WO2022030331A1 - Microwave irradiation device and microwave irradiation method - Google Patents
Microwave irradiation device and microwave irradiation method Download PDFInfo
- Publication number
- WO2022030331A1 WO2022030331A1 PCT/JP2021/027937 JP2021027937W WO2022030331A1 WO 2022030331 A1 WO2022030331 A1 WO 2022030331A1 JP 2021027937 W JP2021027937 W JP 2021027937W WO 2022030331 A1 WO2022030331 A1 WO 2022030331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- microwave
- microwave irradiation
- tapered portion
- irradiation device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
Definitions
- the present invention relates to a microwave irradiation device for irradiating a microwave irradiation target with microwaves, and a microwave irradiation method.
- Patent Document 1 a resin sheet has been heated by a plate heater and then rolled by a roller.
- the present invention has been made in accordance with the above situation, and the first object thereof is a microwave irradiation device and a microwave irradiation capable of shortening the time required from heating an object to the next step.
- the purpose is to provide a method.
- the microwave irradiation device is a microwave generator for generating microwaves and a waveguide for transmitting microwaves from the microwave generator. It is provided with a waveguide having a tapered portion whose cross section orthogonal to the longitudinal direction of the waveguide becomes smaller toward the tip of the waveguide.
- the microwave irradiation device may further include a moving portion for moving the microwave irradiation target so as to pass through the tip of the tapered portion.
- the moving unit may move the microwave irradiation object in the waveguide in the longitudinal direction of the waveguide and move it from the opening to the outside.
- the microwave irradiation target may be long.
- the tapered portion may be formed so that the short side in the rectangular cross section in the direction orthogonal to the longitudinal direction of the tapered portion becomes shorter toward the opening. ..
- the waveguide has a tapered portion and a main body portion having one end connected to the microwave generator and the other end connected to the tapered portion. good.
- the main body portion may have an opening for moving the irradiation target object into the waveguide.
- the length of the tapered portion may be at least twice the free space wavelength of the microwave having a frequency propagating in the waveguide.
- the microwave irradiation method is a waveguide for transmitting microwaves and a step of generating microwaves, and the cross section orthogonal to the longitudinal direction of the waveguide is a waveguide. It includes the step of moving the microwave irradiation object so as to pass through the tip of the tapered portion in the waveguide having the tapered portion that becomes smaller toward the opening of the tip of the microwave.
- a part of the object is provided by making the cross section smaller toward the tip of the waveguide so that the microwave can be concentrated and irradiated. Can be efficiently heated in the vicinity of the tip. Therefore, the time required from heating the object to the next step can be shortened.
- Schematic diagram showing the configuration of the microwave irradiation device according to the embodiment of the present invention A perspective view showing a tapered portion and an object to be irradiated with microwaves in the same embodiment. Schematic diagram showing the configuration of the moving portion in the same embodiment A cross-sectional view showing a cross section perpendicular to the longitudinal direction of the tapered portion in the same embodiment. A cross-sectional view showing a cross section perpendicular to the longitudinal direction of the tapered portion in the same embodiment and on the tip side of FIG. 4A.
- the microwave irradiation device and the microwave irradiation method according to the present invention will be described using embodiments.
- the components with the same reference numerals are the same or correspond to each other, and the description thereof may be omitted again.
- the microwave irradiation target is intensively irradiated with microwaves at the tip of the tapered portion provided in the waveguide.
- FIG. 1 is a schematic diagram showing the configuration of the microwave irradiation device 1 according to the present embodiment.
- FIG. 2 is a perspective view showing the tapered portion 22 and the microwave irradiation target 3.
- FIG. 3 is a schematic diagram showing the configuration of the moving portion 13.
- the microwave irradiation device 1 includes a microwave generator 11 and a waveguide 12 having a main body portion 21 and a tapered portion 22 to which the main body portion 21 is connected to the microwave generator 11.
- the moving unit 13 can be provided.
- the microwave irradiation device 1 irradiates the microwave irradiation target 3 (hereinafter, also referred to as “object 3”) with microwaves at least at the tip of the tapered portion 22 of the waveguide 12. It is for heating.
- the object 3 is a long object, that is, a sheet-shaped object, a plate-shaped object, a string-shaped object, a rod-shaped object, or the like extending in one direction.
- the object 3 has a length in the longitudinal direction longer than a length in the width direction.
- the sheet-shaped or string-shaped object 3 may have flexibility, and the plate-shaped or rod-shaped object 3 may not have flexibility.
- the object 3 may be a material for producing a molded product extending in one direction such as a sheet, a plate, a string, or a rod, or may be a material for a chemical reaction, and may be dried. It may be a target, or it may be something else that is a target of microwave irradiation. In this embodiment, the case where the object 3 is in the form of a sheet will be mainly described.
- microwave irradiation to the object 3 is performed while moving the object 3, that is, in a continuous manner.
- the object 3 may be continuously moving, or may be repeatedly moved and stopped.
- Irradiation of the object 3 with microwaves may be performed, for example, to soften the object 3, melt, sublimate, or evaporate the object 3, and the object 3 may be irradiated with microwaves. It may be performed for a reaction, for firing the object 3, may be performed for sterilization of the object 3, or may be performed for other uses.
- the reaction of the object 3 may be, for example, a chemical reaction.
- Irradiation of the object 3 with microwaves may be performed, for example, under normal pressure, reduced pressure, or pressurized. Also, microwave irradiation may or may not be performed, for example, under a stream of air or an inert gas.
- the inert gas may be, for example, a noble gas such as helium or argon, or nitrogen.
- the microwave generator 11 generates microwaves.
- the microwave generator 11 may generate microwaves by using, for example, a magnetron, a klystron, a gyrotron, or the like, or may generate microwaves by using a semiconductor element.
- the frequency of the microwave may be, for example, 915 MHz, 2.45 GHz, 5.8 GHz, 24 GHz, or another frequency in the range of 300 MHz to 300 GHz.
- the intensity of the microwave may be appropriately controlled by a control unit (not shown).
- the control may be, for example, feedback control using sensing results such as the temperature of the object 3 and the water content of the object 3.
- the waveguide 12 transmits microwaves from the microwave generator 11, and the main body 21 having one end connected to the microwave generator 11 and the opposite side of the main body 21 to the microwave generator 11. It has a tapered portion 22 connected to the end portion of the.
- the waveguide 12 may be a hollow waveguide.
- the main body 21 is, in one embodiment, a rectangular waveguide having a rectangular cross section orthogonal to the longitudinal direction. As shown in FIG. 1, a part may be bent or may be linear. When a part is bent, the main body 21 may be configured by, for example, combining a linear waveguide and a corner waveguide. Further, the main body 21 is usually a rectangular waveguide having a rectangular cross section, but may include a circular waveguide having a circular cross section as a part. Since the cross section orthogonal to the longitudinal direction of the tapered portion 22 is rectangular, the main body portion 21 having the circular waveguide has a circular waveguide so that the cross section is rectangular at the connection point with the tapered portion 22. It may have a conversion waveguide for converting to a rectangular waveguide.
- the tapered portion 22 is a waveguide whose cross section orthogonal to the longitudinal direction or the waveguide direction of the waveguide 12 gradually decreases toward the opening 24 at the tip of the waveguide 12. That is, the tapered portion 22 has a pair of tapered surfaces 22a facing each other, and is tapered from the microwave generator 11 side toward the tip. The tip is the end of the waveguide 12 on the opposite side of the microwave generator 11.
- 4A is a sectional view taken along line IVA-IVA in FIG. 1
- FIG. 4B is a sectional view taken along line IVB-IVB in FIG. As shown in FIGS.
- the tapered portion 22 has a short side in a rectangular cross section in a direction orthogonal to the longitudinal direction of the tapered portion 22 and gradually shortens toward the opening 24 at the tip. Therefore, the length of the long side in the rectangular cross section may be formed so as not to change. As will be described later, the long side of the rectangular cross section may also be gradually shortened toward the opening 24 at the tip. As shown in FIGS. 4A and 4B, the cross-sectional area of the space portion in the cross section orthogonal to the longitudinal direction of the tapered portion 22 becomes smaller toward the opening 24, and is in the cross section orthogonal to the longitudinal direction of the tapered portion 22.
- the distance between the pair of tapered surfaces 22a facing each other also decreases toward the opening 24.
- the angle of each of the pair of tapered surfaces 22a changes according to the length of the tapered portion 22 in the longitudinal direction. In the present embodiment, the case where the tapered portion 22 is configured in this way will be mainly described, and the other cases will be described later.
- FIG. 5 shows the simulation result of the electric field analysis of the relationship between the length of the tapered portion 22 in the longitudinal direction and the reflectance of the microwave introduced into the tapered portion 22.
- the size of the opening of the tapered portion 22 on the main body 21 side is 109.2 ⁇ 54.6 (mm)
- the size of the opening 24 at the tip of the tapered portion 22 is 100 ⁇ 3.2 (mm).
- the length of the tapered portion 22 in the longitudinal direction is preferably, for example, twice or more, and three times or more, the length of the free space wavelength for microwaves having a frequency propagating in the waveguide 12. The length is more preferred. Since twice the free space wavelength of microwaves having a frequency of 2.45 GHz is about 245 (mm), the length of the tapered portion 22 in the longitudinal direction is determined from the simulation result of FIG.
- FIG. 6 is a diagram showing simulation results regarding microwave absorption by the object 3 in the tapered portion 22.
- the length of the tapered portion 22 is 400 (mm). In FIG. 6, the whiter the color, the more microwaves are absorbed.
- each side surface of the tapered portion 22 may be a flat surface as shown in FIG.
- the waveguide 12 since the object 3 moves inside the waveguide 12, the waveguide 12 may be provided with an introduction portion 23 having an opening for introducing the object 3.
- the main body 21 may have an opening for moving the object 3 into the waveguide 12.
- the opening of the introduction portion 23 may be provided with a microwave leakage prevention mechanism such as a choke structure.
- the moving portion 13 moves the object 3 so as to pass through the tip of the tapered portion 22. More specifically, the moving portion 13 moves the object 3 in the waveguide 12 in the longitudinal direction of the waveguide 12 and moves it from the opening 24 to the outside. As shown in FIG. 1, when the main body 21 is bent, moving the object 3 in the longitudinal direction of the waveguide 12 means that the object 3 is longitudinally formed in at least a part of the waveguide 12. It may be moved in a direction. The movement of the object 3 from the inside to the outside of the waveguide 12 may be performed by pulling out the object 3 from the opening 24 outside the waveguide 12. In the present embodiment, a case where the moving portion 13 includes a cover 30, a pair of rolling rollers 31 and 32 in the cover 30, and a rotating mechanism 33 for rotating the pair of rolling rollers 31, 32 will be mainly described. ..
- the cover 30 may be provided with an opening having the same size as the opening 24, and the opening of the cover 30 and the opening 24 of the tapered portion 22 may be connected to each other. It is preferable that the cover 30 is made of a material that does not transmit microwaves.
- the cover 30 may be made of, for example, a microwave reflective material.
- the microwave reflective material may be, for example, a metal.
- the metal is not particularly limited, but may be, for example, stainless steel, carbon steel, nickel, nickel alloy, copper, copper alloy, or the like.
- the pair of rolling rollers 31, 32 pulls out the object 3 from the opening 24 and rolls the object 3. Since the object 3 is heated and softened as it passes through the opening 24 at the tip of the tapered portion 22, it can be easily rolled by the rolling rollers 31 and 32.
- the sheet-shaped object 3 having a thickness of about several millimeters may be rolled to a thickness of about several micrometers by the rolling rollers 31 and 32.
- the rotation mechanism 33 has gears 331, 332, 333 and a motor 334, and rotates a pair of rolling rollers 31 and 32, respectively.
- the gear 331 is coaxially connected to the rolling roller 31
- the gear 332 is coaxially connected to the rolling roller 32
- both gears 331 and 332 are meshed with each other.
- a gear 333 is provided so as to mesh with the gear 332, and the gear 333 is coaxially connected to the motor 334. Therefore, the gear 333 is rotated by the rotational drive of the motor 334, and the rolling rollers 31 and 32 are rotated in opposite directions by the rotation of the gears 331 and 332, respectively, and the object 3 is rolled.
- the rotation mechanism 33 may have a configuration other than that shown in FIG.
- the rotation mechanism 33 may have two rotation driving means for rotating the rolling rollers 31 and 32, respectively.
- the rotation of the motor 334 may be transmitted to the rolling rollers 31 and 32 by using a rotation transmitting means other than the gear, for example, a pulley and a belt.
- the moving unit 13 may have a configuration other than the above.
- the moving portion 13 has a pair of transport rollers for sandwiching and transporting the object 3 and a rotating mechanism for rotating the transport rollers. It may be.
- the transport roller may move the object 3 on the downstream side of the opening 24 or may move the object 3 on the upstream side of the introduction portion 23, for example, as in FIG.
- a microwave leakage prevention mechanism such as a choke structure may be provided in the opening of the cover 30 connected to the opening 24 of the tapered portion 22. Further, when the microwave leakage prevention mechanism is not provided, a microwave leakage prevention mechanism such as a choke structure may be provided at a position where the object 3 comes out from the cover 30. Further, a microwave leakage prevention mechanism may be provided in the opening 24 at the tip of the tapered portion 22.
- the microwave is generated by the microwave generator 11. Further, the rotary drive of the moving unit 13 by the motor 334 is started to rotate the pair of rolling rollers 31 and 32, respectively.
- the microwave generated by the microwave generator 11 propagates in the waveguide 12 and travels toward the tip end side of the tapered portion 22.
- the sheet-shaped object 3 introduced from the introduction portion 23 of the waveguide 12 passes through the main body portion 21 of the waveguide 12 and proceeds to the tapered portion 22.
- the object 3 irradiated with the microwave concentrated on the tip of the tapered portion 22 is heated and softened, and is rolled by a pair of rolling rollers 31 and 32 to have a predetermined thickness.
- the sheet-shaped object 3 rolled in this way may be appropriately wound by a take-up roller or the like.
- rolled sheets are sequentially manufactured.
- the rolled sheet may be, for example, a sheet having conductivity.
- the sheet may be, for example, one in which carbon is kneaded into a thermoplastic resin.
- FIG. 2 shows that the short side of the rectangular cross section of the tapered portion 22 in the direction orthogonal to the longitudinal direction gradually shortens toward the opening 24, and the length of the long side of the cross section does not change.
- the tapered portion 22 is formed so that the long side of the rectangular cross section in the direction orthogonal to the longitudinal direction of the tapered portion 22 also gradually shortens toward the opening 24. May be good.
- FIG. 7A is a drawing in which the direction of the long side of the rectangle in the cross section orthogonal to the longitudinal direction of the main body portion 21 and the tapered portion 22 is the direction perpendicular to the paper surface
- FIG. 7B is a drawing of the rectangle in the cross section. It is a drawing that the direction of a short side is a direction perpendicular to a paper surface. Further, when the length of the long side in the rectangular cross section is shortened in the opening 24 as in the case of the short side, the reflection of the microwave at the tapered portion 22 becomes large and the microwave does not reach the tip. It will be. Therefore, for example, as shown in FIG.
- the length of the long side in the opening 24 is not shorter than half of the in-tube wavelength of the microwave transmitted in the waveguide 12. That is, it is preferable that the length of the long side of the opening 24 is at least half the length of the in-tube wavelength of the microwave. On the other hand, there is no such limitation on the length of the short side of the opening 24.
- the object 3 can be irradiated with the microwave concentrated at the tip of the tapered portion 22. Therefore, among the objects 3, the tip of the tapered portion 22 can be locally concentrated and irradiated with microwaves to efficiently heat the object 3. As a result, the time required from the heating step to the next step, for example, the rolling step can be shortened. Further, when the object 3 moves inside the waveguide 12, the object 3 can be irradiated with microwaves even in the waveguide 12 of the tapered portion 22. Therefore, even before the object 3 reaches the opening 24, it can be heated to some extent. For example, the object 3 can be preheated even on the front side of the opening 24.
- the microwave when passing through the opening 24, the microwave can be intensively irradiated, and intensive heating can be performed. Further, by configuring the object 3 to pass through the opening 24, it becomes possible to heat the object 3 having a higher microwave reflectance, for example, the object 3 having conductivity. ..
- the object 3 is heated by microwaves, the object 3 can be heated efficiently, and energy saving can be realized as compared with the case where a rolled sheet is manufactured by heating using an electric heater or the like. You can also.
- the moving portion 13 has a pair of rolling rollers 31 and 32 and a rotation mechanism 33, the object 3 heated when passing through the opening 24 at the tip of the tapered portion 22 can be rolled.
- a thin-film rolled sheet can be manufactured.
- energy saving can be realized in the production of rolled sheets.
- the waveguide 12 has the main body portion 21
- the microwave generator 11 may be connected to the larger opening of the tapered portion 22.
- the microwave irradiation device 1 has the moving unit 13 has been described, but it is not necessary.
- the object 3 may be moved by an external moving unit of the microwave irradiation device 1.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
[Problem] To provide a microwave irradiation device capable of efficiently heating a prescribed location on a microwave irradiation target. [Solution] A microwave irradiation device 1 comprises: a microwave generator 11 which generates microwaves; a waveguide 12 that is for transmitting microwaves from the microwave generator 11 and has a tapered section 22 in which a cross-section orthogonal to the longitudinal direction of the waveguide 12 gradually grows smaller towards an opening at the tip end of the waveguide 12; and a moving part 13 which moves a microwave irradiation target 3 so as to pass by the tip end of the tapered section 22.
Description
本発明は、マイクロ波の照射対象物にマイクロ波を照射するためのマイクロ波照射装置、及びマイクロ波照射方法に関する。
The present invention relates to a microwave irradiation device for irradiating a microwave irradiation target with microwaves, and a microwave irradiation method.
従来、樹脂シートをプレートヒータによって加熱した後に、ローラで圧延することが行われていた(特許文献1参照)。
Conventionally, a resin sheet has been heated by a plate heater and then rolled by a roller (see Patent Document 1).
上記従来例では、ローラで樹脂シートを圧延する直前に加熱することが困難であった。一般的にいえば、加熱工程から次の工程までの所要時間を短縮することが困難であるという問題があった。
In the above conventional example, it was difficult to heat the resin sheet immediately before rolling it with a roller. Generally speaking, there is a problem that it is difficult to shorten the time required from the heating process to the next process.
本発明は、上記状況に応じてなされたものであり、その第1の目的は、対象物を加熱してから次の工程までの所要時間を短縮することができるマイクロ波照射装置及びマイクロ波照射方法を提供することを目的とする。
The present invention has been made in accordance with the above situation, and the first object thereof is a microwave irradiation device and a microwave irradiation capable of shortening the time required from heating an object to the next step. The purpose is to provide a method.
上記目的を達成するため、本発明の一態様によるマイクロ波照射装置は、マイクロ波を発生させるマイクロ波発生器と、マイクロ波発生器からのマイクロ波を伝送するための導波管であって、導波管の長手方向に直交する断面が導波管の先端に向かって小さくなるテーパ部を有する導波管とを備えたものである。
In order to achieve the above object, the microwave irradiation device according to one aspect of the present invention is a microwave generator for generating microwaves and a waveguide for transmitting microwaves from the microwave generator. It is provided with a waveguide having a tapered portion whose cross section orthogonal to the longitudinal direction of the waveguide becomes smaller toward the tip of the waveguide.
また、本発明の一態様によるマイクロ波照射装置では、テーパ部の先端を通過するようにマイクロ波の照射対象物を移動させる移動部をさらに備えてもよい。
Further, the microwave irradiation device according to one aspect of the present invention may further include a moving portion for moving the microwave irradiation target so as to pass through the tip of the tapered portion.
また、本発明の一態様によるマイクロ波照射装置では、移動部は、導波管内のマイクロ波の照射対象物を導波管の長手方向に移動させ、開口から外部に移動させてもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the moving unit may move the microwave irradiation object in the waveguide in the longitudinal direction of the waveguide and move it from the opening to the outside.
また、本発明の一態様によるマイクロ波照射装置では、マイクロ波の照射対象物は、長尺であってもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the microwave irradiation target may be long.
また、本発明の一態様によるマイクロ波照射装置では、テーパ部は、テーパ部の長手方向に直交する方向の矩形状の断面における短辺が開口に向かって短くなるように形成されていてもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the tapered portion may be formed so that the short side in the rectangular cross section in the direction orthogonal to the longitudinal direction of the tapered portion becomes shorter toward the opening. ..
また、本発明の一態様によるマイクロ波照射装置では、導波管は、テーパ部と、マイクロ波発生器に一端が接続され、他端がテーパ部に接続される本体部とを有してもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the waveguide has a tapered portion and a main body portion having one end connected to the microwave generator and the other end connected to the tapered portion. good.
また、本発明の一態様によるマイクロ波照射装置では、本体部は、照射対象物を導波管内に移動させるための開口を有してもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the main body portion may have an opening for moving the irradiation target object into the waveguide.
また、本発明の一態様によるマイクロ波照射装置では、テーパ部の長さは、導波管内を伝搬する周波数のマイクロ波に関する自由空間波長の2倍以上であってもよい。
Further, in the microwave irradiation device according to one aspect of the present invention, the length of the tapered portion may be at least twice the free space wavelength of the microwave having a frequency propagating in the waveguide.
また、本発明の一態様によるマイクロ波照射方法は、マイクロ波を発生させるステップと、マイクロ波を伝送するための導波管であって、導波管の長手方向に直交する断面が導波管の先端の開口に向かって小さくなるテーパ部を有する導波管におけるテーパ部の先端を通過するようにマイクロ波の照射対象物を移動させるステップとを含むものである。
Further, the microwave irradiation method according to one aspect of the present invention is a waveguide for transmitting microwaves and a step of generating microwaves, and the cross section orthogonal to the longitudinal direction of the waveguide is a waveguide. It includes the step of moving the microwave irradiation object so as to pass through the tip of the tapered portion in the waveguide having the tapered portion that becomes smaller toward the opening of the tip of the microwave.
本発明の一態様によるマイクロ波照射装置及びマイクロ波照射方法によれば、導波管の先端に向かって断面を小さくしてマイクロ波を集中して照射可能とすることによって、対象物の一部の箇所を先端近傍で効率よく加熱することができる。そのため、対象物を加熱してから次の工程までの所要時間を短縮するができる。
According to the microwave irradiation device and the microwave irradiation method according to one aspect of the present invention, a part of the object is provided by making the cross section smaller toward the tip of the waveguide so that the microwave can be concentrated and irradiated. Can be efficiently heated in the vicinity of the tip. Therefore, the time required from heating the object to the next step can be shortened.
以下、本発明によるマイクロ波照射装置、及びマイクロ波照射方法について、実施の形態を用いて説明する。なお、以下の実施の形態において、同じ符号を付した構成要素は同一または相当するものであり、再度の説明を省略することがある。本実施の形態によるマイクロ波照射装置は、導波管に設けられたテーパ部の先端においてマイクロ波の照射対象物にマイクロ波を集中的に照射するものである。
Hereinafter, the microwave irradiation device and the microwave irradiation method according to the present invention will be described using embodiments. In the following embodiments, the components with the same reference numerals are the same or correspond to each other, and the description thereof may be omitted again. In the microwave irradiation device according to the present embodiment, the microwave irradiation target is intensively irradiated with microwaves at the tip of the tapered portion provided in the waveguide.
図1は、本実施の形態によるマイクロ波照射装置1の構成を示す模式図である。図2は、テーパ部22及びマイクロ波の照射対象物3を示す斜視図である。図3は、移動部13の構成を示す模式図である。
FIG. 1 is a schematic diagram showing the configuration of the microwave irradiation device 1 according to the present embodiment. FIG. 2 is a perspective view showing the tapered portion 22 and the microwave irradiation target 3. FIG. 3 is a schematic diagram showing the configuration of the moving portion 13.
本実施の形態によるマイクロ波照射装置1は、マイクロ波発生器11と、マイクロ波発生器11に本体部21が接続される本体部21及びテーパ部22を有する導波管12とを備え、さらに移動部13を備えることができる。マイクロ波照射装置1は、少なくとも導波管12が有するテーパ部22の先端において、マイクロ波の照射対象物3(以下、「対象物3」と呼ぶこともある。)にマイクロ波を照射して加熱するものである。
The microwave irradiation device 1 according to the present embodiment includes a microwave generator 11 and a waveguide 12 having a main body portion 21 and a tapered portion 22 to which the main body portion 21 is connected to the microwave generator 11. The moving unit 13 can be provided. The microwave irradiation device 1 irradiates the microwave irradiation target 3 (hereinafter, also referred to as “object 3”) with microwaves at least at the tip of the tapered portion 22 of the waveguide 12. It is for heating.
対象物3は、長尺のもの、すなわち、シート状、板状、紐状、棒状などの一方向に延びたものである。換言すれば、対象物3は、長手方向の長さが、幅方向の長さよりも長いものである。なお、シート状または紐状の対象物3は柔軟性を有していてもよく、板状または棒状の対象物3は柔軟性を有していなくてもよい。また、対象物3は、シート状、板状、紐状、棒状などの一方向に延びた成形品を製造するための材料であってもよく、化学反応の材料であってもよく、乾燥の対象となるものであってもよく、マイクロ波の照射の対象となるその他のものであってもよい。なお、本実施の形態では、対象物3がシート状のものである場合について主に説明する。
The object 3 is a long object, that is, a sheet-shaped object, a plate-shaped object, a string-shaped object, a rod-shaped object, or the like extending in one direction. In other words, the object 3 has a length in the longitudinal direction longer than a length in the width direction. The sheet-shaped or string-shaped object 3 may have flexibility, and the plate-shaped or rod-shaped object 3 may not have flexibility. Further, the object 3 may be a material for producing a molded product extending in one direction such as a sheet, a plate, a string, or a rod, or may be a material for a chemical reaction, and may be dried. It may be a target, or it may be something else that is a target of microwave irradiation. In this embodiment, the case where the object 3 is in the form of a sheet will be mainly described.
通常、対象物3へのマイクロ波の照射は、対象物3を移動させながら、すなわち連続式で行われる。なお、対象物3は、継続的に移動していてもよく、移動と停止とを繰り返してもよい。
Normally, microwave irradiation to the object 3 is performed while moving the object 3, that is, in a continuous manner. The object 3 may be continuously moving, or may be repeatedly moved and stopped.
対象物3へのマイクロ波の照射は、例えば、対象物3を軟化させるために行われてもよく、対象物3の融解、昇華、または蒸発のために行われてもよく、対象物3の反応のために行われてもよく、対象物3の焼成のために行われてもよく、対象物3の殺菌のために行われてもよく、その他の用途のために行われてもよい。対象物3の反応は、例えば、化学反応であってもよい。本実施の形態では、マイクロ波を照射することによって、熱可塑性のシート状の対象物3を軟化させる場合について主に説明する。対象物3へのマイクロ波の照射は、例えば、常圧、減圧下、または加圧下で行われてもよい。また、マイクロ波の照射は、例えば、空気、または不活性ガスの気流下で行われてもよく、または、そうでなくてもよい。不活性ガスは、例えば、ヘリウム、アルゴンなどの希ガス、または窒素であってもよい。
Irradiation of the object 3 with microwaves may be performed, for example, to soften the object 3, melt, sublimate, or evaporate the object 3, and the object 3 may be irradiated with microwaves. It may be performed for a reaction, for firing the object 3, may be performed for sterilization of the object 3, or may be performed for other uses. The reaction of the object 3 may be, for example, a chemical reaction. In the present embodiment, a case where the thermoplastic sheet-shaped object 3 is softened by irradiating with microwaves will be mainly described. Irradiation of the object 3 with microwaves may be performed, for example, under normal pressure, reduced pressure, or pressurized. Also, microwave irradiation may or may not be performed, for example, under a stream of air or an inert gas. The inert gas may be, for example, a noble gas such as helium or argon, or nitrogen.
マイクロ波発生器11は、マイクロ波を発生させる。マイクロ波発生器11は、例えば、マグネトロン、クライストロン、ジャイロトロンなどを用いてマイクロ波を発生させてもよく、半導体素子を用いてマイクロ波を発生させてもよい。マイクロ波の周波数は、例えば、915MHz、2.45GHz、5.8GHz、24GHzであってもよく、その他の300MHzから300GHzの範囲内の周波数であってもよい。また、マイクロ波の強度は、図示しない制御部によって適宜、制御されてもよい。その制御は、例えば、対象物3の温度、対象物3の水分量などのセンシング結果を用いたフィードバック制御であってもよい。
The microwave generator 11 generates microwaves. The microwave generator 11 may generate microwaves by using, for example, a magnetron, a klystron, a gyrotron, or the like, or may generate microwaves by using a semiconductor element. The frequency of the microwave may be, for example, 915 MHz, 2.45 GHz, 5.8 GHz, 24 GHz, or another frequency in the range of 300 MHz to 300 GHz. Further, the intensity of the microwave may be appropriately controlled by a control unit (not shown). The control may be, for example, feedback control using sensing results such as the temperature of the object 3 and the water content of the object 3.
導波管12は、マイクロ波発生器11からのマイクロ波を伝送するものであり、一端がマイクロ波発生器11に接続された本体部21と、本体部21のマイクロ波発生器11と反対側の端部に接続されたテーパ部22とを有する。導波管12は、中空導波管であってもよい。
The waveguide 12 transmits microwaves from the microwave generator 11, and the main body 21 having one end connected to the microwave generator 11 and the opposite side of the main body 21 to the microwave generator 11. It has a tapered portion 22 connected to the end portion of the. The waveguide 12 may be a hollow waveguide.
本体部21は、一実施形態において、長手方向に直交する断面が矩形状である方形導波管である。なお、図1に示されるように、一部が折れ曲がっていてもよく、または直線状であってもよい。一部が折れ曲がっている場合には、本体部21は、例えば、直線導波管とコーナ導波管とを組み合わせることによって構成されてもよい。また、本体部21は通常、断面が矩形状である矩形導波管であるが、断面が円形状である円形導波管を一部に含んでいてもよい。テーパ部22の長手方向に直交する断面は矩形状であるため、円形導波管を有する本体部21は、テーパ部22との接続箇所では断面が矩形状となるように、円形導波管を方形導波管に変換するための変換導波管を有してもよい。
The main body 21 is, in one embodiment, a rectangular waveguide having a rectangular cross section orthogonal to the longitudinal direction. As shown in FIG. 1, a part may be bent or may be linear. When a part is bent, the main body 21 may be configured by, for example, combining a linear waveguide and a corner waveguide. Further, the main body 21 is usually a rectangular waveguide having a rectangular cross section, but may include a circular waveguide having a circular cross section as a part. Since the cross section orthogonal to the longitudinal direction of the tapered portion 22 is rectangular, the main body portion 21 having the circular waveguide has a circular waveguide so that the cross section is rectangular at the connection point with the tapered portion 22. It may have a conversion waveguide for converting to a rectangular waveguide.
テーパ部22は、導波管12の長手方向または導波方向に直交する断面が導波管12の先端の開口24に向かって徐々に小さくなる導波管である。すなわち、テーパ部22は、対向する一対のテーパ面22aを有しており、マイクロ波発生器11側から先端に向かって先細りになっている。先端とは、導波管12のマイクロ波発生器11と反対側の端部のことである。図4Aは、図1におけるIVA-IVA線断面図であり、図4Bは、図1におけるIVB-IVB線断面図である。テーパ部22は、例えば、図2、図4A、図4Bで示されるように、テーパ部22の長手方向に直交する方向の矩形状の断面における短辺が先端の開口24に向かって徐々に短くなり、矩形状の断面における長辺の長さは変化しないように形成されていてもよい。なお、後述するように、矩形状の断面における長辺も、先端の開口24に向かって徐々に短くなってもよい。図4A、図4Bで示されるように、テーパ部22の長手方向に直交する断面における空間部分の断面積は、開口24に向かって小さくなっており、テーパ部22の長手方向に直交する断面における対向する一対のテーパ面22aの間隔も、開口24に向かって小さくなっている。なお、一対のテーパ面22aのそれぞれの角度は、テーパ部22の長手方向の長さに応じて変わることになる。本実施の形態では、このようにテーパ部22が構成されている場合について主に説明し、それ以外の場合については後述する。
The tapered portion 22 is a waveguide whose cross section orthogonal to the longitudinal direction or the waveguide direction of the waveguide 12 gradually decreases toward the opening 24 at the tip of the waveguide 12. That is, the tapered portion 22 has a pair of tapered surfaces 22a facing each other, and is tapered from the microwave generator 11 side toward the tip. The tip is the end of the waveguide 12 on the opposite side of the microwave generator 11. 4A is a sectional view taken along line IVA-IVA in FIG. 1, and FIG. 4B is a sectional view taken along line IVB-IVB in FIG. As shown in FIGS. 2, 4A, and 4B, for example, the tapered portion 22 has a short side in a rectangular cross section in a direction orthogonal to the longitudinal direction of the tapered portion 22 and gradually shortens toward the opening 24 at the tip. Therefore, the length of the long side in the rectangular cross section may be formed so as not to change. As will be described later, the long side of the rectangular cross section may also be gradually shortened toward the opening 24 at the tip. As shown in FIGS. 4A and 4B, the cross-sectional area of the space portion in the cross section orthogonal to the longitudinal direction of the tapered portion 22 becomes smaller toward the opening 24, and is in the cross section orthogonal to the longitudinal direction of the tapered portion 22. The distance between the pair of tapered surfaces 22a facing each other also decreases toward the opening 24. The angle of each of the pair of tapered surfaces 22a changes according to the length of the tapered portion 22 in the longitudinal direction. In the present embodiment, the case where the tapered portion 22 is configured in this way will be mainly described, and the other cases will be described later.
テーパ部22の長手方向の長さが短い場合には、図5のシミュレーション結果で示されるように、本体部21からテーパ部22に入射するマイクロ波の反射が大きくなり、テーパ部22の先端の開口24付近にマイクロ波が集中しないことになる。図5は、テーパ部22の長手方向の長さと、テーパ部22に導入されるマイクロ波の反射率との関係の電場解析のシミュレーション結果を示している。なお、当該シミュレーションでは、テーパ部22の本体部21側の開口の大きさを109.2×54.6(mm)、テーパ部22の先端の開口24の大きさを100×3.2(mm)、対象物3の長手方向に直交する断面の大きさを80×3.0(mm)、対象物3の電気伝導率を1000(S/m)、マイクロ波の周波数を2.45GHzとした。図5で示されるように、テーパ部22の長さが長くなるに応じて、マイクロ波の反射率が低くなることがわかる。したがって、テーパ部22の長手方向の長さは、例えば、導波管12内を伝搬する周波数のマイクロ波に関する自由空間波長の2倍以上の長さであることが好適であり、3倍以上の長さであることがさらに好適である。周波数が2.45GHzであるマイクロ波の自由空間波長の2倍は約245(mm)であるため、図5のシミュレーション結果から、テーパ部22の長手方向の長さを、導波管12内を伝搬する周波数のマイクロ波に関する自由空間波長の2倍以上の長さとすることによって、テーパ部22におけるマイクロ波の反射率が55%未満となり、テーパ部22においてエネルギー効率のよいマイクロ波の照射を実現できることがわかる。図6は、テーパ部22における対象物3によるマイクロ波の吸収に関するシミュレーション結果を示す図である。図6のシミュレーション結果において、シミュレーションの条件は、図5と同じにした。また、テーパ部22の長さは400(mm)とした。図6において、白いほど、より多くのマイクロ波が吸収されていることを示している。したがって、テーパ部22の開口24付近、換言すれば導波管12の先端近傍において適切なマイクロ波の照射を実現できることがわかる。また、矩形状の開口24の短手方向の長さは、対象物3と開口24との間の隙間が小さくなるように決められてもよい。開口24の短手方向の長さは、例えば、数ミリメートル程度であってもよい。また、テーパ部22の各側面は、図2で示されるように、それぞれ平面であってもよい。
When the length of the tapered portion 22 in the longitudinal direction is short, as shown in the simulation result of FIG. 5, the reflection of microwaves incident on the tapered portion 22 from the main body portion 21 becomes large, and the tip of the tapered portion 22 Microwaves will not be concentrated near the opening 24. FIG. 5 shows the simulation result of the electric field analysis of the relationship between the length of the tapered portion 22 in the longitudinal direction and the reflectance of the microwave introduced into the tapered portion 22. In the simulation, the size of the opening of the tapered portion 22 on the main body 21 side is 109.2 × 54.6 (mm), and the size of the opening 24 at the tip of the tapered portion 22 is 100 × 3.2 (mm). ), The size of the cross section orthogonal to the longitudinal direction of the object 3 is 80 × 3.0 (mm), the electrical conductivity of the object 3 is 1000 (S / m), and the microwave frequency is 2.45 GHz. .. As shown in FIG. 5, it can be seen that the reflectance of the microwave decreases as the length of the tapered portion 22 increases. Therefore, the length of the tapered portion 22 in the longitudinal direction is preferably, for example, twice or more, and three times or more, the length of the free space wavelength for microwaves having a frequency propagating in the waveguide 12. The length is more preferred. Since twice the free space wavelength of microwaves having a frequency of 2.45 GHz is about 245 (mm), the length of the tapered portion 22 in the longitudinal direction is determined from the simulation result of FIG. 5 in the waveguide 12. By making the length more than twice the free space wavelength of the microwave of the propagating frequency, the reflectance of the microwave in the tapered portion 22 becomes less than 55%, and the irradiation of the microwave with high energy efficiency is realized in the tapered portion 22. I know I can do it. FIG. 6 is a diagram showing simulation results regarding microwave absorption by the object 3 in the tapered portion 22. In the simulation result of FIG. 6, the simulation conditions were the same as those of FIG. The length of the tapered portion 22 is 400 (mm). In FIG. 6, the whiter the color, the more microwaves are absorbed. Therefore, it can be seen that appropriate microwave irradiation can be realized in the vicinity of the opening 24 of the tapered portion 22, in other words, in the vicinity of the tip of the waveguide 12. Further, the length of the rectangular opening 24 in the lateral direction may be determined so that the gap between the object 3 and the opening 24 becomes small. The length of the opening 24 in the lateral direction may be, for example, about several millimeters. Further, each side surface of the tapered portion 22 may be a flat surface as shown in FIG.
本実施の形態では、導波管12の内部を対象物3が移動するため、導波管12に、対象物3を導入するための開口を有する導入部23が設けられていてもよい。対象物3を導波管12内に移動させるための開口は、本体部21が有していてもよい。なお、導波管12の内部のマイクロ波が外部に漏洩することを防止するため、導入部23の開口には、チョーク構造などのマイクロ波の漏洩防止機構が設けられていてもよい。
In the present embodiment, since the object 3 moves inside the waveguide 12, the waveguide 12 may be provided with an introduction portion 23 having an opening for introducing the object 3. The main body 21 may have an opening for moving the object 3 into the waveguide 12. In order to prevent the microwave inside the waveguide 12 from leaking to the outside, the opening of the introduction portion 23 may be provided with a microwave leakage prevention mechanism such as a choke structure.
移動部13は、テーパ部22の先端を通過するように対象物3を移動させる。より具体的には、移動部13は、導波管12内の対象物3を導波管12の長手方向に移動させ、開口24から外部に移動させる。図1で示されるように、本体部21が折れ曲がっている場合には、対象物3を導波管12の長手方向に移動させるとは、対象物3を導波管12の少なくとも一部において長手方向に移動させることであってもよい。導波管12の内部から外部への対象物3の移動は、導波管12の外部において、対象物3を開口24から引き出すことによって行われてもよい。本実施の形態では、移動部13が、カバー30と、カバー30内の一対の圧延ローラ31,32と、一対の圧延ローラ31,32を回転させる回転機構33とを備える場合について主に説明する。
The moving portion 13 moves the object 3 so as to pass through the tip of the tapered portion 22. More specifically, the moving portion 13 moves the object 3 in the waveguide 12 in the longitudinal direction of the waveguide 12 and moves it from the opening 24 to the outside. As shown in FIG. 1, when the main body 21 is bent, moving the object 3 in the longitudinal direction of the waveguide 12 means that the object 3 is longitudinally formed in at least a part of the waveguide 12. It may be moved in a direction. The movement of the object 3 from the inside to the outside of the waveguide 12 may be performed by pulling out the object 3 from the opening 24 outside the waveguide 12. In the present embodiment, a case where the moving portion 13 includes a cover 30, a pair of rolling rollers 31 and 32 in the cover 30, and a rotating mechanism 33 for rotating the pair of rolling rollers 31, 32 will be mainly described. ..
カバー30と、テーパ部22の先端の開口24との間からマイクロ波が漏洩しないように両者が接続されていることが好適である。例えば、カバー30にも開口24と同サイズの開口が設けられており、そのカバー30の開口と、テーパ部22の開口24とが接続されていてもよい。カバー30は、マイクロ波を透過しないもので構成されていることが好適である。カバー30は、例えば、マイクロ波反射性の材料によって構成されてもよい。マイクロ波反射性の材料は、例えば、金属であってもよい。金属は、特に限定されるものではないが、例えば、ステンレス鋼、炭素鋼、ニッケル、ニッケル合金、銅、銅合金などであってもよい。
It is preferable that both are connected so that microwaves do not leak from between the cover 30 and the opening 24 at the tip of the tapered portion 22. For example, the cover 30 may be provided with an opening having the same size as the opening 24, and the opening of the cover 30 and the opening 24 of the tapered portion 22 may be connected to each other. It is preferable that the cover 30 is made of a material that does not transmit microwaves. The cover 30 may be made of, for example, a microwave reflective material. The microwave reflective material may be, for example, a metal. The metal is not particularly limited, but may be, for example, stainless steel, carbon steel, nickel, nickel alloy, copper, copper alloy, or the like.
一対の圧延ローラ31,32は、開口24から対象物3を引き出すと共に、対象物3を圧延する。対象物3は、テーパ部22の先端の開口24を通過する際に加熱され軟化されているため、圧延ローラ31,32によって容易に圧延することができる。例えば、圧延ローラ31,32によって、数ミリメートル程度の厚さのシート状の対象物3が数マイクロメートル程度の厚さに圧延されてもよい。
The pair of rolling rollers 31, 32 pulls out the object 3 from the opening 24 and rolls the object 3. Since the object 3 is heated and softened as it passes through the opening 24 at the tip of the tapered portion 22, it can be easily rolled by the rolling rollers 31 and 32. For example, the sheet-shaped object 3 having a thickness of about several millimeters may be rolled to a thickness of about several micrometers by the rolling rollers 31 and 32.
回転機構33は、図3で示されるように、ギヤ331,332,333と、モータ334とを有しており、一対の圧延ローラ31,32をそれぞれ回転させる。具体的には、ギヤ331は圧延ローラ31と同軸に接続されており、ギヤ332は圧延ローラ32と同軸に接続されており、両ギヤ331,332は噛み合っている。また、ギヤ332に噛み合うようにギヤ333が設けられており、ギヤ333はモータ334と同軸に接続されている。したがって、モータ334が回転駆動することによってギヤ333が回転され、ギヤ331,332が回転されることによって、圧延ローラ31,32がそれぞれ逆方向に回転され、対象物3が圧延される。なお、回転機構33は、図3で示される以外の構成であってもよいことは言うまでもない。例えば、回転機構33は、圧延ローラ31,32をそれぞれ回転させる2個の回転駆動手段を有していてもよい。また、モータ334の回転は、ギヤ以外の回転伝達手段、例えば、プーリとベルトとを用いて圧延ローラ31,32に伝達されてもよい。
As shown in FIG. 3, the rotation mechanism 33 has gears 331, 332, 333 and a motor 334, and rotates a pair of rolling rollers 31 and 32, respectively. Specifically, the gear 331 is coaxially connected to the rolling roller 31, the gear 332 is coaxially connected to the rolling roller 32, and both gears 331 and 332 are meshed with each other. Further, a gear 333 is provided so as to mesh with the gear 332, and the gear 333 is coaxially connected to the motor 334. Therefore, the gear 333 is rotated by the rotational drive of the motor 334, and the rolling rollers 31 and 32 are rotated in opposite directions by the rotation of the gears 331 and 332, respectively, and the object 3 is rolled. Needless to say, the rotation mechanism 33 may have a configuration other than that shown in FIG. For example, the rotation mechanism 33 may have two rotation driving means for rotating the rolling rollers 31 and 32, respectively. Further, the rotation of the motor 334 may be transmitted to the rolling rollers 31 and 32 by using a rotation transmitting means other than the gear, for example, a pulley and a belt.
なお、移動部13は、上記した以外の構成であってもよい。例えば、対象物3の圧延を行わなくてもよい場合には、移動部13は、対象物3を挟んで搬送するための一対の搬送ローラと、その搬送ローラを回転させる回転機構とを有するものであってもよい。その搬送ローラは、例えば、図1と同様に、開口24の下流側において対象物3を移動させてもよく、または、導入部23の上流側において対象物3を移動させてもよい。
The moving unit 13 may have a configuration other than the above. For example, when it is not necessary to roll the object 3, the moving portion 13 has a pair of transport rollers for sandwiching and transporting the object 3 and a rotating mechanism for rotating the transport rollers. It may be. The transport roller may move the object 3 on the downstream side of the opening 24 or may move the object 3 on the upstream side of the introduction portion 23, for example, as in FIG.
また、テーパ部22の開口24と接続されているカバー30の開口に、チョーク構造などのマイクロ波の漏洩防止機構が設けられていてもよい。また、そのマイクロ波の漏洩防止機構が設けられていない場合には、カバー30から対象物3が出る箇所において、チョーク構造などのマイクロ波の漏洩防止機構が設けられていてもよい。また、テーパ部22の先端の開口24にマイクロ波の漏洩防止機構が設けられていてもよい。
Further, a microwave leakage prevention mechanism such as a choke structure may be provided in the opening of the cover 30 connected to the opening 24 of the tapered portion 22. Further, when the microwave leakage prevention mechanism is not provided, a microwave leakage prevention mechanism such as a choke structure may be provided at a position where the object 3 comes out from the cover 30. Further, a microwave leakage prevention mechanism may be provided in the opening 24 at the tip of the tapered portion 22.
次に、本実施の形態によるマイクロ波照射装置1による対象物3へのマイクロ波の照射について簡単に説明する。まず、マイクロ波発生器11によってマイクロ波を発生させる。また、移動部13のモータ334による回転駆動を開始させ、一対の圧延ローラ31,32をそれぞれ回転させる。マイクロ波発生器11によって発生されたマイクロ波は、導波管12内を伝搬してテーパ部22の先端側に進行する。導波管12の導入部23から導入されたシート状の対象物3は、導波管12の本体部21を通り、テーパ部22に進む。そして、テーパ部22の先端に集中しているマイクロ波が照射された対象物3は加熱されて軟化され、一対の圧延ローラ31,32によって圧延されてあらかじめ決められた厚さになる。このようにして圧延されたシート状の対象物3は、適宜、巻き取りローラなどによって巻き取られてもよい。このように、マイクロ波の照射、シート状の対象物3の移動が継続されることにより、順次、圧延シートが製造されることになる。圧延シートは、例えば、導電性を有するシートであってもよい。そのシートは、例えば、熱可塑性樹脂にカーボンが練り込まれたものであってもよい。なお、対象物3が紐状または棒状のものである場合には、移動部13によって、複数の紐状または棒状の対象物3を平行して移動させてもよい。
Next, the irradiation of the microwave to the object 3 by the microwave irradiation device 1 according to the present embodiment will be briefly described. First, the microwave is generated by the microwave generator 11. Further, the rotary drive of the moving unit 13 by the motor 334 is started to rotate the pair of rolling rollers 31 and 32, respectively. The microwave generated by the microwave generator 11 propagates in the waveguide 12 and travels toward the tip end side of the tapered portion 22. The sheet-shaped object 3 introduced from the introduction portion 23 of the waveguide 12 passes through the main body portion 21 of the waveguide 12 and proceeds to the tapered portion 22. Then, the object 3 irradiated with the microwave concentrated on the tip of the tapered portion 22 is heated and softened, and is rolled by a pair of rolling rollers 31 and 32 to have a predetermined thickness. The sheet-shaped object 3 rolled in this way may be appropriately wound by a take-up roller or the like. By continuing the irradiation of microwaves and the movement of the sheet-shaped object 3 in this way, rolled sheets are sequentially manufactured. The rolled sheet may be, for example, a sheet having conductivity. The sheet may be, for example, one in which carbon is kneaded into a thermoplastic resin. When the object 3 is a string-shaped or rod-shaped object, a plurality of string-shaped or rod-shaped objects 3 may be moved in parallel by the moving portion 13.
次に、本実施の形態によるマイクロ波照射装置1の変形例について説明する。
Next, a modified example of the microwave irradiation device 1 according to the present embodiment will be described.
[テーパ部の他の形状]
本実施の形態では、テーパ部22が、長手方向に直交する方向の矩形状の断面の短辺が開口24に向かって徐々に短くなり、断面の長辺の長さは変化しない図2で示される形状を有する場合について主に説明したが、そうでなくてもよい。図7A、図7Bで示されるように、テーパ部22の長手方向に直交する方向の矩形状の断面における長辺も、開口24に向かって徐々に短くなるようにテーパ部22が形成されていてもよい。なお、図7Aは、本体部21及びテーパ部22の長手方向に直交する方向の断面における矩形の長辺の方向が紙面に垂直な方向となる図面であり、図7Bは、その断面における矩形の短辺の方向が紙面に垂直な方向となる図面である。また、その矩形状の断面における長辺について、短辺と同様に開口24における長さを短くした場合には、テーパ部22でのマイクロ波の反射が大きくなり、先端にまでマイクロ波が到達しないことになる。そのため、例えば、図7Bで示されるように、開口24における長辺の長さは、導波管12において伝送されるマイクロ波の管内波長の半分より短くならないことが好適である。すなわち、開口24における長辺の長さは、マイクロ波の管内波長の半分以上の長さであることが好適である。一方、開口24における短辺の長さについては、そのような制限はない。 [Other shapes of taper part]
In the present embodiment, FIG. 2 shows that the short side of the rectangular cross section of the taperedportion 22 in the direction orthogonal to the longitudinal direction gradually shortens toward the opening 24, and the length of the long side of the cross section does not change. Although the case of having such a shape has been mainly described, it does not have to be. As shown in FIGS. 7A and 7B, the tapered portion 22 is formed so that the long side of the rectangular cross section in the direction orthogonal to the longitudinal direction of the tapered portion 22 also gradually shortens toward the opening 24. May be good. 7A is a drawing in which the direction of the long side of the rectangle in the cross section orthogonal to the longitudinal direction of the main body portion 21 and the tapered portion 22 is the direction perpendicular to the paper surface, and FIG. 7B is a drawing of the rectangle in the cross section. It is a drawing that the direction of a short side is a direction perpendicular to a paper surface. Further, when the length of the long side in the rectangular cross section is shortened in the opening 24 as in the case of the short side, the reflection of the microwave at the tapered portion 22 becomes large and the microwave does not reach the tip. It will be. Therefore, for example, as shown in FIG. 7B, it is preferable that the length of the long side in the opening 24 is not shorter than half of the in-tube wavelength of the microwave transmitted in the waveguide 12. That is, it is preferable that the length of the long side of the opening 24 is at least half the length of the in-tube wavelength of the microwave. On the other hand, there is no such limitation on the length of the short side of the opening 24.
本実施の形態では、テーパ部22が、長手方向に直交する方向の矩形状の断面の短辺が開口24に向かって徐々に短くなり、断面の長辺の長さは変化しない図2で示される形状を有する場合について主に説明したが、そうでなくてもよい。図7A、図7Bで示されるように、テーパ部22の長手方向に直交する方向の矩形状の断面における長辺も、開口24に向かって徐々に短くなるようにテーパ部22が形成されていてもよい。なお、図7Aは、本体部21及びテーパ部22の長手方向に直交する方向の断面における矩形の長辺の方向が紙面に垂直な方向となる図面であり、図7Bは、その断面における矩形の短辺の方向が紙面に垂直な方向となる図面である。また、その矩形状の断面における長辺について、短辺と同様に開口24における長さを短くした場合には、テーパ部22でのマイクロ波の反射が大きくなり、先端にまでマイクロ波が到達しないことになる。そのため、例えば、図7Bで示されるように、開口24における長辺の長さは、導波管12において伝送されるマイクロ波の管内波長の半分より短くならないことが好適である。すなわち、開口24における長辺の長さは、マイクロ波の管内波長の半分以上の長さであることが好適である。一方、開口24における短辺の長さについては、そのような制限はない。 [Other shapes of taper part]
In the present embodiment, FIG. 2 shows that the short side of the rectangular cross section of the tapered
また、本実施の形態では、テーパ部22において、矩形状の断面における短辺が開口24に向かって徐々に短くなる際に、図1で示されるように矩形状の断面における長辺を有する対向する側面がそれぞれ均等に傾斜する場合について説明したが、そうでなくてもよい。例えば、図8で示されるように、テーパ部22において、矩形状の断面における短辺が開口24に向かって徐々に短くなる際に、矩形状の断面における長辺を有する対向する側面の一方のみが傾斜してもよく、その対向する側面が不均等に傾斜してもよい。なお、図8は、本体部21及びテーパ部22の長手方向に直交する方向の断面における矩形の長辺の方向が紙面に垂直な方向となる図面である。また、矩形状の断面における短辺を有する対向する側面が傾斜する際にも同様である。
Further, in the present embodiment, in the tapered portion 22, when the short side in the rectangular cross section gradually shortens toward the opening 24, as shown in FIG. 1, the opposed side having the long side in the rectangular cross section. Although the case where each side surface is inclined evenly is described, it is not necessary. For example, as shown in FIG. 8, in the tapered portion 22, when the short side in the rectangular cross section gradually shortens toward the opening 24, only one of the opposite side surfaces having the long side in the rectangular cross section is used. May be tilted, or its opposing sides may be tilted unevenly. Note that FIG. 8 is a drawing in which the direction of the long side of the rectangle in the cross section in the direction orthogonal to the longitudinal direction of the main body portion 21 and the tapered portion 22 is the direction perpendicular to the paper surface. The same applies when the opposite side surfaces having short sides in the rectangular cross section are inclined.
以上のように、本実施の形態によるマイクロ波照射装置1によれば、テーパ部22の先端において集中したマイクロ波を、対象物3に照射することができる。したがって、対象物3のうち、テーパ部22の先端に局所的に集中してマイクロ波を照射して効率よく加熱することができる。その結果、加熱工程から次の工程、例えば、圧延工程までの所要時間を短縮することができる。また、対象物3が導波管12の内部を移動する場合には、テーパ部22の導波管12内においても、対象物3にマイクロ波を照射することができるようになる。したがって、対象物3が開口24に到達する前においてもある程度は加熱することができる。例えば、開口24の手前側においても、対象物3を予備加熱することができるようになる。また、開口24を通過する際に、集中してマイクロ波を照射することができ、集中的な加熱を行うことができる。さらに、対象物3が開口24を通過するように構成することによって、マイクロ波の反射率のより高い対象物3、例えば、導電性を有する対象物3についても加熱を行うことができるようになる。
As described above, according to the microwave irradiation device 1 according to the present embodiment, the object 3 can be irradiated with the microwave concentrated at the tip of the tapered portion 22. Therefore, among the objects 3, the tip of the tapered portion 22 can be locally concentrated and irradiated with microwaves to efficiently heat the object 3. As a result, the time required from the heating step to the next step, for example, the rolling step can be shortened. Further, when the object 3 moves inside the waveguide 12, the object 3 can be irradiated with microwaves even in the waveguide 12 of the tapered portion 22. Therefore, even before the object 3 reaches the opening 24, it can be heated to some extent. For example, the object 3 can be preheated even on the front side of the opening 24. Further, when passing through the opening 24, the microwave can be intensively irradiated, and intensive heating can be performed. Further, by configuring the object 3 to pass through the opening 24, it becomes possible to heat the object 3 having a higher microwave reflectance, for example, the object 3 having conductivity. ..
また、マイクロ波によって対象物3を加熱するため、効率よく対象物3を加熱することができ、電気ヒータなどを用いて加熱して圧延シートを製造する場合と比較して省エネルギー化を実現することもできる。
In addition, since the object 3 is heated by microwaves, the object 3 can be heated efficiently, and energy saving can be realized as compared with the case where a rolled sheet is manufactured by heating using an electric heater or the like. You can also.
また、移動部13が一対の圧延ローラ31,32と回転機構33とを有する場合には、テーパ部22の先端の開口24を通過する際に加熱された対象物3を圧延することができ、例えば、薄膜状の圧延シートを製造することができる。また、圧延シートの製造において、省エネルギー化を実現できる。
Further, when the moving portion 13 has a pair of rolling rollers 31 and 32 and a rotation mechanism 33, the object 3 heated when passing through the opening 24 at the tip of the tapered portion 22 can be rolled. For example, a thin-film rolled sheet can be manufactured. In addition, energy saving can be realized in the production of rolled sheets.
なお、本実施の形態では、導波管12が本体部21を有する場合について説明したが、テーパ部22のみを有することも考えられる。その場合には、テーパ部22の大きい方の開口にマイクロ波発生器11が接続されてもよい。
Although the case where the waveguide 12 has the main body portion 21 has been described in the present embodiment, it is also conceivable that the waveguide 12 has only the tapered portion 22. In that case, the microwave generator 11 may be connected to the larger opening of the tapered portion 22.
また、本実施の形態では、マイクロ波照射装置1が移動部13を有する場合について説明したが、そうでなくてもよい。対象物3は、マイクロ波照射装置1の外部の移動部によって移動されてもよい。
Further, in the present embodiment, the case where the microwave irradiation device 1 has the moving unit 13 has been described, but it is not necessary. The object 3 may be moved by an external moving unit of the microwave irradiation device 1.
また、本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
Further, it goes without saying that the present invention is not limited to the above embodiments, and various modifications can be made, and these are also included in the scope of the present invention.
Claims (9)
- マイクロ波を発生させるマイクロ波発生器と、
前記マイクロ波発生器からのマイクロ波を伝送するための導波管であって、前記導波管の長手方向に直交する断面が前記導波管の先端に向かって小さくなるテーパ部を有する導波管と
を備えたマイクロ波照射装置。 A microwave generator that generates microwaves and
A waveguide for transmitting microwaves from the microwave generator, the waveguide having a tapered portion whose cross section orthogonal to the longitudinal direction of the waveguide becomes smaller toward the tip of the waveguide. A microwave irradiation device equipped with a tube. - 前記テーパ部の先端を通過するようにマイクロ波の照射対象物を移動させる移動部をさらに備える、請求項1記載のマイクロ波照射装置。 The microwave irradiation device according to claim 1, further comprising a moving portion for moving an object to be irradiated with microwave so as to pass through the tip of the tapered portion.
- 前記移動部は、前記導波管内の前記マイクロ波の照射対象物を当該導波管の長手方向に移動させ、前記開口から外部に移動させる、請求項2記載のマイクロ波照射装置。 The microwave irradiation device according to claim 2, wherein the moving unit moves the microwave irradiation target in the waveguide in the longitudinal direction of the waveguide and moves it to the outside from the opening.
- 前記マイクロ波の照射対象物は、長尺である、請求項3記載のマイクロ波照射装置。 The microwave irradiation device according to claim 3, wherein the microwave irradiation target is a long object.
- 前記テーパ部は、当該テーパ部の長手方向に直交する方向の矩形状の断面における短辺が前記開口に向かって短くなるように形成されている、請求項1から請求項4のいずれか記載のマイクロ波照射装置。 The method according to any one of claims 1 to 4, wherein the tapered portion is formed so that the short side in a rectangular cross section in a direction orthogonal to the longitudinal direction of the tapered portion becomes shorter toward the opening. Microwave irradiation device.
- 前記導波管は、
前記テーパ部と、
前記マイクロ波発生器に一端が接続され、他端が前記テーパ部に接続される本体部と
を有する、請求項1から請求項5のいずれか記載のマイクロ波照射装置。 The waveguide is
With the taper part
The microwave irradiation device according to any one of claims 1 to 5, further comprising a main body portion having one end connected to the microwave generator and the other end connected to the tapered portion. - 前記本体部は、前記照射対象物を前記導波管内に移動させるための開口を有する、請求項6記載のマイクロ波照射装置。 The microwave irradiation device according to claim 6, wherein the main body portion has an opening for moving the irradiation target object into the waveguide.
- 前記テーパ部の長さは、前記導波管内を伝搬する周波数のマイクロ波に関する自由空間波長の2倍以上である、請求項1から請求項7記載のマイクロ波照射装置。 The microwave irradiation device according to claim 1 to 7, wherein the length of the tapered portion is at least twice the free space wavelength of the microwave having a frequency propagating in the waveguide.
- マイクロ波を発生させるステップと、
前記マイクロ波を伝送するための導波管であって、前記導波管の長手方向に直交する断面が前記導波管の先端の開口に向かって小さくなるテーパ部を有する導波管における前記テーパ部の先端を通過するようにマイクロ波の照射対象物を移動させるステップと
を含むマイクロ波照射方法。 Steps to generate microwaves and
The taper in a waveguide for transmitting microwaves, the waveguide having a tapered portion whose cross section orthogonal to the longitudinal direction of the waveguide becomes smaller toward the opening at the tip of the waveguide. A microwave irradiation method including a step of moving an object to be irradiated with a microwave so as to pass through the tip of a portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-134438 | 2020-08-07 | ||
JP2020134438A JP2022030409A (en) | 2020-08-07 | 2020-08-07 | Microwave irradiation device and microwave irradiation method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030331A1 true WO2022030331A1 (en) | 2022-02-10 |
Family
ID=80117433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027937 WO2022030331A1 (en) | 2020-08-07 | 2021-07-28 | Microwave irradiation device and microwave irradiation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022030409A (en) |
WO (1) | WO2022030331A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3474209A (en) * | 1967-04-10 | 1969-10-21 | Rca Corp | Dielectric heating |
JPS4930940A (en) * | 1972-07-19 | 1974-03-19 | ||
JPS4926545B1 (en) * | 1970-07-20 | 1974-07-10 | ||
JPS60240094A (en) * | 1984-05-12 | 1985-11-28 | ミクロ電子株式会社 | Method of continuously heating slender dielectric unit |
US20070131678A1 (en) * | 2005-12-14 | 2007-06-14 | Industrial Microwave Systems, L.L.C. | Waveguide exposure chamber for heating and drying material |
-
2020
- 2020-08-07 JP JP2020134438A patent/JP2022030409A/en active Pending
-
2021
- 2021-07-28 WO PCT/JP2021/027937 patent/WO2022030331A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3474209A (en) * | 1967-04-10 | 1969-10-21 | Rca Corp | Dielectric heating |
JPS4926545B1 (en) * | 1970-07-20 | 1974-07-10 | ||
JPS4930940A (en) * | 1972-07-19 | 1974-03-19 | ||
JPS60240094A (en) * | 1984-05-12 | 1985-11-28 | ミクロ電子株式会社 | Method of continuously heating slender dielectric unit |
US20070131678A1 (en) * | 2005-12-14 | 2007-06-14 | Industrial Microwave Systems, L.L.C. | Waveguide exposure chamber for heating and drying material |
Also Published As
Publication number | Publication date |
---|---|
JP2022030409A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6446573B1 (en) | Microwave processing apparatus and carbon fiber manufacturing method | |
JP6063045B2 (en) | Carbonization method and carbon fiber production method | |
JP5762708B2 (en) | Plasma generating apparatus, plasma processing apparatus, and plasma processing method | |
CA2401353A1 (en) | Microwave heating apparatus | |
AU2007312619A1 (en) | Device and method for producing microwave plasma with a high plasma density | |
AU2007312620A1 (en) | Device and method for locally producing microwave plasma | |
WO2022030331A1 (en) | Microwave irradiation device and microwave irradiation method | |
US20100282741A1 (en) | Method for controlling and optimizing microwave heating of plastic sheet | |
WO2019142578A1 (en) | Microwave processing device and carbon fiber production method | |
KR20020013904A (en) | Linearly extended device for large-surface microwave treatment and for large surface plasma production | |
WO2021162029A1 (en) | Microwave processing device, and microwave processing method | |
KR20190059210A (en) | Electrode Rolling Device and Producing Facility of Electrode Assembly Including the Same | |
US10660166B2 (en) | Microwave heating apparatus for uniformly heating objects based on near-cutoff condition | |
JP2022066481A (en) | Microwave processing apparatus and method of manufacturing carbon fiber | |
WO2021157693A1 (en) | Microwave processing apparatus and microwave processing method | |
JP7278569B2 (en) | Microwave processing device and carbon fiber manufacturing method | |
KR20180065274A (en) | Method for driving continuous dryer using microwave | |
KR101420256B1 (en) | Microwave Heating Apparatus for Uniform Heating of Continuous Object | |
CN219802622U (en) | Microwave heating box | |
JP2008018570A (en) | Method and apparatus for dielectric surface micro-molding, dielectric joining method and dielectric joining apparatus | |
JP2007265827A (en) | Plasma generator and workpiece processing device using it | |
JP2016195021A (en) | Heating method, method for producing carbon fiber, and carbon fiber and heating device | |
TW202412932A (en) | Optical processing apparatus and optical processing method | |
JPS5926329B2 (en) | Material surface treatment equipment | |
JP2007227298A (en) | Work treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21853446 Country of ref document: EP Kind code of ref document: A1 |