WO2022030589A1 - 単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒 - Google Patents

単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒 Download PDF

Info

Publication number
WO2022030589A1
WO2022030589A1 PCT/JP2021/029155 JP2021029155W WO2022030589A1 WO 2022030589 A1 WO2022030589 A1 WO 2022030589A1 JP 2021029155 W JP2021029155 W JP 2021029155W WO 2022030589 A1 WO2022030589 A1 WO 2022030589A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fatty acid
monodentate
urea
ligand
Prior art date
Application number
PCT/JP2021/029155
Other languages
English (en)
French (fr)
Inventor
正也 澤村
ロナルド ラゾ レイス
智弘 岩井
理 前田
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2022030589A1 publication Critical patent/WO2022030589A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines

Definitions

  • the present invention relates to a boronation catalyst containing a novel ligand, and more particularly, a ligand containing a monocoordinated urea compound having a monocoordinated heteroaromatic group-regulatory group-urea group and a boron containing the same.
  • a boronation catalyst containing a novel ligand, and more particularly, a ligand containing a monocoordinated urea compound having a monocoordinated heteroaromatic group-regulatory group-urea group and a boron containing the same.
  • the chemical catalyst Regarding the chemical catalyst.
  • Fatty acids which are chemical raw materials derived from biomass, are abundant in various forms and are easily available. Fatty acids are used in large quantities as surfactants, lubricants and the like. However, the use of fatty acids as synthetic chemical raw materials is limited to the functional group conversion of carboxy groups. Fatty acids are rarely used as chemical raw materials based on the chemical conversion of aliphatic hydrocarbon chains.
  • Patent Document 1 reports that a boring catalyst using a bipyridyl compound having a structure coordinated to a metal such as iridium as a ligand is useful as a meta-selective boring catalyst for aromatic compounds. .. However, Patent Document 1 does not disclose or teach chemical conversion of saturated hydrocarbon chains of fatty acids.
  • Non-Patent Document 1 Chemical conversion methods for hydrocarbon chains of fatty acids and fatty acid derivatives, especially saturated hydrocarbon groups distant from terminal functional groups such as carboxy groups (farther than ⁇ -position), are academically and industrially industrial. Also very interesting. However, little is known about such a chemical conversion method and a catalyst that enables it (see Non-Patent Document 1).
  • the present invention enables a new method for chemically converting a hydrocarbon chain of a fatty acid and a fatty acid derivative, particularly a method for chemically converting a saturated hydrocarbon group at a remote position (farther than the ⁇ -position) from a terminal functional group such as a carboxy group. It is an object of the present invention to provide a new ligand for a catalyst, a catalyst containing the ligand, a method for converting a fatty acid using the ligand, and the like.
  • the present inventors have conducted a new chemical conversion method for hydrocarbon chains of fatty acids and fatty acid derivatives by using a novel monodentate ligand, in particular, a remote position from a terminal functional group such as a carboxy group.
  • a novel ligand for a catalyst, a catalyst containing the ligand, and a method for converting a fatty acid using the ligand, etc. which enables a chemical conversion method of a saturated hydrocarbon group at (a position farther from the ⁇ -position), etc.
  • a ligand for such a catalyst and a catalyst containing the ligand are suitable for boring of fatty acids and fatty acid derivatives, and have completed the present invention.
  • the present specification includes the following embodiments.
  • 1. It has a urea group (A 11 ) and a monodentate heteroaromatic group (A 13 ).
  • the monodentate-coordinated heteroaromatic group (A 13 ) may have a regulatory group (A 12 ) with a urea group (A 11 ): formula (I): A 13- (A 12 ) n-A 11 [In formula (I), n is 0 or 1. ]
  • It is a monodentate ligand containing the monodentate coordination urea compound (1) represented by.
  • X 11 represents an oxygen atom or a sulfur atom.
  • R 11 indicates hydrogen, a hydrocarbon group which may have a substituent, and the hydrocarbon group has an oxygen atom (ether bond), a sulfur atom (thioether bond) or an ester bond inserted between the carbon atoms.
  • the urea group (A 11 ) N 11 and the monodentate heteroaromatic group (A 13 ) N 13 are bonded via at least 3 or more carbon atoms.
  • Monodentate ligand 2. 2. The monodentate ligand according to 1 above, wherein R 11 of the urea group (A 11 ) is selected from alkyl, cycloalkyl and aryl which may have a substituent. 3. 3.
  • the unidentate-coordinated heteroaromatic group (A 13 ) is represented by the following chemical formula.
  • the monodentate ligand according to 1 or 2 above which comprises the chemical structure of pyridine, quinoline, isoquinolin, imidazole, benzoimidazole, triazole, benzotriazole, thiazole, benzothiazole, oxazole, benzoxazole. 4.
  • the boration catalyst according to 5 above which comprises the phosphorus compound (2) as a ligand.
  • the phosphorus compound (2) has the general formula (II) :.
  • R 21 , R 22 and R 23 may be different or the same.
  • R 21 , R 22 and R 23 are selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, alkoxy, cycloalkoxy, alkoxyoxy, alkynyloxy, aryloxy, monoorganoamino, and diorganoamino].
  • 12. 11 The boronization catalyst according to 11 above, which bores a carbon atom farther than the ⁇ -position of the carbonyl group of the fatty acid or the fatty acid derivative (4). 13.
  • the fatty acid or fatty acid derivative (4) has the chemical formula (IV) :.
  • R 43- (CH 2 ) m-C ( O) -X 41 (R 41 ) n
  • X 41 is selected from O, S and N, n is selected from 1 and 2.
  • R 41 is selected from a hydrogen atom, a hydrocarbon group which may have a substituent.
  • X 41 is selected from N, n is 2, the two R 41s may be the same or different, and the two R 41s may combine to form a ring, the R 41 .
  • Is selected from a hydrogen atom, a hydrocarbon group which may have a substituent, and a hydrocarbon oxy group which may have a substituent.
  • R 43 is selected from hydrogen atoms, hydrocarbon groups which may have substituents, Each carbon of (CH 2 ) m (m is an integer of 3 or more and 6 or less) between the carbonyl group and R 43 may have a substituent.
  • a new chemical conversion method of a hydrocarbon chain of a fatty acid and a fatty acid derivative particularly a remote position (remote position from ⁇ -position) from a terminal functional group such as a carboxy group.
  • a novel catalytic ligand, a catalyst containing the ligand, and fatty acids and fatty acid derivatives using the ligand which enable a method for converting a bond (sp3C—H) between a saturated carbon atom and a hydrogen atom.
  • a conversion method or the like can be provided.
  • FIG. 1 schematically shows the relationship between a fatty acid or a fatty acid derivative and a monodentate ligand containing a monodentate coordination urea compound according to an embodiment of the present invention.
  • the present invention has a urea group (A 11 ) and a monodentate heteroaromatic group (A 13 ), and the monodentate heteroaromatic group (A 13 ) is a urea group (A 11 ).
  • a 12 which may have a regulatory group (A 12 ):
  • X 11 represents an oxygen atom or a sulfur atom.
  • R 11 indicates hydrogen, a hydrocarbon group which may have a substituent, and the hydrocarbon group has an oxygen atom (ether bond), a sulfur atom (thioether bond) or an ester bond inserted between the carbon atoms.
  • the urea group (A 11 ) N 11 and the monodentate heteroaromatic group (A 13 ) N 13 are bonded via at least 3 or more carbon atoms.
  • Reference numeral 11 indicates a hydrocarbon group which may have a hydrogen or a substituent, and the hydrocarbon group which may have a substituent includes an oxygen atom (ether bond) and a sulfur atom (thioether) between the carbon atoms of the hydrocarbon group.
  • a bond), an ester bond or a thioester bond may be inserted, and the monodentate ligand of the present invention is not particularly limited as long as it can be obtained.
  • the urea group (A 11 ) may interact with the carbonyl group of the fatty acid or fatty acid derivative (4) so that the monodentate ligand has the ability to recognize and capture the fatty acid or fatty acid derivative (4).
  • X 11 represents an oxygen atom or a sulfur atom, and an oxygen atom is preferable.
  • R 11 indicates a hydrocarbon group which may have a hydrogen or a substituent, and the hydrocarbon group which may have a substituent is selected from alkyl, cycloalkyl, alkenyl, alkynyl and aryl.
  • R 11 is preferably selected from alkyl, cycloalkyl and aryl, which may have substituents.
  • the number of carbon atoms of the hydrocarbon group which may have a substituent is preferably 1 to 20, and more preferably 1 to 10.
  • alkyl examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl and the like.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • alkenyl examples include ethenyl, 1-propenyl, and 2-propenyl.
  • alkynyl examples include ethynyl, propynyl and the like.
  • Examples of the aryl include phenyl, 1-naphthyl, 2-naphthyl and the like.
  • the substituent that the hydrocarbon group can have is not particularly limited as long as the monodentate ligand of the present invention can be obtained, but for example, the hydrocarbon group described in R11 above. Examples thereof include a halogen group, an alkoxy group, an amino group, and a carbonyl group.
  • a saturated or unsaturated ring structure (which may contain a heteroatom) may be formed with the carbon atom of the monodentate-coordinated heteroaromatic group, and the monocoordinated heteroaromatic group (A 13 ) is a book.
  • the monodentate ligand intended by the invention can be obtained, there is no particular limitation.
  • the substituents that the monodentate-coordinated heteroaromatic group may have are not particularly limited as long as the monodentate ligand of the present disclosure can be obtained.
  • catalytic activity for example, saturation of a fatty acid or a fatty acid derivative
  • any one of the imine type nitrogen atoms and the urea group (A 11 ) N 11 is bonded via at least 3 or more carbon atoms, and preferably is bonded via at least 4 or more carbon atoms.
  • the urea group (A 11 ) N 11 is preferably bonded via at least 3 or more carbon atoms, and is bonded via at least 4 or more carbon atoms. Is more preferable.
  • the monodentate heteroaromatic group (A 13 ) is, for example, pyridine (pyridinyl), quinoline (quinolinyl), isoquinoline (isoquinolinyl), imidazole (imidazolyl), benzoimidazole (benzoimidazolyl), triazole (triazoleyl), benzotriazole. It can be selected from (benzotriazolyl), thiazole (thiazolyl), benzothiazole (benzothiazolyl), oxazole (oxazolyl), benzoxazole (benzoxazolyl) and the like.
  • the uniaxially coordinated heteroaromatic group (A 13 ) may be selected from pyridinyl, quinolinyl, isoquinolinyl, imidazolyl, benzoimidazolyl, triazolyl and benzotriazolyl, preferably pyridinyl, quinolinyl, isoquinolinyl and benzoimidazolyl. Their chemical structures are shown below.
  • the nitrogen atom corresponds to N13 . It is thought that it is coordinated with metal in one place.
  • a heteroaromatic group containing two nitrogen atoms imidazole, benzimidazole
  • both of the two nitrogen atoms can correspond to N13 , but two imine-type nitrogen atoms. Since the direction of coordination to the metal is divergent (or not suitable for one metal atom), it is considered that the two imine-type nitrogen atoms cannot be coordinated to the same metal at the same time, and they are coordinated to the metal in one place. It is thought that it is not possible to coordinate in two places at the same time.
  • a monodentate-coordinated heteroaromatic group is used. Not included in (A 13 ).
  • the monodentate heteroaromatic group (A 13 ) may have a regulatory group (A 12) with a urea group (A 11 ).
  • the regulatory group may have a substituent and the regulatory group (A 12 ) is the present invention.
  • the desired monodentate ligand can be obtained, there is no particular limitation.
  • the regulatory group (A 12 ) may or may not be present between the urea group (A 11 ) described above and the monodentate heteroaromatic group (A 13 ) described below, and if present, both are present. It may have the function of connecting and adjusting the distance between them.
  • the substituent that the regulatory group (A 12 ) can have is not particularly limited as long as the monodentate ligand of the present invention can be obtained, but for example, the above-mentioned hydrocarbon according to R 11 is not particularly limited. Examples thereof include a group, a halogen group, an alkoxy group, an amino group, and a carbonyl group.
  • the regulatory group and the above-mentioned monodentate-coordinated heteroaromatic group may be crosslinked to form a ring.
  • the monodentate ligand of the embodiment can be used as a ligand of various reaction catalysts.
  • a reaction catalyst for example, a boration catalyst can be exemplified.
  • the present invention can provide, in other embodiments, a boring catalyst comprising a monodentate ligand.
  • the boring catalyst of the embodiment of the present invention is a modular type in which a phosphorus compound (2) and / or a boron ligand (3) is coordinated to a metal in addition to the monodentate-coordinated urea compound (1).
  • the phosphorus compound (2) is a compound used as a ligand of a boring catalyst, and is particularly limited as long as it can coordinate with a metal with phosphorus to obtain a boring catalyst of the present invention. There is no such thing.
  • the phosphorus compound (2) has the general formula (II) :.
  • R 21 , R 22 and R 23 may be different or the same.
  • R 21 , R 22 and R 23 are selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, alkoxy, cycloalkoxy, alkoxyoxy, alkynyloxy, aryloxy, monoorganoamino, and diorganoamino]. It is preferable to be indicated by.
  • the "organo group" of monoorganoamino and diorganoamino can be selected from alkyl, cycloalkyl, alkenyl, alkynyl and aryl, and the "organo group” of diorganoamino may be the same or different.
  • the monoorganoamino comprises an alkylamino, a cycloalkylamino, an alkenylamino, an alkynylamino, an arylamino
  • the diorganoamino comprises a dialkylamino, a dicycloalkylamino, a dialkenylamino, a alkynylamino, a diallylamino, and further.
  • R 21 , R 22 and R 23 are alkyl, cycloalkyl, aryl, alkoxy, cycloalkoxy, aryloxy, alkylamino, cycloalkylamino, arylamino, dialkylamino, dicycloalkylamino, diarylamino, alkylcycloalkylamino. , Alkoxyarylamino, preferably cycloalkylarylamino.
  • R 21 , R 22 and R 23 may contain, for example, 1 to 30 carbon atoms, may contain 1 to 20 carbon atoms, and may contain 2 to 12 carbon atoms.
  • R 21 , R 22 and R 23 can have substituents.
  • the substituents are the above-mentioned alkyl, cycloalkyl, alkenyl, alkynyl, aryl, alkoxy, cycloalkoxy, alkoxyoxy, alkynyloxy, aryloxy, monoorganoamino, and diorganoamino of R 21 , R 22 and R 23 . It may be there. Further, the substituent may be halogen, hydroxy, amino or alkylsilyloxy. Further, R 21 , R 22 and R 23 may be directly bonded between them or may be bonded via their substituents.
  • alkyl examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl and the like.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • alkenyl examples include ethenyl, 1-propenyl, and 2-propenyl.
  • alkynyl examples include ethynyl, propynyl and the like.
  • aryl examples include phenyl, 1-naphthyl, 2-naphthyl and the like.
  • alkoxy examples include methoxyl, ethoxy, propyloxy, butyloxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, octadecyloxy, icosyloxy and the like. Can be done.
  • Examples of cycloalkoxy examples include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and the like.
  • alkenyloxy examples include ethenyloxy, 1-propenyloxy, and 2-propenyloxy.
  • alkynyloxy examples include ethynyloxy, propynyloxy and the like.
  • aryloxy examples include phenoxy, 1-naphthyloxy, 2-naphthyloxy and the like.
  • alkylamino examples include methylamino, ethylamino, propylamino, butylamino, pentylamino, hexylamino, heptylamino, octylamino, nonylamino, decylamino, dodecylamino, tetradecylamino, hexadecylamino, octadecylamino, icosylamino and the like.
  • Examples of cycloalkylamino include cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino and the like.
  • Examples of the alkenylamino include ethenylamino, 1-propenylamino, and 2-propenylamino.
  • Examples of the alkynylamino include ethynylamino, propynylamino and the like.
  • Examples of arylamino include phenylamino, 1-naphthylamino, 2-naphthylamino and the like.
  • dialkylamino examples include dimethylamino, diethylamino, dipropylamino, dibutylamino, dipentylamino, dihexylamino, diheptylamino, dioctylamino, didecylamino, methylethylamino, and methylpropylamino.
  • dicycloalkylamino examples include dicyclopropylamino, dicyclobutylamino, dicyclopentylamino, and dicyclohexylamino.
  • Examples of the alkenylamino include dietenylamino, di-1-propenylamino, and di-2-propenylamino.
  • Examples of the dialkynylamino include diethynylamino and dipropynylamino.
  • Examples of the diarylamino include diphenylamino, di-1-naphthylamino, and di-2-naphthylamino.
  • Examples of the alkylcycloalkylamino include methylcyclopropylamino, ethylcyclobutylamino, propylcyclopentylamino, butylcyclohexylamino and the like.
  • alkylarylamino examples include methylphenylamino, ethylnaphthylamino, propylphenylamino and the like.
  • cycloalkylarylamino examples include cyclopropylphenylamino, cyclobutylphenylamino, cyclopentylnaphthylamino, cyclohexylnaphthylamino and the like.
  • Examples of such phosphorus compounds include arylphosphines such as triphenylphosphine, tri (o-tolyl) phosphine, and tri (mesityl) phosphine, tri (tert-butyl) phosphine, tri (cyclohexyl) phosphine, and tri (isopropyl) phosphine.
  • arylphosphines such as triphenylphosphine, tri (o-tolyl) phosphine, and tri (mesityl) phosphine, tri (tert-butyl) phosphine, tri (cyclohexyl) phosphine, and tri (isopropyl) phosphine.
  • Alkylphosphine and the like can be exemplified.
  • the phosphorus compound for example, a compound having the following binaphthol structure can be used, and as such a phosphorus compound, the following compounds can be exemplified.
  • the phosphorus compounds can be used alone or in combination, respectively.
  • As the phosphorus compound a commercially available product can be used.
  • the phosphorus compound may have a structure that can be fixed to a carrier such as silica or polystyrene.
  • a carrier such as silica or polystyrene.
  • polystyrene-crosslinked phosphine Angew. Chem. Int. Ed. 2013, 52, 11620.
  • triphenylphosphine is arranged in a knot of a polymer network can be exemplified.
  • the phosphorus compound (2) can contain an optically active phosphorus compound, and can provide an optically active boration catalyst. In this case, an optically active boron product (5) can be obtained.
  • the boring catalyst of the embodiment of the present invention can include a boron ligand (3).
  • the boron ligand (3) activates the bond between the saturated carbon of the fatty acid or the fatty acid derivative (4) and hydrogen by the boronization catalyst to form the boronized product (5) of the fatty acid or the fatty acid derivative (4).
  • the boron ligand (3) for example, when the boron ligand precursor (31) described below is brought into contact with a metal, the boron-boron bond of the boron ligand precursor is cleaved and the boron atom is formed.
  • the boron ligand precursor (31) contains diboronic acid esters, diboronic acid monoesters, diboronic acid and the like, and preferably contains diboronic acid esters.
  • the diboronic acid esters include diboronic acid monoesters, diboronic acid and the like, and include, for example, Tetrahydroxydiborane.
  • Diboronic acid esters include diboronic acid alkyl ester, diboronic acid alkylene glycol ester, diboronic acid aryl ester, diboronic acid arylene glycol ester, and tetrahydroxydiborane.
  • the boron ligand (3) is more specifically, for example, for example.
  • R 31 to R 32 in the formula (III) the description of R 31 to R 32 in the following formula (III-1) can be referred to.
  • the diboronic acid esters are more specifically, for example, for example.
  • R 31 to R 34 are independently selected from hydrogen, an alkyl group which may have a substituent, and an aryl group which may have a substituent, and are selected from R 31 and R 32 , respectively. May be coupled to each other, and R 33 and R 34 may be coupled to each other. Further, R 31 and R 32 may form an annular structure together, and R 33 and R 34 may form an annular structure together.
  • the cyclic structure may be an aromatic group. For example, a 1,2-phenylene group and the like can be exemplified.
  • the alkyl group which may have a substituent includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group and the like.
  • the two alkyl groups may be bonded and may be represented as R1 - R2 and R3 - R4 , for example, an ethylene group, a 1,1,2,2-tetramethylethylene group, 2,2-dimethylpropylene. It contains a group, a hexylene group (or a 1,1,3-trimethylpropylene group) and the like.
  • the aryl group which may have a substituent is selected from, for example, a phenyl group, a naphthyl group, a biphenyl group and the like.
  • the substituent that the alkyl group or aryl group may have can be selected from an alkyl group, an aryl group, an alkoxy group, an aryloxy group and the like.
  • the substituents may be crosslinked with each other.
  • the substituent may further have a substituent.
  • the diboronic acid esters include, for example, bis (pinacolato) diboron (B 2 pin 2 ), bis (neopentyl Glycolate) diboron, and bis (neopentyl Glycolate) diboron. Includes Bis (hexylene Glycolato) diboron, Bis (catecholato) diboron, and the like. Commercially available products can be used as diboronic acid esters.
  • the boring catalyst of the embodiment of the present invention generally contains a metal (M), and the metal is not particularly limited as long as the boring catalyst of the present invention can be obtained.
  • metals include iridium, rhodium, cobalt and the like.
  • the metal preferably contains at least one selected from iridium, rhodium and cobalt, more preferably contains at least one selected from iridium and rhodium, and even more preferably contains iridium.
  • Borylation catalysts can be made using compounds of each metal.
  • metal compounds include [Ir (OMe) (cod)] 2 , [IrCl (cod)] 2 , [IrCl (coe) 2 ] 2 for iridium, and rhodium.
  • [Rh (OMe) (cod)] 2 , [Rh (OH) (cod)] 2 , [RhCl (cod)] 2 , etc. can be exemplified.
  • CoCl 2 , CoBr 2 , CoI 2 , etc. can be exemplified. It can be exemplified.
  • the boring catalyst can contain a compound having a coordination property to a metal in addition to the phosphorus compound (2) and the boron ligand (3).
  • a coordinating compound is not particularly limited as long as the boration catalyst intended by the present invention can be obtained.
  • examples of such coordinating compounds include alcohols such as methanol and ethanol, phenols such as phenol and naphthol, and alkenes such as cyclooctadiene (COD) and cyclooctene (COE). ..
  • a boring catalyst for boring a fatty acid or a fatty acid derivative (4) there is provided a boring catalyst for boring a carbon atom far from the ⁇ -position of the carbonyl group of the fatty acid or the fatty acid derivative (4).
  • the ligand containing the monodentate coordination urea compound (1) of the embodiment of the present invention is used as a ligand of a boring catalyst, a novel chemical conversion method of a hydrocarbon chain of a fatty acid and a fatty acid derivative (4),
  • a novel catalyst that enables boronization of a bond (sp3C—H) between a saturated carbon atom and a hydrogen atom located at a remote position (farther than ⁇ -position) from a terminal functional group such as a carboxy group.
  • various derivatives (6) can be provided from the obtained fatty acid and the boronized product (5) of the fatty acid derivative (4).
  • a borohydride of a fatty acid or fatty acid derivative comprising reacting the fatty acid or fatty acid derivative (4) with the boron ligand precursor (31) in the presence of the above-mentioned boring catalyst.
  • the manufacturing method of (5) is provided.
  • the boron ligand precursor (31) is as described above.
  • the boron ligand precursor (31) may or may not form a part of the boration catalyst.
  • the fatty acid or the fatty acid derivative (4) is not particularly limited as long as it can be boronated using the above-mentioned boration catalyst.
  • a fatty acid or a fatty acid derivative (4) for example, Chemical Formula (IV) :.
  • R 43- (CH 2 ) m-C ( O) -X 41 (R 41 ) n
  • X 41 is selected from O, S and N, n is selected from 1 and 2.
  • n is 1, and R 41 is a hydrogen atom, a hydrocarbon group which may have a substituent (eg, alkyl, alkenyl, alkynyl, cycloalkyl, aryl). ), If X 41 is selected from N, n is 2, the two R 41s may be the same or different, and the two R 41s may combine to form a ring, the R 41 .
  • the hydrocarbon group which may have a substituent of R 41 is preferably selected from, for example, alkyl, alkenyl, alkynyl, cycloalkyl and aryl, for example containing 1 to 20 carbon atoms and 1 to 10 It preferably contains 10 carbon atoms.
  • alkyl for example, methyl, ethyl, 1-propyl, 2-propyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, icosyl and the like can be used.
  • alkenyl examples include ethenyl, 1-propenyl, 2-propenyl and the like.
  • alkynyl examples include ethynyl, propynyl and the like.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • aryl examples include phenyl, 1-naphthyl, 2-naphthyl and the like.
  • the hydrocarbon oxy group which may have a substituent of R 41 is preferably selected from, for example, alkyloxy, alkenyloxy, alkynyloxy, cycloalkyloxy and aryloxy, for example 1 to 20 carbon atoms. It is preferable to contain 1 to 10 carbon atoms.
  • alkyloxy for example, methoxy, ethoxy, 1-propyloxy, 2-propyloxy, butyloxy, isobutyloxy, sec-butyloxy, t-butyloxy, pentyloxy, hexyloxy, hexyloxy, octyloxy, decyloxy, dodecyloxy, Hexadecyloxy, octadecyloxy, icosyloxy and the like can be exemplified.
  • alkenyloxy include ethenyloxy, 1-propenyloxy, 2-propenyloxy and the like.
  • alkynyl include ethynyloxy and propynyloxy.
  • cycloalkyloxy examples include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and the like.
  • aryl examples include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like.
  • the two R 41s may be bonded to form a ring, and the number of carbon atoms in the ring may be 3 to 40 and may be 3 to 20. It can be 3 to 16, it can be 3 to 12, and it can be 5 to 10.
  • the hydrocarbon group of R 41 may have an oxygen atom or a nitrogen atom inserted between carbon-carbon bonds.
  • the nitrogen atom may have a hydrogen atom or a substituent.
  • the substituent that the hydrocarbon group of R 41 may have, the above-mentioned hydrocarbon group of R 41 can be referred to.
  • the hydrocarbon group which may have a substituent of R 43 is preferably selected from, for example, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and contains, for example, 1 to 40 carbon atoms.
  • alkyl for example, methyl, ethyl, 1-propyl, 2-propyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, icosyl and the like can be used. It can be exemplified.
  • alkenyl examples include ethenyl, 1-propenyl, 2-propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, tetradecazienyl and the like.
  • alkynyl examples include ethynyl, propynyl and the like.
  • cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • aryl examples include phenyl, 1-naphthyl, 2-naphthyl and the like.
  • the carbon of (CH 2 ) m (m is an integer of 3 or more and 6 or less) (alkylene group selected from trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group) between the carbonyl group and R43 is each. It may have a substituent and may form a ring between the carbons of (CH 2 ) m or between the carbon of (CH 2 ) m and the carbon of R43 .
  • m may be 3 or more and 5 or less, and may be 3 or 5.
  • the hydrocarbon group of R 43 may have an oxygen atom or a nitrogen atom inserted between its carbon-carbon bonds.
  • the nitrogen atom may have a hydrogen atom or a substituent.
  • Substituents that the hydrocarbon group of R 43 can have and the substituents that carbon of (CH 2 ) m (m is an integer of 3 or more and 6 or less) can have refer to the hydrocarbon group of R 43 described above. be able to.
  • the boring of a fatty acid or fatty acid derivative (4) usually comprises a ligand containing the monodentate urea compound (1) in a solvent, comprising a metal (M), preferably a phosphorus compound (2).
  • the boronization catalyst can be used to react the boron ligand precursor (31) with the fatty acid or fatty acid derivative (4) to produce a boronized product of the fatty acid or fatty acid derivative (4). ..
  • the solvent is usually a solvent used for boring, and is not particularly limited as long as the fatty acid or the fatty acid derivative (4) of the present invention can be bored.
  • aromatic solvents such as benzene, toluene (PhMe), xylene, mesityrene, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran (THF), dimethoxyethane, 1,4-dioxane, cyclopentyl methyl ether.
  • a solvent solvent such as (CPME), an alcohol solvent such as methanol, ethanol and t-butanol, and a polar solvent such as acetonitrile, dimethylformamide and dimethylacetamide.
  • the boronization reaction of the fatty acid or the fatty acid derivative (4) can be carried out at various temperatures. For example, it can be carried out at 0 to 90 ° C., can be carried out at 5 to 70 ° C., can be carried out at 10 to 50 ° C., and can be carried out at a temperature near room temperature. For example, it can be carried out at 15 to 30 ° C.
  • the borylation reaction of the fatty acid or the fatty acid derivative (4) can be carried out under normal pressure.
  • the reaction time for boring of the fatty acid or fatty acid derivative (4) can be, for example, 30 minutes to 100 hours, and can be 1 to 72 hours.
  • the molar ratio of the metal to the monodentate urea compound (1) is not particularly limited as long as the boring reaction aimed at by the present invention can be carried out.
  • the molar ratio of the metal to the monocoordinated urea compound (1) can be, for example, 1 / 0.2 to 1/5, 1 / 0.5 to 1 /. It can be 3.
  • the amount of the boring catalyst used for the fatty acid or the fatty acid derivative (4) is not particularly limited as long as the boring reaction aimed at by the present invention can be carried out.
  • the amount of the boration catalyst used relative to the fatty acid or fatty acid derivative (4) (borylation catalyst / fatty acid or fatty acid derivative (4) X100 (mol%)) can be, for example, 0.1 to 20 mol% and 1 to 10 mol. Can be%.
  • a base can be present in the boration reaction of the fatty acid or fatty acid derivative (4) of the embodiment of the present invention.
  • the base is not particularly limited as long as it can proceed with the boration reaction of the fatty acid or the fatty acid derivative (4), which is the object of the present invention.
  • Inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate; Alkali metal alkoxides such as sodium-methoxide and sodium-ethoxide; Triethylamine, tributylamine, pyridine, diazabicycloundecene, diazabicyclononen, 2,6-lutidine, 2,4,6-cholidine, 2,6-dimethoxypyridine, 4-methoxy-2,6-dimethylpyridine, Examples thereof include organic bases such as quinuclidine and DABCO. The bases can be used alone or in combination, respectively. Commercially available products can be used as the base.
  • the boring catalyst of the present embodiment is naturally formed by dissolving a metal (M) compound, a monodentate urea compound (1), a phosphorus compound (2) if necessary, other coordinating compounds and the like in a solvent. It is thought that.
  • the urea group (A 11 ) of the monodentate coordination urea compound (1) can capture the carbonyl group of the fatty acid or the fatty acid derivative (4), whereby the monodentate coordination urea compound can be captured.
  • the monodentate heteroaromatic group (A 13 ) of (1) is naturally arranged at an appropriate position of the fatty acid or the fatty acid derivative (4).
  • the derivative of the boronized product (5) which comprises the above-mentioned method for producing the boronized product (5) and further treats the boronized product (5) to obtain the derivative (6) thereof.
  • the manufacturing method of 6) can be provided. Further treatment of the boronized product (5) is particularly limited as long as it is a method generally known as a method for treating a boronized product and a derivative (6) of the boronized product (5) can be obtained. There is no such thing.
  • oxidation for example, oxidation; reaction with isocyanate; reaction with a halogenated aromatic compound; reaction with an aminating agent to aminate, etc.
  • oxidation for example, hydroxides; amidates; arylates; aminationates and the like can be obtained, respectively.
  • the monocoordinated ligand containing the monocoordinated urea compound (1) of the embodiment of the present invention exerts an excellent effect as described above, which is considered to be due to the following reasons.
  • the monodentate coordination urea compound (1) of the embodiment of the present invention has a urea group (A 11 ), a regulatory group (A 12 ) and a monodentate configuration as shown in the formula (I): A 13 -A 12 -A 11 . It has a position heteroaromatic group (A 13 ).
  • the urea group (A 11 ) of the monodentate urea compound (1) is a fatty acid or It is considered to capture the carbonyl group of the fatty acid derivative (4).
  • a monodentate-coordinated heteroaromatic group (A 13 ) is connected to the urea group (A 11 ) via a regulatory group (A 12 ). It is considered that the regulatory group (A 12 ) regulates the distance between the monodentate-coordinated heteroaromatic group (A 13 ) and the carbonyl group.
  • the monodentate heteroaromatic group (A 13 ) is farther than the ⁇ -position from the carbonyl group of the fatty acid or fatty acid derivative (4) by action with the metal, optionally the phosphorus compound (3) and other ligands. It is believed to enable carbon conversion, especially boronization.
  • the present invention is considered to exert an excellent effect for such a reason, but the present invention is not limited to such a reason.
  • NMR spectra were recorded using JEOL ECX-400II.
  • 1 HNMR was operated at 400 MHz
  • 13 CNMR was operated at 100.5 MHz
  • 11 BNMR was operated at 128 MHz
  • 31 PNMR was operated at 168 MHz.
  • the chemical shift values of 1 HNMR and 13 CNMR referred to Me 4 Si and the solvent, respectively, and the chemical shift values of 11 BNMR and 31 PNMR referred to BF 3 OEt 2 and H 3 PO 4 , respectively.
  • Chemical shifts were recorded at ⁇ ppm.
  • the fatty acid or fatty acid derivative (4) is generally a known compound and can be produced by a known method.
  • the secondary amide derivative of caproic acid (4b-e) was made from hexanoyl chloride and the corresponding amine.
  • the tertiary amide derivative (4i) was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. and distilled before use.
  • Other tertiary amide derivatives of caproic acid (4j-t) were synthesized using hexanoyl chloride and suitable amines or using other known methods.
  • alkanoyl chloride When alkanoyl chloride cannot be used (4u-y), it was produced by reacting a carboxylic acid with a secondary amine using a commercially available propanephosphonic acid anhydride (cyclic trimmer) as a carboxylic acid activator.
  • propanephosphonic acid anhydride cyclic trimmer
  • Ethylhexanoate (4f) was purchased from Tokyo Chemical Industry Co., Ltd. and used as it was, but its derivatives (4 g) and (4h) were manufactured by a known method.
  • Linoleic acid anilide is a known compound and was produced by amidation of linoleic acid and aniline.
  • Methyl ((2- (pyridin-3-yl) phenyl) carbamoyl) L-valentate (1k) The monodentate urea compound (1k) is foamed using 2- (pyridin-3-yl) aniline and methyl (S) -2-isocyanato-3-methylbutanoate according to the general procedure described above. It was obtained as a white powder (161.6 mg, 82% yield). Mp: 53.2-54.7 °C.
  • a method for boring the ⁇ -position carbon of the carbonyl group of the fatty acid or the fatty acid derivative (4) (or a method for producing the fatty acid or the fatty acid derivative (5) in which the ⁇ -position of the carbonyl group is boronized).
  • Example 1 Enantioselective boring of the ⁇ -position from the carbonyl group of the fatty acid or fatty acid derivative (4)
  • phosphorus compound (2) eg, (2a) *: 6.80 mg, 0.0090 mmol, 3 mol%)
  • boron ligand precursor (31) (eg, B 2 pin 2 (31a): 76.2 mg).
  • the fatty acid or fatty acid derivative (4) eg, N, N, -dibenzylhexaneamide (4a): 88.6 mg, 0.30 mmol, 1 equiv
  • the additive lutidine (6) eg, 2,6- Lutidine (6a): 24.1 mg, 26.2 ⁇ L, 0.23 mmol, 0.75 equiv
  • the glass tube was sealed with a screw cap and transferred from the glove box to a water bath at 25 ° C. The mixture was stirred at this temperature for 48 hours. The mixture was then diluted with Et 2 O and filtered using a silica gel short plug. The solvent was removed under reduced pressure. (1,1,2,2-tetrachloroethane) was added as an internal standard. Yields of boried product (5) * (eg, (R)-(5a) *) were measured using 1 H NMR (eg> 99%).
  • the fatty acid or fatty acid derivative (4) eg, N, N, -dibenzylhexaneamide (4a): 88.6 mg, 0.30 mmol, 1 equiv
  • the additive lutidine (6) eg, 2,6- Lutidine: 24.1 mg, 26.2 ⁇ L, 0.23 mmol, 0.75 equiv
  • the glass tube was sealed with a screw cap and transferred from the glove box to a water bath at 25 ° C. The mixture was stirred at this temperature for 48 hours. The mixture was then diluted with Et 2 O and filtered using a silica gel short plug. The solvent was removed under reduced pressure. (1,1,2,2-tetrachloroethane) was added as an internal standard. Yields of boried product (5) (eg (5a)) were measured using 1 H NMR (eg 20-30% yield).
  • Example 5 to 11 and Comparative Examples 1 to 2 Borylation of the ⁇ -position of the carbonyl group of the fatty acid derivative (4a) described above, based on the conditions described in Example 1, the type and use and non-use of the monodentate-coordinated urea compound (1a), reaction temperature, 2,6.
  • the aliphatic derivative (4a) was boronized by the same method as described in Example 1 except that the use and non-use of lutidine were changed.
  • the yield of boronized product (5a) * was measured using 1 HNMR. Further, ee% was determined for the hydroxide (7a) * obtained by oxidizing the boron product (5a) * using the same method as that described in Example 2.
  • the reaction conditions of Examples 5 to 11 and Comparative Examples 1 and 2, the yield of (5a) * and the ee% of (7a) * are shown in Table 1 below. Table 1 also shows the results of Examples 1 and 3.
  • Example 12 to 15 The same method as described in Example 1 was used except that the above-mentioned fatty acid derivative (4a) was changed to various secondary amide derivatives (4b) to (4e) and lutidine was not used. Then, the ⁇ -position of the carbonyl group was boronized. The results are shown in Table 2 below. All of the boronized products (5b) * to (5e) * could be isolated.
  • Example 19 to 35 Except for changing the above-mentioned fatty acid derivative (4a) to various tertiary amide compounds (4i) to (4y) (for Example 32, the reaction time was further changed to 56 hours), the above-mentioned Example 12 The ⁇ -position of the carbonyl group was boronized using the same method as described. Boronized products (5i) * to (5y) * are immediately mildly oxidized using the same method as described in Example 2 without isolation, and hydroxides (7i) * to (7y) * are used. ) *) Was obtained. The results are shown in Tables 4 to 7 below. The yield and ee% of (7) * are shown.
  • Examples 36 to 39 The same method as that described in Example 12 was used except that the above-mentioned fatty acid derivative (4a) was changed to a fatty acid derivative (4z) to (4ac) having a double bond and the reaction time was changed to 56 hours. , The ⁇ -position of the carbonyl group was boronized. Boronized products (5z) * to (5ab) * can be isolated, and their results are shown in Table 8 below. The boronized product (5ac) * was immediately mildly oxidized to obtain a hydroxide (7ac) * using the same method as described in Example 2 without isolation. The results are shown in Table 9 below. The yield and ee% of (7ac) * are shown.
  • Example 40 to 56 and Comparative Examples 3 to 4 Except for the fact that (4i) was used instead of the fatty acid derivative (4a) described above, 2 equivalents of (4i) were used, the monodentate-coordinated urea compound (1) was variously modified, and the quantitative relationship was slightly changed.
  • the ⁇ -position of the carbonyl group was boronized using the same method as described in Example 1.
  • the quantitative relationships are shown in the table below.
  • the results are shown in Table 10 below.
  • the yield% indicates the 1 HNMR yield of (5) *, and the ee% indicates that of (7) *.
  • Example 40 For Example 40 in which (1a) was used as the monodentate urea compound (1) and (2a) * was used as the phosphorus compound (2), both Ir and (2a) * were used (mol%). (4i) was boronized and oxidized using the same method as described in Example 40, except that various modifications were made. The results are shown in Table 11 below. The yield% indicates the 1 HNMR yield of (5) *, and the ee% indicates that of (7) *.
  • Example 58 in which (1a) was used as the monodentate urea compound (1), (2a) * was used as the phosphorus compound (2), and 3.0 mol% of both Ir and (2a) * was used. , Borylation and oxidation were carried out using the same method as that described in Example 58, except that the amount (mol%) used in (1a) was variously changed. The results are shown in Table 12 below. The yield% indicates the 1 HNMR yield of (5) *, and the ee% indicates that of (7) *.
  • Example 63 in which (1a) was used as the monodentate urea compound (1) and 3.0 mol% of both Ir and (2a) * was used, except that (2a) * was variously modified. Borylation was performed using a method similar to that described. The results are shown in Table 13 below. The yield% indicates the 1 HNMR yield of (5) *.
  • Example 71 to 75 Borylation and oxidation of the aliphatic derivative (4a) were carried out using the same method as that described in Example 1 except that the type of solvent was changed based on the conditions described in Example 1.
  • the yield of boronized product (5a) * was measured using 1 HNMR. Further, ee% was determined for the hydroxide (7a) * obtained by oxidizing the boron product (5a) * using the same method as that described in Example 2.
  • the reaction conditions of Examples 71 to 75, their yields of (5a) * and ee% of (7a) * are shown in Table 14 below.
  • Example 87 1-Cyclohexyl-3- (2- (isoquinoline-7-yl) phenyl) urea (1r) is used instead of 1-cyclohexyl-3- (3- (isoquinoline-7-yl) phenyl) urea (1s).
  • the ⁇ -position of the carbonyl group of ethylhexanoate (4f) was boronized using the same method as described in Example 86, except that it was present. Borylation product (5ad) was obtained with a 1 H NMR yield of 98%.
  • Example 88 Oxidation of the compound in which the ⁇ -position of the carbonyl group of the fatty acid or the fatty acid derivative (4) is boronized. Then, the crude boration product (5ad) obtained in Example 86 was subjected to sodium perborate tetrahydrate (138.5 mg, 0.90 mmol, 3.0) in a THF / water mixed solvent (1: 1, 2 mL). A mild oxidation reaction using equiv) was carried out at room temperature under air for 3 hours. Water (10 mL) was then added and the mixture was extracted with Et 2 O (2 x 15 mL). The organic extracts were combined, dried over DDL 4 and filtered.
  • Example 89 Asymmetric boring of ⁇ -position carbon (sp3) from the carbonyl group of the fatty acid or fatty acid derivative (4) Performed except that N, N-dibenzyl heptaneamide (4ae) (92.8 mg, 0.30 mmol, 1 equiv) was used in place of ethylhexanoate (4f) (43.3 mg, 0.30 mmol, 1 equiv). Borylation product (5ae) was produced using a method similar to that described in Example 86. The yield of the boried product (5ae) was 35% as measured by 1 H NMR.
  • Example 90 to 95 The production of the alcohol product (7ae) by asymmetric boring and oxidation according to Example 89 was carried out under various conditions with reference to Example 89. The results are shown in Table 15.
  • Table 15 the yield of the boron compound (5ae) was determined by measuring with 1 HNMR without isolation.
  • the isolated yield of (7ae) in Example 89 was 27%, and the% ees of Examples 89, 90 and 93 were 33.87% ee, 35.43% ee and 33.68% ee, respectively. there were.
  • Example 96 to 98 A method similar to that described in Example 89, except that (4af)-(4ah) was used in place of N, N-dibenzyl heptaneamide (4ae) (92.8 mg, 0.30 mmol, 1 equiv). Used to produce alcohol products (7af, 7ag, 7ah) via boron compounds (5af, 5ag, 5ah). The results are shown in Table 16. The 1 HNMR yields of the boron compounds (5af, 5ag, 5ah) were 37%, 53%, and 61%, respectively. The% ees of the alcohol products (7af, 7ag, 7ah) were 31% ee, 38% ee and 67% ee, respectively.
  • a new chemical conversion method of a hydrocarbon chain of a fatty acid and a fatty acid derivative particularly a remote position (remote position from ⁇ -position) from a terminal functional group such as a carboxy group.
  • a novel catalytic ligand, a catalyst containing the ligand, and fatty acids and fatty acid derivatives using the ligand which enable a method for converting a bond (sp3C—H) between a saturated carbon atom and a hydrogen atom.
  • a conversion method or the like can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

尿素基(A11)及び単座配位ヘテロ芳香族基(A13)を有し、A13は、A11との間に、調節基(A12)を有し得る式A13-(A12)n-A11[nは0又は1]で示す単座配位尿素化合物(1)を含む単座配位子、その配位子を含むホウ素化触媒、及びその触媒を用いる脂肪酸又は脂肪酸誘導体(4)のホウ素化物(5)等を提供する。

Description

単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒
 本発明は、新規な配位子を含むホウ素化触媒に関し、さらに詳しくは、単座配位ヘテロ芳香族基-調節基-尿素基を有する単座配位尿素化合物を含む配位子及びそれを含むホウ素化触媒に関する。
 バイオマス由来の化学原料である脂肪酸は、多様な形で豊富に存在し、かつ、入手容易である。脂肪酸は、界面活性剤及び潤滑剤等として大量に利用されている。しかし、合成化学原料としての脂肪酸の利用は、カルボキシ基の官能基変換に限られる。脂肪酸は、脂肪族炭化水素鎖の化学変換に基づく化学原料として、ほとんど利用されていない。
 現在の化学産業は化学製品のほとんどを石油由来の原料から製造しており、これによって化石資源を大量に消費している。もし、脂肪酸の脂肪族炭化水素鎖を化学変換できるなら、石油由来の化学原料を、持続可能資源であるバイオマス由来の脂肪酸で代替することができる。バイオマス由来の脂肪酸への化学原料の転換は二酸化炭素の削減による低炭素社会の実現にも貢献できる。
 しかし、脂肪酸の炭化水素鎖の化学変換は、容易ではない。特にカルボキシ基から遠隔位(β-位より遠隔位)にある飽和炭化水素基の化学変換を行うためには、ここに多数含まれ化学的性質が同等の不活性なC(sp3)-H結合の各々を区別し、活性化し、そのC-H結合を切断し、更に官能基を導入することが必要である。
 特許文献1は、イリジウムなどの金属に二座配位する構造となるビピリジル化合物を配位子とするホウ素化触媒が、芳香族化合物のメタ位選択的ホウ素化触媒として有用であることを報告した。しかし、特許文献1は、脂肪酸の飽和炭化水素鎖の化学変換について、何ら開示も教示もするものではない。
 脂肪酸及び脂肪酸誘導体の炭化水素鎖の化学変換方法は、特にカルボキシ基などの末端官能基から遠隔位(β位より遠隔位)にある飽和炭化水素基の化学変換方法は、学術的にも工業的にも、極めて興味深い。しかし、そのような化学変換方法及びそれを可能にする触媒等は、ほとんど知られていない(非特許文献1参照)。
特許第6419092号
Chem. Rev. 2010, 110, 890
 本発明は、脂肪酸及び脂肪酸誘導体の炭化水素鎖の新たな化学変換方法、特にカルボキシ基などの末端官能基から遠隔位(β-位より遠隔位)にある飽和炭化水素基の化学変換方法を可能にする、新規な触媒用の配位子、その配位子を含む触媒、及びその触媒を用いる脂肪酸の変換方法等を提供することを目的とする。
 本発明者等は、鋭意検討を重ねた結果、新規な単座配位子を用いることで、脂肪酸及び脂肪酸誘導体の炭化水素鎖の新たな化学変換方法、特にカルボキシ基などの末端官能基から遠隔位(β-位より遠隔位)にある飽和炭化水素基の化学変換方法を可能にする、新規な触媒用の配位子、その配位子を含む触媒、及びその触媒を用いる脂肪酸の変換方法等を提供することができることを見出した。更に、そのような触媒用の配位子及びその配位子を含む触媒は、脂肪酸及び脂肪酸誘導体のホウ素化用途に好適であることを見出して、本発明を完成させるに至った。
 本明細書は、下記の実施形態を含む。
 1.尿素基(A11)及び単座配位ヘテロ芳香族基(A13)を有し、
 単座配位ヘテロ芳香族基(A13)は、尿素基(A11)との間に、調節基(A12)を有し得る
 式(I):A13-(A12)n-A11
[式(I)中、nは0又は1。]
で示される単座配位尿素化合物(1)を含む、単座配位子であり、
 尿素基(A11)は、-N11H-C(=X11)-N12H-R11で示され、
 X11は、酸素原子又は硫黄原子を示し、
 R11は、水素、置換基を有してよい炭化水素基を示し、その炭化水素基は、その炭素原子間に酸素原子(エーテル結合)、硫黄原子(チオエーテル結合)又はエステル結合が挿入されていてもよい;
 単座配位ヘテロ芳香族基(A13)は、イミン(C=N-)型窒素原子(N13)を有し、置換基を有してよい単座配位ヘテロ芳香族基であり、単座配位ヘテロ芳香族基が2つの置換基を有する場合、それらが結合している単座配位ヘテロ芳香族基の炭素原子と一緒に飽和又は不飽和の環構造を形成してよく:
 調節基(A12)は、置換基を有してよい炭化水素基であり、その炭化水素基は、-CH-、-CHCH-、-CH=CH-、-C三C-、-C-、-C-、-C-、-C10-、-C12-、-C-、-C10-及びそれらの組み合わせから選択され;
 尿素基(A11)のN11と単座配位ヘテロ芳香族基(A13)のN13は、少なくとも3以上の炭素原子を介して結合されている、
単座配位子。
 2.尿素基(A11)のR11は、置換基を有してよいアルキル、シクロアルキル及びアリールから選択される、上記1記載の単座配位子。
 3.単座配位ヘテロ芳香族基(A13)は、下記化学式で示す、
Figure JPOXMLDOC01-appb-C000003
ピリジン、キノリン、イソキノリン、イミダゾール、ベンゾイミダジール、トリアゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾール、オキサゾール、ベンゾオキサゾールの化学構造を含む、上記1又は2記載の単座配位子。
 4.調節基(A12)は、-CH=CH-、-C三C-、-C-、-C10-及びそれらの組み合わせから選択される、上記1~3のいずれか1項に記載の単座配位子。
 5.上記1~4のいずれか1つに記載の単座配位子を含むホウ素化触媒。
 6.リン化合物(2)を配位子として含む、上記5に記載のホウ素化触媒。
 7.リン化合物(2)が、一般式(II):
Figure JPOXMLDOC01-appb-C000004
[式(II)中、R21、R22及びR23は、相互に異なっていても同一でもよく、
21、R22及びR23は、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、アルコキシ、シクロアルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、モノオルガノアミノ、及びジオルガノアミノから選択される]
で示される、上記6記載のホウ素化触媒。
 8.リン化合物(2)は、光学活性リン化合物を含む上記6又は7に記載のホウ素化触媒。
 9.ホウ素配位子(3)を含む、上記5~8のいずれか1つに記載のホウ素化触媒。
 10.イリジウム、ロジウム及びコバルトから選択される少なくとも1種の金属(M)を含む、上記5~9のいずれか1つに記載のホウ素化触媒。
 11.脂肪酸又は脂肪酸誘導体(4)をホウ素化する、上記5~10のいずれか1つに記載のホウ素化触媒。
 12.脂肪酸又は脂肪酸誘導体(4)のカルボニル基のβ位より遠い炭素原子をホウ素化する、上記11記載のホウ素化触媒。
 13.上記5~12のいずれか1つに記載のホウ素化触媒の存在下、脂肪酸又は脂肪酸誘導体(4)を、ホウ素配位子前駆体(31)と反応させることを含む、脂肪酸又は脂肪酸誘導体のホウ素化物(5)の製造方法。
 14.脂肪酸又は脂肪酸誘導体(4)が、化学式(IV):
 R43-(CH)m-C(=O)-X41(R41)n
[式(IV)中、
 X41は、O、S及びNから選択され、nは、1及び2から選択され、
 X41が、O及びSから選択される場合、nは、1であり、R41は、水素原子、置換基を有してよい炭化水素基から選択され、
 X41が、Nから選択される場合、nは、2であり、2つのR41は、同一でも異なっていてもよく、2つのR41は、結合して環を形成してよく、R41は、水素原子、置換基を有してよい炭化水素基、置換基を有してよい炭化水素オキシ基から選択され、
 R43は、水素原子、置換基を有してよい炭化水素基から選択され、
 カルボニル基とR43の間の(CH)m(mは、3以上6以下の整数) の炭素は各々置換基を有してよく、
 (CH)mの炭素間で、(CH)mの炭素とR43炭素との間で、(CH)mの炭素とR41炭素との間で、又はR41の炭素とR43の炭素との間で 環を形成していてもよい]、
上記13記載のホウ素化物(5)の製造方法。
 15.上記13又は14に記載のホウ素化物(5)の製造方法を含み、
 ホウ素化物(5)を更に処理して、その誘導体(6)を得ることを含む、
 ホウ素化物(5)の誘導体(6)の製造方法。
 本発明の実施形態の単座配位子を用いることで、脂肪酸及び脂肪酸誘導体の炭化水素鎖の新たな化学変換方法、特にカルボキシ基などの末端官能基から遠隔位(β-位より遠隔位)にある飽和炭素原子と水素原子間の結合(sp3C-H)の変換方法を可能にする、新規な触媒用の配位子、その配位子を含む触媒、及びその触媒を用いる脂肪酸及び脂肪酸誘導体の変換方法等を提供することができる。
図1は、本発明の実施形態の単座配位尿素化合物を含む単座配位子と、脂肪酸又は脂肪酸誘導体の関係を、模式的に示す。
 以下、本明細書に添付した図面を参照しながら、更に本発明を詳細に説明する。
 本発明は、一の実施形態において、尿素基(A11)及び単座配位ヘテロ芳香族基(A13)を有し、単座配位ヘテロ芳香族基(A13)は、尿素基(A11)との間に、調節基(A12)を有し得る
 式(I):A13-(A12)n-A11
[式(I)中、nは0又は1。]
で示される単座配位尿素化合物(1)を含む、単座配位子を提供する。
 式(I)において、
 尿素基(A11)は、-N11H-C(=X11)-N12H-R11で示され、
 X11は、酸素原子又は硫黄原子を示し、
 R11は、水素、置換基を有してよい炭化水素基を示し、その炭化水素基は、その炭素原子間に酸素原子(エーテル結合)、硫黄原子(チオエーテル結合)又はエステル結合が挿入されていてもよい;
 単座配位ヘテロ芳香族基(A13)は、イミン(C=N-)型窒素原子(N13)を有し、置換基を有してよい単座配位ヘテロ芳香族基であり、単座配位ヘテロ芳香族基が2つの置換基を有する場合、それらが結合している単座配位ヘテロ芳香族基の炭素原子と一緒に飽和又は不飽和の環構造を形成してよく:
 調節基(A12)は、置換基を有してよい炭化水素基であり、その炭化水素基は、-CH-、-CHCH-、-CH=CH-、-C三C-、-C-、-C-、-C-、-C10-、-C12-、-C-、-C10-及びそれらの組み合わせから選択され;
 尿素基(A11)のN11と単座配位ヘテロ芳香族基(A13)のN13は、少なくとも3以上の炭素原子を介して結合されている。
 本発明の実施形態において、尿素基(A11)は、-N11H-C(=X11)-N12H-R11で示され、X11は、酸素原子又は硫黄原子を示し、R11は、水素又は置換基を有してよい炭化水素基を示し、置換基を有してよい炭化水素基は、その炭化水素基の炭素原子間に酸素原子(エーテル結合)、硫黄原子(チオエーテル結合)、エステル結合又はチオエステル結合が挿入されていてもよく、本発明が目的とする単座配位子を得ることができる限り、特に制限されることはない。
 尿素基(A11)は、脂肪酸又は脂肪酸誘導体(4)のカルボニル基と相互作用して、単座配位子が、脂肪酸又は脂肪酸誘導体(4)を認識して、捕まえる機能を有し得る。
 X11は、酸素原子又は硫黄原子を示し、酸素原子が好ましい。
 R11は、水素又は置換基を有してよい炭化水素基を示し、置換基を有してよい炭化水素基は、アルキル、シクロアルキル、アルケニル、アルキニル及びアリールから選択される。R11は、置換基を有してよいアルキル、シクロアルキル及びアリールから選択されることが好ましい。
 置換基を有してよい炭化水素基の炭素数は、1~20であることが好ましく、1~10であることがより好ましい。
 アルキルとして、例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、へプチル、オクチル、ノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル等を例示することができる。シクロアルキルとして、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を例示することができる。アルケニルとして、例えば、エテニル、1-プロペニル、2-プロペニルを例示することができる。アルキニルとして、例えば、エチニル、プロピニル等を例示することができる。アリールとして、例えば、フェニル、1-ナフチル、2-ナフチル等を例示することができる。
 炭化水素基が有し得る置換基は、本発明が目的とする単座配位子を得ることができる限り、特に制限されることはないが、例えば、上述のR11に記載した炭化水素基、ハロゲン基、アルコキシ基、アミノ基、カルボニル基等を例示することができる。
 本発明の実施形態において、単座配位ヘテロ芳香族基(A13)は、(例えば、後述するホウ素化触媒の)金属における配位座の一つのみに配位可能なイミン(C=N-)型窒素原子(N13)を有し、置換基を有してよい単座配位ヘテロ芳香族基であり、単座配位ヘテロ芳香族基が2つの置換基を有する場合、それらが結合している単座配位ヘテロ芳香族基の炭素原子と一緒に飽和又は不飽和の環構造(ヘテロ原子を含んでよい)を形成してもよく、単座配位ヘテロ芳香族基(A13)は、本発明が目的とする単座配位子を得ることができる限り、特に制限されることはない。
 単座配位ヘテロ芳香族基が有し得る置換基は、本開示が目的とする単座配位子を得ることが出来る限り特に制限されることはない。
 単座配位ヘテロ芳香族基(A13)は、その中に一つのヘテロ原子(具体的には、イミン(C=N-)型窒素原子N13)を有することが好ましいが、単座配位子を与える限り、二以上のヘテロ原子を有してもよい。ヘテロ芳香族基(A13)が、二以上のヘテロ原子を有する場合、一つのヘテロ原子が配位した金属と同じ金属の配位座に他のヘテロ原子が実質的に配位できなければよい。
 即ち、本開示において、単座配位ヘテロ芳香族基(A13)は、触媒の中心となる金属原子に一か所で配位して、触媒活性を発現させる(例えば、脂肪酸又は脂肪酸誘導体の飽和炭素原子と水素原子との間の結合の活性化)機能を有し得る。従って、金属原子に二か所で配位するビピリジンは、本開示の単座配位ヘテロ芳香族基(A13)に含まない。
 そのイミン(C=N-)型窒素原子N13と尿素基(A11)のN11は、少なくとも3以上の炭素原子を介して結合されており、少なくとも4以上の炭素原子を介して結合されていることが好ましい。
 尚、後述するように、イミン(C=N-)型窒素原子が2つ以上ある単座配位ヘテロ芳香族基(A13)場合、いずれか1つのイミン型窒素原子と尿素基(A11)のN11は、少なくとも3以上の炭素原子を介して結合されており、少なくとも4以上の炭素原子を介して結合されていることが好ましい。2つ以上のイミン型窒素原子のいずれとも尿素基(A11)のN11は、少なくとも3以上の炭素原子を介して結合されていることが好ましく、少なくとも4以上の炭素原子を介して結合されていることがより好ましい。
 単座配位ヘテロ芳香族基(A13)は、例えば、ピリジン(ピリジニル)、キノリン(キノリニル)、イソキノリン(イソキノリニル)、イミダゾール(イミダゾリル)、ベンゾイミダジール(ベンゾイミダゾリル)、トリアゾール(トリアゾリル)、ベンゾトリアゾール(ベンゾトリアゾリル)、チアゾール(チアゾリル)、ベンゾチアゾール(ベンゾチアゾリル)、オキサゾール(オキサゾリル)、ベンゾオキサゾール(ベンゾオキサゾリル)等から選択されることができる。単座配位ヘテロ芳香族基(A13)は、ピリジニル、キノリニル、イソキノリニル、イミダゾリル、ベンゾイミダゾリル、トリアゾリル、ベンゾトリアゾリルから選択されてよく、ピリジニル、キノリニル、イソキノリニル、ベンゾイミダゾリルから選択されることが好ましい。それらの化学構造を下に示した。
Figure JPOXMLDOC01-appb-C000005
 イミン(C=N-)型窒素原子を1つ含むヘテロ芳香族基の場合(ピリジン、キノリン、イソキノリン、チアゾール、ベンゾチアゾール、オキサゾール、ベンゾオキサゾールの場合)、その窒素原子がN13に該当し、金属に一か所で配位すると考えられる。窒素原子を2つ含むヘテロ芳香族基の場合(イミダゾール、ベンゾイミダゾールの場合)、「イミン(C=N-)型窒素原子」を1つ有し、それがN13に該当し、金属に一か所で配位すると考えられる。イミン型窒素原子を2つ含むヘテロ芳香族基の場合(2H-ベンゾトリアゾール及び1H-ベンゾトリアゾールの場合)、その2つの窒素原子の両方共N13に相当し得るが、2つのイミン型窒素原子の金属に配位する方向が発散的なので(又は1つの金属原子に向かないので)、その2つのイミン型窒素原子は同時に同じ金属に配位できないと考えられ、金属に一か所で配位すると考えられ、同時に二か所で配位できないと考えられる。尚、イミン型窒素原子を2以上含み、1つの金属原子に同時に二か所以上で配位するヘテロ芳香族基の場合(上述したビピリジンの場合)、本開示では、単座配位ヘテロ芳香族基(A13)に含まない。
 本発明の実施形態において、単座配位ヘテロ芳香族基(A13)は、尿素基(A11)との間に、調節基(A12)を有し得る。調節基(A12)は、置換基を有してよい炭化水素基であり、-CH-、-CHCH-、-CH=CH-、-C三C-、-C-、-C-(シクロプロパンジイル)、-C-(シクロペンタンジイル)、-C10-(シクロヘキサンジイル)、-C12-(シクロヘプタンジイル)、-C-(フェニレン)、-C10-(ナフタレンジイル)及びそれらの組み合わせから選択され、調節基は、置換基を有してよく、調節基(A12)は、本発明が目的とする単座配位子を得ることができる限り、特に制限されることはない。
 調節基(A12)は、上述の尿素基(A11)と後述の単座配位ヘテロ芳香族基(A13)の間に存在しても存在しなくてもよく、存在する場合、両者をつないで、その間の距離を調節する機能を有し得る。
 調節基(A12)は、-CH=CH-、-C三C-、-C-、-C10-及びそれらの組み合わせから選択される、ことが好ましい。
 調節基(A12)が有し得る置換基は、本発明が目的とする単座配位子を得ることができる限り、特に制限されることはないが、例えば、上述のR11記載の炭化水素基、ハロゲン基、アルコキシ基、アミノ基、カルボニル基等を例示することができる。尚、調節基と上述の単座配位ヘテロ芳香族基は、その間が架橋されて環を形成していてもよい。
 本発明は、実施形態の単座配位子は、種々の反応触媒の配位子として使用することができる。そのような反応触媒として、例えば、ホウ素化触媒を例示することができる。
 従って、本発明は、他の実施形態において、単座配位子を含むホウ素化触媒を提供することができる。
 本発明の実施形態のホウ素化触媒は、金属に、前記の単座配位尿素化合物(1)以外に、リン化合物(2)及び/又はホウ素配位子(3)が配位した、モジュール型の触媒でありえる。
 リン化合物(2)は、ホウ素化触媒の配位子として使用される化合物であり、リンで金属に配位し、本発明が目的とするホウ素化触媒を得ることができる限り、特に制限されることはない。
 リン化合物(2)が、一般式(II):
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R21、R22及びR23は、相互に異なっていても同一でもよく、
21、R22及びR23は、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、アルコキシ、シクロアルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、モノオルガノアミノ、及びジオルガノアミノから選択される]
で示されることが好ましい。
 モノオルガノアミノ及びジオルガノアミノの「オルガノ基」は、アルキル、シクロアルキル、アルケニル、アルキニル、アリールから選択することができ、ジオルガノアミノの「オルガノ基」は、同じでも異なっていてもよい。モノオルガノアミノは、アルキルアミノ、シクロアルキルアミノ、アルケニルアミノ、アルキニルアミノ、アリールアミノを含み、ジオルガノアミノは、ジアルキルアミノ、ジシクロアルキルアミノ、ジアルケニルアミノ、ジアルキニルアミノ、ジアリールアミノを含み、更に、例えばアルキルシクロアルキルアミノ、アルキルアリールアミノ、シクロアルキルアリールアミノ等を含む。
 R21、R22及びR23は、アルキル、シクロアルキル、アリール、アルコキシ、シクロアルコキシ、アリールオキシ、アルキルアミノ、シクロアルキルアミノ、アリールアミノ、ジアルキルアミノ、ジシクロアルキルアミノ、ジアリールアミノ、アルキルシクロアルキルアミノ、アルキルアリールアミノ、シクロアルキルアリールアミノから選択されることが好ましい。
 R21、R22及びR23は、例えば、1~30の炭素原子を含んでよく、1~20の炭素原子を含んでよく、2~12の炭素原子を含んでよい。
 R21、R22及びR23は、置換基を有することができる。その置換基は、上述のR21、R22及びR23のアルキル、シクロアルキル、アルケニル、アルキニル、アリール、アルコキシ、シクロアルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、モノオルガノアミノ、及びジオルガノアミノであってよい。更に置換基は、ハロゲン、ヒドロキシ、アミノ、アルキルシリルオキシであってよい。
 更に、R21、R22及びR23は、それらの間で直接結合していてよいし、それらの置換基を介して結合していてもよい。
 アルキルとして、例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、へプチル、オクチル、ノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル等を例示することができる。シクロアルキルとして、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を例示することができる。アルケニルとして、例えば、エテニル、1-プロペニル、2-プロペニルを例示することができる。アルキニルとして、例えば、エチニル、プロピニル等を例示することができる。アリールとして、例えば、フェニル、1-ナフチル、2-ナフチル等を例示することができる。
 アルコキシとして、例えば、メトキシル、エトキシ、プロピルオキシ、ブチルオキシ、ペンチルオキシ、ヘキシルオキシ、へプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ドデシルオキシ、テトラデシルオキシ、ヘキサデシルオキシ、オクタデシルオキシ、イコシルオキシ等を例示することができる。シクロアルコキシとして、例えば、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ等を例示することができる。アルケニルオキシとして、例えば、エテニルオキシ、1-プロペニルオキシ、2-プロペニルオキシを例示することができる。アルキニルオキシとして、例えば、エチニルオキシ、プロピニルオキシ等を例示することができる。アリールオキシとして、例えば、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシ等を例示することができる。 
 モノオルガノアミノについて、下記を例示できる。
 アルキルアミノとして、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ペンチルアミノ、ヘキシルアミノ、へプチルアミノ、オクチルアミノ、ノニルアミノ、デシルアミノ、ドデシルアミノ、テトラデシルアミノ、ヘキサデシルアミノ、オクタデシルアミノ、イコシルアミノ等を例示することができる。シクロアルキルアミノとして、例えば、シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロヘキシルアミノ等を例示することができる。アルケニルアミノとして、例えば、エテニルアミノ、1-プロペニルアミノ、2-プロペニルアミノを例示することができる。アルキニルアミノとして、例えば、エチニルアミノ、プロピニルアミノ等を例示することができる。アリールアミノとして、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ等を例示することができる。 
 ジオルガノアミノについて、下記を例示できる。
 ジアルキルアミノとして、例えば、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチルアミノ、ジヘキシルアミノ、ジへプチルアミノ、ジオクチルアミノ、ジデシルアミノ、メチルエチルアミノ、メチルプロピルアミノ等を例示することができる。ジシクロアルキルアミノとして、例えば、ジシクロプロピルアミノ、ジシクロブチルアミノ、ジシクロペンチルアミノ、ジシクロヘキシルアミノ等を例示することができる。アルケニルアミノとして、例えば、ジエテニルアミノ、ジ-1-プロペニルアミノ、ジ-2-プロペニルアミノを例示することができる。ジアルキニルアミノとして、例えば、ジエチニルアミノ、ジプロピニルアミノ等を例示することができる。ジアリールアミノとして、例えば、ジフェニルアミノ、ジ-1-ナフチルアミノ、ジ-2-ナフチルアミノを例示することができる。アルキルシクロアルキルアミノとして、例えば、メチルシクロプロピルアミノ、エチルシクロブチルアミノ、プロピルシクロペンチルアミノ、ブチルシクロヘキシルアミノ等を例示することができる。アルキルアリールアミノとして、例えば、メチルフェニルアミノ、エチルナフチルアミノ、プロピルフェニルアミノ等を例示することができる。シクロアルキルアリールアミノとして、例えば、シクロプロピルフェニルアミノ、シクロブチルフェニルアミノ、シクロペンチルナフチルアミノ、シクロヘキシルナフチルアミノ等を例示することができる。
 そのようなリン化合物として、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(メシチル)ホスフィン等のアリールホスフィン、トリ(tert-ブチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(イソプロピル)ホスフィン等のアルキルホスフィン等を例示することができる。
 またリン化合物として、例えば、下記のビナフトールの構造を有する化合物を使用することができ、そのようなリン化合物として、下記の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000007
 リン化合物は、各々単独で又は組み合わせて使用することができる。
 リン化合物は、市販品を使用することができる。
 また、リン化合物は、シリカやポリスチレンのような担体に固定できる構造であってもよい。そのような化合物として、例えば、トリフェニルホスフィンを高分子網目の結び目に配したポリスチレン架橋ホスフィン(Angew. Chem. Int. Ed. 2013, 52, 11620.)を例示することができる。
 リン化合物(2)は、光学活性リン化合物を含むことができ、光学活性なホウ素化触媒を提供することができる。この場合、光学活性なホウ素化物(5)を得ることができる。
 本発明の実施形態のホウ素化触媒は、ホウ素配位子(3)を含むことができる。
 ホウ素配位子(3)は、ホウ素化触媒によって、脂肪酸又は脂肪酸誘導体(4)の飽和炭素と水素の間の結合が活性化されて、脂肪酸又は脂肪酸誘導体(4)のホウ素化物(5)を与える限り、特に制限されることはない。
 ホウ素配位子(3)は、例えば、下記に記載するホウ素配位子前駆体(31)と金属とを接触させることで、ホウ素配位子前駆体のホウ素-ホウ素結合が開裂し、ホウ素原子が金属の配位座に配位可能な化合物でありえる。
 ホウ素配位子前駆体(31)は、ジボロン酸エステル類、ジボロン酸モノエステル及びジボロン酸等を含み、ジボロン酸エステル類を含むことが好ましい。
 本開示において、ジボロン酸エステル類は、ジボロン酸モノエステル及びジボロン酸等を含み、例えば、テトラヒドロキシジボラン(Tetrahydroxydiborane)を含む。
 ジボロン酸エステル類は、ジボロン酸アルキルエステル、ジボロン酸アルキレングリコールエステル、ジボロン酸アリールエステル、ジボロン酸アリーレングリコールエステル、テトラヒドロキシジボランを含む。
 本発明の実施形態において、ホウ素配位子(3)は、より具体的には、例えば、
 一般式(III):
Figure JPOXMLDOC01-appb-C000008
[R31~R32は、各々独立して、水素、置換基を有してよいアルキル基、置換基を有してよいアリール基(又は芳香族炭化水素基)から選択され、R31とR32は相互に結合してよい]で示すことができる。
 式(III)中のR31~R32は、下記式(III-1)のR31~R32の記載を参照することができる。
 本発明の実施形態において、ジボロン酸エステル類(エステル及び酸を含む)は、より具体的には、例えば、
 一般式(III-1):
Figure JPOXMLDOC01-appb-C000009
[R31~R34は、各々独立して、水素、置換基を有してよいアルキル基、置換基を有してよいアリール基(又は芳香族炭化水素基)から選択され、R31とR32は相互に結合してよく、R33とR34は相互に結合してよい]で示すことができる。
 式(III-1)において、R31~R34は、各々独立して、水素、置換基を有してよいアルキル基、置換基を有してよいアリール基から選択され、R31とR32は相互に結合してよく、R33とR34は相互に結合してよい。更に、R31とR32は一緒に環状構造を形成してよく、R33とR34は一緒に環状構造を形成してよい。その環状構造は、芳香族基であってよい。例えば、1,2-フェニレン基等を例示できる。
 置換基を有してよいアルキル基は、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等を含む。更に、2つのアルキル基は、結合してよく、R-R及びR-Rとして、例えば、エチレン基、1,1,2,2-テトラメチルエチレン基、2,2-ジメチルプロピレン基、ヘキシレン基(又は1,1,3-トリメチルプロピレン基)等を含む。
 置換基を有してよいアリール基は、例えば、フェニル基、ナフチル基、ビフェニル基等から選択される。
 アルキル基、アリール基が有してよい置換基は、アルキル基、アリール基、アルコキシ基、アリールオキシ基等から選択されることができる。置換基同士は、相互に架橋していてもよい。置換基は、更に置換基を有してよい。
 ジボロン酸エステル類は、より具体的には、例えば、ビス(ピナコラト)ジボロン(Bis(pinacolato)diboron)(B2pin2)、ビス(ネオペンチルグリコラト)ジボロン(Bis(neopentyl Glycolate)diboron)、ビス(ヘキシレングリコラト)ジボロン(Bis(hexylene Glycolato)diboron)、ビス(カテコラト)ジボロン(Bis(catecholato)diboron)等を含む。
 ジボロン酸エステル類として、市販品を使用することができる。
 本発明の実施形態のホウ素化触媒は、一般に金属(M)を含み、本発明が目的とするホウ素化触媒を得られる限り、金属は特に制限されることはない。そのような金属として、例えば、イリジウム、ロジウム、コバルト等を例示することができる、
 金属は、イリジウム、ロジウム及びコバルトから選択される少なくとも1種を含むことが好ましく、イリジウム及びロジウムから選択される少なくとも1種を含むことがより好ましく、イリジウムを含むことが更に好ましい。
 ホウ素化触媒は、各金属の化合物を使用して、製造することができる。そのような金属化合物として、例えば、イリジウムでは、[Ir(OMe)(cod)]2、[IrCl(cod)]2、[IrCl(coe)2]2等を例示することができ、ロジウムでは、[Rh(OMe)(cod)]2、[Rh(OH)(cod)]2、[RhCl(cod)]2等を例示することができ、コバルトでは、CoCl2、CoBr2、CoI2等を例示することができる。
 ホウ素化触媒は、リン化合物(2)、ホウ素配位子(3)の他に、金属への配位性を有する化合物を含むことができる。そのような配位性化合物は、本発明が目的とするホウ素化触媒を得られる限り、特に制限されることはない。そのような配位性化合物として、例えば、メタノール、エタノール等のアルコール類、フェノール、ナフトール等のフェノール類、シクロオクタジエン(COD)、シクロオクテン(COE)等のアルケン類等を例示することができる。
 本発明の実施形態において、脂肪酸又は脂肪酸誘導体(4)をホウ素化するための、ホウ素化触媒を提供する。
 更に、本発明の実施形態において、脂肪酸又は脂肪酸誘導体(4)のカルボニル基のβ位より遠い炭素原子をホウ素化するための、ホウ素化触媒を提供することができる。
 本発明の実施形態の単座配位尿素化合物(1)を含む配位子は、ホウ素化触媒の配位子として使用すると、脂肪酸及び脂肪酸誘導体(4)の炭化水素鎖の新たな化学変換方法、特にカルボキシ基などの末端官能基から遠隔位(β-位より遠隔位)にある飽和炭素原子と水素原子間の結合(sp3C-H)のホウ素化を可能にする新規な触媒を提供することができる。更に、得られた脂肪酸及び脂肪酸誘導体(4)のホウ素化物(5)から、種々の誘導体(6)を提供することができる。
 本発明の更なる実施形態において、上述のホウ素化触媒の存在下、脂肪酸又は脂肪酸誘導体(4)を、ホウ素配位子前駆体(31)と反応させることを含む、脂肪酸又は脂肪酸誘導体のホウ素化物(5)の製造方法を提供する。 
 ホウ素配位子前駆体(31)は、上述の通りである。ホウ素配位子前駆体(31)は、ホウ素化触媒の一部を構成していてもよく、ホウ素化触媒の一部を構成していなくてもよい。
 本発明の実施形態において、上述のホウ素化触媒を用いてホウ素化することが出来る限り、脂肪酸又は脂肪酸誘導体(4)は、特に制限されることはない。
 脂肪酸又は脂肪酸誘導体(4)として、例えば、化学式(IV):
 R43-(CH)m-C(=O)-X41(R41)n
[式(IV)中、
 X41は、O、S及びNから選択され、nは、1及び2から選択され、
 X41が、O及びSから選択される場合、nは、1であり、R41は、水素原子、置換基を有してよい炭化水素基(例えば、アルキル、アルケニル、アルキニル、シクロアルキル、アリール)から選択され、
 X41が、Nから選択される場合、nは、2であり、2つのR41は、同一でも異なっていてもよく、2つのR41は、結合して環を形成してよく、R41は、水素原子、置換基を有してよい炭化水素基(例えば、アルキル、アルケニル、アルキニル、シクロアルキル、アリール)、置換基を有してよい炭化水素オキシ基(例えば、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、シクロアルキルオキシ、アリールオキシ)から選択され、
 R43は、水素原子、置換基を有してよい炭化水素基(例えば、アルキル、アルケニル、アルキニル、シクロアルキル、アリール)から選択され、
 カルボニル基とR43の間の(CH)m(mは、3以上6以下の整数) の炭素は各々置換基を有してよく、
 (CH)mの炭素間で、(CH)mの炭素とR43の炭素との間で、(CH)mの炭素とR41の炭素との間で、又はR41の炭素とR43の炭素との間で環を形成していてもよい]
を、例示することができる。
 R41の置換基を有してよい炭化水素基は、例えば、アルキル、アルケニル、アルキニル、シクロアルキル及びアリールから選択されることが好ましく、例えば、1~20個の炭素原子を含み、1~10個の炭素原子を含むことが好ましい。
 アルキルとして、例えば、メチル、エチル、1-プロピル、2-プロピル、ブチル、イソブチル、sec-ブチル、t-ブチル、ペンチル、へキシル、へキシル、オクチル、デシル、ドデシル、ヘキサデシル、オクタデシル、イコシル等を例示することができる。
 アルケニルとして、例えば、エテニル、1-プロペニル、2-プロペニル等を例示することができる。
 アルキニルとして、例えば、エチニル、プロピニル等を例示することができる。
 シクロアルキルとして、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を例示することができる。
 アリールとして、例えば、フェニル、1-ナフチル、2-ナフチル等を例示することができる。
 R41の置換基を有してよい炭化水素オキシ基は、例えば、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、シクロアルキルオキシ及びアリールオキシから選択されることが好ましく、例えば、1~20個の炭素原子を含み、1~10個の炭素原子を含むことが好ましい。
 アルキルオキシとして、例えば、メトキシ、エトキシ、1-プロピルオキシ、2-プロピルオキシ、ブチルオキシ、イソブチルオキシ、sec-ブチルオキシ、t-ブチルオキシ、ペンチルオキシ、へキシルオキシ、へキシルオキシ、オクチルオキシ、デシルオキシ、ドデシルオキシ、ヘキサデシルオキシ、オクタデシルオキシ、イコシルオキシ等を例示することができる。
 アルケニルオキシとして、例えば、エテニルオキシ、1-プロペニルオキシ、2-プロペニルオキシ等を例示することができる。
 アルキニルとして、例えば、エチニルオキシ、プロピニルオキシ等を例示することができる。
 シクロアルキルオキシとして、例えば、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ等を例示することができる。
 アリールとして、例えば、フェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシ等を例示することができる。
 nが2の場合(R41が2つ存在する場合)、2つのR41は、結合して環を形成してよく、その環の炭素数は、3~40でありえ、3~20でありえ、3~16でありえ、3~12でありえ、5~10でありえる。
 R41の炭化水素基は、炭素-炭素結合の間に、酸素原子、窒素原子が挿入されていてもよい。窒素原子は、水素原子又は置換基を有してよい。
 R41の炭化水素基が有し得る置換基は、上述のR41の炭化水素基を参照することができる。
 R43の置換基を有してよい炭化水素基は、例えば、アルキル、アルケニル、アルキニル、シクロアルキル、アリールから選択されることが好ましく、例えば、1~40個の炭素原子を含む。
 アルキルとして、例えば、メチル、エチル、1-プロピル、2-プロピル、ブチル、イソブチル、sec-ブチル、t-ブチル、ペンチル、へキシル、へキシル、オクチル、デシル、ドデシル、ヘキサデシル、オクタデシル、イコシル等を例示することができる。
 アルケニルとして、例えば、エテニル、1-プロペニル、2-プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、テトラデカジエニル等を例示することができる。
 アルキニルとして、例えば、エチニル、プロピニル等を例示することができる。
 シクロアルキルとして、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を例示することができる。
 アリールとして、例えば、フェニル、1-ナフチル、2-ナフチル等を例示することができる。
 カルボニル基とR43の間の(CH)m(mは、3以上6以下の整数) (トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基から選択されるアルキレン基)の炭素は各々置換基を有してよく、(CH)mの炭素間で又は(CH)mの炭素とR43の炭素との間で環を形成していてもよい。mは、3以上5以下であってよく、3又は5であってよい。
 R43の炭化水素基は、それの炭素-炭素結合の間に、酸素原子、窒素原子が挿入されていてもよい。窒素原子は、水素原子又は置換基を有してよい。
 R43の炭化水素基が有し得る置換基及び(CH)m(mは、3以上6以下の整数) の炭素が有し得る置換基は、上述のR43の炭化水素基を参照することができる。
 脂肪酸又は脂肪酸誘導体(4)のホウ素化は、通常、溶媒中で、単座配位尿素化合物(1)を含む配位子を含み、金属(M)を含み、好ましくはリン化合物(2)を含むホウ素化触媒を用いて、ホウ素配位子前駆体(31)と脂肪酸又は脂肪酸誘導体(4)を反応させて、行うことができ、脂肪酸又は脂肪酸誘導体(4)のホウ素化物を製造することができる。
 溶媒は、通常、ホウ素化に使用される溶媒であって、本発明が目的とする脂肪酸又は脂肪酸誘導体(4)のホウ素化を行える限り、特に制限されることはない。
 溶媒として、例えば、ベンゼン、トルエン(PhMe)、キシレン、メシチレン等の芳香族系溶媒、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラハイドロフラン(THF)、ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒、メタノール、エタノール、t-ブタノール等のアルコール系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド等の極性溶媒等を例示することができる。
 脂肪酸又は脂肪酸誘導体(4)のホウ素化反応は、種々の温度で行うことができる。例えば、0~90℃で行うことができ、5~70℃で行うことができ、10~50℃で行うことができ、室温付近の温度で行うことができる。例えば、15~30℃で行うことができる。
 脂肪酸又は脂肪酸誘導体(4)のホウ素化反応は、常圧で行うことができる。
 脂肪酸又は脂肪酸誘導体(4)のホウ素化の反応時間は、例えば、30分~100時間でありえ、1~72時間であり得る。
 本発明の実施形態のホウ素化触媒について、金属と単座配位尿素化合物(1)とのモル比は、本発明が目的とするホウ素化反応を行える限り特に制限されることはない。金属と単座配位尿素化合物(1)とのモル比(金属/単配座尿素化合物(1))は、例えば、1/0.2~1/5でありえ、1/0.5~1/3でありえる。
 本発明の実施形態のホウ素化触媒について、脂肪酸又は脂肪酸誘導体(4)に対するホウ素化触媒の使用量は、本発明が目的とするホウ素化反応を行える限り特に制限されることはない。脂肪酸又は脂肪酸誘導体(4)に対するホウ素化触媒の使用量(ホウ素化触媒/脂肪酸又は脂肪酸誘導体(4)X100(モル%))は、例えば、0.1~20モル%でありえ、1~10モル%でありえる。
 本発明の実施形態の脂肪酸又は脂肪酸誘導体(4)のホウ素化反応において、塩基を存在させることができる。塩基は、本発明が目的とする脂肪酸又は脂肪酸誘導体(4)のホウ素化反応を進行させることができれば、特に制限されることはない。
 塩基として、例えば、
 水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基;
 ナトリウム-メトキシド、ナトリウム-エトキシド等のアルカリ金属アルコキシド;
 トリエチルアミン、トリブチルアミン、ピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、2,6-ルチジン、2,4,6-コリジン、2,6-ジメトキシピリジン、4-メトキシ-2,6-ジメチルピリジン、キヌクリジン、DABCO等の有機塩基を例示できる。
 塩基は、各々単独で又は組み合わせて使用することができる。
 塩基として、市販品を使用することができる。
 本実施形態のホウ素化触媒は、金属(M)化合物、単座配位尿素化合物(1)、必要に応じてリン化合物(2)、その他の配位性化合物等を溶媒に溶解すると、自然に形成すると考えられる。本実施形態のホウ素化触媒は、単座配位尿素化合物(1)の尿素基(A11)が、脂肪酸又は脂肪酸誘導体(4)のカルボニル基を捕まえることができ、それによって、単座配位尿素化合物(1)の単座配位ヘテロ芳香族基(A13)が、脂肪酸又は脂肪酸誘導体(4)の適切な位置に、自然に配置されると考えられる。
 本発明の実施形態において、上述のホウ素化物(5)の製造方法を含み、ホウ素化物(5)を更に処理して、その誘導体(6)を得ることを含む、ホウ素化物(5)の誘導体(6)の製造方法を提供することができる。
 ホウ素化物(5)の更なる処理は、一般にホウ素化物の処理方法として知られている方法であって、ホウ素化物(5)の誘導体(6)を得ることができる方法であれば特に制限されることはない。
 そのような処理方法として、下記文献記載の方法を例示することができる。
「Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Second, Completely Revised Edition, 2 Volume Set」Dennis G. Hall (Editor), ISBN: 978-3-527-32598-6
 そのような処理方法として、より具体的には、例えば、酸化すること;イソシアネートと反応させること;ハロゲン化芳香族化合物と反応させること;アミノ化剤と反応させて、アミノ化すること等を例示することができる。
 それらの処理の結果、各々、例えば、水酸化物;アミド化物;アリール化物;アミノ化物等を得ることができる。
 本発明の実施形態の単座配位尿素化合物(1)を含む単座配位配位子は、上述のように優れた効果を奏するが、それは、以下のような、理由によると考えられる。
 本発明の実施形態の単座配位尿素化合物(1)は、式(I):A13-A12-A11に示すように、尿素基(A11)、調節基(A12)及び単座配位ヘテロ芳香族基(A13)を有する。
 その単座配位尿素化合物(1)と脂肪酸又は脂肪酸誘導体(4)が、共に存在する場合、図1に示すように、単座配位尿素化合物(1)の尿素基(A11)が、脂肪酸又は脂肪酸誘導体(4)のカルボニル基を捕まえると考えられる。尿素基(A11)には、調節基(A12)を介して単座配位ヘテロ芳香族基(A13)が接続されている。調節基(A12)によって、単座配位ヘテロ芳香族基(A13)とカルボニル基との距離が調節されていると考えられる。単座配位ヘテロ芳香族基(A13)は、金属、必要に応じてリン化合物(3)及びその他の配位子との作用によって、脂肪酸又は脂肪酸誘導体(4)のカルボニル基からβ位より遠い炭素の変換、特にホウ素化を可能にすると考えられる。
 本発明は、このような理由により、優れた効果を奏すると考えられるが、本発明は、このような理由に制限されるものでない。
 以下、本発明を実施例及び比較例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様にすぎず、本発明はこれらの例によって何ら限定されるものではない。
尚、実施例の記載において、特に記載がない限り、溶媒を考慮しない部分を、重量部及び重量%の基準としている。
 本実施例で使用した分析装置及び化合物等を以下に示す。
 NMRスペクトルは、JEOL ECX-400IIを用いて記録した。HNMRは400MHzで、13CNMRは100.5MHzで、11BNMRは128MHzで、31PNMRは168MHzで操作した。HNMRと13CNMRの化学シフト値はMeSi及び溶媒を各々参照し、11BNMRと31PNMRの化学シフト値は、BFOEt及びHPOを各々参照した。化学シフトはδppmで記録した。
 高分解能マススペクトルは、北海道大学農学部GC-MS&NMR研究室(FD-MS用JEOL JMS-T100GCv)で記録した。
 HPLC分析は、HITACHI L-2455ダイオードアレイ検知器を備えた、HITACHI ELITE LaChrom systemを使用した。
 旋光性は、JASCO P-2200を使用した。
 TLC分析は、市販の0.25mm層を有する市販のガラスプレート、Merck Silica gel 60F254を使用した。
 シリカゲル(関東化学社製、Silica gel 60 N、球状、中性)を、カラムクロマトグラフィーに使用した。
 IRスペクトルは、PerkinElmer Frontier instrumentを使用した。
 すべての反応は、窒素又はアルゴン雰囲気で行った。特に記載しない限り、材料は、市販品又は一般的な手順に基づいて製造した。シクロペンチルメチルエーテル(CPME)は、富士フィルム和光純薬社から購入し、アルゴンで加圧して活性アルミナを通し、脱気して精製した。ビス(ピナコラト)ジボランは、AllyChem社から購入し、使用する前にペンタンから再結晶した。[Ir(OMe)(cod)]2は、既知の方法に従って製造した。
 脂肪酸又は脂肪酸誘導体(4)は、一般に、既知の化合物であり、既知の方法で製造することができる。
 カプロン酸の2級アミド誘導体(4b-e)は、塩化ヘキサノイルと対応するアミンから製造した。3級アミド誘導体(4i)は、富士フィルム和光純薬社から購入し、使用する前に蒸留した。カプロン酸の他の3級アミド誘導体(4j-t)は、塩化ヘキサノイルと適切なアミンを使用して、又は他の既知の方法を用いて合成した。塩化アルカノイルを使用できない場合(4u-y)、カルボン酸活性化剤として、市販のプロパンホスホン酸無水物(環状トリマー)を用いて、カルボン酸と2級アミンを反応させて製造した。エチルヘキサノエート(4f)は、東京化成工業社から購入してそのまま使用したが、その誘導体(4g)と(4h)は、既知の方法で製造した。リノール酸アニリドは、既知化合物であり、リノール酸とアニリンとのアミド化で製造した。
 単座配位尿素化合物(1)の製造
 単座配位尿素化合物(1)の典型的な1例の製造方法を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 3-ピリジニルボロン酸と2-ブロモアニリンのPd触媒クロスカップリングによって得られるピリジニルアニリン誘導体(0.60 mmol, 1.0 equiv)、及び対応するアルキル又はアリールイソシアネート(1.50 equiv)のジクロロメタン(2-5 mL)中の混合物を、室温で24時間激しく撹拌した。減圧して溶媒を除去し、残渣をジクロロメタン/ヘキサンを用いる再結晶又はシリカゲル(ジクロロメタン/ヘキサン 50:50、又は酢酸エチル/ヘキサン 50:50)を用いるカラムクロマトグラフィーを用いて精製して、単座配位尿素化合物(1)を得た。
 1-シクロへキシル-3-(2-(ピリジン-3-イル)フェニル)尿素(1a)
Figure JPOXMLDOC01-appb-C000011
 単座配位尿素化合物(1a)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリン(1.0 mmol)とシクロへキシルイソシアネートを使用して、オフホワイト粉(262.9 mg, 89% yield)として得た。M.p.: 131.1-132.0 ℃. IR (ATR): 642, 714, 752, 104, 1215, 1252, 1407, 1444, 1540, 1637, 2853, 2928, 3313 cm-11H NMR (400 MHz, CDCl3): δ 0.96-1.19 (m, 3H), 1.25-1.39 (m, 2H), 1.53-1.71 (m, 3H), 1.83-1.96 (m, 2H), 3.53-3.60 (m, 1H), 5.49 (d, J = 7.8 Hz, 1H), 6.67 (s, 1H), 7.11-7.17 (m, 2H), 7.29-7.33 (m, 1H), 7.35-7.43 (m, 1H), 7.72 (dt, J = 7.9, 1.9 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 8.31 (dd, J = 4.8, 1.6 Hz, 1H), 8.46 (t, J = 1.1 Hz, 1H). 13C NMR (100.5 MHz, CDCl3): δ 24.77, 25.43, 33.52, 48.56, 121.88, 122.86, 123.72, 127.91, 129.33, 130.09, 135.33, 136.84, 137.55, 147.98, 149.37, 155.15. HRMS-FD (m/z): [M]+ Calcd for C18H21N3O, 295.16846; found, 295.16984. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-シクロヘキシル-3-(2-(ピリジン-2-イル)フェニル)尿素(1b)
Figure JPOXMLDOC01-appb-C000012
 単座配位尿素化合物(1b)は、上述の一般的な手順に従って、2-(ピリジン-2-イル)アニリンとシクロへキシルイソシアネートを使用して、ホワイト粉(65.1 mg, 35% yield)として得た。M.p.: 155.3-157.5 ℃. IR (ATR): 751, 905, 1253, 1315, 1436, 1513, 1538, 1655, 2853, 2931, 3297 cm-11H NMR (400 MHz, CDCl3): δ 0.88 (t, J = 6.9 Hz, 1H), 1.13-1.44 (m, 4H), 1.62-1.66 (m, 1H), 1.72-1.77 (m, 2H), 1.99-2.02 (m, 2H), 3.56-3.63 (m, 1H), 4.39 (d, J = 7.8 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 0.9 Hz, 1H), 7.36-7.41 (m, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.81-7.85 (m, 1H), 8.32 (d, J = 8.2 Hz, 1H), 8.63 (dd, J = 4.6, 0.9 Hz, 1H), 11.12 (br-s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 24.99, 25.49, 33.70, 49.44, 121.38, 121.57, 121.82, 123.04, 125.25, 128.92, 129.90, 137.53, 138.77, 147.24, 154.83, 158.65. HRMS-FD (m/z): [M]+ Calcd for C18H21N3O, 295.16846; found, 295.16797. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:3
 1-シクロヘキシル-3-(2-(ピリジン-4-イル)フェニル)尿素(1c)
Figure JPOXMLDOC01-appb-C000013
 単座配位尿素化合物(1c)は、上述の一般的な手順に従って、2-(ピリジン-4-イル)アニリンとシクロへキシルイソシアネートを使用して、ホワイト粉(67.8 mg, 41% yield)として得た。M.p.: 245.1-246.7 ℃. IR (ATR): 518, 617, 761, 1212, 1253, 1410, 1444, 1544, 1586, 1692, 2864, 2918, 3255 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.00-1.14 (m, 3H), 1.29-1.40 (m, 2H), 1.56-1.69 (m, 3H), 1.93-1.97 (m, 2H), 3.64 (br-m, 1H), 6.21 (br, 1H), 6.85 (s, 1H), 7.08-7.12 (m, 2H), 7.28 (d, J = 6.4 Hz, 1H), 7.38-7.43 (m, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 6.0 Hz, 2H). 13C NMR (100.5 MHz, CDCl3): δ 24.95, 25.52, 33.73, 48.79, 121.46, 122.78, 124.76, 128.32, 129.45, 129.85, 136.52, 147.96, 149.54, 155.02. HRMS-FD (m/z): [M]+ Calcd for C18H21N3O, 295.16846; found, 295.16945. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:5
 1-シクロヘキシル-3-(5-フルオロ-2-(ピリジン-3-イル)フェニル)尿素(1d)
Figure JPOXMLDOC01-appb-C000014
 単座配位尿素化合物(1d)は、上述の一般的な手順に従って、5-フルオロ-2-(ピリジン-3-イル)アニリン(0.41 mmol)とシクロへキシルイソシアネートを使用して、ホワイト粉(52.1 mg, 41% yield)として得た。M.p.: 186.4-185.1 ℃. IR (ATR): 603, 650, 713, 822, 1181, 1251, 1564, 1625, 2855, 2930, 3317 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.96-1.15 (m, 3H), 1.21-1.39 (m, 2H), 1.56-1.67 (m, 3H), 1.85 (d, J = 12.8 Hz, 2H), 3.53 (br, 1H), 6.96-7.00 (m , 1H), 7.09-7.14 (m, 1H), 7.38-7.42 (m, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.78 (br-m, 1H), 8.60 (br-s, 2H). 13C NMR (100.5 MHz, CDCl3):δ 24.80, 25.43, 33.59, 48.76, 115.96 (d, JC-F = 21.1 Hz), 116.61 (d, JC-F = 24.0 Hz), 123.82, 124.68 (d, JC-F = 7.7 Hz), 130.45 (d, JC-F = 7.6 Hz), 132.64, 134.30, 137.33, 148.55, 149.22, 155.18, 158.67 (d, JC-F = 243.8 Hz). HRMS-FD (m/z): [M]+ Calcd for C18H20FN3O, 313.15904; found, 313.15942. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-シクロヘキシル-3-(2-メチル-6-(ピリジン-3-イル)フェニル)尿素(1e)
Figure JPOXMLDOC01-appb-C000015
 単座配位尿素化合物(1e)は、上述の一般的な手順に従って、2-メチル-6-(ピリジン-3-イル)アニリン(0.82 mmol)とシクロへキシルイソシアネートを使用して、ペールベージュ粉(207.3 mg, 82% yield)として得た。M.p.: 183.6-185.2 ℃. IR (ATR): 627, 717, 794,1248, 1409, 1466, 1534, 1689, 2852, 2928, 3323 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.01-1.11 (m, 2H), 1.24-1.33 (m, 2H), 1.56-1.66 (m, 3H), 1.81-1.85 (m, 2H), 2.02 (s, 3H), 4.61 (br, 1H), 5.73 (br, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.43 (dd, J = 7.6, 4.0 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.78 (br-d, J = 9.2 Hz, 1H), 8.43 (s, 1H), 8.59 (br-s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 20.70, 24.57, 25.41, 33.35, 33.38, 48.23, 118.31, 123.80, 124.03, 126.65, 128.81, 134.17, 136.25, 137.55, 138.57, 148.10, 150.07, 155.05. HRMS-FD (m/z): [M]+ Calcd for C19H23N3O, 309.18411; found, 309.18486. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-フェニル-3-(2-(ピリジン-3-イル)フェニル)尿素(1f)
Figure JPOXMLDOC01-appb-C000016
 単座配位尿素化合物(1f)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリン(0.82 mmol)とフェニルイソシアネートを使用して、ホワイト粉(48.2 mg, 85% yield)として得た。M.p.: 89.5-91.8 ℃. IR (ATR): 692, 713, 751, 905, 1192, 1288, 1408, 1443, 1498, 1532, 1598, 1653, 3032, 3293 cm-1 . 1H NMR (400 MHz, CDCl3): δ 7.01 (t, J = 7.1 Hz, 1H), 7.12 (dd, J = 3.4 Hz, 2H), 7.21-7.34 (m, 6H), 7.39-7.46 (m, 1H), 7.77 (dt, J = 7.8, 1.8 Hz, 1H), 8.25 (d, J = 8.2 Hz, 2H), 8.30-8.42 (m, 1H). 13C NMR (100.5 MHz, CDCl3): δ 118.90, 121.87, 122.68, 123.29, 123.91, 127.94, 128.74, 129.30, 129.95, 135.25, 135.99, 137.98, 138.73, 147.97, 149.14, 153.27. HRMS-FD (m/z): [M]+ Calcd for C18H15N3O, 289.12151; found, 289.12132. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-ベンジル-3-(2-(ピリジン-3-イル)フェニル)尿素(1g)
Figure JPOXMLDOC01-appb-C000017
 単座配位尿素化合物(1g)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)とベンジルイソシアネートを使用して、オフホワイト粉(159.5 mg, 88% yield)として得た。M.p.: 122.7-128.4 ℃. IR (ATR): 611, 717, 731, 755, 1246, 1288, 1410, 1494, 1547, 1627, 2998, 3031, 3343 cm-1 . 1H NMR (400 MHz, CDCl3): δ 4.35 (d, J = 6.0 Hz, 2H), 6.11 (br-s, 1H), 6.94 (br-s, 1H), 7.07-7.30 (m, 8H), 7.36-7.41 (m, 1H), 7.64 (dt, J = 7.8, 1.8 Hz, 1H), 8.05-8.07 (m, 1H), 8.15 (br-s, 1H), 8.27 (br-s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 43.74, 122.20, 123.14, 123.62, 127.05, 127.26, 128.16, 128.41, 129.26, 130.09, 135.12, 136.49, 137.45, 139.16, 147.85, 149.33, 155.92. HRMS-FD (m/z): [M]+ Calcd for C19H17N3O, 303.13716; found, 303.13865.  尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-イソプロピル-3-(2-(ピリジン-3-イル)フェニル)尿素(1h)
Figure JPOXMLDOC01-appb-C000018
 単座配位尿素化合物(1h)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリン(0.90 mmol)とイソプロピルイソシアネートを使用して、ホワイト粉(47.7 mg, 31% yield)として得た。M.p.: 160.2-161.5 ℃. IR (ATR): 610, 650, 756, 808, 1235, 1288, 1409, 1547, 1626, 2998, 3346 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.09 (d, J = 6.4 Hz, 6H), 3.90 (sept, J = 6.8 Hz, 1H), 4.62 (br, 1H), 6.07 (br, 1H), 7.19-7.23 (m, 2H), 7.36-7.44 (m, 2H), 7.73 (dt, J = 7.8, 1.8 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 8.54 (s, 1H), 8.59 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 23.14, 41.78, 122.02, 123.00, 123.80, 128.05, 129.41, 130.17, 135.31, 136.71, 137.55, 148.05, 149.40, 155.13. HRMS-FD (m/z): [M]+ Calcd for C15H17N3O, 255.13716; found, 255.13609.  尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-ヘキシル-3-(2-ピリジン-3-イル)フェニル)尿素(1i)
Figure JPOXMLDOC01-appb-C000019
 単座配位尿素化合物(1i)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンとへキシルイソシアネートを使用して、ホワイト粉(83.6 mg, 47% yield)として得た。M.p.: 79.6-80.9 ℃. IR (ATR): 632, 719, 772, 1215, 1254, 1441, 1546, 1652, 2867, 2928, 3327, 3365 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.82 (t, J = 6.6 Hz, 3H), 1.21-1.27 (m, 6H), 1.39 (t, J = 6.6 Hz, 2H), 3.14 (q, J = 6.4 Hz, 2H), 6.05 (br-s, 1H), 7.05-7.19 (m, 3H), 7.27 (dd, J = 7.8, 5.0 Hz, 1H), 7.34-7.38 (m, 1H), 7.71 (dd, J = 7.8, 1.8 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 8.19 (d, J = 4.6 Hz, 1H), 8.38 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 13.92, 22.46, 26.49, 29.92, 31.37, 39.91, 121.98, 122.90, 123.68, 127.93, 129.31, 130.06, 135.33, 136.78, 137.58, 147.99, 149.43, 155.96. HRMS-FD (m/z): [M]+ Calcd for C18H23N3O, 297.18411; found, 297.18556.  尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-(アダマンタン-1-イル)-3-(2-(ピリジン-3-イル)フェニル)尿素(1j)
Figure JPOXMLDOC01-appb-C000020
 単座配位尿素化合物(1j)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンと1-アダマンチルイソシアネートを使用して、ホワイト粉(57.6 mg, 28% yield)として得た。M.p.: 109.6-110.5 ℃. IR (ATR): 519, 714, 752, 1212, 1278, 1359, 1407, 1443, 1518, 2849, 2904, 3341 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.58-1.65 (m, 7H), 1.85-1.93 (m, 5H), 2.01-2.07 (m, 3H), 4.92 (br, 1H), 6.25 (br, 1H), 7.11-7.18 (m, 2H), 7.36-7.41 (m, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.95 (br, 1H), 8.45 (br, 1H), 8.58 (br, 1H). 13C NMR (100.5 MHz, CDCl3): δ 29.38, 36.29, 42.04, 50.91, 121.61, 122.53, 123.81, 127.38, 129.29, 130.09, 135.45, 137.05, 137.66, 147.93, 149.37, 154.61. HRMS-FD (m/z): [M]+ Calcd for C22H25N3O, 347.19976; found, 347.19996. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 メチル((2-(ピリジン-3-イル)フェニル)カルバモイル)L-バリネート(1k)
Figure JPOXMLDOC01-appb-C000021
 単座配位尿素化合物(1k)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンとメチル(S)-2-イソシアナト-3-メチルブタノエートを使用して、泡状ホワイト粉(161.6 mg, 82% yield)として得た。M.p.: 53.2-54.7 ℃. IR (ATR): 714, 754, 1002, 1155, 1202, 1444, 1537, 1647, 1739, 2963, 3340 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.77 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 2.03-2.17 (m, 1H), 3.69 (s, 3H), 4.48 (dd, J = 4.6 Hz, 1H), 6.47 (br-s, 1H), 7.11-7.12 (m, 2H), 7.29-7.40 (m, 3H), 7.73 (dt, J = 7.8, 1.8 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 8.29-8.30 (m, 1H), 8.41 (d, J = 2.3 Hz, 1H). 13C NMR (100.5 MHz, CDCl3): δ 17.58, 18.93, 30.86, 51.75, 57.65, 121.92, 122.86, 123.62, 127.81, 129.12, 129.89, 135.13, 136.52, 137.70, 148.18, 149.26, 155.74, 173.26. HRMS-FD (m/z): [M]+ Calcd for C18H21N3O3, 327.15829; found, 327.15677. [α]25 D=+23.96 (c = 1.0, CHCl3). 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 メチル((2-(ピリジン-3-イル)フェニル)カルバモイル)L-イソロイシネート(1l)
Figure JPOXMLDOC01-appb-C000022
 単座配位尿素化合物(1l)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンとメチル(2S,3S)-2-イソシアナト-3-メチルペンタノエートを使用して、泡状ホワイト粉(174.6 mg, 85% yield)として得た。M.p.: 91.7-92.5 ℃. IR (ATR): 714, 761, 1086, 1225, 1447, 1539, 1629, 1740, 2875, 2961, 3309 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.84-0.89 (m, 6H), 1.24-1.36 (m, 2H), 3.71 (s, 3H), 4.12 (q, J = 7.2 Hz, 1H), 4.51 (dd, J = 8.4, 4.8 Hz, 1H), 5.94 (br, 1H), 6.78 (br, 1H), 7.17 (d, J = 2.7 Hz, 2H), 7.32-7.42 (m, 2H), 7.73 (dt, J = 7.9, 1.8 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 8.42 (brs, 1H), 8.49 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 11.38, 15.46, 24.98, 37.67, 51.69, 56.96, 121.80, 122.80, 123.63, 127.71, 129.14, 129.89, 135.16, 136.57, 137.72, 148.15, 149.27, 155.62, 173.23. HRMS-FD (m/z): [M]+ Calcd for C19H23N3O3, 341.17294; found, 341.17466. [α]25 D = +27.66 (c = 1.0, CHCl3). 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 (S)-1-(1-フェニルエチル)-3-(2-(ピリジン-3-イル)フェニル)尿素(1m)
Figure JPOXMLDOC01-appb-C000023
 単座配位尿素化合物(1m)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンと(S)-(1-イソシアナトエチル)ベンゼンを使用して、ホワイト粉(113.6 mg, 60% yield)として得た。M.p.: 46.2-47.6 ℃. IR (ATR): 753, 785, 809, 1003, 1027, 1214, 1443, 1540, 1641, 2967, 3324 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.36-1.41 (m, 3H), 4.87-4.94 (m, 1H), 6.34 (br-s, 1H), 6.99-7.37 (m, 10H), 7.63 (dt, J = 7.8, 1.8 Hz, 1H), 8.11 (d, J = 7.8 Hz, 2H), 8.25 (d, J = 1.4 Hz, 1H). 13C NMR (100.5 MHz, CDCl3): δ 22.78, 49.55, 121.83, 122.97, 123.95, 125.99, 127.15, 127.74, 128.62, 129.47, 130.23, 135.44, 136.89, 137.79, 144.36, 148.02, 149.50, 155.29. HRMS-FD (m/z): [M]+ Calcd for C20H19N3O, 317.15281; found, 317.15295. [α]25 D = +25.05 (c = 1.0, CHCl3). 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 (R)-1-(1-(ナフタレン-1-イル)エチル)-3-(2-(ピリジン-3-イル)フェニル)尿素(1n)
Figure JPOXMLDOC01-appb-C000024
 単座配位尿素化合物(1n)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンと(R)-1-(1-イソシアナトエチル)ナフタレンを使用して、ホワイト粉(89.4 mg, 41% yield)として得た。M.p.: 218.1-219.6 ℃. IR (ATR): 713, 757, 774, 1567, 1622, 2978, 3295 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.59 (d, J = 6.4 Hz, 3H), 5.71 (br, 2H), 6.45 (s, 1H), 6.94-7.00 (m, 1H), 7.03- 7.04 (m, 1H), 7.10-7.14 (m, 1H), 7.31-7.40 (m, 3H), 7.44-7.53 (m, 3H), 7.68 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 4.6 Hz, 1H), 8.04-8.12 (m, 3H). 13C NMR (100.5 MHz, CDCl3): δ 21.52, 45.45, 121.95, 122.25, 123.16, 123.26, 123.52, 125.05, 125.80, 126.37, 127.97, 128.08, 128.79, 129.39, 130.20, 130.83, 133.86, 134.81, 136.46, 137.19, 138.86, 147.83, 149.11, 154.85. HRMS-FD (m/z): [M]+ Calcd for C24H21N3O, 367.16846; found, 367.16675. [α]25 D = - 119.17 (c = 1.0, CHCl3). 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 (S)-1-(1-(ナフタレン-1-イル)エチル)-3-(2-(ピリジン-3-イル)フェニル)尿素(1o)
Figure JPOXMLDOC01-appb-C000025
 単座配位尿素化合物(1o)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリンと(S)-1-(1-イソシアナトエチル)ナフタレンを使用して、ホワイト粉(131.0 mg, 59% yield)として得た。M.p.: 212.6-213.8 ℃. IR (ATR): 664, 713, 756, 774, 1563, 1622, 2965, 3223 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.59 (d, J = 6.4 Hz, 3H), 5.70-5.80 (m, 2H), 6.49 (br-s, 1H), 6.95 (t, J = 6.0 Hz, 1H), 7.01 (d, J = 7.3 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 7.30-7.40 (m, 3H), 7.44-7.53 (m, 3H), 7.67 (d, J = 7.8 Hz, 1H), 7.83-7.78 (m, 1H), 7.91 (br-s, 1H), 8.01 (br-s, 1H), 8.09 (t, J = 8.7 Hz, 2H). 13C NMR (100.5 MHz, CDCl3): δ 21.48, 45.41, 121.91, 122.23, 123.12, 123.22, 123.48, 125.02, 125.76, 126.33, 127.93, 128.04, 128.75, 129.36, 130.17, 130.79, 133.82, 134.77, 136.42, 137.15, 138.82, 147.80, 149.07, 154.81. HRMS-FD (m/z): [M]+ Calcd for C24H21N3O, 367.16846; found, 367.16955. [α]25 D = +99.02 (c = 1.0, CHCl3).  尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-シクロへキシル-3-(2-(ピリジン-3-イル)フェニル)チオ尿素(1p)
Figure JPOXMLDOC01-appb-C000026
 単座配位尿素化合物(1p)は、上述の一般的な手順に従って、2-(ピリジン-3-イル)アニリン(1.0 mmol)とシクロへキシルイソチオシアネートを使用して、オフホワイト結晶(22.2 mg, 12% yield)として得た。M.p.: 179.2-180.3 ℃. IR (ATR): 709, 753, 982, 1026, 1144, 1196, 1238, 1279, 1404, 1445, 146, 1513, 1551, 2927, 3213 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.88-1.12 (m, 3H), 1.26-1.37 (m, 2H), 1.56-1.71 (m, 4H), 1.87 (d, J = 10.5 Hz, 2H), 4.11 (br, 1H), 5.67 (br, 1H), 7.38 (dd, J = 7.8, 5.0 Hz, 2H), 7.47-7.54 (m, 3H), 7.77 (d, J = 8.2 Hz, 1H), 8.59-8.61 (m, 2H). 13C NMR (100.5 MHz, CDCl3): δ 24.69, 25.28, 32.51, 53.93, 123.48, 127.75, 128.50, 129.87, 131.42, 133.62, 133.87, 135.09, 135.99, 138.37, 139.25 149.22. HRMS-FD (m/z): [M]+ Calcd for C18H21N3S, 311.14562; found, 311.14446.  尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:4
 1-シクロへキシル-3-(ピリジン-2-イルメチル)尿素(1’q)
Figure JPOXMLDOC01-appb-C000027
 単座配位尿素化合物(1’q)は、上述の一般的な手順に従って、ピリジン-2-イルメタンアミンとシクロへキシルイソシアネートを使用して、オフホワイト結晶(133.0 mg, 95% yield)として得た。M.p.: 149.1-150.8 ℃. IR (ATR): 650, 756, 891, 994, 1048, 1080, 1235, 1313, 1435, 1581, 1624, 2853, 2930, 3325 cm-1 . 1H NMR (400 MHz, CDCl3): δ 1.04-1.17 (m, 3H), 1.25-1.36 (m, 2H), 1.56 (dt, J = 12.7, 3.8 Hz, 1H), 1.63-1.67 (m, 2H), 1.87-1.91 (m, 2H), 3.49-3.58 (m, 1H), 4.46 (d, J = 5.5 Hz, 2H), 5.25 (d, J = 7.8 Hz, 1H), 6.05 (t, J = 5.5 Hz, 1H), 7.13-7.17 (m, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.63 (td, J = 7.2, 2.0 Hz, 1H), 8.47 (dd, J = 5.2, 1.2 Hz, 1H). 13C NMR (100.5 MHz, CDCl3): δ 24.81, 25.53, 33.76, 45.50, 48.85, 121.83, 122.02, 136.72, 148.69, 157.98, 158.51. HRMS-FD (m/z): [M]+ Calcd for C13H19N3O, 233.15281; found, 233.15281. 尿素基の窒素(N11)とピリジンの窒素(N13)との間の炭素原子数:2
 リン化合物(2)の製造
 (11bR)-4-(((R)-2’-((トリイソプロピルシリル)オキシ)-[1,1’-ビナフタレン]-2-イル)オキシ)ジナフト[2,1-d:1’、2’-f][1,3,2]ジオキサホスフェピン(2a)*(「(R,R)-(2)*」ともいう)は次のように製造した。
Figure JPOXMLDOC01-appb-C000028
 (R)-2’-((トリイソプロピルシリル)オキシ)-[1,1’-ビナフタレン]-2-オール、(R)-BINOL-モノTIPSの製造
 塩化メチレン(30 mL)中の(R)-BINOL (2.0 mmol) と Et3N (2.2 mmol, 1.1 equiv)の溶液を、0 °Cで、トリイソプロピルシリル(TIPS)クロリド(2.2 mmol, 1.1 equiv)を用いて処理した。反応混合物を室温で3時間撹拌し、飽和塩化アンモニウム溶液でクエンチした。混合物から塩化メチレン(3 x 50 mL)で抽出した。有機層を合し、飽和食塩水で洗浄し、無水MgSO4で乾燥した。シリカゲル(CH2Cl2/Hexane, 40:60)フラッシュクロマトグラフィー後、無色オイルとして、(R)-BINOL-モノTIPSを得た(3.05 g, 98% isolated)。
 リン化合物(2a)*の製造
 DMF(7 mL)中、(R)-BINOL(0.57 g, 2.0 mmol, 1.0 equiv)を、過剰量のPCl3 (5.0 equiv)と反応させた。反応混合物を50℃で30分間撹拌した。その後、溶媒と過剰のPCl3を減圧留去し、(R)-BINOL置換クロロホスファイトを得た。得られた残渣をベンゼン(10 mL)に溶かし、Et3N(3.0 equiv)を0℃で加えた。その後、ベンゼン(5 mL)に溶かした(R)-BINOL-MonoTIPS (0.89 g, 2.0 mmol, 1.0 equiv)を、その混合物に加えた。その反応混合物を室温に戻した後、1.5時間80℃で撹拌した。その後、反応混合物を更に室温で30分間撹拌後、セライトを用いてろ過した。減圧下で溶媒を蒸留し、得られた粗生成物をシリカゲル(EtOAc/Hexane, 50:50)フラッシュクロマトグラフィーで精製して、目的のリン化合物(2a)*を白色固体(1.17 g, 78% yield)として得た。
ホワイト粉. M.p.: 184.9-186.5 °C. IR (ATR): 747, 805, 937, 1070, 1212, 1325, 1459, 1505, 1589, 1664, 2864, 2947, 3054 cm-1 . 1H NMR (400 MHz, CDCl3): δ 0.62 (d, J = 7.2 Hz, 9H), 0.66 (d, J = 7.6 Hz, 9H), 0.98-0.87 (m, 3H), 6.30 (d, J = 8.7 Hz, 1H), 7.41-7.15 (m, 14H), 7.50 (d, J = 8.7 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.93-7.81 (m, 6H), 7.99 (d, J = 9.2 Hz, 1H). 13C NMR (100.5 MHz, CDCl3): Due to the complexity of the spectrum, complete signal assignment based on P-C coupling is not shown here. δ 13.62, 17.68, 121.10, 121.70, 121.84, 122.36, 124.22, 124.62, 124.93, 125.12, 125.80, 126.06, 126.17, 126.79, 126.92, 126.98, 128.09, 128.18, 128.33, 129.51, 129.99, 130.28, 130.80, 130.99, 131.38, 132.21, 132.63, 134.23, 146.92, 147.55, 148.47. 31P NMR (162 MHz, CDCl3): δ 146.20. HRMS-FD (m/z): [M]+ Calcd for C49H45O4PSi, 756.28247; found, 756.28115. [α]25 D = -64.44 (c = 0.30, MeOH).
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基のγ位炭素のホウ素化方法(又はカルボニル基のγ位がホウ素化された脂肪酸又は脂肪酸誘導体(5)の製造方法)
(実施例1)
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基からγ位のエナンチオ選択的ホウ素化
Figure JPOXMLDOC01-appb-C000029
 グローブボックス中、リン化合物(2)(例えば、(2a)*:6.80 mg, 0.0090 mmol, 3 mol%)、ホウ素配位子前駆体(31)(例えば、B2pin2(31a):76.2 mg, 0.30 mmol, 1 equiv)、単座配位尿素化合物(1)(例えば、(1a):2.92 mg, 0.0099 mmol, 3.3 mol%)、及び無水脱気トルエン(PhMe)(1.0 mL)を、磁気攪拌子を有する10 mLのガラス管に入れた。混合物を撹拌して、全ての内容物を溶解した。シクロペンチルメチルエーテル(CPME)(1.0 mL)中の金属化合物(例えば、[Ir(OMe)(cod)]2 :3.0 mg, 0.0045 mmol, 3 mol% Ir)の溶液を加えた。混合物を室温で5分間撹拌した。その後、脂肪酸又は脂肪酸誘導体(4)(例えば、N,N,-ジベンジルヘキサンアミド(4a):88.6 mg, 0.30 mmol, 1 equiv)、及び添加剤のルチジン(6)(例えば、2,6-ルチジン(6a):24.1 mg, 26.2 μL, 0.23 mmol, 0.75 equiv)を加えた。ガラス管をスクリューキャップで封じて、グローブボックスから25℃の水浴に移した。この温度で48時間撹拌した。その後、混合物をEt2Oで希釈し、シリカゲルのショートプラグを用いてろ過した。溶媒を減圧下で除去した。内部標準として(1,1,2,2-tetrachloroethane)を加えた。ホウ素化生成物(5)*(例えば、(R)-(5a)*)の収率は、1H NMR (例えば、>99%)を用いて測定した。
(実施例2)
 ホウ素化誘導体(5)の酸化
Figure JPOXMLDOC01-appb-C000030
 上述のホウ素化生成物(例えば、(R)-(5a)*)に、例えばTHF/水混合溶媒(1:1, 2 mL)中で、空気下室温で3時間過ホウ酸ナトリウム4水和物(sodium perborate, NaBO3・4H2O)(138.5 mg, 0.90 mmol, 3 equiv)を用いて温和な酸化を施した。反応後、水(10 mL)を加え、混合物をEt2O (2 x 15 mL)で抽出した。有機物を合し、MgSO4で乾燥し、ろ過した。ロータリーエバポレーターで溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-0:100)を用いるフラッシュクロマトグラフィーで精製して、γ位に水酸基が導入された脂肪酸又は脂肪酸誘導体(7)*(例えば、(R)-(7a)*)を、ペールイエローのオイル(83.2 mg、89% isolated yield)として得た。(R)-(7a)*の鏡像異性体過剰率(99.9%ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) IC column, 4.6 mm x 250 mm, ダイセル化学社]、ヘキサン/2-プロパノール = 90:10, 1.0 mL/min, 40 ℃, 250 nm UV detector, 保持時間 = 26.02 分, 36.00 分)
(実施例3)
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基のγ位のホウ素化
Figure JPOXMLDOC01-appb-C000031
 Silica-SMAP(0.070 mmol/g, 42.9 mg, 0.0030 mmol, 1 mol%)又はリン化合物(2)(例えば、トリ(o-トリル)ホスフィン(2b):1.0 mg, 0.0030 mmol, 1 mol%)、単配座尿素化合物(1)(例えば、(1a):1.15 mg, 0.0039 mmol, 1.3 mol%)、ホウ素配位子前駆体(31)(例えば、 B2pin2(31a):76.2 mg, 0.30 mmol, 1 equiv)、及び無水脱気溶媒(例えば、トルエン:1.0 mL)を磁気攪拌子を含む 10 mL ガラス管に入れた。その混合物を全ての内容物が溶けるまで撹拌した。その混合物に、例えば、CPME (1.0 mL)の金属化合物(M)(例えば、[Ir(OMe)(cod)]2 :1.0 mg, 0.0015 mmol, 1 mol% Ir)の溶液を、加えた。その混合物を室温で5分間撹拌した。その後、脂肪酸又は脂肪酸誘導体(4)(例えば、N,N,-ジベンジルヘキサンアミド(4a):88.6 mg, 0.30 mmol, 1 equiv)、及び添加剤のルチジン(6)(例えば、2,6-ルチジン:24.1 mg, 26.2 μL, 0.23 mmol, 0.75 equiv)を加えた。ガラス管をスクリューキャップで封じて、グローブボックスから25℃の水浴に移した。この温度で48時間撹拌した。その後、混合物をEt2Oで希釈し、シリカゲルのショートプラグを用いてろ過した。溶媒を減圧下で除去した。内部標準として(1,1,2,2-tetrachloroethane)を加えた。ホウ素化生成物(5)(例えば(5a))の収率は、1H NMR (例えば、20-30% yield)を用いて測定した。
(実施例4)
 ホウ素化誘導体(5)の酸化
Figure JPOXMLDOC01-appb-C000032
 上述のホウ素化生成物(5a)に、例えばTHF/水混合溶媒(1:1, 2 mL)中で、空気下室温で3時間過ホウ酸ナトリウム(sodium perborate)4水和物を用いて温和な酸化を施した。反応後、水(10 mL)を加え、混合物をEt2O (2 x 15 mL)で抽出した。有機物を合し、MgSO4で乾燥し、ろ過した。ロータリーエバポレーターで溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-0:100)を用いるフラッシュクロマトグラフィーで精製して、γ位に水酸基が導入された脂肪酸又は脂肪酸誘導体(7)を、無色~ペールイエローのオイル(例えば、(7a):14.0 mg、15% isolated yield)として得た。
(実施例5~11及び比較例1~2)
 上述の脂肪酸誘導体(4a)のカルボニル基のγ位のホウ素化を、実施例1記載の条件を基準に、単座配位尿素化合物(1a)の種類と使用及び不使用、反応温度、2,6-ルチジンの使用及び不使用等を変えた他は、実施例1記載の方法と同様の方法を用いて、脂肪族誘導体(4a)のホウ素化を行った。ホウ素化物(5a)*の収率はHNMRを用いて測定した。更に、ホウ素化物(5a)*を実施例2に記載の方法と同様の方法を用いて酸化して得られた水酸化物(7a)*について、ee%を求めた。実施例5~11及び比較例1~2の反応条件と、それらの(5a)*の収率と(7a)*のee%を、下記のTable 1に示す。尚、Table 1には、実施例1及び3の結果もあわせて示す。
Figure JPOXMLDOC01-appb-T000033

a)6 mol%、b)不使用、c)測定不能
(実施例12~15)
 上述の脂肪酸誘導体(4a)を、種々の2級アミド誘導体(4b)~(4e)に変えたこと、ルチジンを使用しなかったことの他は、実施例1記載の方法と同様の方法を用いて、カルボニル基のγ位をホウ素化した。それらの結果を、下記のTable 2に示した。尚、ホウ素化物(5b)*~(5e)*は、いずれも単離することができた。
Figure JPOXMLDOC01-appb-T000034
(実施例16~18)
 上述の脂肪酸誘導体(4a)を、種々のエステル化合物(4f)~(4h)に変えた他は、上述の実施例12記載の方法と同様の方法を用いて、カルボニル基のγ位をホウ素化した。それらの結果を、下記のTable 3に示した。尚、ホウ素化物(5f)*~(5h)*は、いずれも単離することができた。
Figure JPOXMLDOC01-appb-T000035
(実施例19~35)
 上述の脂肪酸誘導体(4a)を、種々の3級アミド化合物(4i)~(4y)に変えた他は(実施例32については、更に反応時間を56時間に変えた)、上述の実施例12記載の方法と同様の方法を用いて、カルボニル基のγ位をホウ素化した。ホウ素化物(5i)*~(5y)*は、単離することなく、実施例2記載の方法と同様の方法を用いて、直ちに温和に酸化して、水酸化物(7i)*~(7y)*)を得た。それらの結果を、下記のTable 4~Table 7に示した。尚、(7)*の収率及びee%を示した。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
(実施例36~39)
 上述の脂肪酸誘導体(4a)を、二重結合を有する脂肪酸誘導体(4z)~(4ac)に変え、反応時間を56時間に変えた他は、実施例12記載の方法と同様の方法を用いて、カルボニル基のγ位をホウ素化した。ホウ素化物(5z)*~(5ab)*は、単離可能であり、それらの結果を下記のTable 8に示した。ホウ素化物(5ac)*は、単離することなく、実施例2記載の方法と同様の方法を用いて、直ちに温和に酸化して、水酸化物(7ac)*を得た。その結果を、下記のTable 9に示した。尚、(7ac)*の収率及びee%を示した。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 (実施例40~56及び比較例3~4)
 上述の脂肪酸誘導体(4a)の代わりに(4i)を用い、(4i)を2当量使用し、単座配位尿素化合物(1)を、種々変更し、量的な関係を少し変えた他は、実施例1記載の方法と同様の方法を用いて、カルボニル基のγ位をホウ素化した。量的な関係は、下記表に示した。それらの結果を、下記のTable 10に示す。尚、収率%は、(5)*のHNMR収率を示し、ee%は、(7)*のものを示す。













Figure JPOXMLDOC01-appb-T000042
(実施例56~60)
 単座配位尿素化合物(1)として(1a)を使用し、リン化合物(2)として(2a)*を使用した実施例40について、Irと(2a)*の両方の使用量(モル%)を、種々変更した他は、実施例40記載の方法と同様の方法を用いて、(4i)のホウ素化及び酸化を行った。それらの結果を、下記のTable 11に示す。尚、収率%は、(5)*のHNMR収率を示し、ee%は、(7)*のものを示す。





Figure JPOXMLDOC01-appb-T000043

a)副生成物を認めた。
(実施例61~67)
 単座配位尿素化合物(1)として(1a)を使用し、リン化合物(2)をして(2a)*を使用し、Irと(2a)*を両方共3.0mol%使用した実施例58について、(1a)の使用量(モル%)を、種々変更した他は、実施例58記載の方法と同様の方法を使用してホウ素化及び酸化を行った。それらの結果を、下記のTable 12に示す。尚、収率%は、(5)*のHNMR収率を示し、ee%は、(7)*のものを示す。
Figure JPOXMLDOC01-appb-T000044
(実施例68~70)
 単座配位尿素化合物(1)として(1a)を使用し、Irと(2a)*を両方共3.0mol%使用した実施例63について、(2a)*を種々変更した他は、実施例63記載の方法と同様の方法を使用してホウ素化を行った。それらの結果を、下記のTable 13に示す。尚、収率%は、(5)*のHNMR収率を示す。
Figure JPOXMLDOC01-appb-T000045
(実施例71~75)
 実施例1記載の条件を基準に、溶媒の種類を変えた他は、実施例1記載の方法と同様の方法を用いて、脂肪族誘導体(4a)のホウ素化及び酸化を行った。ホウ素化物(5a)*の収率はHNMRを用いて測定した。更に、ホウ素化物(5a)*を実施例2に記載の方法と同様の方法を用いて酸化して得られた水酸化物(7a)*について、ee%を求めた。実施例71~75の反応条件と、それらの(5a)*の収率と(7a)*のee%を、下記のTable 14に示す。
Figure JPOXMLDOC01-appb-T000046
(実施例81~85)
 N-フェニルヘキサンアミド(4c)のグラムスケールのホウ素化物(5c)*の製造と、それからの誘導体(7c)*~(10c)*の製造
 下記化学式は、N-フェニルヘキサンアミド(4c)のホウ素化物(5c)*からの誘導体(7c)*~(10c)*を例示することによって、本願発明のホウ素化反応の有用性を示す。
Figure JPOXMLDOC01-appb-C000047
(実施例81)
 グラムスケールでのN-フェニルヘキサンアミド(4c)のエナンチオ選択的ホウ素化 磁気攪拌子を備えた、オーブンで乾燥した50mL2口丸底フラスコに、(R,R)-(2a)*(38.0 mg, 0.05 mmol, 1 mol%)、(3a)B2pin2(1.27 g, 5.0 mmol, 1 equiv)、(1a)(19.2 mg, 0.065 mmol, 1.3 mol%)、及び[Ir(OMe)(cod)]2 (16.6 mg, 0.025 mmol, 1 mol% Ir)を加えた。フラスコを減圧してアルゴンを吹き込むことを3回繰り返した。その後、無水脱気トルエン(2.5 mL)及びCPME(2.5 mL)を加えた。得られた溶液を撹拌して、完全に溶解させ、その後、撹拌を更に10分間室温で撹拌を続けた。その後、N-フェニルヘキサンアミド(4c)(0.96 g, 5.0 mmol, 1 equiv)及び2,6-ルチジン(0.43 mL, 3.75 mmol, 0.75 equiv)を加えた。混合物を25℃の水浴に配置し、25℃に維持して56時間撹拌した。その後、混合物に20mLのEt2Oを加え、シリカゲルのショートプラグを用いてろ過した。溶媒を減圧下で除去した。内部標準として(1,1,2,2-tetrachloroethane)を加えた。ホウ素化生成物(R)-(5c)*の収率(91%)を、1H NMRを用いて測定した。粗生成物を、シリカゲル(hexane/EtOAc, 100:0-50:50)のフラッシュクロマトグラフィーで精製して、83%の単離収率(1.32 g)で(R)-(5c)*を得た。(R)-(5c)*の鏡像異性体過剰率(98% ee)は、(R)-(5c)*のキラルHPLC分析([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250mm, Daicel Chemical Industries], hexane/2-propanol = 95:5, 0.5 mL/min, 40 oC, 220 nm UV detector, retention time = 25.25 min, 28.10 min)によって行った。
(実施例82)
 γ-ボリル-N-フェニルヘキサンアミド(R)-(5c)*の酸化
 鏡像異性体に富むγ-ボリル-N-フェニルヘキサンアミド(R)-(5c)*(98% ee, 63.4 mg, 0.20 mmol, 1equiv)、THF(1 mL)、水(1 mL)、及び過ホウ酸ナトリウム4水和物(92.3 mg, 0.60 mmol, 3 equiv)を丸底フラスコに加えた。混合物を空気下、室温で3時間激しく撹拌した。その後、水(10 mL)を加え、混合物からEt2O(2 x 15 mL)で抽出した。有機抽出物を合し、MgSO4で乾燥し、ろ過した。ロータリーエバポレーターで溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-0:100)を用いるフラッシュクロマトグラフィーで更に精製して、(R)-(7c)*を、白色固体(39.4 mg、95% 単離収率)として得た。(R)-(7c)*の鏡像異性体過剰率(98% ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250 mm, Daicel Chemical Industries], hexane/2-propanol = 95:5, 0.5 mL/min, 40 oC, 220 nm UV detector, retention time = 32.25 min, 34.51 min)。
(実施例83)
 (R)-(5c)*にRh触媒を用いるイソシアネートの付加
 オーブンで乾燥した2口丸底フラスコに、[Rh(OH)(cod)]2 (1.6 mg, 5 mol% Rh)、鏡像異性体に富むγ-ボリル-N-フェニルヘキサンアミド(R)-(5c)*(98% ee, 63.4 mg, 0.20 mmol, 1 equiv)及びベンジルイソシアネート(0.60 mmol, 3 equiv)のCPME(2.0 mL)溶液を加えた。アルゴン下、室温で36時間、混合物を撹拌した。その後、混合物に水(5.0 mL)を加えてクエンチした。得られた水溶液をEtOAc(3 x 12 mL)で抽出した。抽出物を合し、飽和食塩水で洗浄し、無水MgSO4で乾燥した。減圧して溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-70:30)のフラッシュクロマトグラフィーを用いて精製して、(R)-(8c)*を黄色オイル(56.4 mg、87% 単離収率)として得た。(R)-(8c)*の鏡像異性体過剰率(98% ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250 mm, Daicel Chemical Industries], hexane/2-propanol = 90:10, 0.5 mL/min, 40 oC, 220 nm UV detector, retention time = 8.31 min, 9.69 min)。
(実施例84)
 (R)-(5c)*のアミノ化
 グローブボックス中で、磁気撹拌子を備えたオーブンで乾燥した再密封可能な反応管に、鏡像異性体に富むγ-ボリル-N-フェニルヘキサンアミド(R)-(5c)*(98% ee, 63.4 mg, 0.20 mmol, 1 equiv)、NH2-DABCO(76.6 mg, 0.20 mmol, 1 equiv)、KOtBu (53.9 mg, 0.48 mmol, 2.4 equiv)及び THF (2.40 mL)を加えた。反応管をテフロン製スクリューキャップで封じて、グローブボックスから取り出した。混合物を撹拌しながら80℃で1時間加熱した。その後、無水酢酸(40 μL, 0.40 mmol, 2 equiv)を加え、80℃で、更に1時間加熱した。その後、EtOAc/H2O 1:1を加えて、反応をクエンチした。混合物をEtOAc(2 x 15 mL)で抽出した。有機抽出物を合し、無水MgSO4で乾燥しろ過した。ロータリーエバポレーターで溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-50:50)のフラッシュクロマトグラフィーを用いて精製して、(R)-(9c)*を黄褐色オイル(37.7 mg、76% 単離収率)として得た。(R)-(9c)*の鏡像異性体過剰率(98% ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250 mm, Daicel Chemical Industries], hexane/2-propanol = 97:3, 0.5 mL/min, 40 °C, 220 nm UV detector, retention time = 11.41 min, 14.82 min)。
(実施例85)
 (R)-(5c)*のクロスカップリング
 オーブンで乾燥したシュレンク反応管に、3-ブロモアニソール(150.0 mg, 101 μL, 0.80 mmol, 4 equiv)とTHF(1 mL)を加えた。混合物を-78℃に冷却し、nBuLi(600 μL, 0.80 mmol, 4 equiv, 1.57 M in hexane)を撹拌しながら滴下して加えた。得られた混合物を-78℃に保ちながら1時間撹拌し、THF(1 mL)中の鏡像異性体に富むγ-ボリル-N-フェニルヘキサンアミド(R)-(5c)*(98% ee, 63.4 mg, 0.20 mmol, 1 equiv)を撹拌しながら滴下して加えた。混合物を-78℃で1時間撹拌した。THF(1 mL)中のN-ブロモスクシンイミドNBS(142.4 mg, 0.80 mmol, 4 equiv)の溶液を混合物に-78℃で滴下して加えた。-78℃で1時間、混合物を撹拌後、Na2S2O3の飽和水溶液(2 mL)を加えて、反応混合物を室温に戻した。反応混合物を、EtOAc/H2O 1:1(10 mL)で希釈して、混合物をEtOAc(2 x 15 mL)で抽出した。有機抽出物を合し、無水MgSO4で乾燥しろ過した。ロータリーエバポレーターで溶媒を除去し、残渣をシリカゲル(hexane/EtOAc, 100:0-50:50)のフラッシュクロマトグラフィーを用いて精製して、(R)-(10c)*を白色固体(38.1 mg、64% 単離収率)として得た。(R)-(10c)*の鏡像異性体過剰率(97% ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250 mm, Daicel Chemical Industries], hexane/2-propanol = 95:5, 0.5 mL/min, 40 oC, 220 nm UV detector, retention time = 22.32 min, 26.75 min)。
(参考例1)
 1-シクロヘキシル-3-(2-(ビピリジン-3-イル)フェニル)尿素(1’r)を用いる脂肪酸誘導体(4a)のホウ素化
Figure JPOXMLDOC01-appb-C000048
 グローブボックス中、ホウ素配位子前駆体(31)のB2pin2(31a)(76.2 mg, 0.30 mmol, 1 equiv)、2座配位尿素化合物の(1’r)(3.0 mol%)、及び無水脱気トルエン(PhMe)(1.0 mL)を、磁気攪拌子を有する10 mLのガラス管に入れた。混合物を撹拌して、全ての内容物を溶解した。シクロペンチルメチルエーテル(CPME)(1.0 mL)中の金属化合物の[Ir(OMe)(cod)]2 (3.0 mg, 0.0045 mmol, 3 mol% Ir)の溶液を加えた。混合物を室温で5分間撹拌した。その後、脂肪酸又は脂肪酸誘導体(4)のN,N,-ジベンジルヘキサンアミド(4a)(88.6 mg, 0.30 mmol, 1 equiv)、及び添加剤の2,6-ルチジン(6a)(24.1 mg, 26.2 μL, 0.23 mmol, 0.75 equiv)を加えた。ガラス管をスクリューキャップで封じて、グローブボックスから25℃の水浴に移した。この温度で48時間撹拌した。ホウ素化反応は全く進行せず、(4a)が完全に回収された。
 別の種類の単座配位尿素化合物(1)の製造
 1-シクロヘキシル-3-(2-(イソキノリン-7-イル)フェニル)尿素(1r)
Figure JPOXMLDOC01-appb-C000049
 イソキノリン-7-イルボロン酸と2-ブロモアニリンのPd触媒クロスカップリングを介して合成された、2-(イソキノリン-7-イル)アニリン(1.20 mmol, 1.0 equiv)と、ジクロロメタン中(0.60 M)のシクロヘキシルイソシアネート(3.0 equiv)を室温で24時間激しく撹拌した。その後、水(10 mL)を加えて、得られた混合物をCHCl(2 x 15 mL)で抽出した。有機抽出物を合し、無水MgSOで乾燥して、ろ過した。減圧して溶媒を除去して、残留物を、シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール 100:0~0:100、又は酢酸エチル/ヘキサン、50:50)を用いて精製した。生成物(1r)を、わずかに灰色がかった白色の固体(207mg、50%収率)で得た。
 1-シクロヘキシル-3-(2-(イソキノリン-7-イル)フェニル)尿素(1r)
M.p.: 118.6-119.8 ℃. IR (ATR): 619, 647, 752, 849, 1205, 1318, 1439, 1541, 1651, 2851, 2928 cm-11H NMR (400 MHz, CDCl3): δ 0.94-1.05 (m, 3H), 1.30 (q, J = 12.1 Hz, 2H), 1.51-1.61 (m, 3H), 1.91 (d, J = 11.9 Hz, 2H), 3.63 (t, J = 3.7 Hz, 1H), 6.48 (s, 1H), 7.06-7.19 (m, 2H), 7.33-7.43 (m, 2H), 7.69 (d, J = 6.0 Hz, 2H), 7.97 (d, J = 5.5 Hz, 1H), 8.32 (dd, J = 8.5, 3.0 Hz, 1H), 8.66 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 24.7, 25.4, 33.4, 48.4, 110.8, 116.5, 118.6, 120.3, 120.9, 122.7, 123.6, 127.7, 130.2, 130.5, 133.7, 137.2, 142.5, 143.2, 152.5, 155.2.
 別の種類の単座配位尿素化合物(1)の製造
 1-シクロヘキシル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1s)
Figure JPOXMLDOC01-appb-C000050
 イソキノリン-7-イルボロン酸と3-ブロモアニリンのPd触媒クロスカップリングを介して合成された、3-(イソキノリン-7-イル)アニリン(3.0 mmol, 1.0 equiv)と、クロロホルム中(0.04 M)のシクロヘキシルイソシアネート(10.0 equiv)を室温で48時間激しく撹拌した。その後、水(10 mL)を加えて、得られた混合物をCHCl(2 x 15 mL)で抽出した。有機抽出物を合し、無水MgSOで乾燥して、ろ過した。減圧して溶媒を完全に除去して、残留物を、シリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン 50:50)を用いて精製した。生成物(1s)を淡黄色の固体(705mg、68%収率)で得た。
 1-シクロヘキシル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1s)
M.p.: 190.8-191.7 ℃. IR (ATR): 639, 691, 838, 1232, 1319, 1519, 1567, 1669, 2932, 3333 cm-11H NMR (400 MHz, CDCl3): δ 1.12-1.21 (m, 3H), 1.39 (q, J = 12.4 Hz, 2H), 1.71-1.74 (m, 3H), 1.99-2.02 (m, 2H), 3.66-3.71 (m, 1H), 4.65 (m-br, 1H), 6.41 (s, 1H), 7.42 (m, 3H), 7.68 (d, J = 5.5 Hz, 1H), 7.81 (s, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.95 (dd, J = 8.5, 1.6 Hz, 1H), 8.15 (s, 1H), 8.53 (d, J = 6.0 Hz, 1H), 9.30 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 24.82, 25.61, 32.92, 49.01, 119.43, 119.90, 120.21, 124.52, 125.52, 127.11, 127.51, 127.72, 129.02, 134.01, 137.13, 138.51, 140.8, 143.71, 152.12, 156.11.
 1-t-ブチル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1t)
 シクロヘキシルイソシアネートの代わりにt-ブチルイソシアネートを用いたことを除いて、(1s)の製造方法と同様の方法を用いて1-t-ブチル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1t)を製造した。白色固体(収率64%)を得た。M.p.: 197.1-198.7 ℃. IR (ATR): 645, 695, 836, 1235, 1320, 1525, 1577, 1679, 2912, 3335 cm-11H NMR (400 MHz, CDCl3): δ 1.27 (s, 9H), 4.68 (m-br, 1H), 6.46 (s, 1H), 7.47 (m, 3H), 7.62 (d, J = 5.3 Hz, 1H), 7.83 (s, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.91 (dd, J = 8.5, 1.2 Hz, 1H), 8.17 (s, 1H), 8.73 (d, J = 6.1 Hz, 1H), 9.32 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 28.7, 52.5, 118.13, 119.41, 120.01, 123.92, 124.82, 127.11, 127.31, 127.73, 129.12, 134.11, 136.93, 139.11, 140.83, 142.91, 153.12, 156.61.
 1-ベンジル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1u)
 シクロヘキシルイソシアネートの代わりにベンジルイソシアネートを用いたことを除いて、(1s)の製造方法と同様の方法を用いて1-ベンジル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1u)を製造した。白色固体(収率73%)を得た。M.p.: 201.1-202.2 ℃. IR (ATR): 712, 835, 859, 893, 1067, 1237, 1321, 1526, 1570, 1671, 2912, 3335 cm-11H NMR (400 MHz, CDCl3): δ 4.49 (s, 2H), 4.75 (m-br, 1H), 6.49 (s, 1H), 7.19-7.50 (m, 8H), 7.65 (d, J = 7.1 Hz, 2H), 8.16 (d, J = 5.3 Hz, 2H), 8.54 (d, J = 6.1 Hz, 1H), 8.67 (d, J = 5.3 Hz, 1H), 9.29 (s, 1H). 13C NMR (100.5 MHz, CDCl3): δ 44.21, 119.41, 119.51, 120.29, 124.52, 125.15, 127.23, 127.53, 127.83, 128.41, 128.49, 128.53, 129.12, 134.13, 137.19, 138.51, 139.23, 140.81, 143.72, 152.12, 155.93.
(実施例86)
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基のε位のホウ素化
Figure JPOXMLDOC01-appb-C000051
 グローブボックス中で、リン化合物(2a)*(6.80 mg, 0.0090 mmol, 3 mol%)、B2pin2(31a)(76.2 mg, 0.30 mmol, 1 equiv))、1-シクロヘキシル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1s)(3.42 mg, 0.0099 mmol, 3.3 mol%)、及び無水脱気トルエン(1.0 mL)を、磁気攪拌子を含む 10 mL ガラス管に入れた。全ての内容物が溶けるまで、混合物を撹拌した。その混合物に、例えば、CPME (1.0 mL)中 [Ir(OMe)(cod)]2(3.0 mg, 0.0045 mmol, 3 mol% Ir)の溶液を、加えた。その混合物を室温で5分間撹拌した。その後、エチルヘキサノエート(4f)(43.3 mg, 0.30 mmol, 1 equiv)、2,6-ルチジン(6a)(24.1 mg, 26.2 μL, 0.23 mmol, 0.75 equiv)を加えた。ガラス管をスクリューキャップで封じて、グローブボックスから25℃の水浴に移した。この温度で48時間撹拌した。その後、混合物をEt2Oで希釈し、シリカゲルのショートプラグを用いてろ過した。溶媒を減圧下で除去した。内部標準として(1,1,2,2-tetrachloroethane)を加えた。ホウ素化生成物(5ad)の収率は、1H NMRを用いて測定して、>98%であった。
(実施例87)
 1-シクロヘキシル-3-(3-(イソキノリン-7-イル)フェニル)尿素(1s)の代わりに、1-シクロヘキシル-3-(2-(イソキノリン-7-イル)フェニル)尿素(1r)を用いたことを除いて、実施例86に記載した方法と同様の方法を使用して、エチルヘキサノエート(4f)のカルボニル基のε位のホウ素化を行った。ホウ素化生成物(5ad)を、H NMR収率98%で得た。
(実施例88)
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基のε位がホウ素化された化合物の酸化
Figure JPOXMLDOC01-appb-C000052
 その後、実施例86で得られた粗ホウ素化生成物(5ad)を、THF/水混合溶媒(1:1, 2 mL)中の過ホウ酸ナトリウム4水和物(138.5 mg, 0.90 mmol, 3.0 equiv)を用いる温和な酸化反応を、空気下室温で3時間施した。その後、水(10 mL)を加え、混合物を、Et2O(2 x 15 mL)で抽出した。有機抽出物を合して、MgSO4で乾燥して、ろ過した。溶媒をロータリーエバポレーターで除去し、残留物を更にシリカゲル上のフラッシュクロマトグラフィー(ヘキサン/酢酸エチル、100:0~0:100)によって精製して、アルコール生成物(7ad)を無色から淡黄色オイル(44.2 mg、単離収率92%)として得た。
 エチル 6-ヒドロキシヘキサノエート(7ad)
IR (ATR): 734, 859, 1031, 1181, 1372, 1732, 2865, 2937, 3383 cm-11H NMR (400 MHz, CDCl3): δ 1.26 (t, J = 7.1 Hz, 3H), 1.36-1.44 (m, 2H), 1.55-1.70 (m, 4H), 2.08 (s, 1H), 2.32 (t, J = 7.6 Hz, 2H), 3.64 (t, J = 6.4 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H). 13C NMR (100.5 MHz, CDCl3): δ 14.1, 24.5, 25.2, 32.2, 34.2, 60.2, 62.4, 173.8
(実施例89)
 脂肪酸又は脂肪酸誘導体(4)のカルボニル基からε位炭素(sp3)の不斉ホウ素化
Figure JPOXMLDOC01-appb-C000053
 エチルヘキサノエート(4f)(43.3 mg, 0.30 mmol, 1 equiv)の代わりに、N,N-ジベンジルへプタンアミド(4ae)(92.8 mg, 0.30 mmol, 1 equiv)を用いたことを除いて、実施例86記載の方法と同様の方法を用いて、ホウ素化生成物(5ae)を製造した。ホウ素化生成物(5ae)の収率は、1H NMRを用いて測定して、収率35%であった。
 実施例86で得られた粗ホウ素化生成物(5ad)の代わりに、上述のホウ素化生成物(5ae)を用いたことを除いて、実施例88に記載の方法を用いて、アルコール生成物(7ae)を無色から淡黄色オイル(26.4mg、単離収率27%)として得た。
 アルコール生成物(7ae)*の鏡像異性体過剰率(33.9%ee)は、キラルHPLC分析で測定した([CHIRALCEL(登録商標) OD-3 column, 4.6 mm x 250 mm, Daicel Chemical Industries], hexane/2-propanol = 80:20, 1.0 mL/min, 40 oC, 250 nm UV detector, retention time = 12.44 min, 14.42 min)。
IR (ATR): 696, 733, 1015, 1073, 1177, 1452, 1495, 1725, 2933, 3027 cm-11H NMR (400 MHz, CDCl3): δ 1.35 (d, J = 6.4 Hz, 3H), 1.54-1.68 (m, 4H), 1.85-1.94 (m, 2H), 2.5-2.69 (m, 2H), 3.81 (s, 4H), 4.39-4.46 (m, 1H), 7.23-7.27 (m, 2H), 7.33 (q, J = 2.7 Hz, 8H). 13C NMR (100.5 MHz, CDCl3): δ 14.2, 22.3, 25.2, 29.1, 31.6, 33.3, 48.1, 71.4, 126.5, 127.1, 127.5, 128.3, 128.1, 129.1, 136.6, 137.6, 173.5. [α]25 D= -2.47 (c = 1.0, CHCl3).
(実施例90~95)
 実施例89に記載の不斉ホウ素化及び酸化によるアルコール生成物(7ae)の製造について、実施例89を基準として、種々条件を変えて行った。結果を表15に示す。表15中、ホウ素化合物(5ae)の収率は、単離することなくHNMRで測定して求めた。実施例89の(7ae)の単離収率は、27%であり、実施例89、90、93の%eeは、各々33.87%ee、35.43%ee、33.68%eeであった。
Figure JPOXMLDOC01-appb-T000054
(実施例96~98)
 N,N-ジベンジルへプタンアミド(4ae)(92.8 mg, 0.30 mmol, 1 equiv)の代わりに、(4af)~(4ah)を用いたことを除いて、実施例89記載の方法と同様の方法を用いて、ホウ素化合物(5af、5ag、5ah)を経由して、アルコール生成物(7af、7ag、7ah)を製造した。結果を表16に示す。ホウ素化合物(5af、5ag、5ah)のHNMR収率は、各々、37%、53%、61%であった。アルコール生成物(7af、7ag、7ah)の%eeは、各々、31%ee、38%ee、67%eeであった。
Figure JPOXMLDOC01-appb-T000055
 本発明の実施形態の単座配位子を用いることで、脂肪酸及び脂肪酸誘導体の炭化水素鎖の新たな化学変換方法、特にカルボキシ基などの末端官能基から遠隔位(β-位より遠隔位)にある飽和炭素原子と水素原子間の結合(sp3C-H)の変換方法を可能にする、新規な触媒用の配位子、その配位子を含む触媒、及びその触媒を用いる脂肪酸及び脂肪酸誘導体の変換方法等を提供することができる。
 [関連出願]
 尚、本出願は、2020年8月5日に日本国でされた出願番号2020-133238を基礎出願とするパリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。

Claims (15)

  1.  尿素基(A11)及び単座配位ヘテロ芳香族基(A13)を有し、
     単座配位ヘテロ芳香族基(A13)は、尿素基(A11)との間に、調節基(A12)を有し得る
     式(I):A13-(A12)n-A11
    [式(I)中、nは0又は1。]
    で示される単座配位尿素化合物(1)を含む、単座配位子であり、

     尿素基(A11)は、-N11H-C(=X11)-N12H-R11で示され、
     X11は、酸素原子又は硫黄原子を示し、
     R11は、水素、置換基を有してよい炭化水素基を示し、その炭化水素基は、その炭素原子間に酸素原子(エーテル結合)、硫黄原子(チオエーテル結合)又はエステル結合が挿入されていてもよい;

     単座配位ヘテロ芳香族基(A13)は、イミン(C=N-)型窒素原子(N13)を有し、置換基を有してよい単座配位ヘテロ芳香族基であり、単座配位ヘテロ芳香族基が2つの置換基を有する場合、それらが結合している単座配位ヘテロ芳香族基の炭素原子と一緒に飽和又は不飽和の環構造を形成してよく:

     調節基(A12)は、置換基を有してよい炭化水素基であり、その炭化水素基は、-CH-、-CHCH-、-CH=CH-、-C三C-、-C-、-C-、-C-、-C10-、-C12-、-C-、-C10-及びそれらの組み合わせから選択され;

     尿素基(A11)のN11と単座配位ヘテロ芳香族基(A13)のN13は、少なくとも3以上の炭素原子を介して結合されている、
    単座配位子。
  2.  尿素基(A11)のR11は、置換基を有してよいアルキル、シクロアルキル及びアリールから選択される、請求項1記載の単座配位子。
  3.  単座配位ヘテロ芳香族基(A13)は、下記化学式で示す、
    Figure JPOXMLDOC01-appb-C000001
    ピリジン、キノリン、イソキノリン、イミダゾール、ベンゾイミダジール、トリアゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾール、オキサゾール、ベンゾオキサゾールの化学構造を含む、請求項1又は2記載の単座配位子。
  4.  調節基(A12)は、-CH=CH-、-C三C-、-C-、-C10-及びそれらの組み合わせから選択される、請求項1~3のいずれか1項に記載の単座配位子。
  5.  請求項1~4のいずれか1項に記載の単座配位子を含むホウ素化触媒。
  6.  リン化合物(2)を配位子として含む、請求項5に記載のホウ素化触媒。
  7.  リン化合物(2)が、一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R21、R22及びR23は、相互に異なっていても同一でもよく、
    21、R22及びR23は、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、アルコキシ、シクロアルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、モノオルガノアミノ、及びジオルガノアミノから選択される]
    で示される、請求項6記載のホウ素化触媒。
  8.  リン化合物(2)は、光学活性リン化合物を含む、請求項6又は7に記載のホウ素化触媒。
  9.  ホウ素配位子(3)を含む、請求項5~8のいずれか1項に記載のホウ素化触媒。
  10.  イリジウム、ロジウム及びコバルトから選択される少なくとも1種の金属(M)を含む、請求項5~9のいずれか1項に記載のホウ素化触媒。
  11.  脂肪酸又は脂肪酸誘導体(4)をホウ素化する、請求項5~10のいずれか1項に記載のホウ素化触媒。
  12.  脂肪酸又は脂肪酸誘導体(4)のカルボニル基のβ位より遠い炭素原子をホウ素化する、請求項11記載のホウ素化触媒。
  13.  請求項5~12のいずれか1項に記載のホウ素化触媒の存在下、脂肪酸又は脂肪酸誘導体(4)を、ホウ素配位子前駆体(31)と反応させることを含む、脂肪酸又は脂肪酸誘導体のホウ素化物(5)の製造方法。
  14.  脂肪酸又は脂肪酸誘導体(4)が、化学式(IV):
     R43-(CH)m-C(=O)-X41(R41)n
    [式(IV)中、
     X41は、O、S及びNから選択され、nは、1及び2から選択され、
     X41が、O及びSから選択される場合、nは、1であり、R41は、水素原子、置換基を有してよい炭化水素基から選択され、
     X41が、Nから選択される場合、nは、2であり、2つのR41は、同一でも異なっていてもよく、2つのR41は、結合して環を形成してよく、R41は、水素原子、置換基を有してよい炭化水素基、置換基を有してよい炭化水素オキシ基から選択され、
     R43は、水素原子、置換基を有してよい炭化水素基から選択され、
     カルボニル基とR43の間の(CH)m(mは、3以上6以下の整数)の炭素は各々置換基を有してよく、
     (CH)mの炭素間で、(CH)mの炭素とR43の炭素との間で、(CH)mの炭素とR41の炭素との間で、又はR41の炭素とR43の炭素との間で環を形成していてもよい]、
    請求項13記載のホウ素化物(5)の製造方法。
  15.  請求項13又は14に記載のホウ素化物(5)の製造方法を含み、
     ホウ素化物(5)を更に処理して、その誘導体(6)を得ることを含む、
     ホウ素化物(5)の誘導体(6)の製造方法。
PCT/JP2021/029155 2020-08-05 2021-08-05 単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒 WO2022030589A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133238 2020-08-05
JP2020-133238 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030589A1 true WO2022030589A1 (ja) 2022-02-10

Family

ID=80118102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029155 WO2022030589A1 (ja) 2020-08-05 2021-08-05 単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒

Country Status (1)

Country Link
WO (1) WO2022030589A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512727A (ja) * 1997-08-09 2001-08-28 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー 5ht−1受容体のリガンドとしてのニ環式化合物
US20040157865A1 (en) * 2002-07-12 2004-08-12 Ellen Codd Naphthol, quinoline and isoquinoline-derived urea modulators of vanilloid VR1 receptor
JP2013068681A (ja) * 2011-09-20 2013-04-18 Jsr Corp 硬化性組成物及び硬化膜
JP2014521618A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 置換複素環アザ誘導体
JP2014521617A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バニロイド受容体リガンドとしての置換二環性芳香族カルボキサミドおよび尿素誘導体
JP2014521616A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バニロイド受容体リガンドとしての置換ヘテロ芳香族ピラゾール含有カルボキサミドおよび尿素誘導体
WO2015115519A1 (ja) * 2014-01-30 2015-08-06 独立行政法人科学技術振興機構 ビピリジル化合物
JP5955329B2 (ja) * 2011-09-27 2016-07-20 クラレノリタケデンタル株式会社 接着キット
JP2017536417A (ja) * 2014-11-24 2017-12-07 メディフロン・ディービーティー・インコーポレイテッド バニロイド受容体リガンドiiとしての置換されたオキサゾール系およびチアゾール系カルボキサミドおよび尿素誘導体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512727A (ja) * 1997-08-09 2001-08-28 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー 5ht−1受容体のリガンドとしてのニ環式化合物
US20040157865A1 (en) * 2002-07-12 2004-08-12 Ellen Codd Naphthol, quinoline and isoquinoline-derived urea modulators of vanilloid VR1 receptor
JP2014521618A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 置換複素環アザ誘導体
JP2014521617A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バニロイド受容体リガンドとしての置換二環性芳香族カルボキサミドおよび尿素誘導体
JP2014521616A (ja) * 2011-07-26 2014-08-28 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バニロイド受容体リガンドとしての置換ヘテロ芳香族ピラゾール含有カルボキサミドおよび尿素誘導体
JP2013068681A (ja) * 2011-09-20 2013-04-18 Jsr Corp 硬化性組成物及び硬化膜
JP5955329B2 (ja) * 2011-09-27 2016-07-20 クラレノリタケデンタル株式会社 接着キット
WO2015115519A1 (ja) * 2014-01-30 2015-08-06 独立行政法人科学技術振興機構 ビピリジル化合物
JP2017536417A (ja) * 2014-11-24 2017-12-07 メディフロン・ディービーティー・インコーポレイテッド バニロイド受容体リガンドiiとしての置換されたオキサゾール系およびチアゾール系カルボキサミドおよび尿素誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
UNNIKRISHNAN ANJU, SUNOJ RAGHAVAN B.: "Insights into the role of noncovalent interactions in distal functionalization of the aryl C(sp 2 )–H bond", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 10, no. 13, 27 March 2019 (2019-03-27), United Kingdom , pages 3826 - 3835, XP055895496, ISSN: 2041-6520, DOI: 10.1039/C8SC05335A *
WANG JIE, TORIGOE TAKERU, KUNINOBU YOICHIRO: "Hydrogen-Bond-Controlled Formal Meta -Selective C–H Transformations and Regioselective Synthesis of Multisubstituted Aromatic Compounds", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 21, no. 5, 1 March 2019 (2019-03-01), US , pages 1342 - 1346, XP055895498, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.9b00030 *
YOICHIRO KUNINOBU, IDA HARUKA, NISHI MITSUMI, KANAI MOTOMU: "A meta-selective C?H borylation directed by a secondary interaction between ligand and substrate", NATURE CHEMISTRY, vol. 7, no. 9, London, pages 712 - 717, XP055381705, ISSN: 1755-4330, DOI: 10.1038/nchem.2322 *

Similar Documents

Publication Publication Date Title
Jiang et al. Screening of a supramolecular catalyst library in the search for selective catalysts for the asymmetric hydrogenation of a difficult enamide substrate
Gu et al. Synthesis of chiral γ-aminophosphonates through the organocatalytic hydrophosphonylation of azadienes with phosphites
EP0916637B1 (en) Process for preparating optically active compounds
England et al. Ligand topology variations and the importance of ligand field strength in non-heme iron catalyzed oxidations of alkanes
Xu et al. Mechanistic considerations of the catalytic guanylation reaction of amines with carbodiimides for guanidine synthesis
Pullmann et al. Quinaphos and Dihydro‐Quinaphos Phosphine–Phosphoramidite Ligands for Asymmetric Hydrogenation
Tu et al. Bridged bis (amidinate) lanthanide aryloxides: syntheses, structures, and catalytic activity for addition of amines to carbodiimides
WO2015149068A1 (en) Chiral ligand-based metal-organic frameworks for broad-scope asymmetric catalysis
EP2099749B1 (en) C-h bond amination and olefin aziridination with beta-diketiminato copper catalysts
Guin et al. N-Alkylation of Amines by C1–C10 Aliphatic Alcohols Using A Well-Defined Ru (II)-Catalyst. A Metal–Ligand Cooperative Approach
Foltz et al. Stereochemical Consequences of Threefold Symmetry in Asymmetric Catalysis: Distorting C3 Chiral 1, 1, 1‐Tris (oxazolinyl) ethanes (“Trisox”) in CuII Lewis Acid Catalysts
WO2022030589A1 (ja) 単座配位尿素化合物を含む配位子とそれを含むホウ素化触媒
Wolf et al. Synthesis and Reactivity of Discrete Calcium Imides
US8207379B2 (en) Ruthenium compound and method for producing optically active aminoalcohol compound
Song et al. Molecular recognition in a palladium complex promoted asymmetric synthesis of a P-chiral heterodifunctionalized bidentate phosphine ligand
Paria et al. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad
Lee et al. A sequential CN, CC bond-forming reaction: direct synthesis of α-amino acids from terminal alkynes
Donohoe et al. New osmium-based reagent for the dihydroxylation of alkenes
Riegert et al. Neutral Yttrium Tris (amide) and Ate Complexes Coordinated by an (R)‐N, N′‐Diisopropyl‐1, 1′‐binaphthyl‐2, 2′‐diamido Ligand as Enantioselective Catalysts for Intramolecular Hydroamination
WO2019168135A1 (ja) 第四周期遷移金属錯体を触媒とするn,n-ジアルキルアミド化合物からエステル化合物に変換する方法
Nayak et al. Organoaluminum Catalyzed Guanylation and Hydroboration Reactions of Carbodiimides
Tang et al. CuH-Catalyzed Reductive Coupling of Nitroarenes with Phosphine Oxides for the Direct Synthesis of Phosphamides
Szajna-Fuller et al. Carboxylate coordination chemistry of a mononuclear Ni (II) center in a hydrophobic or hydrogen bond donor secondary environment: Relevance to acireductone dioxygenase
Schwabacher et al. Synthesis of a new ligand for metal assembly to a selective receptor
Bunzen et al. Surprising Substituent Effects on the Self-Assembly of Helicates from Bis (bipyridyl) BINOL Ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854303

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE