WO2022030028A1 - Antivirus surface treatment method for member and antivirus member - Google Patents

Antivirus surface treatment method for member and antivirus member Download PDF

Info

Publication number
WO2022030028A1
WO2022030028A1 PCT/JP2020/038242 JP2020038242W WO2022030028A1 WO 2022030028 A1 WO2022030028 A1 WO 2022030028A1 JP 2020038242 W JP2020038242 W JP 2020038242W WO 2022030028 A1 WO2022030028 A1 WO 2022030028A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiviral
less
maximum value
minimum value
innumerable
Prior art date
Application number
PCT/JP2020/038242
Other languages
French (fr)
Japanese (ja)
Inventor
英二 下平
正夫 熊谷
伴子 児玉
正彦 新井
Original Assignee
株式会社サーフテクノロジー
株式会社フリクション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サーフテクノロジー, 株式会社フリクション filed Critical 株式会社サーフテクノロジー
Publication of WO2022030028A1 publication Critical patent/WO2022030028A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass

Definitions

  • the present invention relates to a technique for imparting antiviral properties (antiviral action, antiviral effect) to the surface of a member by performing a process of randomly forming innumerable minute recesses on the surface of the member.
  • the effect known as the effect of forming a plurality of (innumerable) minute concave portions is oil by suppressing the adhesion of powder or adhesive and forming innumerable minute irregularities on the sliding portion. It functions as a pool to reduce sliding resistance and suppress wear, and the effect discovered this time is a completely different effect that cannot be predicted from these.
  • the present invention has been made in view of the above-mentioned circumstances, and is to give an antiviral effect (action) to the surface of a member by randomly forming innumerable minute irregularities (microrecesses) on the surface of the member. It is an object of the present invention to provide an antiviral surface treatment method for a member capable of producing an antiviral member, and an antiviral member having an antiviral effect.
  • the anti-virus surface treatment method for the member according to the present invention is: On the surface of the member, the minimum value of the unevenness pitch is 0.3 ⁇ m or more and the maximum value is 1.0 ⁇ m or less, and the minimum value of the depth of the concave portion is 0.01 ⁇ m or more and the maximum value is 0.3 ⁇ m or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
  • the anti-virus surface treatment method for the member according to the present invention is described.
  • the minimum value of the unevenness pitch is 0.497 ⁇ m or more and the maximum value is 1.739 ⁇ m or less
  • the minimum value of the depth of the concave portion is 0.047 ⁇ m or more and the maximum value is 0.176 ⁇ m or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
  • the anti-virus surface treatment method for the member according to the present invention is described.
  • the minimum value of the unevenness pitch is 0.513 ⁇ m or more and the maximum value is 0.890 ⁇ m or less
  • the minimum value of the depth of the recess is 0.011 ⁇ m or more
  • the maximum value is 0.026 ⁇ m or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
  • the anti-virus surface treatment method for the member according to the present invention is described.
  • the minimum value of the unevenness pitch is 0.378 ⁇ m or more and the maximum value is 0.769 ⁇ m or less
  • the minimum value of the depth of the recess is 0.047 ⁇ m or more
  • the maximum value is 0.283 ⁇ m or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
  • the virus-proof surface treatment method for a member according to the present invention can be characterized in that the minute irregularities are formed based on a projection treatment for projecting a shot material.
  • the antiviral member according to the present invention is On the surface of the member, the minimum value of the unevenness pitch is 0.3 ⁇ m or more and the maximum value is 1.0 ⁇ m or less, and the minimum value of the depth of the concave portion is 0.01 ⁇ m or more and the maximum value is 0.3 ⁇ m or less. It is characterized by having innumerable minute irregularities.
  • the antiviral member according to the present invention is On the surface of the member, the minimum value of the unevenness pitch is 0.497 ⁇ m or more and the maximum value is 1.739 ⁇ m or less, and the minimum value of the depth of the concave portion is 0.047 ⁇ m or more and the maximum value is 0.176 ⁇ m or less. It is characterized by having innumerable minute irregularities.
  • the antiviral member according to the present invention is On the surface of the member, the minimum value of the unevenness pitch is 0.513 ⁇ m or more and the maximum value is 0.890 ⁇ m or less, the minimum value of the depth of the recess is 0.011 ⁇ m or more, and the maximum value is 0.026 ⁇ m or less. It is characterized by having innumerable minute irregularities.
  • the antiviral member according to the present invention is On the surface of the member, the minimum value of the unevenness pitch is 0.378 ⁇ m or more and the maximum value is 0.769 ⁇ m or less, the minimum value of the depth of the recess is 0.047 ⁇ m or more, and the maximum value is 0.283 ⁇ m or less. It is characterized by having innumerable minute irregularities.
  • the minute unevenness can be characterized by being formed based on a projection process of projecting a shot material.
  • an antiviral surface treatment method for a member which can give an antiviral effect (action) to the surface of the member by randomly forming innumerable minute irregularities (microrecesses) on the surface of the member. And an antiviral member having an antiviral effect can be provided.
  • the test was conducted by an external organization (Kanagawa Prefectural National Institute of Advanced Industrial Science and Technology), and the results of the antiviral performance evaluation test are shown in Fig. 1.
  • the test method, conditions, etc. are as shown in FIG.
  • the sample (1) “SUS304 # 700 untreated” (Reference), which is a comparative control, is referred to as Ref. -1, Ref. -2, Ref.
  • the value of the virus infectious value (pfu / cm 2 ) was in the range of 4.40 ⁇ E + 04 to 6.90 ⁇ E + 04 (mean value was 5.63 ⁇ E + 04).
  • E + 04 represents 104 (the same applies hereinafter).
  • "SUS304 # 700 untreated” (Reference) is a stainless steel plate made of SUS304 polished with a P700 buff, and the surface is close to a mirror surface as shown in the 3D image of FIG. Is.
  • the samples (2) to (5) described later are obtained by subjecting the sample (1), which is a comparative control, to various surface treatments.
  • Sample (2) "SUS304 # 700 P43 (treatment)” has a virus infectious titer (P43-1, P43-2, P43-3) in three lots as shown in FIG.
  • the value of pfu / cm 2 ) was in the range of 5.60 ⁇ E + 03 to 1.30 ⁇ E + 04 (mean value was 1.02 ⁇ E + 04), and the antiviral activity value was 0.7. .. It was confirmed that the sample (2) "SUS304 # 700 P43 (treated)” (Antibac-P43) has antiviral properties (suppressive effect against viruses) against the comparative control (untreated SUS304 # 700).
  • the antiviral activity value here is calculated from the following formula.
  • Antiviral activity value: R Ut-At Ut: Log of average virus infectivity per unit volume after reaction in unprocessed test piece (sample) At: Log of average virus infectivity per unit volume after reaction in antiviral processed test piece (sample)
  • P43 treatment is one of surface treatments (shot material projection treatment, microdimple treatment, fine particle projection treatment, etc., the same applies hereinafter) for forming innumerable dimple-shaped minute recesses, and is made of stainless steel made of SUS304.
  • the first type of media (trade name "Fuji Random (Carborundum)", grain number C # 400 (maximum particle diameter 75 ⁇ m or less, cumulative height 50%) SiC (silicon carbide) with a particle size of 30.0 ⁇ 2.0 ⁇ m at the point is injected from the injection nozzle together with compressed air of about 1 / several (for example, 0.3) MPa, and the surface to be machined (surface of sample, member).
  • the surface of the particle) is subjected to projection processing (hereinafter, also referred to as projection processing).
  • the second type of media (trade name "Fuji Random (Carborundum)", particle number C # 3000 (maximum particle diameter 13 ⁇ m or less, particle diameter 4.0 ⁇ 0.5 ⁇ m at a cumulative height of 50%) )) Is a process of projecting (projecting) the surface to be processed together with compressed air of about 1/1 (for example, 0.4) MPa.
  • the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (2) is 0.378 to 0.769 ⁇ m.
  • the range of the degree in other words, the minimum value of the unevenness pitch is about 0.378 ⁇ m or more and the maximum value is about 0.769 ⁇ m or less
  • the range of the minimum value and the maximum value of the recess depth is 0.047 to 0.
  • the range was about .283 ⁇ m (in other words, the minimum value of the unevenness depth was about 0.047 ⁇ m or more, and the maximum value was about 0.283 ⁇ m or less).
  • Sample (3) "SUS304 # 700 P60 (treatment)" (Antibac-P60) has a virus infectious titer (P60-1, P60-2, P60-3) in three lots as shown in FIG.
  • the value of pfu / cm 2 ) was in the range of 1.30 ⁇ E + 04 to 2.50 ⁇ E + 04 (the average value was 2.10 ⁇ E + 04).
  • the antiviral activity value was 0.4. It was confirmed that the sample (3) "SUS304 # 700 P60 (treated)” (Antibac-P60) has antiviral properties (suppressive effect against viruses) against the comparative control (untreated SUS304 # 700). ..
  • P60 treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and the surface of a stainless steel plate (comparative control) made of SUS304 is polished by Fuji Seisakusho Co., Ltd.
  • Material trade name "Fuji Random GC (Green Carborundum)", grain number C # 6000 (maximum particle diameter 8 ⁇ m or less, particle diameter 2.0 ⁇ 0.4 ⁇ m with a cumulative height of 50%) SiC (silicon carbide)
  • the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (3) is 0.513 to 0.890 ⁇ m.
  • the range of the degree in other words, the minimum value of the unevenness pitch is about 0.513 ⁇ m or more and the maximum value is about 0.890 ⁇ m or less
  • the range of the minimum value and the maximum value of the recess depth is 0.011 to 0.
  • the range was about .026 ⁇ m (in other words, the minimum value of the unevenness depth was about 0.011 ⁇ m or more, and the maximum value was about 0.026 ⁇ m or less).
  • the following samples (4) to (7) were subjected to the same test on a test date different from the above.
  • the test results of the samples (4) to (7) are shown in FIG.
  • the test conditions and the like are the same as those in FIG.
  • the sample (4) as a comparative control is the same sample “SUS304 # 700 untreated” (Reference) as the sample (1), and as shown in FIG. 3, Ref. -1, Ref. -2, Ref.
  • the value of the virus infectious value (pfu / cm 2 ) was in the range of 3.8 ⁇ E + 04 to 1.1 ⁇ E + 05 (the average value was 7.43 ⁇ E + 04).
  • Sample (5) "SUS304 # 700 PT1 (treatment)" has a virus infectious titer (pfu / cm 2 ) in three lots of PT1-1, PT1-2, and PT1-3, as shown in FIG. The value of was in the range of 4.4 ⁇ E + 04 to 6.3 ⁇ E + 04 (the average value was 5.23 ⁇ E + 04). The antiviral activity value was 0.1. It was confirmed that the sample (5) "SUS304 # 700 PT1 (treated)” had some antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
  • PT1 treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and the surface of a stainless steel plate (comparative control) made of SUS304 is made of tungsten made by Shin Nippon Metal Co., Ltd.
  • Carbide powder, symbol WC-10 (grain size: 0.70 to 1.19 ⁇ m) is sprayed from an injection nozzle together with compressed air of about 1 / several (for example, 0.4) MPa to perform projection processing on the surface to be machined. Is.
  • the sample (5) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (5).
  • the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (5) is 0.497 to 1.739 ⁇ m.
  • the range of the degree in other words, the minimum value of the unevenness pitch is about 0.497 ⁇ m or more and the maximum value is about 1.739 ⁇ m or less
  • the range of the minimum value and the maximum value of the recess depth is 0.047 to 0.
  • the range was about 176 ⁇ m (in other words, the minimum value of the unevenness depth was about 0.047 ⁇ m or more, and the maximum value was about 0.176 ⁇ m or less).
  • Sample (6) "SUS304 # 700 P10 (treatment)" has a virus infectious titer (pfu / cm 2 ) in three lots of P10-1, P10-2, and P10-3, as shown in FIG. The value of was in the range of 5.6 ⁇ E + 04 to 8.8 ⁇ E + 04 (the average value was 7.10 ⁇ E + 04). The antiviral activity value was -0.1. It was confirmed that the sample (6) "SUS304 # 700 P10 (treated)” had almost no antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
  • the P10 treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and is an abrasive material manufactured by Fuji Seisakusho Co., Ltd. on the surface of a stainless steel plate material (comparative control) made of SUS304.
  • abrasive material manufactured by Fuji Seisakusho Co., Ltd. on the surface of a stainless steel plate material (comparative control) made of SUS304.
  • the sample (6) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (6).
  • the range of the minimum and maximum values of the uneven pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (6) is 1.488 to 6.763 ⁇ m.
  • the range of the degree in other words, the minimum value of the unevenness pitch is about 1.488 ⁇ m or more and the maximum value is about 6.763 ⁇ m or less
  • the range of the minimum value and the maximum value of the recess depth is 0.198 to 0.
  • the range was about .387 ⁇ m (in other words, the minimum value of the unevenness depth was about 0.198 ⁇ m or more, and the maximum value was about 0.387 ⁇ m or less).
  • Sample (7) "SUS304 # 700 M (treated)” has a virus infectious titer (pfu / cm 2 ) in three lots of M-1, M-2, and M-3 as shown in FIG. The value of was in the range of 5.0 ⁇ E + 04 to 8.1 ⁇ E + 04 (the average value was 6.47 ⁇ E + 04). The antiviral activity value was 0.1. It was confirmed that the sample (7) "SUS304 # 700 M (treated)” had almost no antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
  • the M treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses.
  • the surface of a stainless steel plate (comparative control) made of SUS304 is manufactured by Fuji Seisakusho Co., Ltd.
  • Projection processing projection processing in which a medium (shot material) having a grain number of 400 (center particle size of ⁇ 53 ⁇ m) of the abrasive FGB (Fuji glass beads) is projected together with compressed air of about 1/1/ (for example, 0.3) MPa. ) Is performed.
  • the sample (7) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (7).
  • the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (7) is 19.63 to 43.96 ⁇ m.
  • the range of the degree in other words, the minimum value of the unevenness pitch is about 19.63 ⁇ m and the maximum value is about 43.96 ⁇ m or less
  • the range of the minimum value and the maximum value of the recess depth is 0.638 to 1.
  • the range was about .795 ⁇ m (in other words, the minimum value of the unevenness depth was about 0.638 ⁇ m or more, and the maximum value was about 1.795 ⁇ m or less).
  • FIG. 15 shows a summary of the results of the above antiviral test and the surface shape data of each sample.
  • the P43-treated sample (2) has the highest anti-virus property with a reduction rate of 81.9% in virus infectivity compared to the unprocessed product (comparative control), and the P60-treated sample (3).
  • the rate was 13.0% and high virality could not be confirmed.
  • the horizontal axis is the concave-convex pitch and the vertical axis is the concave depth, and the areas where the obtained virus infectivity reduction rates are equal are divided and represented.
  • the region X the uneven pitch is in the range of 0.3 ⁇ m to 1 ⁇ m and the concave depth is in the range of 0.01 to 0.3 ⁇ m
  • the reduction rate of the virus infection titer is 50% or more.
  • rice field Since the M treatment (sample (7)) has low antiviral properties and is far from the numerical range, the illustration in FIG. 16 (A) is omitted.
  • the PT1 treatment (sample (5)) had a decrease rate of virus infectivity of about 30% (29.6%), but nevertheless, in the region of this PT1 treatment (sample (5)).
  • the unevenness pitch spacing of convex parts or spacing of concave parts
  • the unevenness pitch is 0.3 to 1.0 ⁇ m. It is a range, and the range of the minimum value and the maximum value of the unevenness depth is in the range of 0.01 to 0.3 ⁇ m.
  • the range of the minimum and maximum values of the unevenness pitch is 0.3 ⁇ m to 1.0 ⁇ m.
  • the range of the minimum and maximum values of the unevenness pitch is 0.3 ⁇ m to 1.8 ⁇ m.
  • the range of the minimum and maximum values of the unevenness pitch is 0.513 ⁇ m to 0.890 ⁇ m.
  • the range of the minimum and maximum values of the unevenness pitch is 0.378 ⁇ m to 0.769 ⁇ m.
  • the present inventors impart antiviral properties by randomly forming innumerable dimple-shaped minute recesses (micro unevenness) on the surface of the member without using a disinfectant solution or the like. I was able to obtain the knowledge that it can be done.
  • the present invention uses a member in which innumerable minute irregularities (microrecesses) are randomly formed on the surface of the member as an antiviral member having antiviral properties. be.
  • dimple-shaped minute recesses are randomly formed innumerably by shot material projection treatment, but for example, the surface of a member is chemically polished (chemically etched) or plasma treated (for example, argon). It is also possible to randomly form innumerable minute irregularities by applying (bomberd treatment) or the like.
  • the present invention is not limited to this, and the minute recesses according to the present invention can be formed by at least one of chemical etching, plasma treatment, shot material projection treatment, etc., or a combination thereof as appropriate. Is.
  • acidic agents such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, iron (III) chloride, and the like are prepared in an aqueous solution in an arbitrary ratio and used.
  • minute irregularities on the surface of the member for example, transfer using a mold having the minute irregularities formed on the surface based on (using) chemical etching, plasma treatment, shot material projection treatment, etc.
  • a composite uneven shape (composite dimple) is formed on the surface of the member is also included.
  • the anti-virus member according to the present invention can be applied to, for example, all members required to have anti-virus properties, for example, a storage container, a storage container (for example, a container such as a hopper), a transport device (a mounting portion of a belt conveyor). Used for sliding utensils (eg shooters), sieves, stirrers, cooking balls, cooking utensils, surgical utensils, medical utensils, water purses (bathrooms, washrooms, kitchens, toilets, etc.) It can be applied to various members including members.
  • the anti-virus member according to the present invention includes humans and animals such as a vehicle hanger (grip portion of suspended leather), other handles or handles (grip), doorknobs, handles, toilet supplies, kitchen utensils, and toiletries. It is applicable as long as it is a member used for an anti-virus or other purpose, such as a member that is touched by.
  • the antiviral effect of the microconcavo-convex forming treatment according to the present embodiment is particularly high in the case of stainless steel, regardless of the surface finishing specifications such as # 400, # 700, 2B of the base material before the treatment.
  • Non-magnetic austenitic stainless steels (SUS303, 304, 316, etc.) are all considered to have the same effect.
  • the present invention can be applied to a metal material other than stainless steel (for example, in the case of iron, for example, steel (SS400 or the like), aluminum, titanium or other metal or alloy).
  • the antiviral member according to the present invention may be a resin member, and the material thereof is not particularly limited.
  • it can be made of ceramics, and in the case of a metal member, it can be made of a metal (alloy) such as iron, aluminum, or titanium.
  • the antiviral member according to the present invention is assumed to have any shape such as a block shape, a plate shape, a sheet shape, and the shape and size thereof are not particularly limited.
  • an antiviral test was conducted using an influenza virus.
  • the size (diameter) of the virus is about 100 nm, but the uneven size of minute irregularities corresponding to the size of the virus ( Since it is considered that antiviral properties (effects) occur on the surface having pitch and depth), a new type of coronavirus (Covid-19) (about 50 to 200 nm in diameter) and other viruses of the same size (diameter). (See FIG. 16B), the antiviral member according to the present invention also has antiviral properties (effects).
  • antiviral property effect
  • the envelope shown in FIG. 16 (B) since it is considered that antiviral property (effect) is generated on the surface having the uneven size (pitch and depth) of the minute unevenness corresponding to the size of the virus, the envelope shown in FIG. 16 (B).
  • the antiviral member according to the present invention can produce antiviral properties (effects) regardless of the presence or absence of (the outermost membrane structure of the virus).
  • the shot material projection process (or micro unevenness forming process, microdimple process) according to the present embodiment is processed by injecting the media (shot material, abrasive particles) as described above by a known injection device. This can be done by colliding with the surface of the target member.
  • a blasting device can be used as the injection device, and for example, "PNEUMA BLASTER" (model: SC series, SG series, etc.) manufactured by Fuji Seisakusho Co., Ltd. can be used as an example of the blasting device. can. Further, for example, those described in Japanese Patent Application Laid-Open No. 2019-25584 can be used.
  • a known blasting device blasting
  • an abrasive fine particles
  • a compressed gas air, argon, nitrogen, etc.
  • the blasting device is a suction type blasting device that injects the polishing material using the negative pressure generated by the injection of the compressed gas, and the polishing material that has fallen from the polishing material tank is compressed gas.
  • a gravity-type blasting device that sprays on the blasting device, a compressed gas is introduced into the tank into which the abrasive material is charged, and the abrasive material flow from the abrasive material tank is applied to the compressed gas flow from the separately given compressed gas supply source.
  • Direct pressure type blasting equipment that merges and injects, and blower type blasting equipment that injects the above direct pressure type compressed gas flow on the gas flow generated by the blower unit are commercially available. Can be used for injecting the above-mentioned injection particles.
  • a water jet that injects a shot at high pressure together with a liquid such as water can also be used.
  • the present invention in order to specify the uneven surface formed by (or based on) shot material projection processing such as micro unevenness forming treatment, microdimple processing, and fine particle projection processing from the shape or structural surface, laser processing or the like is performed.
  • shot material projection processing such as micro unevenness forming treatment, microdimple processing, and fine particle projection processing from the shape or structural surface
  • laser processing or the like is performed.
  • the projection particles are made to collide with the surface to be processed at a speed of several tens to 100 m or more per second via compressed air, and have a convex portion on the edge thereof without significant dimensional change.
  • Approximately spherical micron recesses are irregularly formed on substantially the entire surface of the machined surface, and when media collides with each other to form microrecesses in the shot material projection process, the microrecesses are formed in the form of a crater.
  • the circumference is raised to form a convex portion (see FIG. 17), and the raised convex portion is recessed by collision with other media, so that the height of the convex portion becomes irregular.
  • the height of the convex portion around the minute concave portion in mechanical processing such as laser processing and cutting processing matches the height of the surface (original material surface) of the material to be processed (member to be laser processed). (See FIG. 18).
  • the surface texture (shape) formed by the shot material projection process is a surface such as polishing or grinding. It is different from the surface shape (texture) formed by the process of scraping and giving scratches (grooves such as streaks), but when measured with a surface roughness meter etc., both have numerically similar values. Therefore, it is not possible to distinguish between the two based on the surface roughness and the like.
  • the effects (powder adhesion suppression effect, antiviral effect, etc.) obtained by the surface texture (shape) formed by the shot material projection treatment are formed by the treatment such as polishing and grinding to scratch the surface. It is a special thing that cannot be predicted from the surface shape (texture) that is formed.
  • the surface subjected to the shot material projection treatment has a powder adhesion suppressing effect and an antivirus effect. That is completely unpredictable.
  • the minute irregularities formed by the shot material projection process are innumerably irregularly (randomly) formed, and the shapes of the minute concave portions and the convex portions around them are irregular, and the irregularity thereof is the present invention.
  • the expression "formed by the shot material projection process” is used as a term for specifying the surface texture (shape) formed by the shot material projection process. It is not possible to specify the surface formed by the shot material projection treatment other than using. As described above, it is impossible or unrealistic at the time of filing the application to specify the minute unevenness formed by the shot material projection process by the shape, structure, characteristics and the like.
  • the present invention is not limited to the embodiment of the above-mentioned invention, and various modifications can be made without departing from the gist of the present invention.
  • the present invention can give antiviral property (effect) to the surface of a member by forming innumerable dimple-shaped minute recesses on the surface of the member, which is beneficial and usable in the industry where hygiene is a problem. Is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

[Problem] To provide an antivirus surface treatment method for a member with which an antivirus effect (activity) can be imparted to a surface of a member by randomly forming countless small unevennesses (small depressions) in the surface of the member, and to provide an antivirus member having the antivirus effect. [Solution] An antivirus surface treatment method for a member according to the present invention is characterized by imparting antivirus activity to a surface of a member by randomly forming, in the surface of the member, countless small unevennesses having an unevenness pitch that has a minimum value of 0.3 µm or greater and a maximum value of 1.0 µm or less, and a depression depth that has a minimum value of 0.01 µm or greater and a maximum value of 0.3 µm or less.

Description

部材の抗ウイルス表面処理方法及び抗ウイルス部材Anti-virus surface treatment method for members and anti-virus members
 本発明は、部材の表面に微小凹部を無数にランダムに形成する処理を行うことで部材表面に抗ウイルス性(抗ウイルス作用、抗ウイルス効果)を付与する技術に関する。 The present invention relates to a technique for imparting antiviral properties (antiviral action, antiviral effect) to the surface of a member by performing a process of randomly forming innumerable minute recesses on the surface of the member.
 これまで、本出願人等は、特許文献1において提案しているように、ショット材を投射するショット材投射処理の一つである微粒子投射処理(例えば、微粒子ピーニング処理など)を施すことにより、粉体と接触する部材(以下、粉体接触部材とも称する)の表面に微小凹凸を無数に不規則(ランダム)に形成することで、粉体の付着を抑制することができる技術を提案している。 So far, the applicants have performed a fine particle projection process (for example, a fine particle peening process) which is one of the shot material projection processes for projecting a shot material, as proposed in Patent Document 1. We propose a technology that can suppress the adhesion of powder by forming innumerable minute irregularities (randomly) on the surface of a member that comes into contact with powder (hereinafter, also referred to as powder contact member). There is.
特許第6416151号公報Japanese Patent No. 64161151
 ここで、本出願人等は、微小凹凸を無数にランダムに形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、部材の表面(対象物と接触する表面)に微小凹凸を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、その過程において、本発明者等は、これまで知られていなかった新たな知見を得た。 Here, the applicants, etc., in order to explore the possibility of applying the surface modification technology by randomly forming innumerable minute irregularities to various fields, on the surface of the member (the surface in contact with the object). Various approaches have been taken, such as confirming the action and effect of forming innumerable minute irregularities in various fields, but in the process, the present inventors have obtained new findings that have not been known so far. ..
 なお、これまでに、微小凹部を複数(無数)に形成することによる効果として知られていた効果は、粉体や粘着物の付着抑制、摺動部に微小凹凸を無数に形成することでオイル溜まりとして機能させて摺動抵抗の低減・摩耗抑制などの効果であり、今回発見した効果はこれらからは予測不能な全く別異の効果である。 The effect known as the effect of forming a plurality of (innumerable) minute concave portions is oil by suppressing the adhesion of powder or adhesive and forming innumerable minute irregularities on the sliding portion. It functions as a pool to reduce sliding resistance and suppress wear, and the effect discovered this time is a completely different effect that cannot be predicted from these.
 今回得られたその知見とは、部材の表面に、微小凹凸を無数に(複数)ランダムに形成すると、抗ウイルス作用(効果)を生じさせることができるというものである。 The finding obtained this time is that innumerable (plural) minute irregularities can be randomly formed on the surface of a member to produce an antiviral action (effect).
 本発明は、上述したような実情に鑑みなされたもので、部材の表面に微小凹凸(微小凹部)を無数にランダムに形成することで、部材の表面に抗ウイルス効果(作用)を持たせることができる部材の抗ウイルス表面処理方法、及び抗ウイルス効果を有する抗ウイルス部材を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is to give an antiviral effect (action) to the surface of a member by randomly forming innumerable minute irregularities (microrecesses) on the surface of the member. It is an object of the present invention to provide an antiviral surface treatment method for a member capable of producing an antiviral member, and an antiviral member having an antiviral effect.
 このため、本発明に係る部材の防ウイルス表面処理方法は、
 部材の表面に、その凹凸ピッチの最小値が0.3μm以上であり最大値が1.0μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が0.3μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする。
Therefore, the anti-virus surface treatment method for the member according to the present invention is:
On the surface of the member, the minimum value of the unevenness pitch is 0.3 μm or more and the maximum value is 1.0 μm or less, and the minimum value of the depth of the concave portion is 0.01 μm or more and the maximum value is 0.3 μm or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
 また、本発明に係る部材の防ウイルス表面処理方法は、
 部材の表面に、その凹凸ピッチの最小値が0.497μm以上であり最大値が1.739μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.176μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする。
Further, the anti-virus surface treatment method for the member according to the present invention is described.
On the surface of the member, the minimum value of the unevenness pitch is 0.497 μm or more and the maximum value is 1.739 μm or less, and the minimum value of the depth of the concave portion is 0.047 μm or more and the maximum value is 0.176 μm or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
 また、本発明に係る部材の防ウイルス表面処理方法は、
 部材の表面に、その凹凸ピッチの最小値が0.513μm以上であり最大値が0.890μm以下であり、その凹部の深さの最小値が0.011μm以上であり最大値が0.026μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする。
Further, the anti-virus surface treatment method for the member according to the present invention is described.
On the surface of the member, the minimum value of the unevenness pitch is 0.513 μm or more and the maximum value is 0.890 μm or less, the minimum value of the depth of the recess is 0.011 μm or more, and the maximum value is 0.026 μm or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
 また、本発明に係る部材の防ウイルス表面処理方法は、
 部材の表面に、その凹凸ピッチの最小値が0.378μm以上であり最大値が0.769μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.283μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする。
Further, the anti-virus surface treatment method for the member according to the present invention is described.
On the surface of the member, the minimum value of the unevenness pitch is 0.378 μm or more and the maximum value is 0.769 μm or less, the minimum value of the depth of the recess is 0.047 μm or more, and the maximum value is 0.283 μm or less. It is characterized in that the surface of the member has an antiviral effect by randomly forming innumerable minute irregularities.
 本発明に係る部材の防ウイルス表面処理方法において、前記微小凹凸を、ショット材を投射する投射処理に基づいて形成することを特徴とすることができる。 The virus-proof surface treatment method for a member according to the present invention can be characterized in that the minute irregularities are formed based on a projection treatment for projecting a shot material.
 本発明に係る抗ウイルス部材は、
 部材の表面に、その凹凸ピッチの最小値が0.3μm以上であり最大値が1.0μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が0.3μm以下である微小凹凸を無数にランダムに有することを特徴とする。
The antiviral member according to the present invention is
On the surface of the member, the minimum value of the unevenness pitch is 0.3 μm or more and the maximum value is 1.0 μm or less, and the minimum value of the depth of the concave portion is 0.01 μm or more and the maximum value is 0.3 μm or less. It is characterized by having innumerable minute irregularities.
 また、本発明に係る抗ウイルス部材は、
 部材の表面に、その凹凸ピッチの最小値が0.497μm以上であり最大値が1.739μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.176μm以下である微小凹凸を無数にランダムに有することを特徴とする。
Further, the antiviral member according to the present invention is
On the surface of the member, the minimum value of the unevenness pitch is 0.497 μm or more and the maximum value is 1.739 μm or less, and the minimum value of the depth of the concave portion is 0.047 μm or more and the maximum value is 0.176 μm or less. It is characterized by having innumerable minute irregularities.
 また、本発明に係る抗ウイルス部材は、
 部材の表面に、その凹凸ピッチの最小値が0.513μm以上であり最大値が0.890μm以下であり、その凹部の深さの最小値が0.011μm以上であり最大値が0.026μm以下である微小凹凸を無数にランダムに有することを特徴とする。
Further, the antiviral member according to the present invention is
On the surface of the member, the minimum value of the unevenness pitch is 0.513 μm or more and the maximum value is 0.890 μm or less, the minimum value of the depth of the recess is 0.011 μm or more, and the maximum value is 0.026 μm or less. It is characterized by having innumerable minute irregularities.
 また、本発明に係る抗ウイルス部材は、
 部材の表面に、その凹凸ピッチの最小値が0.378μm以上であり最大値が0.769μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.283μm以下である微小凹凸を無数にランダムに有することを特徴とする。
Further, the antiviral member according to the present invention is
On the surface of the member, the minimum value of the unevenness pitch is 0.378 μm or more and the maximum value is 0.769 μm or less, the minimum value of the depth of the recess is 0.047 μm or more, and the maximum value is 0.283 μm or less. It is characterized by having innumerable minute irregularities.
 本発明に係る抗ウイルス部材において、前記微小凹凸は、ショット材を投射する投射処理に基づいて形成されることを特徴とすることができる。 In the antiviral member according to the present invention, the minute unevenness can be characterized by being formed based on a projection process of projecting a shot material.
 本発明によれば、部材の表面に微小凹凸(微小凹部)を無数にランダムに形成することで、部材の表面に抗ウイルス効果(作用)を持たせることができる部材の抗ウイルス表面処理方法、及び抗ウイルス効果を有する抗ウイルス部材を提供することができる。 According to the present invention, an antiviral surface treatment method for a member, which can give an antiviral effect (action) to the surface of the member by randomly forming innumerable minute irregularities (microrecesses) on the surface of the member. And an antiviral member having an antiviral effect can be provided.
本発明の一実施の形態に係る抗ウイルス性能評価試験の結果(試料(1)~(3))を示す図である。It is a figure which shows the result (samples (1)-(3)) of the antiviral performance evaluation test which concerns on one Embodiment of this invention. 同上実施の形態に係る抗ウイルス性能評価試験の試験条件等を示す図である。It is a figure which shows the test condition of the antiviral performance evaluation test which concerns on embodiment. 図上実施の形態に係る抗ウイルス性能評価試験の結果(試料(4)~(7))を示す図である。It is a figure which shows the result (samples (4)-(7)) of the antiviral performance evaluation test which concerns on embodiment on the figure. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(1)(比較対照:Reference)の表面の3D画像及び表面形状の一例を示す図である。It is a figure which shows an example of the 3D image and the surface shape of the surface of the sample (1) (comparison control: Reference) which was subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(2)(P43処理)の表面の3D画像を示す図である。It is a figure which shows the 3D image of the surface of the sample (2) (P43 treatment) subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(2)(P43処理)の表面形状データの一例を示す表である。It is a table which shows an example of the surface shape data of the sample (2) (P43 treatment) used for the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(3)(P60処理)の表面の3D画像を示す図である。It is a figure which shows the 3D image of the surface of the sample (3) (P60 treatment) subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(3)(P60処理)の表面形状データの一例を示す表である。It is a table which shows an example of the surface shape data of the sample (3) (P60 treatment) subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(5)(PT1処理)の表面の3D画像を示す図である。It is a figure which shows the 3D image of the surface of the sample (5) (PT1 treatment) subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(5)(PT1処理)の表面形状データの一例を示す表である。It is a table which shows an example of the surface shape data of the sample (5) (PT1 treatment) used for the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(6)(P10処理)の表面の3D画像を示す図である。It is a figure which shows the 3D image of the surface of the sample (6) (P10 treatment) subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(6)(P10処理)の表面形状データの一例を示す表である。It is a table which shows an example of the surface shape data of the sample (6) (P10 treatment) which was subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(7)(M処理)の表面の3D画像を示す図である。It is a figure which shows the 3D image of the surface of the sample (7) (M treatment) which was subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料(7)(M処理)の表面形状データの一例を示す表である。It is a table which shows an example of the surface shape data of the sample (7) (M treatment) which was subjected to the antiviral performance evaluation test which concerns on embodiment. 同上実施の形態に係る抗ウイルス性能評価試験に供した試料の表面形状データに対する抗ウイルス性効果のまとめを示す表である。It is a table which shows the summary of the antiviral effect with respect to the surface shape data of the sample subjected to the antiviral performance evaluation test which concerns on embodiment. (A)は同上実施の形態に係る抗ウイルス性能評価試験に供した試料の表面形状データに対する抗ウイルス性効果を示したグラフであり、(B)は各種ウイルスの大きさを例示した表である。(A) is a graph showing the antiviral effect on the surface shape data of the sample subjected to the antiviral performance evaluation test according to the same embodiment, and (B) is a table exemplifying the sizes of various viruses. .. ショット材投射処理の一例である微粒子ピーニング処理に用いるメディアをワンショットすることにより実験的に形成した単一の微小凹部の断面SEM像である。It is a cross-sectional SEM image of a single minute concave portion experimentally formed by one shot of a medium used for a fine particle peening process which is an example of a shot material projection process. レーザ加工による凹部断面SEM像である。It is a concave cross section SEM image by laser processing.
 以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。 Hereinafter, an embodiment according to the present invention will be described with reference to the attached drawings. The present invention is not limited to the embodiments described below.
 上述したように、本出願人等は、ディンプル状の微小凹部を無数にランダムに形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、部材の表面に微小凹部を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、そのようなアプローチの過程において、本発明者等は、従来知られていなかった新たな知見を得た。 As described above, the applicants, etc. have created microrecesses on the surface of the member in order to explore the possibility of applying the surface modification technology by randomly forming innumerable dimple-shaped microrecesses to various fields. Various approaches have been taken, such as confirming the action and effect of innumerable formation in various fields, and in the process of such an approach, the present inventors have obtained new findings that have not been known in the past. ..
 具体的には、前記アプローチの過程において、ディンプル状の微小凹部を表面に無数に形成した部材(試験片)を、抗ウイルス性能評価試験(ISO 21702を参照)に供してみたところ、微小凹部を表面に無数に形成した部材(試料或いは試験片)には、抗ウイルス作用(抗ウイルス性、抗ウイルス効果)があるという知見を得た。
 かかる知見は、ディンプル状の微小凹部を無数に表面に形成した部材に関して、従来知られていない作用効果であり、上述したように、これまでの知見からは予測不能な作用効果である。
Specifically, in the process of the approach, a member (test piece) in which innumerable dimple-shaped minute recesses were formed on the surface was subjected to an antiviral performance evaluation test (see ISO 21702), and the minute recesses were found. It was found that the innumerable members (samples or test pieces) formed on the surface have antiviral activity (antiviral property, antiviral effect).
Such a finding is an action / effect that has not been known in the past with respect to a member having innumerable dimple-shaped minute recesses formed on the surface, and as described above, it is an action / effect that cannot be predicted from the findings so far.
 なお、試験は、外部機関(地方独立法人神奈川県立産業技術総合研究所)にて実施し、その抗ウイルス性能評価試験の結果を、図1に示す。試験方法、条件などについては、図2に示した通りである。 The test was conducted by an external organization (Kanagawa Prefectural National Institute of Advanced Industrial Science and Technology), and the results of the antiviral performance evaluation test are shown in Fig. 1. The test method, conditions, etc. are as shown in FIG.
 図1に示すように、比較対照である試料(1)「SUS304 ♯700 未処理」(Reference)は、Ref.-1、Ref.-2、Ref.-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、4.40×E+04~6.90×E+04の範囲(平均値は、5.63×E+04)であった。なお、E+04は、10を表す(以下同様)。
 「SUS304 ♯700 未処理」(Reference)は、SUS304からなるステンレス製の板材の表面をP700番バフにより研磨仕上げしたもので、その表面は、図4の3D画像に示すように、鏡面に近い状態である。
 後述する試料(2)~(5)は、この比較対照である試料(1)に対して各種の表面処理を施したものである。
As shown in FIG. 1, the sample (1) “SUS304 # 700 untreated” (Reference), which is a comparative control, is referred to as Ref. -1, Ref. -2, Ref. In the three lots of -3, the value of the virus infectious value (pfu / cm 2 ) was in the range of 4.40 × E + 04 to 6.90 × E + 04 (mean value was 5.63 × E + 04). In addition, E + 04 represents 104 (the same applies hereinafter).
"SUS304 # 700 untreated" (Reference) is a stainless steel plate made of SUS304 polished with a P700 buff, and the surface is close to a mirror surface as shown in the 3D image of FIG. Is.
The samples (2) to (5) described later are obtained by subjecting the sample (1), which is a comparative control, to various surface treatments.
 なお、後述するものを含めて、本実施の形態における3D画像、表面形状、表面形状データは、KEYENCE社製の形状測定レーザーマイクロスコープVK-X1000を用いて取得した。 The 3D image, surface shape, and surface shape data in this embodiment, including those described later, were acquired using a shape measurement laser microscope VK-X1000 manufactured by KEYENCE.
 試料(2)「SUS304 ♯700 P43(処理)」(Antibac-P43)は、図1に示したように、P43-1、P43-2,P43-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、5.60×E+03~1.30×E+04の範囲(平均値は、1.02×E+04)であり、また、抗ウイルス活性値は、0.7であった。
試料(2)「SUS304 ♯700 P43(処理)」(Antibac-P43)は、比較対照(未処理のSUS304 ♯700)に対して抗ウイルス性(ウイルスに対する抑制効果)があることが確認された。
Sample (2) "SUS304 # 700 P43 (treatment)" (Antibac-P43) has a virus infectious titer (P43-1, P43-2, P43-3) in three lots as shown in FIG. The value of pfu / cm 2 ) was in the range of 5.60 × E + 03 to 1.30 × E + 04 (mean value was 1.02 × E + 04), and the antiviral activity value was 0.7. ..
It was confirmed that the sample (2) "SUS304 # 700 P43 (treated)" (Antibac-P43) has antiviral properties (suppressive effect against viruses) against the comparative control (untreated SUS304 # 700).
 なお、ここでの抗ウイルス活性値は、以下の式から算出される。
 抗ウイルス活性値:R=Ut-At
 Ut:無加工試験片(試料)における反応後の単位体積当たりのウイルス平均感染価の対数値
 At:抗ウイルス加工試験片(試料)における反応後の単位体積当たりのウイルス平均感染価の対数値
The antiviral activity value here is calculated from the following formula.
Antiviral activity value: R = Ut-At
Ut: Log of average virus infectivity per unit volume after reaction in unprocessed test piece (sample) At: Log of average virus infectivity per unit volume after reaction in antiviral processed test piece (sample)
 なお、P43(処理)は、ディンプル状の微小凹部を無数に形成する表面処理(ショット材投射処理、マイクロディンプル処理、微粒子投射処理など。以下、同様)の一つであり、SUS304からなるステンレス製の板材(比較対照)の表面に、まず最初に、例えば、1種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯400(最大粒子径75μm以下、累積高さ50%点の粒子径30.0±2.0μm)のSiC(炭化珪素))を1/数(例えば0.3)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面(試料の表面、部材の表面)に投射処理(以下、投射加工とも称する)を行う。
 次に、例えば、2種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯3000(最大粒子径13μm以下、累積高さ50%点の粒子径4.0±0.5μm)のSiC(炭化珪素))を、1/数(例えば0.4)MPa程度の圧縮空気と共に被加工面に投射処理(投射加工)を行う処理である。
Note that P43 (treatment) is one of surface treatments (shot material projection treatment, microdimple treatment, fine particle projection treatment, etc., the same applies hereinafter) for forming innumerable dimple-shaped minute recesses, and is made of stainless steel made of SUS304. On the surface of the plate material (comparative control), for example, the first type of media (trade name "Fuji Random (Carborundum)", grain number C # 400 (maximum particle diameter 75 μm or less, cumulative height 50%) SiC (silicon carbide) with a particle size of 30.0 ± 2.0 μm at the point is injected from the injection nozzle together with compressed air of about 1 / several (for example, 0.3) MPa, and the surface to be machined (surface of sample, member). The surface of the particle) is subjected to projection processing (hereinafter, also referred to as projection processing).
Next, for example, the second type of media (trade name "Fuji Random (Carborundum)", particle number C # 3000 (maximum particle diameter 13 μm or less, particle diameter 4.0 ± 0.5 μm at a cumulative height of 50%) )) Is a process of projecting (projecting) the surface to be processed together with compressed air of about 1/1 (for example, 0.4) MPa.
 なお、試料(2)「SUS304 ♯700 P43」(Antibac-P43)は、図5に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。
 また、図6に示すように、試料(2)の表面に形成された微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.378~0.769μm程度の範囲(言い換えると、凹凸ピッチの最小値が0.378μm程度以上で、最大値が0.769μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.047~0.283μm程度の範囲(言い換えると、凹凸深さの最小値が0.047μm程度以上で、最大値が0.283μm程度以下)であった。
As shown in FIG. 5, in the sample (2) "SUS304 # 700 P43" (Antibac-P43), innumerable dimple-shaped minute recesses are randomly formed on the surface.
Further, as shown in FIG. 6, the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (2) is 0.378 to 0.769 μm. The range of the degree (in other words, the minimum value of the unevenness pitch is about 0.378 μm or more and the maximum value is about 0.769 μm or less), and the range of the minimum value and the maximum value of the recess depth is 0.047 to 0. The range was about .283 μm (in other words, the minimum value of the unevenness depth was about 0.047 μm or more, and the maximum value was about 0.283 μm or less).
 試料(3)「SUS304 ♯700 P60(処理)」(Antibac-P60)は、図1に示したように、P60-1、P60-2,P60-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、1.30×E+04~2.50×E+04の範囲(平均値は、2.10×E+04)であった。また、抗ウイルス活性値は、0.4であった。
試料(3)「SUS304 ♯700 P60(処理)」(Antibac-P60)には、比較対照(未処理のSUS304 ♯700)に対して抗ウイルス性(ウイルスに対する抑制効果)があることが確認された。
Sample (3) "SUS304 # 700 P60 (treatment)" (Antibac-P60) has a virus infectious titer (P60-1, P60-2, P60-3) in three lots as shown in FIG. The value of pfu / cm 2 ) was in the range of 1.30 × E + 04 to 2.50 × E + 04 (the average value was 2.10 × E + 04). The antiviral activity value was 0.4.
It was confirmed that the sample (3) "SUS304 # 700 P60 (treated)" (Antibac-P60) has antiviral properties (suppressive effect against viruses) against the comparative control (untreated SUS304 # 700). ..
 なお、P60(処理)は、ディンプル状の微小凹部を無数に形成する表面処理の一つであり、SUS304からなるステンレス製の板材(比較対照)の表面に、(株)不二製作所製の研磨材(商品名「不二ランダムGC(グリーンカーボランダム)」、粒番号C#6000(最大粒子径8μm以下、累積高さ50%点の粒子径2.0±0.4μm)のSiC(炭化ケイ素)を1/数(例えば0.7)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射処理(投射加工)を行う処理である。 P60 (treatment) is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and the surface of a stainless steel plate (comparative control) made of SUS304 is polished by Fuji Seisakusho Co., Ltd. Material (trade name "Fuji Random GC (Green Carborundum)", grain number C # 6000 (maximum particle diameter 8 μm or less, particle diameter 2.0 ± 0.4 μm with a cumulative height of 50%) SiC (silicon carbide) ) Is injected from an injection nozzle together with compressed air of about 1 / several (for example, 0.7) MPa, and projection processing (projection processing) is performed on the surface to be processed.
 なお、試料(3)「SUS304 ♯700 P60」(Antibac-P60)は、図7に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。
 また、図8に示すように、試料(3)の表面に形成された微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.513~0.890μm程度の範囲(言い換えると、凹凸ピッチの最小値が0.513μm程度以上で、最大値が0.890μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.011~0.026μm程度の範囲(言い換えると、凹凸深さの最小値が0.011μm程度以上で、最大値が0.026μm程度以下)であった。
As shown in FIG. 7, in the sample (3) "SUS304 # 700 P60" (Antibac-P60), innumerable dimple-shaped minute recesses are randomly formed on the surface.
Further, as shown in FIG. 8, the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (3) is 0.513 to 0.890 μm. The range of the degree (in other words, the minimum value of the unevenness pitch is about 0.513 μm or more and the maximum value is about 0.890 μm or less), and the range of the minimum value and the maximum value of the recess depth is 0.011 to 0. The range was about .026 μm (in other words, the minimum value of the unevenness depth was about 0.011 μm or more, and the maximum value was about 0.026 μm or less).
 以下の試料(4)~(7)は、上記とは異なる試験日にて同一の試験を行った。試料(4)~(7)の試験結果を図3に示す。なお、試験条件などは、図2と同じである。
 比較対照である試料(4)は、試料(1)と同じ試料「SUS304 ♯700 未処理」(Reference)であり、図3に示したように、Ref.-1、Ref.-2、Ref.-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、3.8×E+04~1.1×E+05の範囲(平均値は、7.43×E+04)であった。
The following samples (4) to (7) were subjected to the same test on a test date different from the above. The test results of the samples (4) to (7) are shown in FIG. The test conditions and the like are the same as those in FIG.
The sample (4) as a comparative control is the same sample “SUS304 # 700 untreated” (Reference) as the sample (1), and as shown in FIG. 3, Ref. -1, Ref. -2, Ref. In the three lots of -3, the value of the virus infectious value (pfu / cm 2 ) was in the range of 3.8 × E + 04 to 1.1 × E + 05 (the average value was 7.43 × E + 04).
 試料(5)「SUS304 ♯700 PT1(処理)」は、図3に示したように、PT1-1、PT1-2,PT1-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、4.4×E+04~6.3×E+04の範囲(平均値は、5.23×E+04)であった。また、抗ウイルス活性値は、0.1であった。
 試料(5)「SUS304 ♯700 PT1(処理)」は、比較対照(未処理のSUS304 ♯700)に対して抗ウイルス性(ウイルスに対する抑制効果)がある程度あることが確認された。
Sample (5) "SUS304 # 700 PT1 (treatment)" has a virus infectious titer (pfu / cm 2 ) in three lots of PT1-1, PT1-2, and PT1-3, as shown in FIG. The value of was in the range of 4.4 × E + 04 to 6.3 × E + 04 (the average value was 5.23 × E + 04). The antiviral activity value was 0.1.
It was confirmed that the sample (5) "SUS304 # 700 PT1 (treated)" had some antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
 なお、PT1(処理)は、ディンプル状の微小凹部を無数に形成する表面処理の一つであり、SUS304からなるステンレス製の板材(比較対照)の表面に、新日本金属(株)製のタングステンカーバイド粉、記号WC-10(粒度:0.70~1.19μm)を、1/数(例えば0.4)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射加工を行う処理である。 PT1 (treatment) is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and the surface of a stainless steel plate (comparative control) made of SUS304 is made of tungsten made by Shin Nippon Metal Co., Ltd. Carbide powder, symbol WC-10 (grain size: 0.70 to 1.19 μm) is sprayed from an injection nozzle together with compressed air of about 1 / several (for example, 0.4) MPa to perform projection processing on the surface to be machined. Is.
 なお、試料(5)は、図9に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。
 また、図10に示すように、試料(5)の表面に形成された微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.497~1.739μm程度の範囲(言い換えると、凹凸ピッチの最小値が0.497μm程度以上で、最大値が1.739μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.047~0.176μm程度の範囲(言い換えると、凹凸深さの最小値が0.047μm程度以上で、最大値が0.176μm程度以下)であった。
As shown in FIG. 9, the sample (5) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (5).
Further, as shown in FIG. 10, the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (5) is 0.497 to 1.739 μm. The range of the degree (in other words, the minimum value of the unevenness pitch is about 0.497 μm or more and the maximum value is about 1.739 μm or less), and the range of the minimum value and the maximum value of the recess depth is 0.047 to 0. The range was about 176 μm (in other words, the minimum value of the unevenness depth was about 0.047 μm or more, and the maximum value was about 0.176 μm or less).
 試料(6)「SUS304 ♯700 P10(処理)」は、図3に示したように、P10-1、P10-2,P10-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、5.6×E+04~8.8×E+04の範囲(平均値は、7.10×E+04)であった。また、抗ウイルス活性値は、-0.1であった。
試料(6)「SUS304 ♯700 P10(処理)」は、比較対照(未処理のSUS304 ♯700)に対して抗ウイルス性(ウイルスに対する抑制効果)がほとんどないことが確認された。
Sample (6) "SUS304 # 700 P10 (treatment)" has a virus infectious titer (pfu / cm 2 ) in three lots of P10-1, P10-2, and P10-3, as shown in FIG. The value of was in the range of 5.6 × E + 04 to 8.8 × E + 04 (the average value was 7.10 × E + 04). The antiviral activity value was -0.1.
It was confirmed that the sample (6) "SUS304 # 700 P10 (treated)" had almost no antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
 ここで、P10処理は、ディンプル状の微小凹部を無数に形成する表面処理の一つであり、SUS304からなるステンレス製の板材(比較対照)の表面に、(株)不二製作所製の研磨材(商品名「不二ランダムC(カーボランダム)」、粒番号C#1000(最大粒子径32μm以下、累積高さ50%点の粒子径11.5±1.0μm)のSiC(炭化ケイ素)を1/数(例えば0.3)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射処理(投射加工)を行う処理である。
 なお、試料(6)は、図11に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。
 また、図12に示すように、試料(6)の表面に形成された微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が1.488~6.763μm程度の範囲(言い換えると、凹凸ピッチの最小値が1.488μm程度以上で、最大値が6.763μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.198~0.387μm程度の範囲(言い換えると、凹凸深さの最小値が0.198μm程度以上で、最大値が0.387μm程度以下)であった。
Here, the P10 treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses, and is an abrasive material manufactured by Fuji Seisakusho Co., Ltd. on the surface of a stainless steel plate material (comparative control) made of SUS304. (Product name "Fuji Random C (Carborundum)", SiC (Silicon Carbide) with grain number C # 1000 (maximum particle diameter 32 μm or less, particle diameter 11.5 ± 1.0 μm with a cumulative height of 50%) It is a process of injecting from an injection nozzle together with compressed air of about 1 / several (for example, 0.3) MPa to perform a projection process (projection process) on the surface to be processed.
As shown in FIG. 11, the sample (6) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (6).
Further, as shown in FIG. 12, the range of the minimum and maximum values of the uneven pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (6) is 1.488 to 6.763 μm. The range of the degree (in other words, the minimum value of the unevenness pitch is about 1.488 μm or more and the maximum value is about 6.763 μm or less), and the range of the minimum value and the maximum value of the recess depth is 0.198 to 0. The range was about .387 μm (in other words, the minimum value of the unevenness depth was about 0.198 μm or more, and the maximum value was about 0.387 μm or less).
 試料(7)「SUS304 ♯700 M(処理)」は、図3に示したように、M-1、M-2,M-3の3つのロットにおいて、ウイルスの感染価(pfu/cm)の値が、5.0×E+04~8.1×E+04の範囲(平均値は、6.47×E+04)であった。また、抗ウイルス活性値は、0.1であった。
試料(7)「SUS304 ♯700 M(処理)」は、比較対照(未処理のSUS304 ♯700)に対して抗ウイルス性(ウイルスに対する抑制効果)がほとんどないことが確認された。
Sample (7) "SUS304 # 700 M (treated)" has a virus infectious titer (pfu / cm 2 ) in three lots of M-1, M-2, and M-3 as shown in FIG. The value of was in the range of 5.0 × E + 04 to 8.1 × E + 04 (the average value was 6.47 × E + 04). The antiviral activity value was 0.1.
It was confirmed that the sample (7) "SUS304 # 700 M (treated)" had almost no antiviral property (suppressive effect against virus) with respect to the comparative control (untreated SUS304 # 700).
 なお、M処理は、ディンプル状の微小凹部を無数に形成する表面処理の一つであり、ここでは、SUS304からなるステンレス製の板材(比較対照)の表面に、(株)不二製作所製の研磨材FGB(フジガラスビーズ)の粒番号400(中心粒径が、≦53μm)のメディア(ショット材)を1/数(例えば0.3)MPa程度の圧縮空気と共に投射する投射処理(投射加工)を行う処理である。 The M treatment is one of the surface treatments for forming innumerable dimple-shaped minute recesses. Here, the surface of a stainless steel plate (comparative control) made of SUS304 is manufactured by Fuji Seisakusho Co., Ltd. Projection processing (projection processing) in which a medium (shot material) having a grain number of 400 (center particle size of ≤53 μm) of the abrasive FGB (Fuji glass beads) is projected together with compressed air of about 1/1/ (for example, 0.3) MPa. ) Is performed.
 なお、試料(7)は、図13に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。
 また、図14に示すように、試料(7)の表面に形成された微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が19.63~43.96μm程度の範囲(言い換えると、凹凸ピッチの最小値が19.63μm程度以上で、最大値が43.96μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.638~1.795μm程度の範囲(言い換えると、凹凸深さの最小値が0.638μm程度以上で、最大値が1.795μm程度以下)であった。
As shown in FIG. 13, the sample (7) has innumerable dimple-shaped minute recesses randomly formed on the surface of the sample (7).
Further, as shown in FIG. 14, the range of the minimum value and the maximum value of the unevenness pitch (spacing of convex portions or spacing of concave portions) of minute irregularities formed on the surface of the sample (7) is 19.63 to 43.96 μm. The range of the degree (in other words, the minimum value of the unevenness pitch is about 19.63 μm and the maximum value is about 43.96 μm or less), and the range of the minimum value and the maximum value of the recess depth is 0.638 to 1. The range was about .795 μm (in other words, the minimum value of the unevenness depth was about 0.638 μm or more, and the maximum value was about 1.795 μm or less).
 以上の抗ウイルス性試験の結果及び各試料の表面形状データをまとめたものを、図15に示す。
 P43処理を施した試料(2)が、無加工品(比較対照)と比較したウイルス感染価の減少率が81.9%で抗ウイルス性が一番高く、P60処理を施した試料(3)は同ウイルス感染価の減少率が62.7%で抗ウイルス性が二番目に高く、PT1処理を施した試料(5)は同ウイルス感染価の減少率が29.67%で抗ウイルス性が三番目に高く、P10処理を施した試料(6)は同ウイルス感染価の減少率が4.48%で抗ウイルス性は小さく、M処理を施した試料(7)は同ウイルス感染価の減少率が13.0%で高いウイルス性を確認することはできなかった。
FIG. 15 shows a summary of the results of the above antiviral test and the surface shape data of each sample.
The P43-treated sample (2) has the highest anti-virus property with a reduction rate of 81.9% in virus infectivity compared to the unprocessed product (comparative control), and the P60-treated sample (3). Has the second highest antiviral property with a decrease rate of 62.7% in the virus infectivity, and the sample (5) treated with PT1 has a 29.67% decrease rate in the virus infectivity. The third highest, the sample (6) treated with P10 had a decrease rate of 4.48% in the virus infectivity and the antiviral property was small, and the sample (7) treated with M had a decrease in the virus infectivity. The rate was 13.0% and high virality could not be confirmed.
 また、図16(A)に、図15のデータを基に、横軸を凹凸ピッチとし、縦軸を凹部深さとし、得られるウイルス感染価の減少率が等しくなる領域を囲って区分けして表してみたところ、ウイルス感染価の減少率が50%以上となる領域X(凹凸ピッチが0.3μm~1μmの範囲、凹部深さが0.01~0.3μmの範囲)を確認することができた。
 なお、M処理(試料(7))は抗ウイルス性が低く数値レンジ大きくかけ離れているため、図16(A)への図示は省略した。
 ここで、PT1処理(試料(5))はウイルス感染価の減少率が約30%(29.6%)であったが、それにもかかわらず、このPT1処理(試料(5))の領域には、ウイルス感染価の減少率が50%以上となる領域Xと重複する部分が存在している。これは、減少率が約5%(4.48%)であったP10処理(試料(6))の凹凸ピッチの範囲(或いは減少率が50%より小さい凹凸ピッチの範囲)が含まれているためであり、それらの凹凸ピッチを除けば、すなわち、領域Xの範囲内の凹凸ピッチにすべて揃えたならば、ウイルス感染価の減少率が50%以上の高い微小凹凸表面になるものと考えられる。
 以上より、無加工品(比較対照)と比較したウイルス感染価の減少率が50%以上得られる微小凹凸の凹凸ピッチ(凸部の間隔或いは凹部の間隔)は、0.3~1.0μmの範囲であり、その凹凸深さの最小値と最大値の範囲が0.01~0.3μmの範囲である。
Further, in FIG. 16A, based on the data of FIG. 15, the horizontal axis is the concave-convex pitch and the vertical axis is the concave depth, and the areas where the obtained virus infectivity reduction rates are equal are divided and represented. As a result, it was possible to confirm the region X (the uneven pitch is in the range of 0.3 μm to 1 μm and the concave depth is in the range of 0.01 to 0.3 μm) in which the reduction rate of the virus infection titer is 50% or more. rice field.
Since the M treatment (sample (7)) has low antiviral properties and is far from the numerical range, the illustration in FIG. 16 (A) is omitted.
Here, the PT1 treatment (sample (5)) had a decrease rate of virus infectivity of about 30% (29.6%), but nevertheless, in the region of this PT1 treatment (sample (5)). Has a portion overlapping with the region X in which the reduction rate of the virus infection titer is 50% or more. This includes the range of the uneven pitch of the P10 treatment (sample (6)) where the reduction rate was about 5% (4.48%) (or the range of the uneven pitch where the reduction rate is smaller than 50%). This is because, except for those uneven pitches, that is, if all the uneven pitches within the range of the region X are aligned, it is considered that the surface becomes a fine uneven surface with a high reduction rate of the virus infection titer of 50% or more. ..
From the above, the unevenness pitch (spacing of convex parts or spacing of concave parts) of minute unevenness that can obtain a reduction rate of virus infection titer of 50% or more as compared with the unprocessed product (comparative control) is 0.3 to 1.0 μm. It is a range, and the range of the minimum value and the maximum value of the unevenness depth is in the range of 0.01 to 0.3 μm.
 すなわち、本発明によれば、部材の表面に、無数の微小凹凸であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.3μm~1.0μmの範囲であり、凹部深さの最小値と最大値の範囲が、0.01μm~0.3μmの範囲である微小凹部をランダムに形成することで、その表面に無加工材に対してウイルス減少率50%以上の抗ウイルス性を付与することができる。 That is, according to the present invention, there are innumerable minute irregularities on the surface of the member, and the range of the minimum and maximum values of the unevenness pitch (interval between convex portions or concave portions) is 0.3 μm to 1.0 μm. By randomly forming minute recesses in which the minimum and maximum depths of the recesses are in the range of 0.01 μm to 0.3 μm, the virus is reduced against the unprocessed material on the surface. It is possible to impart antiviral properties having a rate of 50% or more.
 また、本発明によれば、部材の表面に、無数の微小凹凸であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.3μm~1.8μmの範囲であり、凹部深さの最小値と最大値の範囲が、0.01μm~0.3μmの範囲である微小凹部をランダムに形成することで、その表面に無加工材に対してウイルス減少率30%程度の抗ウイルス性を付与することができる。 Further, according to the present invention, there are innumerable minute irregularities on the surface of the member, and the range of the minimum and maximum values of the unevenness pitch (interval between convex portions or concave portions) is 0.3 μm to 1.8 μm. By randomly forming minute recesses in which the minimum and maximum depths of the recesses are in the range of 0.01 μm to 0.3 μm, the virus is reduced against the unprocessed material on the surface. It is possible to impart antiviral properties at a rate of about 30%.
 また、本発明によれば、部材の表面に、無数の微小凹凸であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.513μm~0.890μmの範囲であり、凹部深さの最小値と最大値の範囲が、0.011μm~0.026μmの範囲である微小凹部をランダムに形成することで、その表面に無加工材に対してウイルス減少率63%程度の抗ウイルス性を付与することができる。 Further, according to the present invention, there are innumerable minute irregularities on the surface of the member, and the range of the minimum and maximum values of the unevenness pitch (interval between convex portions or concave portions) is 0.513 μm to 0.890 μm. By randomly forming minute recesses in which the minimum and maximum depths of the recesses are in the range of 0.011 μm to 0.026 μm, the virus is reduced against the unprocessed material on the surface. It is possible to impart antiviral properties with a rate of about 63%.
 また、本発明によれば、部材の表面に、無数の微小凹凸であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.378μm~0.769μmの範囲であり、凹部深さの最小値と最大値の範囲が、0.047μm~0.283μmの範囲である微小凹部をランダムに形成することで、その表面に無加工材に対してウイルス減少率82%程度の抗ウイルス性を付与することができる。 Further, according to the present invention, there are innumerable minute irregularities on the surface of the member, and the range of the minimum and maximum values of the unevenness pitch (interval between convex portions or concave portions) is 0.378 μm to 0.769 μm. By randomly forming minute recesses in which the minimum and maximum values of the recess depth are in the range of 0.047 μm to 0.283 μm, the virus is reduced against the unprocessed material on the surface. It is possible to impart antiviral properties with a rate of about 82%.
 以上のように、本発明者等は、消毒液などを用いなくても、部材の表面に、ディンプル状の微小凹部(微小凹凸)をランダムに無数に形成することで、抗ウイルス性を持たせることができるという知見を得ることができた。 As described above, the present inventors impart antiviral properties by randomly forming innumerable dimple-shaped minute recesses (micro unevenness) on the surface of the member without using a disinfectant solution or the like. I was able to obtain the knowledge that it can be done.
 このように、微小凹凸(微小凹部)を部材の表面にランダムに無数に形成すると、その表面には抗ウイルス性が生じるという知見を得ることができたが、かかる知見は、微小凹凸(微小凹部)を無数に表面に形成した部材に関して、従来知られていない作用効果に関するものであり、上述したように、これまでの知見からは予測不能なものである。 As described above, it was found that when innumerable minute irregularities (microrecesses) are randomly formed on the surface of the member, antiviral property is generated on the surface. ) Are innumerably formed on the surface of the member, and the action and effect are unknown in the past, and as described above, it is unpredictable from the findings so far.
 なお、このような新たな知見に基づいて、本発明は、部材の表面に微小凹凸(微小凹部)をランダムに無数に形成した部材を、抗ウイルス性を有する抗ウイルス部材という用途に用いるものである。 Based on such new findings, the present invention uses a member in which innumerable minute irregularities (microrecesses) are randomly formed on the surface of the member as an antiviral member having antiviral properties. be.
 すなわち、本発明によれば、部材の表面に微小凹凸(微小凹部)を無数にランダムに形成することで、部材の表面に抗ウイルス効果(作用)を持たせることができる部材の抗ウイルス表面処理方法、及び抗ウイルス効果を有する抗ウイルス部材を提供することができる。 That is, according to the present invention, an antiviral surface treatment of a member capable of imparting an antiviral effect (action) to the surface of the member by randomly forming innumerable minute irregularities (microrecesses) on the surface of the member. Methods, and antiviral members with antiviral effects can be provided.
 ところで、本実施の形態では、ディンプル状の微小凹部をショット材投射処理により、無数にランダムに形成することとして説明したが、例えば、部材の表面に化学研磨(化学エッチング)或いはプラズマ処理(例えばアルゴンボンバード処理)などを施して微小凹凸を無数にランダムに形成することもできる。但し、本発明はこれに限定されるものではなく、本発明に係る微小凹部は、化学エッチング、プラズマ処理、ショット材投射処理などの少なくとも一つ或いはこれらを適宜に組み合わせることによって形成することも可能である。
 なお、化学研磨(化学エッチング)としては、例えば、塩酸・硝酸・硫酸・リン酸などの酸性薬剤や塩化鉄(III)などを任意の割合で水溶液に調製し使用することが想定される。
By the way, in the present embodiment, it has been described that dimple-shaped minute recesses are randomly formed innumerably by shot material projection treatment, but for example, the surface of a member is chemically polished (chemically etched) or plasma treated (for example, argon). It is also possible to randomly form innumerable minute irregularities by applying (bomberd treatment) or the like. However, the present invention is not limited to this, and the minute recesses according to the present invention can be formed by at least one of chemical etching, plasma treatment, shot material projection treatment, etc., or a combination thereof as appropriate. Is.
For chemical polishing (chemical etching), for example, it is assumed that acidic agents such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, iron (III) chloride, and the like are prepared in an aqueous solution in an arbitrary ratio and used.
 また、部材の表面に微小凹凸を形成することには、化学エッチング、プラズマ処理、ショット材投射処理などに基づいて(利用して)形成した微小凹凸をその表面に有する型を用いて、例えば転写等により、部材の表面に複合凹凸形状(複合ディンプル)を形成する場合なども含まれるものである。 Further, in order to form minute irregularities on the surface of the member, for example, transfer using a mold having the minute irregularities formed on the surface based on (using) chemical etching, plasma treatment, shot material projection treatment, etc. The case where a composite uneven shape (composite dimple) is formed on the surface of the member is also included.
 なお、本発明に係る抗ウイルス部材は、例えば、抗ウイルス性が求められる部材全般に適用でき、例えば、保管容器、収容容器(例えば、ホッパー等の容器)、運搬器具(ベルトコンベアの載置部など)、滑落器具(例えば、シューターなど)、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具、水回り(風呂場、洗面所、台所、トイレなど)に用いられる部材などを含む各種の部材に適用可能である。 The anti-virus member according to the present invention can be applied to, for example, all members required to have anti-virus properties, for example, a storage container, a storage container (for example, a container such as a hopper), a transport device (a mounting portion of a belt conveyor). Used for sliding utensils (eg shooters), sieves, stirrers, cooking balls, cooking utensils, surgical utensils, medical utensils, water purses (bathrooms, washrooms, kitchens, toilets, etc.) It can be applied to various members including members.
 また、本発明に係る抗ウイルス部材は、車両用の吊手(つり革のグリップ部分)、その他の取っ手或いは持ち手(グリップ)、ドアノブ、ハンドル、トイレ用品、台所用品、洗面用品など人や動物が触れる部材など、抗ウイルス等の目的のために用いられる部材であれば適用可能である。 Further, the anti-virus member according to the present invention includes humans and animals such as a vehicle hanger (grip portion of suspended leather), other handles or handles (grip), doorknobs, handles, toilet supplies, kitchen utensils, and toiletries. It is applicable as long as it is a member used for an anti-virus or other purpose, such as a member that is touched by.
 また、本実施の形態に係る微小凹凸形成処理による抗ウイルス効果は、例えばステンレス材であれば、処理前のベース材の♯400、♯700、2B等、表面の仕上げ仕様には拘らず、特に非磁性のオーステナイト系のステンレス(SUS303、304、316など)、どれでも同等の効果が得られると考えられる。また、ステンレス材以外の金属材料(例えば、鉄の場合には、例えばスチール(SS400など)、アルミニウム、チタン等の金属製或いは合金製など)であっても本発明は適用可能である。 Further, the antiviral effect of the microconcavo-convex forming treatment according to the present embodiment is particularly high in the case of stainless steel, regardless of the surface finishing specifications such as # 400, # 700, 2B of the base material before the treatment. Non-magnetic austenitic stainless steels (SUS303, 304, 316, etc.) are all considered to have the same effect. Further, the present invention can be applied to a metal material other than stainless steel (for example, in the case of iron, for example, steel (SS400 or the like), aluminum, titanium or other metal or alloy).
 なお、本発明に係る抗ウイルス部材は、樹脂製部材とすることも可能であり、その材料は特に限定されるものではない。例えばセラミックスとすることも可能であり、金属製部材の場合は、鉄、アルミニウム、チタン等の金属製(合金製)とすることができる。 The antiviral member according to the present invention may be a resin member, and the material thereof is not particularly limited. For example, it can be made of ceramics, and in the case of a metal member, it can be made of a metal (alloy) such as iron, aluminum, or titanium.
 また、本発明に係る抗ウイルス部材は、ブロック状、プレート状、シート状などあらゆる形が想定され、その形状・サイズなどは特に限定されるものではない。 Further, the antiviral member according to the present invention is assumed to have any shape such as a block shape, a plate shape, a sheet shape, and the shape and size thereof are not particularly limited.
 なお、本実施の形態では、インフルエンザウイルスを用いて抗ウイルス性試験を行ったが、そのウイルスの大きさ(直径)は100nm程度であるが、ウイルスの大きさに対応した微小凹凸の凹凸サイズ(ピッチや深さ)を有する表面に抗ウイルス性(効果)が生じるものと考えられるため、同程度の大きさ(直径)の新型コロナウイルス(Covid-19)(直径50~200nm程度)その他のウイルス(図16(B)参照)に対しても、本発明に係る抗ウイルス部材は抗ウイルス性(効果)を有するものである、 In this embodiment, an antiviral test was conducted using an influenza virus. The size (diameter) of the virus is about 100 nm, but the uneven size of minute irregularities corresponding to the size of the virus ( Since it is considered that antiviral properties (effects) occur on the surface having pitch and depth), a new type of coronavirus (Covid-19) (about 50 to 200 nm in diameter) and other viruses of the same size (diameter). (See FIG. 16B), the antiviral member according to the present invention also has antiviral properties (effects).
 また、同様に、ウイルスの大きさに対応した微小凹凸の凹凸サイズ(ピッチや深さ)を有する表面に抗ウイルス性(効果)が生じるものと考えられるため、図16(B)に示したエンベロープ(ウイルスの一番外側見られる膜上構造)の有無にかかわらず、本発明に係る抗ウイルス部材は抗ウイルス性(効果)を生じさせることができるものである。 Similarly, since it is considered that antiviral property (effect) is generated on the surface having the uneven size (pitch and depth) of the minute unevenness corresponding to the size of the virus, the envelope shown in FIG. 16 (B). The antiviral member according to the present invention can produce antiviral properties (effects) regardless of the presence or absence of (the outermost membrane structure of the virus).
 ここで、本実施の形態に係るショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理)は、既知の噴射装置により、上述したようなメディア(ショット材、研磨材粒子)を噴射して加工対象である部材の表面に衝突させることで行うことができる。 Here, the shot material projection process (or micro unevenness forming process, microdimple process) according to the present embodiment is processed by injecting the media (shot material, abrasive particles) as described above by a known injection device. This can be done by colliding with the surface of the target member.
 例えば、噴射装置としては、ブラスト装置を用いることができ、ブラスト装置の一例としては、例えば、株式会社不二製作所製の「PNEUMA BLASTER」(型式:SCシリーズ、SGシリーズなど)などを用いることができる。また、例えば、特開2019-25584号公報などに記載されているものを用いることができる。 For example, a blasting device can be used as the injection device, and for example, "PNEUMA BLASTER" (model: SC series, SG series, etc.) manufactured by Fuji Seisakusho Co., Ltd. can be used as an example of the blasting device. can. Further, for example, those described in Japanese Patent Application Laid-Open No. 2019-25584 can be used.
 より具体的には、噴射粒体を部材の表面に向けて噴射する噴射装置としては、圧縮気体(空気、アルゴン、窒素等)と共に研磨材(微粒子)の噴射を行う既知のブラスト加工装置(ブラスト処理装置)を使用することができる。 More specifically, as an injection device that injects the injection particles toward the surface of the member, a known blasting device (blasting) that injects an abrasive (fine particles) together with a compressed gas (air, argon, nitrogen, etc.). Processing equipment) can be used.
 そして、ブラスト加工装置(ブラスト処理装置)としては、圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧 縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し、別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置、及び、上記直圧式の圧縮気体流を、ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
 また、水などの液体と共にショットを高圧で噴射するウォータージェットも使用することができる。
The blasting device (blasting device) is a suction type blasting device that injects the polishing material using the negative pressure generated by the injection of the compressed gas, and the polishing material that has fallen from the polishing material tank is compressed gas. A gravity-type blasting device that sprays on the blasting device, a compressed gas is introduced into the tank into which the abrasive material is charged, and the abrasive material flow from the abrasive material tank is applied to the compressed gas flow from the separately given compressed gas supply source. Direct pressure type blasting equipment that merges and injects, and blower type blasting equipment that injects the above direct pressure type compressed gas flow on the gas flow generated by the blower unit are commercially available. Can be used for injecting the above-mentioned injection particles.
A water jet that injects a shot at high pressure together with a liquid such as water can also be used.
 ここで、本発明では、微小凹凸形成処理、マイクロディンプル処理、微粒子投射処理などのショット材投射処理により(或いは基づいて)形成された凹凸表面を形状或いは構造面から特定するために、レーザ加工等で予め設計された図面に従って形成される幾何学的かつ規則的な凹凸形状とは全く異なり、ディンプル状の微小凹部と凹部周辺に稜線状の凸部が、それぞれの形状、ピッチ、深さが無数にランダムに形成されているという特定方法を用いている。
 すなわち、「ショット材投射処理により(或いは基づいて)、その表面に微小凹部を形成した」という表現を用いる代わりに、「部材の表面に、微小凹部を無数にランダムに形成した」などの特定方法(表現)を用いている。
 しかしながら、先行技術などとの対比において、上記特定方法(表現)では、ショット材投射処理により形成された凹凸表面を、他と区別した特徴的な特定方法(表現)として採用することが難しくなる場合も想定される。
Here, in the present invention, in order to specify the uneven surface formed by (or based on) shot material projection processing such as micro unevenness forming treatment, microdimple processing, and fine particle projection processing from the shape or structural surface, laser processing or the like is performed. Unlike the geometrical and regular uneven shape formed according to the drawing pre-designed in, there are innumerable shapes, pitches, and depths of dimple-shaped minute recesses and ridge-shaped protrusions around the recesses. It uses a specific method that it is randomly formed.
That is, instead of using the expression "a minute recess was formed on the surface of the shot material projection process (or based on)", a specific method such as "innumerable minute recesses were randomly formed on the surface of the member". (Expression) is used.
However, in comparison with the prior art, the above-mentioned specific method (expression) makes it difficult to adopt the uneven surface formed by the shot material projection process as a characteristic specific method (expression) that distinguishes it from others. Is also assumed.
 このため、「ショット材投射処理により(或いは基づいて)表面に微小凹凸を形成する」という特定方法(表現)により、ショット材投射処理により(或いは基づいて)形成された凹凸表面を特定せざるを得ない状況が想定される。
 従って、ショット材投射処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在しており、「ショット材投射処理により(或いは基づいて(転写などの場合を考慮))表面に微小凹凸を形成することで」という表現を用いざるを得ない場合があることについて、以下に説明しておく。
For this reason, it is necessary to specify the uneven surface formed by (or based on) the shot material projection process by the specific method (expression) of "forming minute irregularities on the surface by (or based on) the shot material projection process". It is assumed that the situation will not be obtained.
Therefore, it is impossible or unrealistic at the time of filing the application for the present application to specify the minute unevenness formed by the shot material projection process by the shape, structure, characteristics, etc. Alternatively, it will be explained below that the expression "by forming minute irregularities on the surface (considering the case of transfer etc.)" may have to be used.
 ショット材投射処理は、投射粒(メディア)を、圧縮空気を介し秒速数十から百m以上の速度で加工対象表面に衝突させ、有意な寸法変化を伴わずに、その縁に凸部を有する略球面状のミクロンサイズの微小凹部を不規則に加工面の略全面に形成するものであり、ショット材投射処理においてメディアが衝突して微小凹部が形成される際には、クレーター状に、その周囲が隆起して凸部が形成され(図17参照)、この隆起した凸部は、他のメディアが衝突することで、凹まされるため凸部の高さは不規則となる。 In the shot material projection process, the projection particles (media) are made to collide with the surface to be processed at a speed of several tens to 100 m or more per second via compressed air, and have a convex portion on the edge thereof without significant dimensional change. Approximately spherical micron recesses are irregularly formed on substantially the entire surface of the machined surface, and when media collides with each other to form microrecesses in the shot material projection process, the microrecesses are formed in the form of a crater. The circumference is raised to form a convex portion (see FIG. 17), and the raised convex portion is recessed by collision with other media, so that the height of the convex portion becomes irregular.
 これに対して、レーザ加工や切削加工等の機械的加工は規則正しい凹部が形成されると共に、除去加工であるため凸部は形成されない(凹部の形成に伴って凸部が隆起されることはない)。このため、レーザ加工や切削加工等の機械的加工における微小凹部の周囲の凸部の高さは被加工材(レーザ加工されている部材)の表面(元々の素材表面)の高さに一致している(図18参照)。 On the other hand, in mechanical processing such as laser processing and cutting processing, regular concave portions are formed, and since the processing is removal processing, convex portions are not formed (the convex portions are not raised due to the formation of the concave portions). ). For this reason, the height of the convex portion around the minute concave portion in mechanical processing such as laser processing and cutting processing matches the height of the surface (original material surface) of the material to be processed (member to be laser processed). (See FIG. 18).
 また、ショット材投射処理により形成される微小凹凸は無数に不規則に(ランダムに)形成されるため、当該ショット材投射処理により形成される表面テクスチャ(形状)は、研磨や研削処理などの表面を削って傷(すじ状などの溝)を付与する処理により形成される表面形状(テクスチャ)とは異なるが、表面粗さ計などにより測定すると、両者は数値的には似た値となってしまうため、表面粗さなどにより両者を区別することはできない。 In addition, since the minute irregularities formed by the shot material projection process are innumerably irregularly (randomly) formed, the surface texture (shape) formed by the shot material projection process is a surface such as polishing or grinding. It is different from the surface shape (texture) formed by the process of scraping and giving scratches (grooves such as streaks), but when measured with a surface roughness meter etc., both have numerically similar values. Therefore, it is not possible to distinguish between the two based on the surface roughness and the like.
 しかし、ショット材投射処理により形成される表面テクスチャ(形状)によって得られる効果(粉体付着抑制効果や抗ウイルス効果など)は、研磨や研削処理などの表面を削って傷を付与する処理により形成される表面形状(テクスチャ)からは予想できない格別なものである。
 また、数ミリオーダーのメディアを衝突させて残留応力を付与して疲労限を改善するショットピーニング処理からは、ショット材投射処理を施した表面が粉体付着抑制効果や抗ウイルス効果などを有するといったことは到底予測できないものである。
However, the effects (powder adhesion suppression effect, antiviral effect, etc.) obtained by the surface texture (shape) formed by the shot material projection treatment are formed by the treatment such as polishing and grinding to scratch the surface. It is a special thing that cannot be predicted from the surface shape (texture) that is formed.
In addition, from the shot peening treatment that improves the fatigue limit by colliding media on the order of several millimeters and applying residual stress, it is said that the surface subjected to the shot material projection treatment has a powder adhesion suppressing effect and an antivirus effect. That is completely unpredictable.
 このように、ショット材投射処理により形成される微小凹凸は無数に不規則に(ランダムに)形成され、微小凹部及びその周囲の凸部の形状は不規則であり、その不規則性が本発明により奏される作用効果の源になっていることに鑑みれば、ショット材投射処理により形成された表面テクスチャ(形状)を特定するための用語として、「ショット材投射処理により形成された」という表現を用いる以外には、ショット材投射処理により形成された表面を特定することはできない。
 以上のように、ショット材投射処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在している。
In this way, the minute irregularities formed by the shot material projection process are innumerably irregularly (randomly) formed, and the shapes of the minute concave portions and the convex portions around them are irregular, and the irregularity thereof is the present invention. In view of the fact that it is the source of the action and effect produced by, the expression "formed by the shot material projection process" is used as a term for specifying the surface texture (shape) formed by the shot material projection process. It is not possible to specify the surface formed by the shot material projection treatment other than using.
As described above, it is impossible or unrealistic at the time of filing the application to specify the minute unevenness formed by the shot material projection process by the shape, structure, characteristics and the like.
 ところで、本発明は、上述した発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。 By the way, the present invention is not limited to the embodiment of the above-mentioned invention, and various modifications can be made without departing from the gist of the present invention.
 本発明は、部材の表面にディンプル状の微小凹部を無数形成することで、部材の表面に抗ウイルス性(効果)を持たせることができ、衛生を問題とする産業界において有益であり利用可能である。
 
 
 
 
 
INDUSTRIAL APPLICABILITY The present invention can give antiviral property (effect) to the surface of a member by forming innumerable dimple-shaped minute recesses on the surface of the member, which is beneficial and usable in the industry where hygiene is a problem. Is.




Claims (10)

  1.  部材の表面に、その凹凸ピッチの最小値が0.3μm以上であり最大値が1.0μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が0.3μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする部材の抗ウイルス表面処理方法。 On the surface of the member, the minimum value of the unevenness pitch is 0.3 μm or more and the maximum value is 1.0 μm or less, and the minimum value of the depth of the concave portion is 0.01 μm or more and the maximum value is 0.3 μm or less. A method for treating an antiviral surface of a member, which comprises forming an innumerable number of minute irregularities at random to give an antiviral effect to the surface of the member.
  2.  部材の表面に、その凹凸ピッチの最小値が0.497μm以上であり最大値が1.739μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.176μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする部材の抗ウイルス性表面処理方法。 On the surface of the member, the minimum value of the unevenness pitch is 0.497 μm or more and the maximum value is 1.739 μm or less, and the minimum value of the depth of the concave portion is 0.047 μm or more and the maximum value is 0.176 μm or less. A method for treating an antiviral surface of a member, which comprises forming an innumerable number of minute irregularities at random to give an antiviral effect to the surface of the member.
  3.  部材の表面に、その凹凸ピッチの最小値が0.513μm以上であり最大値が0.890μm以下であり、その凹部の深さの最小値が0.011μm以上であり最大値が0.026μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする部材の抗ウイルス表面処理方法。 On the surface of the member, the minimum value of the unevenness pitch is 0.513 μm or more and the maximum value is 0.890 μm or less, the minimum value of the depth of the recess is 0.011 μm or more, and the maximum value is 0.026 μm or less. A method for treating an antiviral surface of a member, which comprises forming an innumerable number of minute irregularities at random to give an antiviral effect to the surface of the member.
  4.  部材の表面に、その凹凸ピッチの最小値が0.378μm以上であり最大値が0.769μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.283μm以下である微小凹凸を無数にランダムに形成することで、部材の当該表面に抗ウイルス作用を持たせることを特徴とする部材の抗ウイルス表面処理方法。 On the surface of the member, the minimum value of the unevenness pitch is 0.378 μm or more and the maximum value is 0.769 μm or less, the minimum value of the depth of the recess is 0.047 μm or more, and the maximum value is 0.283 μm or less. A method for treating an antiviral surface of a member, which comprises forming an innumerable number of minute irregularities at random to give an antiviral effect to the surface of the member.
  5.  前記微小凹凸を、ショット材を投射する投射処理に基づいて形成することを特徴とする請求項1~請求項4の何れか1つに記載の部材の抗ウイルス表面処理方法。 The antiviral surface treatment method for a member according to any one of claims 1 to 4, wherein the minute irregularities are formed based on a projection process for projecting a shot material.
  6.  部材の表面に、その凹凸ピッチの最小値が0.3μm以上であり最大値が1.0μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が0.3μm以下である微小凹凸を無数にランダムに有することを特徴とする抗ウイルス部材。 On the surface of the member, the minimum value of the unevenness pitch is 0.3 μm or more and the maximum value is 1.0 μm or less, and the minimum value of the depth of the concave portion is 0.01 μm or more and the maximum value is 0.3 μm or less. An antiviral member characterized by having innumerable minute irregularities.
  7.  部材の表面に、その凹凸ピッチの最小値が0.497μm以上であり最大値が1.739μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.176μm以下である微小凹凸を無数にランダムに有することを特徴とする抗ウイルス部材。 On the surface of the member, the minimum value of the unevenness pitch is 0.497 μm or more and the maximum value is 1.739 μm or less, and the minimum value of the depth of the concave portion is 0.047 μm or more and the maximum value is 0.176 μm or less. An antiviral member characterized by having innumerable minute irregularities.
  8.  部材の表面に、その凹凸ピッチの最小値が0.513μm以上であり最大値が0.890μm以下であり、その凹部の深さの最小値が0.011μm以上であり最大値が0.026μm以下である微小凹凸を無数にランダムに有することを特徴とする抗ウイルス部材。 On the surface of the member, the minimum value of the unevenness pitch is 0.513 μm or more and the maximum value is 0.890 μm or less, the minimum value of the depth of the recess is 0.011 μm or more, and the maximum value is 0.026 μm or less. An antiviral member characterized by having innumerable minute irregularities.
  9.  部材の表面に、その凹凸ピッチの最小値が0.378μm以上であり最大値が0.769μm以下であり、その凹部の深さの最小値が0.047μm以上であり最大値が0.283μm以下である微小凹凸を無数にランダムに有することを特徴とする抗ウイルス部材。 On the surface of the member, the minimum value of the unevenness pitch is 0.378 μm or more and the maximum value is 0.769 μm or less, the minimum value of the depth of the recess is 0.047 μm or more, and the maximum value is 0.283 μm or less. An antiviral member characterized by having innumerable minute irregularities.
  10.  前記微小凹凸は、ショット材を投射する投射処理に基づいて形成されることを特徴とする請求項6~請求項9の何れか1つに記載の抗ウイルス部材。 The antiviral member according to any one of claims 6 to 9, wherein the minute unevenness is formed based on a projection process for projecting a shot material.
PCT/JP2020/038242 2020-08-03 2020-10-09 Antivirus surface treatment method for member and antivirus member WO2022030028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131763 2020-08-03
JP2020131763A JP6916496B1 (en) 2020-08-03 2020-08-03 Anti-virus surface treatment method for members and anti-virus members

Publications (1)

Publication Number Publication Date
WO2022030028A1 true WO2022030028A1 (en) 2022-02-10

Family

ID=77172633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038242 WO2022030028A1 (en) 2020-08-03 2020-10-09 Antivirus surface treatment method for member and antivirus member

Country Status (2)

Country Link
JP (1) JP6916496B1 (en)
WO (1) WO2022030028A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215622A (en) * 2015-05-14 2016-12-22 大日本印刷株式会社 Antibacterial and antifungal article, and agricultural antibacterial and antifungal article
JP2017209735A (en) * 2016-05-23 2017-11-30 株式会社不二Wpc Treatment tool
JP6695558B1 (en) * 2019-06-22 2020-05-20 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215622A (en) * 2015-05-14 2016-12-22 大日本印刷株式会社 Antibacterial and antifungal article, and agricultural antibacterial and antifungal article
JP2017209735A (en) * 2016-05-23 2017-11-30 株式会社不二Wpc Treatment tool
JP6695558B1 (en) * 2019-06-22 2020-05-20 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Also Published As

Publication number Publication date
JP2022028394A (en) 2022-02-16
JP6916496B1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
Azhari et al. Improving surface hardness of austenitic stainless steel using waterjet peening process
Fowler et al. A technical note on grit embedment following abrasive water-jet milling of a titanium alloy
EP2008771B1 (en) Process for producing metallic member
JP6695558B1 (en) Antibacterial surface treatment method and antibacterial member
Barletta Progress in abrasive fluidized bed machining
Arifvianto et al. Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel
JP7236077B2 (en) Parts or components for medical equipment
WO2022030028A1 (en) Antivirus surface treatment method for member and antivirus member
KR102173928B1 (en) Method of surface treatment of metal products and metal products
Arifvianto et al. Comparison of Surface Characteristics of Medical-grade 316L Stainless Steel Processed by Sand-blasting, Slag Ballblasting and Shot-blasting Tre.
CN106191829A (en) A kind of preparation method of medium carbon steel surface micronano Multi-scale model
WO2022014063A1 (en) Antifungal surface treatment method for member and antifungal member
JP4392719B2 (en) Base material surface treatment method and base material and product having a surface treated by this method
JPS61265271A (en) Shot peening method of cemented product
EP2801443B1 (en) Processing medium for processing stainless steel or other metallic surfaces, method for processing stainless steel or other metallic surfaces using such a processing medium and nozzle arranged to be fitted on a process gun
JP7045043B2 (en) Detergency improvement surface treatment method and detergency improvement member
JP2023183145A (en) Antibacterial member, production method and evaluation method of the same
JP4370550B2 (en) Multistage shot pinning method
JP2023023927A (en) Slipperiness improving surface treatment method of liquid or viscous liquid, member, and evaluation method
KR102308453B1 (en) Method for surface treatment of dlc coated member
Arifvianto et al. Roughness reduction in AISI 316L stainless steel after surface mechanical attrition treatment (SMAT)
Fauchais et al. Surface Preparation
Zaroog et al. Improving Astm A516 Grade 70 Mechanical Properties by Sandblasting Process
JPH08323626A (en) Shot peening method and treated product
JP2022135273A (en) Fine uneven surface shape protection method, abrasion resistance improving member, machine instrument, instrument, scissors or cutter for hairdressing, cosmetic or medical use, and slide component of machine component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948340

Country of ref document: EP

Kind code of ref document: A1