JP6695558B1 - Antibacterial surface treatment method and antibacterial member - Google Patents

Antibacterial surface treatment method and antibacterial member Download PDF

Info

Publication number
JP6695558B1
JP6695558B1 JP2019115938A JP2019115938A JP6695558B1 JP 6695558 B1 JP6695558 B1 JP 6695558B1 JP 2019115938 A JP2019115938 A JP 2019115938A JP 2019115938 A JP2019115938 A JP 2019115938A JP 6695558 B1 JP6695558 B1 JP 6695558B1
Authority
JP
Japan
Prior art keywords
antibacterial
sample
dimple
effect
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115938A
Other languages
Japanese (ja)
Other versions
JP2021000702A (en
Inventor
英二 下平
英二 下平
正夫 熊谷
正夫 熊谷
秀実 荻原
秀実 荻原
伴子 児玉
伴子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friction Co Ltd
Surf Technology Co Ltd
Original Assignee
Friction Co Ltd
Surf Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friction Co Ltd, Surf Technology Co Ltd filed Critical Friction Co Ltd
Priority to JP2019115938A priority Critical patent/JP6695558B1/en
Application granted granted Critical
Publication of JP6695558B1 publication Critical patent/JP6695558B1/en
Publication of JP2021000702A publication Critical patent/JP2021000702A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

【課題】 部材の表面にディンプル状の微小凹部を無数に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせることができる抗菌表面処理方法、及び抗菌(或いは滅菌、殺菌)効果を有する抗菌部材を提供する。【解決手段】 本発明に係る抗菌表面処理方法は、部材の表面にディンプル状の微小凹部を無数に形成することで、部材の表面に抗菌作用を持たせることを特徴とする。また、本発明に係る抗菌部材は、部材の表面にディンプル状の微小凹部を無数に形成することで、部材の表面に抗菌作用を持たせたことを特徴とする。【選択図】図1An antibacterial surface treatment method capable of imparting an antibacterial (or sterilization, sterilization) effect to the surface of a member by forming numerous dimple-shaped minute recesses on the surface of the member, and an antibacterial (or sterilization, sterilization) ) An antibacterial member having an effect is provided. An antibacterial surface treatment method according to the present invention is characterized by imparting an antibacterial action to the surface of a member by forming numerous dimple-shaped minute recesses on the surface of the member. Further, the antibacterial member according to the present invention is characterized in that the surface of the member is provided with an antibacterial action by forming innumerable dimple-shaped minute concave portions on the surface of the member. [Selection diagram] Figure 1

Description

本発明は、部材に対して微小凹部を無数にランダムに形成する処理を行うことで部材表面に抗菌作用或いは菌増殖抑制作用(抗菌効果或いは菌増殖抑制効果)を付与する技術に関する。   TECHNICAL FIELD The present invention relates to a technique of imparting an antibacterial action or a bacterium growth suppressing action (an antibacterial effect or a bacterium growth suppressing effect) to a member surface by performing a treatment for forming a myriad of minute recesses on a member.

従来、小麦粉、コーンスターチ、片栗粉、抹茶パウダー、ココアパウダー、粉糖、カレー粉などの食用粉体や医薬品粉体(粉末薬)などの粉体は、フルイによる分別(或いは分級)の対象とされたり、ホッパーなどの収容容器やシューターやコンベアーなどの搬送部品を用いて取り扱われる。   Conventionally, edible powders such as wheat flour, corn starch, potato starch, matcha powder, cocoa powder, powdered sugar and curry powder, and powders such as pharmaceutical powders (powdered medicines) have been classified (or classified) by screening. , Handling containers such as hoppers and transport parts such as shooters and conveyors.

これら粉体はふるいや収容容器や搬送部品などの部材表面へ付着して成長し、比較的大きな塊等となって排出不良(ホッパー)を招いたり、目詰り(フルイ)を招くといったトラブルが発生し、生産効率の低下や不良品増加の一因となっている。   These powders grow on the surface of members such as sieves, storage containers and transport parts, and grow into relatively large lumps, leading to defective discharge (hopper) and clogging (flue). However, this is one of the causes of a decrease in production efficiency and an increase in defective products.

このようなことから、本発明者等は、種々の研究・実験を繰り返し、その結果に基づいて、本願出願人等は、特許文献2において、微粒子ピーニング処理(WPC処理)を施すことにより、粉体と接触する部材(以下、粉体接触部材とも称する)の表面に微小凹部(微小ディンプル)を複数形成することで、粉体の付着を抑制することができる技術を提案した。   Therefore, the inventors of the present invention repeated various studies and experiments, and based on the results, the applicant of the present application, in Patent Document 2, performed fine particle peening treatment (WPC treatment) to obtain powder. A technique has been proposed in which the adhesion of powder can be suppressed by forming a plurality of minute recesses (minute dimples) on the surface of a member that contacts the body (hereinafter, also referred to as a powder contact member).

特開平06−273318号公報JP-A 06-273318 特許第6416151号明細書Patent No. 6416151

ここで、本願出願人等は、ディンプル状の微小凹凸を形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、処理対象と接触する部材(処理対象接触部材)の表面に微小凹凸を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、その過程において、本発明者等は、これまで知られていなかった新たな知見を得た。   Here, in order to explore the possibility of applying the surface modification technique by forming dimple-shaped fine irregularities to various fields, the applicant of the present application has proposed that Various approaches have been taken, such as confirming the action and effect of forming innumerable minute irregularities on the surface in various fields, and in the process, the inventors of the present invention have obtained new findings that were not known until now. Obtained.

なお、これまでに、ディンプル状の微小凹部を複数(無数)に形成することによる効果として知られていた効果は、粉体や粘着物の付着抑制、摺動部に微小凹凸を無数に形成することでオイル溜まりとして機能させて摺動抵抗の低減・摩耗抑制などの効果であり、今回発見した効果はこれらからは予測不能な全く別異の効果である。   Heretofore, the effects that have been known as the effects of forming a plurality (innumerable) of dimple-shaped minute recesses are the suppression of adhesion of powder or sticky substances, and the formation of innumerable minute unevenness in the sliding portion. By doing so, it functions as an oil reservoir to reduce sliding resistance and suppress wear, and the effect discovered this time is a completely different effect that cannot be predicted from these.

その知見とは、部材の表面に、ディンプル状の微小凹部を無数に(複数)ランダムに形成すると、抗菌(或いは滅菌、殺菌)効果を生じさせることができるというものである。   The knowledge is that an infinite number (a plurality) of dimple-shaped minute concave portions are randomly formed on the surface of the member, and an antibacterial (or sterilization or sterilization) effect can be produced.

本発明は、上述したような実情に鑑みなされたもので、部材の表面にディンプル状の微小凹部を複数(無数に)形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせることができる抗菌表面処理方法、及び抗菌(或いは滅菌、殺菌)効果を有する抗菌部材を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and has a plurality of (innumerable) dimple-shaped minute recesses on the surface of the member to have an antibacterial (or sterilization, sterilization) effect on the surface of the member. It is an object of the present invention to provide an antibacterial surface treatment method which can be applied, and an antibacterial member having an antibacterial (or sterilization) effect.

このため、本発明に係る抗菌表面処理方法は、
部材の菌と接触する表面に、無数のディンプル状の微小凹部であって、その凹凸ピッチの最大値が7.3μm以下であり最小値が0.4μm以上であり、その凹部の深さの最大値が1.0μm以下であり最小値が0.04μm以上である微小凹部を、ショット材を投射する投射処理により形成することで、部材の当該表面に抗菌作用を持たせることを特徴とする。
Therefore, the antibacterial surface treatment method according to the present invention,
There are countless dimple-shaped minute recesses on the surface of the member that come into contact with bacteria, the maximum value of the uneven pitch is 7.3 μm or less and the minimum value is 0.4 μm or more, and the maximum depth of the recesses is It is characterized in that the surface of the member is given an antibacterial effect by forming minute recesses having a value of 1.0 μm or less and a minimum value of 0.04 μm or more by a projection process of projecting a shot material.

また、本発明に係る抗菌部材は、
ショット材を投射する投射処理により無数に形成されるディンプル状の微小凹部であって、その凹凸ピッチの最大値が7.3μm以下であり最小値が0.4μm以上であり、その凹部の深さの最大値が1.0μm以下であり最小値が0.04μm以上である微小凹部有する部材の菌と接触する表面を備えることで、部材の当該表面に抗菌作用を持たせたことを特徴とする。
Further, the antibacterial member according to the present invention,
A de Inpuru like minute recess formed in innumerable by a projection process of projecting shots, the minimum value is less than or equal to the maximum value of the unevenness pitch 7.3μm is at 0.4μm or more, the depth of the recess in Rukoto comprising a surface in contact with the bacteria member having fine recesses is and minimum 0.04μm or more in the 1.0μm or less the maximum value of the, that gave an antimicrobial effect on the surface of the member Characterize.

本発明によれば、部材の表面にディンプル状の微小凹部を複数(無数)に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせることができる抗菌表面処理方法、及び抗菌(或いは滅菌、殺菌)効果を有する抗菌部材を提供することができる。   According to the present invention, by forming a plurality (innumerable) of dimple-shaped minute recesses on the surface of a member, an antibacterial surface treatment method capable of imparting an antibacterial (or sterilization, sterilization) effect to the surface of the member, and An antibacterial member having an antibacterial (or sterilization or sterilization) effect can be provided.

本発明の一実施の形態に係る部材の表面にディンプル状の微小凹部を無数に形成する処理内容の違いによる抗菌特性(抗菌効果の有無)を示す一覧表である。7 is a list showing antibacterial properties (presence / absence of antibacterial effect) due to different treatment contents for forming innumerable dimple-shaped minute recesses on the surface of the member according to the embodiment of the present invention. 同上実施の形態に係る抗菌試験に供した試料(1)の表面の3D画像及び表面粗さを示す図である。It is a figure which shows the 3D image and surface roughness of the surface of the sample (1) which used for the antibacterial test which concerns on embodiment same as the above. 同上実施の形態に係る抗菌試験に供した試料(2)の表面の3D画像及び表面粗さを示す図である。It is a figure which shows the 3D image and surface roughness of the surface of the sample (2) which used for the antibacterial test which concerns on embodiment same as the above. 同上実施の形態に係る抗菌試験に供した試料(3)の表面の3D画像及び表面粗さを示す図である。It is a figure which shows the 3D image and surface roughness of the surface of the sample (3) which used for the antibacterial test which concerns on embodiment same as the above. 同上実施の形態に係る抗菌試験に供した試料(4)の表面の3D画像及び表面粗さを示す図である。It is a figure which shows the 3D image and surface roughness of the surface of the sample (4) which used for the antibacterial test which concerns on embodiment same as the above. (A)は同上抗菌試験試料に供した試料(1)〜(5)の平均凹凸ピッチ(凸部の間隔)と抗菌活性値(抗菌効果)を示す一覧表であり、(B)は横軸を平均凹凸ピッチ(凸部の間隔)とし縦軸を抗菌活性値(R)として示した図である。(A) is a list showing the average unevenness pitch (spacing of the convex portions) and the antibacterial activity value (antibacterial effect) of the samples (1) to (5) used for the same antibacterial test sample, and (B) is the horizontal axis. Is the average unevenness pitch (space between convexes), and the vertical axis shows the antibacterial activity value (R). (A)は試料(2)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図であり、(B)は試料(3)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図である。(A) is a figure which shows an example of the measurement data (surface shape data) of the uneven pitch (interval of convex parts) of sample (2), and (B) is the uneven pitch (interval of convex parts) of sample (3). It is a figure which shows an example of the measurement data (surface shape data) of. (A)は試料(4)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図であり、(B)は試料(5)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図である。(A) is a figure which shows an example of the measurement data (surface shape data) of the uneven pitch (interval of convex parts) of the sample (4), and (B) is the uneven pitch (interval of convex parts) of the sample (5). It is a figure which shows an example of the measurement data (surface shape data) of. 同上抗菌試験試料に供した試料(2)〜(5)の実測凹部(凸部)ピッチと実測凹部深さと面粗さの一例を示す一覧表である。It is a list which shows an example of the measured recessed part (convex part) pitch, measured recessed part depth, and surface roughness of the samples (2)-(5) used for the same antibacterial test sample. 同上抗菌試験試料に供した試料(1)、(3)、(4)の微小凹部(凸部)のピッチ、深さ、菌繁殖試験結果(抗菌試験結果)を示す一覧表である。It is a list which shows the pitch of a minute recessed part (convex part) of a sample (1), (3), and (4) which provided the same antibacterial test sample, a depth, and a microbial propagation test result (antibacterial test result). 同上抗菌試験試料に供した試料(1)〜(5)を表面処理した際のショット材粒径と抗菌活性値と抗菌効果を示す一覧表である。It is a list showing the shot material particle size, the antibacterial activity value, and the antibacterial effect when the samples (1) to (5) used as the same antibacterial test sample are surface-treated.

以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。   Hereinafter, an embodiment according to the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.

上述したように、本願出願人等は、ディンプル(くぼみ、略凹球面)状の微小凹部を形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、処理対象と接触する部材(処理対象接触部材)の表面に微小凹部を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、そのようなアプローチの過程において、本発明者等は、従来知られていなかった新たな知見を得た。   As described above, the applicants of the present application have contacted with the object to be processed in order to explore the possibility of applying the surface modification technique by forming the dimples (dents, substantially concave spherical surfaces) to various fields. Various approaches have been taken in various fields to confirm the action and effect of forming innumerable minute recesses on the surface of a member to be treated (contact member to be treated). In the process of such an approach, the present inventors Obtained new knowledge that was not previously known.

なお、本実施の形態において、部材は、処理対象が接触する部材(処理対象接触部材)(例えば、保管、収容、運搬、滑落、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具などを含む各種の処理の対象となるものに接触する部材)に限定されるものではなく、抗菌等を目的とする部材(抗菌部材)に適用可能である。   In addition, in the present embodiment, the member is a member (contact target contact member) with which the processing target contacts (for example, storage, storage, transportation, sliding, sieving, stirring equipment, cooking bowl, cooking equipment, surgical equipment). The present invention is not limited to members that come into contact with objects to be subjected to various treatments including medical instruments and the like), and can be applied to members that have antibacterial properties (antibacterial members).

具体的には、前記アプローチの過程において、ディンプル状の微小凹部を表面に無数に形成した部材(試験片)を、抗菌力評価試験(日本工業規格JIS Z 2801:2010)に供してみたところ、微小凹部を表面に無数に形成した部材(試料或いは試験片)には、高い抗菌作用(或いは滅菌作用、殺菌作用)があるという知見を得た。
かかる知見は、ディンプル状の微小凹部を無数に表面に形成した部材に関して、従来知られていない作用効果であり、上述したように、これまでの知見からは予測不能な作用効果である。
Specifically, in the process of the approach, a member (test piece) in which dimple-shaped minute recesses were formed innumerably on the surface was subjected to an antibacterial activity evaluation test (Japanese Industrial Standard JIS Z 2801: 2010), It was found that a member (sample or test piece) having innumerable minute recesses formed on its surface has a high antibacterial action (or sterilizing action, sterilizing action).
This finding is a function and effect which has not been heretofore known with respect to a member in which numerous dimple-shaped minute recesses are formed on the surface, and as described above, it is a function and effect which cannot be predicted from the findings so far.

なお、 試験は、地方独立法人神奈川県立産業技術総合研究所にて実施した。
試験方法は、表面処理(表面テクスチャ)の異なる試料(試験片)について、フィルム密着法による抗菌力評価試験を行った。
The test was conducted at the Kanagawa Prefectural Industrial Technology Research Institute.
As a test method, an antibacterial activity evaluation test by a film adhesion method was performed on samples (test pieces) having different surface treatments (surface textures).

試験条件は、以下に示す通りである。
試験菌株:Escherichia coli NBRC3972株
接種菌液濃度:3.3×10CFU/mL
菌液接種量:0.4mL
試験面積:40×40mm角
被覆フィルム:エスクリニカパックL、積水化学工業(株)製
試験温度:35°C
試験時間:8時間
生菌数測定には大腸菌群用微生物培地シート(JNC(株)製)を用いた。
生菌数測定は、試料を滅菌生理食塩水9.6mLで洗い、この洗い出した液中の生菌数濃度を測定することで行った。
The test conditions are as shown below.
Test strain: Escherichia coli NBRC3972 strain Inoculum concentration: 3.3 × 10 5 CFU / mL
Bacterial fluid inoculum: 0.4mL
Test area: 40 × 40 mm square Covering film: Esculinica pack L, manufactured by Sekisui Chemical Co., Ltd. Test temperature: 35 ° C.
Test time: 8 hours
A microbial medium sheet for coliforms (manufactured by JNC Co.) was used for measuring the viable cell count.
The viable cell count was measured by washing the sample with 9.6 mL of sterile physiological saline and measuring the viable cell count concentration in the washed-out solution.

その結果、図1に示すように、試料(1)「SUS304 ♯400 未処理」は、No.1〜No.3のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、4.0×10〜1.7×10の範囲となっている。なお、「SUS304 ♯400 未処理」は、SUS304からなるステンレス製の板材の表面をP400番バフにより研磨仕上げしたもので、その表面は、図2に示すように、鏡面に近い光沢があり、若干の筋状の溝が観察される。参考までに、面粗さRa=0.031μm、面粗さRz=0.364μm程度の表面である。また、ディンプル状の微小凹部ではないが、筋(筋状溝)のピッチは、図10に示すように、約0.4〜0.8μmで、深さが約0.05μm程度である。
後述する試料(2)〜(5)は、この試料(1)に対して各種の表面処理を施したものである。
As a result, as shown in FIG. 1, the sample (1) “SUS304 # 400 untreated” was No. 1-No. In the lot of No. 3 , the viable cell count concentration of E. coli (CFU / mL) is in the range of 4.0 × 10 3 to 1.7 × 10 4 . In addition, "SUS304 # 400 untreated" is a stainless steel plate made of SUS304 whose surface is polished and finished with a P400 buff, and the surface has a gloss close to a mirror surface, as shown in FIG. Streak-like grooves are observed. For reference, the surface has a surface roughness Ra = 0.031 μm and a surface roughness Rz = 0.364 μm. The pitch of the streaks (streak grooves) is about 0.4 to 0.8 μm, and the depth is about 0.05 μm, although they are not dimple-shaped minute recesses.
Samples (2) to (5) described later are obtained by subjecting this sample (1) to various surface treatments.

なお、後述するものを含めて、本実施の形態における3D画像、面粗さRa及び面粗さRzの測定値は、実際の面性状計測データからのものであり、KEYENCE社製の形状測定レーザーマイクロスコープVK−X100を用いて取得した。   In addition, the measurement values of the 3D image, the surface roughness Ra, and the surface roughness Rz in the present embodiment, including those described below, are based on the actual surface property measurement data, and the shape measurement laser manufactured by KEYENCE Co., Ltd. It was acquired using a microscope VK-X100.

試料(2)「SUS304 ♯400 MW」は、図1に示すように、No.4〜No.6のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、3.7×10〜4.0×10の範囲であり、試料(1)に対して低減されている(大腸菌に対して抗菌効果がある)。
なお、「SUS304 ♯400 MW」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(マイクロディンプル処理)を施したもので、SUS304からなるステンレス製の板材の表面に、(株)不二製作所製の研磨材FGB(フジガラスビーズ)の粒番号400(中心粒径が、≦53μm)のメディア(ショット材)を1/数(例えば0.3)MPa程度の圧縮空気と共に投射する投射処理(投射加工)を施している。このような投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではMWと称する。
なお、この処理後の表面は、図3に示すように、比較的大きめのディンプル状の凹部が無数にランダムに形成されている。参考までに、面粗さRa=0.263μm、面粗さRz=2.285μm程度の表面である。
The sample (2) “SUS304 # 400 MW” had No. 3 as shown in FIG. 4 to No. In the lot of No. 6, the viable cell count concentration (CFU / mL) of E. coli was in the range of 3.7 × 10 1 to 4.0 × 10 2 , which was lower than that of sample (1). Against antibacterial effect).
In addition, "SUS304 # 400 MW" is obtained by subjecting the sample (1) to a surface treatment (microdimple treatment) for forming a dimple-shaped minute concave portion, and the surface of a stainless steel plate material made of SUS304 is ( A polishing medium FGB (Fuji glass beads) manufactured by Fuji Manufacturing Co., Ltd. with a medium (shot material) having a particle number 400 (center particle diameter is ≤53 μm) together with compressed air of about 1 / number (for example 0.3) MPa. Projection processing (projection processing) for projecting is performed. The fine concavo-convex forming process (micro dimple process) for performing such projection processing is referred to as MW here.
In addition, as shown in FIG. 3, innumerable relatively large dimple-shaped concave portions are randomly formed on the surface after this treatment. For reference, the surface has a surface roughness Ra = 0.263 μm and a surface roughness Rz = 2.285 μm.

試料(3)「SUS304 ♯400 P43」は、図1に示すように、No.7〜No.9のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、すべて1より小さい値(<1)であり、大腸菌が滅菌或いは殺菌されている。   The sample (3) "SUS304 # 400 P43" was tested as No. 3 as shown in FIG. 7-No. In the 9 lots, the viable cell count concentration (CFU / mL) of E. coli is all less than 1 (<1), and E. coli is sterilized or sterilized.

なお、試料(3)「SUS304 ♯400 P43」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(マイクロディンプル処理)を施したもので、まず最初に、例えば、1種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯400(最大粒子径75μm以下、累積高さ50%点の粒子径30.0±2.0μm)のSiC(炭化珪素))を1/数(例えば0.3)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面(試料の表面、部材の表面)に投射処理(以下、投射加工とも称する)を行う。
次に、例えば、2種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯3000(最大粒子径13μm以下、累積高さ50%点の粒子径4.0±0.5μm)のSiC(炭化珪素))を、1/数(例えば0.4)MPa程度の圧縮空気と共に被加工面に投射処理(投射加工)を行った。
上述した仕様の異なるメディアを二段階に分けて投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではP43と称する。
なお、試料(3)は、図4に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。参考までに、面粗さRa=0.252μm、面粗さRz=3.238μm程度の表面である。
The sample (3) "SUS304 # 400 P43" was obtained by subjecting the sample (1) to a surface treatment (microdimple treatment) for forming dimple-shaped minute recesses. Eye media (brand name "Fuji Random (Carborundum)", grain number C # 400 (maximum particle diameter 75 μm or less, particle diameter at cumulative height 50% point 30.0 ± 2.0 μm) SiC (silicon carbide) ) Is jetted from the jet nozzle together with compressed air of about 1 / several (for example, 0.3) MPa, and projection processing (hereinafter also referred to as projection processing) is performed on the surface to be processed (the surface of the sample, the surface of the member).
Next, for example, the second type of media (trade name "Fuji Random (Carborundum)", grain number C # 3000 (maximum particle diameter 13 μm or less, particle diameter at cumulative height 50% point 4.0 ± 0.5 μm) ) SiC (silicon carbide)) was subjected to projection processing (projection processing) on the surface to be processed together with compressed air of about 1 / s (for example, 0.4) MPa.
The fine concavo-convex forming process (micro dimple process) in which the above-described media having different specifications are divided into two stages and subjected to the projection process is referred to as P43 here.
As shown in FIG. 4, the sample (3) has an infinite number of dimple-shaped minute recesses formed randomly on the surface. For reference, the surface has a surface roughness Ra = 0.252 μm and a surface roughness Rz = 3.238 μm.

ここで、従来は、微粒子状のメディア(ショット材)を投射してディンプル状の微小凹部を形成する投射加工では、面粗さRa=0.252μm、面粗さRz=3.238μm程度の微小凹部(試料(3)の凹凸ピッチ(隣接する凸部の間隔)の範囲が1.7〜7.3μm程度、凹部深さの範囲が0.2〜1.0μm程度)を形成することは難しかったが、本発明者等の実験、研究等を通じて、仕様の異なるメディア(ショット材)を二段階に分けて投射加工を行うことで、ステンレス材などであっても非常に小さなディンプル状の微小凹部を無数にランダムに形成することができるようになった。   Here, conventionally, in the projection processing in which a fine-grained medium (shot material) is projected to form dimple-shaped minute recesses, a surface roughness Ra = 0.252 μm and a surface roughness Rz = 3.238 μm It is difficult to form recesses (roughness pitch (distance between adjacent protrusions) of the sample (3) in the range of about 1.7 to 7.3 μm and recessed depth range of about 0.2 to 1.0 μm). However, through experiments and research conducted by the present inventors, media (shot materials) having different specifications are divided into two stages and projection processing is performed, so that very small dimple-shaped concave portions are formed even in stainless materials. It became possible to form innumerable randomly.

試料(4)「SUS304 ♯400 PT1」は、図1に示すように、No.10〜No.12のロットにおいて、試料(3)同様、大腸菌の生菌数濃度(CFU/mL)が、すべて1より小さい値(<1)であり、大腸菌が滅菌或いは殺菌されている。   The sample (4) "SUS304 # 400 PT1" had No. 3 as shown in FIG. 10-No. In the 12 lots, like the sample (3), the viable cell count concentration (CFU / mL) of Escherichia coli was all less than 1 (<1), and Escherichia coli was sterilized or sterilized.

なお、試料(4)「SUS304 ♯400 PT1」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(マイクロディンプル処理)を施したもので、具体的には、新日本金属(株)製のタングステンカーバイド粉、記号WC−10(粒度:0.70〜1.19μm)を、1/数(例えば0.4)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射加工を行った。
このような投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではPT1と称する。
なお、試料(4)は、図5に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。参考までに、面粗さRa=0.042μm、面粗さRz=0.689μm程度の表面である。
The sample (4) “SUS304 # 400 PT1” was obtained by subjecting the sample (1) to a surface treatment (microdimple treatment) for forming dimple-shaped minute recesses. Tungsten carbide powder manufactured by Co., Ltd., symbol WC-10 (particle size: 0.70 to 1.19 μm) is jetted from a jet nozzle together with compressed air of about 1 / number (for example, 0.4) MPa, and a surface to be processed The projection processing was performed on.
The minute concavo-convex forming process (micro-dimple process) for performing such projection processing is referred to as PT1 here.
As shown in FIG. 5, the sample (4) has a large number of dimple-shaped minute recesses formed randomly on the surface. For reference, the surface has a surface roughness Ra = 0.042 μm and a surface roughness Rz = 0.689 μm.

ここで、従来は、微粒子状のメディア(ショット材)を投射してディンプル状の微小凹部を形成する投射加工では、面粗さRa=0.042μm、面粗さRz=0.689μm程度の微小凹部(試料(4)の凹凸ピッチ(隣接する凸部の間隔)の範囲が0.4〜1.0μm程度、凹部深さの範囲が0.04〜0.17μm程度)を形成することはできなかったが、本発明者等の実験、研究等を通じて、タングステンカーバイド程度以上の比重の大きなメディア(ショット材)を用いることで、ステンレス材などであっても非常に小さなディンプル状の微小凹部を無数にランダムに形成することができるようになった。   Here, conventionally, in the projection processing in which a fine-grained medium (shot material) is projected to form a dimple-shaped minute concave portion, a surface roughness Ra of 0.042 μm and a surface roughness Rz of about 0.689 μm are used. It is possible to form recesses (roughness pitch (distance between adjacent protrusions) of the sample (4) is approximately 0.4 to 1.0 μm, and depth of recesses is approximately 0.04 to 0.17 μm). However, through experiments and research conducted by the present inventors, by using a medium (shot material) having a large specific gravity of about tungsten carbide or more, a myriad of very small dimple-shaped minute recesses can be formed even on stainless steel materials. It can now be formed randomly.

試料(5)「SUS304 ♯400 WS」は、図1に示すように、No.13〜No.15のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、1.0×10〜8.9×10の範囲であり、試料(1)に対して低減されている(大腸菌に対して抗菌効果がある)。
なお、「SUS304 ♯400 WS」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(マイクロディンプル処理)を施したもので、具体的には、IKKショット株式会社製の一般研掃用(for hard blasting)のショット(スチールショット)TSH−60を投射圧力1/数(例えば0.04程度)MPaで投射したのち、#20000のダイヤモンド粉を投射圧力1/数(例えば0.2程度)MPaで投射する処理を施した。
#20000のダイヤモンド粉としては、例えば、砥粒研磨用のメディア、すなわち、担持体としての弾性体(所謂ゴム)に、粒径0.5〜1.0μmのダイヤモンドを練り込んだもので、加工面に向けて噴射して衝突したときに弾性体であるゴムが変形することで硬いダイヤモンド粉が相手材表面にめりこんで微細な凹部を形成することができるといったメディアを利用することができる。
このような投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではWSと称する。
As shown in FIG. 1, the sample (5) “SUS304 # 400 WS” had No. 13-No. In 15 lots, the viable cell count concentration (CFU / mL) of E. coli was in the range of 1.0 × 10 2 to 8.9 × 10 2 , which was lower than that of sample (1) (in E. coli). Against antibacterial effect).
The “SUS304 # 400 WS” is obtained by subjecting the sample (1) to a surface treatment (microdimple treatment) for forming dimple-shaped minute recesses, and specifically, a general product manufactured by IKK Shot Co., Ltd. A shot (steel shot) TSH-60 for for blasting is projected at a projection pressure of 1 / number (for example, about 0.04) MPa, and then # 2000 diamond powder is projected at a pressure of 1 / number (for example, 0). A process of projecting at MPa was applied.
As the # 20000 diamond powder, for example, a medium for polishing abrasive grains, that is, an elastic body (so-called rubber) as a carrier, in which diamond with a particle size of 0.5 to 1.0 μm is kneaded, is processed. It is possible to use a medium in which the rubber, which is an elastic body, is deformed when jetted toward the surface and collided, so that the hard diamond powder can sink into the surface of the mating material to form a fine recess.
The fine concavo-convex forming process (micro dimple process) for performing such projection processing is referred to as WS here.

試料(6)「SUS304 ♯700 未処理」(従来品)は、No.16〜No.18のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、5.1×10〜9.1×10の範囲となっていて、試料(1)の場合と同程度の結果となっている。
なお、「SUS304 ♯700 未処理」は、SUS304からなるステンレス製の板材の表面をP700番バフにより研磨仕上げしたもので、その表面は、高度の反射率を持つ準鏡面仕上げである(筋状の研磨目が多少残っている)。
後述する試料(7)〜(10)は、この試料(6)に対して各種の表面処理を施したものである。
Sample (6) “SUS304 # 700 untreated” (conventional product) was No. 16-No. In the 18 lots, the viable cell count concentration (CFU / mL) of E. coli was in the range of 5.1 × 10 3 to 9.1 × 10 3 , which was similar to that of the sample (1). Is becoming
In addition, "SUS304 # 700 untreated" is a stainless steel plate made of SUS304 whose surface is polished and finished with a P700 buff, and the surface is a quasi-mirror finish with a high reflectance (streak-like). Some polishing eyes remain).
Samples (7) to (10) described below are obtained by subjecting this sample (6) to various surface treatments.

試料(7)「SUS304 ♯700 MW」は、図1に示すように、No.19〜No.21のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、3.2×10〜3.7×10の範囲であり、試料(1)及び試料(6)に対して低減されている(大腸菌に対して抗菌効果がある)。
なお、試料(7)「SUS304 ♯700 MW」は、試料(6)に対して上記MW処理を施した試料である。
The sample (7) “SUS304 # 700 MW” had No. 3 as shown in FIG. 19-No. In the 21 lots, the viable cell count concentration (CFU / mL) of E. coli was in the range of 3.2 × 10 2 to 3.7 × 10 2 , which was lower than that of sample (1) and sample (6). (It has an antibacterial effect against Escherichia coli).
The sample (7) “SUS304 # 700 MW” is a sample obtained by subjecting the sample (6) to the MW treatment.

試料(8)「SUS304 ♯700 P43」は、図1に示すように、No.22〜No.24のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、1より小さい値(<1)〜1.5×10の範囲であり、大腸菌が滅菌或いは殺菌されている。
なお、試料(8)「SUS304 ♯700 P43」は、試料(6)に対して、上記P43処理の微小凹凸形成処理(マイクロディンプル処理)を施した試料である。
The sample (8) “SUS304 # 700 P43” was tested as No. 2 as shown in FIG. 22-No. In the 24 lots, the viable cell count concentration (CFU / mL) of E. coli is in the range of less than 1 (<1) to 1.5 × 10 2 , and E. coli is sterilized or sterilized.
The sample (8) “SUS304 # 700 P43” is the sample (6) which has been subjected to the fine concavo-convex forming process (microdimple process) of the P43 process.

試料(9)「SUS304 ♯700 PT1」は、No.25〜No.27のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、1より小さい値(<1)〜1.8×10の範囲であり、大腸菌が滅菌或いは殺菌されている。
なお、試料(9)「SUS304 ♯700 PT1」は、試料(6)に対して、上記PT1の微小凹凸形成処理(マイクロディンプル処理)を施した試料である。
Sample (9) “SUS304 # 700 PT1” was No. 25-No. In 27 lots, the viable cell count concentration (CFU / mL) of E. coli is in the range of less than 1 (<1) to 1.8 × 10 1 , and E. coli is sterilized or sterilized.
The sample (9) "SUS304 # 700 PT1" is a sample obtained by subjecting the sample (6) to the micro unevenness forming process (microdimple process) of the PT1.

試料(10)「SUS304 ♯700 WS」は、No.13〜No.15のロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、9.1×10〜2.4×10の範囲であり、試料(1)に対して低減されている(大腸菌に対して抗菌効果がある)。
なお、試料(10)「SUS304 ♯700 WS」は、試料(6)に対して上記WS処理を施した試料である。
The sample (10) “SUS304 # 700 WS” is No. 13-No. In 15 lots, the viable cell count concentration (CFU / mL) of E. coli is in the range of 9.1 × 10 1 to 2.4 × 10 2 , which is lower than that of the sample (1). Against antibacterial effect).
The sample (10) "SUS304 # 700 WS" is a sample obtained by subjecting the sample (6) to the WS treatment.

ここにおいて、上記の実験結果を整理すると、図6に示すような特性が得られた。
図6(A)に示した表は、実施例としてSUS304 #400に各マイクロディンプル処理を施した試料(試験片)の平均凹凸ピッチ(隣接する凸部の間隔)(μm)と抗菌活性値を表している。
Here, when the above experimental results are summarized, the characteristics shown in FIG. 6 were obtained.
The table shown in FIG. 6 (A) shows the average uneven pitch (spacing between adjacent convex portions) (μm) and the antibacterial activity value of a sample (test piece) obtained by subjecting SUS304 # 400 to each microdimple treatment as an example. It represents.

抗菌活性値(R)は、以下の計算式にて得られる(JISにて規定されている)。
R=(Ut−U0)−(At−U0)=Ut−At
R:抗菌活性値
U0:無加工試験片の接種直後の生菌数(生きている菌の数)の対数値
Ut:無加工試験片の24時間後の生菌数の対数値の平均値(但し、今回は24時間後ではなく8時間後で計算)
At:表面処理加工済み試験片の24時間後の生菌数の対数値の平均値(但し、今回は24時間後ではなく8時間後で計算)
無加工試験片は図1の試料(1)に相当し、表面処理加工済み試験片は上記試料(2)から(5)に相当する。
The antibacterial activity value (R) is obtained by the following calculation formula (specified by JIS).
R = (Ut-U0)-(At-U0) = Ut-At
R: antibacterial activity value U0: logarithmic value of viable cell count (live cell count) immediately after inoculation of unprocessed test piece Ut: average of logarithmic value of viable cell count 24 hours after unprocessed test piece ( However, this time it is calculated after 8 hours, not after 24 hours)
At: average value of logarithmic value of viable cell count of the surface-treated test piece after 24 hours (however, this time, not after 24 hours but after 8 hours)
The unprocessed test piece corresponds to the sample (1) in FIG. 1, and the surface-treated processed test piece corresponds to the samples (2) to (5).

JISでは「抗菌活性値(R)が2.0以上(99%以上の死滅率)で抗菌効果があると規定」されており、上述した実験結果では、試料(3)「SUS304 ♯400 P43」と、試料(4)「SUS304 ♯400 PT1」の2つに抗菌効果があると定義できる。   JIS stipulates that an antibacterial activity value (R) is 2.0 or more (99% or more kill rate) to have an antibacterial effect, and in the above experimental results, sample (3) "SUS304 # 400 P43" Then, it can be defined that two of sample (4) "SUS304 # 400 PT1" have an antibacterial effect.

しかしながら、試料(2)「SUS304 ♯400 MW」、試料(5)「SUS304 ♯400 WS」については、抗菌活性値(R)が2未満となるが、図6(B)の縦軸に設定されている抗菌活性値(R)が0の時がいわゆる未処理の試験片(試料(1))の状態であり、その「0の時=未処理」の場合と比較すると、試料(2)「SUS304 ♯400 MW」、試料(5)「SUS304 ♯400 WS」についてもある程度の抗菌効果が見込まれるものと考えられる。   However, for sample (2) "SUS304 # 400 MW" and sample (5) "SUS304 # 400 WS", the antibacterial activity value (R) is less than 2, but it is set on the vertical axis of FIG. 6 (B). When the antibacterial activity value (R) is 0, it is the state of the so-called untreated test piece (sample (1)). Compared with the case of "when 0 = untreated", the sample (2) " It is considered that a certain degree of antibacterial effect is expected for SUS304 # 400 MW ”and Sample (5)“ SUS304 # 400 WS ”.

すなわち、本実施の形態によれば、図3、図4、図5等で示したように、マイクロディンプル処理により、部材の表面に、ディンプル(くぼみ、略凹球面)状に削られた微小凹部を無数にランダムに形成することで、その表面に、抗菌或いは滅菌、殺菌効果(作用)を生じさせることができる。   That is, according to the present embodiment, as shown in FIG. 3, FIG. 4, FIG. 5, etc., the micro-dimple treatment is performed on the surface of the member to form dimples (dents, substantially concave spherical surfaces) in the form of minute recesses. By forming innumerable randomly, it is possible to produce an antibacterial, sterilizing or bactericidal effect (action) on the surface.

なお、試料(2)「SUS304 ♯400 MW」の微小凹部の凹凸ピッチ(凸部の間隔)を観察した表面形状データを図7(A)に示す。図9に示すように、試料(2)の凹凸ピッチ(凸部の間隔)範囲(μm)は20〜35μm程度であり,その平均凹凸ピッチ(凸部の間隔)は25.7μm程度となる。また、凹部深さ範囲は0.6〜0.9μm程度であり,その平均凹部深さは0.77μm程度となる。   Surface shape data obtained by observing the concave-convex pitch (interval between convex portions) of the minute concave portions of the sample (2) “SUS304 # 400 MW” is shown in FIG. 7 (A). As shown in FIG. 9, the concave-convex pitch (interval between convex portions) range (μm) of the sample (2) is about 20 to 35 μm, and the average concave-convex pitch (interval between convex portions) is about 25.7 μm. The depth range of the recess is about 0.6 to 0.9 μm, and the average depth of the recess is about 0.77 μm.

また、試料(3)「SUS304 ♯400 P43」の微小凹部の凹凸ピッチを観察した表面形状データを図7(B)に示す。図9に示すように、試料(3)の凹凸ピッチ(凸部の間隔)範囲(μm)は1.7〜7.3μm程度であり,その平均凹凸ピッチ(凸部の間隔)は3.56μm程度となる。また、凹部深さ範囲は0.2〜1.0μm程度であり、その平均凹部深さは0.51μm程度となる。
なお、図10に示すように、実測した微小凹凸の凸部の間隔は、約1.7〜7.3μm程度の範囲にあり、凹部深さは約0.2〜1.0μm程度の範囲にあった。
Further, FIG. 7B shows surface shape data obtained by observing the uneven pitch of the minute recesses of the sample (3) "SUS304 # 400 P43". As shown in FIG. 9, the concavo-convex pitch (interval between convex portions) range (μm) of the sample (3) was about 1.7 to 7.3 μm, and the average concavo-convex pitch (interval between convex portions) was 3.56 μm. It becomes a degree. The depth range of the recess is about 0.2 to 1.0 μm, and the average depth of the recess is about 0.51 μm.
Note that, as shown in FIG. 10, the actually measured distance between the convex portions of the minute irregularities is in the range of approximately 1.7 to 7.3 μm, and the depth of the concave portions is in the range of approximately 0.2 to 1.0 μm. there were.

また、試料(4)「SUS304 ♯400 PT1」の微小凹部の凹凸ピッチを観察した表面形状データを図8(A)に示す。図9に示すように、試料(4)の凹凸ピッチ(凸部の間隔)範囲(μm)は0.4〜1.0μm程度であり,その平均凹凸ピッチ(凸部の間隔)は0.72μm程度となる。また、凹部深さ範囲は0.04〜0.17μm程度であり、その平均凹部深さは0.10μm程度となる。
なお、図10に示すように、実測した微小凹凸の凸部の間隔は、約0.4〜1.0μm程度の範囲にあり、深さは約0.04〜0.17μm程度の範囲にあった。
In addition, FIG. 8A shows surface shape data obtained by observing the uneven pitch of the minute recesses of the sample (4) "SUS304 # 400 PT1". As shown in FIG. 9, the concave-convex pitch (interval between convex portions) range (μm) of the sample (4) was about 0.4 to 1.0 μm, and the average concave-convex pitch (interval between convex portions) was 0.72 μm. It becomes a degree. The depth range of the recess is about 0.04 to 0.17 μm, and the average depth of the recess is about 0.10 μm.
In addition, as shown in FIG. 10, the measured intervals of the convex and concave portions of the minute unevenness are in the range of about 0.4 to 1.0 μm, and the depth is in the range of about 0.04 to 0.17 μm. It was

また、試料(5)「SUS304 ♯400 WS」の微小凹部の凹凸ピッチを観察した表面形状データを図8(B)に示す。図9に示すように、試料(5)の凹凸ピッチ(凸部の間隔)範囲(μm)は81〜183μm程度であり,その平均凹凸ピッチ(凸部の間隔)は124.4μm程度となる。また、凹部深さ範囲は1.5〜4.6μm程度であり、その平均凹部深さは3.10μm程度となる。   Further, FIG. 8B shows surface shape data obtained by observing the uneven pitch of the minute recesses of the sample (5) "SUS304 # 400 WS". As shown in FIG. 9, the concave-convex pitch (interval between convex portions) range (μm) of the sample (5) is about 81 to 183 μm, and the average concave-convex pitch (interval between convex portions) is about 124.4 μm. Further, the depth range of the recess is about 1.5 to 4.6 μm, and the average depth of the recess is about 3.10 μm.

ところで、試料(1)と、試料(3)、(4)などは、凹凸ピッチ(凸部或いは凹部の間隔)や深さはそれほど変わらないが、試料(3)、(4)には、大腸菌に対して極めて顕著な抗菌或いは滅菌、殺菌効果がある。   By the way, the sample (1) and the samples (3), (4), etc. are not so different in uneven pitch (distance between convex portions or concave portions) and depth, but the samples (3), (4) It has a very remarkable antibacterial or sterilization effect.

これは、詳細な解析が待たれるところではあるが、マイクロディンプル処理により形成されるディンプル状の微小凹部は、試料(1)のようにステンレス製の部材(試料)の表面に研削やラッピング等により形成される凹部(底部が筋状に連続して延びている凹部(筋、溝))とは異なり、噴射されたメディア(ショット材粒子)により部材表面がディンプル状に削られたそれぞれの凹部が、周囲の凸部により仕切られる(区切られる、画成される)ことで隣接する凹部同士が独立的に無数にランダムに形成されることが、理由のひとつであると考えられる。   Although this is a point where detailed analysis is awaited, the dimple-shaped minute recesses formed by the micro-dimple treatment are formed by grinding or lapping the surface of the stainless steel member (sample) like the sample (1). Unlike the formed recesses (recesses (streaks, grooves) whose bottoms extend continuously in a streak pattern), each recessed part in which the surface of the member is cut into a dimple shape by ejected media (shot material particles) It is considered that one of the reasons is that adjacent concave portions are independently formed in innumerable random numbers by being partitioned (divided or defined) by peripheral convex portions.

すなわち、大腸菌のサイズは、東京都健康安全研究センターの提供データによると、大腸菌(O157、O111など)の細菌の大きさは、1.1〜1.5μm(よこ寸法)×2.0〜6.0μm(長さ)程度であり、大腸菌が、マイクロディンプル処理により形成される微小凹部にはまってしまったり、凸部に乗り上げてしまうことで、大腸菌が移動・運動を自由に行えなくなって死滅したり、そのような移動・運動が規制された状態で比較的長く伸びる鞭毛が回転運動して自己損傷して死滅してしまうことなどにより、抗菌効果(作用が)生じるなどと予測することができる。   That is, according to the data provided by the Tokyo Metropolitan Institute of Health and Safety, the size of E. coli (O157, O111, etc.) is 1.1 to 1.5 μm (horizontal dimension) × 2.0 to 6 It is about 0.0 μm (length), and Escherichia coli is unable to move and move freely because it gets stuck in the minute concave portion formed by the microdimple treatment or climbs on the convex portion and die. It is possible to predict that an antibacterial effect (effect) will occur due to the rotational movement of the flagella, which grows relatively long in a state in which such movement / motion is restricted, and self-damage to death. ..

なお、サルモネラ菌は、その大きさは0.7〜1.5μm(よこ寸法)×2.0〜5. 0μm(長さ)であり、このような似たようなサイズの細菌に対しても、大腸菌と同様に、本実施の形態に係るマイクロディンプル処理によりその表面に微小凹凸を無数に形成した部材には抗菌或いは滅菌、殺菌効果があるものと考えられる。   The size of Salmonella is 0.7-1.5 μm (horizontal dimension) × 2.0-5. As with Escherichia coli, a member having innumerable minute irregularities formed on the surface thereof by the microdimple treatment according to the present embodiment is also used for bacteria having a size of 0 μm (length) and similar sizes. Is considered to have antibacterial or sterilizing and bactericidal effects.

すなわち、本実施の形態に係るマイクロディンプル処理によりその表面にディンプル状の微小凹部を無数に形成した抗菌部材は、「鞭毛を持ったグラム陰性菌である、大腸菌、サルモネラ菌等の一般細菌」に適用可能である考えられる。   That is, the antibacterial member in which the number of dimple-shaped minute recesses is formed on the surface by the microdimple treatment according to the present embodiment is applied to “general bacteria such as Escherichia coli and Salmonella, which are gram-negative bacteria with flagella” Considered possible.

このように、本実施の形態によれば、ステンレス製の部材の表面に、筋状に延びている凹部(筋、溝)ではなく、マイクロディンプル処理により、凹部の底部が周囲の隣接する凹部の底部と凸部を介して画成されていてそれぞれが独立的に形成されている微小凹部を無数にランダムに形成することで、大腸菌等の細菌に対して抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)を生じさせることができる。   As described above, according to the present embodiment, the bottom of the concave portion is not formed on the surface of the stainless steel member by the microdimple process, instead of the concave portion (straight line, groove) extending in a linear shape. By forming an infinite number of minute recesses, which are defined by the bottom and the protrusions and are formed independently of each other, an antibacterial or sterilizing or bactericidal effect (or bacterial growth) against bacteria such as E. coli. (Suppressive effect).

すなわち、本実施の形態によれば、マイクロディンプル処理により、部材の表面にディンプル状の微小凹部を複数(無数)に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせる抗菌表面処理方法、及び抗菌(或いは滅菌、殺菌)効果(或いは菌増殖抑制効果)を有する抗菌部材を提供することができる。   That is, according to the present embodiment, by forming a plurality (innumerable) of dimple-shaped minute concave portions on the surface of the member by the microdimple treatment, the surface of the member is given an antibacterial (or sterilization, sterilization) effect. It is possible to provide an antibacterial surface treatment method and an antibacterial member having an antibacterial (or sterilization, sterilization) effect (or a bacteriostatic growth suppressing effect).

特に、図6(A)、図6(B)に示したように、試料(3)、(4)のように、ディンプル状の微小凹凸の平均凹凸ピッチ(凸部の間隔)(μm)を、3.56(≒4.0)μm程度以下、或いは0.72(≒0.7)〜3.56(≒4.0)μm程度の範囲、或いは0.72(≒0.7)μm程度以下で形成することで、部材の表面に、より高い抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)を生じさせることができる。    In particular, as shown in FIGS. 6 (A) and 6 (B), as shown in samples (3) and (4), the average concavo-convex pitch (distance between convex portions) (μm) of the dimple-shaped minute concavities and convexities is set. , 3.56 (≈4.0) μm or less, or in the range of 0.72 (≈0.7) to 3.56 (≈4.0) μm, or 0.72 (≈0.7) μm By forming it at a level of less than or equal to a higher level, a higher antibacterial or sterilization / bactericidal effect (or bacteriostatic effect) can be produced on the surface of the member.

また、図10に示したように、試料(3)、(4)のように、ディンプル状の微小凹凸の実測凹凸ピッチ(凸部の間隔)(μm)を、7.3(≒8.0)μm程度以下、或いは0.4〜7.3(≒8.0)μm程度の範囲、或いは0.4μm程度以下で形成することで、部材の表面に、より高い抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)を生じさせることができる。このとき、凹部の深さは、1.0μm程度以下、或いは0.04〜1.0μm程度、或いは0.04μm程度以下とすることができる。   Further, as shown in FIG. 10, as in Samples (3) and (4), the measured unevenness pitch (distance between convexes) (μm) of the dimple-shaped minute unevenness was 7.3 (≈8.0). ) Or less, or in the range of 0.4 to 7.3 (≈8.0) μm, or 0.4 μm or less, a higher antibacterial or sterilization / sterilization effect ( Alternatively, the effect of inhibiting bacterial growth can be produced. At this time, the depth of the recess can be about 1.0 μm or less, or about 0.04 to 1.0 μm, or about 0.04 μm or less.

また、図11に示すように、マイクロディンプル処理に用いるメディア(ショット材)の粒径等のサイズによって形成される微小凹部の形成具合(凹部のピッチや、凹部の入口径や深さなど)はある程度定まることから、マイクロディンプル処理に用いるメディア(ショット材)の粒径等のサイズによって、ある程度、抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)の有無を整理することができる。
すなわち、本実施の形態によれば、図11、図5、図10等の結果を考慮すると、試料(3、(4)のように、ショット材の粒径が、3μm程度以下、或いは1〜3μm程度の範囲、或いは1μm程度以下であれば、抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)を生じさせることができるものと思われる。
Further, as shown in FIG. 11, the degree of formation of minute recesses formed by the size of the media (shot material) used for the micro-dimple treatment (such as pitch of recesses, entrance diameter and depth of recesses) is Since it is determined to some extent, the presence or absence of antibacterial or sterilization or bactericidal effect (or bacteriostatic effect) can be arranged to some extent by the size such as the particle size of the medium (shot material) used for the microdimple treatment.
That is, according to the present embodiment, in consideration of the results shown in FIGS. 11, 5, 10 and the like, as in the samples (3, (4)), the shot material has a particle size of about 3 μm or less, or It is considered that an antibacterial effect, a sterilization effect, or a bactericidal effect (or an effect of suppressing bacterial growth) can be produced within a range of about 3 μm or about 1 μm or less.

ここで、本実施の形態に係る微小凹凸形成処理(マイクロディンプル処理)は、既知の噴射装置により、上述したようなメディア(ショット材、研磨材粒子)を噴射して処理対象接触部材等の部材の表面に衝突させることで行うことができる。   Here, in the fine concavo-convex forming process (micro dimple process) according to the present embodiment, a member such as a contact member to be processed by ejecting the media (shot material, abrasive particles) as described above by a known ejection device. This can be done by colliding with the surface of.

例えば、噴射装置としては、ブラスト装置を用いることができ、ブラスト装置の一例としては、例えば、株式会社不二製作所製の「PNEUMA BLASTER」(型式:SCシリーズ、SGシリーズなど)などを用いることができる。また、例えば、特開2019−25584号公報などに記載されているものを用いることができる。   For example, a blast device can be used as the injection device, and as an example of the blast device, for example, "PNEUMA BLASTER" (model: SC series, SG series, etc.) manufactured by Fuji Manufacturing Co., Ltd. can be used. it can. Further, for example, those described in JP-A-2019-25584 can be used.

より具体的には、噴射粒体を部材の表面に向けて噴射する噴射装置としては、圧縮気体(空気、アルゴン、窒素等)と共に研磨材(微粒子)の噴射を行う既知のブラスト加工装置(ブラスト処理装置)を使用することができる。   More specifically, as an injection device for injecting injection particles toward the surface of a member, a known blasting device (blasting device) for injecting an abrasive (fine particles) together with a compressed gas (air, argon, nitrogen, etc.) Processing device) can be used.

そして、ブラスト加工装置(ブラスト処理装置)としては、圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧 縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し、別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置、及び、上記直圧式の圧縮気体流を、ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
また、水などの液体と共にショットを高圧で噴射するウォータージェットも使用することができる。
The blasting device (blasting device) is a suction-type blasting device that injects abrasives by using the negative pressure generated by the injection of compressed gas, and the abrasives that drop from the abrasives tank are compressed gas. Gravity-type blasting device that injects and injects compressed gas into the tank in which the abrasive is put, and the abrasive flow from the abrasive tank is added to the compressed gas flow from the separately supplied compressed gas supply source. There are commercially available direct pressure blasting devices that combine and inject, and blower blasting devices that inject the above direct pressure compressed gas flow onto the gas flow generated by the blower unit. Any of these can be used for jetting the above-mentioned jet granules.
Further, a water jet that jets shots at high pressure together with a liquid such as water can also be used.

ところで、本実施の形態では、マイクロディンプル処理により、ディンプル状の微小凹部を無数にランダムに形成したが、本発明はこれに限定されるもではなく、処理対象接触部材等の部材の表面に化学研磨(化学エッチング)を施すことで、微小凹部をランダムに複数(多数)形成することができる。なお、化学研磨(化学エッチング)としては、例えば、塩酸・硝酸・硫酸・リン酸などの酸性薬剤や塩化鉄(III)などを任意の割合で水溶液に調製し使用することが想定される。   By the way, in the present embodiment, the dimple-shaped minute recesses are formed innumerably randomly by the micro-dimple treatment, but the present invention is not limited to this, and the surface of the member such as the contact member to be treated is chemically By performing polishing (chemical etching), a plurality (a large number) of minute concave portions can be formed at random. For chemical polishing (chemical etching), for example, it is assumed that an acidic chemical such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid or the like and iron (III) chloride are prepared in an aqueous solution at an arbitrary ratio and used.

また、処理対象接触部材等の部材の表面に、アルゴンボンバード処理を施すことで、接触面にサブミクロン以下の凹凸をランダムに複数(多数)形成することもできる。   Further, by subjecting the surface of a member such as the contact member to be treated to an argon bombardment treatment, it is possible to form a plurality (a large number) of irregularities of submicron or less on the contact surface at random.

なお、本発明に係る抗菌部材は、例えば、処理対象が接触する処理対象接触部材に適用でき、その場合において、例えば、保管、収容、運搬、滑落、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具などを含む各種の処理に用いられる部材に適用可能である。   The antibacterial member according to the present invention can be applied to, for example, a processing target contact member with which a processing target contacts, and in that case, for example, storage, storage, transportation, sliding, sieving, stirring equipment, cooking balls, for cooking It can be applied to members used for various processes including instruments, surgical instruments, medical instruments and the like.

また、本発明に係る抗菌部材は、上述したような処理対象接触部材に限定されるものではなく、車両用の吊手(つり革のグリップ部分)、その他の取っ手或いは持ち手(グリップ)、ドアノブ、ハンドル、便座など人や動物が触れる部材など、抗菌(或いは菌増殖抑制)等の目的のために、ディンプル状の微小凹部を無数にランダムに形成する部材であれば適用可能である。   Further, the antibacterial member according to the present invention is not limited to the contact member to be treated as described above, and is a vehicle handle (grip portion of a strap), other handles or handles, a door knob. It is applicable to any member such as a handle, a toilet seat, or any other member that is touched by humans or animals, or any member that randomly forms a large number of dimple-shaped minute recesses for the purpose of antibacterial (or bacterial growth suppression).

また、本実施の形態に係るマイクロディンプル処理による抗菌効果(菌増殖抑制効果)は、例えばステンレス材であれば、処理前のベース材の♯400、♯700、2B等、表面の仕上げ仕様には拘らず、どれでも同等の効果が得られると考えられるため、ステンレス材であれば本発明は適用可能である。   Further, the antibacterial effect (bacterial growth suppression effect) by the microdimple treatment according to the present embodiment is, for example, in the case of a stainless material, the surface finish specifications such as # 400, # 700, 2B of the base material before the treatment. Regardless of which, it is considered that the same effect can be obtained with any of them, so that the present invention can be applied to any stainless steel material.

なお、本発明に係る抗菌部材は、樹脂製部材とすることも可能であり、その材料は特に限定されるものではない。例えばセラミックスとすることも可能であり、金属製部材の場合は、鉄、アルミニウム、チタン等の金属製(合金製)とすることができる。   The antibacterial member according to the present invention can be a resin member, and the material thereof is not particularly limited. For example, ceramics can be used, and in the case of a metal member, it can be made of metal (alloy) such as iron, aluminum, or titanium.

本発明は、上述した発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。   The present invention is not limited to the above-described embodiments of the invention, and various modifications can be made without departing from the scope of the invention.

本発明は、部材の表面にディンプル状の微小凹部を無数に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせることができ、衛生を問題とする産業界において有益であり利用可能である。   INDUSTRIAL APPLICABILITY The present invention can provide an antibacterial (or sterilization, sterilization) effect on the surface of a member by forming a large number of dimple-shaped minute recesses on the surface of the member, which is useful in the industrial field where hygiene is a problem. Yes available.

Claims (2)

部材の菌と接触する表面に、無数のディンプル状の微小凹部であって、その凹凸ピッチの最大値が7.3μm以下であり最小値が0.4μm以上であり、その凹部の深さの最大値が1.0μm以下であり最小値が0.04μm以上である微小凹部を、ショット材を投射する投射処理により形成することで、部材の当該表面に抗菌作用を持たせることを特徴とする抗菌表面処理方法。 There are countless dimple-shaped minute recesses on the surface of the member that come into contact with bacteria, the maximum value of the uneven pitch is 7.3 μm or less and the minimum value is 0.4 μm or more, and the maximum depth of the recesses is An antibacterial feature characterized by imparting an antibacterial action to the surface of a member by forming a minute recess having a value of 1.0 μm or less and a minimum value of 0.04 μm or more by a projection process of projecting a shot material. Surface treatment method. ショット材を投射する投射処理により無数に形成されるディンプル状の微小凹部であって、その凹凸ピッチの最大値が7.3μm以下であり最小値が0.4μm以上であり、その凹部の深さの最大値が1.0μm以下であり最小値が0.04μm以上である微小凹部有する部材の菌と接触する表面を備えることで、部材の当該表面に抗菌作用を持たせたことを特徴とする抗菌部材。
A de Inpuru like minute recess formed in innumerable by a projection process of projecting shots, the minimum value is less than or equal to the maximum value of the unevenness pitch 7.3μm is at 0.4μm or more, the depth of the recess in Rukoto comprising a surface in contact with the bacteria member having fine recesses is and minimum 0.04μm or more in the 1.0μm or less the maximum value of the, that gave an antimicrobial effect on the surface of the member Characteristic antibacterial member.
JP2019115938A 2019-06-22 2019-06-22 Antibacterial surface treatment method and antibacterial member Active JP6695558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115938A JP6695558B1 (en) 2019-06-22 2019-06-22 Antibacterial surface treatment method and antibacterial member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115938A JP6695558B1 (en) 2019-06-22 2019-06-22 Antibacterial surface treatment method and antibacterial member

Publications (2)

Publication Number Publication Date
JP6695558B1 true JP6695558B1 (en) 2020-05-20
JP2021000702A JP2021000702A (en) 2021-01-07

Family

ID=70682362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115938A Active JP6695558B1 (en) 2019-06-22 2019-06-22 Antibacterial surface treatment method and antibacterial member

Country Status (1)

Country Link
JP (1) JP6695558B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037226A (en) * 2019-09-05 2021-03-11 株式会社サーフテクノロジー Functional member
JP6916496B1 (en) * 2020-08-03 2021-08-11 株式会社サーフテクノロジー Anti-virus surface treatment method for members and anti-virus members
JP2023183145A (en) * 2022-06-15 2023-12-27 株式会社サーフテクノロジー Antibacterial member, production method and evaluation method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022171301A (en) * 2021-04-30 2022-11-11 株式会社クレハ Antimicrobial molded body, food product packaging material, and in-vivo indwelling device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385157B2 (en) * 1999-09-22 2009-12-16 大同特殊鋼株式会社 Method for producing titanium or titanium alloy product
JP2001303268A (en) * 2000-04-27 2001-10-31 Hayashi Horei Kogyo Kk Antimicrobial-treated metallic sheet
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
JP5402610B2 (en) * 2008-12-25 2014-01-29 愛知製鋼株式会社 Stainless steel with excellent resistance to oil stains and fingerprint visibility
JP5974532B2 (en) * 2012-02-23 2016-08-23 日本精工株式会社 Roller bearing and manufacturing method thereof
US10107574B2 (en) * 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JP2016215622A (en) * 2015-05-14 2016-12-22 大日本印刷株式会社 Antibacterial and antifungal article, and agricultural antibacterial and antifungal article
JP2017001166A (en) * 2015-06-15 2017-01-05 学校法人関東学院 Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method
JP2017145210A (en) * 2016-02-16 2017-08-24 大日本印刷株式会社 Antibacterial metal article
JP6416151B2 (en) * 2016-05-23 2018-10-31 株式会社不二Wpc Treatment instrument and surface treatment method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037226A (en) * 2019-09-05 2021-03-11 株式会社サーフテクノロジー Functional member
JP7162263B2 (en) 2019-09-05 2022-10-28 株式会社サーフテクノロジー Functional member and its production method
JP6916496B1 (en) * 2020-08-03 2021-08-11 株式会社サーフテクノロジー Anti-virus surface treatment method for members and anti-virus members
WO2022030028A1 (en) * 2020-08-03 2022-02-10 株式会社サーフテクノロジー Antivirus surface treatment method for member and antivirus member
JP2022028394A (en) * 2020-08-03 2022-02-16 株式会社サーフテクノロジー Antivirus surface treatment method of member and antivirus member
JP2023183145A (en) * 2022-06-15 2023-12-27 株式会社サーフテクノロジー Antibacterial member, production method and evaluation method of the same
JP7542868B2 (en) 2022-06-15 2024-09-02 株式会社サーフテクノロジー Antibacterial member, its manufacturing method and evaluation method

Also Published As

Publication number Publication date
JP2021000702A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6695558B1 (en) Antibacterial surface treatment method and antibacterial member
JP7162263B2 (en) Functional member and its production method
JP7236077B2 (en) Parts or components for medical equipment
US9108298B2 (en) Method of treating surface of mold and mold having surface treated by said method
Barriuso et al. Roughening of metallic biomaterials by abrasiveless waterjet peening: Characterization and viability
JP6416151B2 (en) Treatment instrument and surface treatment method thereof
US20230150088A1 (en) Powder contact member and method for surface treatment of powder contact member
JP7185882B2 (en) Food processing parts that come into contact with food or humans, parts or members used for food handling, and production methods thereof
WO2017026057A1 (en) Surface treatment method for transparent resin forming mold, transparent resin forming mold, and transparent resin formed article
US20190076987A1 (en) Surface treatment method for metal product and metal product
US20240247377A1 (en) Food contact member and surface treatment method thereof
WO2021066107A1 (en) Antibacterial molded article and method for manufacturing same
Yetik et al. The effects of grit size and blasting pressure on the surface properties of grit blasted Ti6Al4V alloy
JP2021194758A (en) Powder adhesion suppression member and member surface treatment method
JP6886239B2 (en) Titanium member that suppresses powder adhesion
JP7542868B2 (en) Antibacterial member, its manufacturing method and evaluation method
JP2022135273A (en) Fine uneven surface shape protection method, abrasion resistance improving member, machine instrument, instrument, scissors or cutter for hairdressing, cosmetic or medical use, and slide component of machine component
WO2022014063A1 (en) Antifungal surface treatment method for member and antifungal member
JP7162265B2 (en) Fine unevenness forming method and powder contact member
JP6916496B1 (en) Anti-virus surface treatment method for members and anti-virus members
JP2022034170A (en) Washability improving surface treatment method and washability improving member
EP2801443B1 (en) Processing medium for processing stainless steel or other metallic surfaces, method for processing stainless steel or other metallic surfaces using such a processing medium and nozzle arranged to be fitted on a process gun
JP7029730B2 (en) Member and surface treatment method for member
JP7202268B2 (en) net conveyor belt
US11618127B2 (en) Method for surface treatment of DLC coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190624

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200402

R150 Certificate of patent or registration of utility model

Ref document number: 6695558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250