WO2022030459A1 - Modified polyphenylene sulfide resin, resin composition and molded article - Google Patents

Modified polyphenylene sulfide resin, resin composition and molded article Download PDF

Info

Publication number
WO2022030459A1
WO2022030459A1 PCT/JP2021/028656 JP2021028656W WO2022030459A1 WO 2022030459 A1 WO2022030459 A1 WO 2022030459A1 JP 2021028656 W JP2021028656 W JP 2021028656W WO 2022030459 A1 WO2022030459 A1 WO 2022030459A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyphenylene sulfide
modified polyphenylene
mol
resin composition
Prior art date
Application number
PCT/JP2021/028656
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 村野
晴紀 目代
義紀 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2022030459A1 publication Critical patent/WO2022030459A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a modified polyphenylene sulfide resin, a resin composition containing the modified polyphenylene sulfide resin, and a molded product comprising the above-mentioned modified polyphenylene sulfide resin or the above-mentioned resin composition.
  • Polyphenylene sulfide resin (PAS) represented by polyphenylene sulfide resin (PPS) is an engineering plastic having excellent heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical characteristics, dimensional stability, and the like. PAS can be molded into various molded products, films, sheets, fibers and the like by general melt processing methods such as extrusion molding, injection molding and compression molding. Therefore, PPS is widely used in a wide range of technical fields such as electrical equipment, electronic equipment, automobile equipment, and packaging materials.
  • Examples of the resin composition having excellent vibration damping properties include a polyamide resin composition containing a plate-shaped filler or a needle-shaped filler (see Patent Document 1) and an emulsion resin composition for a vibration damping material (Patent Document 2). ) Etc. are known.
  • the resin composition described in Patent Document 1 cannot be used for fillerless applications because it contains a filler indispensably.
  • the emulsion resin composition for vibration damping material described in Patent Document 2 is an emulsion resin composition, it is difficult to apply it to general resin molding methods such as press molding, extrusion molding, and injection molding. There is a problem.
  • the present invention has been made in view of the above problems, and is a modified polyphenylene sulfide resin that exhibits good vibration damping properties even if it does not contain a filler, and a resin containing the modified polyphenylene sulfide and another resin. It is an object of the present invention to provide a composition and a molded product comprising the above-mentioned modified polyphenylene sulfide or the above-mentioned resin composition.
  • the present inventors have described the structural unit (I) in the modified PPS resin containing the structural unit (I) represented by the following formula (1) and the structural unit (II) represented by the following formula (2).
  • the present invention has been found that the above problem can be solved by containing the constituent unit (II) in the range of 5 mol% or more and 95 mol% or less with respect to the total number of moles and the number of moles of the constituent unit (II). It came to be completed.
  • -Ph 1 -S -... (1) -Ph 2 -S -... (2) In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.
  • the modified polyphenylene sulfide resin according to the present invention contains a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2), and is a structural unit (I).
  • the constituent unit (II) is contained in an amount of 5 mol% or more and 95 mol% or less with respect to the total of the number of moles and the number of moles of the constituent unit (II).
  • -Ph 1 -S -... (1) -Ph 2 -S -... (2) In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.
  • the total ratio of the number of moles of the constituent unit (I) and the number of moles of the constituent unit (II) to the number of moles of all the constituent units may be 80 mol% or more.
  • the dimethyl-p-phenylene group may be a 2,5-dimethylbenzene-1,4-diyl group.
  • the resin composition according to the present invention contains the above-mentioned modified polyphenylene sulfide resin and other resins other than the above-mentioned modified polyphenylene sulfide resin.
  • the ratio of the mass of the modified polyphenylene sulfide resin to the total mass of the modified polyphenylene sulfide resin and the mass of the other resin may be 1% by mass or more and 90% by mass or less.
  • the other resin may be a thermoplastic resin.
  • thermoplastic resin may be a polyarylene sulfide resin.
  • the molded product is made of the above-mentioned modified polyphenylene sulfide resin or the above-mentioned resin composition.
  • the above-mentioned molded product may show a value of 0.150 or more as a loss coefficient measured according to the dynamic viscoelasticity measurement.
  • a modified polyphenylene sulfide resin that exhibits good vibration damping properties even if it does not contain a filler, a resin composition containing the modified polyphenylene sulfide and another resin, and the above-mentioned modified polyphenylene sulfide or the above-mentioned modified polyphenylene sulfide or It is possible to provide a molded product made of the above-mentioned resin composition.
  • the modified polyphenylene sulfide resin (hereinafter, also referred to as a modified PPS resin) contains a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2).
  • the constituent unit (II) is contained in an amount of 5 mol% or more and 95 mol% or less with respect to the total of the number of moles of the unit (I) and the number of moles of the constituent unit (II).
  • the modified PPS resin contains the structural unit (II) containing a dimethyl-p-phenylene group in an amount within the above-mentioned predetermined range, the modified PPS resin exhibits excellent vibration damping properties.
  • the modified PPS resin preferably exhibits a value of 0.150 or more as a loss coefficient measured according to the dynamic viscoelasticity measurement.
  • the value of the loss coefficient is preferably 0.170 or more, and more preferably 0.200 or more.
  • the content of the constituent unit (II) in the modified PPS resin is a constituent unit.
  • the total number of moles of (I) and the constituent unit (II) is preferably 5 mol% or more and 90 mol% or less, and more preferably 10 mol% or more and 80 mol% or less.
  • the ratio of the number of moles of the constituent unit (II) to the entire constituent unit of the modified PPS resin is preferably 4 mol% or more and 90 mol% or less, more preferably 5 mol% or more and 90 mol% or less, and 10 mol% or more. More preferably, it is 80 mol% or less.
  • the number of moles of the constituent unit (I) and the number of constituent units ( The total ratio of II) to the number of moles is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and particularly preferably 100 mol%.
  • the ratio of the total number of moles of the constituent unit (I) to the number of moles of the constituent unit (II) is less than 100 mol% with respect to the number of moles of all the constituent units
  • the types of structural units other than II) are not particularly limited as long as they do not impair the object of the present invention.
  • the type of other structural units can be appropriately selected from the structural units contained in the conventionally known polyarylene sulfide resin.
  • the melting point of the modified PPS resin and the glass transition temperature (Tg) are preferably within the following ranges.
  • the melting point of the modified PPS resin is preferably 230 ° C. or higher and 285 ° C. or lower, and more preferably 240 ° C. or higher and 280 ° C. or lower.
  • the glass transition temperature (Tg) of the modified PPS resin is preferably 80 ° C. or higher and 120 ° C. or lower, and more preferably 85 ° C. or higher and 100 ° C. or lower.
  • the method for producing the modified PPS resin is not particularly limited as long as the modified PPS resin satisfying the above-mentioned predetermined constituent requirements can be produced.
  • a preferable example of the method for producing the modified PPS resin will be described.
  • a preferred method for producing the modified PPS resin is a halogenated aromatic containing p-dihalobenzene as a compound giving the structural unit (I) and 1,4-dihalogenated dimethylbenzene as a compound giving the structural unit (II).
  • Examples thereof include a method of polycondensing a compound and an alkali metal sulfide by heating in the presence of a solvent.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Of these, sodium sulfide and potassium sulfide are preferable, and sodium sulfide is more preferable.
  • Alkali metal sulfides as sulfur sources can also be treated, for example, in the form of either an aqueous slurry or an aqueous solution.
  • the solvent is not particularly limited as long as the polycondensation reaction proceeds well.
  • an organic polar solvent is preferable because the raw material compound, the oligomer, and the produced polymer have good solubility and dispersibility.
  • Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
  • Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone.
  • Tetraalkylurea compounds such as tetramethylurea
  • Hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide
  • the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
  • the aprotic organic polar solvent composed of a cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran.
  • an organic amide solvent is preferable in terms of availability, handleability, etc.
  • N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactum compound, and N, N-dialkylimidazolidinone compound are more preferable.
  • NMP, N-methyl- ⁇ -caprolactum, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
  • the amount of the solvent used is preferably 1 or more and 30 mol or less, and more preferably 3 mol or more and 15 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source from the viewpoint of the efficiency of the polymerization reaction.
  • the halogenated aromatic compound contains p-dihalobenzene as a compound that gives the structural unit (I).
  • the halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine.
  • Halogenated aromatic compounds have two or more halogen atoms. Two or more halogen atoms may be the same or different.
  • Examples of p-dichlorobenzene include p-dichlorobenzene and p-dibromobenzene, and p-dichlorobenzene is preferable.
  • the halogenated aromatic compound contains 1,4-dihalogenated dimethylbenzene as a compound giving the structural unit (II).
  • 1,4-dihalogenated dimethylbenzene examples include 1,4-dihalogenated-2,3-dimethylbenzene, 1,4-dihalogenated-2,5-dimethylbenzene, and 1,4-dihalogenated-2,6.
  • 1,4-dihalogenated dimethylbenzene 1,4-dichloro-2,5-dimethylbenzene and 1,4-dibromo-2,5-dimethyl are available because they are easily available and have good reactivity. Benzene is preferable, and 1,4-dichloro-2,5-dimethylbenzene is more preferable.
  • halogenated aromatic compounds other than p-dihalobenzene and 1,4-dihalogenated-2,3-dimethylbenzene examples include o-dichlorobenzene, m-dichlorobenzene, dichlorotoluene, dichloronaphthalene, and methoxy-dichlorobenzene.
  • the amount of the halogenated aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, and even more preferably, with respect to 1 mol of the charged amount of the sulfur source. Is 0.95 to 1.05 mol.
  • the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily carried out, and a high molecular weight polymer can be easily produced.
  • the reaction solution to be subjected to the polycondensation reaction may be charged with an alkali metal hydroxide together with a halogenated aromatic compound and an alkali metal sulfide.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • the amount of the alkali metal hydroxide used is typically 0.01 mol or more and 0.1 mol or less, preferably 0.03 mol or more and 0.08 mol, relative to 1 mol of the alkali metal sulfide as a sulfur source. The following are more preferable.
  • Water may be charged into the reaction solution to be subjected to the polycondensation reaction together with the halogenated aromatic compound and the alkali metal sulfide.
  • alkali metal sulfides and alkali metal hydroxides can be made into a solution in the reaction system.
  • Water may be added to the polymerization reaction solution during the reaction.
  • the amount of water used is not particularly limited as long as it does not impair the object of the present invention.
  • the amount of water used is typically 1.0 mol or more and 2.5 mol or less, more preferably 1.2 mol or more and 2.3 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source.
  • the polycondensation reaction may be carried out in air, but is preferably carried out in an inert gas atmosphere from the viewpoints of suppressing decomposition and coloring of the product and suppressing deterioration of the solvent.
  • the inert gas is not particularly limited, and nitrogen gas, helium gas and the like are preferable, and nitrogen gas is more preferable.
  • the polycondensation reaction may be carried out in a batch manner or in a continuous manner.
  • the temperature at which the polycondensation reaction is carried out is preferably 140 ° C. or higher and 300 ° C. or lower, more preferably 150 ° C. or higher and 280 ° C. or lower, and further preferably 160 ° C. or higher and 265 ° C. or lower.
  • the reaction time is not particularly limited, and the time for the polycondensation reaction to proceed to a desired degree is appropriately selected. Typically, the reaction time is preferably 0.5 hours or more and 12 hours or less, and more preferably 1 hour or more and 6 hours or less.
  • the modified PPS resin is recovered from the reaction solution.
  • the reaction solution is cooled to a temperature near room temperature of, for example, 0 ° C. or higher and 50 ° C. or lower, preferably 10 ° C. or higher and 40 ° C. or lower, and then a crude product of the modified PPS resin contained in the cooled reaction solution is obtained. Wash and collect.
  • the crude product of the modified PPS resin is washed by a known method. Examples of the cleaning method include a method in which acetone cleaning and water cleaning are performed in this order. In this case, the acetone used for washing may contain, for example, 10% by mass or less, preferably 5% by mass or less of water.
  • the concentration of the acetic acid aqueous solution is not particularly limited, but may be, for example, 0.05% by mass or more and 5% by mass or less, and 0.1% by mass or more and 2% by mass or less.
  • the temperature conditions for performing the above cleaning are not particularly limited as long as the desired cleaning effect can be obtained.
  • the temperature at which each of the above cleaning operations is carried out may be, for example, 0 ° C. or higher and 80 ° C. or lower, 10 ° C. or higher and 60 or lower, and 20 ° C. or higher and 50 ° C. or lower.
  • the modified PPS resin washed as described above is dried as necessary to obtain the modified PPS resin.
  • the modified PPS resin described above may be used alone as a material for molding various products, or may be used by being mixed with a resin other than the modified PPS resin. By using the modified PPS resin in combination with another resin, the vibration damping property of the other resin can be improved.
  • thermoplastic resin As the other resin, either a curable resin or a thermoplastic resin may be used.
  • a thermoplastic resin is preferable as the other resin because it is easy to uniformly mix the modified PPS resin with the other resin.
  • the curable resin a precursor of a curable resin in an uncured state can also be used.
  • the curable resin may be a thermosetting resin or a photocurable resin, and a thermosetting resin is preferable because it is easy to manufacture a molded product having a large size to some extent.
  • a method of mixing the curable resin and the modified PPS resin the modified PPS resin in the form of powder or particles is mixed with the precursor of the curable resin in the liquid or solution state in an uncured state, and after mixing, it is necessary. A method of removing the solvent may be mentioned.
  • a curing agent may be added to the mixture depending on the type of the curable resin.
  • the mixture obtained as described above is cured by heating and / or exposure by a method according to the type of the curable resin to obtain a resin composition.
  • curable resin examples include thermosetting resins such as phenol resins, melamine resins, epoxy resins, and alkyd resins, and photocurable resins such as (meth) acrylic resins.
  • the ratio of the mass of the modified PPS resin to the total of the mass of the modified PPS resin and the mass of the other resin is preferably, for example, 1% by mass or more and 90% by mass or less. More preferably, it is by mass or more and 50% by mass or less.
  • the modified PPS resin and the other resin are typically mixed using a melt-kneading device such as a single-screw extruder or a twin-screw extruder.
  • the mixing conditions are not particularly limited, and are appropriately determined in consideration of the melting point, melt viscosity, etc. of the modified PPS resin and other resins.
  • thermoplastic resin examples include polyacetal resin, polyamide resin, polycarbonate resin, polyester resin (polybutylene terephthalate, polyethylene terephthalate, polyallylate resin, liquid crystal polyester resin, etc.), FR-AS resin.
  • FR-ABS resin AS resin, ABS resin, polyphenylene oxide resin, polyarylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone resin, fluororesin, polyimide resin, polyamideimide resin, polyamidebismaleimide resin , Polyetherimide resin, polybenzoxazole resin, polybenzothiazole resin, polybenzoimidazole resin, BT resin, polymethylpentene, ultrahigh molecular weight polyethylene, FR-polypropylene, polystyrene and the like.
  • thermoplastic resins a polyarylene sulfide resin is preferable, and a polyphenylene sulfide resin is more preferable, because it is excellent in compatibility with a modified PPS resin.
  • a polyparaphenylene sulfide resin which is a polycondensate of p-dichlorobenzene and a sulfide agent (for example, alkali metal sulfide or alkali metal hydrosulfide) is preferable.
  • the polyarylene sulfide resin is not particularly limited as long as it is a polyarylene sulfide resin other than the modified PPS resin, and can be appropriately selected from conventionally known polyarylene sulfide resins.
  • the polyarylene sulfide resin mixed with the modified PPS resin preferably has a melting point of 270 ° C. or higher and 300 ° C. or lower, preferably has a weight average molecular weight (Mw) of 1000 to 5000, and has a melting year of 100 to 250 Pa. It is preferably s.
  • the melt viscosity can be measured using Capillograph 1-D manufactured by Toyo Seiki Co., Ltd. using about 20 g of the dry polymer.
  • a die with an inflow angle of 1.000 mm ⁇ ⁇ 10 mmL can be used, and the set temperature is 310 ° C.
  • the measured value measured at a shear rate of 1200 sec -1 is taken as the value of the melt viscosity (unit: Pa ⁇ s).
  • the ratio of the mass of the modified PPS resin to the total of the mass of the modified PPS resin and the mass of the thermoplastic resin is preferably 1% by mass or more and 90% by mass or less, 3 It is more preferably 5% by mass or more and 80% by mass or less, and further preferably 5% by mass or more and 70% by mass or less.
  • the resin compositions described above have been conventionally various resin compositions such as colorants, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, mold release agents, fillers, and reinforcing materials, as required. It may contain an additive or an additive compounded in. These additives or additives are used in an appropriate range of amounts depending on the type of additive or additive.
  • the resin composition described above is suitably used as a vibration damping material.
  • a material showing a value of 0.150 or more as a loss coefficient (tan ⁇ ) measured according to a dynamic viscoelasticity measurement is used as a vibration damping material.
  • the loss coefficient of the damping material is preferably 0.170 or more, more preferably 0.200 or more.
  • modified PPS resin, the resin composition, or the vibration damping material described above are suitably used as molded products having various shapes by appropriate methods according to their respective properties.
  • a resin composition containing a curable resin for example, a resin composition formed into a desired shape in a mold after filling an uncured resin composition in a mold having recesses having a desired shape. May be cured. Further, when the resin composition containing the uncured curable resin is in a liquid state, a molded product having a desired shape can be produced by a 3D printing method. In this case, the resin composition may be appropriately cured during molding, or the molded product may be cured after obtaining a molded product having a desired shape.
  • the modified PPS resin or resin composition is typically molded by a conventional method such as press molding, extrusion molding, or injection molding.
  • the use of the molded product is not particularly limited. Specific examples of the use of the molded product include parts of a device that generates vibration in a vehicle such as an automobile and a two-wheeled vehicle, a ship, a railroad, and an aircraft, or peripheral parts of the device; a seat in the above-mentioned transport machine. Alternatively, peripheral parts of seats, parts of devices such as control devices for which reduction of vibration is desired; various household appliances parts; OA equipment parts; building materials; machine tool parts; industrial machine parts. Among the uses described above, examples of the use of the molded product include parts of a coolant circulation device in a transport aircraft equipped with an internal combustion engine such as an automobile. Examples of the component of the coolant circulation device include a pump housing, a pipe for cooling the coolant, and the like. By using the molded product for the above purposes, it is possible to suppress vibration of various products.
  • Example 1 78.0 g of sodium sulfide, 2.4 g of sodium hydroxide, 375 g of N-methyl-2-pyrrolidone (NMP), 142.4 g of p-dichlorobenzene, and 1,4-dichloro-2 in a 1 L autoclave with a stirrer. , 5-Dimethylbenzene 8.9 g was charged. The charged molar ratio of p-dichlorobenzene and 1,4-dichloro-2,5-dimethylbenzene was 95: 5 as p-dichlorobenzene: 1,4-dichloro-2,5-dimethylbenzene.
  • the autoclave was sealed. Then, while stirring the reaction solution in the autoclave, the reaction solution was gradually heated to 240 ° C. over about 30 minutes. After the polycondensation reaction was carried out at 240 ° C. for 2 hours, 20.3 g of ion-exchanged water was pumped into the autoclave. Then, the temperature was raised to 260 ° C. over 10 minutes. The polycondensation reaction was subsequently carried out at 260 ° C. for 3 hours. After completion of the reaction, the reaction solution was cooled to near room temperature.
  • the melting point and glass transition temperature (Tg) of the obtained modified PPS resin were measured by differential scanning calorimetry. As a result, the melting point was 271 ° C. and the Tg was 88 ° C.
  • Examples 2 to 4, Comparative Example 3, and Comparative Example 4 Except for changing the charged molar ratio of p-dichlorobenzene and 1,4-dichloro-2,5-dimethylbenzene to the ratio (mol%) shown in Table 1, the same procedure as in Example 1 was carried out.
  • a modified PPS resin was obtained.
  • the modified PPS resin obtained in Example 2 was subjected to FT-IR measurement by the KBr tablet method. The measurement results are shown in FIG.
  • the melting point and the glass transition temperature (Tg) were measured by differential scanning calorimetry. As a result, the melting point was 254 ° C and the Tg was 91 ° C.
  • Comparative Example 1 A polyphenylene sulfide resin (W-214A, manufactured by Kureha Co., Ltd.), which is a polycondensate of p-dichlorobenzene and a sulfidizing agent (for example, alkali metal sulfide or alkali metal hydrosulfide), is used as a sample of Comparative Example 1. Used as.
  • a sheet was prepared according to the following method, and the loss coefficient was measured according to the following method.
  • a comparison consisting mainly of a polycondensate of 1,4-dichloro-2,5-dimethylbenzene and sodium sulfide obtained in Comparative Example 2 and a unit mainly derived from 1,4-dichloro-2,5-dimethylbenzene.
  • the loss coefficient was not measured because it was difficult to form a sheet.
  • the modified PPS resin obtained in Examples 1 to 4 and Comparative Example 3 and the polyphenylene sulfide resin of Comparative Example 1 were compression-molded at 320 ° C. at 5 MPa and 1 minute under the conditions of 55 mm ⁇ 55 mm ⁇ . A sheet having a size of 1 mm was produced.
  • a strip-shaped test piece for DMA measurement was cut out with a cutter knife, the dynamic viscoelasticity was evaluated by DMA, and the loss coefficient was measured.
  • the test piece was annealed at 150 ° C. for 1 hour before the DMA measurement.
  • the DMA measurement conditions are as follows.
  • the value of the loss coefficient is the maximum value measured at 20 ° C to 240 ° C.
  • the measurement results of the loss coefficient are shown in Table 1.
  • the measurement results of the loss coefficient are shown in Table 1.
  • ⁇ DMA measurement conditions> Sample size: 10 mm x 5 mm x 1 mm
  • Tensile temperature 20 ° C to 240 ° C
  • Temperature rise rate 2 ° C / min Frequency: 10Hz
  • the modified PPS resin containing the structural unit (I) and the structural unit (II) and containing the structural unit (II) in a ratio within a predetermined range has a significantly high loss coefficient. It can be seen that the vibration damping property is excellent.
  • Example 5 The weight ratio of the modified PPS resin obtained in Example 2 to the polyphenylene sulfide resin (unmodified PPS resin, manufactured by Kureha Co., Ltd., W-214A) was 20:80 as the modified PPS resin mass: unmodified PPS mass.
  • a resin composition was obtained by melt-kneading as in a certain manner. Specifically, after dry-blending the modified PPS resin and the unmodified PPS resin in the above ratio, the mixture is mixed with a melt kneading device (Laboplast) equipped with a barrel of R60 (capacity 60 mL) and a full-flight screw.
  • a melt kneading device Laboplast
  • a resin composition was obtained by melt-kneading at a test temperature of 320 ° C., a test time of 5 minutes, and a rotation speed of 100 rpm at a mill (manufactured by Toyo Seiki Seisakusho).
  • the loss coefficient was measured in the same manner as in Example 1 using the obtained material of the resin composition, the value of the loss coefficient was 0.156. That is, according to the fifth embodiment, the modified PPS resin containing the structural unit (I) and the structural unit (II) and containing the structural unit (II) in a ratio within a predetermined range is like an unmodified PPS resin. It can be seen that the other resin can be vibration-damped by mixing with the other resin.

Abstract

The present invention provides: a modified polyphenylene sulfide resin which exhibits good vibration damping performance even if a filler is not contained therein; a resin composition which contains this modified polyphenylene sulfide and another resin; and a molded article which is formed from this modified polyphenylene sulfide or this resin composition. A modified polyphenylene sulfide resin which contains a constituent unit (I) represented by formula (1) and a constituent unit (II) represented by formula (2), wherein the constituent unit (II) is contained in an amount within the range of from 5% by mole to 95% by mole relative to the sum of the number of moles of the constituent unit (I) and the number of moles of the constituent unit (II). (1): -Ph1-S- (2): -Ph2-S- (In formula (1), Ph1 represents a p-phenylene group; and in formula (2), Ph2 represents a dimethyl-p-phenylene group.)

Description

変性ポリフェニレンスルフィド樹脂、樹脂組成物、及び成形品Modified polyphenylene sulfide resin, resin composition, and molded product
 本発明は、変性ポリフェニレンスルフィド樹脂と、当該変性ポリフェニレンスルフィド樹脂を含む樹脂組成物と、前述の変性ポリフェニレンスルフィド樹脂、又は前述の樹脂組成物からなる成形品とに関する。 The present invention relates to a modified polyphenylene sulfide resin, a resin composition containing the modified polyphenylene sulfide resin, and a molded product comprising the above-mentioned modified polyphenylene sulfide resin or the above-mentioned resin composition.
 ポリフェニレンスルフィド樹脂(PPS)に代表されるポリアリーレンスルフィド樹脂(PAS)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能である。このため、PPSは、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。 Polyphenylene sulfide resin (PAS) represented by polyphenylene sulfide resin (PPS) is an engineering plastic having excellent heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical characteristics, dimensional stability, and the like. PAS can be molded into various molded products, films, sheets, fibers and the like by general melt processing methods such as extrusion molding, injection molding and compression molding. Therefore, PPS is widely used in a wide range of technical fields such as electrical equipment, electronic equipment, automobile equipment, and packaging materials.
 上記のPASの用途の中でも、例えば、掃除機、冷蔵庫、エアーコンディショナーのような圧縮機やモーター等を備える家電製品や、電気自動車やハイブリッド自動車等におけるモーター部品やモーターの周辺部品についての静粛化の目的で制振性の向上が望まれている。 Among the above-mentioned PAS applications, for example, household appliances equipped with compressors and motors such as vacuum cleaners, refrigerators and air conditioners, and motor parts and peripheral parts of motors in electric vehicles and hybrid vehicles have been made quieter. It is desired to improve the vibration damping property for the purpose.
 制振性に優れる樹脂組成物としては、例えば、板状充填剤又は針状充填剤を含むポリアミド樹脂組成物(特許宇文献1を参照)や、制振材料用エマルジョン樹脂組成物(特許文献2)等が知られている。 Examples of the resin composition having excellent vibration damping properties include a polyamide resin composition containing a plate-shaped filler or a needle-shaped filler (see Patent Document 1) and an emulsion resin composition for a vibration damping material (Patent Document 2). ) Etc. are known.
特開2016-089149号公報Japanese Unexamined Patent Publication No. 2016-0814949 特開2012-126775号公報Japanese Unexamined Patent Publication No. 2012-126775
 しかしながら、特許文献1に記載の樹脂組成物は、充填剤を必須に含むためフィラーレスの用途には用いることができない。また、特許文献2に記載の制振材料用エマルジョン樹脂組成物には、エマルジョン樹脂組成物であるがゆえにプレス成形、押出成形、射出成形等の一般的な樹脂の成形方法への適用が困難である問題がある。 However, the resin composition described in Patent Document 1 cannot be used for fillerless applications because it contains a filler indispensably. Further, since the emulsion resin composition for vibration damping material described in Patent Document 2 is an emulsion resin composition, it is difficult to apply it to general resin molding methods such as press molding, extrusion molding, and injection molding. There is a problem.
 本発明は、上記の課題に鑑みなされたものであって、充填剤を含んでいなくても良好な制振性を示す変性ポリフェニレンスルフィド樹脂と、当該変性ポリフェニレンスルフィドと他の樹脂とを含む樹脂組成物と、前述の変性ポリフェニレンスルフィド又は前述の樹脂組成物からなる成形品とを提供することを目的とする。 The present invention has been made in view of the above problems, and is a modified polyphenylene sulfide resin that exhibits good vibration damping properties even if it does not contain a filler, and a resin containing the modified polyphenylene sulfide and another resin. It is an object of the present invention to provide a composition and a molded product comprising the above-mentioned modified polyphenylene sulfide or the above-mentioned resin composition.
 本発明者らは、下記式(1)で表される構成単位(I)と、下記式(2)で表される構成単位(II)とを含む変性PPS樹脂において、構成単位(I)のモル数と構成単位(II)のモル数との合計に対して、構成単位(II)を5モル%以上95モル%以下の範囲内含有させることにより上記の課題を解決できることを見出し本発明を完成するに至った。
-Ph-S-・・・(1)
-Ph-S-・・・(2)
(式(1)中、Phはp-フェニレン基であり、前記式(2)中、Phはジメチル-p-フェニレン基である。)
The present inventors have described the structural unit (I) in the modified PPS resin containing the structural unit (I) represented by the following formula (1) and the structural unit (II) represented by the following formula (2). The present invention has been found that the above problem can be solved by containing the constituent unit (II) in the range of 5 mol% or more and 95 mol% or less with respect to the total number of moles and the number of moles of the constituent unit (II). It came to be completed.
-Ph 1 -S -... (1)
-Ph 2 -S -... (2)
(In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.)
 本発明にかかる変性ポリフェニレンスルフィド樹脂は、下記式(1)で表される構成単位(I)と、下記式(2)で表される構成単位(II)とを含み、構成単位(I)のモル数と構成単位(II)のモル数との合計に対して、構成単位(II)を5モル%以上95モル%以下含む。
-Ph-S-・・・(1)
-Ph-S-・・・(2)
(式(1)中、Phはp-フェニレン基であり、前記式(2)中、Phはジメチル-p-フェニレン基である。)
The modified polyphenylene sulfide resin according to the present invention contains a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2), and is a structural unit (I). The constituent unit (II) is contained in an amount of 5 mol% or more and 95 mol% or less with respect to the total of the number of moles and the number of moles of the constituent unit (II).
-Ph 1 -S -... (1)
-Ph 2 -S -... (2)
(In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.)
 上記の変性ポリフェニレンスルフィド樹脂において、全構成単位のモル数に対する、構成単位(I)のモル数と構成単位(II)のモル数との合計の比率が80モル%以上であってよい。 In the above-mentioned modified polyphenylene sulfide resin, the total ratio of the number of moles of the constituent unit (I) and the number of moles of the constituent unit (II) to the number of moles of all the constituent units may be 80 mol% or more.
 上記の変性ポリフェニレンスルフィド樹脂において、ジメチル-p-フェニレン基が2,5-ジメチルベンゼン-1,4-ジイル基であってよい。 In the above-mentioned modified polyphenylene sulfide resin, the dimethyl-p-phenylene group may be a 2,5-dimethylbenzene-1,4-diyl group.
 本発明にかかる樹脂組成物は、上記の変性ポリフェニレンスルフィド樹脂と、上記の変性ポリフェニレンスルフィド樹脂以外の他の樹脂とを含む。 The resin composition according to the present invention contains the above-mentioned modified polyphenylene sulfide resin and other resins other than the above-mentioned modified polyphenylene sulfide resin.
 上記の樹脂組成物において、変性ポリフェニレンスルフィド樹脂の質量と、他の樹脂の質量との合計に対する、変性ポリフェニレンスルフィド樹脂の質量の比率が、1質量%以上90質量%以下であってよい。 In the above resin composition, the ratio of the mass of the modified polyphenylene sulfide resin to the total mass of the modified polyphenylene sulfide resin and the mass of the other resin may be 1% by mass or more and 90% by mass or less.
 上記の樹脂組成物において、他の樹脂が熱可塑性樹脂であってよい。 In the above resin composition, the other resin may be a thermoplastic resin.
 上記の樹脂組成物において、熱可塑性樹脂が、ポリアリーレンスルフィド樹脂であってよい。 In the above resin composition, the thermoplastic resin may be a polyarylene sulfide resin.
 成形品は、上記の変性ポリフェニレンスルフィド樹脂、又は上記の樹脂組成物からなる。 The molded product is made of the above-mentioned modified polyphenylene sulfide resin or the above-mentioned resin composition.
 上記の成形品は、動的粘弾性測定に従って測定される損失係数として0.150以上の値を示してもよい。 The above-mentioned molded product may show a value of 0.150 or more as a loss coefficient measured according to the dynamic viscoelasticity measurement.
 本発明によれば、充填剤を含んでいなくても良好な制振性を示す変性ポリフェニレンスルフィド樹脂と、当該変性ポリフェニレンスルフィドと他の樹脂とを含む樹脂組成物と、前述の変性ポリフェニレンスルフィド又は前述の樹脂組成物からなる成形品とを提供することができる。 According to the present invention, a modified polyphenylene sulfide resin that exhibits good vibration damping properties even if it does not contain a filler, a resin composition containing the modified polyphenylene sulfide and another resin, and the above-mentioned modified polyphenylene sulfide or the above-mentioned modified polyphenylene sulfide or It is possible to provide a molded product made of the above-mentioned resin composition.
実施例2で得た変性ポリフェニレンスルフィド樹脂のFT-IR測定結果を示す図である。It is a figure which shows the FT-IR measurement result of the modified polyphenylene sulfide resin obtained in Example 2. FIG.
≪変性ポリフェニレンスルフィド樹脂≫
 変性ポリフェニレンスルフィド樹脂(以下変性PPS樹脂とも記す。)は、下記式(1)で表される構成単位(I)と、下記式(2)で表される構成単位(II)とを含み、構成単位(I)のモル数と構成単位(II)のモル数との合計に対して、構成単位(II)を5モル%以上95モル%以下含む。
-Ph-S-・・・(1)
-Ph-S-・・・(2)
(式(1)中、Phはp-フェニレン基であり、前記式(2)中、Phはジメチル-p-フェニレン基である。)
 変性PPS樹脂が、ジメチル-p-フェニレン基を含む構成単位(II)を上記の所定の範囲内の量含むことにより、変性PPS樹脂は、優れた制振性を示す。変性PPS樹脂は、好ましくは、動的粘弾性測定に従って測定される損失係数として0.150以上の値を示す。損失係数の値は、0.170以上が好ましく、0.200以上がより好ましい。
≪Modified polyphenylene sulfide resin≫
The modified polyphenylene sulfide resin (hereinafter, also referred to as a modified PPS resin) contains a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2). The constituent unit (II) is contained in an amount of 5 mol% or more and 95 mol% or less with respect to the total of the number of moles of the unit (I) and the number of moles of the constituent unit (II).
-Ph 1 -S -... (1)
-Ph 2 -S -... (2)
(In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.)
When the modified PPS resin contains the structural unit (II) containing a dimethyl-p-phenylene group in an amount within the above-mentioned predetermined range, the modified PPS resin exhibits excellent vibration damping properties. The modified PPS resin preferably exhibits a value of 0.150 or more as a loss coefficient measured according to the dynamic viscoelasticity measurement. The value of the loss coefficient is preferably 0.170 or more, and more preferably 0.200 or more.
 融点の極端な低下による変性PPS樹脂の耐熱性低下を避けつつ、優れた制振性を示す変性PPS樹脂を得やすいことから、変性PPS樹脂における、構成単位(II)の含有量は、構成単位(I)のモル数と構成単位(II)のモル数との合計に対して、5モル%以上90モル%以下が好ましく、10モル%以上80モル%以下がより好ましい。
 また、変性PPS樹脂の構成単位全体に対する、構成単位(II)のモル数の比率は、4モル%以上90モル%以下が好ましく、5モル%以上90モル%以下がより好ましく、10モル%以上80モル%以下がより好ましい。
 なお、変性PPS樹脂における構成単位(II)の含有量が過多でない場合、変性PPS樹脂の成形加工性が良好である傾向がある。
Since it is easy to obtain a modified PPS resin exhibiting excellent vibration damping properties while avoiding a decrease in heat resistance of the modified PPS resin due to an extreme decrease in melting point, the content of the constituent unit (II) in the modified PPS resin is a constituent unit. The total number of moles of (I) and the constituent unit (II) is preferably 5 mol% or more and 90 mol% or less, and more preferably 10 mol% or more and 80 mol% or less.
The ratio of the number of moles of the constituent unit (II) to the entire constituent unit of the modified PPS resin is preferably 4 mol% or more and 90 mol% or less, more preferably 5 mol% or more and 90 mol% or less, and 10 mol% or more. More preferably, it is 80 mol% or less.
When the content of the structural unit (II) in the modified PPS resin is not excessive, the molded processability of the modified PPS resin tends to be good.
 制振性と、種々の機械的特性と、成形加工性とのバランスに優れることから、上記の変性PPS樹脂において、全構成単位のモル数に対する、構成単位(I)のモル数と構成単位(II)のモル数との合計の比率は、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、100モル%が特に好ましい。
 なお、全構成単位のモル数に対する、構成単位(I)のモル数と構成単位(II)のモル数との合計の比率が100モル%未満である場合、構成単位(I)及び構成単位(II)以外の他の構成単位の種類は本発明の目的を阻害しない範囲で特に限定されない。他の構成単位の種類は、従来知られるポリアリーレンスルフィド樹脂に含まれる構成単位の中から適宜選択され得る。
In the above-mentioned modified PPS resin, the number of moles of the constituent unit (I) and the number of constituent units ( The total ratio of II) to the number of moles is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and particularly preferably 100 mol%.
When the ratio of the total number of moles of the constituent unit (I) to the number of moles of the constituent unit (II) is less than 100 mol% with respect to the number of moles of all the constituent units, the constituent unit (I) and the constituent unit ( The types of structural units other than II) are not particularly limited as long as they do not impair the object of the present invention. The type of other structural units can be appropriately selected from the structural units contained in the conventionally known polyarylene sulfide resin.
 耐熱性と、成形加工性とのバランスの点で、変性PPS樹脂の融点、及びガラス転移温度(Tg)は以下の範囲内であるのが好ましい。例えば、変性PPS樹脂の融点は、230℃以上285℃以下が好ましく、240℃以上280℃以下がより好ましい。変性PPS樹脂のガラス転移温度(Tg)は、80℃以上120℃以下が好ましく、85℃以上100℃以下がより好ましい。 From the viewpoint of the balance between heat resistance and molding processability, the melting point of the modified PPS resin and the glass transition temperature (Tg) are preferably within the following ranges. For example, the melting point of the modified PPS resin is preferably 230 ° C. or higher and 285 ° C. or lower, and more preferably 240 ° C. or higher and 280 ° C. or lower. The glass transition temperature (Tg) of the modified PPS resin is preferably 80 ° C. or higher and 120 ° C. or lower, and more preferably 85 ° C. or higher and 100 ° C. or lower.
 変性PPS樹脂の製造方法は、上記の所定の構成要件を満たす変性PPS樹脂を製造できる限り特に限定されない。以下、変性PPS樹脂の製造方法の好ましい一例について説明する。 The method for producing the modified PPS resin is not particularly limited as long as the modified PPS resin satisfying the above-mentioned predetermined constituent requirements can be produced. Hereinafter, a preferable example of the method for producing the modified PPS resin will be described.
 変性PPS樹脂の好ましい製造方法としては、構成単位(I)を与える化合物としてのp-ジハロベンゼンと、構成単位(II)を与える化合物としての1,4-ジハロゲン化ジメチルベンゼンとを含むハロゲン化芳香族化合物と、アルカリ金属硫化物とを溶媒の存在下に加熱しての重縮合させる方法が挙げられる。 A preferred method for producing the modified PPS resin is a halogenated aromatic containing p-dihalobenzene as a compound giving the structural unit (I) and 1,4-dihalogenated dimethylbenzene as a compound giving the structural unit (II). Examples thereof include a method of polycondensing a compound and an alkali metal sulfide by heating in the presence of a solvent.
 アルカリ金属硫化物としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、及び硫化セシウムが挙げられる。これらの中では、硫化ナトリウム、及び硫化カリウムが好ましく、硫化ナトリウムがより好ましい。硫黄源としてのアルカリ金属硫化物は、例えば、水性スラリー及び水溶液のいずれかの状態で扱うこともできる。 Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Of these, sodium sulfide and potassium sulfide are preferable, and sodium sulfide is more preferable. Alkali metal sulfides as sulfur sources can also be treated, for example, in the form of either an aqueous slurry or an aqueous solution.
 溶媒としては、重縮合反応が良好に進行する限り特に限定されない。溶媒としては、原料化合物、オリゴマー、及び生成ポリマーの溶解性や分散性が良好であることから、有機極性溶媒が好ましい。 The solvent is not particularly limited as long as the polycondensation reaction proceeds well. As the solvent, an organic polar solvent is preferable because the raw material compound, the oligomer, and the produced polymer have good solubility and dispersibility.
 有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンがさらにより好ましく、NMPが特に好ましい。 Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound. Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl-ε-caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone. Compounds; Tetraalkylurea compounds such as tetramethylurea; Hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide, and the like can be mentioned. Examples of the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone. Examples of the aprotic organic polar solvent composed of a cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran. Among them, an organic amide solvent is preferable in terms of availability, handleability, etc., and N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactum compound, and N, N-dialkylimidazolidinone compound are more preferable. , NMP, N-methyl-ε-caprolactum, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
 溶媒の使用量は、重合反応の効率等の観点から、硫黄源としてのアルカリ金属硫化物1モルに対し、1以上30モル以下が好ましく、3モル以上15モル以下がより好ましい。 The amount of the solvent used is preferably 1 or more and 30 mol or less, and more preferably 3 mol or more and 15 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source from the viewpoint of the efficiency of the polymerization reaction.
 前述の通り、ハロゲン化芳香族化合物は、構成単位(I)を与える化合物としてp-ジハロベンゼンを含む。ハロゲン化芳香族化合物において、ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指す。ハロゲン化芳香族化合物は2以上のハロゲン原子を有する。2以上のハロゲン原子は、同じでも異なっていてもよい。p-ジハロベンゼンとしては、p-ジクロロベンゼン、p-ジブロモベンゼン等が挙げられ、p-ジクロロベンゼンが好ましい。
 ハロゲン化芳香族化合物は、構成単位(II)を与える化合物として1,4-ジハロゲン化ジメチルベンゼンを含む。1,4-ジハロゲン化ジメチルベンゼンとしては、1,4-ジハロゲン化-2,3-ジメチルベンゼン、1,4-ジハロゲン化-2,5-ジメチルベンゼン、及び1,4-ジハロゲン化-2,6-ジメチルベンゼンが挙げられる。入手が容易であり反応性が良好であることから、1,4-ジハロゲン化ジメチルベンゼンとしては、1,4-ジクロロ-2,5-ジメチルベンゼン、及び1,4-ジブロモ-2,5-ジメチルベンゼンが好ましく、1,4-ジクロロ-2,5-ジメチルベンゼンがより好ましい。
As described above, the halogenated aromatic compound contains p-dihalobenzene as a compound that gives the structural unit (I). In halogenated aromatic compounds, the halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine. Halogenated aromatic compounds have two or more halogen atoms. Two or more halogen atoms may be the same or different. Examples of p-dichlorobenzene include p-dichlorobenzene and p-dibromobenzene, and p-dichlorobenzene is preferable.
The halogenated aromatic compound contains 1,4-dihalogenated dimethylbenzene as a compound giving the structural unit (II). Examples of the 1,4-dihalogenated dimethylbenzene include 1,4-dihalogenated-2,3-dimethylbenzene, 1,4-dihalogenated-2,5-dimethylbenzene, and 1,4-dihalogenated-2,6. -Includes dimethylbenzene. As 1,4-dihalogenated dimethylbenzene, 1,4-dichloro-2,5-dimethylbenzene and 1,4-dibromo-2,5-dimethyl are available because they are easily available and have good reactivity. Benzene is preferable, and 1,4-dichloro-2,5-dimethylbenzene is more preferable.
 p-ジハロベンゼン、及び1,4-ジハロゲン化-2,3-ジメチルベンゼン以外のハロゲン化芳香族化合物としては、例えば、o-ジクロロベンゼン、m-ジクロロベンゼン、ジクロロトルエン、ジクロロナフタレン、メトキシ-ジクロロベンゼン、ジクロロビフェニル、ジクロロ安息香酸、ジクロロジフェニルエーテル、ジクロロジフェニルスルホン、ジクロロジフェニルスルホキシド、ジクロロジフェニルケトン等のジハロ芳香族化合物;1,2,3-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,3,5-トリクロロベンゼン、ヘキサクロロベンゼン、1,2,3,4-テトラクロロベンゼン、1,2,4,5-テトラクロロベンゼン、1,3,5-トリクロロ-2,4,6-トリメチルベンゼン、2,4,6-トリクロロトルエン、1,2,3-トリクロロナフタレン、1,2,4-トリクロロナフタレン、1,2,3,4-テトラクロロナフタレン、2,2’,4,4’-テトラクロロビフェニル、2,2’,4,4’-テトラクロロベンゾフェノン、2,4,2’-トリクロロベンゾフェノン等の、ハロゲン置換数3以上のポリハロ芳香族化合物が挙げられる。 Examples of the halogenated aromatic compounds other than p-dihalobenzene and 1,4-dihalogenated-2,3-dimethylbenzene include o-dichlorobenzene, m-dichlorobenzene, dichlorotoluene, dichloronaphthalene, and methoxy-dichlorobenzene. , Dichlorobiphenyl, dichlorobenzoic acid, dichlorodiphenyl ether, dichlorodiphenylsulfone, dichlorodiphenylsulfoxide, dichlorodiphenylketone and other dihaloaromatic compounds; 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3 , 5-Trichlorobenzene, Hexachlorobenzene, 1,2,3,4-Tetrachlorobenzene, 1,2,4,5-Tetrachlorobenzene, 1,3,5-Trichloro-2,4,6-trimethylbenzene, 2, 4,6-Trichlorotoluene, 1,2,3-trichloronaphthalene, 1,2,4-trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,2', 4,4'-tetrachlorobiphenyl , 2,2', 4,4'-tetrachlorobenzophenone, 2,4,2'-trichlorobenzophenone, and other polyhaloaromatic compounds having a halogen substitution number of 3 or more.
 ハロゲン化芳香族化合物の使用量は、硫黄源の仕込み量1モルに対し、好ましくは0.90~1.50モルであり、より好ましくは0.92~1.10モルであり、さらにより好ましくは0.95~1.05モルである。上記使用量が上記範囲内であると、分解反応が生じにくく、安定的な重合反応の実施が容易であり、高分子量ポリマーを生成させやすい。 The amount of the halogenated aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, and even more preferably, with respect to 1 mol of the charged amount of the sulfur source. Is 0.95 to 1.05 mol. When the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily carried out, and a high molecular weight polymer can be easily produced.
 重縮合反応に供される反応液には、ハロゲン化芳香族化合物、及びアルカリ金属硫化物とともに、アルカリ金属水酸化物を仕込んでもよい。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。
 硫黄源をアルカリ金属水酸化物の存在下にハロゲン化芳香族化合物と反応させることにより、諸特性のバランスが良好な変性PPS樹脂を得やすい。
 アルカリ金属水酸化物の使用量は、本発明の目的を阻害しない範囲で特に限定されない。アルカリ金属水酸化物の使用量は、典型的には、硫黄源としてのアルカリ金属硫化物1モルに対して0.01モル以上0.1モル以下が好ましく、0.03モル以上0.08モル以下がより好ましい。
The reaction solution to be subjected to the polycondensation reaction may be charged with an alkali metal hydroxide together with a halogenated aromatic compound and an alkali metal sulfide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
By reacting the sulfur source with the halogenated aromatic compound in the presence of an alkali metal hydroxide, it is easy to obtain a modified PPS resin having a good balance of various properties.
The amount of the alkali metal hydroxide used is not particularly limited as long as it does not impair the object of the present invention. The amount of the alkali metal hydroxide used is typically 0.01 mol or more and 0.1 mol or less, preferably 0.03 mol or more and 0.08 mol, relative to 1 mol of the alkali metal sulfide as a sulfur source. The following are more preferable.
 重縮合反応に供される反応液には、ハロゲン化芳香族化合物、及びアルカリ金属硫化物とともに、水を仕込んでもよい。水を用いることにより、アルカリ金属硫化物、及びアルカリ金属水酸化物を反応系内で溶液の状態にできる。水は、反応の途中で重合反応液に加えられてもよい。
 水の使用量は、本発明の目的を阻害しない範囲で特に限定されない。水の使用量は、典型的には硫黄源としてのアルカリ金属硫化物1モルに対して1.0モル以上2.5モル以下が好ましく、1.2モル以上2.3モル以下がより好ましい。
Water may be charged into the reaction solution to be subjected to the polycondensation reaction together with the halogenated aromatic compound and the alkali metal sulfide. By using water, alkali metal sulfides and alkali metal hydroxides can be made into a solution in the reaction system. Water may be added to the polymerization reaction solution during the reaction.
The amount of water used is not particularly limited as long as it does not impair the object of the present invention. The amount of water used is typically 1.0 mol or more and 2.5 mol or less, more preferably 1.2 mol or more and 2.3 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source.
 以上説明した各成分を混合した後、得られた混合物を反応液として重縮合反応に供する。重縮合反応は、空気中で行われてもよいが、生成物の分解や着色の抑制、溶媒の劣化の抑制等の観点から、不活性ガス雰囲気中で行われるのが好ましい。不活性ガスとしては特に限定されず、窒素ガス、ヘリウムガス等が好ましく、窒素ガスがより好ましい。
 重縮合反応はバッチ式で行われてもよく、連続式で行われてもよい。
After mixing each of the components described above, the obtained mixture is subjected to a polycondensation reaction as a reaction solution. The polycondensation reaction may be carried out in air, but is preferably carried out in an inert gas atmosphere from the viewpoints of suppressing decomposition and coloring of the product and suppressing deterioration of the solvent. The inert gas is not particularly limited, and nitrogen gas, helium gas and the like are preferable, and nitrogen gas is more preferable.
The polycondensation reaction may be carried out in a batch manner or in a continuous manner.
 重縮合反応の効率等の観点から、重縮合反応行う温度は、140℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましく、160℃以上265℃以下がさらに好ましい。
 反応時間は特に限定されず、重縮合反応が所望する程度まで進行する時間が適宜選択される。典型的には、反応時間は0.5時間以上12時間以下が好ましく、1時間以上6時間以下がより好ましい。
From the viewpoint of the efficiency of the polycondensation reaction, the temperature at which the polycondensation reaction is carried out is preferably 140 ° C. or higher and 300 ° C. or lower, more preferably 150 ° C. or higher and 280 ° C. or lower, and further preferably 160 ° C. or higher and 265 ° C. or lower.
The reaction time is not particularly limited, and the time for the polycondensation reaction to proceed to a desired degree is appropriately selected. Typically, the reaction time is preferably 0.5 hours or more and 12 hours or less, and more preferably 1 hour or more and 6 hours or less.
 上記のようにして重縮合反応を行った後、反応液から変性PPS樹脂が回収される。
 典型的には、反応液を例えば0℃以上50℃以下、好ましくは10℃以上40℃以下程度の室温付近の温度まで冷却した後、冷却された反応液に含まれる変性PPS樹脂の粗製品を洗浄して回収する。
 変性PPS樹脂の粗製品は、公知の方法により洗浄される。洗浄方法としては、アセトン洗浄と、水による洗浄とをこの順で行う方法が挙げられる。この場合、洗浄に用いられるアセトンには、例えば、10質量%以下、好ましくは5質量%以下程度の水を含有させてもよい。アセトン、及び水による洗浄について、変性PPS樹脂を酢酸水溶液により洗浄するのが好ましい。酢酸水溶液の濃度は特に限定されないが、例えば、0.05質量%以上5質量%以下であり、0.1質量%以上2質量%以下であってよい。
 上記の洗浄を行う場合の温度条件は、所望する洗浄効果が得られる限り特に限定されない。上記の各洗浄操作を実施する温度は、例えば、0℃以上80℃以下であってよく、10℃以上60以下であってよく20℃以上50℃以下であってよい。
After the polycondensation reaction is carried out as described above, the modified PPS resin is recovered from the reaction solution.
Typically, the reaction solution is cooled to a temperature near room temperature of, for example, 0 ° C. or higher and 50 ° C. or lower, preferably 10 ° C. or higher and 40 ° C. or lower, and then a crude product of the modified PPS resin contained in the cooled reaction solution is obtained. Wash and collect.
The crude product of the modified PPS resin is washed by a known method. Examples of the cleaning method include a method in which acetone cleaning and water cleaning are performed in this order. In this case, the acetone used for washing may contain, for example, 10% by mass or less, preferably 5% by mass or less of water. For washing with acetone and water, it is preferable to wash the modified PPS resin with an aqueous acetic acid solution. The concentration of the acetic acid aqueous solution is not particularly limited, but may be, for example, 0.05% by mass or more and 5% by mass or less, and 0.1% by mass or more and 2% by mass or less.
The temperature conditions for performing the above cleaning are not particularly limited as long as the desired cleaning effect can be obtained. The temperature at which each of the above cleaning operations is carried out may be, for example, 0 ° C. or higher and 80 ° C. or lower, 10 ° C. or higher and 60 or lower, and 20 ° C. or higher and 50 ° C. or lower.
 上記のようにして洗浄された変性PPS樹脂を必要に応じて乾燥させることにより、変性PPS樹脂が得られる。 The modified PPS resin washed as described above is dried as necessary to obtain the modified PPS resin.
≪樹脂組成物≫
 以上説明した変性PPS樹脂は、単独で種々の製品を成形するための材料として使用されてもよく、変性PPS樹脂以外の他の樹脂と混合されて使用されてもよい。
 変性PPS樹脂を、他の樹脂と混合して使用することにより、他の樹脂の制振性を向上させることができる。
≪Resin composition≫
The modified PPS resin described above may be used alone as a material for molding various products, or may be used by being mixed with a resin other than the modified PPS resin.
By using the modified PPS resin in combination with another resin, the vibration damping property of the other resin can be improved.
 他の樹脂としては、硬化性樹脂、及び熱可塑性樹脂のいずれを用いてもよい。変性PPS樹脂と、他の樹脂との均一な混合が容易であることから、他の樹脂としては熱可塑性樹脂が好ましい。 As the other resin, either a curable resin or a thermoplastic resin may be used. A thermoplastic resin is preferable as the other resin because it is easy to uniformly mix the modified PPS resin with the other resin.
 硬化性樹脂としては、未硬化の状態の硬化性樹脂の前駆体を用いることもできる。硬化性樹脂は、熱硬化性樹脂であっても、光硬化性樹脂であってもよく、ある程度サイズの大きな成形品を製造しやすいこと等から熱硬化性樹脂が好ましい。
 硬化性樹脂と、変性PPS樹脂とを混合する方法としては、粉末又は粒子状の変性PPS樹脂を、液状又は溶液状の未硬化の状態の硬化性樹脂の前駆体と混合させ、混合後、必要に応じて溶媒を除去する方法が挙げられる。この場合、硬化性樹脂の種類に応じて、混合物に、硬化剤を配合してもよい。
 以上のようにして得られる混合物は、硬化性樹脂の種類に応じた方法で、加熱及び/又は露光により硬化され樹脂組成物とされる。
As the curable resin, a precursor of a curable resin in an uncured state can also be used. The curable resin may be a thermosetting resin or a photocurable resin, and a thermosetting resin is preferable because it is easy to manufacture a molded product having a large size to some extent.
As a method of mixing the curable resin and the modified PPS resin, the modified PPS resin in the form of powder or particles is mixed with the precursor of the curable resin in the liquid or solution state in an uncured state, and after mixing, it is necessary. A method of removing the solvent may be mentioned. In this case, a curing agent may be added to the mixture depending on the type of the curable resin.
The mixture obtained as described above is cured by heating and / or exposure by a method according to the type of the curable resin to obtain a resin composition.
 硬化性樹脂の具体例としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びアルキド樹脂等の熱硬化性樹脂や、(メタ)アクリル樹脂等の光硬化性樹脂が挙げられる。 Specific examples of the curable resin include thermosetting resins such as phenol resins, melamine resins, epoxy resins, and alkyd resins, and photocurable resins such as (meth) acrylic resins.
 他の樹脂が硬化性樹脂である場合の、変性PPS樹脂の質量と、他の樹脂の質量との合計に対する、変性PPS樹脂の質量の比率は、例えば1質量%以上90質量以下が好ましく、5質量%以上50質量%以下がより好ましい。 When the other resin is a curable resin, the ratio of the mass of the modified PPS resin to the total of the mass of the modified PPS resin and the mass of the other resin is preferably, for example, 1% by mass or more and 90% by mass or less. More preferably, it is by mass or more and 50% by mass or less.
 他の樹脂が熱可塑性樹脂である場合、変性PPS樹脂と他の樹脂とは、典型的には、1軸押出機や2軸押出機等の溶融混錬装置を用いて混合される。混合条件は特に限定されず、変性PPS樹脂、及び他の樹脂の、融点、溶融粘度等を勘案して適宜決定される。 When the other resin is a thermoplastic resin, the modified PPS resin and the other resin are typically mixed using a melt-kneading device such as a single-screw extruder or a twin-screw extruder. The mixing conditions are not particularly limited, and are appropriately determined in consideration of the melting point, melt viscosity, etc. of the modified PPS resin and other resins.
 他の樹脂が熱可塑性樹脂である場合の好適な例としては、ポリアセタール樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアリレート樹脂、液晶ポリエステル樹脂等)、FR-AS樹脂、FR-ABS樹脂、AS樹脂、ABS樹脂、ポリフェニレンオキサイド樹脂、ポリアリーレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、フッ素系樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミドビスマレイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾチアゾール樹脂、ポリベンゾイミダゾール樹脂、BT樹脂、ポリメチルペンテン、超高分子量ポリエチレン、FR-ポリプロピレン、及びポリスチレン等が挙げられる。 Suitable examples when the other resin is a thermoplastic resin include polyacetal resin, polyamide resin, polycarbonate resin, polyester resin (polybutylene terephthalate, polyethylene terephthalate, polyallylate resin, liquid crystal polyester resin, etc.), FR-AS resin. , FR-ABS resin, AS resin, ABS resin, polyphenylene oxide resin, polyarylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone resin, fluororesin, polyimide resin, polyamideimide resin, polyamidebismaleimide resin , Polyetherimide resin, polybenzoxazole resin, polybenzothiazole resin, polybenzoimidazole resin, BT resin, polymethylpentene, ultrahigh molecular weight polyethylene, FR-polypropylene, polystyrene and the like.
 これらの熱可塑性樹脂の中では、変性PPS樹脂との相溶性に優れる点等から、ポリアリーレンスルフィド樹脂が好ましく、ポリフェニレンスルフィド樹脂がより好ましい。ポリフェニレンスルフィド樹脂としてはp-ジクロロベンゼンとスルフィド化剤(例えば、アルカリ金属硫化物やアルカリ金属水硫化物)との重縮合物であるポリパラフェニレンスルフィド樹脂が好ましい。
 ポリアリーレンスルフィド樹脂としては、変性PPS樹脂以外のポリアリーレンスルフィド樹脂であれば特に限定されず、従来知られるポリアリーレンスルフィド樹脂から適宜選択され得る。
 変性PPS樹脂と混合されるポリアリーレンスルフィド樹脂について、融点が270℃以上300℃以下であるのが好ましく、重量平均分子量(Mw)が1000~5000であるのが好ましく、溶融年度が100~250Pa・sであるのが好ましい。
 溶融粘度は、乾燥ポリマー約20gを用いて、東洋精機製キャピログラフ1-Dを使用して測定できる。キャピラリーは、1.000mmφ×10mmLの流入角付きダイを使用でき、設定温度は310℃である。ポリマー試料を装置に導入し、5分間保持した後、せん断速度1200sec-1で測定した測定値を溶融粘度の値とする(単位:Pa・s)。
Among these thermoplastic resins, a polyarylene sulfide resin is preferable, and a polyphenylene sulfide resin is more preferable, because it is excellent in compatibility with a modified PPS resin. As the polyphenylene sulfide resin, a polyparaphenylene sulfide resin which is a polycondensate of p-dichlorobenzene and a sulfide agent (for example, alkali metal sulfide or alkali metal hydrosulfide) is preferable.
The polyarylene sulfide resin is not particularly limited as long as it is a polyarylene sulfide resin other than the modified PPS resin, and can be appropriately selected from conventionally known polyarylene sulfide resins.
The polyarylene sulfide resin mixed with the modified PPS resin preferably has a melting point of 270 ° C. or higher and 300 ° C. or lower, preferably has a weight average molecular weight (Mw) of 1000 to 5000, and has a melting year of 100 to 250 Pa. It is preferably s.
The melt viscosity can be measured using Capillograph 1-D manufactured by Toyo Seiki Co., Ltd. using about 20 g of the dry polymer. As the capillary, a die with an inflow angle of 1.000 mmφ × 10 mmL can be used, and the set temperature is 310 ° C. After introducing the polymer sample into the apparatus and holding it for 5 minutes, the measured value measured at a shear rate of 1200 sec -1 is taken as the value of the melt viscosity (unit: Pa · s).
 他の樹脂が熱可塑性樹脂である場合の、変性PPS樹脂の質量と、熱可塑性樹脂の質量との合計に対する、変性PPS樹脂の質量の比率は、1質量%以上90質量%以下が好ましく、3質量%以上80質量%以下がより好ましく、5質量%以上70質量%以下がさらに好ましい。 When the other resin is a thermoplastic resin, the ratio of the mass of the modified PPS resin to the total of the mass of the modified PPS resin and the mass of the thermoplastic resin is preferably 1% by mass or more and 90% by mass or less, 3 It is more preferably 5% by mass or more and 80% by mass or less, and further preferably 5% by mass or more and 70% by mass or less.
 以上説明した樹脂組成物は、必要に応じて、着色剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、充填材、及び強化材等の、従来から種々の樹脂組成物に配合されている添加剤、又は添加材を含んでいてもよい。これらの添加剤又は添加材は、添加剤又は添加材の種類に応じた適切な範囲の量を使用される。 The resin compositions described above have been conventionally various resin compositions such as colorants, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, mold release agents, fillers, and reinforcing materials, as required. It may contain an additive or an additive compounded in. These additives or additives are used in an appropriate range of amounts depending on the type of additive or additive.
≪制振材料≫
 以上説明した樹脂組成物は、制振材料として好適に使用される。本出願の明細書及び特許請求の範囲において、具体的には、動的粘弾性測定に従って測定される損失係数(tanδ)として0.150以上の値を示す材料を制振材料とする。制振材料の損失係数は、0.170以上が好ましく、0.200以上がより好ましい。
≪Vibration damping material≫
The resin composition described above is suitably used as a vibration damping material. Within the scope of the specification and patent claims of the present application, specifically, a material showing a value of 0.150 or more as a loss coefficient (tan δ) measured according to a dynamic viscoelasticity measurement is used as a vibration damping material. The loss coefficient of the damping material is preferably 0.170 or more, more preferably 0.200 or more.
≪成形品≫
 以上説明した、変性PPS樹脂、樹脂組成物、又は制振材料は、それぞれの性質に応じた適切な方法により種々の形状の成形品とされ好適に使用される。
≪Molded product≫
The modified PPS resin, the resin composition, or the vibration damping material described above are suitably used as molded products having various shapes by appropriate methods according to their respective properties.
 硬化性樹脂を含む樹脂組成物を用いる場合、例えば、所望する形状の凹部を有するモールド内に未硬化の状態の樹脂組成物を充填した後、モールド内で所望する形状に成形された樹脂組成物を硬化させてもよい。
 また、未硬化の状態の硬化性樹脂を含む樹脂組成物が液状である場合、3Dプリンティング法により所望する形状の成形品を製造することもできる。この場合、樹脂組成物は、成形途中に適宜硬化されてもよく、所望する形状の成形品を得た後に成形品が硬化されてもよい。
When a resin composition containing a curable resin is used, for example, a resin composition formed into a desired shape in a mold after filling an uncured resin composition in a mold having recesses having a desired shape. May be cured.
Further, when the resin composition containing the uncured curable resin is in a liquid state, a molded product having a desired shape can be produced by a 3D printing method. In this case, the resin composition may be appropriately cured during molding, or the molded product may be cured after obtaining a molded product having a desired shape.
 変性PPS樹脂、又は熱可塑性樹脂を含む樹脂組成物を用いる場合、典型的には、プレス成形、押出成形、射出成形のような常法により変性PPS樹脂又は樹脂組成物が成形される。 When a modified PPS resin or a resin composition containing a thermoplastic resin is used, the modified PPS resin or resin composition is typically molded by a conventional method such as press molding, extrusion molding, or injection molding.
 成形品の用途は特に限定されない。成形品の用途の具体例としては、自動車及び二輪車等の車両、船舶、鉄道、航空機のような輸送機における振動が発生する装置の部品、又は当該装置の周辺部品;前述の輸送機における、座席又は座席の周辺部品や、操縦装置等の振動の低減が望まれる装置の部品;各種家電機器部品;OA機器部品;建築材料;工作機械部品;産業機械部品が挙げられる。
 以上説明した用途の中でも、成形品の用途としては、自動車等の内燃機関を備える輸送機におけるクーラント循環装置の部品が挙げられる。かかるクーラント循環装置の部品としては、ポンプ筐体やクーラント循環用のパイプ等が挙げられる。
 成形品を上記の用途に用いることにより、各種製品の制振化を図ることができる。
The use of the molded product is not particularly limited. Specific examples of the use of the molded product include parts of a device that generates vibration in a vehicle such as an automobile and a two-wheeled vehicle, a ship, a railroad, and an aircraft, or peripheral parts of the device; a seat in the above-mentioned transport machine. Alternatively, peripheral parts of seats, parts of devices such as control devices for which reduction of vibration is desired; various household appliances parts; OA equipment parts; building materials; machine tool parts; industrial machine parts.
Among the uses described above, examples of the use of the molded product include parts of a coolant circulation device in a transport aircraft equipped with an internal combustion engine such as an automobile. Examples of the component of the coolant circulation device include a pump housing, a pipe for cooling the coolant, and the like.
By using the molded product for the above purposes, it is possible to suppress vibration of various products.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the disclosed technical means is also the present invention. Included in the technical scope. In addition, all of the documents described in this specification are incorporated by reference.
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。以下に記す溶融粘度について、測定方法は前述の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the examples. The measurement method for the melt viscosity described below is as described above.
[実施例1]
 撹拌機付の容量1Lオートクレーブに、硫化ナトリウム78.0g、水酸化ナトリウム2.4g、N-メチル-2-ピロリドン(NMP)375g、p-ジクロロベンゼン142.4g、及び1,4-ジクロロ-2,5-ジメチルベンゼン8.9gを仕込んだ。p-ジクロロベンゼンと、1,4-ジクロロ-2,5-ジメチルベンゼンとの仕込みモル比率は、p-ジクロロベンゼン:1,4-ジクロロ-2,5-ジメチルベンゼンとして95:5であった。次いで、オートクレーブ内を窒素ガス雰囲気に置換した後、オートクレーブを密封した。その後、オートクレーブ内の反応液を撹拌しながら、反応液を240℃まで約30分かけて徐々に加熱した。240℃を2時間保持して重縮合反応を行った後、イオン交換水20.3gをポンプでオートクレーブ内に圧入した。その後、260℃まで10分かけて昇温した。260℃で、引き続き3時間重縮合反応を行った。反応終了後、反応液を室温近くまで冷却した。
 オートクレーブの内容物を取り出した後、オートクレーブの内容物に3質量%の純水を含むアセトン1Lを加えて、室温にて30分間撹拌して洗浄した。洗浄された固形分(粗製品)をろ過により回収した後、前述のアセトンによる洗浄操作を2回繰り返した。
 アセトンで洗浄された固形分を、室温にて純水1L中で30分間撹拌して洗浄した後、ろ過により回収した。回収された固形分に対して、前述の純水による洗浄操作を3回繰り返した後、ろ過により回収された固形分を120℃で4時間乾燥させて、精製された変性PPS樹脂を得た。
[Example 1]
78.0 g of sodium sulfide, 2.4 g of sodium hydroxide, 375 g of N-methyl-2-pyrrolidone (NMP), 142.4 g of p-dichlorobenzene, and 1,4-dichloro-2 in a 1 L autoclave with a stirrer. , 5-Dimethylbenzene 8.9 g was charged. The charged molar ratio of p-dichlorobenzene and 1,4-dichloro-2,5-dimethylbenzene was 95: 5 as p-dichlorobenzene: 1,4-dichloro-2,5-dimethylbenzene. Then, after replacing the inside of the autoclave with a nitrogen gas atmosphere, the autoclave was sealed. Then, while stirring the reaction solution in the autoclave, the reaction solution was gradually heated to 240 ° C. over about 30 minutes. After the polycondensation reaction was carried out at 240 ° C. for 2 hours, 20.3 g of ion-exchanged water was pumped into the autoclave. Then, the temperature was raised to 260 ° C. over 10 minutes. The polycondensation reaction was subsequently carried out at 260 ° C. for 3 hours. After completion of the reaction, the reaction solution was cooled to near room temperature.
After taking out the contents of the autoclave, 1 L of acetone containing 3% by mass of pure water was added to the contents of the autoclave, and the mixture was stirred and washed at room temperature for 30 minutes. After the washed solid content (crude product) was recovered by filtration, the above-mentioned washing operation with acetone was repeated twice.
The solid content washed with acetone was washed by stirring in 1 L of pure water at room temperature for 30 minutes, and then recovered by filtration. The above-mentioned washing operation with pure water was repeated 3 times for the recovered solid content, and then the solid content recovered by filtration was dried at 120 ° C. for 4 hours to obtain a purified modified PPS resin.
 得られた変性PPS樹脂について、示差走査熱量分析により融点及びガラス転移温度(Tg)を測定した。その結果、融点は271℃であり、Tgが88℃であった。 The melting point and glass transition temperature (Tg) of the obtained modified PPS resin were measured by differential scanning calorimetry. As a result, the melting point was 271 ° C. and the Tg was 88 ° C.
〔実施例2~4、比較例3、及び比較例4〕
 p-ジクロロベンゼンと、1,4-ジクロロ-2,5-ジメチルベンゼンとの仕込みモル比率を、表1に記載の比率(モル%)に変えることの他は、実施例1と同様にして、変性PPS樹脂を得た。
 実施例2で得られた、変性PPS樹脂について、KBr錠剤法によるFT-IR測定を行った。測定結果を図1に示す。
 実施例2で得られた変性PPS樹脂について、示差走査熱量分析により融点及びガラス転移温度(Tg)を測定した。その結果、融点は254℃であり、Tgが91℃であった。
[Examples 2 to 4, Comparative Example 3, and Comparative Example 4]
Except for changing the charged molar ratio of p-dichlorobenzene and 1,4-dichloro-2,5-dimethylbenzene to the ratio (mol%) shown in Table 1, the same procedure as in Example 1 was carried out. A modified PPS resin was obtained.
The modified PPS resin obtained in Example 2 was subjected to FT-IR measurement by the KBr tablet method. The measurement results are shown in FIG.
For the modified PPS resin obtained in Example 2, the melting point and the glass transition temperature (Tg) were measured by differential scanning calorimetry. As a result, the melting point was 254 ° C and the Tg was 91 ° C.
〔比較例1〕
 p-ジクロロベンゼンとスルフィド化剤(例えば、アルカリ金属硫化物やアルカリ金属水硫化物)との重縮合物であるポリフェニレンスルフィド樹脂((株)クレハ製、W-214A)を、比較例1の試料として用いた。
[Comparative Example 1]
A polyphenylene sulfide resin (W-214A, manufactured by Kureha Co., Ltd.), which is a polycondensate of p-dichlorobenzene and a sulfidizing agent (for example, alkali metal sulfide or alkali metal hydrosulfide), is used as a sample of Comparative Example 1. Used as.
〔比較例2〕
 ハロゲン化芳香族化合物として1,4-ジクロロ-2,5-ジメチルベンゼン178.6gのみを仕込んだことの他は、実施例1と同様にして、1,4-ジクロロ-2,5-ジメチルベンゼンと硫化ナトリウムとの重縮合物であるポリ(ジメチルフェニレン)スルフィド樹脂を得た。
[Comparative Example 2]
Similar to Example 1, 1,4-dichloro-2,5-dimethylbenzene was charged, except that only 178.6 g of 1,4-dichloro-2,5-dimethylbenzene was charged as the halogenated aromatic compound. A poly (dimethylphenylene) sulfide resin, which is a polycondensate of sodium sulfide and sodium sulfide, was obtained.
 構成単位(I)及び構成単位(II)を含む実施例1~実施例4、及び比較例3で得られた変性PPS樹脂と、構成単位(I)のみからなる比較例1のポリフェニレンスルフィド樹脂とについて、以下の方法に従ってシートを作成し、以下の方法に従って損失係数を測定した。
 なお、比較例2で得た1,4-ジクロロ-2,5-ジメチルベンゼンと硫化ナトリウムとの重縮合物と、主に1,4-ジクロロ-2,5-ジメチルベンゼン由来の単位からなる比較例4で得た変性PPS樹脂とについては、シートの形成が困難であったため損失係数の測定を行わなかった。
The modified PPS resin obtained in Examples 1 to 4 and Comparative Example 3 containing the structural unit (I) and the structural unit (II), and the polyphenylene sulfide resin of Comparative Example 1 comprising only the structural unit (I). A sheet was prepared according to the following method, and the loss coefficient was measured according to the following method.
A comparison consisting mainly of a polycondensate of 1,4-dichloro-2,5-dimethylbenzene and sodium sulfide obtained in Comparative Example 2 and a unit mainly derived from 1,4-dichloro-2,5-dimethylbenzene. For the modified PPS resin obtained in Example 4, the loss coefficient was not measured because it was difficult to form a sheet.
 実施例1~実施例4、及び比較例3で得た変性PPS樹脂、並びに比較例1のポリフェニレンスルフィド樹脂について、試料を320℃で、5MPa、1分の条件で圧縮成形して55mm×55mm×1mmのサイズのシートを作製した。 The modified PPS resin obtained in Examples 1 to 4 and Comparative Example 3 and the polyphenylene sulfide resin of Comparative Example 1 were compression-molded at 320 ° C. at 5 MPa and 1 minute under the conditions of 55 mm × 55 mm ×. A sheet having a size of 1 mm was produced.
 得られたシートから、カッターナイフによりDMA測定用の短冊状の試験片を切り出し、DMAによる動的粘弾性の評価を行い、損失係数を測定した。なお、試験片には、DMA測定前に、150℃、1時間の条件でアニール処理を施した。DMA測定条件は以下の通りである。損失係数の値は、20℃~240℃でと測定された値の最大値である。損失係数の測定結果を、表1に記す。損失係数の測定結果を、表1に記す。
<DMA測定条件>
試料サイズ:10mm×5mm×1mm
引張温度:20℃~240℃
昇温速度:2℃/分
周波数:10Hz
From the obtained sheet, a strip-shaped test piece for DMA measurement was cut out with a cutter knife, the dynamic viscoelasticity was evaluated by DMA, and the loss coefficient was measured. The test piece was annealed at 150 ° C. for 1 hour before the DMA measurement. The DMA measurement conditions are as follows. The value of the loss coefficient is the maximum value measured at 20 ° C to 240 ° C. The measurement results of the loss coefficient are shown in Table 1. The measurement results of the loss coefficient are shown in Table 1.
<DMA measurement conditions>
Sample size: 10 mm x 5 mm x 1 mm
Tensile temperature: 20 ° C to 240 ° C
Temperature rise rate: 2 ° C / min Frequency: 10Hz
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例4によれば、構成単位(I)及び構成単位(II)を含み、且つ構成単位(II)を所定の範囲内の比率で含む変性PPS樹脂が、顕著に高い損失係数を示し、制振性に優れることが分かる。 According to Examples 1 to 4, the modified PPS resin containing the structural unit (I) and the structural unit (II) and containing the structural unit (II) in a ratio within a predetermined range has a significantly high loss coefficient. It can be seen that the vibration damping property is excellent.
〔実施例5〕
 実施例2で得た変性PPS樹脂と、ポリフェニレンスルフィド樹脂(未変性PPS樹脂、(株)クレハ製、W-214A)とを、質量比が変性PPS樹脂質量:未変性PPS質量として20:80であるように溶融混錬して樹脂組成物を得た。
 具体的には、変性PPS樹脂と、未変性PPS樹脂とを上記の比率でドライブレンドした後、混合物を、R60(容量60mL)のバレルと、フルフライトのスクリューを備える溶融混錬装置(ラボプラストミル、東洋精機製作所製)にて、試験温度320℃、試験時間5分、回転数100rpmの条件で溶融混錬して樹脂組成物を得た。
 得られた樹脂組成物の資料を用いて、実施例1と同様にして損失係数を測定したところ、損失係数の値は0.156であった。
 つまり、実施例5によれば、構成単位(I)及び構成単位(II)を含み、且つ構成単位(II)を所定の範囲内の比率で含む変性PPS樹脂を、未変性PPS樹脂のような他の樹脂に混合することにより、他の樹脂を制振化できることが分かる。
[Example 5]
The weight ratio of the modified PPS resin obtained in Example 2 to the polyphenylene sulfide resin (unmodified PPS resin, manufactured by Kureha Co., Ltd., W-214A) was 20:80 as the modified PPS resin mass: unmodified PPS mass. A resin composition was obtained by melt-kneading as in a certain manner.
Specifically, after dry-blending the modified PPS resin and the unmodified PPS resin in the above ratio, the mixture is mixed with a melt kneading device (Laboplast) equipped with a barrel of R60 (capacity 60 mL) and a full-flight screw. A resin composition was obtained by melt-kneading at a test temperature of 320 ° C., a test time of 5 minutes, and a rotation speed of 100 rpm at a mill (manufactured by Toyo Seiki Seisakusho).
When the loss coefficient was measured in the same manner as in Example 1 using the obtained material of the resin composition, the value of the loss coefficient was 0.156.
That is, according to the fifth embodiment, the modified PPS resin containing the structural unit (I) and the structural unit (II) and containing the structural unit (II) in a ratio within a predetermined range is like an unmodified PPS resin. It can be seen that the other resin can be vibration-damped by mixing with the other resin.

Claims (9)

  1.  下記式(1)で表される構成単位(I)と、下記式(2)で表される構成単位(II)とを含み、前記構成単位(I)のモル数と前記構成単位(II)のモル数との合計に対して、前記構成単位(II)を5モル%以上95モル%以下含む、変性ポリフェニレンスルフィド樹脂。
    -Ph-S-・・・(1)
    -Ph-S-・・・(2)
    (式(1)中、Phはp-フェニレン基であり、前記式(2)中、Phはジメチル-p-フェニレン基である。)
    The structural unit (I) represented by the following formula (1) and the structural unit (II) represented by the following formula (2) are included, and the number of moles of the structural unit (I) and the structural unit (II) are included. A modified polyphenylene sulfide resin containing 5 mol% or more and 95 mol% or less of the structural unit (II) with respect to the total number of moles of the above.
    -Ph 1 -S -... (1)
    -Ph 2 -S -... (2)
    (In the formula (1), Ph 1 is a p-phenylene group, and in the formula (2), Ph 2 is a dimethyl-p-phenylene group.)
  2.  全構成単位のモル数に対する、前記構成単位(I)のモル数と前記構成単位(II)のモル数との合計の比率が80モル%以上である、請求項1に記載の変性ポリフェニレンスルフィド樹脂。 The modified polyphenylene sulfide resin according to claim 1, wherein the ratio of the total number of moles of the structural unit (I) to the number of moles of the structural unit (II) is 80 mol% or more with respect to the number of moles of all the structural units. ..
  3.  前記ジメチル-p-フェニレン基が2,5-ジメチルベンゼン-1,4-ジイル基である、請求項1又は2に記載の変性ポリフェニレンスルフィド樹脂。 The modified polyphenylene sulfide resin according to claim 1 or 2, wherein the dimethyl-p-phenylene group is a 2,5-dimethylbenzene-1,4-diyl group.
  4.  請求項1~3のいずれか1項に記載の前記変性ポリフェニレンスルフィド樹脂と、前記変性ポリフェニレンスルフィド樹脂以外の他の樹脂とを含む、樹脂組成物。 A resin composition containing the modified polyphenylene sulfide resin according to any one of claims 1 to 3 and a resin other than the modified polyphenylene sulfide resin.
  5.  前記変性ポリフェニレンスルフィド樹脂の質量と、前記他の樹脂の質量との合計に対する、前記変性ポリフェニレンスルフィド樹脂の質量の比率が、1質量%以上90質量%以下である、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the ratio of the mass of the modified polyphenylene sulfide resin to the total of the mass of the modified polyphenylene sulfide resin and the mass of the other resin is 1% by mass or more and 90% by mass or less. thing.
  6.  前記他の樹脂が熱可塑性樹脂である、請求項4又は5に記載の樹脂組成物。 The resin composition according to claim 4 or 5, wherein the other resin is a thermoplastic resin.
  7.  前記熱可塑性樹脂が、ポリアリーレンスルフィド樹脂である、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the thermoplastic resin is a polyarylene sulfide resin.
  8.  請求項1~3のいずれか1項に記載の前記変性ポリフェニレンスルフィド樹脂、又は請求項4~7のいずれか1項に記載の前記樹脂組成物からなる成形品。 A molded product comprising the modified polyphenylene sulfide resin according to any one of claims 1 to 3 or the resin composition according to any one of claims 4 to 7.
  9.  動的粘弾性測定に従って測定される損失係数として0.150以上の値を示す、請求項8に記載の成形品。 The molded product according to claim 8, which shows a value of 0.150 or more as a loss coefficient measured according to dynamic viscoelasticity measurement.
PCT/JP2021/028656 2020-08-05 2021-08-02 Modified polyphenylene sulfide resin, resin composition and molded article WO2022030459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133283 2020-08-05
JP2020-133283 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030459A1 true WO2022030459A1 (en) 2022-02-10

Family

ID=80118045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028656 WO2022030459A1 (en) 2020-08-05 2021-08-02 Modified polyphenylene sulfide resin, resin composition and molded article

Country Status (1)

Country Link
WO (1) WO2022030459A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204657A (en) * 1983-05-09 1984-11-20 Toray Ind Inc Polyphenylene sulfide composition
JPH01188529A (en) * 1987-11-27 1989-07-27 Phillips Petroleum Co Production of crystalline poly(arylenesulfide) and composition containing the same
JPH02103233A (en) * 1988-08-18 1990-04-16 Bayer Ag High-molecular weight polyarylene sulfide
JPH03217278A (en) * 1990-01-23 1991-09-25 Toray Ind Inc Production of polyarylene sulfide coated body
JPH09241379A (en) * 1996-03-05 1997-09-16 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide modification, modification obtained thereby, and resin composition comprising the same
JP2009263436A (en) * 2008-04-23 2009-11-12 Toray Ind Inc Polyphenylene sulfide resin composition, molding, and boxy molding component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204657A (en) * 1983-05-09 1984-11-20 Toray Ind Inc Polyphenylene sulfide composition
JPH01188529A (en) * 1987-11-27 1989-07-27 Phillips Petroleum Co Production of crystalline poly(arylenesulfide) and composition containing the same
JPH02103233A (en) * 1988-08-18 1990-04-16 Bayer Ag High-molecular weight polyarylene sulfide
JPH03217278A (en) * 1990-01-23 1991-09-25 Toray Ind Inc Production of polyarylene sulfide coated body
JPH09241379A (en) * 1996-03-05 1997-09-16 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide modification, modification obtained thereby, and resin composition comprising the same
JP2009263436A (en) * 2008-04-23 2009-11-12 Toray Ind Inc Polyphenylene sulfide resin composition, molding, and boxy molding component

Similar Documents

Publication Publication Date Title
JP5534815B2 (en) Polyetheretherketone and method for purifying polymer material
WO2006068159A1 (en) Branched polyarylene sulfide resin, process for producing the same, and use thereof as polymeric modifier
WO2019151288A1 (en) Polyarylene sulfide copolymer and method for producing same
JPH08157600A (en) Production of polyarylene sulfide excellent in adhesive properties
WO2022030459A1 (en) Modified polyphenylene sulfide resin, resin composition and molded article
JP2016079305A (en) Polyarylene sulfide-based resin composition
WO2022019204A1 (en) Halogenated polyphenylene sulfide resin, resin composition, molded article, and vibration-damping agent for resin
JPH0925346A (en) Fiber-reinforced composite material
JP2021113279A (en) Method for producing polyarylene sulfide
JP5446891B2 (en) Method for producing polyarylene sulfide resin composition and molded article using the resin composition
JP4257506B2 (en) Heat-resistant resin composite material
JP6701877B2 (en) Polyphenylene sulfide resin composition
JP6207809B2 (en) Polyarylene sulfide resin composition and molded article thereof
JP4277368B2 (en) Polyarylene sulfide resin composition
WO2020196273A1 (en) Polyphenylene sulfide resin composition and molded article
JP2022042759A (en) Polyphenylene sulfide resin composition, molded article, and vibration damping agent
JP2021113302A (en) Method for producing polyarylene sulfide
WO2010018681A1 (en) Resin composition
JP2010095615A (en) Polyetherether ketone, resin composition containing the same, and molded article of the same
JP7373668B2 (en) Polyphenylene sulfide resin composition and vibration damping material containing the same
JP2008020011A (en) Heat resisting resin gear
JP7197066B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
CN107922735B (en) Polyarylene sulfide resin composition and molded article thereof
JP3984661B2 (en) Polyarylene sulfide resin composition
JP2019006923A (en) Polyarylene sulfide and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP