WO2022030493A1 - Zinc protoporphyrin ix-forming agent containing lactic acid bacteria, and color tone-improving method and manufacturing method for processed food using same - Google Patents

Zinc protoporphyrin ix-forming agent containing lactic acid bacteria, and color tone-improving method and manufacturing method for processed food using same Download PDF

Info

Publication number
WO2022030493A1
WO2022030493A1 PCT/JP2021/028777 JP2021028777W WO2022030493A1 WO 2022030493 A1 WO2022030493 A1 WO 2022030493A1 JP 2021028777 W JP2021028777 W JP 2021028777W WO 2022030493 A1 WO2022030493 A1 WO 2022030493A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
meat
lactococcus
bacterium
color tone
Prior art date
Application number
PCT/JP2021/028777
Other languages
French (fr)
Japanese (ja)
Inventor
純一 若松
カウサー ウル アラム ムド
徹 早川
朗人 玖村
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2022030493A1 publication Critical patent/WO2022030493A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/60Comminuted or emulsified meat products, e.g. sausages; Reformed meat from comminuted meat product
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/46Addition of dyes or pigments, e.g. in combination with optical brighteners using dyes or pigments of microbial or algal origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Definitions

  • the present invention comprises an agent and method for forming zinc protoporphyrin IX under aerobic conditions using Lactococcus lactic acid bacteria, an agent and method for improving the color tone of a meat product, and a meat product. Regarding the method.
  • the color tone of meat is affected by the state of myoglobin, which is the main pigment protein in meat.
  • Myoglobin has one heme, which is an iron complex of protoporphyrin IX, in its molecule, and its color tone changes greatly depending on the type of molecule coordinate-bonded to the sixth ligand of this heme iron and the charge state of iron. do.
  • the color tone of bright red meat seen in fresh meat is due to a derivative called oxymyoglobin in which an oxygen molecule is bound to the 6th ligand and the charge of heme iron is divalent.
  • oxymyoglobin in which an oxygen molecule is bound to the 6th ligand and the charge of heme iron is divalent.
  • the color tone becomes brown and it looks bad, but this is because the heme iron in myoglobin is oxidized to trivalent, and the oxygen of the 6th ligand is removed and replaced with water molecules. This is because the absorption spectrum of light changes by changing to a derivative called.
  • the meat when the meat is heated, it turns grayish brown because the protein portion (globin) of myoglobin in the meat is denatured by heating to become denatured globin hemicromium. All heme iron in the modified globin hemichrome is trivalent in the oxidized state.
  • nitrite derived from a color former produces a carcinogenic N-nitroso compound when it reacts with amines and amides under acidic conditions.
  • processed meat products are classified into Group 1 which is said to have high grounds for carcinogenicity to humans. ..
  • the amount added is extremely small, and in many countries including Japan, the acceptable daily intake (ADI) is scientifically calculated and the usage standard is set, but there are consumers who are concerned about the danger.
  • ADI acceptable daily intake
  • Non-Patent Document 1 ZnPP is more stable to heat and light than heme due to the difference in the coordinated metal. Therefore, elucidation of the formation mechanism and applied technology have been studied, and a patent application has been filed as a color tone improvement technology using ZnPP (Patent Document 1 and Patent Document 2).
  • Non-Patent Document 2 Non-Patent Document 3
  • ZnPP is gradually formed during manufacturing and accumulated in the final product, so it is considered to be particularly suitable for improving the color tone of long-term aged meat products.
  • Long-term aged prosciutto ham and dry sausages such as salami which are examples of such long-term aged meat products, have established a solid position as high-class foodstuffs and continue to be widely produced even today. There is.
  • Non-Patent Document 4 This has been reported in both the system using only the intrinsic factor of meat excluding the influence of microorganisms and the experimental system considering external factors such as microorganisms.
  • large bone-in hams made of thigh meat such as palma ham that does not use a coloring agent, most of them are covered with skin and subcutaneous fat, and the red meat inside is not exposed to oxygen, so ZnPP is used. It is formed and exhibits a vivid color tone.
  • the excised part near the hip joint is significantly dried from the surface layer and has an effect of oxidation, the surface is generally excised and the inside is sliced and eaten.
  • An object of the present invention is to provide a new means capable of forming ZnPP in a meat product whose influence of oxygen cannot be eliminated because it is produced under aerobic conditions.
  • the present inventors have found that lactic acid bacteria belonging to the genus Lactococcus have the ability to form ZnPP even under aerobic conditions in which oxygen, which is a ZnPP formation inhibitor, is present. Was completed.
  • An agent for forming zinc protoporphyrin IX under aerobic conditions in a meat-containing material containing Lactococcus lactic acid bacteria (2) The agent according to (1), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis. (3) The agent according to (1) or (2), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subsp. Cremoris. (4) A method for forming zinc protoporphyrin IX in a meat-containing material under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the meat-containing material.
  • (10) A method for improving the color tone of a whole meat product produced under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to a meat product raw material.
  • (11) The method according to (10), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  • (12) The method according to (10) or (11), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  • (13) A meat product having an improved color tone as a whole, including the addition of Lactococcus lactic acid bacteria to the raw material of the meat product and the production of the meat product from the raw material of the meat product after the addition of the lactic acid bacteria under aerobic conditions. How to manufacture.
  • ZnPP in meat products manufactured under aerobic conditions, not only in the central portion thereof, but also on the surface where it is conventionally difficult to form ZnPP due to the influence of oxygen.
  • ZnPP can also be formed on the surface layer portion.
  • the present invention provides an agent for forming ZnPP under aerobic conditions in a meat-containing material containing Lactococcus lactic acid bacteria.
  • the present invention also provides a method for forming zinc protoporphyrin IX in a meat-containing material under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the meat-containing material.
  • ZnPP is Dihydrogen [3,8,13,17-tetramethyl-7,12-divinyl-21H, 23H-porphine-2,18-dipropionato (4-)-N21, N22, N23, N24] zincate (4-) Also represented (CAS No. 15442-64-5), zinc (Zn) is added to porphyrin (protoporphyrin IX), which has a structure in which four methyl groups, two vinyl groups, and two propionic acid groups are bonded to the porphyrin ring. It is a coordinated complex compound.
  • the lactic acid bacterium used in the present invention is a bacterium belonging to the genus Lactococcus, for example, Lactococcus allomyrinae, Lactococcus chungangensis, Lactococcus formosensis, Lactococcus fujiensis, Lactococcus garvieae, Lactococcus hircilactis, Lactococcus kimchi, Lactococcus kimchi, Lactococcus lactis Lactococcus laudensis, Lactococcus nasutitermitis, Lactococcus petauri, Lactococcus piscium, Lactococcus piscium, Lactococcus planta It can be a bacterium belonging to (Lactococcus raffinolactis), Lactococcus reticulitermitis, Lactococcus taiwanensis or Lactococcus termiticola.
  • the lactic acid bacterium is a bacterium belonging to Lactococcus lactis or Lactococcus rafinolactis.
  • Bacteria belonging to Lactococcus lactis are, for example, Lactococcus lactis subsp. Tructae, Lactococcus lactis subsp. Lacttis, and Lactococcus lactis subsp. Lactococcus. It can be a bacterium belonging to lactis subsp. Cremoris) or Lactococcus lactis subsp. Hordniae.
  • the lactic acid bacterium is a bacterium belonging to Lactococcus lactis subspecies Turkutae, Lactococcus lactis subspecies Lactis or Lactococcus lactis subspecies Cremoris.
  • the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  • Lactococcus lactic acid bacteria stored or commercially available in various microbial strain storage institutions can be used.
  • Examples of such lactic acid bacteria are, for example, Lactococcus lactis subspecies Lactis NBRC12007 strain, Lactococcus lactis subspecies Lactis NBRC100933 strain, and lacto deposited at the Bioresource Center (NBRC), Incorporated Administrative Agency.
  • GB (A) -1 strain was issued to the Patent Microorganisms Depositary Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan, on June 10, 2020. It has been deposited internationally as 03229 (Indication of identification: GB (A) -1).
  • Table 1 shows the mycological properties of the GB (A) -1 strain.
  • the lactic acid bacteria are Lactococcus lactis subspecies Cremoris GB (A) -1, Lactococcus lactis subspecies Lactis NBRC12007 strain, Lactococcus lactis subspecies Lactis NBRC100933 strain, Lactococcus lactis. Subspecies Turkutae NBRC110453 strain or Lactococcus lactis CH-1 strain. Particularly preferred is the Lactococcus lactis subspecies Cremoris GB (A) -1 strain.
  • Lactococcus lactic acid bacteria are prepared by culturing under commonly used culture conditions, for example, using MRS medium at a temperature of 25 to 37 ° C. for 8 to 48 hours under aerobic or anaerobic conditions. can do.
  • Lactococcus lactic acid bacteria can produce ZnPP under aerobic conditions in a material containing meat.
  • the aerobic condition means that the meat-containing material is placed in the air or in a gas containing oxygen having a concentration similar to that in the air.
  • Lactococcus lactic acid bacteria can produce ZnPP by coexisting with a meat-containing material and leaving it under aerobic conditions, for example, at a temperature of 4 to 37 ° C. for several days to several weeks.
  • Lactococcus lactic acid bacteria can produce ZnPP even under anaerobic conditions in a material containing meat.
  • the anaerobic condition means that the gas is placed in a gas having almost no oxygen, for example, an oxygen concentration of less than 0.1 vol%, which is generally used for culturing anaerobic bacteria.
  • the meat-containing material is not limited as long as it contains meat, and is a test sample for an experiment, for example, pork homogenate or minced pork described in J. Wakamatsu et al., Meat Science, 2020, 165, 107989. It may be a raw material for meat products. Examples of meat include beef, pork, mutton, goat meat, horse meat, deer meat, chicken meat, rabbit meat, whale meat and other meats of mammals having a bright red, pinkish red or reddish color. , Not limited to these. When a meat product raw material is used as a material containing meat, the meat product raw material may contain, in addition to the meat, ingredients necessary for the production of the meat product, such as salt and optionally spices.
  • ZnPP can be extracted from the meat-containing material after coexisting with Lactococcus lactic acid bacteria using 75% acetone or the like, and can be detected or measured by HPLC or other methods.
  • ZnPP is detected and measured by measuring the fluorescence intensity at 590 nm when irradiated with excitation fluorescence at 420 nm according to the method described in J. Wakamatsu et al., Meat Science, 2007, 77, 580-586. You can also do it.
  • Color tone improving agent for meat products provides an agent for improving the color tone of all meat products produced under aerobic conditions, including Lactococcus lactic acid bacteria.
  • the present invention also provides a method for improving the overall color tone of a meat product produced under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the raw material of the meat product.
  • the present invention includes the addition of Lactococcus lactic acid bacteria to the raw material of the meat product and the production of the meat product from the raw material of the meat product after the addition of the lactic acid bacteria under aerobic conditions, and the color tone is improved as a whole.
  • Provide a method for producing a meat product is provided.
  • color tone improvement means to change the color tone of a meat product, which causes browning or fading under the influence of oxygen when manufactured and stored by a conventional method, to a preferable color tone, specifically, freshness. It means to change to a highly palatable color tone such as red, pink red or reddish color, or to maintain the color tone.
  • the color tone improvement is performed by measuring the lightness L *, the chromaticity a * and b * by a known method for evaluating the color tone of the meat product, for example, by visual observation or by using a color difference meter, and the saturation C * and the hue. It can be evaluated by a method of calculating the angle h or the like.
  • Lactococcus lactic acid bacteria can produce ZnPP in meat-containing materials under aerobic conditions. Therefore, by adding Lactococcus lactic acid bacteria to the raw material of meat products and subjecting them to manufacturing processes such as aging under aerobic conditions, the surface that comes into contact with oxygen and the surface through which oxygen can permeate to a depth of about 5 mm. It is possible to produce a meat product in which ZnPP is formed in a portion (referred to as a surface layer portion). Furthermore, since Lactococcus lactic acid bacteria can produce ZnPP even under anaerobic conditions, the above-mentioned meat products produced using Lactococcus lactic acid bacteria can be produced in any of the central, surface and surface layers thereof. It is also possible that ZnPP is formed in.
  • ZnPP which is a bright red pigment
  • Lactococcus lactic acid bacteria to form a sufficient amount of ZnPP in the whole meat product for improving the color tone, it is possible to produce a meat product having an improved color tone as a whole.
  • Meat products are required to have more remarkable color deterioration due to oxygen, that is, products that require long-term aging or drying under aerobic conditions in the manufacturing process, or long-term storage under aerobic conditions. Those are preferable.
  • the meat product is preferably a non-heated meat product or a dried meat product.
  • meat products include lux ham, prosciutto, semi-dry sausage, and dry sausage.
  • a particularly preferable meat product is semi-dry sausage or dry sausage.
  • oxygen blocking means such as vacuum packaging and oxygen scavengers do not need to be used in particular, but the use is not excluded.
  • conventional color formers such as nitrite do not need to be used in particular, but rather nitric oxide produced by the color former inhibits the formation of ZnPP (J. Wakamatsu et al., Meat Science, 2010, 84 (J. Wakamatsu et al., Meat Science, 2010, 84). 1), 125-128),
  • the meat product produced in this way has an excellent color tone not only in the central portion but also on the surface and the surface layer portion, even though the coloring agent and the oxygen removing means are not used. Therefore, it is possible to avoid product disposal due to deterioration of appearance, and it is expected that it will lead to saving of animal protein resources and reduction of food waste. Furthermore, by not using a color former, there is no risk of nitrosamine formation, and safety is high.
  • the brightness L *, redness a * and yellowness b * of each sample are measured using a color difference meter (CM-700d, Konica Minolta), and the saturation C * and hue angle h are calculated from a * and b *. (Fig. 2).
  • the redness of the bacterial inoculated group was higher than that of the control group and showed a value close to that of the nitrite group.
  • the bacterial inoculation group had a lower yellowness but the same hue angle as the nitrite group. This means that the shade of the bacterial inoculation plot is roughly equal to that of the nitrite plot.
  • the color tone of the bacterial inoculation area is slightly inferior in brightness and vividness, but the color tone is similar to that of the nitrite area.
  • the LbC and LLC plots showed a bright red color and were as bright as the nitrite plot.
  • strong red fluorescence derived from ZnPP was also observed.
  • strong red fluorescence was observed not only inside the cross section but also in the entire cross section including the surface layer portion, and the entire cross section including the surface layer portion had a preferable vivid color tone.
  • the LbC group red fluorescence was not observed in the surface layer portion, and the colors in the surface layer portion and the inside were significantly different.
  • FIG. 6 shows a graph in which the color tone of the surface of the dry sausage is quantified by a color difference meter.
  • the LLC group showed the same degree of redness as the nitrite group, and the hue angle and saturation were also the same.
  • Example 3 ZnPP formation with GB (A) -1 strain (pork homogenate, aerobic and anaerobic conditions) Sterile minced pork was added to physiological saline to a concentration of 30% by mass, and homogenized at 10,000 rpm for 90 seconds using a homogenizer (CELL MASTER CM-100, AZ ONE Co.). Bacterial suspensions of homogenate, NaCl and LnL, LnM, LbP, LbC and LLC prepared in Example 1 were added to a sterile test tube and mixed (final concentration of minced pork 20% by mass, final concentration of NaCl 3 mass). %, Final bacterial concentration 2.0 x 10 6 CFU / mL).
  • test tubes were covered and placed in a gas-impermeable bag and incubated at 25 ° C. for 5 days under aerobic or anaerobic conditions. Anaerobic conditions were maintained with an oxygen absorber (A-500HS, I.S.O. Inc.).
  • an oxygen absorber A-500HS, I.S.O. Inc.
  • a mixture (antibiotic group) to which the final concentration of sulfate 50 ⁇ g / mL) was added was prepared in the same manner as above and incubated. An antibiotic group was set up to confirm that there was no contamination of microorganisms capable of forming ZnPP during the operation.
  • Example 4 ZnPP formation with GB (A) -1 strain (heated or unheated pork homogenate, aerobic and anaerobic conditions) Using unheated salted pork homogenate, short-time heating (100 ° C, 20 seconds) to inactivate the enzyme, and autoclaved pressure-heating (121 ° C, 15 minutes) salted pork homogenate.
  • the ZnPP formation of the Lactococcus lactis subspecies Cremoris GB (A) -1 strain was evaluated in the same manner as in Example 3.
  • Example 5 ZnPP formation by Lactococcus lactic acid bacteria (pork homogenate, aerobic conditions) Lactococcus lactic acid bacteria shown in Table 3 below were added to the salted pork homogenate in the same manner as in Example 3, and ZnPP formation was evaluated under aerobic conditions.
  • NBRC National Institute of Technology and Evaluation Biological Resources Center

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides: an agent and a method for forming zinc protoporphyrin IX under an aerobic condition using lactic acid bacteria belonging to the genus Lactococcus; an agent and a method for improving the color tone of a meat product; and a method for manufacturing a meat product. According to the present invention, ZnPP can be formed, in particular, not only in the center of a meat product manufactured under an aerobic condition, but also on the surface or the surface layer part thereof, where ZnPP was hardly formed in the prior art due to being susceptible to oxygen.

Description

乳酸菌を含有する亜鉛プロトポルフィリンIX形成剤、並びにこれを用いた加工食品の色調改善方法及び製造方法Zinc protoporphyrin IX forming agent containing lactic acid bacteria, and a method for improving the color tone and manufacturing method of processed foods using the same.
 本発明は、ラクトコッカス属乳酸菌を利用した、好気的条件下で亜鉛プロトポルフィリンIXを形成させるための剤及び方法、食肉製品の色調を改善するための剤及び方法、並びに食肉製品を製造する方法に関する。 The present invention comprises an agent and method for forming zinc protoporphyrin IX under aerobic conditions using Lactococcus lactic acid bacteria, an agent and method for improving the color tone of a meat product, and a meat product. Regarding the method.
 食肉の色調は、食肉内の主要色素タンパク質であるミオグロビンの状態に影響を受ける。ミオグロビンは、その分子内にプロトポルフィリンIXの鉄錯体であるヘムを1つ有し、このヘム鉄の第6配位子に配位結合する分子の種類と、鉄の電荷状態により大きく色調が変化する。 The color tone of meat is affected by the state of myoglobin, which is the main pigment protein in meat. Myoglobin has one heme, which is an iron complex of protoporphyrin IX, in its molecule, and its color tone changes greatly depending on the type of molecule coordinate-bonded to the sixth ligand of this heme iron and the charge state of iron. do.
 新鮮な食肉で見られる鮮赤色の食肉の色調は、第6配位子に酸素分子が結合してヘム鉄の電荷が2価となっているオキシミオグロビンと呼ばれる誘導体に起因している。一方、古く劣化した食肉では色調が褐色化して見た目が悪くなるが、これはミオグロビン内のヘム鉄が酸化されて3価となり、第6配位子の酸素が外れて水分子に置き換わったメトミオグロビンと呼ばれる誘導体に変化することにより、光の吸収スペクトルが変化するためである。また、食肉を加熱すると灰褐色に変化するが、これは食肉内のミオグロビンのタンパク質部分(グロビン)が加熱変性されて変性グロビンヘミクロムとなるためである。変性グロビンへミクロム内のヘム鉄は全て酸化状態の3価となる。 The color tone of bright red meat seen in fresh meat is due to a derivative called oxymyoglobin in which an oxygen molecule is bound to the 6th ligand and the charge of heme iron is divalent. On the other hand, in old and deteriorated meat, the color tone becomes brown and it looks bad, but this is because the heme iron in myoglobin is oxidized to trivalent, and the oxygen of the 6th ligand is removed and replaced with water molecules. This is because the absorption spectrum of light changes by changing to a derivative called. In addition, when the meat is heated, it turns grayish brown because the protein portion (globin) of myoglobin in the meat is denatured by heating to become denatured globin hemicromium. All heme iron in the modified globin hemichrome is trivalent in the oxidized state.
 一方、食肉製品の多くは硝酸塩や亜硝酸塩などの発色剤が用いられ、これらの発色剤が塩漬中に分解されて生成される一酸化窒素が、ミオグロビン内のヘム鉄に配位して、安定な鮮赤色のニトロシルミオグロビンと呼ばれる誘導体が形成される。塩漬した食肉を加熱すると、食肉製品特有の桃赤色となるが、これは加熱によりミオグロビンのタンパク質部分であるグロビンが加熱変性され、変性グロビンニトロシルヘモクロムと呼ばれるミオグロビン誘導体へと変化するためである。ヘム鉄と一酸化窒素の結合は強固であるだけでなく、鉄を安定化させるため、変性グロビンニトロシルヘモクロムのヘムは加熱後も一酸化窒素が結合し、ヘム鉄の電荷は2価のままである。ヘム鉄が3価になると不安定であり、配位している鉄イオン(III)が遊離しやすくなる。酸化状態の鉄イオン(III)には他のものに対する酸化触媒作用があるため、発色剤を使用しない場合にはウォームドオーバーフレーバーなどの不快臭の発生が起こる。さらに、発色剤はボツリヌス菌の増殖を阻害するために、致死率の高いボツリヌス中毒を防ぐ重要な働きもあり、重要な添加物として古くから使用されてきた。 On the other hand, many meat products use color-developing agents such as nitrates and nitrites, and nitric oxide produced by the decomposition of these color-developing agents during salting coordinates with heme iron in myoglobin. A stable bright red derivative called nitrosylmyoglobin is formed. When salted meat is heated, it becomes pinkish red, which is peculiar to meat products, because the heating denatures globin, which is the protein part of myoglobin, and changes it to a myoglobin derivative called modified globin nitrosylhemochrome. .. Not only is the bond between heme iron and nitric oxide strong, but because it stabilizes iron, the heme of modified globin nitrosylhemochrome binds nitric oxide even after heating, and the charge of heme iron remains divalent. Is. When heme iron becomes trivalent, it is unstable and the coordinated iron ion (III) is easily released. Since iron ions (III) in an oxidized state have an oxidation catalytic action on other substances, unpleasant odors such as warmed overflavors occur when a coloring agent is not used. Furthermore, since the coloring agent inhibits the growth of Clostridium botulinum, it also has an important function of preventing botulinum toxin, which has a high mortality rate, and has been used as an important additive for a long time.
 しかし、発色剤由来の亜硝酸は酸性条件下でアミンやアミド類と反応すると、発がん性のN-ニトロソ化合物を産生する。また、国際がん研究機関(International Agency for Research on Cancer)の発がん性リスクにおいても、ヒトに対する発がん性が認められる根拠の十全さが高いとされるグループ1に食肉加工品は分類されている。しかしながら、添加量は極微量であり、わが国を含む多くの国では科学的に一日摂取許容量(ADI)が算出されて使用基準が決められているが、危険性を危惧する消費者が存在し、色調だけでなく保存性や風味が劣る無塩漬食肉製品を求める声がある。 However, nitrite derived from a color former produces a carcinogenic N-nitroso compound when it reacts with amines and amides under acidic conditions. In addition, in the carcinogenic risk of the International Agency for Research on Cancer, processed meat products are classified into Group 1 which is said to have high grounds for carcinogenicity to humans. .. However, the amount added is extremely small, and in many countries including Japan, the acceptable daily intake (ADI) is scientifically calculated and the usage standard is set, but there are consumers who are concerned about the danger. However, there are calls for unsalted meat products that are inferior in preservability and flavor as well as color tone.
 ところで、イタリアの伝統的な生ハムであるプロシュット・ディ・パルマ(パルマハム)は発色剤の使用が禁止されているが、その色調は鮮やかな赤色を呈している。これは、肉色素であるミオグロビンがプロトポルフィリンIXに鉄が配位したヘムによるものであるのに対して、プロトポルフィリンIXに亜鉛が配位した亜鉛プロトポルフィリンIX(ZnPP)が多量に蓄積していることが明らかにされた(非特許文献1)。ZnPPは配位している金属の違いにより、ヘムよりも熱や光などに対して安定である。このため、形成メカニズムの解明や応用技術が研究され、ZnPPを利用した色調改善技術として特許出願されている(特許文献1、特許文献2)。ZnPPは食肉の内在成分により形成すると考えられているが、現在まで形成機構は完全には解明されていない。一方、食肉の外因性要因として、特定の種類の微生物によるZnPP形成促進も報告されてきた(非特許文献2、非特許文献3)。 By the way, the traditional Italian prosciutto ham, Parma Ham, is prohibited from using a coloring agent, but its color tone is bright red. This is due to the heme in which the meat pigment myoglobin is coordinated with iron to protoporphyrin IX, whereas a large amount of zinc protoporphyrin IX (ZnPP) in which zinc is coordinated with protoporphyrin IX is accumulated. (Non-Patent Document 1). ZnPP is more stable to heat and light than heme due to the difference in the coordinated metal. Therefore, elucidation of the formation mechanism and applied technology have been studied, and a patent application has been filed as a color tone improvement technology using ZnPP (Patent Document 1 and Patent Document 2). ZnPP is thought to be formed by the intrinsic components of meat, but the formation mechanism has not been completely elucidated until now. On the other hand, promotion of ZnPP formation by a specific type of microorganism has also been reported as an extrinsic factor of meat (Non-Patent Document 2 and Non-Patent Document 3).
 ZnPPは製造中に徐々に形成されて最終製品に蓄積するため、特に長期熟成型の食肉製品の色調改善に適していると考えられる。このような長期熟成型の食肉製品の一例である、ヨーロッパなどで製造される長期熟成型の生ハムや、サラミなどのドライソーセージ類は、高級食材として確固たる地位を築き現在でも広く生産され続けている。 ZnPP is gradually formed during manufacturing and accumulated in the final product, so it is considered to be particularly suitable for improving the color tone of long-term aged meat products. Long-term aged prosciutto ham and dry sausages such as salami, which are examples of such long-term aged meat products, have established a solid position as high-class foodstuffs and continue to be widely produced even today. There is.
 ZnPPの形成は、食肉を用いた試験管レベルでは酸素が阻害することが明らかにされている(非特許文献4)。これは、微生物の影響を排除した食肉内在因子のみによる系においても、微生物などの外的要因を考慮した実験系でも報告されてきた。発色剤を使用しないパルマハムなどのもも肉で作られた大型の皮付きの骨付きハムでは、大部分は皮と皮下脂肪で覆われており、内部の赤肉部分は酸素と触れないため、ZnPPが形成されて鮮やかな色調を呈する。一方、股関節付近の切除部については、表層から乾燥が著しく酸化の影響もあるため、一般には表面を切除して内部をスライスして食される。 It has been clarified that the formation of ZnPP is inhibited by oxygen at the test tube level using meat (Non-Patent Document 4). This has been reported in both the system using only the intrinsic factor of meat excluding the influence of microorganisms and the experimental system considering external factors such as microorganisms. In large bone-in hams made of thigh meat such as palma ham that does not use a coloring agent, most of them are covered with skin and subcutaneous fat, and the red meat inside is not exposed to oxygen, so ZnPP is used. It is formed and exhibits a vivid color tone. On the other hand, since the excised part near the hip joint is significantly dried from the surface layer and has an effect of oxidation, the surface is generally excised and the inside is sliced and eaten.
 一方、サラミなどのドライソーセージ類は製品にもよるが、生ハムより小型のものが大部分である。発色剤を使用した製品では、全体が鮮やかな赤色をしているが、発色剤を使用しない場合、製品内部はZnPPが形成されて鮮赤色であるが、酸素の触れる部分ではZnPPが形成されず褐色となる。具体的には、表面や表面から数ミリメートルの表層部は著しく変色しており、生ハムとは違って表面を切り落とさないため、外観の好ましくない色調は見た目が悪いため消費者の消費行動を抑制し、断面においても周囲の変色は品質劣化と見なして、食行動が抑えられる可能性がある。 On the other hand, most dry sausages such as salami are smaller than prosciutto, although it depends on the product. In the product using the coloring agent, the whole is bright red, but when the coloring agent is not used, ZnPP is formed inside the product and it is bright red, but ZnPP is not formed in the part where oxygen comes in contact. It turns brown. Specifically, the surface and the surface layer a few millimeters from the surface are significantly discolored, and unlike prosciutto, the surface is not cut off, so the unfavorable color tone of the appearance is unsightly and suppresses consumer behavior. However, even in the cross section, discoloration of the surroundings may be regarded as quality deterioration and eating behavior may be suppressed.
 酸素がZnPP形成を阻害するため、真空包装などにより酸素を遮断することも考えられる。しかし、長期熟成型食肉製品では、製造中の乾燥が重要な保蔵手段であるため、酸素の遮断は乾燥の抑制となり、本来の加工・保蔵の目的が達成できない。 Since oxygen inhibits ZnPP formation, it is possible to block oxygen by vacuum packaging or the like. However, in long-term aged molded meat products, drying during production is an important storage means, so blocking oxygen suppresses drying, and the original purpose of processing and storage cannot be achieved.
特許第3949588号公報Japanese Patent No. 3949588 特開2006-254818号公報Japanese Unexamined Patent Publication No. 2006-254818
 本発明は、好気的条件下で製造されるために酸素の影響を排除することができなかった食肉製品において、ZnPPを形成させることができる新たな手段を提供することを目的とする。 An object of the present invention is to provide a new means capable of forming ZnPP in a meat product whose influence of oxygen cannot be eliminated because it is produced under aerobic conditions.
 本発明者らは、ラクトコッカス(Lactococcus)属に属する乳酸菌が、ZnPP形成阻害因子である酸素が存在する好気的条件下であってもZnPPを形成させる能力を有することを見出し、以下の発明を完成させた。 The present inventors have found that lactic acid bacteria belonging to the genus Lactococcus have the ability to form ZnPP even under aerobic conditions in which oxygen, which is a ZnPP formation inhibitor, is present. Was completed.
(1) ラクトコッカス属乳酸菌を含む、食肉を含有する材料において好気的条件下で亜鉛プロトポルフィリンIXを形成させるための剤。
(2) 乳酸菌がラクトコッカス・ラクティス(Lactococcus lactis)に属する細菌である、(1)に記載の剤。
(3) 乳酸菌がラクトコッカス・ラクティス亜種クレモリス(Lactococcus lactis subsp. cremoris)に属する細菌である、(1)又は(2)に記載の剤。
(4) ラクトコッカス属乳酸菌を、食肉を含有する材料に添加することを含む、食肉を含有する材料において好気的条件下で亜鉛プロトポルフィリンIXを形成させる方法。
(5) 乳酸菌がラクトコッカス・ラクティスに属する細菌である、(4)に記載の方法。
(6) 乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、(4)又は(5)に記載の方法。
(7) ラクトコッカス属乳酸菌を含む、好気的条件下で製造される食肉製品の全体において色調を改善するための剤。
(8) 乳酸菌がラクトコッカス・ラクティスに属する細菌である、(7)に記載の剤。
(9) 乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、(7)又は(8)に記載の剤。
(10) ラクトコッカス属乳酸菌を食肉製品原料に添加することを含む、好気的条件下で製造される食肉製品の全体において色調を改善する方法。
(11) 乳酸菌がラクトコッカス・ラクティスに属する細菌である、(10)に記載の方法。
(12) 乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、(10)又は(11)に記載の方法。
(13) ラクトコッカス属乳酸菌を食肉製品原料に添加すること、及び乳酸菌添加後の食肉製品原料から好気的条件下で食肉製品を製造することを含む、その全体において色調が改善された食肉製品を製造する方法。
(14) 乳酸菌がラクトコッカス・ラクティスに属する細菌である、(13)に記載の方法。
(15) 乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、(13)又は(14)に記載の方法。
(16) 受託番号NITE BP-03229として寄託されているラクトコッカス・ラクティス亜種クレモリスGB(A)-1株。
(1) An agent for forming zinc protoporphyrin IX under aerobic conditions in a meat-containing material containing Lactococcus lactic acid bacteria.
(2) The agent according to (1), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
(3) The agent according to (1) or (2), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subsp. Cremoris.
(4) A method for forming zinc protoporphyrin IX in a meat-containing material under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the meat-containing material.
(5) The method according to (4), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
(6) The method according to (4) or (5), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
(7) An agent for improving the color tone of all meat products produced under aerobic conditions, which contains Lactococcus lactic acid bacteria.
(8) The agent according to (7), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
(9) The agent according to (7) or (8), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
(10) A method for improving the color tone of a whole meat product produced under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to a meat product raw material.
(11) The method according to (10), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
(12) The method according to (10) or (11), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
(13) A meat product having an improved color tone as a whole, including the addition of Lactococcus lactic acid bacteria to the raw material of the meat product and the production of the meat product from the raw material of the meat product after the addition of the lactic acid bacteria under aerobic conditions. How to manufacture.
(14) The method according to (13), wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
(15) The method according to (13) or (14), wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
(16) Lactococcus lactis subspecies Cremoris GB (A) -1 strain deposited under accession number NITE BP-03229.
 本発明によれば、好気的条件下で製造される食肉製品において、特に、その中心部だけでなく、酸素の影響を受けやすいために従来はZnPPを形成させるのが困難であった表面や表層部においても、ZnPPを形成させることができる。 According to the present invention, in meat products manufactured under aerobic conditions, not only in the central portion thereof, but also on the surface where it is conventionally difficult to form ZnPP due to the influence of oxygen. ZnPP can also be formed on the surface layer portion.
各種細菌を添加し、嫌気的条件下でインキュベートした加塩ひき肉の明視野観察画像(上段)及び励起波長420 nm、蛍光波長590 nmでの蛍光画像(下段)である。A bright-field observation image (upper row) of salted ground meat to which various bacteria were added and incubated under anaerobic conditions, and a fluorescence image (lower row) at an excitation wavelength of 420 nm and a fluorescence wavelength of 590 nm. 各種細菌を添加し、嫌気的条件下でインキュベートした加塩ひき肉の色調を数値化したグラフである。It is a graph which quantified the color tone of the salted minced meat which was incubated under anaerobic conditions to which various bacteria were added. 各種細菌を添加して製造したドライソーセージ断面の明視野観察画像(左列)及び励起波長420 nm、蛍光波長590 nmでの蛍光画像(右列)である。A bright-field observation image of a cross section of a dry sausage produced by adding various bacteria (left column) and a fluorescence image at an excitation wavelength of 420 nm and a fluorescence wavelength of 590 nm (right column). 各種細菌を添加して製造したドライソーセージ断面の色調を数値化したグラフである。It is a graph which quantified the color tone of the cross section of the dry sausage produced by adding various bacteria. 各種細菌を添加して製造したドライソーセージ表面の明視野観察画像である。It is a bright-field observation image of the surface of a dry sausage produced by adding various bacteria. 各種細菌を添加して製造したドライソーセージ表面の色調を数値化したグラフである。It is a graph which quantified the color tone of the surface of the dry sausage produced by adding various bacteria. 各種細菌を添加し、好気的条件下又は嫌気条件下でインキュベートした豚肉ホモジネートの、励起波長420 nm、蛍光波長590 nmでの蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity at the excitation wavelength of 420 nm and the fluorescence wavelength of 590 nm of the pork homogenate which was incubated under aerobic or anaerobic conditions to which various bacteria were added. ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株を添加し、好気的条件下又は嫌気条件下でインキュベートした加熱又は非加熱の豚肉ホモジネートの、励起波長420 nm、蛍光波長590 nmでの蛍光強度を示すグラフである。A heated or unheated pork homogenate supplemented with Lactococcus lactis subspecies Cremoris GB (A) -1 strain and incubated under aerobic or anaerobic conditions at an excitation wavelength of 420 nm and a fluorescence wavelength of 590 nm. It is a graph which shows the fluorescence intensity. ラクトコッカス属乳酸菌を添加し、好気的条件下でインキュベートした豚肉ホモジネートの、励起波長420 nm、蛍光波長590 nmでの蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity at the excitation wavelength of 420 nm and the fluorescence wavelength of 590 nm of the pork homogenate which was added with Lactococcus lactic acid bacteria and incubated under aerobic conditions.
ZnPP形成剤及びZnPP形成方法
 本発明は、ラクトコッカス属乳酸菌を含む、食肉を含有する材料において好気的条件下でZnPPを形成させるための剤を提供する。また、本発明は、ラクトコッカス属乳酸菌を食肉を含有する材料に添加することを含む、食肉を含有する材料において好気的条件下で亜鉛プロトポルフィリンIXを形成させる方法を提供する。
ZnPP Forming Agent and ZnPP Forming Method The present invention provides an agent for forming ZnPP under aerobic conditions in a meat-containing material containing Lactococcus lactic acid bacteria. The present invention also provides a method for forming zinc protoporphyrin IX in a meat-containing material under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the meat-containing material.
 ZnPPは、Dihydrogen [3,8,13,17-tetramethyl-7,12-divinyl-21H,23H-porphine-2,18-dipropionato(4-)-N21,N22,N23,N24]zincate(4-)とも表される(CAS番号15442-64-5)、ポルフィン環に4つのメチル基、2つのビニル基、2つのプロピオン酸基が結合した構造を有するポルフィリン(プロトポルフィリンIX)に亜鉛(Zn)が配位した錯体化合物である。 ZnPP is Dihydrogen [3,8,13,17-tetramethyl-7,12-divinyl-21H, 23H-porphine-2,18-dipropionato (4-)-N21, N22, N23, N24] zincate (4-) Also represented (CAS No. 15442-64-5), zinc (Zn) is added to porphyrin (protoporphyrin IX), which has a structure in which four methyl groups, two vinyl groups, and two propionic acid groups are bonded to the porphyrin ring. It is a coordinated complex compound.
 本発明において用いられる乳酸菌は、ラクトコッカス属に属する細菌であり、例えば、ラクトコッカス・アロミリナエ(Lactococcus allomyrinae)、ラクトコッカス・チューガンゲンシス(Lactococcus chungangensis)、ラクトコッカス・フォルモセンシス(Lactococcus formosensis)、ラクトコッカス・フジエンシス(Lactococcus fujiensis)、ラクトコッカス・ガルビエアエ(Lactococcus garvieae)、ラクトコッカス・ヒルシラクティス(Lactococcus hircilactis)、ラクトコッカス・キムチ(Lactococcus kimchi)、ラクトコッカス・ラクティス(Lactococcus lactis)、ラクトコッカス・ローデンシス(Lactococcus laudensis)、ラクトコッカス・ナスチテルミティス(Lactococcus nasutitermitis)、ラクトコッカス・ペトウリ(Lactococcus petauri)、ラクトコッカス・ピスシウム(Lactococcus piscium)、ラクトコッカス・プランタラム(Lactococcus plantarum)、ラクトコッカス・ラフィノラクティス(Lactococcus raffinolactis)、ラクトコッカス・レチクリテルミティス(Lactococcus reticulitermitis)、ラクトコッカス・タイワネンシス(Lactococcus taiwanensis)又はラクトコッカス・テルミチコラ(Lactococcus termiticola)に属する細菌であり得る。 The lactic acid bacterium used in the present invention is a bacterium belonging to the genus Lactococcus, for example, Lactococcus allomyrinae, Lactococcus chungangensis, Lactococcus formosensis, Lactococcus fujiensis, Lactococcus garvieae, Lactococcus hircilactis, Lactococcus kimchi, Lactococcus kimchi, Lactococcus lactis Lactococcus laudensis, Lactococcus nasutitermitis, Lactococcus petauri, Lactococcus piscium, Lactococcus piscium, Lactococcus planta It can be a bacterium belonging to (Lactococcus raffinolactis), Lactococcus reticulitermitis, Lactococcus taiwanensis or Lactococcus termiticola.
 好ましい実施形態において、乳酸菌は、ラクトコッカス・ラクティス又はラクトコッカス・ラフィノラクティスに属する細菌である。ラクトコッカス・ラクティスに属する細菌は、例えば、ラクトコッカス・ラクティス亜種トゥルクタエ(Lactococcus lactis subsp. tructae)、ラクトコッカス・ラクティス亜種ラクティス(Lactococcus lactis subsp. lactis)、ラクトコッカス・ラクティス亜種クレモリス(Lactococcus lactis subsp. cremoris)又はラクトコッカス・ラクティス亜種ホルドニアエ(Lactococcus lactis subsp. hordniae)に属する細菌であり得る。 In a preferred embodiment, the lactic acid bacterium is a bacterium belonging to Lactococcus lactis or Lactococcus rafinolactis. Bacteria belonging to Lactococcus lactis are, for example, Lactococcus lactis subsp. Tructae, Lactococcus lactis subsp. Lacttis, and Lactococcus lactis subsp. Lactococcus. It can be a bacterium belonging to lactis subsp. Cremoris) or Lactococcus lactis subsp. Hordniae.
 さらに好ましい実施形態において、乳酸菌は、ラクトコッカス・ラクティス亜種トゥルクタエ、ラクトコッカス・ラクティス亜種ラクティス又はラクトコッカス・ラクティス亜種クレモリスに属する細菌である。特に好ましくは、乳酸菌は、ラクトコッカス・ラクティス亜種クレモリスに属する細菌である。 In a more preferred embodiment, the lactic acid bacterium is a bacterium belonging to Lactococcus lactis subspecies Turkutae, Lactococcus lactis subspecies Lactis or Lactococcus lactis subspecies Cremoris. Particularly preferably, the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
 本発明においては、様々な微生物株保存機関にて保管されている又は市販されているラクトコッカス属乳酸菌を使用することができる。そのような乳酸菌の例としては、例えば独立行政法人製品評価技術基盤機構 生物資源センター(NBRC)に寄託されているラクトコッカス・ラクティス亜種ラクティスNBRC12007株、ラクトコッカス・ラクティス亜種ラクティスNBRC100933株、ラクトコッカス・ラクティス亜種クレモリスNBRC100676株、ラクトコッカス・ラクティス亜種ホルドニアエNBRC100931株、ラクトコッカス・ラクティス亜種トゥルクタエNBRC110453株;国立大学法人北海道大学大学院農学研究院 応用菌学研究室の菌株保存室(AHU)で保存されているラクトコッカス・ラクティス亜種クレモリスAHU1983株、ラクトコッカス・ラクティス亜種クレモリスAHU1987株等を挙げることができる。 In the present invention, Lactococcus lactic acid bacteria stored or commercially available in various microbial strain storage institutions can be used. Examples of such lactic acid bacteria are, for example, Lactococcus lactis subspecies Lactis NBRC12007 strain, Lactococcus lactis subspecies Lactis NBRC100933 strain, and lacto deposited at the Bioresource Center (NBRC), Incorporated Administrative Agency. Coccus lactis subspecies Cremoris NBRC100676 strain, Lactococcus lactis subspecies Holdoniae NBRC100931 strain, Lactococcus lactis subspecies Turkutae NBRC110453 strain; Examples thereof include Lactococcus lactis subspecies Cremoris AHU1983 strain and Lactococcus lactis subspecies Cremoris AHU1987 strain conserved in.
 また、本発明者らが新たに分離した乳酸菌であるラクトコッカス・ラクティス亜種クレモリスGB(A)-1株、ラクトコッカス・ラフィノラクティスOM(A)-1株及びラクトコッカス・ラクティスCH-1株も、本発明において用いることができる。GB(A)-1株は、日本国千葉県木更津市かずさ鎌足2-5-8 122号室 独立行政法人製品評価技術基盤機構 特許微生物寄託センターに2020年6月10日付で受託番号NITE BP-03229(識別の表示:GB(A)-1)として国際寄託されている。 In addition, Lactococcus lactis subspecies Cremoris GB (A) -1 strain, Lactococcus raffinolactis OM (A) -1 strain and Lactococcus lactis CH-1 strain, which are newly isolated lactic acid bacteria by the present inventors. Can also be used in the present invention. GB (A) -1 strain was issued to the Patent Microorganisms Depositary Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan, on June 10, 2020. It has been deposited internationally as 03229 (Indication of identification: GB (A) -1).
 下記表1にGB(A)-1株の菌学的諸性質を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the mycological properties of the GB (A) -1 strain.
Figure JPOXMLDOC01-appb-T000001
 本発明の好ましい実施形態において、乳酸菌は、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株、ラクトコッカス・ラクティス亜種ラクティスNBRC12007株、ラクトコッカス・ラクティス亜種ラクティスNBRC100933株、ラクトコッカス・ラクティス亜種トゥルクタエNBRC110453株又はラクトコッカス・ラクティスCH-1株である。特に好ましくは、乳酸菌は、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株である。 In a preferred embodiment of the invention, the lactic acid bacteria are Lactococcus lactis subspecies Cremoris GB (A) -1, Lactococcus lactis subspecies Lactis NBRC12007 strain, Lactococcus lactis subspecies Lactis NBRC100933 strain, Lactococcus lactis. Subspecies Turkutae NBRC110453 strain or Lactococcus lactis CH-1 strain. Particularly preferred is the Lactococcus lactis subspecies Cremoris GB (A) -1 strain.
 ラクトコッカス属乳酸菌は、通例的に用いられる培養条件の下で、例えば、MRS培地を用いて温度25~37℃で8~48時間、好気的又は嫌気的条件下で培養することで、調製することができる。 Lactococcus lactic acid bacteria are prepared by culturing under commonly used culture conditions, for example, using MRS medium at a temperature of 25 to 37 ° C. for 8 to 48 hours under aerobic or anaerobic conditions. can do.
 ラクトコッカス属乳酸菌は、食肉を含有する材料において、好気的条件下でZnPPを産生することができる。ここで好気的条件下とは、食肉含有材料が、空気中に、あるいは空気中と同程度の濃度の酸素を含有する気体中に置かれることを意味する。ラクトコッカス属乳酸菌は、食肉含有材料と共存させ、好気的条件下、例えば温度4~37℃で数日~数週間程度置くことで、ZnPPを産生することができる。 Lactococcus lactic acid bacteria can produce ZnPP under aerobic conditions in a material containing meat. Here, the aerobic condition means that the meat-containing material is placed in the air or in a gas containing oxygen having a concentration similar to that in the air. Lactococcus lactic acid bacteria can produce ZnPP by coexisting with a meat-containing material and leaving it under aerobic conditions, for example, at a temperature of 4 to 37 ° C. for several days to several weeks.
 なお、ラクトコッカス属乳酸菌は、食肉を含有する材料において、嫌気的条件下においてもZnPPを産生することができる。ここで嫌気的条件下とは、一般に嫌気性細菌の培養に用いられるような、酸素がほとんど存在しない、例えば酸素濃度0.1 vol%未満の気体中に置かれることを意味する。 Lactococcus lactic acid bacteria can produce ZnPP even under anaerobic conditions in a material containing meat. Here, the anaerobic condition means that the gas is placed in a gas having almost no oxygen, for example, an oxygen concentration of less than 0.1 vol%, which is generally used for culturing anaerobic bacteria.
 食肉含有材料は、食肉を含有するものであるかぎり制限はなく、実験のための試験用試料、例えばJ. Wakamatsuら, Meat Science, 2020, 165, 107989に記載の豚肉ホモジネート又は豚ひき肉であってもよく、食肉製品の原料であってもよい。食肉としては、例えば牛肉、豚肉、羊肉、山羊肉、馬肉、鹿肉、鶏肉、兎肉、鯨肉その他の、鮮赤色、桃赤色又は赤みがかった色調を呈する哺乳動物の肉を挙げることができるが、これらには限定されない。食肉を含有する材料として食肉製品原料を用いる場合、食肉製品原料は、食肉に加えて、食肉製品の製造に必要な成分、例えば食塩及び任意選択で香辛料等を含有することができる。 The meat-containing material is not limited as long as it contains meat, and is a test sample for an experiment, for example, pork homogenate or minced pork described in J. Wakamatsu et al., Meat Science, 2020, 165, 107989. It may be a raw material for meat products. Examples of meat include beef, pork, mutton, goat meat, horse meat, deer meat, chicken meat, rabbit meat, whale meat and other meats of mammals having a bright red, pinkish red or reddish color. , Not limited to these. When a meat product raw material is used as a material containing meat, the meat product raw material may contain, in addition to the meat, ingredients necessary for the production of the meat product, such as salt and optionally spices.
 なお、後述の実施例にあるように、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株によるZnPP産生量は、共存させる食肉含有材料の加熱により低下することが確認されている。したがって、ラクトコッカス属乳酸菌としてGB(A)-1株を用いる場合、食肉含有材料は、非加熱のものを用いることが好ましく、加熱が求められる場合にもZnPP産生量を過度に低下させない程度の軽度の加熱処理に留めることが好ましい。 As described in Examples described later, it has been confirmed that the amount of ZnPP produced by the Lactococcus lactis subspecies Cremoris GB (A) -1 strain is reduced by heating the coexisting meat-containing material. Therefore, when GB (A) -1 strain is used as Lactococcus lactic acid bacteria, it is preferable to use unheated meat-containing material, and even when heating is required, the amount of ZnPP produced is not excessively reduced. It is preferable to keep it in a mild heat treatment.
 ZnPPは、ラクトコッカス属乳酸菌と共存させた後の食肉含有材料から75%アセトン等を用いて抽出し、HPLCその他の方法により検出又は測定することができる。またJ. Wakamatsuら, Meat Science, 2007, 77, 580-586に記載の方法に従って、420 nmの励起蛍光を照射したときの590 nmの蛍光強度を測定することで、ZnPPの検出及び測定を行うこともできる。 ZnPP can be extracted from the meat-containing material after coexisting with Lactococcus lactic acid bacteria using 75% acetone or the like, and can be detected or measured by HPLC or other methods. In addition, ZnPP is detected and measured by measuring the fluorescence intensity at 590 nm when irradiated with excitation fluorescence at 420 nm according to the method described in J. Wakamatsu et al., Meat Science, 2007, 77, 580-586. You can also do it.
食肉製品の色調改善剤、色調改善方法
 本発明は、ラクトコッカス属乳酸菌を含む、好気的条件下で製造される食肉製品の全体において色調を改善するための剤を提供する。また、本発明は、ラクトコッカス属乳酸菌を食肉製品原料に添加することを含む、好気的条件下で製造される食肉製品の全体において色調を改善する方法を提供する。さらに本発明は、ラクトコッカス属乳酸菌を食肉製品原料に添加すること、及び乳酸菌添加後の食肉製品原料から好気的条件下で食肉製品を製造することを含む、その全体において色調が改善された食肉製品を製造する方法を提供する。
Color tone improving agent for meat products, color tone improving method The present invention provides an agent for improving the color tone of all meat products produced under aerobic conditions, including Lactococcus lactic acid bacteria. The present invention also provides a method for improving the overall color tone of a meat product produced under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the raw material of the meat product. Further, the present invention includes the addition of Lactococcus lactic acid bacteria to the raw material of the meat product and the production of the meat product from the raw material of the meat product after the addition of the lactic acid bacteria under aerobic conditions, and the color tone is improved as a whole. Provide a method for producing a meat product.
 本発明において、色調改善とは、通例的な方法によって製造及び保存した場合には酸素の影響を受けて褐色化又は退色が生じてしまう食肉製品の色調を、好ましい色調に、具体的には鮮赤色、桃赤色又は赤みがかった色等の嗜好性の高い色調にすることに変化させること又は当該色調を維持することをいう。 In the present invention, color tone improvement means to change the color tone of a meat product, which causes browning or fading under the influence of oxygen when manufactured and stored by a conventional method, to a preferable color tone, specifically, freshness. It means to change to a highly palatable color tone such as red, pink red or reddish color, or to maintain the color tone.
 色調改善は、食肉製品の色調を評価する公知の方法によって、例えば、肉眼観察によって、又は色彩色差計を用いて明度L*、色度a*及びb*を測定し、彩度C*及び色相角hを算出する方法等によって評価することができる。 The color tone improvement is performed by measuring the lightness L *, the chromaticity a * and b * by a known method for evaluating the color tone of the meat product, for example, by visual observation or by using a color difference meter, and the saturation C * and the hue. It can be evaluated by a method of calculating the angle h or the like.
 前述のとおり、ラクトコッカス属乳酸菌は、食肉含有材料において好気的条件下でZnPPを産生することができる。したがって、食肉製品原料にラクトコッカス属乳酸菌を加え、好気的条件下で熟成等の製造工程に供することにより、酸素と接触するその表面、及び酸素が浸透し得る表面から5 mm程度の深さまでの部位(表層部という)にZnPPが形成された食肉製品を製造することができる。さらに、ラクトコッカス属乳酸菌は嫌気的条件下であってもZnPPを産生可能であることから、ラクトコッカス属乳酸菌を用いて製造された上記の食肉製品は、その中心部、表面及び表層部のいずれにおいてもZnPPが形成されたものであり得る。 As mentioned above, Lactococcus lactic acid bacteria can produce ZnPP in meat-containing materials under aerobic conditions. Therefore, by adding Lactococcus lactic acid bacteria to the raw material of meat products and subjecting them to manufacturing processes such as aging under aerobic conditions, the surface that comes into contact with oxygen and the surface through which oxygen can permeate to a depth of about 5 mm. It is possible to produce a meat product in which ZnPP is formed in a portion (referred to as a surface layer portion). Furthermore, since Lactococcus lactic acid bacteria can produce ZnPP even under anaerobic conditions, the above-mentioned meat products produced using Lactococcus lactic acid bacteria can be produced in any of the central, surface and surface layers thereof. It is also possible that ZnPP is formed in.
 鮮赤色色素であるZnPPの形成及び蓄積は食肉製品の色調改善をもたらす。したがって、ラクトコッカス属乳酸菌を用いて、色調改善に十分な量のZnPPを食肉製品の全体に形成させることで、その全体において色調が改善された食肉製品を製造することができる。色調改善に十分な量のZnPPの形成は、添加するラクトコッカス属乳酸菌のZnPP形成能に応じて添加量を調節することによって、あるいはラクトコッカス属乳酸菌と食肉製品原料との接触時間を長くすることによって達成することができる。 The formation and accumulation of ZnPP, which is a bright red pigment, brings about an improvement in the color tone of meat products. Therefore, by using Lactococcus lactic acid bacteria to form a sufficient amount of ZnPP in the whole meat product for improving the color tone, it is possible to produce a meat product having an improved color tone as a whole. To form a sufficient amount of ZnPP to improve the color tone, adjust the addition amount according to the ZnPP forming ability of the Lactococcus lactic acid bacterium to be added, or lengthen the contact time between the Lactococcus lactic acid bacterium and the raw material of the meat product. Can be achieved by.
 本発明における食肉製品としては、骨付きハム、ボンレスハム、ロースハム、ショルダーハム、ベリーハム、ラックスハム、生ハム等のハム類;プレスハム、混合プレスハム等のプレスハム類;ボロニアソーセージ、フランクフルトソーセージ、ウィンナーソーセージ、リオナソーセージ、レバーソーセージ、セミドライソーセージ、ドライソーセージ、加圧加熱ソーセージ、混合ソーセージ、加圧加熱混合ソーセージ等のソーセージ類;ベーコン、ロースベーコン、ショルダーベーコン、ミドルベーコン、サイドベーコン等のベーコン類が挙げられるが、これらには限定されない。 The meat products in the present invention include hams such as bone-in ham, boneless ham, loin ham, shoulder ham, berry ham, lux ham, and raw ham; pressed hams such as pressed ham and mixed pressed ham; Boronia sausage, Frankfurt sausage, and Wiener. Sausages such as sausages, liona sausages, lever sausages, semi-dry sausages, dry sausages, pressurized heated sausages, mixed sausages, pressurized heated mixed sausages; bacon, loin bacon, shoulder bacon, middle bacon, side bacon and other bacon However, it is not limited to these.
 食肉製品は、酸素による色調劣化がより顕著にあらわれるもの、すなわちその製造工程において好気的条件下での長期熟成又は乾燥を必要とするもの、あるいは好気的条件下での長期保存が求められるものが好ましい。 Meat products are required to have more remarkable color deterioration due to oxygen, that is, products that require long-term aging or drying under aerobic conditions in the manufacturing process, or long-term storage under aerobic conditions. Those are preferable.
 製造の際に加熱処理が行われる食肉製品の場合、食肉由来のヘムが加熱により灰褐色の変性グロビンヘミクロムとなるため、色調改善効果を得るためにより多くのZnPP形成が求められることがある。このようなヘムの加熱変性の影響の回避が望まれる場合、食肉製品は、非加熱食肉製品又は乾燥食肉製品であることが好ましい。このような食肉製品の例としては、ラックスハム、生ハム、セミドライソーセージ、ドライソーセージ等を挙げることができる。本発明において、特に好ましい食肉製品は、セミドライソーセージ又はドライソーセージである。 In the case of meat products that are heat-treated during production, the heme derived from the meat becomes grayish brown modified globin hemichrome by heating, so more ZnPP formation may be required to obtain the effect of improving the color tone. When it is desired to avoid the influence of such heat denaturation of heme, the meat product is preferably a non-heated meat product or a dried meat product. Examples of such meat products include lux ham, prosciutto, semi-dry sausage, and dry sausage. In the present invention, a particularly preferable meat product is semi-dry sausage or dry sausage.
 食肉製品は、その製造工程のいずれかの時点で、加熱食肉製品の場合は加熱前の製造工程のいずれかの時点でラクトコッカス属乳酸菌を食肉製品原料に加えること以外は、一般的な製造方法によって製造することができ、そのような製造方法の実施は、当業者の通常の実施能力の範囲内である。ラクトコッカス属乳酸菌の添加は、例えば、ソーセージ類の場合は、肉挽き、塩漬、調味、ケーシングへの充填のいずれかの工程において、ハム類の場合は整形、塩漬、ケーシングへの充填のいずれかの工程において、ベーコン類の場合は整形、塩漬のいずれかの工程において行うことができる。なお、食肉製品の製造にあたり、真空包装や脱酸素剤といった酸素遮断手段は、特に使用の必要はないが、使用を排除するものではない。また、亜硝酸塩等の従来の発色剤も特に使用の必要はなく、むしろ発色剤から産生される一酸化窒素はZnPPの形成を阻害することから(J. Wakamatsuら, Meat Science, 2010, 84(1), 125-128)、本発明においては、食肉製品の製造にあたって発色剤は使用しない、又は使用する場合はZnPPの形成を阻害しない程度の量に留めることが好ましい。 A general manufacturing method for meat products, except that lactococcus lactic acid bacteria are added to the raw material of meat products at any time in the manufacturing process, and in the case of heated meat products, at any time in the manufacturing process before heating. It can be manufactured by, and the implementation of such manufacturing methods is within the normal practice capacity of those skilled in the art. For example, in the case of sausages, the addition of lactococcus lactic acid bacteria is performed in any of the steps of meat grinding, salting, seasoning, and filling in a casing, and in the case of hams, shaping, salting, and filling in a casing. In any of the steps, in the case of bacon, it can be carried out in either the shaping or salting step. In the production of meat products, oxygen blocking means such as vacuum packaging and oxygen scavengers do not need to be used in particular, but the use is not excluded. In addition, conventional color formers such as nitrite do not need to be used in particular, but rather nitric oxide produced by the color former inhibits the formation of ZnPP (J. Wakamatsu et al., Meat Science, 2010, 84 (J. Wakamatsu et al., Meat Science, 2010, 84). 1), 125-128), In the present invention, it is preferable not to use a color-developing agent in the production of meat products, or if it is used, to keep the amount so as not to inhibit the formation of ZnPP.
 このようにして製造された食肉製品は、発色剤や酸素除去手段を使用しないにもかかわらず、その中心部だけでなく表面や表層部において優れた色調を有する。そのため、見た目の悪化による製品の廃棄を回避することができ、動物性蛋白質資源の節約や食品廃棄物の節減にもつながると期待される。さらに、発色剤を使用しないことにより、ニトロソアミンの生成のおそれがなく、安全性が高い。 The meat product produced in this way has an excellent color tone not only in the central portion but also on the surface and the surface layer portion, even though the coloring agent and the oxygen removing means are not used. Therefore, it is possible to avoid product disposal due to deterioration of appearance, and it is expected that it will lead to saving of animal protein resources and reduction of food waste. Furthermore, by not using a color former, there is no risk of nitrosamine formation, and safety is high.
 以下の実施例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
実施例1 GB(A)-1株によるZnPP形成及び色調改善(加塩豚ひき肉モデル、嫌気的条件下)
 下記表2に記載の細菌をそれぞれの培地で37℃で一晩嫌気的に培養した後、遠心分離で菌体を回収して滅菌生理食塩水に懸濁した。
Figure JPOXMLDOC01-appb-T000002
AHU:国立大学法人北海道大学大学院農学研究院応用菌学 菌株保存室
Example 1 ZnPP formation and color tone improvement by GB (A) -1 strain (ground meat model of salted pork, anaerobic conditions)
The bacteria listed in Table 2 below were anaerobically cultured in each medium at 37 ° C. overnight, and then the cells were collected by centrifugation and suspended in sterile physiological saline.
Figure JPOXMLDOC01-appb-T000002
AHU: National University Corporation Hokkaido University Graduate School of Agriculture Applied Mycological Strain Preservation Room
 市販の国産交雑豚ロースから得た胸腰最長筋のひき肉を真空包装した後、UV照射下で一晩滅菌して滅菌豚ひき肉を得た。滅菌豚ひき肉9 gにNaClを3質量%となるように加えて混合した後、上記細菌懸濁液1 mL(最終濃度2×106CFU/g)を加えて混合した。混合物を真空包装袋(Hiryu N-1、Asahi Kasei Pax Corp.)に充填して真空包装し、18℃で14日間インキュベートした。細菌懸濁液に代えて滅菌水又は亜硝酸ナトリウム(最終濃度200 ppm)を加えた混合物(それぞれ対照区及び亜硝酸区)を上記と同様に作製し、インキュベートした。 After vacuum-packing the minced meat of the longissimus chest and waist obtained from commercially available domestically produced crossed pork loin, it was sterilized overnight under UV irradiation to obtain sterilized minced pork. After adding NaCl to 3% by mass to 9 g of sterilized minced pork and mixing, 1 mL of the above bacterial suspension (final concentration 2 × 10 6 CFU / g) was added and mixed. The mixture was packed in a vacuum package (Hiryu N-1, Asahi Kasei Pax Corp.), vacuum packaged and incubated at 18 ° C for 14 days. A mixture (control group and nitrite group, respectively) containing sterile water or sodium nitrite (final concentration 200 ppm) instead of the bacterial suspension was prepared and incubated in the same manner as above.
 インキュベート後の各試料の表面をデジタルカメラを用いて撮影して(図1上段)、色調を観察した。また、420 nm付近を透過するシート型バンドパスフィルター(Fujifilm BPB42, Fuji Corporation)を搭載した2台の紫色LED照射装置を用いて波長420 nmの光でZnPPを励起させ、ZnPPの赤色蛍光(590nm)を、600 nm付近を透過するシート型バンドパスフィルター(Fujifilm BPB 60, Fuji Corporation)を備えたデジタルカメラを用いて暗条件で撮影した(図1下段)。細菌接種区はいずれも、亜硝酸区ほどではないが肉眼観察で鮮やかな赤色を示した。また対照区及び亜硝酸区ではZnPPの赤色蛍光はほとんど認められなかったが、細菌接種区ではいずれも強いZnPPの赤色蛍光が確認された。 The surface of each sample after incubation was photographed using a digital camera (upper part of Fig. 1), and the color tone was observed. In addition, using two purple LED irradiators equipped with a sheet-type bandpass filter (Fujifilm BPB42, Fuji Corporation) that transmits around 420 nm, ZnPP is excited by light with a wavelength of 420 nm, and the red fluorescence of ZnPP (590 nm). ) Was photographed in dark conditions using a digital camera equipped with a sheet-type bandpass filter (Fujifilm BPB60, Fuji Corporation) that transmits around 600 nm (lower part of Fig. 1). All of the bacterial inoculation plots showed a bright red color by macroscopic observation, though not as much as in the nitrite plot. In addition, almost no red fluorescence of ZnPP was observed in the control group and the nitrite group, but strong red fluorescence of ZnPP was confirmed in both the bacterial inoculation group.
 各試料の明度L*、赤色度a*及び黄色度b*を色彩色差計(CM-700d、Konica Minolta)を用いて測定し、a*及びb*から彩度C*及び色相角hを算出した(図2)。細菌接種区の赤色度は、対照区よりも高く、亜硝酸区に近い値を示した。また、細菌接種区は、亜硝酸区と比較して、黄色度は低いが色相角は同等であった。このことは、細菌接種区の色合いは亜硝酸区と概ね等しいことを意味する。また、細菌接種区は、明度が亜硝酸区よりやや高く、彩度がやや低いことから、細菌接種区の色調は、明るさと鮮やかさがやや劣るものの、亜硝酸区と同様の色合いになることが確認された。 The brightness L *, redness a * and yellowness b * of each sample are measured using a color difference meter (CM-700d, Konica Minolta), and the saturation C * and hue angle h are calculated from a * and b *. (Fig. 2). The redness of the bacterial inoculated group was higher than that of the control group and showed a value close to that of the nitrite group. In addition, the bacterial inoculation group had a lower yellowness but the same hue angle as the nitrite group. This means that the shade of the bacterial inoculation plot is roughly equal to that of the nitrite plot. In addition, since the lightness of the bacterial inoculation area is slightly higher than that of the nitrite area and the saturation is slightly lower, the color tone of the bacterial inoculation area is slightly inferior in brightness and vividness, but the color tone is similar to that of the nitrite area. Was confirmed.
実施例2 GB(A)-1株によるZnPP形成及び色調改善(ドライソーセージ)
 滅菌豚ひき肉にNaCl及びグルコースをそれぞれ3質量%及び1質量%となるように加えて混合した後、実施例1で調製したEF、LnL、LbP、LbC及びLLCの細菌懸濁液を最終濃度が1×106CFU/kgとなるように加えて混合した。混合物をケーシング(折径6cm)に充填した。吊るしながら1℃で7日間保持した後、23℃で8時間発酵させた。その後直ちに7℃まで温度を下げ、2日で1℃上昇させて、14℃まで2週間乾燥し、その後14℃で1週間乾燥・熟成を行い、ドライソーセージを製造した。乾燥・熟成期間中の相対湿度は80-90%とした。また、細菌懸濁液に代えて滅菌水又は亜硝酸ナトリウム(最終濃度200 ppm)を加えて、上記と同様にしてドライソーセージ(それぞれ対照区及び亜硝酸区)を製造した。
Example 2 ZnPP formation and color tone improvement by GB (A) -1 strain (dry sausage)
After adding NaCl and glucose to 3% by mass and 1% by mass, respectively, to sterilized minced pork and mixing them, the final concentrations of the bacterial suspensions of EF, LnL, LbP, LbC and LLC prepared in Example 1 were adjusted. It was added and mixed to 1 × 10 6 CFU / kg. The mixture was filled in a casing (folding diameter 6 cm). After holding at 1 ° C for 7 days while hanging, it was fermented at 23 ° C for 8 hours. Immediately after that, the temperature was lowered to 7 ° C, raised by 1 ° C in 2 days, dried to 14 ° C for 2 weeks, and then dried and aged at 14 ° C for 1 week to produce dry sausages. The relative humidity during the drying and aging period was 80-90%. In addition, sterile water or sodium nitrite (final concentration 200 ppm) was added in place of the bacterial suspension to produce dry sausages (control group and nitrite group, respectively) in the same manner as above.
 実施例1と同様にして、各ドライソーセージ断面の色調を観察し、ZnPPの赤色蛍光を測定した(図3)。亜硝酸区のドライソーセージは、内部、表層部共に鮮やかな赤色を呈したが、ZnPP由来の赤色蛍光は観察されなかった。LnL区は、色調は鮮やかな赤色ではなく、ZnPP由来の赤色蛍光も強く観察されなかった。また、EF区及びLbP区は、ZnPP由来の赤色蛍光が断面内部では強く観察されたものの表層部では観察されず、また色調も良好ではなかった。 In the same manner as in Example 1, the color tone of each dry sausage cross section was observed, and the red fluorescence of ZnPP was measured (FIG. 3). The dry sausage in the nitrite group showed a bright red color both inside and on the surface, but no red fluorescence derived from ZnPP was observed. In the LnL group, the color tone was not bright red, and red fluorescence derived from ZnPP was not strongly observed. In the EF group and the LbP group, red fluorescence derived from ZnPP was strongly observed inside the cross section, but not on the surface layer, and the color tone was not good.
 対照的に、LbC区及びLLC区は、色調は鮮やかな赤色を示し、亜硝酸区と同様に明るいものであった。またZnPP由来の強い赤色蛍光も観察された。特に、LLC区では断面の内部だけでなく表層部を含む全体で強い赤色蛍光が観察され、表層部を含む断面全体が好ましい鮮やかな色調であった。一方、LbC区では、表層部では赤色蛍光が認められず、表層部と内部の色は大きく異なっていた。 In contrast, the LbC and LLC plots showed a bright red color and were as bright as the nitrite plot. In addition, strong red fluorescence derived from ZnPP was also observed. In particular, in the LLC section, strong red fluorescence was observed not only inside the cross section but also in the entire cross section including the surface layer portion, and the entire cross section including the surface layer portion had a preferable vivid color tone. On the other hand, in the LbC group, red fluorescence was not observed in the surface layer portion, and the colors in the surface layer portion and the inside were significantly different.
 実施例1と同様にして、ドライソーセージ中心部の色調を色彩色差計により数値化した(図4)。LLC区では、赤色度が亜硝酸区と同程度であるだけでなく、彩度は最も高かった。 In the same manner as in Example 1, the color tone of the central part of the dry sausage was quantified by a color difference meter (Fig. 4). In the LLC plot, not only was the redness comparable to that in the nitrite plot, but the saturation was also the highest.
 ドライソーセージ表面の色調を図5に示す。LLC区の色調は亜硝酸区と同等に鮮やかな赤色を示した。LnL区及びEF区は、対照区、LbC区又はLbP区と比べると赤色を示したが、LLC区及び亜硝酸区よりも鮮やかではなかった。 Figure 5 shows the color tone of the surface of the dry sausage. The color tone of the LLC plot was as bright red as that of the nitrite plot. The LnL and EF plots showed a red color compared to the control plot, LbC plot or LbP plot, but were less vivid than the LLC and nitrite plots.
 ドライソーセージ表面の色調を色彩色差計により数値化したグラフを図6に示す。LLC区は亜硝酸区と同程度の赤色度を示し、色相角も彩度も同程度であった。 FIG. 6 shows a graph in which the color tone of the surface of the dry sausage is quantified by a color difference meter. The LLC group showed the same degree of redness as the nitrite group, and the hue angle and saturation were also the same.
 以上のように、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株は好気的条件下でのドライソーセージの製造において、表面及び表層部を含めたドライソーセージ全体においてZnPPを形成させ、ドライソーセージ全体の色調改善効果を有することが確認された。 As described above, the Lactococcus lactis subspecies Cremoris GB (A) -1 strain forms ZnPP on the entire dry sausage including the surface and surface layer in the production of dry sausage under aerobic conditions, and is dried. It was confirmed that the sausage had an effect of improving the color tone of the whole sausage.
実施例3 GB(A)-1株によるZnPP形成(豚肉ホモジネート、好気的条件下及び嫌気的条件下)
 生理食塩水に滅菌豚ひき肉を30質量%となるように加え、ホモジナイザー(CELL MASTER CM-100, AZ ONE Co.)を用いて10,000 rpmで90秒間ホモジナイズした。滅菌試験管に、ホモジネート、NaCl及び実施例1で調製したLnL、LnM、LbP、LbC及びLLCの細菌懸濁液を加えて混合した(豚ひき肉の最終濃度20質量%、NaClの最終濃度3質量%、細菌の最終濃度2.0×106 CFU/mL)。試験管に蓋をしてガス不透過性の袋に入れ、25℃で5日間、好気的条件下又は嫌気的条件下でインキュベートした。嫌気的条件は、酸素吸収剤(A-500HS, I. S. O. Inc.)を用いて維持した。また、細菌懸濁液に代えて滅菌水を加えた混合物(対照区)、又は細菌懸濁液に代えて抗生物質(ペニシリンGカリウム 最終濃度70μg/mL、ストレプトマイシン硫酸塩 最終濃度250μg/mL、ゲンタマイシン硫酸塩 最終濃度50μg/mL)を加えた混合物(抗生物質区)を上記と同様に作製し、インキュベートした。抗生物質区は、操作中にZnPP形成能を有する微生物の混入がなかったことを確認するために設けた。
Example 3 ZnPP formation with GB (A) -1 strain (pork homogenate, aerobic and anaerobic conditions)
Sterile minced pork was added to physiological saline to a concentration of 30% by mass, and homogenized at 10,000 rpm for 90 seconds using a homogenizer (CELL MASTER CM-100, AZ ONE Co.). Bacterial suspensions of homogenate, NaCl and LnL, LnM, LbP, LbC and LLC prepared in Example 1 were added to a sterile test tube and mixed (final concentration of minced pork 20% by mass, final concentration of NaCl 3 mass). %, Final bacterial concentration 2.0 x 10 6 CFU / mL). The test tubes were covered and placed in a gas-impermeable bag and incubated at 25 ° C. for 5 days under aerobic or anaerobic conditions. Anaerobic conditions were maintained with an oxygen absorber (A-500HS, I.S.O. Inc.). In addition, a mixture in which sterile water was added instead of the bacterial suspension (control group), or an antibiotic (penicillin G potassium final concentration 70 μg / mL, streptomycin sulfate final concentration 250 μg / mL, gentamicin) instead of the bacterial suspension. A mixture (antibiotic group) to which the final concentration of sulfate 50 μg / mL) was added was prepared in the same manner as above and incubated. An antibiotic group was set up to confirm that there was no contamination of microorganisms capable of forming ZnPP during the operation.
 インキュベート後の混合物に3倍量の冷アセトンを加えて混合し、4℃の暗所で30分間静置してZnPPを抽出した。ろ紙でろ過した後、蛍光分光光度計(RF-5300PC、島津製作所)を用いて波長420 nmの励起光で励起したときの波長590 nmの蛍光強度を測定し、ZnPP形成量とした。 3 times the amount of cold acetone was added to the mixture after incubation, mixed, and allowed to stand in a dark place at 4 ° C for 30 minutes to extract ZnPP. After filtering with filter paper, the fluorescence intensity at a wavelength of 590 nm when excited with excitation light with a wavelength of 420 nm was measured using a fluorescence spectrophotometer (RF-5300PC, Shimadzu Corporation) and used as the amount of ZnPP formed.
 ZnPP形成量を図7に示す。LnL区、LnM区、LbP区及びLbC区では、嫌気的条件下ではZnPPが形成されるが、好気的条件下ではZnPPの形成はほぼ完全に抑制された。一方、LLC区では、好気的条件下でも嫌気的条件下と同程度にZnPPが形成された。 The amount of ZnPP formed is shown in FIG. In the LnL, LnM, LbP and LbC sections, ZnPP was formed under anaerobic conditions, but ZnPP formation was almost completely suppressed under aerobic conditions. On the other hand, in the LLC section, ZnPP was formed under aerobic conditions to the same extent as under anaerobic conditions.
実施例4 GB(A)-1株によるZnPP形成(加熱又は非加熱の豚肉ホモジネート、好気的条件下及び嫌気的条件下)
 非加熱の加塩豚肉ホモジネート、短時間加熱(100℃、20秒間)して酵素を失活させた加塩豚肉ホモジネート、及びオートクレーブにより加圧加熱(121℃、15分間)した加塩豚肉ホモジネートを用いて、実施例3と同様にして、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株のZnPP形成を評価した。
Example 4 ZnPP formation with GB (A) -1 strain (heated or unheated pork homogenate, aerobic and anaerobic conditions)
Using unheated salted pork homogenate, short-time heating (100 ° C, 20 seconds) to inactivate the enzyme, and autoclaved pressure-heating (121 ° C, 15 minutes) salted pork homogenate. The ZnPP formation of the Lactococcus lactis subspecies Cremoris GB (A) -1 strain was evaluated in the same manner as in Example 3.
 ZnPP形成量を図8に示す。LLC区のZnPP形成量はホモジネートの加熱処理により低下し、特に加圧加熱処理を行うとZnPP形成は観察されなくなった。 The amount of ZnPP formed is shown in FIG. The amount of ZnPP formed in the LLC group decreased due to the heat treatment of the homogenate, and in particular, the ZnPP formation was no longer observed when the pressure heat treatment was performed.
実施例5 ラクトコッカス属乳酸菌によるZnPP形成(豚肉ホモジネート、好気的条件下)
 実施例3と同様にして、加塩豚肉ホモジネートに下記表3に記載のラクトコッカス属乳酸菌を加え、好気的条件下でのZnPP形成を評価した。
Figure JPOXMLDOC01-appb-T000003
NBRC:独立行政法人製品評価技術基盤機構 生物資源センター
Example 5 ZnPP formation by Lactococcus lactic acid bacteria (pork homogenate, aerobic conditions)
Lactococcus lactic acid bacteria shown in Table 3 below were added to the salted pork homogenate in the same manner as in Example 3, and ZnPP formation was evaluated under aerobic conditions.
Figure JPOXMLDOC01-appb-T000003
NBRC: National Institute of Technology and Evaluation Biological Resources Center
 いずれのラクトコッカス属乳酸菌を用いた場合も、好気的条件下でのZnPP形成が確認され、特に、ラクトコッカス・ラクティス亜種クレモリスGB(A)-1株、ラクトコッカス・ラクティス亜種ラクティスNBRC12007株及びNBRC100933株、ラクトコッカス・ラクティス亜種トゥルクタエNBRC110453株、並びにラクトコッカス・ラクティスCH-1株は、高いZnPP形成能を示した(図9)。

 
ZnPP formation was confirmed under aerobic conditions when any Lactococcus lactic acid bacterium was used, and in particular, Lactococcus lactis subspecies Cremoris GB (A) -1 strain, Lactococcus lactis subspecies Lactis NBRC12007 The strain and NBRC100933 strain, Lactococcus lactis subspecies Turkutae NBRC110453 strain, and Lactococcus lactis CH-1 strain showed high ZnPP forming ability (Fig. 9).

Claims (16)

  1.  ラクトコッカス属乳酸菌を含む、食肉を含有する材料において好気的条件下で亜鉛プロトポルフィリンIXを形成させるための剤。 An agent for forming zinc protoporphyrin IX under aerobic conditions in a material containing meat, including Lactococcus lactic acid bacteria.
  2.  乳酸菌がラクトコッカス・ラクティス(Lactococcus lactis)に属する細菌である、請求項1に記載の剤。 The agent according to claim 1, wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  3.  乳酸菌がラクトコッカス・ラクティス亜種クレモリス(Lactococcus lactis subsp. cremoris)に属する細菌である、請求項1又は2に記載の剤。 The agent according to claim 1 or 2, wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subsp. Cremoris.
  4.  ラクトコッカス属乳酸菌を、食肉を含有する材料に添加することを含む、食肉を含有する材料において好気的条件下で亜鉛プロトポルフィリンIXを形成させる方法。 A method for forming zinc protoporphyrin IX in a meat-containing material under aerobic conditions, which comprises adding Lactococcus lactic acid bacteria to the meat-containing material.
  5.  乳酸菌がラクトコッカス・ラクティスに属する細菌である、請求項4に記載の方法。 The method according to claim 4, wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  6.  乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、請求項4又は5に記載の方法。 The method according to claim 4 or 5, wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  7.  ラクトコッカス属乳酸菌を含む、好気的条件下で製造される食肉製品の全体において色調を改善するための剤。 An agent for improving the color tone of all meat products manufactured under aerobic conditions, including Lactococcus lactic acid bacteria.
  8.  乳酸菌がラクトコッカス・ラクティスに属する細菌である、請求項7に記載の剤。 The agent according to claim 7, wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  9.  乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、請求項7又は8に記載の剤。 The agent according to claim 7 or 8, wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  10.  ラクトコッカス属乳酸菌を食肉製品原料に添加することを含む、好気的条件下で製造される食肉製品の全体において色調を改善する方法。 A method for improving the overall color tone of meat products manufactured under aerobic conditions, including the addition of Lactococcus lactic acid bacteria to the raw material of meat products.
  11.  乳酸菌がラクトコッカス・ラクティスに属する細菌である、請求項10に記載の方法。 The method according to claim 10, wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  12.  乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、請求項10又は11に記載の方法。 The method according to claim 10 or 11, wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  13.  ラクトコッカス属乳酸菌を食肉製品原料に添加すること、及び乳酸菌添加後の食肉製品原料から好気的条件下で食肉製品を製造することを含む、その全体において色調が改善された食肉製品を製造する方法。 Producing meat products with improved color tone as a whole, including adding Lactococcus lactic acid bacteria to meat product raw materials and producing meat products from meat product raw materials after adding lactic acid bacteria under aerobic conditions. Method.
  14.  乳酸菌がラクトコッカス・ラクティスに属する細菌である、請求項13に記載の方法。 The method according to claim 13, wherein the lactic acid bacterium is a bacterium belonging to Lactococcus lactis.
  15.  乳酸菌がラクトコッカス・ラクティス亜種クレモリスに属する細菌である、請求項13又は14に記載の方法。 The method according to claim 13 or 14, wherein the lactic acid bacterium is a bacterium belonging to the Lactococcus lactis subspecies Cremoris.
  16.  受託番号NITE BP-03229として寄託されているラクトコッカス・ラクティス亜種クレモリスGB(A)-1株。

     
    Lactococcus lactis subspecies Cremoris GB (A) -1 strain deposited under accession number NITE BP-03229.

PCT/JP2021/028777 2020-08-03 2021-08-03 Zinc protoporphyrin ix-forming agent containing lactic acid bacteria, and color tone-improving method and manufacturing method for processed food using same WO2022030493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131367 2020-08-03
JP2020131367A JP7190750B2 (en) 2020-08-03 2020-08-03 Zinc protoporphyrin IX forming agent containing lactic acid bacteria, method for improving color tone of processed food using the same, and method for producing processed food

Publications (1)

Publication Number Publication Date
WO2022030493A1 true WO2022030493A1 (en) 2022-02-10

Family

ID=80118040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028777 WO2022030493A1 (en) 2020-08-03 2021-08-03 Zinc protoporphyrin ix-forming agent containing lactic acid bacteria, and color tone-improving method and manufacturing method for processed food using same

Country Status (2)

Country Link
JP (1) JP7190750B2 (en)
WO (1) WO2022030493A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537427A (en) * 2010-08-17 2013-10-03 セーホーエル.ハンセン アクティーゼルスカブ Lactococcus lactis strain with high productivity of vitamin K2
WO2015111597A1 (en) * 2014-01-22 2015-07-30 株式会社明治 Method for preparing citrulline
EP3318625A2 (en) * 2016-11-08 2018-05-09 Innolact Group Oy A lactic acid bacteria strain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537427A (en) * 2010-08-17 2013-10-03 セーホーエル.ハンセン アクティーゼルスカブ Lactococcus lactis strain with high productivity of vitamin K2
WO2015111597A1 (en) * 2014-01-22 2015-07-30 株式会社明治 Method for preparing citrulline
EP3318625A2 (en) * 2016-11-08 2018-05-09 Innolact Group Oy A lactic acid bacteria strain

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASADUZZAMAN MD; OHYA MOMO; KUMURA HARUTO; HAYAKAWA TORU; WAKAMATSU JUN-ICHI: "Searching for high ZnPP-forming edible bacteria to improve the color of fermented meat products without nitrite/nitrate", MEAT SCIENCE., ELSEVIER SCIENCE., GB, vol. 165, 7 March 2020 (2020-03-07), GB , XP086126185, ISSN: 0309-1740, DOI: 10.1016/j.meatsci.2020.108109 *
KAUSER-UL-ALAM MD., HAYAKAWA TORU, KUMURA HARUTO, WAKAMATSU JUN-ICHI: "High ZnPP-forming food-grade lactic acid bacteria as a potential substitute for nitrite/nitrate to improve the color of meat products", MEAT SCIENCE., ELSEVIER SCIENCE., GB, vol. 176, 1 June 2021 (2021-06-01), GB , pages 108467, XP055894286, ISSN: 0309-1740, DOI: 10.1016/j.meatsci.2021.108467 *
KAUSER-UL-ALAM MD., TOBA YU, HIOKI SHOJI, HAYAKAWA TORU, KUMURA HARUTO, WAKAMATSU JUN-ICHI: "Lactococcus lactis subsp. cremoris Produces Zinc Protoporphyrin IX Both Aerobically and Anaerobically and Improves the Bright Red Color of Fermented Meat Products", FOODS, vol. 9, no. 11, pages 1583, XP055894289, DOI: 10.3390/foods9111583 *

Also Published As

Publication number Publication date
JP7190750B2 (en) 2022-12-16
JP2022028150A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
Leroy et al. Functional meat starter cultures for improved sausage fermentation
Toldrá The storage and preservation of meat. III—Meat processing
Pegg et al. Nitrite curing of meat: The N-nitrosamine problem and nitrite alternatives
Montiel et al. Effect of high pressure treatments on smoked cod quality during refrigerated storage
KR101873988B1 (en) A natural nitrite containing spinach extract and color developing method of meat having the same
Ko et al. Nitrite formation from vegetable sources and its use as a preservative in cooked sausage
Yu et al. Effect of Monascus as a nitrite substitute on color, lipid oxidation, and proteolysis of fermented meat mince
KR101849155B1 (en) Method for producing aged meat using high hydrostatic pressure treatment
Iacumin et al. Prevention of Aspergillus ochraceus growth on and Ochratoxin a contamination of sausages using ozonated air
Stadnik et al. Effect of acid whey on physicochemical characteristics of dry‐cured organic pork loins without nitrite
Danijela et al. Effect of specific packaging conditions on myoglobin and meat color
Antara et al. Effects of indigenous starter cultures on the microbial and physicochemical characteristics of Urutan, a Balinese fermented sausage
Dursun et al. The effect of edible coating on the quality of smoked fish.
Cheng et al. Characterization of Cantonese sausage fermented by a mixed starter culture
EP1676489A2 (en) Method of producing food and food produced by the method
WO2022030493A1 (en) Zinc protoporphyrin ix-forming agent containing lactic acid bacteria, and color tone-improving method and manufacturing method for processed food using same
Vatanyoopaisarn et al. Potential use of lactic acid bacteria with bacteriocin-like activity against Staphylococcus aureus as dual starter cultures in Thai fermented sausage" Sai Krok Prew.".
JP4523836B2 (en) Food production method and food obtained by the production method
Simard et al. Effects of temperature, light and storage time on the physicochemical and sensory characteristics of vacuum-or nitrogen-packed frankfurters
Jin et al. Physicochemical and sensory properties of irradiated dry-cured ham
Deraz et al. A model system for conversion of metmyoglobin to bright red myoglobin derivatives in organic sausages using potential probiotic lactic acid bacteria
JP4523894B2 (en) Food production method and food obtained by the production method
MORZEL et al. Defined starter cultures used for fermentation of salmon fillets
Lücke European products
Kawahara et al. Bright red color formation of cooked pork loin cured with lactic acid bacteria starter culture without adding nitrite during low-temperature storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853365

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853365

Country of ref document: EP

Kind code of ref document: A1