベクター等であってよい。導入遺伝子は任意の遺伝子であってよく、DNA、RNA等であってよい。導入遺伝子は、腫瘍抑制遺伝子、細胞増殖制御因子遺伝子、アポトーシス誘導遺伝子等の抗腫瘍効果をもたらす遺伝子であってもよいし、毒素タンパク質遺伝子であってもよい。核酸はまた、siRNA、shRNA、dsRNA等であってもよい。siRNA、shRNA等のRNA干渉誘導核酸は、発現を抑制すべき遺伝子に対して設計されたものであり得る。本発明のリポソームは、そのような核酸の細胞の核内への核酸送達を促進することもできる。核酸は、任意の疾患の治療又は予防用のものであってよい。一実施形態では、本発明のリポソームと核酸が結合し、当該核酸と当該リポソームが複合体を形成していることが好ましい。リポソームと核酸の結合は、特に限定されないが、例えば、静電的相互作用によるものであってよい。本発明に係る核酸-リポソーム複合体は、核酸の細胞への送達のために特に有用である。好ましい実施形態では、本発明に係る核酸-リポソーム複合体は、膜構成脂質として、上記のイソプレノイド型脂肪鎖を有する両親媒性脂質と、ラメラ形成脂質とを含む。核酸-リポソーム複合体に用いるラメラ形成脂質は、リン脂質、ステロイド、及びカチオン性脂質からなる群から選択される少なくとも1つを含むが、カチオン性脂質を含むことが好ましく、カチオン性脂質とリン脂質を含むことがより好ましい。カチオン性脂質については上記のとおりであるが、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP)が特に好ましい。リン脂質についても上記のとおりであるが、ジオレイルホスファチジルエタノールアミン(DOPE)などのホスファチジルエタノールアミンが特に好ましい。
 一実施形態では、薬物は、抗腫瘍剤であってよい。別の実施形態では、薬物は、肝臓疾患(例えば、肝炎など)又は脾臓疾患の治療薬であってよい。抗腫瘍剤は、特に限定されないが、例えば、ドキソルビシン塩酸塩(DXR)等が挙げられる。
 本発明のリポソームは、細胞内への薬物送達用に有利に使用できる。本発明は、本発明のリポソームを含む、細胞内への薬物送達用製剤も提供する。薬物を送達する細胞は、任意の細胞であってよいが、例えば全身投与の場合には、腫瘍細胞である。薬物を送達する細胞はまた、肝細胞又は脾細胞であってもよい。
 上記核酸を含む本発明のリポソームは、細胞内、特に細胞の核内への核酸送達用に有利に使用できる。本発明は、上記核酸を含む本発明のリポソームを含む、細胞の核内への核酸送達用製剤も提供する。核酸を送達する細胞は、任意の細胞であってよいが、好ましくは腫瘍細胞である。核酸を送達する細胞はまた、肝細胞又は脾細胞であってもよい。
 本発明は、薬物、例えば遺伝子等の核酸についてのドラッグデリバリーシステムを提供する。
 本発明の細胞内への薬物送達用製剤や、細胞の核内への核酸送達用製剤は、製薬上許容される添加剤(例えば、担体、賦形剤、緩衝剤、pH調整剤、保存剤、着色剤、着香剤、噴射剤等)をさらに含んでもよい。
 本発明の細胞内への薬物送達用製剤や、細胞の核内への核酸送達用製剤は、in vitro等での試験用の試薬(in vitro核酸導入試薬)であってもよいし、医薬製剤であってもよい。
 本発明は、本発明のリポソームを含む医薬製剤を提供する。本発明における「医薬製剤」は、医薬組成物であり得る。本発明の医薬製剤は、リポソーム形態を維持できる限り、製薬上許容される添加剤(例えば、担体、賦形剤、緩衝剤、pH調整剤、保存剤、着色剤、着香剤、噴射剤等)を含んでもよい。なお本発明のリポソームは、薬物(例えば、抗腫瘍剤)を含まない場合でも、抗腫瘍効果を示すことができる。したがって本発明のリポソームを含む医薬製剤は、薬物(例えば、抗腫瘍剤)を含むか含まないかにかかわらず、抗腫瘍製剤であり得る。
 本発明に係る医薬製剤は、任意の剤形であってよいが、好ましくは、液剤、カプセル剤、スプレー剤、エアゾール剤、注射剤、坐剤、又はデポ剤等であり得る。本発明に係る医薬製剤は、任意の疾患の治療又は予防用のものであってよく、例えば、癌や良性腫瘍などの新生物疾患、皮膚疾患、肝障害等の様々な疾患の治療又は予防用のものであってよい。
 本発明はまた、本発明に係る上記製剤を、対象(例えば、患者)などの体内(特に、体内の生体組織)に適用することを含む、体内に薬物を徐放送達する方法も提供する。ここで体内への適用は、非経口投与(例えば、静脈内投与、動脈内投与等の全身投与、腹腔内、筋肉内、経皮、皮下、又は皮内等)により行うことが好ましいが、投与経路はそれに限定されない。非経口投与は、例えば、全身投与又は局所投与により行うことができるが、全身投与により行うことがより好ましい。本発明に係る上記製剤を投与する対象は、哺乳動物、鳥等を含む任意の動物(例えば、上記疾患を有する動物)であってよく、例えば、ヒト、チンパンジー、ゴリラ、オランウータン等の霊長類、イヌ、ネコ、ウサギ、フェレット、パンダ、ウシ、ウマ、ヒツジ、ヤギ、ブタ、マウス、ラット等であってよい。対象は、本発明のリポソーム又はそれを含む医薬製剤の投与を必要とする対象であることが好ましい。
 本発明のリポソームは、好ましくは温度応答性であり、より好ましくは、体温よりも高い所定の温度条件下でリポソームの膜流動性が向上し、また細胞膜に作用する。そのため、対象への投与後、目的の部位を所定の温度条件下で加温処理することにより、当該部位特異的にリポソームからの薬物放出を促進し、また、細胞膜不安定化を誘導することができる。すなわち、本発明のリポソームは、加温処理を併用することにより、細胞死を促進することができる。本発明のリポソームは高い腫瘍集積性を示すことから、加温処理と組み合わせることで、より高い抗腫瘍効果をもたらすことができる。加温処理は、体温(およそ35~38℃)よりも高い温度、例えば39~60℃、例えば、44~48℃で行うことができる。加温処理は、例えば、患部を集中的に(好ましくは患部特異的に)加温できる任意の手段を用いて行えばよいが、例えば、目的とする温度まで加温可能な超音波処理や近赤外線照射(波長650~2,500nm、例えば、波長700~1000nm)等により行うことができる。なお加温処理は本発明において必ず必要というわけではなく、加温処理なしでも本発明のリポソームを用いた薬物送達は可能である。特に核酸送達に関しては加温処理なしで本発明のリポソームを投与することも十分に可能である。本発明の温度応答性リポソームは、特に、抗腫瘍効果をもたらすための医薬製剤、すなわち腫瘍(癌)治療薬に用いることができる。本発明のリポソームを含む医薬製剤の投与量は、当業者であれば、リポソーム中の薬物の含有量に基づいて適宜決定することができる。
 本発明はまた、本発明のリポソーム又はそれを含む医薬製剤を、対象(例えば、患者)に投与することを含む、腫瘍増殖を抑制する方法、又は腫瘍の治療方法も提供する。本発明のリポソーム又はそれを含む薬物送達用製剤、核酸送達用製剤、医薬製剤などの製剤の投与経路は、特に限定されないが、非経口投与(例えば、静脈内投与、動脈内投与等の全身投与、腹腔内、筋肉内、経皮、皮下、又は皮内等)が好ましく、非経口投与は、例えば、全身投与又は局所投与によるものであってもよい。本発明のリポソーム又はそれを含む上記製剤を投与する対象は、本発明のリポソーム又はそれを含む上記製剤の投与を必要とする対象であることが好ましく、腫瘍を有するか又は腫瘍を有することが疑われる対象であることがより好ましい。あるいは、対象は、例えば、肝臓又は脾臓に疾患を有する対象などの、肝臓又は脾臓への薬物送達が望まれる対象であってもよい。対象は、哺乳動物、鳥等を含む任意の動物(例えば、上記疾患を有する動物)であってよく、例えば、ヒト、チンパンジー、ゴリラ、オランウータン等の霊長類、イヌ、ネコ、ウサギ、フェレット、パンダ、ウシ、ウマ、ヒツジ、ヤギ、ブタ、マウス、ラット等であってよい。本発明のリポソーム又は上記製剤の投与量は、当業者が適宜定めることができるが、例えばヒトの場合、0.0001mg~100g又は1mg~50gのリポソーム量に相当する量であり得るが、これに限定されない。
 本発明において「腫瘍」は、悪性又は良性の新生物疾患を包含する。本発明のリポソームが薬剤送達又は抗腫瘍効果をもたらす標的となる腫瘍(癌)としては、以下に限定するものではないが、例えば、乳癌、肝臓癌、脾臓癌、腎臓癌、膵臓癌、食道癌、胃癌、結腸直腸癌、肺癌、頭頚部癌、脳腫瘍、胆道癌、膀胱癌、子宮癌(子宮体癌、子宮頸癌など)、卵巣癌、卵管癌、前立腺癌、白血病、悪性リンパ腫、多発性骨髄腫等が挙げられる。本発明のリポソームが薬剤送達の標的となる臓器としては、例えば、肝臓、脾臓が挙げられ、標的となる疾患としては肝臓又は脾臓の疾患(例えば、肝炎)が挙げられる。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
[実施例1] イソプレノイド型脂肪鎖を有する両親媒性脂質の合成
(1)モノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールの合成
Figure JPOXMLDOC01-appb-C000011
 グリセロール0.65g(7.1mmol)及び炭酸カリウム0.59g(4.3mmol)の乾燥N,N-ジメチルホルムアミド(3.5mL)溶液に、80℃で5,9,13-トリメチルテトラデカ-4-エン酸メチル(テトラヒドロファルネシル酢酸メチル)1.0g(3.5mmol)をゆっくり滴下した。100℃で18時間撹拌した後、反応液に1M塩酸を添加し、エーテルで抽出した。抽出液を飽和重曹水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、ろ過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/ヘキサン混液)で精製することにより、表題の化合物を無色透明液体として得た。得られた化合物について、H-NMR測定及び粘度測定を行った結果は以下の通りである。
 H-NMRスペクトル(300MHz,CDCl,TMS)δ:0.80-0.90(m,9H),1.00-1.70(m,15H),1.97(td,J=7.8,17.0Hz,2H),2.13(t,J=6.1Hz,1H,OH),2.25-2.45(m,4H),2.55(d,J=5.2Hz,1H,OH),3.50-4.00(m,3H),4.10-4.25(m,2H),5.08(t,J=6.7Hz,1H) 粘度:0.48Pa・s(せん断速度92 1/s)
 合成されたモノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロールを、C17MGEとも称する。
(2)モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)グリセロールの合成
Figure JPOXMLDOC01-appb-C000012
 60~70mmHgの減圧かつ窒素気流下、グリセロール23.5g(255mmol)及び炭酸カリウム0.55g(4.0mmol)の乾燥N,N-ジメチルホルムアミド(48mL)溶液に、80℃で5,9,13,17-テトラメチルオクタデカ-4-エン酸メチル28.2g(80.0mmol)を徐々に滴下し、同一温度で3時間撹拌した。得られた反応溶液を酢酸エチル/ヘキサン混合溶媒(1:1,200mL)で希釈し、水、飽和重曹水、飽和食塩水(2回)で洗浄した後、硫酸マグネシウムで乾燥した。濾過後濃縮することによって得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=100:0~30:70)で精製することにより、表題の化合物13.3g(収率40%)を微黄色透明液体として得た。得られた化合物について、H-NMR測定を行った結果は以下の通りである。
 H-NMRスペクトル(300MHz,CDCl,TMS)δ:0.80-0.95(m,12H),1.00-1.70(m,22H),1.85-2.15(m,2H),2.15-2.55(m,4H),3.53-3.78(m,3H),3.80-4.00(m,1H),4.10-4.25(m,2H),5.08(dd,J=6.9Hz,J=6.9Hz,1H)
 合成されたモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)グリセロールを、C22MGEとも称する。
[実施例2] 微粒子製剤の調製
 後掲の表1に示す組成に従って、リポソームの調製方法として知られる薄膜水和法を用いて微粒子製剤を調製した。
 具体的には、まず、脂質として、イソプレノイド型脂肪鎖を有する両親媒性脂質であるC17MGE(実施例1で合成)、ホスファチジルコリンの一種であるジミリストイルホスファチジルコリン(DMPC; COATSOME(R) MC-4040、日油株式会社)、DSPE-PEG2000(SUNBRIGHT(R) DSPE-020CN、日油株式会社)、及びコレステロール(和光特級、富士フイルム和光純薬株式会社)をそれぞれ、脂質濃度10mMのエタノール溶液として調製し、それらを均一に混合することにより混合溶液を調製した。なおDSPEはジステアロイルホスファチジルエタノールアミン、PEGはポリエチレングリコールである。得られた混合溶液を減圧濃縮してエタノールを完全に除去した後、上記脂質(総量)の最終濃度が1mMとなるようにpH 7.4のリン酸緩衝生理食塩液(PBS(-))を加えて、室温で10分間静置した。その溶液を、超音波洗浄器(5510、BRANSON社)を用いて室温で数分間超音波処理して、粗分散液を調製した。さらに、この粗分散液を超音波ホモジナイザー(Sonics Vibra-Cell VCX-750、Sonics & Materials, Inc.)を用いて20%の振幅で30秒間を2回の超音波処理をすることによって、薄く白濁した微粒子製剤No.1~5を調製した。これら微粒子製剤は、それぞれ1~5mLの量で調製された。
[実施例3] 微粒子製剤の物性評価
 実施例2で調製した微粒子製剤No.1~5の粒子径分布、及びゼータ電位をゼータサイザーNano-ZS(マルバーン社)を使用した動的光散乱法により測定した。測定サンプルは各エマルションをPBSで1000倍希釈することにより調製した。各測定サンプルについて、5~6回測定の平均値として得られた平均粒子径(nm)(Z-Average)、PdI(多分散指数)、及びゼータ電位(mV)を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 得られた微粒子製剤の平均粒子径は112~168nmの範囲にあり、適度なPdIとゼータ電位を有していた。これらの微粒子製剤は、いずれも実験過程を通して目視可能な凝集物がなく安定であった。
 さらに、微粒子製剤No.1~5について、NANO Viewerナノスケールエックス線構造評価装置(Rigaku社)を使用して、小角エックス線散乱(SAXS)による構造解析を行った。各微粒子製剤No.1~5を大気圧下にてキャピラリーに導入し、減圧状態の装置内(試料自体は大気圧下)で測定を行った。その結果、いずれの微粒子製剤においても、非ラメラ液晶に特有のピークは観測されなかった。したがって微粒子製剤No.1~5は非ラメラ液晶を形成していないことが示された。
 微粒子製剤No.4について、低温透過型電子顕微鏡(クライオTEM)(JEM-3100FEF、日本電子株式会社)を用いて微粒子形態の観察を行った。具体的には、まず、微粒子製剤No.4を総脂質濃度0.5mMとなるようPBSで希釈した。親水化処理を施したCuマイクログリッド(製品番号:1643、200メッシュ、日本電子株式会社)に本希釈液を1μL滴下し、ブロットした。クライオ試料作製装置(EM-CPC、Leica社)を用いて、得られたグリッドを液化エタンで瞬時に凍結した後、液体窒素温度下においてクライオTEMで明視野観察した。デフォーカスは5~10μmで、観察倍率によって適宜変更した。図1に、倍率15,000倍での撮影画像を示す。図1に示されるように、直径100nm前後のリポソーム様の膜構造(シングルラメラ)を有する微粒子が観察された。
 なお微粒子製剤No.5は、クライオTEMによる同様の観察により、安定性の低下傾向を示した。
[実施例4] 温度変化による微粒子の物性変化(膜流動性)
 表1に示す微粒子製剤No.1~5の成分比で各脂質のエタノール溶液を混合し、さらに脂質総量(C17MGE+DMPC+Cho+DSPE-PEG2000)に対して蛍光色素として0.01mol%分の1,6-ジフェニル-1,3,5-ヘキサトリエン(DPH)のエタノール溶液(0.025mM)を添加し、前記脂質(C17MGE+DMPC+Cho+DSPE-PEG2000)とDPHの合計の最終濃度が1mMとなるよう実施例2と同様に操作することによって、微粒子製剤No.1~5にそれぞれ対応するDPH含有微粒子製剤No.6~10を調製した。また、コントロールとして、微粒子製剤No.6におけるDMPCをジパルミトイルホスファチジルコリン(DPPC; COATSOME MC-6060、日油株式会社)、又はジオレイルホスファチジルコリン(DOPC; COATSOME MC-8181、日油株式会社)に置き換えることによって、それぞれ、リン脂質としてDPPC又はDOPCを用いたC17MGE無添加のDPH含有微粒子製剤No.11及び12を調製した。
 微粒子製剤No.6~12の各1mLに対して、消光剤として1Mの2,2,6,6-テトラメチルピペリジン1-オキシル(TEMPO)のエタノール溶液5μLを添加し、温度25℃から60℃まで昇温させた際の蛍光強度の変化を観測することによって、温度変化に伴う微粒子の膜流動性を評価した。微粒子の脂質二重膜に局在するDPHは、一定強度の蛍光を示すが、脂質二重膜にゆるみが生じて外部に存在するTEMPOと化学反応するとDPHの蛍光が消失する。この原理(蛍光消光法)を利用し、蛍光強度比[F(消光剤存在下の蛍光強度)/F(消光剤非存在下の蛍光強度)]が低いほど、膜流動性が高いと判断される。
 この蛍光強度の測定では、蛍光分光光度計(RF-6000、株式会社島津製作所、日本)を用い、測定サンプルを温度25℃から60℃まで昇温させながら、励起波長353nm、蛍光波長430nmで観測した。
 図2に、横軸を温度(℃)、縦軸を蛍光強度比F/Fとして、微粒子製剤No.6~12の温度に応じた蛍光強度比の変化を示す。
 図2に示されるように、C17MGE無添加で相転移温度が42℃のDPPCをベースとした微粒子製剤No.11では、35℃から蛍光強度比の減少が始まり50℃までに蛍光強度の消失進行が完了し、蛍光強度が下げ止まった。また、C17MGE無添加で相転移温度が20℃のDOPCをベースとした微粒子製剤No.12では、測定開始の25℃で蛍光強度比はほぼ下げ止まっており、その後は60℃までほぼ一定の蛍光強度比であった。一方、C17MGE無添加で相転移温度が23℃のDMPCをベースとした微粒子製剤No.6では、25℃から60℃までの間、蛍光強度比の低下はゆるやかに継続して進行した。
 C17MGEを所定の割合で含むDMPCをベースとした微粒子製剤No.7~10では、C17MGE無添加でDMPCをベースとした微粒子製剤No.6と同様に、25℃から60℃までの間、蛍光強度比の低下はゆるやかに継続して進行したが、C17MGEの添加割合が大きいほど各温度での蛍光強度比が低い傾向があった。
 以上の結果から、DPHを含む微粒子製剤No.6~12において、膜流動性が変化する温度と微粒子製剤に配合したホスファチジルコリンの相転移温度は近い相関関係にあること、また、C17MGEの添加割合が大きいほど各温度での膜流動性が高い傾向にあることが明らかとなった。イソプレノイド型脂肪鎖を有する両親媒性脂質の添加により、微粒子の膜流動性を温度に応答して増加させることができることが示された。
[実施例5] 温度変化に応じた微粒子製剤と細胞膜との相互作用の評価
 本発明の微粒子製剤と細胞膜の相互作用を可視化するために赤血球を用いて凝集試験を行った。
 まず、以下のようにして赤血球溶液を調製した。抗凝固剤として、クエン酸三ナトリウム二水和物を22mg/mL、クエン酸一水和物を8mg/mL、グルコースを22mg/mLとなる量で精製水に溶解し、クエン酸-デキストロース溶液(ACD液)を調製した。WBN/ILA-Htヘアレスラット(雄、8週齢)の左心室より、ヘパリン溶液(1000単位/mL)でコートしたシリンジで採血した。得られた血液に対し、速やかに1/5体積量のACD液を加え、転倒混和した。その後、ハイブリッド高速冷却遠心機(Model6200、久保田商事株式会社)で3000rpm、20分間、4℃で遠心分離し、続いて、卓上遠心分離機(Model5200、久保田商事株式会社)で3000rpm、10分間、室温で遠心分離した後、上清及び赤血球画分上部の白色沈殿(白血球、血小板)を可能な限り除去した。得られた赤血球画分に対して、3倍体積量のPBS(-)を加え、転倒混和し、4,000rpm、10分間、室温で遠心分離し、上清を除去した。この操作を3回繰り返すことで、洗浄した赤血球画分を得た。当該赤血球画分が2%となるようPBS(-)を加え、赤血球溶液とした。なお本明細書では、カルシウム及びマグネシウムを含まないPBSを、PBS(-)と表記している。
 上記赤血球溶液50μLを入れたマイクロチューブ(容量1.5mL、エッペンドルフ社)を60個準備した。このマイクロチューブを12個ずつの5つのグループに分割して、それぞれのグループに、実施例2で調製した微粒子製剤No.1~4、又はコントロールとしてのPBS(-)のいずれかをマイクロチューブ1個当たり100μL添加した後、ピペッティングにより撹拌した。このようにして得た微粒子製剤No.1~4又はPBS(-)と赤血球溶液とを混合した5種類の溶液(各12個)について、アルミブロック恒温槽(ドライサーモユニットDTU-1B、タイテック株式会社)を用いて、37、38、39、40、41、42、43、44、45、46、47、又は48℃の12点の温度で15分間加熱した。各マイクロチューブ中の溶液全量を96穴丸底プレートの各ウェルに移し替え、120分間静置した後、各ウェル内の赤血球の状態を目視で観察した。なお、赤血球は、混在する成分と相互作用しない場合、ウェル底部の中心に凝集して沈殿するが、混在する成分と相互作用した場合、当該成分と赤血球が会合して生じたコロイドが分散状態となってウェル全体に観察される。
 図3に、上記温度12点で加熱処理した溶液の状態をデジタルカメラで撮影した画像を示す。図3に見られるように、赤血球が微粒子と相互作用してウェル全体にコロイドが分散した状態が、C17MGEのモル分率がより小さい微粒子製剤No.2、3を用いた場合には47℃以上で観察されたのに対して、C17MGEのモル分率がより大きい微粒子製剤No.4を用いた場合にはより低温の44℃から観察された。一方、C17MGEを含まない微粒子製剤No.1を用いた場合には、単にPBS(-)を用いたコントロールと同様に、37℃から少なくとも48℃までは、赤血球が微粒子製剤と相互作用してウェル全体にコロイドが分散した状態は観察されなかった。
 この結果から、微粒子製剤に配合したイソプレノイド型脂肪鎖を有する両親媒性脂質により、細胞膜と微粒子との相互作用(会合)が引き起こされることが示された。
[実施例6] 温度変化に応じた微粒子製剤の細胞膜不安定化作用の評価
 本発明の微粒子製剤による細胞膜の不安定化作用を可視化するために赤血球を用いて溶血試験を行った。
 まず、以下のように適切な吸光度を有する赤血球試験液を調製した。実施例5と同様にして得られた洗浄した赤血球画分に等量のPBS(-)を加え、赤血球懸濁液とした。赤血球懸濁液250μLに4倍量(1mL)の低張緩衝液(PBS(-)の10倍希釈液)を加えて溶血させ、3,000rpm、5分間で遠心分離した。得られた上清について、540nm(ヘモグロビンの吸光波長)における吸光度を測定し、吸光度が2.0~2.5になるようPBS(-)で希釈した。吸光度が2.0~2.5になるようこの時の希釈倍率で前記赤血球懸濁液をPBS(-)で希釈することによって、赤血球試験液とした。
 上記赤血球試験液40μLを入れたマイクロチューブ(容量1.5mL、エッペンドルフ社)を45個準備した。このマイクロチューブを9個ずつの5グループに分割して、それぞれのグループに、実施例2で調製した微粒子製剤No.1~5のいずれかをマイクロチューブ1個当たり4倍量(160μL)添加した後、ピペッティングにより撹拌した。このようにして得た微粒子製剤No.1~5のいずれかと赤血球試験液を混合した5種類の溶液(各9個)について、アルミブロック恒温槽(ドライサーモユニットDTU-1B、タイテック株式会社)を用いて、37℃又は45℃の温度で15分間、30分間、45分間、又は60分間加熱した。グループ毎に各1個を加熱せずに「加熱時間0分間」の試料溶液とした。
 続いて、各溶液を遠心分離(3000rpm,5分)した後、その上清を96穴プレートの各ウェルに移し替えて、マイクロプレートリーダー(Spectra Max(R)M2e、MOLECULAR DEVICES社)を用いて540nmでの吸光度を測定し、各ウェル内の赤血球の溶血率(%)を求めた。なお、溶血率(%)は、各溶液で得られた吸光度を、各溶液の代わりに低張緩衝液(PBS(-)の10倍希釈液)を用いて得られた吸光度で除算することによって算出した。
 図4に、37℃(図4A)と45℃(図4B)における微粒子製剤No.1~5のいずれかと赤血球試験液を含む5種類の溶液の溶血率の加熱時間に応じた変化のグラフを示す。横軸は加熱時間[分]、縦軸は溶血率[%]を示す。溶血率の値は3回測定の平均値±標準偏差である。
 37℃の加熱温度では、C17MGEを含まない微粒子製剤No.1とC17MGEを含む微粒子製剤No.2~4の間で、溶血率はほとんど変化しなかった。C17MGEを含む微粒子製剤No.5では、37℃の加熱時間に応じて溶血率が上昇する傾向を示した。一方、45℃の加熱温度では、C17MGEを含まない微粒子製剤No.1とC17MGEをより低いモル分率で含む微粒子製剤No.2、3との間で、37℃の場合と同様に溶血率はほとんど変化しなかったのに対し、C17MGEをより高いモル分率で含む微粒子製剤No.4、5では加熱時間に応じて溶血率が上昇した。このことは、微粒子製剤へのイソプレノイド型脂肪鎖を有する両親媒性脂質の配合により、加温条件下での細胞膜破壊作用がもたらされることを示している。
 実施例4~6の結果より、C17MGEのようなイソプレノイド型脂肪鎖を有する両親媒性脂質を含む微粒子製剤は、加温処理することにより、製剤自体の膜流動性を増加させることができるとともに、微粒子と細胞膜との相互作用を促進し、とりわけ細胞膜の不安定化を誘発することが示された。C17MGEのようなイソプレノイド型脂肪鎖を有する両親媒性脂質を含まない微粒子製剤は、製剤自体の膜流動性は増加しても、細胞膜との相互作用は示さず細胞膜の不安定化を誘発しなかった。
[実施例7] 微粒子製剤のin vivo投与による薬物動態
 C17MGEを添加した微粒子製剤No.1及び4に、疎水性の近赤外蛍光色素である1,1’-ジオクタデシル-3,3,3’,3’-テトラメチルインドトリカルボシアニンヨージド(DiR)を配合し、それを用いてマウスへの全身投与による微粒子製剤の薬物動態を評価した。
 まず、表1に示す微粒子製剤No.1及び4の成分比で各脂質のエタノール溶液を混合し、さらに脂質総量(C17MGE+DMPC+Cho+DSPE-PEG2000)に対して0.5mol%分のDiRのエタノール溶液を添加し、前記脂質(C17MGE+DMPC+Cho+DSPE-PEG2000)とDiRの合計の最終濃度が1.5mMとなるよう実施例2と同様に操作することによって、微粒子製剤No.1及び4にそれぞれ対応するDiR含有微粒子製剤No.13及び14を調製した。なお微粒子製剤No.13及び14は非ラメラ液晶を含まない。
 次いで、BALB/cマウス(雌、5週齢)にマウス乳癌細胞でありルシフェラーゼ安定発現株である4T1-Luc細胞(JCRB細胞バンク(日本)からJCRB番号JCRB1447の下で入手、1.2x10細胞)を腫瘍細胞として皮下移植して12日間経過した担癌マウスに対して、イソフルランを用いて全身麻酔を施行した後、27Gの針を備えたシリンジ(テルモシリンジ1mL)を用いて、微粒子製剤No.13又は14 100μLを尾に静脈投与した。投与の0.5、1、3、6、18、24、及び45時間後に全身麻酔を施行した状態のマウス全体を蛍光イメージング装置(IVIS Spectram)で観察して、腫瘍部位の蛍光強度の経時的変化を追跡した。投与45時間後、マウスを安楽死させ、腹部から各臓器(心臓、肝臓、脾臓、腎臓、肺、膵臓、腫瘍)を摘出して蛍光イメージング装置で観察した。本観察では、励起波長745nm、蛍光波長800nmのフィルターセットを用いた。データ解析にはLiving Image(R)(パーキンエルマー社)を用いた。
 図5に、微粒子製剤No.13又は14の投与後各時間のマウス全体の蛍光イメージング画像を示す。図6に、図5の各蛍光イメージング画像に基づき、ROI(Region Of Interests)機能を用いて腫瘍部位の蛍光強度を数値化した結果を示す。図6の横軸は時間[h]、縦軸は総放射効率[p/s]/[μW/cm]を示す(n=2~3)。図7に、微粒子製剤No.13又は14を投与したマウス腹部から摘出した臓器(投与45時間後)の蛍光イメージング画像を示す。
 その結果、C17MGEを含む微粒子製剤No.14は、C17MGEを含まない典型的なリポソーム製剤に当たる微粒子製剤No.13と同様の臓器への集積挙動を示すことが明らかとなった。すなわち、マウスに投与された微粒子製剤No.13、14はともに、腫瘍部位への集積の経時的増加を示し、約24時間後に腫瘍部位への集積はピークに達するが、45時間後でも引き続き腫瘍部位への高い集積性を示し、さらに、肝臓にも高い集積性を示すとともに、脾臓にわずかな集積性を示した。なお、いずれの微粒子製剤も、副作用の原因となり得る肺など他臓器への集積は見られなかった。また、本評価試験を通じてマウスの外観的な異常は観察されなかった。
 よって、C17MGEを配合したリポソームを含む微粒子製剤(非ラメラ液晶を含まない)は、生体に安全に投与可能であり、腫瘍部位に集積させることができることが示された。本発明の微粒子製剤の腫瘍部位への集積は、EPR効果(Enhanced permeation and retention effect)によるものと考えられる。また本発明の微粒子製剤は、上記の実施例で示されたとおり、体温(37℃前後)では細胞と相互作用せず、44~48℃に加温することで細胞と相互作用して細胞膜を不安定化する。そのため、本発明の微粒子製剤は、温度刺激によって腫瘍細胞に薬物を送達させることができると考えられた。
[実施例8] 微粒子製剤の調製
 マイナスに荷電した核酸を複合体化できるようカチオン性脂質を加えた、非ラメラ液晶を含む微粒子製剤No.15及び非ラメラ液晶を含まない微粒子製剤No.16~30を調製した。微粒子製剤No.15の場合、非ラメラ液晶を形成するように、C17MGEの配合比を大きくし、分散させるために界面活性剤(プルロニック(R)F127)を配合した。微粒子製剤No.16~30の場合、リポソーム形成にも寄与するカチオン性(正電荷)脂質の配合比を大きくし、界面活性剤(プルロニック(R)F127)を配合しなかった。
 具体的には、非ラメラ液晶分散体を含む微粒子製剤No.15の調製では、後掲の表2に示す重量分率[wt%]に従って、イソプレノイド型脂肪鎖を有するC17MGE、ホスファチジルエタノールアミンの一種であるジオレイルホスファチジルエタノールアミン(DOPE; COATSOME ME-8181、日油株式会社)、カチオン性脂質である1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパンクロリド(DOTAP; COATSOME CL-8181TA、日油株式会社)、及びプルロニック(R)F127(ユニルーブ(R)70DP-950B、日油、又はAldrich P2443)を合計50mgとなるよう5~20mL丸底フラスコ内に加え、クロロホルム0.5mLを加え均一に溶解した。なお、脂質に相当するC17MGE、DOPE、DOTAPのモル分率[mol%]は91.3mol%:4.2mol%:4.5mol%である。
 一方、非ラメラ液晶を含まない微粒子製剤No.16~30の調製では、後掲の表3に示すモル分率[mol%]に従って、それぞれ10mMのエタノール溶液としたC17MGE、DOPE、DOTAPをエタノール除去後の重量として合計50mgとなるよう5~20mL丸底フラスコ内に均一に混合した。微粒子製剤における脂質中の各成分比は、DOTAPを適度な範囲のモル分率として50mol%又は60mol%とし、C17MGE:DOPE比を0:100~100:0とした。
 得られた各溶液を減圧濃縮することでクロロホルム又はエタノールを完全に除去した後、前記脂質を合わせた最終濃度が2mMとなるようpH 7.4のリン酸緩衝生理食塩水(PBS)を加えて、室温で10分間静置した。超音波洗浄器(5510、BRANSON社)を用いて室温で数分間処理して、粗分散液とした。さらに、この粗分散液を超音波ホモジナイザー(Sonics Vibra-Cell VCX-750、Sonics & Materials, Inc.)を用いて20%の振幅で30秒間、2回超音波処理することによって、白濁又は薄く白濁した微粒子製剤No.15~30を調製した。これら微粒子製剤は、それぞれ0.5~1mLの量で調製した。
 なお、同様な手順を用いて、C17MGEの代わりにグリセリルモノオレート(GMO、リケマールXO-100、日油株式会社)を用いること以外は微粒子製剤No.20と同じ組成及び調製方法に従って、微粒子製剤(GMO微粒子製剤)を調製した。しかしながら、このGMO微粒子製剤は、調製後少なくとも半日以内に凝集物が沈殿し、層分離した。したがって、本発明の微粒子製剤の調製において、C17MGEに代わる脂質としてGMOは適さないことが示された。
[実施例9] 微粒子製剤の物性評価
 実施例8で調製した微粒子製剤No.15~30の粒子径分布とゼータ電位を実施例3と同様に測定した。各測定サンプルについて、3回測定の平均値として得られた平均粒子径(nm)(Z-Average)、PdI(多分散指数)、及びゼータ電位(mV)を表2、3に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 非ラメラ液晶を含まない微粒子製剤No.16~30において、DOTAPの脂質中モル分率が50mol%、60mol%のいずれの場合も、C17MGE:DOPE比でC17MGEの割合が大きくなるほど、平均粒子径は大きくなる傾向にあり、またPdIは大きくなり実際の製剤は不安定化する傾向にあった。DOTAPの脂質中モル分率が60mol%でC17MGE:DOPE=100:0の製剤No.30は、前記傾向に反して、平均粒子径はより小さく、製剤はより安定であった。
 また、微粒子製剤No.15~30について、実施例3と同様に、小角エックス線散乱(SAXS)による構造解析を行った。No.15の微粒子製剤から得られた散乱強度分布では、少なくとも3本の散乱ピークが観測された。ピークの比は逆ヘキサゴナル液晶に特有の比1:√3:2を示したことから、本製剤は逆ヘキサゴナル液晶の微粒子が水相に分散した液晶エマルション(ヘキサソーム)であることが示された。最も小角側に位置するピークの散乱ベクトル値は1.42nm-1であった。一方、No.16~30の微粒子製剤においては、いずれも非ラメラ液晶に特有のピークは観測されなかった。
 微粒子製剤No.27について、実施例3と同様に、クライオTEMを用いて観察した。図8に微粒子製剤No.27の倍率15,000倍における撮影画像を示した。100nm以上のリポソーム様の膜構造(マルチラメラ)を有する微粒子が観察された。
[実施例10] 蛍光色素による細胞内導入効果の検証
 ヒト表皮角化細胞株であるHaCaT細胞(300493-SF、セルラインサービス社)を用いて、蛍光色素による薬物の細胞内導入効果を試験した。
 具体的には、まず、表3に示す微粒子製剤No.16、20、及び23の成分比で各脂質のエタノール溶液を混合し、さらに脂質総量(C17MGE+DOPE+DOTAP)に対して蛍光標識分子として0.5mol%分のローダミン-PE(810150、Avanti polar lipid社)を添加し、ローダミン-PEと前記脂質(C17MGE+DOPE+DOTAP)の合計最終濃度が2mMとなるよう実施例8と同様に操作することによって、微粒子製剤No.16、20、及び23にそれぞれ対応する蛍光標識化した微粒子製剤No.31~33を調製した。
 次いで、24穴プレートの予めHaCaT細胞(4x10細胞/ウェル)を入れた4ウェルのうち3ウェルに対して、微粒子製剤No.31~33のいずれかの各10μLを添加した。微粒子製剤を添加しない1ウェル(無処置)を合わせた4ウェルについて、37℃、3時間インキュベート(5%CO雰囲気下)した後、蛍光標識分子の細胞内取り込み効率をフローサイトメーター(CytoFLEX、ベックマンコールター社)で測定した。各測定において細胞数10,000カウントのデータを取得した。
 図9Aは、横軸を蛍光標識分子による細胞内の蛍光強度[a.u]、縦軸を細胞数とした、微粒子製剤No.31~33添加群と無処置群における蛍光標識分子の細胞内取り込み量を示すグラフである。図9Bに、図9Aから算出した無処置群の細胞内取り込み量に対する微粒子製剤No.31~33添加群の蛍光標識分子の細胞内取り込み量の比率(細胞内取り込み効率)を示す。細胞内取り込み効率は、平均蛍光強度比=製剤の蛍光強度/無処置の蛍光強度、として算出した。
 その結果、微粒子製剤No.31~33添加群はいずれも無処置群に対して2倍程度、蛍光標識分子の細胞内取り込み効率が向上していた。よって、微粒子製剤No.31~33は、実施例2で調製した微粒子製剤同様に、細胞内に効率よく薬物を送達できることが示された。
[実施例11] 核酸-微粒子複合体の調製及びその複合状態の評価
 実施例8で調製した微粒子製剤No.15~30に対して、EGFP遺伝子を含むプラスミド発現ベクター(pDNA)であるpcDNA3-EGFP(米国AddgeneよりMTA下にて供与された)をN/P比=0.5、1、又は2で混和することにより、核酸-微粒子複合体を調製した。なお、N/P比は、微粒子製剤への核酸の導入割合を示し、微粒子製剤中のカチオン性脂質(ここでは、DOTAP)量(mol)を核酸量(mol)で除算した値で表す。すなわち、N/P比が大きいほど、核酸に対するカチオン性脂質の割合が高い。
 N/P比0.5、1、又は2で核酸を混和した微粒子製剤No.15由来の核酸-微粒子複合体及び微粒子製剤No.20由来の核酸-微粒子複合体における核酸複合状態を、水平型電気泳動装置(Mupid-exU、ミューピッド社)を使用した電気泳動により評価した。具体的には、核酸0.8μgに相当する量でpcDNA3-EGFP単体と各核酸-微粒子複合体をロードし、0.7%アガロースゲルを用いて100mVで30分泳動した後、エチジウムブロマイドで染色し、電気泳動像を得た。さらに、画像処理ソフトImageJを用いて、pcDNA3-EGFP単体と、各核酸-微粒子複合体から遊離した核酸のバンドの輝度強度を求めた。
 図10に、核酸-微粒子複合体の電気泳動像を示す。図11に、pcDNA3-EGFP単体のバンドの輝度強度に対する、核酸-微粒子複合体から遊離した核酸(pcDNA3-EGFP)のバンドの輝度強度の比を示す。この輝度強度比は小さいほど、核酸と微粒子の複合状態が強固であることを意味する。
 図10及び11に示されるように、微粒子製剤No.15(A)及びNo.20(B)由来の核酸-微粒子複合体のいずれも、N/P比の増大につれて複合状態で保持される核酸量が増加する傾向を示した。微粒子製剤No.15由来の核酸-微粒子複合体は、複合状態の核酸を半分以上の割合で保持したことから、微粒子と核酸の相互作用は強いと考えられた。一方、微粒子製剤No.20由来の核酸-微粒子複合体は、微粒子製剤No.15由来の核酸-微粒子複合体と比べて遊離した核酸が多く検出されたことから、微粒子製剤No.15由来の核酸-微粒子複合体よりも微粒子と核酸の相互作用は弱いことが示された。
 C17MGEを含む微粒子製剤No.15及び20由来の核酸-微粒子複合体は、核酸と微粒子の相互作用に強弱はあるものの、電気泳動後に複合体として保持されていることから、いずれも一定の環境下において生体利用性を有することが示された。
[実施例12] 遺伝子発現による核内核酸導入効果の評価
 ヒト表皮角化細胞株であるHaCaT細胞(300493-SF、セルラインサービス社)を用いて、遺伝子発現による核内核酸導入効果を評価した。
 この評価には、実施例11で調製した、N/P比2でpcDNA3-EGFPを混和した微粒子製剤No.15~30由来の核酸-微粒子複合体(0.8μgのpcDNA3-EGFPを含む量)、pcDNA3-EGFP単体(0.8μg)、及び、市販の核酸導入試薬であるLipofectamine(R)2000(11668027、invitrogen社)とpcDNA3-EGFP単体の混合物(0.8μgのpcDNA3-EGFP単体とLipofectamine(R)4μLを混合; 以下、LFN2000-核酸混合物と称する)を用いた。
 24穴プレート中の予めHaCaT細胞を入れた各ウェル(4x10細胞/ウェル)に対して、微粒子製剤No.15~30由来の核酸-微粒子複合体、pcDNA3-EGFP単体、又はLFN2000-核酸混合物を添加し、37℃で40時間インキュベートした後、緑色蛍光タンパク質(GFP)の一種であるEGFPの発現状態を蛍光顕微鏡(BZ-X710、キーエンス社。レンズとしてPlan Fluorite 4×PHを搭載)で観察した。
 図12に、各製剤で処理した細胞の蛍光画像を示す。ネガティブコントロールであるpcDNA3-EGFP単体で処理した細胞ではGFPが発現せず、ポジティブコントロールであるLFN2000-核酸混合物で処理した細胞ではGFPが強く発現した。非ラメラ液晶を含む微粒子製剤No.15由来の核酸-微粒子複合体ではGFPの発現はほとんど認められなかった。また、C17MGEとDOPEのいずれかを含まず非ラメラ液晶を含まない微粒子製剤No.16及び23由来の核酸-微粒子複合体ではLFN2000-核酸混合物よりGFPの発現強度は低かった。それに対して、C17MGEとDOPEの両方を含み非ラメラ液晶を含まない微粒子製剤No.20由来の核酸-微粒子複合体ではLFN2000-核酸混合物と同等のGFP発現強度が認められた。
 さらに、微粒子製剤No.16~30由来の核酸-微粒子複合体のそれぞれ、pcDNA3-EGFP単体については、処理細胞でのGFPの発現状態を定量的に捉えるために、フローサイトメーター(CytoFLEX、ベックマンコールター社)を用いた蛍光活性化セルソーティング(FACS)解析を行った。この解析では、488nmのレーザー波長を使用し、データ解析ソフトCytoExpertを用いて、上述のように処理した各ウェル内のHaCaT細胞のGFP発現状態を調べた。
 図13~15に、横軸をFITCの蛍光強度[a.u](GFPの蛍光を検出できる波長のフィルターによる蛍光強度)、縦軸にFSC(前方散乱光)強度[a.u]として、各微粒子製剤由来の核酸-微粒子複合体又はpcDNA3-EGFP単体で処理したHaCaT細胞から得られたドットプロットを示す。FSC強度は、細胞の直径に比例し、細胞の大きさを表す。FITCの蛍光強度が一定強度(閾値)以上のドットはGFPを発現した細胞、一定強度(閾値)未満のドットはGFPを発現していない細胞を表している。閾値は、pcDNA3-EGFP単体については4000、微粒子製剤No.16~30由来については5000とした。細胞固有の母集団から大きく外れたドットは死細胞など状態が悪い細胞としてGFP発現有無のカウントから除外した。
 FACS解析の結果、pcDNA3-EGFP単体で処理したHaCaT細胞におけるGFP発現の割合(GFP発現細胞割合)は0.04%であったのに対し、微粒子製剤No.16~30由来の核酸-微粒子複合体で処理したHaCaT細胞におけるGFP発現細胞割合は向上した(表4)。
Figure JPOXMLDOC01-appb-T000016
 脂質中モル分率が50mol%のDOTAPを含む微粒子製剤No.16~23由来の核酸-微粒子複合体においては、C17MGE:DOPE=50:50の微粒子製剤No.20由来の核酸-微粒子複合体のGFP発現細胞割合が最も高く(17.2%)、cDNA3-EGFP単体と比べて格段に向上した。一方、C17MGE:DOPE=0:100の微粒子製剤No.16由来の核酸-微粒子複合体のGFP発現細胞割合は低かった(7.9%)。
 また、脂質中モル分率が60mol%のDOTAPを含む微粒子製剤No.24~30由来の核酸-微粒子複合体においては、C17MGE:DOPE=50:50の微粒子製剤No.27由来の核酸-微粒子複合体、及び、平均粒子径が小さく安定なC17MGE:DOPE=100:0の微粒子製剤No.30由来の核酸-微粒子複合体のGFP発現細胞割合が高く、それぞれ、18.8%、22.6%であった。一方、平均粒子径が小さく安定なもののC17MGE:DOPE=0:100の微粒子製剤No.24由来の核酸-微粒子複合体のGFP発現細胞割合は低かった(9.0%)。
 よって、DOTAPの脂質中モル分率が50mol%、60mol%のいずれの場合も、細胞中でのGFP発現の誘導にはC17MGEが必須であるとともに、小さい平均粒子径と高い製剤安定性が重要であることが示された。
 実施例11、12の結果より、C17MGEを含み非ラメラ液晶を含まない微粒子製剤(例えば、特に、No.19~22、26、27、及び30)は、遺伝子発現の誘導に有用であることが示された。他の微粒子製剤由来の核酸-微粒子複合体では、核内への核酸導入効果(遺伝子発現効果)はないかほとんどなかった。
 以上の結果から、C17MGEのようなイソプレノイド型脂肪鎖を有する両親媒性脂質を含み非ラメラ液晶を含まない微粒子製剤は、複合体化した核酸を細胞内(特に、細胞核内)に導入することができ、遺伝子送達及び遺伝子発現に有用であることが明らかとなった。したがって、C17MGEのようなイソプレノイド型脂肪鎖を有する両親媒性脂質を含み非ラメラ液晶を含まない微粒子製剤は、核酸送達システムに利用することができ、例えば遺伝子治療用の医薬製剤の製造に有用である。
[実施例13] イソプレノイド型脂肪鎖を有する両親媒性脂質の合成
(1)モノO-(5,9,13,17-テトラメチルオクタデカノイル)グリセロールの合成
Figure JPOXMLDOC01-appb-C000017
 窒素雰囲気下、モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)グリセロール20.6g(50.0mmol)の酢酸エチル(62mL)溶液に5%パラジウム炭素2.5gを添加した。系内の窒素を水素で置換した後、常圧水素雰囲気下、室温で42時間撹拌した。系内の水素を窒素で置換した後、5%パラジウム炭素をろ別した。ろ液をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製することにより、表題の化合物20.2g(収率98%)を無色透明液体として得た。得られた化合物について、H-NMR測定を行った結果は以下の通りである。
 H-NMRスペクトル(300MHz,CDCl,TMS)δ:0.7-0.9(m,15H),0.95-1.75(m,26H),2.13(t,J=6.0Hz,OH),2.34(t,J=7.7Hz,2H),2.56(d,J=5.1Hz,OH),3.55-3.75(m,2H),3.94(m,1H),4.15(dd,J=6.0,11.7Hz,1H),4.20(dd,J=4.7,11.7Hz,1H)
 モノO-(5,9,13,17-テトラメチルオクタデカノイル)グリセロールを、飽和C22MGEとも称する。
(2)モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタンの合成
Figure JPOXMLDOC01-appb-C000018
 5,9,13,17-テトラメチルオクタデカ-4-エン酸メチル70.5g(200mmol)及び90重量%ソルビタン水溶液54.7g(300mmol、ソルビタンM-90、三光化学工業株式会社、固形分90%に水分10%を含む、固形分中の含有量:ソルビタン79~84%、イソソルバイド15~18%)を反応容器に室温で添加した後、120℃、8kPaで1時間撹拌した。窒素で減圧解除してナトリウムメトキシド2.2g(40mmol)及びホスフィン酸ナトリウム一水和物0.04gを加えた後、160℃、8kPaで1時間撹拌した。窒素で減圧解除してナトリウムメトキシド1.1g(20mmol)を添加した後、さらに160℃、8kPaで1時間撹拌した。窒素で減圧解除して再びナトリウムメトキシド1.1g(20mmol)を添加した後、さらに160℃、8kPaで1.5時間撹拌した。60℃まで冷却した後、酢酸エチル200mL、0.5M塩酸200mLを撹拌しながら添加した。得られた反応液に酢酸エチル600mLを添加して、抽出した。抽出液を飽和重曹水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥し、ろ過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/ヘキサン混液)で精製することにより、表題の化合物を含む画分36.1g(収率37%)を薄茶色透明液体として得た。得られた画分は、約8:2の割合(重量比)でモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタンとモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)イソソルバイドを含んでいた(イオンモードEI+でのGC-MS測定によるTICの面積値から算出)。得られた画分は、さらに、ソルビタン由来のジエステル体を少量含んでいた(GC-MS測定とTLC分析による推測)。得られた画分について、H-NMRを測定した結果は以下の通りである。
 H-NMRスペクトル(300MHz,CDCl,TMS)δ:0.7-0.9(m,12H),0.9-1.8(m,22H),1.85-2.0(m,2H),2.0-2.5(m,4H),3.5-4.9(m,6.4H),5.04(m,1H),5.0-5.2(m,0.6H)
 モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタンを、C22SOEとも称する。
 得られた画分を、後述の実施例においてモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタン画分(C22ソルビタンエステル画分)として用いた。
(2)モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)プロピレングリコールの合成
Figure JPOXMLDOC01-appb-C000019
 60~70mmHgの減圧かつ窒素気流下、プロピレングリコール20.6g(271mmol)及び炭酸カリウム0.211g(1.53mmol)の乾燥N,N-ジメチルホルムアミド(60mL)溶液に、85℃で5,9,13,17-テトラメチルオクタデカ-4-エン酸メチル30.0g(85.0mmol)を徐々に滴下し、同一温度で3時間撹拌した。得られた反応溶液を酢酸エチル/ヘキサン混合溶媒(1:1,120mL)で希釈し、水、飽和重曹水、飽和食塩水(2回)で洗浄した後、硫酸マグネシウムで乾燥した。濾過後濃縮することによって得られた残渣をシリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=100:0~70:30)で精製することにより、表題の化合物21.6g(収率63%)を薄黄色透明液体として得た。得られた化合物について、H-NMR測定を行った結果は以下の通りである。
 H-NMRスペクトル(300MHz,CDCl,TMS)δ:0.80-0.95(m,12H),0.95-1.70(m,25H),1.96(td,J=7.5,18Hz,2H),2.1(brs,OH),2.25-2.42(m,4H),3.55-3.70(m,0.7H),3.85-4.15(m,1.95H),4.98(m,0.35H),5.08(t,J=6.8Hz,1H)
 モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)プロピレングリコールを、C22PGEとも称する。
[実施例14] 微粒子製剤の調製及び物性評価
 微粒子製剤No.4の組成(表1)中のC17MGEを飽和C22MGE、C22SOE、又はC22PGE(いずれもイソプレノイド型脂肪鎖を有する両親媒性脂質)に置き換えたこと以外は、実施例2に記載した微粒子製剤No.4の調製方法に従って、後掲の表5に示す微粒子製剤No.34~36を調製した。
 さらに、実施例3と同様の方法で、微粒子製剤No.34~36の粒子径分布、及びゼータ電位を、ゼータサイザーNano-ZS(マルバーン社)を使用した動的光散乱法により測定した。各測定サンプルについて、5~6回測定の平均値として得られた平均粒子径(nm)(Z-Average)、PdI(多分散指数)、及びゼータ電位(mV)を表5に示す。
Figure JPOXMLDOC01-appb-T000020
[実施例15] 微粒子製剤の加温による細胞障害性への影響の評価
 微粒子製剤No.4及び34~36のいずれかの存在下、加温あり又は加温なしの条件下で、細胞から培地中に放出された乳酸脱水素酵素(LDH)の活性を測定することによって、それらの微粒子製剤の加温による細胞障害性への影響を評価した。LDH活性の測定には、Cytotoxicity LDH Assay Kit-WST(同仁化学研究所)を用いた。
 具体的には、4T1-Luc細胞(JCRB1447、ルシフェラーゼ発現乳癌細胞株)を、10枚の35mmディッシュに播種(1.5x10細胞/ディッシュ)し、37℃で一終夜インキュベートした。次いで、微粒子製剤No.4及び34~36を製剤当たりディッシュ2枚ずつ、各100μL添加した。各微粒子製剤を添加した2枚のディッシュのうち、一方のディッシュには近赤外線(波長980nm、出力1.5W。レーザーFC-W-980-1.5W(Changchun New Industries Optoelectronics Tech. Co. Ltd.)を使用)を20分間照射して「加温あり」のサンプルとし、他方のディッシュには当該照射をせずに37℃でのインキュベートのみをさらに20分間実施して「加温なし」のサンプルとした。なお、近赤外線を少なくとも20分間照射することでディッシュ内の液体培地の温度は45℃以上に上昇した。
 続いて、各ディッシュの上清100μLを96穴プレートの別々のウェルに移し替えた。発色反応のため、上記キットの使用説明書に従って調製したWorking solutionを100μLずつ各ウェルに添加し、室温で30分間インキュベートした。各ウェルに上記キットに付属のStop solutionを50μLずつ加えて発色反応を停止させた後、マイクロプレートリーダー(Spectra Max(R)M2e、MOLECULAR DEVICES社)を用いて490nmの吸光度を測定した。また、コントロールとして、4T1-Luc細胞に微粒子製剤を添加せず、上記の近赤外線による加温も行わない試料(微粒子製剤無添加で、加温なし)、及び、4T1-Luc細胞に微粒子製剤の代わりにLysis bufferを添加し、上記の近赤外線による加温を行わない試料(細胞中の全LDH活性を示す)についても、上記と同様にしてLDH活性を測定した。
 細胞障害割合[%]は以下の式で算出した。
細胞障害割合[%]=[(微粒子製剤を添加した、加温あり又はなしの試料の吸光度)-(微粒子製剤無添加で、加温なしの試料の吸光度)]/[(Lysis bufferを添加した、加温なしの試料の吸光度)-(微粒子製剤無添加で、加温なしの試料の吸光度)]x100
 加温による細胞障害性の増加量は、以下の式で算出した。
加温による細胞障害性の増加量[pt]=(微粒子製剤を添加した、加温ありの試料の細胞障害割合[%])-(微粒子製剤を添加した、加温なしの試料の細胞障害割合[%])
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000021
 以上の結果に示されるように、実施例6の結果と同様に、C17MGEを含む微粒子製剤No.4では、加温によって、細胞障害割合が顕著に増加した。また、飽和C22MGE、C22SOE、又はC22PGEを含む微粒子製剤No.34~36でも、加温による細胞障害割合の増加が認められた。本願発明の微粒子製剤は抗腫瘍剤を封入しなくてもリポソームのみで抗腫瘍効果をもたらすことが示された。
[実施例16] 微粒子製剤のin vivo投与による抗腫瘍効果
 イソプレノイド型脂肪鎖を有する両親媒性脂質としてC17MGEを含む微粒子製剤に、抗腫瘍剤としてドキソルビシン塩酸塩(DXR)を封入して、担癌マウスに対するその抗腫瘍効果を評価した。
 具体的には、以下のようにして、DXRを封入した、C17MGEを含まない又はC17MGEを含む微粒子製剤No.37及び38(表6)を調製した。まず、表1の微粒子製剤No.1又は4と同じ成分比に従い、各脂質のエタノール溶液を混合した後、減圧濃縮することによりエタノールを除去し、薄膜を作製した。次いで、上記脂質(総量)の最終濃度が1mMとなるように250mM硫酸アンモニウム水溶液を加えて、室温で10分間静置した。得られた試料溶液を、実施例2と同様にして超音波処理をすることによって、薄く白濁した各微粒子製剤を調製した。次いで、各微粒子製剤を80,000rpm、30分間、4℃で遠心分離(CS120GX、日立工機)し、分離した水溶液を除去した後、上記脂質(総量)の濃度が10mMとなるよう10%スクロース水溶液で再分散させ、さらに、得られた再分散液の0.7倍量のDXR(2mg/mL)の10%スクロース水溶液を添加して、60℃で1時間インキュベートした。DXRを添加した再分散液を、再度、80,000rpm、30分間、室温で遠心分離し、分離した水溶液(「水溶液A」)を除去した後、上記脂質(総量)の最終濃度が10mMとなるようにPBS(-)で再分散させることによって、微粒子製剤No.37及び38を調製した。実施例3と同様の方法で、微粒子製剤No.37及び38の粒子径分布、及びゼータ電位を、ゼータサイザーNano-ZS(マルバーン社)を使用した動的光散乱法により測定した。微粒子製剤No.37及び38のDXR濃度(mg/mL)、平均粒子径(nm)(Z-Average)、PdI(多分散指数)、及びゼータ電位(mV)を表7に示す。
 また、コントロールとして、DXR濃度0.5mg/mLのPBS(-)溶液を製剤No.39、及びDXRを含まない単なるPBS(-)溶液を製剤No.40として調製した。
 なお微粒子製剤No.37及び38中のDXR濃度(mg/mL)は、上記のとおり分離・除去した水溶液(「水溶液A」)中のDXR量をHPLC(高速液体クロマトグラフィー)を用いて定量し、その定量値を添加したDXR量から差し引いた値に基づき算出した。分離・除去した水溶液(「水溶液A」)中のDXR量は、内部標準物質としてパラオキシ安息香酸ブチルの移動相溶液(0.1mg/mL)を1/20容量添加し、内部標準物質のピーク面積に対するDXRのピーク面積の比を用い、検量線に基づいて定量した。分析条件は、以下の通りである。
・カラム:Inertsil(R) ODS-3 内径4.6mm,長さ25cm,粒子径5μm(ジーエルサイエンス株式会社)
・移動相:0.3%ラウリル硫酸ナトリウム/0.14%リン酸水溶液:アセトニトリル=1:1
・流速:1.0mL/min、カラム温度:30℃、注入量:10μL
・検出器;紫外吸光光度計(254nm)
Figure JPOXMLDOC01-appb-T000022
 BALB/cマウス(雌、6週齢)に腫瘍細胞として4T1-Luc細胞(JCRB1447、1x10細胞)を背部の左右2カ所に皮下移植して12日間経過した担癌マウスを用意した。この担癌マウスに対して、製剤No.37~40を投与するとともに、腫瘍移植部位を加温し、抗腫瘍効果を評価した(n=3)。
 具体的には、試験の初日(0日目)に腫瘍移植部位の発光強度の測定を行い、試験の1、4、7、及び10日目に製剤を投与し、2、5、8、及び11日目に腫瘍移植部位の加温を行い、3、6、9、及び12日目に腫瘍移植部位の発光強度の測定を行った。また試験期間中、腫瘍移植部位の腫瘍体積の測定、マウスの体重測定、及び外観の観察を行った。
 製剤投与は、担癌マウスにイソフルランで全身麻酔を施行した後、29ゲージ(G)の針を備えたシリンジ(テルモシリンジ1mL)を用いて、100μLの製剤を尾に静脈投与(1日1回)することにより行った。
 腫瘍移植部位の腫瘍体積の測定は、腫瘍の短径と長径をノギスで測定し、下記式に従って各マウスの背部左右2カ所の腫瘍移植部位の腫瘍体積(mm)を算出した。
腫瘍体積(mm)=[(短径)x(長径)]/2
 腫瘍移植部位の加温は、全身麻酔を施行した状態の各マウス背部左側の腫瘍移植部位に対して、実施例15と同様の方法で近赤外線(波長980nm、出力1.5W)を30秒間照射して約45℃まで加温することによって行った。各マウス背部右側の腫瘍移植部位には加温しなかった。
 抗腫瘍効果の評価のための、腫瘍移植部位の発光強度の測定は、VivoGloTM Luciferin(P1043、プロメガ社)の30mg/mL生理食塩水溶液100μLをマウスの腹腔内に投与し、その16分後に蛍光発光イメージング装置(IVIS Spectrum)で、背部左右2カ所の腫瘍移植部位における発光強度(Total Flux[photons/sec])を測定した。測定条件は、オープンフィルター(全波長域)、binning=medium、f/stop=1であった。この方法で測定される発光強度は、細胞が発現するルシフェラーゼの活性レベルを示しており、すなわち、生存細胞の量を示す。
 図16に、製剤No.37~40を投与したマウスの試験6日目のマウス全体の発光イメージング画像を示す。図17に、背部左右2カ所の腫瘍移植部位の発光強度を経時的に測定した結果を表したグラフを示す。
 表8に、背部左右2カ所の腫瘍移植部位の発光強度の初日(0日目)から12日目までの増加量を示す。表8に示した加温による増加抑制率(%)は以下のように算出した:
加温による増加抑制率(%)=[(加温なしの増加量)-(加温ありの増加量)]/(加温なしの増加量)x100
Figure JPOXMLDOC01-appb-T000023
 表8に示されるとおり、DXR及びC17MGEを含む微粒子製剤No.38は、背部左右2カ所の腫瘍移植部位のいずれにおいても腫瘍増殖を大きく抑制し、特に、加温した背部左側の腫瘍移植部位において腫瘍増殖を最も大きく抑制した。DXR単独を含むPBS溶液の製剤No.39も腫瘍増殖を抑制したが、微粒子製剤No.38よりも抑制レベルは低かった。DXRを含むがC17MGEを含まない微粒子製剤No.37は腫瘍増殖を十分抑制しなかった。そして加温による増加抑制率に示されるとおり、腫瘍増殖抑制に対する加温効果は、微粒子製剤No.38で顕著に大きかった。
 腫瘍体積の測定結果から見ても、微粒子製剤No.38を投与した場合、試験の初日(0日目)から12日目までの腫瘍移植部位の腫瘍体積の増加量(mm)は、背部左(加温あり)の腫瘍移植部位で110mm、背部右(加温なし)の腫瘍移植部位で323mmであり、加温により腫瘍体積の増加量が大きく抑制されたことが示された。製剤No.39はDXRにより正常細胞も強く攻撃してしまうのに対し、製剤No.38はDXRがリポソーム内に保持されており、また腫瘍細胞に集積しやすい性質を有するため、正常細胞に対する安全性がより高いという点でも、高い優位性を有する。
 なお、本評価試験を通じてマウスの体重及び外観的な異常は観察されなかった。
 以上の結果より、DXRのような抗腫瘍剤とC17MGEのようなイソプレノイド型脂肪鎖を有する両親媒性脂質を含む微粒子製剤は、in vivo投与において、腫瘍細胞への組織集積性を有するだけでなく(実施例7)、腫瘍細胞の増殖を抑制する効果を示し、加温を併用することによってその抗腫瘍効果をより顕著に増強できることが示された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (18)

  1.  ラメラ形成脂質とイソプレノイド型脂肪鎖を有する両親媒性脂質とを膜構成脂質として含むリポソーム。
  2.  イソプレノイド型脂肪鎖を有する両親媒性脂質が、下記一般式(I)で表される両親媒性化合物である、請求項1に記載のリポソーム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X及びYはそれぞれ水素原子を表すか又は一緒になって酸素原子を表し、nは0~2の整数を表し、mは1又は2を表し、
    Figure JPOXMLDOC01-appb-I000002
    は一重結合又は二重結合を表し、Rは1つ以上の水酸基を有する親水性基を表す)
  3.  前記式中のRがグリセロール、ソルビタン、又はプロピレングリコールから1つの水酸基が除かれた親水性基を表す、請求項2に記載のリポソーム。
  4.  イソプレノイド型脂肪鎖を有する両親媒性脂質が、モノO-(5,9,13-トリメチルテトラデカ-4-エノイル)グリセロール、モノO-(5,9,13,17-テトラメチルオクタデカノイル)グリセロール、モノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)ソルビタン、又はモノO-(5,9,13,17-テトラメチルオクタデカ-4-エノイル)プロピレングリコールである、請求項1~3のいずれか1項に記載のリポソーム。
  5.  ラメラ形成脂質がリン脂質、ステロイド及びカチオン性脂質からなる群から選択される少なくとも1つを含む、請求項1~4のいずれか1項に記載のリポソーム。
  6.  ラメラ形成脂質が水溶性高分子で修飾されたリン脂質を含む、請求項1~5のいずれか1項に記載のリポソーム。
  7.  ラメラ形成脂質が、ホスファチジルコリン、コレステロール、及びPEG化ホスファチジルエタノールアミンを含む、請求項1~6のいずれか1項に記載のリポソーム。
  8.  ラメラ形成脂質が、ホスファチジルエタノールアミン、及び1,2-ジアルキルカルボニルオキシ-3-モノ、ジ又はトリアルキルアンモニウムプロパンを含む、請求項1~6のいずれか1項に記載のリポソーム。
  9.  イソプレノイド型脂肪鎖を有する両親媒性脂質を、膜構成脂質総量に対するモル分率で5~40mol%となる量で含む、請求項1~8のいずれか1項に記載のリポソーム。
  10.  温度応答性である、請求項1~9のいずれか1項に記載のリポソーム。
  11.  薬物をさらに含む、請求項1~10のいずれか1項に記載のリポソーム。
  12.  薬物が核酸である、請求項11に記載のリポソーム。
  13.  核酸とリポソームが複合体を形成している、請求項12に記載のリポソーム。
  14.  請求項11~13のいずれか1項に記載のリポソームを含む、細胞内への薬物送達用製剤。
  15.  請求項12又は13に記載のリポソームを含む、細胞の核内への核酸送達用製剤。
  16.  細胞が腫瘍細胞である、請求項14又は15に記載の製剤。
  17.  請求項1~13のいずれか1項に記載のリポソームを含む、医薬製剤。
  18.  抗腫瘍製剤である、請求項17に記載の医薬製剤。
PCT/JP2021/029550 2020-08-07 2021-08-10 薬物送達制御可能なリポソーム WO2022030646A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541768A JPWO2022030646A1 (ja) 2020-08-07 2021-08-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-135330 2020-08-07
JP2020135330 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022030646A1 true WO2022030646A1 (ja) 2022-02-10

Family

ID=80117505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029550 WO2022030646A1 (ja) 2020-08-07 2021-08-10 薬物送達制御可能なリポソーム

Country Status (2)

Country Link
JP (1) JPWO2022030646A1 (ja)
WO (1) WO2022030646A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506432A (ja) * 2007-12-10 2011-03-03 エピターゲット・アーエス 非ラメラ形成脂質を含む音響感受性薬物送達粒子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506432A (ja) * 2007-12-10 2011-03-03 エピターゲット・アーエス 非ラメラ形成脂質を含む音響感受性薬物送達粒子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO, SATORU: "New discovery of reversed hexagonal (H2) type self: assembly of phytyl chained amphiphilic lipids/water system", FRAGRANCE JOURNAL, vol. 39, no. 6, 1 January 2011 (2011-01-01), JP , pages 47 - 54, XP009533779, ISSN: 0288-9803 *
NAKANO MINORU: "Elucidation of Lipid Complex Formation Mechanisms by Static/Dynamic Structural Evaluation", YAKUGAKU ZASSHI : JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, PHARMACEUTICAL SOCIETY OF JAPAN, vol. 129, no. 9, 1 September 2009 (2009-09-01), pages 1033 - 1039, XP055894446, ISSN: 0031-6903, DOI: 10.1248/yakushi.129.1033 *
OKADA AKIE; TODO HIROAKI; HIJIKURO ICHIRO; ITAKURA SHOKO; SUGIBAYASHI KENJI: "Controlled release of a model hydrophilic high molecular weight compound from injectable non-lamellar liquid crystal formulations containing different types of phospholipids", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 577, 21 December 2019 (2019-12-21), NL , XP086066921, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2019.118944 *

Also Published As

Publication number Publication date
JPWO2022030646A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
Aghdam et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release
Nsairat et al. Liposomes: Structure, composition, types, and clinical applications
US11406597B2 (en) Fusogenic liposome-coated porous silicon nanoparticles
JP7355394B2 (ja) カロテノイド組成物およびその使用
Chourasia et al. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery
CN107406396B (zh) 阳离子性脂质
JP2022101548A (ja) ハイブリドソーム、それを含む組成物、それらの製造方法、およびその使用
Sahin Niosomes as nanocarrier systems
DE60122304T2 (de) Auf lipiden basierendes system zur zielgerichteten verabreichung diagnostischer wirkstoffe
JP6243331B2 (ja) pH感受性担体およびその製造方法、並びに該担体を含むpH感受性医薬、pH感受性医薬組成物およびこれを用いた培養方法
JP2012529501A (ja) ホスファチジルエタノールアミンを含む音響感受性薬物送達粒子
Antimisiaris et al. Liposomes and drug delivery
JP6230538B2 (ja) 安定なオキサリプラチン封入リポソーム水分散液及びその安定化方法
JP4874097B2 (ja) 水難溶性カンプトテシン含有リポソーム製剤
CN113546045B (zh) 恢复肿瘤微环境失活树突状细胞功能的纳米制剂及应用
Shin et al. Hybrid nanovesicle of chimeric antigen receptor (CAR)-engineered cell-derived vesicle and drug-encapsulated liposome for effective cancer treatment
EP1970078A1 (en) Composition inhibiting the expression of target gene in eyeball and remedy for disease in eyeball
KR102384003B1 (ko) 바이러스 전달용 고분자 나노입자 조성물 및 그의 제조방법
WO2022030646A1 (ja) 薬物送達制御可能なリポソーム
JP2012529502A (ja) 非ラメラ形成ホスファチジルコリンを含む音響感受性薬物送達粒子
JPWO2011135905A1 (ja) 脂質膜構造体
WO2014030601A1 (ja) アニオン性を有する新規ナノバブルポリ-リポ・プレックスの製造方法
Reddy et al. Niosomes as nanocarrier systems: a review
Jain et al. A brief review on niosomes
US20220378936A1 (en) Delivery system complexes comprising a precipitate of an active agent and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854476

Country of ref document: EP

Kind code of ref document: A1