WO2022029951A1 - Wireless communication device, wireless communication method, and wireless communication system - Google Patents

Wireless communication device, wireless communication method, and wireless communication system Download PDF

Info

Publication number
WO2022029951A1
WO2022029951A1 PCT/JP2020/030132 JP2020030132W WO2022029951A1 WO 2022029951 A1 WO2022029951 A1 WO 2022029951A1 JP 2020030132 W JP2020030132 W JP 2020030132W WO 2022029951 A1 WO2022029951 A1 WO 2022029951A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
signal
timing
node
Prior art date
Application number
PCT/JP2020/030132
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2020/030132 priority Critical patent/WO2022029951A1/en
Publication of WO2022029951A1 publication Critical patent/WO2022029951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a wireless communication device, a wireless communication method, and a wireless communication system.
  • Non-Patent Documents 1 to 11 the communication standard for 5th generation mobile communication
  • 4G 4th generation mobile communication
  • 3GPP 3rd Generation Partnership Project
  • another base station device relays communication between the base station device and the terminal device.
  • a plurality of base station devices arranged between the core network and the terminal device are wirelessly connected, and relay is executed by wireless communication between the base station devices.
  • Such relay in 5G is also called IAB (Integrated Access and Backhaul), and multi-hop relay is allowed.
  • FIG. 24 is an explanatory diagram showing an example of a wireless communication system 100 including an IAB node 105.
  • the wireless communication system 100 shown in FIG. 24 has a parent node (Parent Node) 102, a child node (Child Node) 103, a UE (User Equipment) 104, and an IAB node 105.
  • the IAB node 105 is a relay device that comprehensively relays an access link with the UE 104 and a BH (Backhaul) between the parent node 102 and the child node 103 by wireless communication (see RP-192188).
  • the BH has a parent BH between the parent node 102 and a child BH between the child node 103.
  • the IAB node 105 uses the parent BH to receive a DL (Downlink) signal from the parent node 102, and uses the parent BH to transmit a UL (Uplink) signal to the parent node 102. Further, the IAB node 105 uses the child side BH to receive the UL signal from the child node 103, and uses the child side BH to transmit the DL signal to the child node 103. The IAB node 105 uses the access link to receive the UL signal from the UE 104 and also uses the access link to transmit the DL signal to the UE 104.
  • FIG. 25 is an explanatory diagram showing an example of simultaneous reception processing of the IAB node 105.
  • Rel (Release) -17 a wireless communication system 100 is proposed in which the IAB node 105 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) as shown in FIG. 25. (See RP-193251).
  • FIG. 26 is an explanatory diagram showing an example of simultaneous reception timing control of the IAB node 105.
  • the IAB node 105 shown in FIG. 26 has a DL signal of the parent BH from the DU (Distributed Unit) of the parent node 102 and a UL signal of the child BH (or access link) from the child node 103 (or UE 104). Can be received at the same time.
  • the IAB node 105 uses wireless communication resources as compared with TDM (Time Division Multiplexing) of Rel-16. Efficiency can be improved.
  • TDM Time Division Multiplexing
  • FIG. 27 is an explanatory diagram showing an example of a problem that the DL signal of the parent BH and the UL signal of the child BH cannot be simultaneously received at the IAB node 105.
  • the reception timing of the UL signal of the child side BH is controlled to be earlier than the transmission timing of the DL signal of the parent side BH.
  • the reception timing of the UL (or UL of the access link) signal of the child side BH can be aligned with the reception timing of the DL signal of the parent side BH. It cannot be done, and simultaneous reception processing cannot be realized.
  • the utilization efficiency of the wireless communication resources of the parent side BH and the child side BH (or access link) is lowered.
  • the received power amount of the UL signal of the access link is compared with the received power amount of the DL signal of the parent BH. Becomes smaller. As a result, the reception quality of the UL signal of the access link deteriorates.
  • FIG. 28 is an explanatory diagram showing an example of a problem when the transmission timing of the UL signal at the IAB node 105 is delayed from the transmission timing of the DL signal.
  • Rel-16 by aligning the transmission timings of DL signals in all cells in the wireless communication system 100, it is possible to suppress the occurrence of cross-link interference in adjacent nodes.
  • the IAB node 105 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH while aligning the transmission timings of the DL signals in all the cells, the UL signal reception timing is the DL signal. It is later than the transmission timing.
  • a wireless communication device or the like capable of simultaneously receiving a DL signal of a parent BH and an UL (or UL of an access link) signal of a child BH to improve the utilization efficiency of wireless communication resources is provided. There is something in it.
  • the wireless communication device of one embodiment has a generation unit and a transmission unit.
  • the generation unit can simultaneously receive the downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device, and the reception timing of the uplink signal from the lower wireless communication device is on the upper side.
  • a control signal for adjusting the transmission timing of the uplink signal in the lower wireless communication device is generated so as to be later than the transmission timing of the downlink signal in the wireless communication device.
  • the transmission unit transmits the control signal to the lower wireless communication device.
  • FIG. 1 is an explanatory diagram showing an example of the wireless communication system of the first embodiment.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the parent node.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the parent node.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the child node.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the IAB node.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the IAB node.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of the UE.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the UE.
  • FIG. 9 is an explanatory diagram showing an example of simultaneous reception timing of the DL signal of the parent BH and the UL signal of the child BH of the IAB node.
  • FIG. 10A is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using FDM.
  • FIG. 10B is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using SDM.
  • FIG. 11 is an explanatory diagram showing an example of DL / UL allocation slots of IAB-MT and IAB-DU.
  • FIG. 12 is an explanatory diagram showing an example of slot arrangement of the child side BH (access link).
  • FIG. 13 is an explanatory diagram showing an example of transmission / reception timing of IAB-DU.
  • FIG. 10A is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using FDM.
  • FIG. 10B is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using SDM.
  • FIG. 11 is an ex
  • FIG. 14 is an explanatory diagram showing an example of the timing relationship between the IAB-DU and the MT of the child node (or UE).
  • FIG. 15 is an explanatory diagram showing an example of a RAR format configuration including a TA command.
  • FIG. 16 is an explanatory diagram showing an example of a MAC-CE format configuration including a TA command.
  • FIG. 17 is a flowchart showing an example of the processing operation of the IAB node related to the scheduling process.
  • FIG. 18A is an explanatory diagram showing an example of an adjustment table corresponding to 1 bit.
  • FIG. 18B is an explanatory diagram showing an example of a 2-bit compatible adjustment table.
  • FIG. 19 is an explanatory diagram showing an example of the adjustment table.
  • FIG. 18A is an explanatory diagram showing an example of an adjustment table corresponding to 1 bit.
  • FIG. 18B is an explanatory diagram showing an example of a 2-bit compatible adjustment table.
  • FIG. 19 is an explanatory diagram showing an
  • FIG. 20 is an explanatory diagram showing an example of a switching table.
  • FIG. 21A is an explanatory diagram showing an example of a switching table corresponding to 1 bit.
  • FIG. 21B is an explanatory diagram showing an example of a switching table corresponding to 2 bits.
  • FIG. 22 is an explanatory diagram showing an example of the wireless communication system of the second embodiment.
  • FIG. 23 is an explanatory diagram showing an example of simultaneous transmission / reception timing of the IAB node of the second embodiment.
  • FIG. 24 is an explanatory diagram showing an example of a wireless communication system including an IAB node.
  • FIG. 25 is an explanatory diagram showing an example of simultaneous reception processing of the IAB node.
  • FIG. 26 is an explanatory diagram showing an example of simultaneous reception timing control of the IAB node.
  • FIG. 21A is an explanatory diagram showing an example of a switching table corresponding to 1 bit.
  • FIG. 21B is an explanatory diagram showing an example of a switching table corresponding to 2
  • FIG. 27 is an explanatory diagram showing an example of a problem that the DL signal of the parent BH and the UL signal of the child BH cannot be simultaneously received at the IAB node.
  • FIG. 28 is an explanatory diagram showing an example of a problem when the transmission timing of the UL signal at the IAB node is delayed from the transmission timing of the DL signal.
  • FIG. 1 is an explanatory diagram showing an example of the wireless communication system 1 of the first embodiment.
  • the wireless communication system 1 shown in FIG. 1 has a parent node 2, a child node 3, a UE (User Equipment) 4, and an IAB (Integrated Access and Backhaul) node 5.
  • the parent node 2 is not shown, for example, on the upper side of a base station or the like which is connected to the core network by wire communication and is connected to another node such as the IAB node 5 or the UE 4 by wireless communication. It is a wireless communication device.
  • the child node 3 is a lower-level wireless communication device such as a base station that connects to the IAB node 5 and the UE 4 by wireless communication.
  • the UE 4 is a terminal device such as a smartphone or a tablet that connects to the parent node 2, the child node 3, and the IAB node 5 by wireless communication.
  • the IAB node 5 is a wireless communication device such as a relay device that integrally relays an access link with the UE 4 and a BH (Backhaul) between the parent node 2 and the child node 3 by wireless communication.
  • the BH has a parent BH between the parent node 2 and a child BH between the child node 3.
  • the IAB node 5 uses the parent BH to receive a DL (Downlink) signal which is a downlink signal from the parent node 2, and also uses the parent BH to transmit a UL (Uplink) signal to the parent node 2. Further, the IAB node 5 uses the child side BH to receive the UL signal which is an uplink signal from the child node 3, and also uses the child side BH to transmit the DL signal to the child node 3. The IAB node 5 uses the access link to receive the UL signal, which is an uplink signal, from the UE 4, and also uses the access link to transmit the DL signal to the UE 4.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the parent node 2.
  • the parent node 2 will be described, but since the child node 3 also has substantially the same configuration as the hardware configuration of the parent node 2, by assigning the same reference numerals, the description of the overlapping configuration and operation will be described. Is omitted.
  • the parent node 2 shown in FIG. 2 has an antenna 21, a radio 22, a network IF 23, an auxiliary storage device 24, a main storage device 25, and a processor 26.
  • the radio 22 is a communication device that transmits and receives radio signals through the antenna 21.
  • the network IF 23 is an IF that controls communication with a higher-level station (not shown) or another radio base station.
  • the auxiliary storage device 24 is a device that stores various programs and the like.
  • the main storage device 25 is a device that stores various types of information.
  • the processor 26 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire parent node 2.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the parent node 2.
  • the parent node 2 shown in FIG. 3 includes a network IF unit 23A, a parent wireless communication unit 22A, a parent reception signal baseband processing unit 26A, a parent transmission signal baseband processing unit 26B, and a parent control unit 26C. And have.
  • the network IF unit 23A is a function of the network IF 23 that controls communication with a higher-level station and another radio base station.
  • the parent side wireless communication unit 22A is a function of the radio device 22 that controls the wireless communication of the parent node 2.
  • the parent-side received signal baseband processing unit 26A is a part of the function of the processor 26 that controls the baseband processing of the received signal on the parent node 2 side.
  • the parent side transmission signal baseband processing unit 26B is a part of the function of the processor 26 that controls the baseband processing of the transmission signal on the parent node 2 side.
  • the parent side control unit 26C is a part of the function of the processor 26 that controls the entire parent node 2.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the child node 3.
  • the child node 3 shown in FIG. 4 includes a network IF unit 33, a child side wireless communication unit 32, a child side received signal baseband processing unit 36A, a child side transmission signal baseband processing unit 36B, and a child side control unit 36C. And have.
  • the network IF unit 33 is a function of the network IF 23 that controls communication with a higher-level station and another radio base station.
  • the child side wireless communication unit 32 is a function of the radio device 22 that controls the wireless communication of the child node 3.
  • the child-side received signal baseband processing unit 36A is a part of the function of the processor 26 that controls the baseband processing of the received signal on the child node 3 side.
  • the child-side received signal baseband processing unit 36A is a signal processing unit that executes baseband processing on a received signal including, for example, DCI (Downlink Control Information), MAC CE, RRC signal, data, and the like.
  • DCI is information contained in PDCCH (Physical Downlink Control Channel).
  • MAC CE, RRC signals, and data are information contained in PDSCH (Physical Downlink Shared Channel).
  • the child side transmission signal baseband processing unit 36B is a part of the function of the processor 26 that controls the baseband processing of the transmission signal on the child node 3 side.
  • the child-side transmission signal baseband processing unit 36B is a processing unit that executes baseband processing of transmission signals related to data, PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), transmission timing, transmission power, etc., for example. be.
  • the child-side control unit 36C is a part of the function of the processor 26 that controls the entire child node 3.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the IAB node 5.
  • the IAB node 5 shown in FIG. 5 has an antenna 51, a radio 52, an auxiliary storage device 53, a main storage device 54, and a processor 55.
  • the radio 52 transmits and receives radio signals through the antenna 51.
  • the auxiliary storage device 53 is a device that stores various programs and the like.
  • the main storage device 54 is a device that stores various types of information.
  • the processor 55 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire IAB node 5.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the IAB node 5.
  • the IAB node 5 shown in FIG. 6 has an IAB side wireless communication unit 52A, an IAB side reception signal baseband processing unit 55A, an IAB side transmission signal baseband processing unit 55B, and an IAB side control unit 55C.
  • the IAB side wireless communication unit 52A is a function of the wireless device 52 that controls the wireless communication of the IAB node 5.
  • the IAB side received signal baseband processing unit 55A is a part of the function of the processor 55 that controls the baseband processing of the received signal on the IAB node 5 side.
  • the IAB side transmission signal baseband processing unit 55B is a part of the function of the processor 55 that controls the baseband processing of the transmission signal on the IAB node 5 side.
  • the IAB side control unit 55C is a function of the processor 55 that controls the entire IAB node 5.
  • the IAB side reception signal baseband processing unit 55A has an MT (Mobile Termination) reception signal processing unit 551A and a DU (Distributed Unit) reception signal processing unit 552A.
  • the MT reception signal processing unit 551A is a processing unit that controls reception processing of the DL signal of the parent side BH from the parent node 2.
  • the MT reception signal processing unit 551A notifies the IAB side control unit 55C of the reception timing, reception power, and slot arrangement of the DL signal of the parent side BH.
  • the DU reception signal processing unit 552A is a processing unit that controls the reception processing of the UL signal of the access link from the child side BH from the child node 3 or the UE 4.
  • the DU reception signal processing unit 552A notifies the IAB side control unit 55C of the reception timing, reception power, and transmission request of the UL signal of the child side BH and the access link.
  • the IAB side control unit 55C notifies the DU reception signal processing unit 552A of instructions regarding timing control, transmission power control, MCS, resource allocation, etc. required for the UL signal of the child side BH or the access link.
  • the IAB side control unit 55C notifies the DU transmission signal processing unit 552B of instructions regarding timing control, transmission power control, MCS, resource allocation, etc. of the child side BH or the access link.
  • the IAB side transmission signal baseband processing unit 55B has an MT transmission signal processing unit 551B and a DU transmission signal processing unit 552B.
  • the MT transmission signal processing unit 551B is a processing unit that controls transmission processing of the UL signal of the parent BH to the parent node 2.
  • the DU transmission signal processing unit 552B is a processing unit that controls the transmission processing of the DL signal of the child side BH to the child node 3 or the access link to the UE 4.
  • the MT reception signal processing unit 551A and the MT transmission signal processing unit 551B constitute an IAB-MT5A that controls wireless communication of the parent BH.
  • the DU reception signal processing unit 552A and the DU transmission signal processing unit 552B constitute an IAB-DU5B that controls wireless communication of the child side BH or the access link.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of UE4.
  • the UE 4 shown in FIG. 7 has an antenna 41, a radio 42, a display device 43, an auxiliary storage device 44, a main storage device 45, and a processor 46.
  • the radio 42 transmits and receives radio signals through the antenna 41.
  • the display device 43 is an output IF of, for example, a display device that displays and outputs various information.
  • the auxiliary storage device 44 is a device that stores various programs and the like.
  • the main storage device 45 is a device that stores various types of information.
  • the processor 46 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire UE 4.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the UE 4.
  • the UE 4 shown in FIG. 8 has a UE-side wireless communication unit 42A, a UE-side received signal baseband processing unit 46A, a UE-side transmission signal baseband processing unit 46B, and a UE-side control unit 46C.
  • the UE-side wireless communication unit 42A is a function of the radio 42 that controls the wireless communication of the UE 4.
  • the UE-side received signal baseband processing unit 46A is a part of the function of the processor 46 that controls the baseband processing of the received signal on the UE4 side.
  • the UE-side received signal baseband processing unit 46A is a signal processing unit that executes baseband processing on a received signal including, for example, DCI (Downlink Control Information), MAC CE, RRC signal, data, and the like.
  • DCI is information contained in PDCCH (Physical Downlink Control Channel).
  • MAC CE, RRC signals, and data are information contained in PDSCH (Physical Downlink Shared Channel).
  • the UE-side transmission signal baseband processing unit 46B is a part of the function of the processor 46 that controls the baseband processing of the transmission signal on the UE4 side.
  • the UE-side transmission signal baseband processing unit 46B is a processing unit that executes baseband processing of transmission signals related to, for example, data, PUSCH, PUCCH, transmission timing, transmission power, and the like.
  • the UE-side control unit 46C is a part of the function of the processor 46 that controls the entire UE 4.
  • the IAB side control unit 55C in the IAB node 5 shown in FIG. 6 has a generation unit 551C and a transmission unit 552C.
  • the generation unit 551C can simultaneously receive the DL signal from the parent node 2 which is the upper wireless communication device and the UL signal from the child node 3 (or UE 4) which is the lower wireless communication device, and the child node.
  • the UL signal from the child node 3 (or UE 4) is delayed so that the UL signal reception timing U (Rx) from the 3 (or UE 4) is later than the DL signal transmission timing D (Tx) from the parent node 2.
  • a control signal for adjusting the transmission timing U (tx) is generated.
  • the transmission unit 552C transmits a control signal to the child node 3 (or UE 4) through the IAB side transmission signal baseband processing unit 55B.
  • the control signal includes instruction information regarding a time shift of the transmission slot timing of the UL signal from the child node 3 (or UE 4) in symbol units.
  • the generation unit 551C receives the UL signal from the child node 3 (or UE 4) that matches the reception timing of the DL signal from the parent node 2, and the second timing is earlier in time in symbol units. The first timing is determined. The second timing is UL timing # 2, which will be described later, and the first timing is UL timing # 1, which will be described later. Further, the generation unit 551C generates a control signal including instruction information regarding the amount of time shift from the first timing to the second timing in symbol units.
  • the transmission unit 552C stores the control signal in the DCI and transmits it to the child node 3 (or UE4).
  • the transmission power amount of the UL signal in the child node 3 (or UE4) when the DL signal from the parent node 2 and the UL signal from the child node 3 (or UE4) are simultaneously received is from the parent node 2.
  • a power control signal including power instruction information indicating the transmission power amount of the UL signal is generated so as to be the same as the transmission power amount of the DL signal of.
  • the transmission unit 552C stores the power control signal in the DCI and transmits it to the child node 3 (or UE4).
  • FIG. 9 is an explanatory diagram showing an example of simultaneous reception timing control of the DL signal of the parent BH and the UL signal of the child BH of the IAB node 5.
  • the DU of the parent node 2 transmits the DL signal of the parent BH to the IAB node 5 based on the reference timing of the DL signal of the parent BH.
  • the IAB-MT5A of the IAB node 5 receives the DL signal of the parent BH from the parent node 2, and the IAB-DU5B of the IAB node 5 receives the UL signal of the child BH from the child node 3.
  • the IAB node 5 receives the UL signal of the child BH from the child node 3 or the UL signal of the access link from the UE 4 at the timing of receiving the DL signal of the parent BH from the parent node 2. Controls the UL signal reception timing.
  • the IAB node 5 has a child node 3 (or a child node 3) so that the UL signal reception timing U (Rx) from the child node 3 (or UE 4) is later than the DL signal transmission timing D (Tx) from the parent node 2.
  • the transmission timing U (tx) of the UL signal from the UE 4) is adjusted.
  • the IAB node 5 uses, for example, FDM (Frequency Division Multiplexing) or SDM (Space Division Multiplexing) so that the DL signal of the parent BH and the UL signal of the child BH or the access link can be received at the same time. Therefore, the IAB node 5 aligns the FFT (Fast Fourier Transform) timing, that is, the symbol timing, which simultaneously receives the DL signal of the parent BH and the UL signal of the child BH (or access link) using the FDM / SDM. ..
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • the IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link), so that the utilization efficiency of the frequency resource is improved as compared with the TDM mode of Rel-16. can.
  • FIG. 10A is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using FDM.
  • the IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) by using different frequency resources in the FDM method. That is, in the IAB node 5, since the reception timing of the DL signal of the parent BH and the reception timing of the UL signal of the child BH (or access link) are the same, the FFT timing, that is, the symbol timing is the same. become.
  • FIG. 10B is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using SDM.
  • the IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) using different spaces of the SDM method even if the same frequency resource is used. That is, in the IAB node 5, since the reception timing of the DL signal of the parent BH and the reception timing of the UL signal of the child BH (or access link) are the same, the FFT timing, that is, the symbol timing is the same. become.
  • FIG. 11 is an explanatory diagram showing an example of DL / UL allocation slots of IAB-MT5A and IAB-DU5B.
  • the IAB-MT5A receives the DL signal of the parent BH and transmits the UL signal of the parent BH to and from the parent node 2.
  • the IAB-DU5B receives the UL signal of the child side BH and transmits the DL signal of the child side BH to and from the child node 3. Further, the IAB-DU5B receives the UL signal of the access link and transmits the DL signal of the access link to and from the UE 4.
  • the slot arrangement information of the DL signal and the UL signal of the child side BH on the IAB-DU5B side is set based on the slot arrangement information of the DL signal and the UL signal of the parent side BH on the IAB-MT5A side.
  • the slot on the IAB-DU5B side has a slot with simultaneous reception that can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH, and a slot without simultaneous reception that receives only the UL signal of the child BH. be.
  • the transmission power amount of the UL signal of the child side BH (or access link) is set to the power mode 1 in which the normal transmission power amount that reduces the transmission power amount is sufficient in order to suppress the power interference between adjacent cells. It will be set.
  • the simultaneous reception slot adopting the SDM method the DL signal of the parent BH and the UL signal of the child BH (or access link) are simultaneously received using the same frequency resource and different spaces. become.
  • the amount of transmission power of the UL signal of the child side BH (or access link) is smaller than the amount of transmission power of the DL signal of the parent side BH, and the UL signal is affected by the amount of transmission power of the DL signal of the parent side BH.
  • the reception quality of is deteriorated.
  • the difference in the received power amount of the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH is within a predetermined range.
  • the power mode 2 is set to increase the transmission power amount of the UL signal of the child side BH (or access link).
  • the IAB node 5 can suppress the deterioration of the reception quality of the UL signal of the child side BH or the access link.
  • the transmission power amount of the UL signal of the child side BH (or access link) is set to the power mode 1 in which the normal transmission power amount is sufficient.
  • the IAB-DU5B stores a power control signal for identifying the power mode 1 or the power mode 2 in the DCI and transmits the power control signal to the child node 3 or the UE 4 according to the slot arrangement information of the child side BH or the access link.
  • the UE 4 or the child node 3 controls the transmission power amount of the UL signal of the access link or the child side BH based on the power mode 1 or the power mode 2 in the power control signal in the received DCI.
  • FIG. 12 is an explanatory diagram showing an example of slot arrangement of the child side BH (or access link).
  • the child node 3 (or UE4) sets the UL / DL signal allocation slot of the child side BH based on the slot arrangement information from the IAB-DU5B.
  • the child node 3 (or UE 4) sets a slot with simultaneous reception and a slot without simultaneous reception in the UL / DL signal allocation slot of the child side BH.
  • FIG. 13 is an explanatory diagram showing an example of transmission / reception timing of IAB-DU5B.
  • the IAB-DU5B transmits the DL signal of the child side BH (or access link) at the reference timing.
  • the IAB-DU5B determines UL timing # 2, which is the UL signal reception timing of the child BH (or access link), which is aligned with the reception timing of the DL signal of the parent BH from the parent node 2.
  • the IAB-DU5B considers the propagation delay time to the child node 3 (or the access link UE 4) of the child side BH, the UL / DL switching time of the child side BH (or the access link), and the UL timing # 2.
  • UL timing # 1 which is earlier by an integer number of symbol lengths. For convenience of explanation, for example, one slot has 14 symbols.
  • UL timing # 1 is (UL timing # 2-ls ⁇ n).
  • the IAB-DU5B transmits a control signal including instruction information regarding a symbol-based time shift of the transmission slot timing from the child node 3 or the UE 4 to the IAB-DU5B.
  • the time shift of the transmission slot timing in symbol units is, for example, an offset value from UL timing # 1.
  • the term "transmission slot timing" is used to clarify that the timing of the symbol that performs the UL signal in the slot is shifted. With Rel-15, it is possible to transmit UL signals not only from symbol # 0 in the slot but also from any symbol with any length that does not straddle the slot, but the transmission slot timing referred to here has been shifted. In this case, the UL signal is transmitted with the timing shifted without changing the start symbol or length.
  • FIG. 14 is an explanatory diagram showing an example of the timing relationship between the IAB-DU5B and the MT of the child node 3 (or UE4).
  • the TA (Timing advance) command is another control signal capable of adjusting the reception timing of the UL signal of the IAB-DU5B by instructing the child node 3 or the UE 4 to adjust the transmission timing of the UL signal by the IAB node 5.
  • the child node 3 (or UE 4) adjusts the UL signal transmission timing according to the content of the TA command.
  • the child node 3 (or UE 4) first transmits a UL signal to the IAB node 5, it transmits a RACH (Random Access Channel) preamble to the IAB node 5.
  • RACH Random Access Channel
  • the child node 3 (or UE4) transmits the RACH preamble in accordance with the reception timing of the DL signal.
  • the IAB node 5 receives the RACH preamble from the child node 3 (or UE4), the IAB node 5 transmits a RAR (Random Access Response) including an 11-bit TA command to the child node 3 (or UE4). That is, the 11-bit TA command is information regarding a time shift from the reception timing of the DL signal (that is, the transmission timing of the RACH preamble).
  • RAR Random Access Response
  • FIG. 15 is an explanatory diagram showing an example of a RAR format configuration including a TA command.
  • the TA command in RAR is used for UL timing control up to Rel-16. In this UL timing control, it is a command to adjust the reception timing of the UL signal of the child side BH (or access link) to be earlier than the transmission timing of the DL signal of the parent side BH.
  • the data packet shown in FIG. 15 has a subheader for identifying the data packet content and a payload for storing the data packet content.
  • RAR is stored in the payload.
  • the RAR shown in FIG. 15 includes a TA command, a UL grant, and the like.
  • the TA command is an 11-bit command including UL timing # 1.
  • RAR will be transmitted by PDSCH (Physical Downlink Shared Channel).
  • the IAB-DU5B transmits RAR to the child node 3 by the DL signal of the child side BH. Further, the IAB-DU5B transmits RAR to the UE 4 by the DL signal of the access link.
  • the child node 3 acquires UL timing # 1 from the TA command in the received RAR, and sets the transmission timing of the UL signal of the child side BH at UL timing # 1.
  • the UE 4 acquires UL timing # 1 from the TA command in the received RAR, and sets the transmission timing of the UL signal of the access link at UL timing # 1.
  • FIG. 16 is an explanatory diagram showing an example of the format configuration of MAC-CE including the TA command.
  • MAC-CE Media Access Control-Control Element
  • MAC-CE stores a 6-bit TA command.
  • MAC-CE will be transmitted by PDSCH.
  • the 6-bit TA command is a command used when finely adjusting the current UL transmission timing.
  • the IAB-DU5B transmits MAC-CE to the child node 3 by PDSCH of the DL signal of the child side BH. Further, the IAB-DU5B transmits the MAC-CE to the UE 4 by the PDSCH of the DL signal of the access link.
  • the child node 3 acquires the adjustment amount from the TA command in the received MAC-CE, and finely adjusts the transmission timing of the UL signal of the child side BH based on the adjustment amount. Further, the UE 4 acquires the adjustment amount from the TA command in the received MAC-CE, and finely adjusts the transmission timing of the UL signal of the access link based on the adjustment amount.
  • FIG. 17 is a flowchart showing an example of the processing operation of the IAB node 5 related to the scheduling process.
  • the IAB-MT5A in the IAB node 5 establishes a communication connection with the parent node 2 of the parent BH (step S11).
  • the IAB-DU5B in the IAB node 5 determines UL timing # 2, which is the transmission timing of the UL signal of the child BH (or access link) so as to be aligned with the reception timing of the DL signal of the parent BH (step S12). ..
  • the IAB-DU5B has only an integer number of symbols from UL timing # 2 in consideration of the propagation delay time to the child node 3 of the child side BH and the UL / DL switching time of the child side BH.
  • the early UL timing # 1 is determined (step S13).
  • the UL timing # 2 is earlier than the UL timing # 2 by an integer number of symbols. Timing # 1 will be decided.
  • the IAB-DU5B determines the DL / UL allocation slot allocation information of the child BH (or access link) as shown in FIG. 12 based on the DL / UL allocation slot allocation information of the parent BH (step S14). ..
  • the IAB-DU5B determines whether or not it has detected a RACH preamble for initiating initial access from the child node 3 (or UE4) (step 15).
  • the IAB-DU5B detects the RACH preamble
  • the IAB-DU5B stores the time shift for eliminating the difference between the reception timing of the RACH preamble and the UL timing # 1 determined in step S13 in the 11-bit TA command in RAR shown in FIG.
  • the RAR is notified to the child node 3 (or UE4) (step S16).
  • the child node 3 (or UE4) calculates the transmission side timing of UL timing # 1 from the TA command in RAR.
  • the IAB-DU5B determines whether or not it has detected the continuation of the initial access of the RRC (Radio Resource Control) connection request based on the UL timing # 1 from the child node 3 (or UE4) (step S17).
  • the IAB-DU5B detects the continuation of the initial access (step S17: Yes)
  • it establishes an RRC connection with the child node 3 (or UE4) (step S18).
  • the IAB-DU5B After establishing the RRC connection with the child node 3 (or UE4), the IAB-DU5B stores the UL timing # 2 determined in step S12 in the DCI and notifies the child node 3 (or UE4) of the DCI. (Step S19).
  • the UL timing # 2 is converted from the UL timing # 1 into an offset value. Therefore, the IAB-DU5B stores the index value described later corresponding to the offset value from UL timing # 1 in the DCI, and notifies the DCI to the child node 3 (or UE4).
  • the child node 3 (or UE4) extracts the index value in the DCI and determines the UL timing # 2 based on the offset value corresponding to the index value and the UL timing # 1.
  • the IAB-DU5B notifies the child node 3 (or UE4) of the slot arrangement information of the child side BH (or access link) including the slot with simultaneous reception determined in step S14 (step S20).
  • the child node 3 (or UE 4) transmits a UL signal to the IAB node 5 at UL timing # 2 in the case of a slot with simultaneous reception, and UL timing # 1 in the case of a slot without simultaneous reception, based on the slot arrangement information. Sends the UL signal to the IAB node 5.
  • the child node 3 uses the power mode 2 for the transmission power amount of the UL signal in the case of the slot with simultaneous reception, and the power transmission power amount of the UL signal in the case of the slot without simultaneous reception, based on the slot arrangement information. It will be set to mode 1.
  • the IAB-DU5B is a scheduling process that sets UL timing # 2 in the slot with simultaneous reception and UL timing # 1 in the slot without simultaneous reception based on the slot arrangement information of UL / DL on the child side BH (or access link). Is executed (step S21). Then, the processing operation shown in FIG. 17 is terminated. That is, the IAB-DU5B executes the scheduling process while switching the UL timings # 1 and # 2. If the IAB-DU5B does not detect the RACH preamble (step S15: No), the IAB-DU5B proceeds to step S15 until it is determined whether or not the RACH preamble has been detected. If the IAB-DU5B does not detect the continuation of the initial access (step S17: No), the IAB-DU5B proceeds to step S17 until it is determined whether or not the continuation of the initial access is detected.
  • the IAB node 5 enables simultaneous reception of the DL signal of the parent BH and the UL signal of the child BH (or access link) without impairing the connection with the IAB node 5 and the UE 4 up to Rel-16. Improve the utilization efficiency of wireless communication resources.
  • the IAB-DU5B determines the UL timing # 1 based on the UL timing # 2 in the communication (RRC connection) state. Further, the IAB-DU5B sequentially calculates an offset value for adjusting UL timing # 1 according to the movement of the UE 4 or the child node 3. The IAB-DU5B stores the index value corresponding to the offset value in the DCI and transmits the DCI to the UE 4 or the child node 3.
  • the IAB node 5 of the first embodiment the DL signal from the parent node 2 and the UL signal from the child node 3 are simultaneously received, and the UL signal reception timing U (Rx) from the child node 3 is the parent node 2.
  • the UL signal transmission timing of the child node 3 is adjusted so as to be later than the DL signal transmission timing D (Tx) of.
  • the IAB node 5 aims to improve the utilization efficiency of wireless communication resources for the parent node 2 and the child node 3.
  • the IAB node 5 can simultaneously receive the DL signal from the parent node 2 and the UL signal from the UE 4, and the reception timing U (Rx) of the UL signal from the UE 4 is the transmission timing of the DL signal at the parent node 2.
  • the transmission timing of the UL signal of the UE 4 is adjusted so as to be slower than U (Tx).
  • the IAB node 5 aims to improve the utilization efficiency of wireless communication resources for the parent node 2 and the UE 4.
  • the IAB node 5 receives the UL signal from the child node 3 that matches the reception timing of the DL signal from the parent node 2, and the UL timing # 2 that is earlier in time in symbol units from the UL timing # 2. Determine 1 and.
  • the IAB node 5 generates a control signal including instruction information regarding the amount of time shift from UL timing # 1 to UL timing # 2 in symbol units.
  • the child node 3 can transmit the UL signal at UL timing # 2 in the case of the slot with simultaneous reception, and can transmit the UL signal at UL timing # 1 in the case of the slot without simultaneous reception.
  • the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH.
  • a power control signal instructing the power mode 2 instructing an increase in the transmission power amount of the UL signal in the child node 3 is generated so that the difference in the received power amount of the above is within a predetermined range.
  • the child node 3 controls the transmission power amount of the UL signal in the power mode 2 in the case of the slot with simultaneous reception, and controls the transmission power amount of the UL signal in the power mode 1 in the case of the slot without simultaneous reception.
  • FIG. 18A is an explanatory diagram showing an example of the adjustment table 71A corresponding to 1 bit.
  • the adjustment table 71A shown in FIG. 18A is a table that manages the offset value in symbol units from UL timing # 1 for each 1-bit index value. It is assumed that the adjustment table 71A is held by the IAB-DU5B, the child node 3 and the UE 4.
  • the offset value from UL timing # 1 is a 0 symbol when the index value is “0”.
  • the offset value from UL timing # 2 is one symbol when the index value is “1”.
  • the IAB-DU5B refers to the adjustment table 71A, stores the index value according to the offset value in the DCI, and transmits the DCI to the child node 3 or the UE 4 (see TS38.212 v16.1.0).
  • the timing designation area in the DCI may be added to the area in the DCI format "0_0", "0_1" or "0_2" including the UL grants of Rel-15 and Rel-16.
  • the child node 3 or the UE 4 extracts the index value corresponding to the offset value in the DCI, and extracts the offset value corresponding to the extracted index value from the adjustment table 71A.
  • the child node 3 or the UE 4 shifts the UL timing # 1 by the offset value based on the offset value of the UL timing # 1 extracted from the adjustment table 71A, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
  • FIG. 18A for example, a case where two types of offset values of 0 symbol or 1 symbol are expressed by 1 bit is illustrated, but the present invention is not limited to 1 bit, and may be a plurality of bits, for example, 2 bits. The case expressed by is described below.
  • FIG. 18B is an explanatory diagram showing an example of a 2-bit compatible adjustment table 71B.
  • the adjustment table 71B shown in FIG. 18B is a table that manages the offset value in symbol units from UL timing # 1 for each 2-bit index value. It is assumed that the adjustment table 71B is held by the IAB-DU5B, the child node 3 and the UE 4.
  • the offset value from UL timing # 1 is a 0 symbol when the index value is “00”.
  • the offset value from UL timing # 1 is one symbol when the index value is “01”.
  • the offset value from UL timing # 1 is 2 symbols when the index value is “10”.
  • the offset value from UL timing # 1 is 3 symbols when the index value is “11”.
  • the IAB-DU5B refers to the adjustment table 71B, stores the index value corresponding to the offset value in the DCI, and transmits the DCI to the child node 3 or the UE 4.
  • the child node 3 or the UE 4 extracts the index value in the DCI and extracts the offset value corresponding to the extracted index value from the adjustment table 71B.
  • the child node 3 or the UE 4 shifts the UL timing # 1 by the offset value based on the offset value of the UL timing # 1 extracted from the adjustment table 71B, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
  • the IAB-DU5B exemplifies a case where the offset value from UL timing # 1 is stored in the DCI and the UL timing # 2 is notified to the child node 3 or the UE 4 by using the offset value from UL timing # 1.
  • UL timing # 1 and UL timing # 2 may be directly notified instead of the offset value conversion of UL timing # 1, and the mode thereof will be described below.
  • FIG. 19 is an explanatory diagram showing an example of the adjustment table 71C.
  • the adjustment table 71C shown in FIG. 19 is a table that manages UL timing for each 1-bit index value.
  • the UL timing is UL timing # 1 when the index value is “0”.
  • the UL timing is UL timing # 2 when the index value is “1”.
  • the IAB-DU5B defines the adjustment table 71C in the RRC.
  • the IAB-DU5B refers to the adjustment table 71C, stores the index value corresponding to the UL timing in the DCI, and transmits the DCI to the child node 3 or the UE 4.
  • the child node 3 or the UE 4 extracts the index value in the DCI and extracts the UL timing corresponding to the extracted index value from the adjustment table 71C.
  • the child node 3 or the UE 4 sets the UL timing extracted from the adjustment table 71C. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
  • the IAB-DU5B notifies the UL timing # 2 to the child node 3 or the UE 4 at the physical layer of DCI is illustrated, but it may be notified at the MAC layer.
  • the notification at the MAC layer is used when the transmission frequency is lower than that of the PDCCH and it is not necessary to switch in a short period of time such as one slot.
  • the IAB-DU5B may store the number of symbols to be shifted from UL timing # 1 in the MAC-CE which is an extension of the 6-bit TA command, and transmit the MAC-CE to the child node 3 or the UE 4.
  • the child node 3 or UE 4 extracts the number of symbols from MAC-CE, shifts UL timing # 1 by the number of symbols based on the extracted number of symbols, and sets UL timing # 2. Therefore, the child node 3 or the UE 4 continuously sets the UL timing # 2 until the next instruction regarding the timing arrives, without being aware of whether or not the slot has simultaneous reception.
  • the IAB-DU5B may store the number of symbols to be shifted from UL timing # 1 in the RAR in addition to the 11-bit TA command, and transmit the RAR to the child node 3 or the UE.
  • the child node 3 or the UE 4 extracts the number of symbols from the RAR, shifts the UL timing # 1 by the number of symbols based on the extracted number of symbols, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
  • FIG. 20 is an explanatory diagram showing an example of the switching table 72.
  • the switching table 72 shown in FIG. 20 is a table that manages the power mode for each 1-bit index value. It is assumed that the switching table 72 is held by the IAB-DU5B, the child node 3 and the UE 4.
  • the power mode 1 is, for example, a power mode of the transmission power amount of the UL signal of the UE 4 or the child node 3 set at the time of the slot without simultaneous reception or the simultaneous reception slot of the FDM method.
  • the power mode 1 is a normal power mode in which the amount of transmission power is suppressed to the minimum in order to suppress cross-link interference between adjacent nodes.
  • the power mode 2 is, for example, a power mode of the transmission power amount of the UL signal of the UE 4 or the child node 3 set at the time of the simultaneous reception slot of the SDM method.
  • the UL signal of the child node 3 (or UE 4) is set so that the difference between the received power amount of the DL signal of the parent BH and the UL signal of the child BH (or access link) is within a predetermined range. It is a mode to control the amount of transmission power of.
  • the amount of transmission power of the UL signal is controlled by dividing it into two terms, P0 and P1, as (P0 + P1), for example.
  • P1 is an amount that changes according to the bandwidth to be transmitted and the propagation loss between the IAB node and the child node 3 (or UE4)
  • P0 is a fixed amount uniquely determined by IAB-DU5B.
  • the amount of transmission power of the UL signal is determined by setting P0 corresponding to each of the power mode 1 and the power mode 2. Further, P0 can be set according to PUCCH and PUSCH. In FIG. 20, power control is performed according to the mode by setting P0 when transmitting the PUSCH in the power mode 1 to P0 and PUSCH1 and P0 when transmitting the PUSCH in the power mode 2 to P0 and PUSCH2 .
  • the IAB-DU5B determines the values of P 0, PUSCH 1 and P 0, PUSCH 2 in advance and notifies the child node 3 (or UE 4) by RRC.
  • the power mode is the power mode 1 when the index value is “0”.
  • the power mode is the power mode 2 when the index value is “1”.
  • the IAB-DU5B refers to the switching table 72, stores the index value corresponding to the power mode in the DCI, and transmits the DCI to the child node 3 or the UE 4.
  • the child node 3 or the UE 4 extracts the index value in the DCI and extracts the power mode corresponding to the extracted index value from the switching table 72.
  • the child node 3 or the UE 4 controls the transmission power amount of the UL signal by setting the power mode extracted from the switching table 72. That is, the IAB-DU5B is the transmission power amount of the UL signal of the child side BH (or access link) when receiving only the UL signal of the child side BH (or access link) without receiving the DL signal of the parent side BH. Is used as a reference, and whether or not it should be increased is controlled by using the index of the switching table.
  • FIG. 21A is an explanatory diagram showing an example of a switching table 72A corresponding to 1 bit.
  • the switching table 72A shown in FIG. 21A is a table that manages the setting contents of the power mode information and the UL timing information for each bit index value. When the index value is "0", the setting contents are UL timing # 1 and power mode 1. When the index value is "1”, the setting contents are UL timing # 2 and power mode 2. It is assumed that the switching table 72A is held by the IAB-DU5B, the child node 3 and the UE 4.
  • the IAB-DU5B refers to the switching table 72A, stores the index value corresponding to the setting content in the DCI, and transmits the DCI to the child node 3 or the UE 4.
  • the child node 3 or the UE 4 extracts the index value in the DCI, and extracts the setting contents corresponding to the extracted index value from the switching table 72A.
  • the child node 3 or the UE 4 sets UL timing information and power mode information, which are the setting contents extracted from the switching table 72A.
  • FIG. 21B is an explanatory diagram showing an example of a 2-bit compatible switching table 72B.
  • the switching table 72B shown in FIG. 21B is a table that manages the setting contents of the power mode information and the UL timing information for each 2-bit index value. It is assumed that the switching table 72B is held by the IAB-DU5B, the child node 3 and the UE 4.
  • the index value is "00”
  • the setting contents are UL timing # 1 and power mode 1.
  • the index value is "01”
  • the setting contents are UL timing # 2 and power mode 1 corresponding to the slot with simultaneous reception of the FDM method.
  • the index value is "10”
  • the setting contents are UL timing # 2 and power mode 2 corresponding to the slot with simultaneous reception of the SDM method.
  • the IAB-DU5B refers to the switching table 72B, stores the index value corresponding to the set content in the DCI, and transmits the DCI to the child node 3 or the UE 4.
  • the child node 3 or the UE 4 extracts the index value in the DCI, and extracts the setting contents corresponding to the extracted index value from the switching table 72B.
  • the child node 3 or the UE 4 sets UL timing information and power mode information, which are the setting contents extracted from the switching table 72B.
  • IAB-DU5B exemplifies the case where UL timing information and power mode information are notified to the child node 3 or UE 4 by using DCI of PDCCH.
  • the IAB-DU5B is not limited to the case where the UL timing information and the power mode information are notified to the child node 3 or the UE 4 by using DCI, and the IAB-DU5B periodically sets the slot type to the child node using the common PDCCH. Notify 3 or UE4. Then, the child node 3 or the UE 4 may execute UL timing adjustment or power adjustment according to the slot type in the common PDCCH.
  • the IAB-DU5B exemplifies the case where the UL timing information is adjusted in symbol units, but the UL timing information is used in mini-slot units (mini-slot: 1 symbol or more and less than 1 slot) in which the slots are divided. ),
  • the UL timing may be adjusted in units of 1/2 symbol, 1/4 symbol, etc., which are divided into symbols, and can be changed as appropriate.
  • DL / UL may be set for each mini slot and may be applied to a slot in which both DL and UL exist, and the mini slot for simultaneous reception is performed.
  • UL timing may be adjusted in the same manner.
  • the IAB-DU5B notifies the UE 4 or the child node 3 individually by PDCCH about the contents of UL timing adjustment and power adjustment.
  • the UE4 or child node uses RRC in advance to set the slot timing according to the slot type such as the slot with simultaneous reception and the transmission power amount of the UL signal. Notify 3.
  • the slot types of one or more slots may be collectively notified using the common PDCCH.
  • the UE 4 may perform one or both of the timing adjustment and the power adjustment according to the slot type of each slot.
  • all slot type specifications may be notified by RRC. Further, the slot type of some slots may be notified by RRC, and the slot type of the remaining slots may be notified by PDCCH.
  • one IAB node 5 is arranged between the parent node 2 and the child node 3, and the IAB node 5 is the DL signal of the parent BH and the child BH (or access).
  • the case where the UL signal of the link) can be received at the same time is illustrated.
  • three # 1 to # 3 IAB nodes 5 are arranged between the parent node 2 and the child node 3, and the IAB node 5 of # 2 is the DL signal from the IAB-DU5B of # 1 and # 3.
  • UL signal from IAB-MT5A is received at the same time.
  • the IAB node 5 of # 3 may simultaneously transmit and receive the UL signal from the child node 3 while transmitting the UL signal to the IAB-DU5B of # 2. Will be described below.
  • the occurrence of unnecessary cross-link interference is suppressed by aligning the transmission timings of the DL signals of the parent node 2 and the IAB node 5 with the reference timing.
  • the efficiency of wireless resource usage can be improved.
  • setting the UL signal reception timing U (Rx) from the child node 3 (or UE 4) to be later than the DL signal transmission timing D (Tx) from the parent node 2 is to be later than the child node 3 (or UE 4).
  • FIG. 22 is an explanatory diagram showing an example of the wireless communication system 1 of the second embodiment.
  • the wireless communication system 1 shown in FIG. 22 has a parent node 2, an IAB node 5 of # 1 to # 3, a child node 3, and a UE 4.
  • the IAB node 5 of # 1 is a child BH between the IAB-MT5A of # 1 that transmits and receives the DL / UL signal of the parent BH to and from the parent node 2 and the IAB node 5 of # 2. It has a # 1 IAB-DU5B that transmits and receives UL / DL signals.
  • the IAB node 5 of # 1 is a first wireless communication device.
  • the IAB node 5 of # 2 is a child between the IAB-MT5A of # 2 and the IAB-MT5A of # 3 which transmit and receive the DL / UL signal of the child side BH to and from the IAB-DU5B of # 1. It has a # 2 IAB-DU5B that transmits and receives DL / UL signals on the side BH.
  • the IAB node 5 of # 2 is a third wireless communication device.
  • the IAB node 5 of # 3 communicates with the IAB-DU5B of # 3, and between the IAB-MT5A of # 3 that transmits and receives the DL / UL signal of the child side BH, and the child node 3 (or UE4).
  • the IAB node 5 of # 3 is a fourth wireless communication device.
  • the child node 3 or UE 4 is a second wireless communication device.
  • FIG. 23 is an explanatory diagram showing an example of simultaneous transmission / reception timing of the IAB nodes 5 of # 1 to # 3 of the second embodiment.
  • the IAB node 5 of # 2 can simultaneously receive the DL signal from the IAB node 5 of # 1 and the UL signal from the IAB node 5 of # 3, and the reception timing of the UL signal from the IAB node 5 of # 3.
  • the IAB node 5 of # 2 uses DCI to transmit the first control signal to the IAB node 5 of # 3.
  • the IAB node 5 of # 3 receives the UL signal from the child node 3 (or UE4) while transmitting the UL signal to the IAB node 5 of # 2, and the UL signal from the child node 3 (or UE4).
  • the transmission timing U (Tx) of is earlier than the transmission timing U (Tx) of the UL signal to the IAB node 5 of # 2, and the UL signal reception timing U (Rx) from the child node 3 (or UE 4).
  • a second control signal that adjusts the UL signal transmission timing U (Tx) of the child node 3 (or UE 4) so that is later than the transmission timing D (Tx) of the DL signal from the IAB node 5 of # 1.
  • the IAB node 5 of # 3 uses DCI to transmit a second control signal to the child node 3 (or UE 4).
  • the IAB node 5 of # 2 can simultaneously receive the DL signal of the parent BH from the IAB-DU5B of # 1 and the UL signal of the child BH from the IAB-MT5A of # 3. Further, the IAB node 5 of # 3 can transmit the UL signal to the IAB-DU5B of # 2 and at the same time receive the UL signal from the child side BH (or access link) from the child node 3 (or UE4). That is, at the same timing, the IAB node 5 of # 3 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH, while the IAB node 5 of # 3 receives the UL signal to the IAB-DU5B of # 2. Can be sent. Further, at the same time, the UL signal from the child side BH (or access link) from the child node 3 (or UE 4) can be received.
  • the IAB node 5 of # 3 receives the UL signal while the IAB node 5 of # 2 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH.
  • the case where the UL signal from the child side BH is received at the same time as the transmission is illustrated.
  • the IAB node 5 of # 3 receives the UL signal to the IAB-DU5B of # 2.
  • the UL signal from the child side BH (or access link) from the child node 3 (or UE 4) may be received.
  • the IAB node 5 of # 3 receives the UL signal from the child side BH (or access link) from the child node 3 (or UE4) while transmitting the UL signal to the IAB-DU5B of # 2. Moreover, the UL signal transmission timing of the child node 3 is adjusted so that the UL signal transmission timing from the child node 3 is earlier than the UL signal transmission timing to the IAB node 5 of # 2. As a result, it is possible to improve the utilization efficiency of wireless communication resources related to transmission / reception at the same timing.
  • the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH.
  • a power control signal indicating the power mode 2 that increases the transmission power amount of the UL signal in the child node 3 may be generated so that the difference in the received power amount of the child node 3 falls within a predetermined range.
  • the child node 3 controls the transmission power amount of the UL signal in the power mode 2 in the case of the slot with simultaneous reception, and controls the transmission power amount of the UL signal in the power mode 1 in the case of the slot without simultaneous reception.

Abstract

This wireless communication device has a production unit and a transmission unit. The production unit can simultaneously receive a downlink signal from an upper-level wireless communication device and an uplink signal from a lower-level wireless communication device, and produces a control signal for adjusting the transmission timing of the uplink signal in the lower-level wireless communication device such that the reception timing of the uplink signal from the lower-level wireless communication device is later than the transmission timing of the downlink signal in the upper-level wireless communication device. The production unit produces a control signal pertaining to whether or not the transmission power amount of the uplink signal in the lower-level wireless communication device, when simultaneously receiving the downlink signal from the upper-level wireless communication device and the uplink signal from the lower-level wireless communication device, should be increased to be greater than the transmission power amount of the uplink signal in the lower-level wireless communication device when receiving only the uplink signal without receiving the downlink signal. The transmission unit transmits the control signal to the lower-level wireless communication device. Accordingly, it is possible to improve usage efficiency of wireless communication resources of the upper-level wireless communication device and the lower-level wireless communication device.

Description

無線通信装置、無線通信方法及び無線通信システムWireless communication device, wireless communication method and wireless communication system
 本発明は、無線通信装置、無線通信方法及び無線通信システムに関する。 The present invention relates to a wireless communication device, a wireless communication method, and a wireless communication system.
 近年、第5世代移動体通信(5G又はNR(New Radio))の通信規格では、第4世代移動体通信(4G)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データ信号レート化、大容量化、低遅延化を実現する技術が求められている。第5世代通信規格については、3GPP(3rd Generation Partnership Project)の作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年12月に初版が出されている(非特許文献12~39)。 In recent years, the communication standard for 5th generation mobile communication (5G or NR (New Radio)) has become even higher in addition to the standard technology for 4th generation mobile communication (4G) (for example, Non-Patent Documents 1 to 11). There is a demand for technology that realizes higher data signal rates, higher capacities, and lower delays. Regarding the 5th generation communication standard, technical studies are underway in the working group of 3GPP (3rd Generation Partnership Project) (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition was released in December 2017. (Non-Patent Documents 12 to 39).
 5Gでは、基地局装置と端末装置との間の通信を他の基地局装置が中継することが検討されている。この中継においては、コアネットワークと端末装置との間に配置された複数の基地局装置が無線接続し、基地局装置間の無線通信によって中継が実行される。このような5Gにおける中継は、IAB(Integrated Access and Backhaul)とも呼ばれ、マルチホップの中継が許容される。 In 5G, it is being considered that another base station device relays communication between the base station device and the terminal device. In this relay, a plurality of base station devices arranged between the core network and the terminal device are wirelessly connected, and relay is executed by wireless communication between the base station devices. Such relay in 5G is also called IAB (Integrated Access and Backhaul), and multi-hop relay is allowed.
 図24は、IABノード105を含む無線通信システム100の一例を示す説明図である。図24に示す無線通信システム100は、親ノード(Parent Node)102と、子ノード(Child Node)103と、UE(User Equipment)104と、IABノード105とを有する。IABノード105は、UE104との間のアクセスリンクと、親ノード102や子ノード103との間のBH(Backhaul)を無線通信で統合的に中継する中継装置である(RP-192188参照)。BHは、親ノード102との間の親側BHと、子ノード103との間の子側BHとを有する。 FIG. 24 is an explanatory diagram showing an example of a wireless communication system 100 including an IAB node 105. The wireless communication system 100 shown in FIG. 24 has a parent node (Parent Node) 102, a child node (Child Node) 103, a UE (User Equipment) 104, and an IAB node 105. The IAB node 105 is a relay device that comprehensively relays an access link with the UE 104 and a BH (Backhaul) between the parent node 102 and the child node 103 by wireless communication (see RP-192188). The BH has a parent BH between the parent node 102 and a child BH between the child node 103.
 IABノード105は、親側BHを使用して親ノード102からDL(Downlink)信号を受信すると共に、親側BHを使用して親ノード102へUL(Uplink)信号を送信する。また、IABノード105は、子側BHを使用して子ノード103からUL信号を受信すると共に、子側BHを使用して子ノード103へDL信号を送信する。IABノード105は、アクセスリンクを使用してUE104からUL信号を受信すると共に、アクセスリンクを使用してUE104へDL信号を送信する。 The IAB node 105 uses the parent BH to receive a DL (Downlink) signal from the parent node 102, and uses the parent BH to transmit a UL (Uplink) signal to the parent node 102. Further, the IAB node 105 uses the child side BH to receive the UL signal from the child node 103, and uses the child side BH to transmit the DL signal to the child node 103. The IAB node 105 uses the access link to receive the UL signal from the UE 104 and also uses the access link to transmit the DL signal to the UE 104.
 図25は、IABノード105の同時受信処理の一例を示す説明図である。Rel(Release)-17では、IABノード105が、図25に示すように親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号を同時受信できる無線通信システム100が提案されている(RP-193251参照)。 FIG. 25 is an explanatory diagram showing an example of simultaneous reception processing of the IAB node 105. In Rel (Release) -17, a wireless communication system 100 is proposed in which the IAB node 105 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) as shown in FIG. 25. (See RP-193251).
 図26は、IABノード105の同時受信タイミング制御の一例を示す説明図である。図26に示すIABノード105は、親ノード102のDU(Distributed Unit)からの親側BHのDL信号と、子ノード103(又はUE104)からの子側BH(又はアクセスリンク)のUL信号とが同時に受信できる。IABノード105は、親側BHのDL信号と子側BH(又はアクセスリンク)のUL信号とが同時に受信できた場合、Rel-16のTDM(Time Division Multiplexing)に比較して無線通信リソースの利用効率の向上が図れる。例えば、子側BHのUL信号の受信タイミングを他の通信スロット、例えば、親側BHのUL信号の送信タイミングに使用できるため、TDMに比較して無線通信リソースの利用効率の向上を図ることができる。 FIG. 26 is an explanatory diagram showing an example of simultaneous reception timing control of the IAB node 105. The IAB node 105 shown in FIG. 26 has a DL signal of the parent BH from the DU (Distributed Unit) of the parent node 102 and a UL signal of the child BH (or access link) from the child node 103 (or UE 104). Can be received at the same time. When the IAB node 105 can receive the DL signal of the parent BH and the UL signal of the child BH (or access link) at the same time, the IAB node 105 uses wireless communication resources as compared with TDM (Time Division Multiplexing) of Rel-16. Efficiency can be improved. For example, since the reception timing of the UL signal of the child side BH can be used for the transmission timing of the UL signal of the parent side BH, for example, it is possible to improve the utilization efficiency of the wireless communication resource as compared with the TDM. can.
特開2009-188839号公報Japanese Unexamined Patent Publication No. 2009-188839 特表2014-529226号公報Japanese Patent Publication No. 2014-528226
 図27は、IABノード105で親側BHのDL信号及び子側BHのUL信号が同時受信できない課題の一例を示す説明図である。Rel(Release)-16のULタイミング制御では、子側BHのUL信号の受信タイミングが親側BHのDL信号の送信タイミングよりも早くなるように制御している。その結果、IABノード105では、Rel-16のULタイミング制御を採用した場合、子側BHのUL(又はアクセスリンクのUL)信号の受信タイミングを親側BHのDL信号の受信タイミングに揃えることができず、同時受信処理を実現することができない。その結果、親側BH及び子側BH(又はアクセスリンク)の無線通信リソースの利用効率が低下する。 FIG. 27 is an explanatory diagram showing an example of a problem that the DL signal of the parent BH and the UL signal of the child BH cannot be simultaneously received at the IAB node 105. In the UL timing control of Rel (Release) -16, the reception timing of the UL signal of the child side BH is controlled to be earlier than the transmission timing of the DL signal of the parent side BH. As a result, in the IAB node 105, when the UL timing control of Rel-16 is adopted, the reception timing of the UL (or UL of the access link) signal of the child side BH can be aligned with the reception timing of the DL signal of the parent side BH. It cannot be done, and simultaneous reception processing cannot be realized. As a result, the utilization efficiency of the wireless communication resources of the parent side BH and the child side BH (or access link) is lowered.
 また、IABノード105は、アクセスリンクのUL信号及び親側BHのDL信号を同時に受信できた場合でも、アクセスリンクのUL信号の受信電力量が親側BHのDL信号の受信電力量に比較して小さくなる。その結果、アクセスリンクのUL信号の受信品質が低下してしまう。 Further, even if the IAB node 105 can simultaneously receive the UL signal of the access link and the DL signal of the parent BH, the received power amount of the UL signal of the access link is compared with the received power amount of the DL signal of the parent BH. Becomes smaller. As a result, the reception quality of the UL signal of the access link deteriorates.
 図28は、IABノード105でのUL信号の送信タイミングがDL信号の送信タイミングより遅れる際の課題の一例を示す説明図である。Rel-16では、無線通信システム100内の全てのセルでのDL信号の送信タイミングを揃えることで、隣接ノードでのクロスリンク干渉の発生を抑制できる。しかしながら、全てのセルでのDL信号の送信タイミングを揃えながら、IABノード105が親側BHのDL信号及び子側BHのUL信号を同時受信する場合には、UL信号の受信タイミングがDL信号の送信タイミングよりも遅れる。 FIG. 28 is an explanatory diagram showing an example of a problem when the transmission timing of the UL signal at the IAB node 105 is delayed from the transmission timing of the DL signal. In Rel-16, by aligning the transmission timings of DL signals in all cells in the wireless communication system 100, it is possible to suppress the occurrence of cross-link interference in adjacent nodes. However, when the IAB node 105 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH while aligning the transmission timings of the DL signals in all the cells, the UL signal reception timing is the DL signal. It is later than the transmission timing.
 一つの側面では、親側BHのDL信号及び子側BHのUL(又はアクセスリンクのUL)信号を同時受信して無線通信リソースの利用効率の向上を図ることができる無線通信装置等を提供することにある。 On one aspect, a wireless communication device or the like capable of simultaneously receiving a DL signal of a parent BH and an UL (or UL of an access link) signal of a child BH to improve the utilization efficiency of wireless communication resources is provided. There is something in it.
 一つの態様の無線通信装置は、生成部と、送信部とを有する。生成部は、上位側の無線通信装置からの下り信号と下位側の無線通信装置からの上り信号とが同時に受信でき、かつ、下位側の無線通信装置からの上り信号の受信タイミングが上位側の無線通信装置における下り信号の送信タイミングよりも遅くなるように、下位側の無線通信装置における上り信号の送信タイミングを調整する制御信号を生成する。送信部は、制御信号を下位側の無線通信装置に送信する。 The wireless communication device of one embodiment has a generation unit and a transmission unit. The generation unit can simultaneously receive the downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device, and the reception timing of the uplink signal from the lower wireless communication device is on the upper side. A control signal for adjusting the transmission timing of the uplink signal in the lower wireless communication device is generated so as to be later than the transmission timing of the downlink signal in the wireless communication device. The transmission unit transmits the control signal to the lower wireless communication device.
 一つの態様では、上位側の無線通信装置と下位側の無線通信装置との無線通信リソースの利用効率の向上を図ることができる。 In one aspect, it is possible to improve the utilization efficiency of wireless communication resources between the upper wireless communication device and the lower wireless communication device.
図1は、実施例1の無線通信システムの一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the wireless communication system of the first embodiment. 図2は、親ノードのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of the parent node. 図3は、親ノードの機能構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the functional configuration of the parent node. 図4は、子ノードの機能構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the functional configuration of the child node. 図5は、IABノードのハードウェア構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the hardware configuration of the IAB node. 図6は、IABノードの機能構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the functional configuration of the IAB node. 図7は、UEのハードウェア構成の一例を示すブロック図である。FIG. 7 is a block diagram showing an example of the hardware configuration of the UE. 図8は、UEの機能構成の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of the functional configuration of the UE. 図9は、IABノードの親側BHのDL信号及び子側BHのUL信号の同時受信タイミングの一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of simultaneous reception timing of the DL signal of the parent BH and the UL signal of the child BH of the IAB node. 図10Aは、FDMを使用した同時受信処理の周波数リソースの関係の一例を示す説明図である。FIG. 10A is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using FDM. 図10Bは、SDMを使用した同時受信処理の周波数リソースの関係の一例を示す説明図である。FIG. 10B is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using SDM. 図11は、IAB-MT及びIAB-DUのDL/ULの割り当てスロットの一例を示す説明図である。FIG. 11 is an explanatory diagram showing an example of DL / UL allocation slots of IAB-MT and IAB-DU. 図12は、子側BH(アクセスリンク)のスロット配置の一例を示す説明図である。FIG. 12 is an explanatory diagram showing an example of slot arrangement of the child side BH (access link). 図13は、IAB-DUの送受信タイミングの一例を示す説明図である。FIG. 13 is an explanatory diagram showing an example of transmission / reception timing of IAB-DU. 図14は、IAB-DU及び子ノード(又はUE)のMTとのタイミング関係の一例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of the timing relationship between the IAB-DU and the MT of the child node (or UE). 図15は、TAコマンドを含むRARのフォーマット構成の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of a RAR format configuration including a TA command. 図16は、TAコマンドを含むMAC-CEのフォーマット構成の一例を示す説明図である。FIG. 16 is an explanatory diagram showing an example of a MAC-CE format configuration including a TA command. 図17は、スケジューリング処理に関わるIABノードの処理動作の一例を示すフローチャートである。FIG. 17 is a flowchart showing an example of the processing operation of the IAB node related to the scheduling process. 図18Aは、1ビット対応の調整テーブルの一例を示す説明図である。FIG. 18A is an explanatory diagram showing an example of an adjustment table corresponding to 1 bit. 図18Bは、2ビット対応の調整テーブルの一例を示す説明図である。FIG. 18B is an explanatory diagram showing an example of a 2-bit compatible adjustment table. 図19は、調整テーブルの一例を示す説明図である。FIG. 19 is an explanatory diagram showing an example of the adjustment table. 図20は、切替テーブルの一例を示す説明図である。FIG. 20 is an explanatory diagram showing an example of a switching table. 図21Aは、1ビット対応の切替テーブルの一例を示す説明図である。FIG. 21A is an explanatory diagram showing an example of a switching table corresponding to 1 bit. 図21Bは、2ビット対応の切替テーブルの一例を示す説明図である。FIG. 21B is an explanatory diagram showing an example of a switching table corresponding to 2 bits. 図22は、実施例2の無線通信システムの一例を示す説明図である。FIG. 22 is an explanatory diagram showing an example of the wireless communication system of the second embodiment. 図23は、実施例2のIABノードの同時送受信タイミングの一例を示す説明図である。FIG. 23 is an explanatory diagram showing an example of simultaneous transmission / reception timing of the IAB node of the second embodiment. 図24は、IABノードを含む無線通信システムの一例を示す説明図である。FIG. 24 is an explanatory diagram showing an example of a wireless communication system including an IAB node. 図25は、IABノードの同時受信処理の一例を示す説明図である。FIG. 25 is an explanatory diagram showing an example of simultaneous reception processing of the IAB node. 図26は、IABノードの同時受信タイミング制御の一例を示す説明図である。FIG. 26 is an explanatory diagram showing an example of simultaneous reception timing control of the IAB node. 図27は、IABノードで親側BHのDL信号及び子側BHのUL信号が同時受信できない課題の一例を示す説明図である。FIG. 27 is an explanatory diagram showing an example of a problem that the DL signal of the parent BH and the UL signal of the child BH cannot be simultaneously received at the IAB node. 図28は、IABノードでのUL信号の送信タイミングがDL信号の送信タイミングより遅れる際の課題の一例を示す説明図である。FIG. 28 is an explanatory diagram showing an example of a problem when the transmission timing of the UL signal at the IAB node is delayed from the transmission timing of the DL signal.
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. The issues and examples in this specification are examples, and do not limit the scope of rights of the present application. In particular, even if the expressions described are different, the techniques of the present application can be applied even if they are technically equivalent, and the scope of rights is not limited. Then, each embodiment can be appropriately combined within a range that does not contradict the processing contents.
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。 Further, as the terms used in this specification and the technical contents described, the terms and technical contents described in the specifications and contributions may be appropriately used as standards related to communication such as 3GPP.
 以下に、本願の開示する無線通信装置、無線通信方法及び無線通信システムの実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。 Hereinafter, examples of the wireless communication device, the wireless communication method, and the wireless communication system disclosed in the present application will be described in detail with reference to the drawings. The following examples do not limit the disclosed technology.
 図1は、実施例1の無線通信システム1の一例を示す説明図である。図1に示す無線通信システム1は、親ノード2と、子ノード3と、UE(User Equipment)4と、IAB(Integrated Access and Backhaul)ノード5とを有する。親ノード2は、図示せぬ、例えば、コアネットワークとの間を有線通信で接続すると共に、IABノード5等の他のノードやUE4との間を無線通信で接続する基地局等の上位側の無線通信装置である。子ノード3は、IABノード5やUE4との間を無線通信で接続する基地局等の下位側の無線通信装置である。UE4は、親ノード2、子ノード3やIABノード5との間を無線通信で接続する、例えば、スマートフォンやタブレット等の端末装置である。 FIG. 1 is an explanatory diagram showing an example of the wireless communication system 1 of the first embodiment. The wireless communication system 1 shown in FIG. 1 has a parent node 2, a child node 3, a UE (User Equipment) 4, and an IAB (Integrated Access and Backhaul) node 5. The parent node 2 is not shown, for example, on the upper side of a base station or the like which is connected to the core network by wire communication and is connected to another node such as the IAB node 5 or the UE 4 by wireless communication. It is a wireless communication device. The child node 3 is a lower-level wireless communication device such as a base station that connects to the IAB node 5 and the UE 4 by wireless communication. The UE 4 is a terminal device such as a smartphone or a tablet that connects to the parent node 2, the child node 3, and the IAB node 5 by wireless communication.
 IABノード5は、UE4との間のアクセスリンクと、親ノード2や子ノード3との間のBH(Backhaul)とを無線通信で統合的に中継する中継装置等の無線通信装置である。BHは、親ノード2との間の親側BHと、子ノード3との間の子側BHとを有する。 The IAB node 5 is a wireless communication device such as a relay device that integrally relays an access link with the UE 4 and a BH (Backhaul) between the parent node 2 and the child node 3 by wireless communication. The BH has a parent BH between the parent node 2 and a child BH between the child node 3.
 IABノード5は、親側BHを使用して親ノード2から下り信号であるDL(Downlink)信号を受信すると共に、親側BHを使用して親ノード2へUL(Uplink)信号を送信する。また、IABノード5は、子側BHを使用して子ノード3から上り信号であるUL信号を受信すると共に、子側BHを使用して子ノード3へDL信号を送信する。IABノード5は、アクセスリンクを使用してUE4から上り信号であるUL信号を受信すると共に、アクセスリンクを使用してUE4へDL信号を送信する。 The IAB node 5 uses the parent BH to receive a DL (Downlink) signal which is a downlink signal from the parent node 2, and also uses the parent BH to transmit a UL (Uplink) signal to the parent node 2. Further, the IAB node 5 uses the child side BH to receive the UL signal which is an uplink signal from the child node 3, and also uses the child side BH to transmit the DL signal to the child node 3. The IAB node 5 uses the access link to receive the UL signal, which is an uplink signal, from the UE 4, and also uses the access link to transmit the DL signal to the UE 4.
 図2は、親ノード2のハードウェア構成の一例を示すブロック図である。尚、説明の便宜上、親ノード2について説明するが、子ノード3も親ノード2のハードウェア構成と実質同一の構成であるため、同一符号を付すことで、その重複する構成及び動作の説明については省略する。図2に示す親ノード2は、アンテナ21と、無線機22と、ネットワークIF23と、補助記憶装置24と、主記憶装置25と、プロセッサ26とを有する。無線機22は、アンテナ21を通じて無線信号を送受信する通信機器である。ネットワークIF23は、図示せぬ上位局や他の無線基地局との間の通信を司るIFある。補助記憶装置24は、各種プログラム等を記憶する装置である。主記憶装置25は、各種情報を記憶する装置である。プロセッサ26は、例えば、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)やDSP(Digital Signal Processor)等を備えて、親ノード2全体を制御する。 FIG. 2 is a block diagram showing an example of the hardware configuration of the parent node 2. For convenience of explanation, the parent node 2 will be described, but since the child node 3 also has substantially the same configuration as the hardware configuration of the parent node 2, by assigning the same reference numerals, the description of the overlapping configuration and operation will be described. Is omitted. The parent node 2 shown in FIG. 2 has an antenna 21, a radio 22, a network IF 23, an auxiliary storage device 24, a main storage device 25, and a processor 26. The radio 22 is a communication device that transmits and receives radio signals through the antenna 21. The network IF 23 is an IF that controls communication with a higher-level station (not shown) or another radio base station. The auxiliary storage device 24 is a device that stores various programs and the like. The main storage device 25 is a device that stores various types of information. The processor 26 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire parent node 2.
 図3は、親ノード2の機能構成の一例を示すブロック図である。図3に示す親ノード2は、ネットワークIF部23Aと、親側無線通信部22Aと、親側受信信号ベースバンド処理部26Aと、親側送信信号ベースバンド処理部26Bと、親側制御部26Cとを有する。ネットワークIF部23Aは、上位局や他の無線基地局との間の通信を司る、ネットワークIF23の機能である。親側無線通信部22Aは、親ノード2の無線通信を司る、無線機22の機能である。親側受信信号ベースバンド処理部26Aは、親ノード2側の受信信号のベースバンド処理を司る、プロセッサ26の一部の機能である。親側送信信号ベースバンド処理部26Bは、親ノード2側の送信信号のベースバンド処理を司る、プロセッサ26の一部の機能である。親側制御部26Cは、親ノード2全体の制御を司る、プロセッサ26の一部の機能である。 FIG. 3 is a block diagram showing an example of the functional configuration of the parent node 2. The parent node 2 shown in FIG. 3 includes a network IF unit 23A, a parent wireless communication unit 22A, a parent reception signal baseband processing unit 26A, a parent transmission signal baseband processing unit 26B, and a parent control unit 26C. And have. The network IF unit 23A is a function of the network IF 23 that controls communication with a higher-level station and another radio base station. The parent side wireless communication unit 22A is a function of the radio device 22 that controls the wireless communication of the parent node 2. The parent-side received signal baseband processing unit 26A is a part of the function of the processor 26 that controls the baseband processing of the received signal on the parent node 2 side. The parent side transmission signal baseband processing unit 26B is a part of the function of the processor 26 that controls the baseband processing of the transmission signal on the parent node 2 side. The parent side control unit 26C is a part of the function of the processor 26 that controls the entire parent node 2.
 図4は、子ノード3の機能構成の一例を示すブロック図である。図4に示す子ノード3は、ネットワークIF部33と、子側無線通信部32と、子側受信信号ベースバンド処理部36Aと、子側送信信号ベースバンド処理部36Bと、子側制御部36Cとを有する。ネットワークIF部33は、上位局や他の無線基地局との間の通信を司る、ネットワークIF23の機能である。子側無線通信部32は、子ノード3の無線通信を司る、無線機22の機能である。子側受信信号ベースバンド処理部36Aは、子ノード3側の受信信号のベースバンド処理を司る、プロセッサ26の一部の機能である。子側受信信号ベースバンド処理部36Aは、例えば、DCI(Downlink Control Information)、MAC CE、RRC信号、データ等を含む受信信号に対してベースバンド処理を実行する信号処理部である。DCIは、PDCCH(Physical Downlink Control Channel)内に含まれる情報である。MAC CE、RRC信号、データは、PDSCH(Physical Downlink Shared Channel)内に含まれる情報である。子側送信信号ベースバンド処理部36Bは、子ノード3側の送信信号のベースバンド処理を司る、プロセッサ26の一部の機能である。子側送信信号ベースバンド処理部36Bは、例えばデータ、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)、送信タイミングや送信電力等に関わる送信信号のベースバンド処理を実行する処理部である。子側制御部36Cは、子ノード3全体の制御を司る、プロセッサ26の一部の機能である。 FIG. 4 is a block diagram showing an example of the functional configuration of the child node 3. The child node 3 shown in FIG. 4 includes a network IF unit 33, a child side wireless communication unit 32, a child side received signal baseband processing unit 36A, a child side transmission signal baseband processing unit 36B, and a child side control unit 36C. And have. The network IF unit 33 is a function of the network IF 23 that controls communication with a higher-level station and another radio base station. The child side wireless communication unit 32 is a function of the radio device 22 that controls the wireless communication of the child node 3. The child-side received signal baseband processing unit 36A is a part of the function of the processor 26 that controls the baseband processing of the received signal on the child node 3 side. The child-side received signal baseband processing unit 36A is a signal processing unit that executes baseband processing on a received signal including, for example, DCI (Downlink Control Information), MAC CE, RRC signal, data, and the like. DCI is information contained in PDCCH (Physical Downlink Control Channel). MAC CE, RRC signals, and data are information contained in PDSCH (Physical Downlink Shared Channel). The child side transmission signal baseband processing unit 36B is a part of the function of the processor 26 that controls the baseband processing of the transmission signal on the child node 3 side. The child-side transmission signal baseband processing unit 36B is a processing unit that executes baseband processing of transmission signals related to data, PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), transmission timing, transmission power, etc., for example. be. The child-side control unit 36C is a part of the function of the processor 26 that controls the entire child node 3.
 図5は、IABノード5のハードウェア構成の一例を示すブロック図である。図5に示すIABノード5は、アンテナ51と、無線機52と、補助記憶装置53と、主記憶装置54と、プロセッサ55とを有する。無線機52は、アンテナ51を通じて無線信号を送受信する。補助記憶装置53は、各種プログラム等を記憶する装置である。主記憶装置54は、各種情報を記憶する装置である。プロセッサ55は、例えば、CPU、FPGAやDSP等を備えて、IABノード5全体を制御する。 FIG. 5 is a block diagram showing an example of the hardware configuration of the IAB node 5. The IAB node 5 shown in FIG. 5 has an antenna 51, a radio 52, an auxiliary storage device 53, a main storage device 54, and a processor 55. The radio 52 transmits and receives radio signals through the antenna 51. The auxiliary storage device 53 is a device that stores various programs and the like. The main storage device 54 is a device that stores various types of information. The processor 55 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire IAB node 5.
 図6は、IABノード5の機能構成の一例を示すブロック図である。図6に示すIABノード5は、IAB側無線通信部52Aと、IAB側受信信号ベースバンド処理部55Aと、IAB側送信信号ベースバンド処理部55Bと、IAB側制御部55Cとを有する。IAB側無線通信部52Aは、IABノード5の無線通信を司る、無線機52の機能である。IAB側受信信号ベースバンド処理部55Aは、IABノード5側の受信信号のベースバンド処理を司る、プロセッサ55の一部の機能である。IAB側送信信号ベースバンド処理部55Bは、IABノード5側の送信信号のベースバンド処理を司る、プロセッサ55の一部の機能である。IAB側制御部55Cは、IABノード5全体の制御を司る、プロセッサ55の機能である。 FIG. 6 is a block diagram showing an example of the functional configuration of the IAB node 5. The IAB node 5 shown in FIG. 6 has an IAB side wireless communication unit 52A, an IAB side reception signal baseband processing unit 55A, an IAB side transmission signal baseband processing unit 55B, and an IAB side control unit 55C. The IAB side wireless communication unit 52A is a function of the wireless device 52 that controls the wireless communication of the IAB node 5. The IAB side received signal baseband processing unit 55A is a part of the function of the processor 55 that controls the baseband processing of the received signal on the IAB node 5 side. The IAB side transmission signal baseband processing unit 55B is a part of the function of the processor 55 that controls the baseband processing of the transmission signal on the IAB node 5 side. The IAB side control unit 55C is a function of the processor 55 that controls the entire IAB node 5.
 IAB側受信信号ベースバンド処理部55Aは、MT(Mobile Termination)受信信号処理部551Aと、DU(Distributed Unit)受信信号処理部552Aとを有する。MT受信信号処理部551Aは、親ノード2からの親側BHのDL信号の受信処理を司る処理部である。MT受信信号処理部551Aは、親側BHのDL信号の受信タイミング、受信電力及びスロット配置をIAB側制御部55Cに通知する。DU受信信号処理部552Aは、子ノード3からの子側BH又はUE4からのアクセスリンクのUL信号の受信処理を司る処理部である。DU受信信号処理部552Aは、子側BH及びアクセスリンクのUL信号の受信タイミング、受信電力及び送信要求をIAB側制御部55Cに通知する。IAB側制御部55Cは、子側BH又はアクセスリンクのUL信号に必要なタイミング制御、送信電力制御、MCS、リソース割当等に関する指示をDU受信信号処理部552Aに通知する。IAB側制御部55Cは、子側BH又はアクセスリンクのタイミング制御、送信電力制御、MCS、リソース割当等に関する指示をDU送信信号処理部552Bに通知する。 The IAB side reception signal baseband processing unit 55A has an MT (Mobile Termination) reception signal processing unit 551A and a DU (Distributed Unit) reception signal processing unit 552A. The MT reception signal processing unit 551A is a processing unit that controls reception processing of the DL signal of the parent side BH from the parent node 2. The MT reception signal processing unit 551A notifies the IAB side control unit 55C of the reception timing, reception power, and slot arrangement of the DL signal of the parent side BH. The DU reception signal processing unit 552A is a processing unit that controls the reception processing of the UL signal of the access link from the child side BH from the child node 3 or the UE 4. The DU reception signal processing unit 552A notifies the IAB side control unit 55C of the reception timing, reception power, and transmission request of the UL signal of the child side BH and the access link. The IAB side control unit 55C notifies the DU reception signal processing unit 552A of instructions regarding timing control, transmission power control, MCS, resource allocation, etc. required for the UL signal of the child side BH or the access link. The IAB side control unit 55C notifies the DU transmission signal processing unit 552B of instructions regarding timing control, transmission power control, MCS, resource allocation, etc. of the child side BH or the access link.
 IAB側送信信号ベースバンド処理部55Bは、MT送信信号処理部551Bと、DU送信信号処理部552Bとを有する。MT送信信号処理部551Bは、親ノード2への親側BHのUL信号の送信処理を司る処理部である。DU送信信号処理部552Bは、子ノード3への子側BH又はUE4へのアクセスリンクのDL信号の送信処理を司る処理部である。尚、MT受信信号処理部551A及びMT送信信号処理部551Bは、親側BHの無線通信を司るIAB-MT5Aを構成する。DU受信信号処理部552A及びDU送信信号処理部552Bは、子側BH又はアクセスリンクの無線通信を司るIAB-DU5Bを構成する。 The IAB side transmission signal baseband processing unit 55B has an MT transmission signal processing unit 551B and a DU transmission signal processing unit 552B. The MT transmission signal processing unit 551B is a processing unit that controls transmission processing of the UL signal of the parent BH to the parent node 2. The DU transmission signal processing unit 552B is a processing unit that controls the transmission processing of the DL signal of the child side BH to the child node 3 or the access link to the UE 4. The MT reception signal processing unit 551A and the MT transmission signal processing unit 551B constitute an IAB-MT5A that controls wireless communication of the parent BH. The DU reception signal processing unit 552A and the DU transmission signal processing unit 552B constitute an IAB-DU5B that controls wireless communication of the child side BH or the access link.
 図7は、UE4のハードウェア構成の一例を示すブロック図である。図7に示すUE4は、アンテナ41と、無線機42と、表示装置43と、補助記憶装置44と、主記憶装置45と、プロセッサ46とを有する。無線機42は、アンテナ41を通じて無線信号を送受信する。表示装置43は、各種情報を表示出力する、例えばディスプレイ装置等の出力IFである。補助記憶装置44は、各種プログラム等を記憶する装置である。主記憶装置45は、各種情報を記憶する装置である。プロセッサ46は、例えば、CPU、FPGAやDSP等を備えて、UE4全体を制御する。 FIG. 7 is a block diagram showing an example of the hardware configuration of UE4. The UE 4 shown in FIG. 7 has an antenna 41, a radio 42, a display device 43, an auxiliary storage device 44, a main storage device 45, and a processor 46. The radio 42 transmits and receives radio signals through the antenna 41. The display device 43 is an output IF of, for example, a display device that displays and outputs various information. The auxiliary storage device 44 is a device that stores various programs and the like. The main storage device 45 is a device that stores various types of information. The processor 46 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire UE 4.
 図8は、UE4の機能構成の一例を示すブロック図である。図8に示すUE4は、UE側無線通信部42Aと、UE側受信信号ベースバンド処理部46Aと、UE側送信信号ベースバンド処理部46Bと、UE側制御部46Cとを有する。UE側無線通信部42Aは、UE4の無線通信を司る、無線機42の機能である。UE側受信信号ベースバンド処理部46Aは、UE4側の受信信号のベースバンド処理を司る、プロセッサ46の一部の機能である。UE側受信信号ベースバンド処理部46Aは、例えば、DCI(Downlink Control Information)、MAC CE、RRC信号、データ等を含む受信信号に対してベースバンド処理を実行する信号処理部である。DCIは、PDCCH(Physical Downlink Control Channel)内に含まれる情報である。MAC CE、RRC信号、データは、PDSCH(Physical Downlink Shared Channel)内に含まれる情報である。UE側送信信号ベースバンド処理部46Bは、UE4側の送信信号のベースバンド処理を司る、プロセッサ46の一部の機能である。UE側送信信号ベースバンド処理部46Bは、例えばデータ、PUSCH、PUCCH、送信タイミングや送信電力等に関わる送信信号のベースバンド処理を実行する処理部である。UE側制御部46Cは、UE4全体の制御を司る、プロセッサ46の一部の機能である。 FIG. 8 is a block diagram showing an example of the functional configuration of the UE 4. The UE 4 shown in FIG. 8 has a UE-side wireless communication unit 42A, a UE-side received signal baseband processing unit 46A, a UE-side transmission signal baseband processing unit 46B, and a UE-side control unit 46C. The UE-side wireless communication unit 42A is a function of the radio 42 that controls the wireless communication of the UE 4. The UE-side received signal baseband processing unit 46A is a part of the function of the processor 46 that controls the baseband processing of the received signal on the UE4 side. The UE-side received signal baseband processing unit 46A is a signal processing unit that executes baseband processing on a received signal including, for example, DCI (Downlink Control Information), MAC CE, RRC signal, data, and the like. DCI is information contained in PDCCH (Physical Downlink Control Channel). MAC CE, RRC signals, and data are information contained in PDSCH (Physical Downlink Shared Channel). The UE-side transmission signal baseband processing unit 46B is a part of the function of the processor 46 that controls the baseband processing of the transmission signal on the UE4 side. The UE-side transmission signal baseband processing unit 46B is a processing unit that executes baseband processing of transmission signals related to, for example, data, PUSCH, PUCCH, transmission timing, transmission power, and the like. The UE-side control unit 46C is a part of the function of the processor 46 that controls the entire UE 4.
 図6に示すIABノード5内のIAB側制御部55Cは、生成部551C及び送信部552Cを有する。生成部551Cは、上位側の無線通信装置である親ノード2からのDL信号と下位側の無線通信装置である子ノード3(又はUE4)からのUL信号とが同時に受信でき、かつ、子ノード3(又はUE4)からのUL信号の受信タイミングU(Rx)が親ノード2からのDL信号の送信タイミングD(Tx)よりも遅くなるように、子ノード3(又はUE4)からのUL信号の送信タイミングU(tx)を調整する制御信号を生成する。送信部552Cは、IAB側送信信号ベースバンド処理部55Bを通じて、制御信号を子ノード3(又はUE4)に送信する。 The IAB side control unit 55C in the IAB node 5 shown in FIG. 6 has a generation unit 551C and a transmission unit 552C. The generation unit 551C can simultaneously receive the DL signal from the parent node 2 which is the upper wireless communication device and the UL signal from the child node 3 (or UE 4) which is the lower wireless communication device, and the child node. The UL signal from the child node 3 (or UE 4) is delayed so that the UL signal reception timing U (Rx) from the 3 (or UE 4) is later than the DL signal transmission timing D (Tx) from the parent node 2. A control signal for adjusting the transmission timing U (tx) is generated. The transmission unit 552C transmits a control signal to the child node 3 (or UE 4) through the IAB side transmission signal baseband processing unit 55B.
 制御信号は、子ノード3(又はUE4)からのUL信号の送信スロットタイミングのシンボル単位での時間シフトに関する指示情報を含む。生成部551Cは、親ノード2からのDL信号の受信タイミングに一致する子ノード3(又はUE4)からのUL信号を受信する第2のタイミングと、第2のタイミングからシンボル単位で時間的に早くなる第1のタイミングとを決定する。第2のタイミングは、後述するULタイミング#2、第1のタイミングは、後述するULタイミング#1である。更に、生成部551Cは、第1のタイミングからシンボル単位での第2のタイミングへの時間シフト量に関する指示情報を含む制御信号を生成する。送信部552Cは、制御信号をDCIに格納して子ノード3(又はUE4)に送信する。 The control signal includes instruction information regarding a time shift of the transmission slot timing of the UL signal from the child node 3 (or UE 4) in symbol units. The generation unit 551C receives the UL signal from the child node 3 (or UE 4) that matches the reception timing of the DL signal from the parent node 2, and the second timing is earlier in time in symbol units. The first timing is determined. The second timing is UL timing # 2, which will be described later, and the first timing is UL timing # 1, which will be described later. Further, the generation unit 551C generates a control signal including instruction information regarding the amount of time shift from the first timing to the second timing in symbol units. The transmission unit 552C stores the control signal in the DCI and transmits it to the child node 3 (or UE4).
 生成部551Cは、親ノード2からのDL信号と子ノード3(又はUE4)からのUL信号とが同時に受信する際の子ノード3(又はUE4)におけるUL信号の送信電力量が親ノード2からのDL信号の送信電力量と同じになるようにUL信号の送信電力量を指示する電力指示情報を含む電力制御信号を生成する。そして、送信部552Cは、電力制御信号をDCIに格納して子ノード3(又はUE4)に送信する。 In the generation unit 551C, the transmission power amount of the UL signal in the child node 3 (or UE4) when the DL signal from the parent node 2 and the UL signal from the child node 3 (or UE4) are simultaneously received is from the parent node 2. A power control signal including power instruction information indicating the transmission power amount of the UL signal is generated so as to be the same as the transmission power amount of the DL signal of. Then, the transmission unit 552C stores the power control signal in the DCI and transmits it to the child node 3 (or UE4).
 図9は、IABノード5の親側BHのDL信号及び子側BHのUL信号の同時受信タイミング制御の一例を示す説明図である。親ノード2のDUは、親側BHのDL信号を基準タイミングに基づき、親側BHのDL信号をIABノード5に送信する。IABノード5のIAB-MT5Aは、親ノード2から親側BHのDL信号を受信すると共に、IABノード5のIAB-DU5Bは、子ノード3から子側BHのUL信号を受信する。IABノード5は、親ノード2から親側BHのDL信号を受信するタイミングで子ノード3から子側BHのUL信号又はUE4からアクセスリンクのUL信号を受信するように、子ノード3又はUE4のUL信号の受信タイミングを制御する。IABノード5は、子ノード3(又はUE4)からのUL信号の受信タイミングU(Rx)が親ノード2からのDL信号の送信タイミングD(Tx)よりも遅くなるように、子ノード3(又はUE4)からのUL信号の送信タイミングU(tx)を調整している。 FIG. 9 is an explanatory diagram showing an example of simultaneous reception timing control of the DL signal of the parent BH and the UL signal of the child BH of the IAB node 5. The DU of the parent node 2 transmits the DL signal of the parent BH to the IAB node 5 based on the reference timing of the DL signal of the parent BH. The IAB-MT5A of the IAB node 5 receives the DL signal of the parent BH from the parent node 2, and the IAB-DU5B of the IAB node 5 receives the UL signal of the child BH from the child node 3. The IAB node 5 receives the UL signal of the child BH from the child node 3 or the UL signal of the access link from the UE 4 at the timing of receiving the DL signal of the parent BH from the parent node 2. Controls the UL signal reception timing. The IAB node 5 has a child node 3 (or a child node 3) so that the UL signal reception timing U (Rx) from the child node 3 (or UE 4) is later than the DL signal transmission timing D (Tx) from the parent node 2. The transmission timing U (tx) of the UL signal from the UE 4) is adjusted.
 IABノード5では、親側BHのDL信号と、子側BH又はアクセスリンクのUL信号とが同時に受信できるように、例えば、FDM(Frequency Division Multiplexing)又はSDM(Space Division Multiplexing)を使用する。そこで、IABノード5では、FDM/SDMを用いて親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号を同時受信するFFT(Fast Fourier Transform)タイミング、すなわちシンボルタイミングを揃えている。その結果、IABノード5は、親側BHのDL信号と子側BH(又はアクセスリンク)のUL信号とが同時受信できるため、Rel-16のTDMモードに比較して周波数リソースの利用効率を改善できる。 The IAB node 5 uses, for example, FDM (Frequency Division Multiplexing) or SDM (Space Division Multiplexing) so that the DL signal of the parent BH and the UL signal of the child BH or the access link can be received at the same time. Therefore, the IAB node 5 aligns the FFT (Fast Fourier Transform) timing, that is, the symbol timing, which simultaneously receives the DL signal of the parent BH and the UL signal of the child BH (or access link) using the FDM / SDM. .. As a result, the IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link), so that the utilization efficiency of the frequency resource is improved as compared with the TDM mode of Rel-16. can.
 図10Aは、FDMを使用した同時受信処理の周波数リソースの関係の一例を示す説明図である。IABノード5は、FDM方式で異なる周波数リソースを使用して、親側BHのDL信号と、子側BH(又はアクセスリンク)のUL信号とを同時に受信できる。つまり、IABノード5は、親側BHのDL信号の受信タイミングと、子側BH(又はアクセスリンク)のUL信号の受信タイミングとが一致しているため、FFTタイミング、すなわちシンボルタイミングが一致することになる。 FIG. 10A is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using FDM. The IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) by using different frequency resources in the FDM method. That is, in the IAB node 5, since the reception timing of the DL signal of the parent BH and the reception timing of the UL signal of the child BH (or access link) are the same, the FFT timing, that is, the symbol timing is the same. become.
 図10Bは、SDMを使用した同時受信処理の周波数リソースの関係の一例を示す説明図である。IABノード5は、同じ周波数リソースを使用したとしても、SDM方式の異なる空間を使用して、親側BHのDL信号と、子側BH(又はアクセスリンク)のUL信号とを同時に受信できる。つまり、IABノード5は、親側BHのDL信号の受信タイミングと、子側BH(又はアクセスリンク)のUL信号の受信タイミングとが一致しているため、FFTタイミング、すなわちシンボルタイミングが一致することになる。 FIG. 10B is an explanatory diagram showing an example of the relationship between frequency resources of simultaneous reception processing using SDM. The IAB node 5 can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH (or access link) using different spaces of the SDM method even if the same frequency resource is used. That is, in the IAB node 5, since the reception timing of the DL signal of the parent BH and the reception timing of the UL signal of the child BH (or access link) are the same, the FFT timing, that is, the symbol timing is the same. become.
 図11は、IAB-MT5A及びIAB-DU5BのDL/ULの割り当てスロットの一例を示す説明図である。IAB-MT5Aは、親ノード2との間で、親側BHのDL信号を受信すると共に、親側BHのUL信号を送信する。IAB-DU5Bは、子ノード3との間で、子側BHのUL信号を受信すると共に、子側BHのDL信号を送信する。更に、IAB-DU5Bは、UE4との間で、アクセスリンクのUL信号を受信すると共に、アクセスリンクのDL信号を送信する。 FIG. 11 is an explanatory diagram showing an example of DL / UL allocation slots of IAB-MT5A and IAB-DU5B. The IAB-MT5A receives the DL signal of the parent BH and transmits the UL signal of the parent BH to and from the parent node 2. The IAB-DU5B receives the UL signal of the child side BH and transmits the DL signal of the child side BH to and from the child node 3. Further, the IAB-DU5B receives the UL signal of the access link and transmits the DL signal of the access link to and from the UE 4.
 IABノード5では、IAB-MT5A側の親側BHのDL信号及びUL信号のスロット配置情報に基づき、IAB-DU5B側の子側BHのDL信号及びUL信号のスロット配置情報を設定する。そして、IAB-DU5B側のスロットには、親側BHのDL信号及び子側BHのUL信号を同時受信できる同時受信ありスロットと、子側BHのUL信号のみを受信する同時受信なしスロットとがある。 In the IAB node 5, the slot arrangement information of the DL signal and the UL signal of the child side BH on the IAB-DU5B side is set based on the slot arrangement information of the DL signal and the UL signal of the parent side BH on the IAB-MT5A side. The slot on the IAB-DU5B side has a slot with simultaneous reception that can simultaneously receive the DL signal of the parent BH and the UL signal of the child BH, and a slot without simultaneous reception that receives only the UL signal of the child BH. be.
 同時受信ありスロットでは、FDM方式を採用した場合、異なる周波数リソースを使用して親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号を同時受信することになる。この場合、子側BH(又はアクセスリンク)のUL信号の送信電力量は、隣接するセル間の電力干渉を抑制するために、送信電力量を小さくする通常の送信電力量で済む電力モード1に設定することになる。 In the slot with simultaneous reception, when the FDM method is adopted, the DL signal of the parent BH and the UL signal of the child BH (or access link) are simultaneously received using different frequency resources. In this case, the transmission power amount of the UL signal of the child side BH (or access link) is set to the power mode 1 in which the normal transmission power amount that reduces the transmission power amount is sufficient in order to suppress the power interference between adjacent cells. It will be set.
 これに対して、SDM方式を採用した同時受信スロットでは、同一周波数リソース、かつ、異なる空間を使用して親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号を同時受信することになる。しかしながら、子側BH(又はアクセスリンク)のUL信号の送信電力量は、親側BHのDL信号の送信電力量に比較して小さく、親側BHのDL信号の送信電力量の影響でUL信号の受信品質が低下することになる。そこで、SDM方式を採用した同時受信ありスロットでは、親側BHのDL信号の受信電力量に対する子側BH(又はアクセスリンク)のUL信号の受信電力量の差分が予め決められた範囲に収まるように子側BH(又はアクセスリンク)のUL信号の送信電力量を大きくする電力モード2に設定する。その結果、IABノード5は、子側BH又はアクセスリンクのUL信号の受信品質の低下を抑制できる。 On the other hand, in the simultaneous reception slot adopting the SDM method, the DL signal of the parent BH and the UL signal of the child BH (or access link) are simultaneously received using the same frequency resource and different spaces. become. However, the amount of transmission power of the UL signal of the child side BH (or access link) is smaller than the amount of transmission power of the DL signal of the parent side BH, and the UL signal is affected by the amount of transmission power of the DL signal of the parent side BH. The reception quality of is deteriorated. Therefore, in the slot with simultaneous reception that adopts the SDM method, the difference in the received power amount of the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH is within a predetermined range. The power mode 2 is set to increase the transmission power amount of the UL signal of the child side BH (or access link). As a result, the IAB node 5 can suppress the deterioration of the reception quality of the UL signal of the child side BH or the access link.
 また、同時受信なしスロットでは、子側BH(又はアクセスリンク)のUL信号の送信電力量を通常の送信電力量で済む電力モード1に設定することになる。IAB-DU5Bは、子側BH又はアクセスリンクのスロット配置情報に応じて、電力モード1又は電力モード2を識別する電力制御信号をDCIに格納して子ノード3又はUE4に送信することになる。UE4又は子ノード3は、受信したDCI内の電力制御信号内の電力モード1又は電力モード2に基づき、アクセスリンク又は子側BHのUL信号の送信電力量を制御することになる。 Further, in the slot without simultaneous reception, the transmission power amount of the UL signal of the child side BH (or access link) is set to the power mode 1 in which the normal transmission power amount is sufficient. The IAB-DU5B stores a power control signal for identifying the power mode 1 or the power mode 2 in the DCI and transmits the power control signal to the child node 3 or the UE 4 according to the slot arrangement information of the child side BH or the access link. The UE 4 or the child node 3 controls the transmission power amount of the UL signal of the access link or the child side BH based on the power mode 1 or the power mode 2 in the power control signal in the received DCI.
 図12は、子側BH(又はアクセスリンク)のスロット配置の一例を示す説明図である。子ノード3(又はUE4)は、IAB-DU5Bからのスロット配置情報に基づき、子側BHのUL/DL信号の割り当てスロットを設定する。子ノード3(又はUE4)は、子側BHのUL/DL信号の割り当てスロット内の同時受信ありスロット及び同時受信なしスロットを設定する。 FIG. 12 is an explanatory diagram showing an example of slot arrangement of the child side BH (or access link). The child node 3 (or UE4) sets the UL / DL signal allocation slot of the child side BH based on the slot arrangement information from the IAB-DU5B. The child node 3 (or UE 4) sets a slot with simultaneous reception and a slot without simultaneous reception in the UL / DL signal allocation slot of the child side BH.
 図13は、IAB-DU5Bの送受信タイミングの一例を示す説明図である。IAB-DU5Bは、子側BH(又はアクセスリンク)のDL信号を基準タイミングで送信する。IAB-DU5Bは、親ノード2から親側BHのDL信号の受信タイミングに揃えた、子側BH(又はアクセスリンク)のUL信号の受信タイミングであるULタイミング#2を決定する。IAB-DU5Bは、子側BHの子ノード3(又はアクセスリンクのUE4)までの伝搬遅延時間及び子側BH(又はアクセスリンク)のUL/DLの切替時間等を考慮して、ULタイミング#2から整数個のシンボル長だけ早いULタイミング#1を決定する。尚、説明の便宜上、例えば、1スロットは14シンボルとする。シンボル長ls及び整数n個とした場合、ULタイミング#1は、(ULタイミング#2-ls×n)とする。 FIG. 13 is an explanatory diagram showing an example of transmission / reception timing of IAB-DU5B. The IAB-DU5B transmits the DL signal of the child side BH (or access link) at the reference timing. The IAB-DU5B determines UL timing # 2, which is the UL signal reception timing of the child BH (or access link), which is aligned with the reception timing of the DL signal of the parent BH from the parent node 2. The IAB-DU5B considers the propagation delay time to the child node 3 (or the access link UE 4) of the child side BH, the UL / DL switching time of the child side BH (or the access link), and the UL timing # 2. Determines UL timing # 1 which is earlier by an integer number of symbol lengths. For convenience of explanation, for example, one slot has 14 symbols. When the symbol length is ls and the number of integers is n, UL timing # 1 is (UL timing # 2-ls × n).
 また、IAB-DU5Bは、子ノード3又はUE4からIAB-DU5Bへの送信スロットタイミングのシンボル単位の時間シフトに関する指示情報を含む制御信号を送信する。尚、送信スロットタイミングのシンボル単位の時間シフトとは、例えば、ULタイミング#1からのオフセット値である。尚、送信スロットタイミングと表現しているのは、当該スロットにおいてUL信号を行うシンボルについてタイミングをシフトしていることを明確にするためである。Rel-15ではスロットの中のシンボル#0だけではなく、任意のシンボルからスロットを跨らない任意の長さでUL信号を送信することが可能であるが、ここでいう送信スロットタイミングをシフトした場合、UL信号の開始シンボルや長さを変えることなくタイミングだけシフトして送信する。 Further, the IAB-DU5B transmits a control signal including instruction information regarding a symbol-based time shift of the transmission slot timing from the child node 3 or the UE 4 to the IAB-DU5B. The time shift of the transmission slot timing in symbol units is, for example, an offset value from UL timing # 1. The term "transmission slot timing" is used to clarify that the timing of the symbol that performs the UL signal in the slot is shifted. With Rel-15, it is possible to transmit UL signals not only from symbol # 0 in the slot but also from any symbol with any length that does not straddle the slot, but the transmission slot timing referred to here has been shifted. In this case, the UL signal is transmitted with the timing shifted without changing the start symbol or length.
 図14は、IAB-DU5B及び子ノード3(又はUE4)のMTとのタイミング関係の一例を示す説明図である。TA(Timing advance)コマンドは、IABノード5がUL信号の送信タイミングの調整を子ノード3又はUE4に指示することで、IAB-DU5BのUL信号の受信タイミングを調整できる他の制御信号である。子ノード3(又はUE4)は、TAコマンドの内容に応じてUL信号の送信タイミングを調整する。子ノード3(又はUE4)は、IABノード5に対してUL信号を最初に送信する際、RACH(Random Access Channel)プリアンブルをIABノード5に送信する。この際、子ノード3(又はUE4)は、RACHプリアンブルをDL信号の受信タイミングに合わせて送信することになる。IABノード5は、子ノード3(又はUE4)からのRACHプリアンブルを受信した場合、11ビットのTAコマンドを含むRAR(Random Access Response)を子ノード3(又はUE4)に送信することになる。つまり、11ビットのTAコマンドは、DL信号の受信タイミング(即ち、RACHプリアンブルの送信タイミング)からの時間シフトに関する情報である。 FIG. 14 is an explanatory diagram showing an example of the timing relationship between the IAB-DU5B and the MT of the child node 3 (or UE4). The TA (Timing advance) command is another control signal capable of adjusting the reception timing of the UL signal of the IAB-DU5B by instructing the child node 3 or the UE 4 to adjust the transmission timing of the UL signal by the IAB node 5. The child node 3 (or UE 4) adjusts the UL signal transmission timing according to the content of the TA command. When the child node 3 (or UE 4) first transmits a UL signal to the IAB node 5, it transmits a RACH (Random Access Channel) preamble to the IAB node 5. At this time, the child node 3 (or UE4) transmits the RACH preamble in accordance with the reception timing of the DL signal. When the IAB node 5 receives the RACH preamble from the child node 3 (or UE4), the IAB node 5 transmits a RAR (Random Access Response) including an 11-bit TA command to the child node 3 (or UE4). That is, the 11-bit TA command is information regarding a time shift from the reception timing of the DL signal (that is, the transmission timing of the RACH preamble).
 図15は、TAコマンドを含むRARのフォーマット構成の一例を示す説明図である。尚、RAR内のTAコマンドは、Rel-16までのULタイミング制御に使用している。このULタイミング制御では、子側BH(又はアクセスリンク)のUL信号の受信タイミングを親側BHのDL信号の送信タイミングよりも早くする方向に調整するコマンドである。図15に示すデータパケットは、データパケット内容を識別するサブヘッダと、データパケット内容を格納するペイロードとを有する。ペイロードには、RARを格納する。図15に示すRARは、TAコマンドやULグラント等を含む。TAコマンドは、ULタイミング#1を含む11ビットのコマンドである。RARは、PDSCH(Physical Downlink Shared Channel)で送信することになる。IAB-DU5Bは、子側BHのDL信号でRARを子ノード3に送信する。また、IAB-DU5Bは、アクセスリンクのDL信号でRARをUE4に送信する。その結果、子ノード3は、受信したRAR内のTAコマンドからULタイミング#1を取得し、ULタイミング#1で子側BHのUL信号の送信タイミングを設定する。また、UE4は、受信したRAR内のTAコマンドからULタイミング#1を取得し、ULタイミング#1でアクセスリンクのUL信号の送信タイミングを設定する。 FIG. 15 is an explanatory diagram showing an example of a RAR format configuration including a TA command. The TA command in RAR is used for UL timing control up to Rel-16. In this UL timing control, it is a command to adjust the reception timing of the UL signal of the child side BH (or access link) to be earlier than the transmission timing of the DL signal of the parent side BH. The data packet shown in FIG. 15 has a subheader for identifying the data packet content and a payload for storing the data packet content. RAR is stored in the payload. The RAR shown in FIG. 15 includes a TA command, a UL grant, and the like. The TA command is an 11-bit command including UL timing # 1. RAR will be transmitted by PDSCH (Physical Downlink Shared Channel). The IAB-DU5B transmits RAR to the child node 3 by the DL signal of the child side BH. Further, the IAB-DU5B transmits RAR to the UE 4 by the DL signal of the access link. As a result, the child node 3 acquires UL timing # 1 from the TA command in the received RAR, and sets the transmission timing of the UL signal of the child side BH at UL timing # 1. Further, the UE 4 acquires UL timing # 1 from the TA command in the received RAR, and sets the transmission timing of the UL signal of the access link at UL timing # 1.
 図16は、TAコマンドを含むMAC-CEのフォーマット構成の一例を示す説明図である。図16に示すデータパケット内のペイロードには、MAC-CE(Media Access Control-Control Element)を格納する。MAC-CEは、6ビットのTAコマンドを格納する。MAC-CEは、PDSCHで送信することになる。また、6ビットのTAコマンドは、現在のUL送信タイミングを微調整する際に使用するコマンドである。IAB-DU5Bは、子側BHのDL信号のPDSCHでMAC-CEを子ノード3に送信する。また、IAB-DU5Bは、アクセスリンクのDL信号のPDSCHでMAC-CEをUE4に送信する。その結果、子ノード3は、受信したMAC-CE内のTAコマンドから調整分を取得し、調整分に基づき、子側BHのUL信号の送信タイミングを微調整する。また、UE4は、受信したMAC-CE内のTAコマンドから調整分を取得し、調整分に基づき、アクセスリンクのUL信号の送信タイミングを微調整する。 FIG. 16 is an explanatory diagram showing an example of the format configuration of MAC-CE including the TA command. MAC-CE (Media Access Control-Control Element) is stored in the payload in the data packet shown in FIG. MAC-CE stores a 6-bit TA command. MAC-CE will be transmitted by PDSCH. The 6-bit TA command is a command used when finely adjusting the current UL transmission timing. The IAB-DU5B transmits MAC-CE to the child node 3 by PDSCH of the DL signal of the child side BH. Further, the IAB-DU5B transmits the MAC-CE to the UE 4 by the PDSCH of the DL signal of the access link. As a result, the child node 3 acquires the adjustment amount from the TA command in the received MAC-CE, and finely adjusts the transmission timing of the UL signal of the child side BH based on the adjustment amount. Further, the UE 4 acquires the adjustment amount from the TA command in the received MAC-CE, and finely adjusts the transmission timing of the UL signal of the access link based on the adjustment amount.
 図17は、スケジューリング処理に関わるIABノード5の処理動作の一例を示すフローチャートである。IABノード5内のIAB-MT5Aは、親側BHの親ノード2との間の通信接続を確立する(ステップS11)。IABノード5内のIAB-DU5Bは、親側BHのDL信号の受信タイミングに揃えるように子側BH(又はアクセスリンク)のUL信号の送信タイミングであるULタイミング#2を決定する(ステップS12)。 FIG. 17 is a flowchart showing an example of the processing operation of the IAB node 5 related to the scheduling process. The IAB-MT5A in the IAB node 5 establishes a communication connection with the parent node 2 of the parent BH (step S11). The IAB-DU5B in the IAB node 5 determines UL timing # 2, which is the transmission timing of the UL signal of the child BH (or access link) so as to be aligned with the reception timing of the DL signal of the parent BH (step S12). ..
 IAB-DU5Bは、子側BHの子ノード3までの伝搬遅延時間及び子側BHのUL/DLの切替時間等を考慮して、図13に示すようにULタイミング#2から整数個のシンボルだけ早いULタイミング#1を決定する(ステップS13)。尚、IAB-DU5Bは、アクセスリンクのUE4までの伝搬遅延時間及びアクセスリンクのUL/DLの切替時間等を考慮して、図13に示すようにULタイミング#2から整数個のシンボルだけ早いULタイミング#1を決定することになる。 As shown in FIG. 13, the IAB-DU5B has only an integer number of symbols from UL timing # 2 in consideration of the propagation delay time to the child node 3 of the child side BH and the UL / DL switching time of the child side BH. The early UL timing # 1 is determined (step S13). In addition, in the IAB-DU5B, in consideration of the propagation delay time to the UE 4 of the access link, the UL / DL switching time of the access link, and the like, as shown in FIG. 13, the UL timing # 2 is earlier than the UL timing # 2 by an integer number of symbols. Timing # 1 will be decided.
 IAB-DU5Bは、親側BHのDL/ULの割り当てスロット配置情報に基づき、図12に示すように子側BH(又はアクセスリンク)のDL/ULの割り当てスロット配置情報を決定する(ステップS14)。 The IAB-DU5B determines the DL / UL allocation slot allocation information of the child BH (or access link) as shown in FIG. 12 based on the DL / UL allocation slot allocation information of the parent BH (step S14). ..
 IAB-DU5Bは、子ノード3(又はUE4)からの初期アクセスを開始するためのRACHプリアンブルを検出したか否かを判定する(ステップ15)。IAB-DU5Bは、RACHプリアンブルを検出した場合、RACHプリアンブルの受信タイミングとステップS13にて決定したULタイミング#1との差分を無くす時間シフトを図15に示すRAR内の11ビットのTAコマンドに格納し、RARを子ノード3(又はUE4)に通知する(ステップS16)。尚、子ノード3(又はUE4)は、RAR内のTAコマンドからULタイミング#1の送信側タイミングを算出する。 The IAB-DU5B determines whether or not it has detected a RACH preamble for initiating initial access from the child node 3 (or UE4) (step 15). When the IAB-DU5B detects the RACH preamble, the IAB-DU5B stores the time shift for eliminating the difference between the reception timing of the RACH preamble and the UL timing # 1 determined in step S13 in the 11-bit TA command in RAR shown in FIG. Then, the RAR is notified to the child node 3 (or UE4) (step S16). The child node 3 (or UE4) calculates the transmission side timing of UL timing # 1 from the TA command in RAR.
 IAB-DU5Bは、子ノード3(又はUE4)からのULタイミング#1に基づく、RRC(Radio Resource Control)接続リクエストの初期アクセスの続きを検出したか否かを判定する(ステップS17)。IAB-DU5Bは、初期アクセスの続きを検出した場合(ステップS17:Yes)、子ノード3(又はUE4)とのRRC接続を確立する(ステップS18)。 The IAB-DU5B determines whether or not it has detected the continuation of the initial access of the RRC (Radio Resource Control) connection request based on the UL timing # 1 from the child node 3 (or UE4) (step S17). When the IAB-DU5B detects the continuation of the initial access (step S17: Yes), it establishes an RRC connection with the child node 3 (or UE4) (step S18).
 IAB-DU5Bは、子ノード3(又はUE4)とのRRC接続を確立した後、ステップS12にて決定したULタイミング#2をDCI内に格納し、DCIを子ノード3(又はUE4)に通知する(ステップS19)。尚、ULタイミング#2は、ULタイミング#1からオフセット値に換算している。従って、IAB-DU5Bは、ULタイミング#1からのオフセット値に対応する後述するインデックス値をDCIに格納し、DCIを子ノード3(又はUE4)に通知する。尚、子ノード3(又はUE4)は、DCI内のインデックス値を抽出し、インデックス値に対応したオフセット値及びULタイミング#1に基づき、ULタイミング#2を決定する。更に、IAB-DU5Bは、ステップS14にて決定した同時受信ありスロットを含む子側BH(又はアクセスリンク)のスロット配置情報を子ノード3(又はUE4)に通知する(ステップS20)。尚、子ノード3(又はUE4)は、スロット配置情報に基づき、同時受信ありスロットの場合、ULタイミング#2でUL信号をIABノード5に送信し、同時受信なしスロットの場合、ULタイミング#1でUL信号をIABノード5に送信する。また、子ノード3(又はUE4)は、スロット配置情報に基づき、同時受信ありスロットの場合、UL信号の送信電力量を電力モード2、同時受信なしスロットの場合、UL信号の送信電力量を電力モード1に設定することになる。 After establishing the RRC connection with the child node 3 (or UE4), the IAB-DU5B stores the UL timing # 2 determined in step S12 in the DCI and notifies the child node 3 (or UE4) of the DCI. (Step S19). The UL timing # 2 is converted from the UL timing # 1 into an offset value. Therefore, the IAB-DU5B stores the index value described later corresponding to the offset value from UL timing # 1 in the DCI, and notifies the DCI to the child node 3 (or UE4). The child node 3 (or UE4) extracts the index value in the DCI and determines the UL timing # 2 based on the offset value corresponding to the index value and the UL timing # 1. Further, the IAB-DU5B notifies the child node 3 (or UE4) of the slot arrangement information of the child side BH (or access link) including the slot with simultaneous reception determined in step S14 (step S20). The child node 3 (or UE 4) transmits a UL signal to the IAB node 5 at UL timing # 2 in the case of a slot with simultaneous reception, and UL timing # 1 in the case of a slot without simultaneous reception, based on the slot arrangement information. Sends the UL signal to the IAB node 5. Further, the child node 3 (or UE 4) uses the power mode 2 for the transmission power amount of the UL signal in the case of the slot with simultaneous reception, and the power transmission power amount of the UL signal in the case of the slot without simultaneous reception, based on the slot arrangement information. It will be set to mode 1.
 更に、IAB-DU5Bは、子側BH(又はアクセスリンク)のUL/DLのスロット配置情報に基づき、同時受信ありスロットにULタイミング#2、同時受信なしスロットにULタイミング#1を設定するスケジューリング処理を実行する(ステップS21)。そして、図17に示す処理動作を終了する。つまり、IAB-DU5Bは、ULタイミング#1及び#2を切替えながら、スケジューリング処理を実行する。また、IAB-DU5Bは、RACHプリアンブルを検出しない場合(ステップS15:No)、RACHプリアンブルを検出したか否かを判定するまでステップS15に移行する。また、IAB-DU5Bは、初期アクセスの続きを検出しない場合(ステップS17:No)、初期アクセスの続きを検出したか否かを判定するまでステップS17に移行する。 Further, the IAB-DU5B is a scheduling process that sets UL timing # 2 in the slot with simultaneous reception and UL timing # 1 in the slot without simultaneous reception based on the slot arrangement information of UL / DL on the child side BH (or access link). Is executed (step S21). Then, the processing operation shown in FIG. 17 is terminated. That is, the IAB-DU5B executes the scheduling process while switching the UL timings # 1 and # 2. If the IAB-DU5B does not detect the RACH preamble (step S15: No), the IAB-DU5B proceeds to step S15 until it is determined whether or not the RACH preamble has been detected. If the IAB-DU5B does not detect the continuation of the initial access (step S17: No), the IAB-DU5B proceeds to step S17 until it is determined whether or not the continuation of the initial access is detected.
 IABノード5は、Rel-16までのIABノード5やUE4との接続を損なうことなく、親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号の同時受信を可能にしたので、無線通信リソースの利用効率を向上させる。 Since the IAB node 5 enables simultaneous reception of the DL signal of the parent BH and the UL signal of the child BH (or access link) without impairing the connection with the IAB node 5 and the UE 4 up to Rel-16. Improve the utilization efficiency of wireless communication resources.
 また、IAB-DU5Bは、通信中(RRC接続)状態において、ULタイミング#2に基づきULタイミング#1を決定する。更に、IAB-DU5Bは、UE4又は子ノード3の移動に応じてULタイミング#1を調整するオフセット値を順次算出する。IAB-DU5Bは、オフセット値に対応するインデックス値をDCI内に格納し、DCIをUE4又は子ノード3に送信することになる。 Further, the IAB-DU5B determines the UL timing # 1 based on the UL timing # 2 in the communication (RRC connection) state. Further, the IAB-DU5B sequentially calculates an offset value for adjusting UL timing # 1 according to the movement of the UE 4 or the child node 3. The IAB-DU5B stores the index value corresponding to the offset value in the DCI and transmits the DCI to the UE 4 or the child node 3.
 実施例1のIABノード5は、親ノード2からのDL信号と子ノード3からのUL信号とが同時に受信、かつ、子ノード3からのUL信号の受信タイミングU(Rx)が親ノード2でのDL信号の送信タイミングD(Tx)よりも遅くなるように、子ノード3のUL信号の送信タイミングを調整する。その結果、IABノード5は、親ノード2及び子ノード3に対する無線通信リソースの利用効率の向上を図る。 In the IAB node 5 of the first embodiment, the DL signal from the parent node 2 and the UL signal from the child node 3 are simultaneously received, and the UL signal reception timing U (Rx) from the child node 3 is the parent node 2. The UL signal transmission timing of the child node 3 is adjusted so as to be later than the DL signal transmission timing D (Tx) of. As a result, the IAB node 5 aims to improve the utilization efficiency of wireless communication resources for the parent node 2 and the child node 3.
 IABノード5は、親ノード2からのDL信号とUE4からのUL信号とが同時に受信でき、かつ、UE4からののUL信号の受信タイミングU(Rx)が親ノード2でのDL信号の送信タイミングU(Tx)よりも遅くなるように、UE4のUL信号の送信タイミングを調整する。その結果、IABノード5は、親ノード2及びUE4に対する無線通信リソースの利用効率の向上を図る。 The IAB node 5 can simultaneously receive the DL signal from the parent node 2 and the UL signal from the UE 4, and the reception timing U (Rx) of the UL signal from the UE 4 is the transmission timing of the DL signal at the parent node 2. The transmission timing of the UL signal of the UE 4 is adjusted so as to be slower than U (Tx). As a result, the IAB node 5 aims to improve the utilization efficiency of wireless communication resources for the parent node 2 and the UE 4.
 IABノード5は、親ノード2からのDL信号の受信タイミングに一致する子ノード3からのUL信号を受信するULタイミング#2と、ULタイミング#2からシンボル単位で時間的に早くなるULタイミング#1とを決定する。IABノード5は、ULタイミング#1からシンボル単位でのULタイミング#2への時間シフト量に関する指示情報を含む制御信号を生成する。その結果、子ノード3は、同時受信ありスロットの場合、UL信号をULタイミング#2で送信し、同時受信なしスロットの場合、UL信号をULタイミング#1で送信できる。 The IAB node 5 receives the UL signal from the child node 3 that matches the reception timing of the DL signal from the parent node 2, and the UL timing # 2 that is earlier in time in symbol units from the UL timing # 2. Determine 1 and. The IAB node 5 generates a control signal including instruction information regarding the amount of time shift from UL timing # 1 to UL timing # 2 in symbol units. As a result, the child node 3 can transmit the UL signal at UL timing # 2 in the case of the slot with simultaneous reception, and can transmit the UL signal at UL timing # 1 in the case of the slot without simultaneous reception.
 IABノード5は、親ノード2からのDL信号と子ノード3からのUL信号とが同時に受信する際に、親側BHのDL信号の受信電力量に対する子側BH(又はアクセスリンク)のUL信号の受信電力量の差分が予め決められた範囲に収まるように子ノード3でのUL信号の送信電力量の増大を指示する電力モード2を指示する電力制御信号を生成する。その結果、子ノード3は、同時受信ありスロットの場合、電力モード2でUL信号の送信電力量を制御し、同時受信なしスロットの場合、電力モード1でUL信号の送信電力量を制御する。特に、同時受信ありスロット時のDL信号の影響によるUL信号の受信品質の低下を抑制できる。 When the DL signal from the parent node 2 and the UL signal from the child node 3 are simultaneously received by the IAB node 5, the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH. A power control signal instructing the power mode 2 instructing an increase in the transmission power amount of the UL signal in the child node 3 is generated so that the difference in the received power amount of the above is within a predetermined range. As a result, the child node 3 controls the transmission power amount of the UL signal in the power mode 2 in the case of the slot with simultaneous reception, and controls the transmission power amount of the UL signal in the power mode 1 in the case of the slot without simultaneous reception. In particular, it is possible to suppress a deterioration in the reception quality of the UL signal due to the influence of the DL signal at the time of the slot with simultaneous reception.
 次に、IAB-DU5BがDCIでULタイミング#2を子ノード3又はUE4に通知する際の態様につき、以下に説明する。先ずは、IAB-DU5BがULタイミング#1からのオフセット値でULタイミング#2をDCIで通知する。図18Aは、1ビット対応の調整テーブル71Aの一例を示す説明図である。図18Aに示す調整テーブル71Aは、1ビットのインデックス値毎に、ULタイミング#1からシンボル単位のオフセット値を管理するテーブルである。調整テーブル71Aは、IAB-DU5B、子ノード3及びUE4で保持されているものとする。ULタイミング#1からのオフセット値は、インデックス値が“0”の場合、0シンボルである。ULタイミング#2からのオフセット値は、インデックス値が“1”の場合、1シンボルである。IAB-DU5Bは、調整テーブル71Aを参照し、DCI内にオフセット値に応じたインデックス値を格納し、DCIを子ノード3又はUE4に送信する(TS38.212v16.1.0参照)。尚、DCI内のタイミング指定領域は、Rel-15及びRel-16のULグラントを含むDCIフォーマット“0_0”、“0_1”又は“0_2”内の領域に追加しても良い。子ノード3又はUE4は、DCI内のオフセット値に応じたインデックス値を抽出し、抽出したインデックス値に対応するオフセット値を調整テーブル71Aから抽出する。子ノード3又はUE4は、調整テーブル71Aから抽出したULタイミング#1のオフセット値に基づき、ULタイミング#1をオフセット値分シフトしてULタイミング#2を設定する。従って、子ノード3又はUE4は、同時受信ありスロットに対してULタイミング#2を設定する。 Next, the mode in which the IAB-DU5B notifies the UL timing # 2 to the child node 3 or the UE 4 by DCI will be described below. First, IAB-DU5B notifies UL timing # 2 by DCI with an offset value from UL timing # 1. FIG. 18A is an explanatory diagram showing an example of the adjustment table 71A corresponding to 1 bit. The adjustment table 71A shown in FIG. 18A is a table that manages the offset value in symbol units from UL timing # 1 for each 1-bit index value. It is assumed that the adjustment table 71A is held by the IAB-DU5B, the child node 3 and the UE 4. The offset value from UL timing # 1 is a 0 symbol when the index value is “0”. The offset value from UL timing # 2 is one symbol when the index value is “1”. The IAB-DU5B refers to the adjustment table 71A, stores the index value according to the offset value in the DCI, and transmits the DCI to the child node 3 or the UE 4 (see TS38.212 v16.1.0). The timing designation area in the DCI may be added to the area in the DCI format "0_0", "0_1" or "0_2" including the UL grants of Rel-15 and Rel-16. The child node 3 or the UE 4 extracts the index value corresponding to the offset value in the DCI, and extracts the offset value corresponding to the extracted index value from the adjustment table 71A. The child node 3 or the UE 4 shifts the UL timing # 1 by the offset value based on the offset value of the UL timing # 1 extracted from the adjustment table 71A, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
 尚、図18Aでは、例えば、0シンボル又は1シンボルの2種類のオフセット値を1ビットで表現する場合を例示したが、1ビットに限定されるものではなく、複数ビットでも良く、例えば、2ビットで表現する場合につき、以下に説明する。 In FIG. 18A, for example, a case where two types of offset values of 0 symbol or 1 symbol are expressed by 1 bit is illustrated, but the present invention is not limited to 1 bit, and may be a plurality of bits, for example, 2 bits. The case expressed by is described below.
 図18Bは、2ビット対応の調整テーブル71Bの一例を示す説明図である。図18Bに示す調整テーブル71Bは、2ビットのインデックス値毎に、ULタイミング#1からシンボル単位のオフセット値を管理するテーブルである。調整テーブル71Bは、IAB-DU5B、子ノード3及びUE4で保持されているものとする。ULタイミング#1からのオフセット値は、インデックス値が“00”の場合、0シンボルである。ULタイミング#1からのオフセット値は、インデックス値が“01”の場合、1シンボルである。ULタイミング#1からのオフセット値は、インデックス値が“10”の場合、2シンボルである。ULタイミング#1からのオフセット値は、インデックス値が“11”の場合、3シンボルである。IAB-DU5Bは、調整テーブル71Bを参照し、DCI内にオフセット値に応じたインデックス値を格納し、DCIを子ノード3又はUE4に送信する。子ノード3又はUE4は、DCI内のインデックス値を抽出し、抽出したインデックス値に対応するオフセット値を調整テーブル71Bから抽出する。子ノード3又はUE4は、調整テーブル71Bから抽出したULタイミング#1のオフセット値に基づき、ULタイミング#1をオフセット値分シフトしてULタイミング#2を設定する。従って、子ノード3又はUE4は、同時受信ありスロットに対してULタイミング#2を設定する。 FIG. 18B is an explanatory diagram showing an example of a 2-bit compatible adjustment table 71B. The adjustment table 71B shown in FIG. 18B is a table that manages the offset value in symbol units from UL timing # 1 for each 2-bit index value. It is assumed that the adjustment table 71B is held by the IAB-DU5B, the child node 3 and the UE 4. The offset value from UL timing # 1 is a 0 symbol when the index value is “00”. The offset value from UL timing # 1 is one symbol when the index value is “01”. The offset value from UL timing # 1 is 2 symbols when the index value is “10”. The offset value from UL timing # 1 is 3 symbols when the index value is “11”. The IAB-DU5B refers to the adjustment table 71B, stores the index value corresponding to the offset value in the DCI, and transmits the DCI to the child node 3 or the UE 4. The child node 3 or the UE 4 extracts the index value in the DCI and extracts the offset value corresponding to the extracted index value from the adjustment table 71B. The child node 3 or the UE 4 shifts the UL timing # 1 by the offset value based on the offset value of the UL timing # 1 extracted from the adjustment table 71B, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
 また、IAB-DU5Bは、DCI内にULタイミング#1からのオフセット値を格納し、ULタイミング#1からのオフセット値を使用してULタイミング#2を子ノード3又はUE4に通知する場合を例示したが、これに限定されるものではない。ULタイミング#1のオフセット値換算ではなく、例えば、ULタイミング#1及びULタイミング#2を直接通知しても良く、その態様につき、以下に説明する。 Further, the IAB-DU5B exemplifies a case where the offset value from UL timing # 1 is stored in the DCI and the UL timing # 2 is notified to the child node 3 or the UE 4 by using the offset value from UL timing # 1. However, it is not limited to this. For example, UL timing # 1 and UL timing # 2 may be directly notified instead of the offset value conversion of UL timing # 1, and the mode thereof will be described below.
 図19は、調整テーブル71Cの一例を示す説明図である。図19に示す調整テーブル71Cは、1ビットのインデックス値毎に、ULタイミングを管理するテーブルである。ULタイミングは、インデックス値が“0”の場合、ULタイミング#1である。ULタイミングは、インデックス値が“1”の場合、ULタイミング#2である。IAB-DU5Bは、RRCで調整テーブル71Cを規定する。IAB-DU5Bは、調整テーブル71Cを参照し、DCI内にULタイミングに対応したインデックス値を格納し、DCIを子ノード3又はUE4に送信する。子ノード3又はUE4は、DCI内のインデックス値を抽出し、抽出したインデックス値に対応するULタイミングを調整テーブル71Cから抽出する。子ノード3又はUE4は、調整テーブル71Cから抽出したULタイミングを設定する。従って、子ノード3又はUE4は、同時受信ありスロットに対してULタイミング#2を設定する。 FIG. 19 is an explanatory diagram showing an example of the adjustment table 71C. The adjustment table 71C shown in FIG. 19 is a table that manages UL timing for each 1-bit index value. The UL timing is UL timing # 1 when the index value is “0”. The UL timing is UL timing # 2 when the index value is “1”. The IAB-DU5B defines the adjustment table 71C in the RRC. The IAB-DU5B refers to the adjustment table 71C, stores the index value corresponding to the UL timing in the DCI, and transmits the DCI to the child node 3 or the UE 4. The child node 3 or the UE 4 extracts the index value in the DCI and extracts the UL timing corresponding to the extracted index value from the adjustment table 71C. The child node 3 or the UE 4 sets the UL timing extracted from the adjustment table 71C. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
 図18A、図18B及び図19では、IAB-DU5BがDCIの物理レイヤでULタイミング#2を子ノード3又はUE4に通知する場合を例示したが、MACレイヤで通知しても良い。MACレイヤでの通知は、PDCCHに比較して送信頻度が少なく、例えば、1スロットのような短期間で切替えることが必要ではない場合に使用する。例えば、IAB-DU5Bは、ULタイミング#1からシフトするシンボル数を6ビットのTAコマンドを拡張したMAC-CEに格納し、MAC-CEを子ノード3又はUE4に送信しても良い。この場合、子ノード3又はUE4は、MAC-CEからシンボル数を抽出し、抽出したシンボル数に基づき、ULタイミング#1をシンボル数分シフトしてULタイミング#2を設定する。従って、子ノード3又はUE4は、同時受信ありスロットであるか否かを意識することなく、タイミングに関する次の指示が届くまで継続してULタイミング#2を設定する。 In FIGS. 18A, 18B and 19, the case where the IAB-DU5B notifies the UL timing # 2 to the child node 3 or the UE 4 at the physical layer of DCI is illustrated, but it may be notified at the MAC layer. The notification at the MAC layer is used when the transmission frequency is lower than that of the PDCCH and it is not necessary to switch in a short period of time such as one slot. For example, the IAB-DU5B may store the number of symbols to be shifted from UL timing # 1 in the MAC-CE which is an extension of the 6-bit TA command, and transmit the MAC-CE to the child node 3 or the UE 4. In this case, the child node 3 or UE 4 extracts the number of symbols from MAC-CE, shifts UL timing # 1 by the number of symbols based on the extracted number of symbols, and sets UL timing # 2. Therefore, the child node 3 or the UE 4 continuously sets the UL timing # 2 until the next instruction regarding the timing arrives, without being aware of whether or not the slot has simultaneous reception.
 また、IAB-DU5Bは、11ビットのTAコマンドに加えてULタイミング#1からシフトするシンボル数もRARに格納し、RARを子ノード3又はUEに送信しても良い。この場合、子ノード3又はUE4は、RARからシンボル数を抽出し、抽出したシンボル数に基づき、ULタイミング#1をシンボル数分シフトしてULタイミング#2を設定する。従って、子ノード3又はUE4は、同時受信ありスロットに対してULタイミング#2を設定する。 Further, the IAB-DU5B may store the number of symbols to be shifted from UL timing # 1 in the RAR in addition to the 11-bit TA command, and transmit the RAR to the child node 3 or the UE. In this case, the child node 3 or the UE 4 extracts the number of symbols from the RAR, shifts the UL timing # 1 by the number of symbols based on the extracted number of symbols, and sets the UL timing # 2. Therefore, the child node 3 or the UE 4 sets UL timing # 2 for the slot with simultaneous reception.
 図20は、切替テーブル72の一例を示す説明図である。図20に示す切替テーブル72は、1ビットのインデックス値毎に、電力モードを管理するテーブルである。切替テーブル72は、IAB-DU5B、子ノード3及びUE4で保持されているものとする。電力モード1は、例えば、同時受信なしスロット又はFDM方式の同時受信スロット時に設定するUE4又は子ノード3のUL信号の送信電力量の電力モードである。電力モード1は、隣接するノード間のクロスリンク干渉を抑制するために最小限の送信電力量に抑制する通常の電力モードである。電力モード2は、例えば、SDM方式の同時受信スロット時に設定するUE4又は子ノード3のUL信号の送信電力量の電力モードである。電力モード2は、親側BHのDL信号と子側BH(又はアクセスリンク)のUL信号の受信電力量の差分が予め決められた範囲内になるように子ノード3(又はUE4)のUL信号の送信電力量を制御するモードである。UL信号の送信電力量は例えば(P0+P1)としてP0とP1の2つの項に分けて制御する。P1は送信する帯域幅やIABノードと子ノード3(またはUE4)の間の伝搬損失に応じて変化する量で、P0はIAB-DU5Bが一意に決める固定量である。電力モード1と電力モード2に対してそれぞれ相応のP0を設定することによりUL信号の送信電力量を決定する。さらにPUCCHやPUSCHに応じてP0を設定することもできる。図20では電力モード1でPUSCHを送信する場合のP0をP0,PUSCH1、電力モード2でPUSCHを送信する場合のP0をP0,PUSCH2とすることでモードに応じた電力制御を行う。IAB-DU5Bは予めP0,PUSCH1とP0,PUSCH2の値を決定しRRCにより子ノード3(又はUE4)に通知する。電力モードは、インデックス値が“0”の場合、電力モード1である。電力モードは、インデックス値が“1”の場合、電力モード2である。IAB-DU5Bは、切替テーブル72を参照し、DCI内に電力モードに対応したインデックス値を格納し、DCIを子ノード3又はUE4に送信する。子ノード3又はUE4は、DCI内のインデックス値を抽出し、抽出したインデックス値に対応する電力モードを切替テーブル72から抽出する。子ノード3又はUE4は、切替テーブル72から抽出した電力モードを設定することで、UL信号の送信電力量を制御する。即ち、IAB-DU5Bは、親側BHのDL信号を受信せずに子側BH(又はアクセスリンク)のUL信号のみを受信する際の子側BH(又はアクセスリンク)のUL信号の送信電力量を基準として、それより増大させるべきか否かについて切り替えテーブルのインデックスを用いて制御する。 FIG. 20 is an explanatory diagram showing an example of the switching table 72. The switching table 72 shown in FIG. 20 is a table that manages the power mode for each 1-bit index value. It is assumed that the switching table 72 is held by the IAB-DU5B, the child node 3 and the UE 4. The power mode 1 is, for example, a power mode of the transmission power amount of the UL signal of the UE 4 or the child node 3 set at the time of the slot without simultaneous reception or the simultaneous reception slot of the FDM method. The power mode 1 is a normal power mode in which the amount of transmission power is suppressed to the minimum in order to suppress cross-link interference between adjacent nodes. The power mode 2 is, for example, a power mode of the transmission power amount of the UL signal of the UE 4 or the child node 3 set at the time of the simultaneous reception slot of the SDM method. In the power mode 2, the UL signal of the child node 3 (or UE 4) is set so that the difference between the received power amount of the DL signal of the parent BH and the UL signal of the child BH (or access link) is within a predetermined range. It is a mode to control the amount of transmission power of. The amount of transmission power of the UL signal is controlled by dividing it into two terms, P0 and P1, as (P0 + P1), for example. P1 is an amount that changes according to the bandwidth to be transmitted and the propagation loss between the IAB node and the child node 3 (or UE4), and P0 is a fixed amount uniquely determined by IAB-DU5B. The amount of transmission power of the UL signal is determined by setting P0 corresponding to each of the power mode 1 and the power mode 2. Further, P0 can be set according to PUCCH and PUSCH. In FIG. 20, power control is performed according to the mode by setting P0 when transmitting the PUSCH in the power mode 1 to P0 and PUSCH1 and P0 when transmitting the PUSCH in the power mode 2 to P0 and PUSCH2 . The IAB-DU5B determines the values of P 0, PUSCH 1 and P 0, PUSCH 2 in advance and notifies the child node 3 (or UE 4) by RRC. The power mode is the power mode 1 when the index value is “0”. The power mode is the power mode 2 when the index value is “1”. The IAB-DU5B refers to the switching table 72, stores the index value corresponding to the power mode in the DCI, and transmits the DCI to the child node 3 or the UE 4. The child node 3 or the UE 4 extracts the index value in the DCI and extracts the power mode corresponding to the extracted index value from the switching table 72. The child node 3 or the UE 4 controls the transmission power amount of the UL signal by setting the power mode extracted from the switching table 72. That is, the IAB-DU5B is the transmission power amount of the UL signal of the child side BH (or access link) when receiving only the UL signal of the child side BH (or access link) without receiving the DL signal of the parent side BH. Is used as a reference, and whether or not it should be increased is controlled by using the index of the switching table.
 尚、図19では、DCI内のタイミング指定領域内にULタイミング情報、図20では、DCI内の電力指定領域内に送信電力に関わる電力モード情報を設定する場合を例示した。しかしながら、DCI内の切替領域内にタイミング情報及び電力モード情報を一括で設定しても良い。図21Aは、1ビット対応の切替テーブル72Aの一例を示す説明図である。図21Aに示す切替テーブル72Aは、1ビットのインデックス値毎に、電力モード情報及びULタイミング情報の設定内容を管理するテーブルである。設定内容は、インデックス値が“0”の場合、ULタイミング#1及び電力モード1である。設定内容は、インデックス値が“1”の場合、ULタイミング#2及び電力モード2である。切替テーブル72Aは、IAB-DU5B、子ノード3及びUE4で保持されているものとする。 Note that FIG. 19 illustrates a case where UL timing information is set in the timing designation area in the DCI, and FIG. 20 illustrates a case where the power mode information related to the transmission power is set in the power designation area in the DCI. However, the timing information and the power mode information may be collectively set in the switching area in the DCI. FIG. 21A is an explanatory diagram showing an example of a switching table 72A corresponding to 1 bit. The switching table 72A shown in FIG. 21A is a table that manages the setting contents of the power mode information and the UL timing information for each bit index value. When the index value is "0", the setting contents are UL timing # 1 and power mode 1. When the index value is "1", the setting contents are UL timing # 2 and power mode 2. It is assumed that the switching table 72A is held by the IAB-DU5B, the child node 3 and the UE 4.
 IAB-DU5Bは、切替テーブル72Aを参照し、DCI内に設定内容に対応したインデックス値を格納し、DCIを子ノード3又はUE4に送信する。子ノード3又はUE4は、DCI内のインデックス値を抽出し、抽出したインデックス値に対応する設定内容を切替テーブル72Aから抽出する。子ノード3又はUE4は、切替テーブル72Aから抽出した設定内容であるULタイミング情報及び電力モード情報を設定する。 The IAB-DU5B refers to the switching table 72A, stores the index value corresponding to the setting content in the DCI, and transmits the DCI to the child node 3 or the UE 4. The child node 3 or the UE 4 extracts the index value in the DCI, and extracts the setting contents corresponding to the extracted index value from the switching table 72A. The child node 3 or the UE 4 sets UL timing information and power mode information, which are the setting contents extracted from the switching table 72A.
 図21Bは、2ビット対応の切替テーブル72Bの一例を示す説明図である。図21Bに示す切替テーブル72Bは、2ビットのインデックス値毎に、電力モード情報及びULタイミング情報の設定内容を管理するテーブルである。切替テーブル72Bは、IAB-DU5B、子ノード3及びUE4で保持されているものとする。設定内容は、インデックス値が“00”の場合、ULタイミング#1及び電力モード1である。設定内容は、インデックス値が“01”の場合、FDM方式の同時受信ありスロットに対応した、ULタイミング#2及び電力モード1である。設定内容は、インデックス値が“10”の場合、SDM方式の同時受信ありスロットに対応した、ULタイミング#2及び電力モード2である。IAB-DU5Bは、切替テーブル72Bを参照し、DCI内に設定内容に対応したインデックス値を格納し、DCIを子ノード3又はUE4に送信する。子ノード3又はUE4は、DCI内のインデックス値を抽出し、抽出したインデックス値に対応する設定内容を切替テーブル72Bから抽出する。子ノード3又はUE4は、切替テーブル72Bから抽出した設定内容であるULタイミング情報及び電力モード情報を設定する。 FIG. 21B is an explanatory diagram showing an example of a 2-bit compatible switching table 72B. The switching table 72B shown in FIG. 21B is a table that manages the setting contents of the power mode information and the UL timing information for each 2-bit index value. It is assumed that the switching table 72B is held by the IAB-DU5B, the child node 3 and the UE 4. When the index value is "00", the setting contents are UL timing # 1 and power mode 1. When the index value is "01", the setting contents are UL timing # 2 and power mode 1 corresponding to the slot with simultaneous reception of the FDM method. When the index value is "10", the setting contents are UL timing # 2 and power mode 2 corresponding to the slot with simultaneous reception of the SDM method. The IAB-DU5B refers to the switching table 72B, stores the index value corresponding to the set content in the DCI, and transmits the DCI to the child node 3 or the UE 4. The child node 3 or the UE 4 extracts the index value in the DCI, and extracts the setting contents corresponding to the extracted index value from the switching table 72B. The child node 3 or the UE 4 sets UL timing information and power mode information, which are the setting contents extracted from the switching table 72B.
 IAB-DU5Bは、PDCCHのDCIを用いて、ULタイミング情報及び電力モード情報を子ノード3又はUE4に通知する場合を例示した。しかしながら、DCIを用いて、ULタイミング情報及び電力モード情報を子ノード3又はUE4に通知する場合に限定されるものではなく、IAB-DU5Bは、共通PDCCHを用いてスロットタイプを定期的に子ノード3又はUE4に通知する。そして、子ノード3又はUE4は、共通PDCCH内のスロットタイプに応じてULタイミング調整や電力調整を実行しても良い。 IAB-DU5B exemplifies the case where UL timing information and power mode information are notified to the child node 3 or UE 4 by using DCI of PDCCH. However, the IAB-DU5B is not limited to the case where the UL timing information and the power mode information are notified to the child node 3 or the UE 4 by using DCI, and the IAB-DU5B periodically sets the slot type to the child node using the common PDCCH. Notify 3 or UE4. Then, the child node 3 or the UE 4 may execute UL timing adjustment or power adjustment according to the slot type in the common PDCCH.
 また、IAB-DU5Bは、ULタイミング情報をシンボル単位でULタイミングを調整する場合を例示したが、ULタイミング情報を、スロットを分割したミニスロット単位(ミニスロット:1シンボル以上1スロット未満の長さ)やシンボルを分割した1/2シンボル、1/4シンボルなどの単位でULタイミングを調整しても良く、適宜変更可能である。また、スロットごとにDL/ULを設定する場合を例示したが、ミニスロットごとにDL/ULを設定し、DLとULの両方が存在するスロットにも適用して良く、同時受信を行うミニスロットのULタイミングを同様に調整しても良い。 Further, the IAB-DU5B exemplifies the case where the UL timing information is adjusted in symbol units, but the UL timing information is used in mini-slot units (mini-slot: 1 symbol or more and less than 1 slot) in which the slots are divided. ), The UL timing may be adjusted in units of 1/2 symbol, 1/4 symbol, etc., which are divided into symbols, and can be changed as appropriate. Further, although the case where DL / UL is set for each slot is illustrated, DL / UL may be set for each mini slot and may be applied to a slot in which both DL and UL exist, and the mini slot for simultaneous reception is performed. UL timing may be adjusted in the same manner.
 IAB-DU5BからUE4又は子ノード3個別にPDCCHでULタイミング調整や電力調整の内容を通知する場合を例示した。しかしながら、個別にタイミング調整や電力調整の内容を通知する代わりに、同時受信ありスロット等のスロットタイプに応じたスロットタイミングやUL信号の送信電力量に関する設定を事前にRRCを使ってUE4又は子ノード3に通知する。そして、設定を事前に通知した上で、共通PDCCHを用いて1つ以上のスロットのスロットタイプをまとめて通知しても良い。UE4は各スロットのスロットタイプに応じてタイミング調整と電力調整のいずれか一つ、又は両方の調整を実行しても良い。 An example is shown in which the IAB-DU5B notifies the UE 4 or the child node 3 individually by PDCCH about the contents of UL timing adjustment and power adjustment. However, instead of individually notifying the contents of timing adjustment and power adjustment, the UE4 or child node uses RRC in advance to set the slot timing according to the slot type such as the slot with simultaneous reception and the transmission power amount of the UL signal. Notify 3. Then, after notifying the setting in advance, the slot types of one or more slots may be collectively notified using the common PDCCH. The UE 4 may perform one or both of the timing adjustment and the power adjustment according to the slot type of each slot.
 また、共通PDCCHの代わりにスロットタイプの指定も全部RRCで通知しても良い。また、RRCで一部のスロットのスロットタイプを通知し、PDCCHで残りのスロットのスロットタイプを通知しても良い。 Also, instead of the common PDCCH, all slot type specifications may be notified by RRC. Further, the slot type of some slots may be notified by RRC, and the slot type of the remaining slots may be notified by PDCCH.
 尚、実施例1の無線通信システム1では、親ノード2と子ノード3との間で1台のIABノード5を配置し、IABノード5が親側BHのDL信号及び子側BH(又はアクセスリンク)のUL信号を同時受信できる場合を例示した。しかしながら、親ノード2と子ノード3との間に3台の#1~#3のIABノード5を配置し、#2のIABノード5が、#1のIAB-DU5BからのDL信号及び#3のIAB-MT5AからのUL信号を同時受信する。更に、#3のIABノード5が、#2のIAB-DU5BにUL信号を送信しながら、子ノード3からのUL信号を受信する同時送受信しても良く、その実施の形態につき、実施例2として以下に説明する。 In the wireless communication system 1 of the first embodiment, one IAB node 5 is arranged between the parent node 2 and the child node 3, and the IAB node 5 is the DL signal of the parent BH and the child BH (or access). The case where the UL signal of the link) can be received at the same time is illustrated. However, three # 1 to # 3 IAB nodes 5 are arranged between the parent node 2 and the child node 3, and the IAB node 5 of # 2 is the DL signal from the IAB-DU5B of # 1 and # 3. UL signal from IAB-MT5A is received at the same time. Further, the IAB node 5 of # 3 may simultaneously transmit and receive the UL signal from the child node 3 while transmitting the UL signal to the IAB-DU5B of # 2. Will be described below.
 また、実施例1及び実施例2の無線通信システム1(1A)において、親ノード2とIABノード5のDL信号の送信タイミングをともに基準タイミングにそろえることにより不要なクロスリンク干渉の発生を抑制し無線リソースの使用効率を向上できる。この場合、子ノード3(又はUE4)からのUL信号の受信タイミングU(Rx)が親ノード2からのDL信号の送信タイミングD(Tx)よりも遅くなるようにすることは、子ノード3(又はUE4)からのUL信号の受信タイミングU(Rx)がIABノード5からのDL信号の送信タイミングよりも遅くなるようにすることと同義である。 Further, in the wireless communication system 1 (1A) of the first and second embodiments, the occurrence of unnecessary cross-link interference is suppressed by aligning the transmission timings of the DL signals of the parent node 2 and the IAB node 5 with the reference timing. The efficiency of wireless resource usage can be improved. In this case, setting the UL signal reception timing U (Rx) from the child node 3 (or UE 4) to be later than the DL signal transmission timing D (Tx) from the parent node 2 is to be later than the child node 3 (or UE 4). Alternatively, it is synonymous with setting the reception timing U (Rx) of the UL signal from the UE 4) to be later than the transmission timing of the DL signal from the IAB node 5.
 図22は、実施例2の無線通信システム1の一例を示す説明図である。図22に示す無線通信システム1は、親ノード2と、#1~#3のIABノード5と、子ノード3と、UE4とを有する。#1のIABノード5は、親ノード2との間で、親側BHのDL/UL信号を送受信する#1のIAB-MT5Aと、#2のIABノード5との間で、子側BHのUL/DL信号を送受信する#1のIAB-DU5Bとを有する。#1のIABノード5は、第1の無線通信装置である。#2のIABノード5は、#1のIAB-DU5Bとの間で、子側BHのDL/UL信号を送受信する#2のIAB-MT5Aと、#3のIAB-MT5Aとの間で、子側BHのDL/UL信号を送受信する#2のIAB-DU5Bとを有する。#2のIABノード5は、第3の無線通信装置である。#3のIABノード5は、#3のIAB-DU5Bとの間で、子側BHのDL/UL信号を送受信する#3のIAB-MT5Aと、子ノード3(又はUE4)との間で、子側BHのUL/DL信号を送受信する#3のIAB-DU5Bとを有する。#3のIABノード5は、第4の無線通信装置である。子ノード3又はUE4は、第2の無線通信装置である。 FIG. 22 is an explanatory diagram showing an example of the wireless communication system 1 of the second embodiment. The wireless communication system 1 shown in FIG. 22 has a parent node 2, an IAB node 5 of # 1 to # 3, a child node 3, and a UE 4. The IAB node 5 of # 1 is a child BH between the IAB-MT5A of # 1 that transmits and receives the DL / UL signal of the parent BH to and from the parent node 2 and the IAB node 5 of # 2. It has a # 1 IAB-DU5B that transmits and receives UL / DL signals. The IAB node 5 of # 1 is a first wireless communication device. The IAB node 5 of # 2 is a child between the IAB-MT5A of # 2 and the IAB-MT5A of # 3 which transmit and receive the DL / UL signal of the child side BH to and from the IAB-DU5B of # 1. It has a # 2 IAB-DU5B that transmits and receives DL / UL signals on the side BH. The IAB node 5 of # 2 is a third wireless communication device. The IAB node 5 of # 3 communicates with the IAB-DU5B of # 3, and between the IAB-MT5A of # 3 that transmits and receives the DL / UL signal of the child side BH, and the child node 3 (or UE4). It has a # 3 IAB-DU5B that transmits and receives UL / DL signals of the child side BH. The IAB node 5 of # 3 is a fourth wireless communication device. The child node 3 or UE 4 is a second wireless communication device.
 図23は、実施例2の#1~#3のIABノード5の同時送受信タイミングの一例を示す説明図である。#2のIABノード5は、#1のIABノード5からのDL信号と#3のIABノード5からのUL信号とが同時に受信でき、かつ、#3のIABノード5からのUL信号の受信タイミングU(Rx)が#1のIABノード5からのDL信号の送信タイミングD(Tx)よりも遅くなるように、#3のIABノード5からのUL信号の送信タイミングU(Tx)を調整する第1の制御信号を生成する。更に、#2のIABノード5は、DCIを用いて第1の制御信号を#3のIABノード5に送信する。 FIG. 23 is an explanatory diagram showing an example of simultaneous transmission / reception timing of the IAB nodes 5 of # 1 to # 3 of the second embodiment. The IAB node 5 of # 2 can simultaneously receive the DL signal from the IAB node 5 of # 1 and the UL signal from the IAB node 5 of # 3, and the reception timing of the UL signal from the IAB node 5 of # 3. The first to adjust the UL signal transmission timing U (Tx) from the # 3 IAB node 5 so that U (Rx) is later than the DL signal transmission timing D (Tx) from the # 1 IAB node 5. Generates the control signal of 1. Further, the IAB node 5 of # 2 uses DCI to transmit the first control signal to the IAB node 5 of # 3.
 #3のIABノード5は、#2のIABノード5へUL信号を送信しながら、子ノード3(又はUE4)からのUL信号を受信し、かつ、子ノード3(又はUE4)からのUL信号の送信タイミングU(Tx)が、#2のIABノード5へのUL信号の送信タイミングU(Tx)よりも早く、かつ、子ノード3(又はUE4)からのUL信号の受信タイミングU(Rx)が#1のIABノード5からのDL信号の送信タイミングD(Tx)よりも遅くなるように、子ノード3(又はUE4)のUL信号の送信タイミングU(Tx)を調整する第2の制御信号を生成する。更に、#3のIABノード5は、DCIを用いて第2の制御信号を子ノード3(又はUE4)に送信する。 The IAB node 5 of # 3 receives the UL signal from the child node 3 (or UE4) while transmitting the UL signal to the IAB node 5 of # 2, and the UL signal from the child node 3 (or UE4). The transmission timing U (Tx) of is earlier than the transmission timing U (Tx) of the UL signal to the IAB node 5 of # 2, and the UL signal reception timing U (Rx) from the child node 3 (or UE 4). A second control signal that adjusts the UL signal transmission timing U (Tx) of the child node 3 (or UE 4) so that is later than the transmission timing D (Tx) of the DL signal from the IAB node 5 of # 1. To generate. Further, the IAB node 5 of # 3 uses DCI to transmit a second control signal to the child node 3 (or UE 4).
 #2のIABノード5は、#1のIAB-DU5Bからの親側BHのDL信号及び、#3のIAB-MT5Aからの子側BHのUL信号を同時に受信できる。更に、#3のIABノード5は、#2のIAB-DU5BへのUL信号を送信すると同時に、子ノード3(又はUE4)からの子側BH(又はアクセスリンク)からのUL信号を受信できる。つまり、同一タイミングで、#2のIABノード5が親側BHのDL信号及び子側BHのUL信号を同時に受信しながら、#3のIABノード5が、#2のIAB-DU5BへのUL信号を送信できる。更に、同時に、子ノード3(又はUE4)からの子側BH(又はアクセスリンク)からのUL信号を受信できる。 The IAB node 5 of # 2 can simultaneously receive the DL signal of the parent BH from the IAB-DU5B of # 1 and the UL signal of the child BH from the IAB-MT5A of # 3. Further, the IAB node 5 of # 3 can transmit the UL signal to the IAB-DU5B of # 2 and at the same time receive the UL signal from the child side BH (or access link) from the child node 3 (or UE4). That is, at the same timing, the IAB node 5 of # 3 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH, while the IAB node 5 of # 3 receives the UL signal to the IAB-DU5B of # 2. Can be sent. Further, at the same time, the UL signal from the child side BH (or access link) from the child node 3 (or UE 4) can be received.
 尚、上記実施例2の無線通信システム1Aでは、#2のIABノード5が親側BHのDL信号及び、子側BHのUL信号を同時に受信しながら、#3のIABノード5がUL信号を送信すると同時に、子側BHからのUL信号を受信する場合を例示した。しかしながら、#2のIABノード5が親側BHのDL信号及び、子側BHのUL信号を同時に受信しなくても、#3のIABノード5が、#2のIAB-DU5BへのUL信号を送信すると同時に、子ノード3(又はUE4)からの子側BH(又はアクセスリンク)からのUL信号を受信しても良い。この場合、#3のIABノード5が、#2のIAB-DU5BへのUL信号を送信しながら、子ノード3(又はUE4)からの子側BH(又はアクセスリンク)からのUL信号を受信し、かつ、子ノード3からのUL信号の送信タイミングが、#2のIABノード5へのUL信号の送信タイミングよりも早くなるように、子ノード3のUL信号の送信タイミングを調整する。その結果、同一タイミングでの送受信に関わる無線通信リソースの利用効率の向上を図ることができる。 In the wireless communication system 1A of the second embodiment, the IAB node 5 of # 3 receives the UL signal while the IAB node 5 of # 2 simultaneously receives the DL signal of the parent BH and the UL signal of the child BH. The case where the UL signal from the child side BH is received at the same time as the transmission is illustrated. However, even if the IAB node 5 of # 2 does not receive the DL signal of the parent BH and the UL signal of the child BH at the same time, the IAB node 5 of # 3 receives the UL signal to the IAB-DU5B of # 2. At the same time as transmitting, the UL signal from the child side BH (or access link) from the child node 3 (or UE 4) may be received. In this case, the IAB node 5 of # 3 receives the UL signal from the child side BH (or access link) from the child node 3 (or UE4) while transmitting the UL signal to the IAB-DU5B of # 2. Moreover, the UL signal transmission timing of the child node 3 is adjusted so that the UL signal transmission timing from the child node 3 is earlier than the UL signal transmission timing to the IAB node 5 of # 2. As a result, it is possible to improve the utilization efficiency of wireless communication resources related to transmission / reception at the same timing.
 IABノード5では、親ノード2からのDL信号と子ノード3からのUL信号とが同時に受信する際に、親側BHのDL信号の受信電力量に対する子側BH(又はアクセスリンク)のUL信号の受信電力量の差分が予め決められた範囲に収まるように子ノード3でのUL信号の送信電力量を増大させる電力モード2を指示する電力制御信号を生成しても良い。その結果、子ノード3は、同時受信ありスロットの場合、電力モード2でUL信号の送信電力量を制御し、同時受信なしスロットの場合、電力モード1でUL信号の送信電力量を制御する。特に、同時受信ありスロット時のDL信号の影響によるUL信号の受信品質の低下を抑制できる。 In the IAB node 5, when the DL signal from the parent node 2 and the UL signal from the child node 3 are simultaneously received, the UL signal of the child side BH (or access link) with respect to the received power amount of the DL signal of the parent side BH. A power control signal indicating the power mode 2 that increases the transmission power amount of the UL signal in the child node 3 may be generated so that the difference in the received power amount of the child node 3 falls within a predetermined range. As a result, the child node 3 controls the transmission power amount of the UL signal in the power mode 2 in the case of the slot with simultaneous reception, and controls the transmission power amount of the UL signal in the power mode 1 in the case of the slot without simultaneous reception. In particular, it is possible to suppress a deterioration in the reception quality of the UL signal due to the influence of the DL signal at the time of the slot with simultaneous reception.
 1 無線通信システム
 2 親ノード
 3 子ノード
 4 UE
 5 IABノード
 55C IAB側制御部
 551C 生成部
 552C 送信部
1 Wireless communication system 2 Parent node 3 Child node 4 UE
5 IAB node 55C IAB side control unit 551C generator unit 552C transmitter unit

Claims (11)

  1.  上位側の無線通信装置からの下り信号と下位側の無線通信装置からの上り信号とが同時に受信でき、かつ、前記下位側の無線通信装置からの前記上り信号の受信タイミングが前記上位側の無線通信装置における前記下り信号の送信タイミングよりも遅くなるように、前記下位側の無線通信装置における前記上り信号の送信タイミングを調整する制御信号を生成する生成部と、
     前記制御信号を前記下位側の無線通信装置に送信する送信部と
     を有することを特徴とする無線通信装置。
    The downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device can be received at the same time, and the reception timing of the uplink signal from the lower wireless communication device is the upper wireless. A generation unit that generates a control signal for adjusting the transmission timing of the uplink signal in the lower wireless communication device so as to be later than the transmission timing of the downlink signal in the communication device.
    A wireless communication device including a transmission unit that transmits the control signal to the lower level wireless communication device.
  2.  前記生成部は、
     前記下位側の無線通信装置における前記上り信号の送信スロットタイミングのシンボル単位での時間シフトに関する指示情報を含む前記制御信号を生成することを特徴とする請求項1に記載の無線通信装置。
    The generator is
    The wireless communication device according to claim 1, wherein the control signal including instruction information regarding a time shift in a symbol unit of the transmission slot timing of the uplink signal in the lower wireless communication device is generated.
  3.  前記生成部は、
     前記上位側の無線通信装置からの前記下り信号の受信タイミングに一致する前記下位側の無線通信装置からの前記上り信号を受信する第2のタイミングと、前記第2のタイミングからシンボル単位で時間的に早くなる第1のタイミング(ULタイミング#1)とを決定し、前記第1のタイミングからシンボル単位での前記第2のタイミングへの時間シフト量に関する指示情報を含む前記制御信号を生成することを特徴とする請求項2に記載の無線通信装置。
    The generator is
    The second timing of receiving the uplink signal from the lower wireless communication device that matches the reception timing of the downlink signal from the upper wireless communication device, and the time from the second timing in symbol units. The first timing (UL timing # 1) to be earlier is determined, and the control signal including the instruction information regarding the time shift amount from the first timing to the second timing in symbol units is generated. 2. The wireless communication device according to claim 2.
  4.  前記送信部は、
     前記制御信号をDCI(Downlink Control Information)に格納して前記下位側の無線通信装置に送信することを特徴とする請求項2又は3に記載の無線通信装置。
    The transmitter is
    The wireless communication device according to claim 2 or 3, wherein the control signal is stored in DCI (Downlink Control Information) and transmitted to the lower level wireless communication device.
  5.  前記生成部は、
     前記上位側の無線通信装置からの前記下り信号と前記下位側の無線通信装置からの前記上り信号とが同時に受信する際の前記下位側の無線通信装置における前記上り信号の送信電力量を、前記下り信号を受信せずに前記上り信号のみを受信する際の前記下位側の無線通信装置における前記上り信号の送信電力量より増大すべきか否かに関する電力指示情報を含む電力制御情報を生成し、
     前記送信部は、
     前記電力制御情報を前記下位側の無線通信装置に送信することを特徴とする請求項1に記載の無線通信装置。
    The generator is
    The transmission power amount of the uplink signal in the lower wireless communication device when the downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device are simultaneously received is described as described above. Generates power control information including power instruction information as to whether or not it should be increased from the transmission power amount of the uplink signal in the lower wireless communication device when receiving only the uplink signal without receiving the downlink signal.
    The transmitter is
    The wireless communication device according to claim 1, wherein the power control information is transmitted to the lower level wireless communication device.
  6.  前記生成部は、
     前記下位側の無線通信装置における当該無線通信装置からの下り信号の受信タイミングを基準にする時間シフトに関する指示情報を含む他の制御信号を生成し、
     前記送信部は、
     前記他の制御信号を前記下位側の無線通信装置に送信することを特徴とする請求項2に記載の無線通信装置。
    The generator is
    Another control signal including instruction information regarding the time shift based on the reception timing of the downlink signal from the wireless communication device in the lower wireless communication device is generated.
    The transmitter is
    The wireless communication device according to claim 2, wherein the other control signal is transmitted to the lower-level wireless communication device.
  7.  上位側の無線通信装置へ上り信号を送信しながら、下位側の無線通信装置からの上り信号を受信し、かつ、前記下位側の無線通信装置からの前記上り信号の送信タイミングが、前記上位側の無線通信装置への前記上り信号の送信タイミングよりも早くなるように、前記下位側の無線通信装置の前記上り信号の送信タイミングを調整する制御信号を生成する生成部と、
     前記制御信号を前記下位側の無線通信装置に送信する送信部と
     を有することを特徴とする無線通信装置。
    While transmitting the uplink signal to the upper wireless communication device, the uplink signal from the lower wireless communication device is received, and the transmission timing of the uplink signal from the lower wireless communication device is the upper side. A generation unit that generates a control signal for adjusting the transmission timing of the uplink signal of the lower-level wireless communication device so as to be earlier than the transmission timing of the uplink signal to the wireless communication device of the above.
    A wireless communication device including a transmission unit that transmits the control signal to the lower level wireless communication device.
  8.  上位側の無線通信装置からの下り信号と下位側の無線通信装置からの上り信号とが同時に受信する際の前記下位側の無線通信装置における前記上り信号の送信電力量を、前記下り信号を受信せずに前記上り信号のみを受信する際の前記下位側の無線通信装置における前記上り信号の送信電力量より増大させるべきか否かに関する電力指示情報を含む電力制御情報を生成する生成部と、
     前記電力制御情報を前記下位側の無線通信装置に送信する送信部と
     を有することを特徴とする無線通信装置。
    When the downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device are simultaneously received, the transmission power amount of the uplink signal in the lower wireless communication device is received. A generation unit that generates power control information including power instruction information as to whether or not to increase the transmission power amount of the uplink signal in the lower wireless communication device when only the uplink signal is received without using the generator.
    A wireless communication device including a transmission unit that transmits the power control information to the lower level wireless communication device.
  9.  無線通信装置が、
     上位側の無線通信装置からの下り信号と下位側の無線通信装置からの上り信号とが同時に受信でき、かつ、前記下位側の無線通信装置からの前記上り信号の受信タイミングが前記上位側の無線通信装置からの前記下り信号の送信タイミングよりも遅くなるように、前記下位側の無線通信装置の前記上り信号の送信タイミングを調整する制御信号を生成し、
     前記制御信号を前記下位側の無線通信装置に送信する
     処理を実行することを特徴とする無線通信方法。
    The wireless communication device
    The downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device can be received at the same time, and the reception timing of the uplink signal from the lower wireless communication device is the upper wireless. A control signal for adjusting the transmission timing of the uplink signal of the lower wireless communication device is generated so as to be later than the transmission timing of the downlink signal from the communication device.
    A wireless communication method comprising executing a process of transmitting the control signal to the lower-level wireless communication device.
  10.  上位側の無線通信装置と、下位側の無線通信装置と、前記上位側の無線通信装置と無線通信すると共に、前記下位側の無線通信装置と無線通信する無線通信装置とを有する無線通信システムであって、
     前記無線通信装置は、
     前記上位側の無線通信装置からの下り信号と前記下位側の無線通信装置からの上り信号とが同時に受信でき、かつ、前記下位側の無線通信装置からの前記上り信号の受信タイミングが前記上位側の無線通信装置からの前記下り信号の送信タイミングよりも遅くなるように、前記下位側の無線通信装置からの前記上り信号の送信タイミングを調整する制御信号を生成する生成部と、
     前記制御信号を前記下位側の無線通信装置に送信する送信部と
     を有することを特徴とする無線通信システム。
    A wireless communication system having a wireless communication device on the upper side, a wireless communication device on the lower side, and a wireless communication device that wirelessly communicates with the wireless communication device on the upper side and also communicates wirelessly with the wireless communication device on the lower side. There,
    The wireless communication device is
    The downlink signal from the upper wireless communication device and the uplink signal from the lower wireless communication device can be received at the same time, and the reception timing of the uplink signal from the lower wireless communication device is the upper side. A generation unit that generates a control signal for adjusting the transmission timing of the uplink signal from the lower wireless communication device so as to be later than the transmission timing of the downlink signal from the wireless communication device of the above.
    A wireless communication system including a transmission unit that transmits the control signal to the lower-level wireless communication device.
  11.  上位側の第1の無線通信装置と、下位側の第2の無線通信装置と、前記第1の無線通信装置と前記第2の無線通信装置との間に配置された第3の無線通信装置及び第4の無線通信装置とを有し、前記第3の無線通信装置は、前記第1の無線通信装置と無線通信すると共に、前記第4の無線通信装置と無線通信し、前記第4の無線通信装置は、前記第2の無線通信装置と無線通信すると共に、前記第3の無線通信装置と無線通信する無線通信システムであって、
     前記第3の無線通信装置は、
     前記第1の無線通信装置からの下り信号と前記第4の無線通信装置からの上り信号とが同時に受信でき、かつ、前記第4の無線通信装置からの前記上り信号の受信タイミングが前記第1の無線通信装置からの前記下り信号の送信タイミングよりも遅くなるように、前記第4の無線通信装置の前記上り信号の送信タイミングを調整する第1の制御信号を生成し、前記第1の制御信号を前記第4の無線通信装置に送信し、
     前記第4の無線通信装置は、
     前記第3の無線通信装置へ上り信号を送信しながら、前記第2の無線通信装置からの上り信号を受信し、かつ、前記第2の無線通信装置からの前記上り信号の送信タイミングが、前記第3の無線通信装置への前記上り信号の送信タイミングよりも早く、かつ、前記第2の無線通信装置からの前記上り信号の受信タイミングが前記第1の無線通信装置からの前記下り信号の送信タイミングよりも遅くなるように、前記第2の無線通信装置の前記上り信号の送信タイミングを調整する第2の制御信号を生成し、前記第2の制御信号を前記第2の無線通信装置に送信する
     ことを特徴とする無線通信システム。
    A first wireless communication device on the upper side, a second wireless communication device on the lower side, and a third wireless communication device arranged between the first wireless communication device and the second wireless communication device. And a fourth wireless communication device, the third wireless communication device wirelessly communicates with the first wireless communication device and also wirelessly communicates with the fourth wireless communication device, and the fourth wireless communication device. The wireless communication device is a wireless communication system that wirelessly communicates with the second wireless communication device and also wirelessly communicates with the third wireless communication device.
    The third wireless communication device is
    The downlink signal from the first wireless communication device and the uplink signal from the fourth wireless communication device can be received at the same time, and the reception timing of the uplink signal from the fourth wireless communication device is the first. A first control signal for adjusting the transmission timing of the uplink signal of the fourth wireless communication device is generated so as to be later than the transmission timing of the downlink signal from the wireless communication device of the fourth wireless communication device. The signal is transmitted to the fourth wireless communication device, and the signal is transmitted to the fourth wireless communication device.
    The fourth wireless communication device is
    While transmitting the uplink signal to the third wireless communication device, the uplink signal from the second wireless communication device is received, and the transmission timing of the uplink signal from the second wireless communication device is the said. The downlink signal is transmitted from the first wireless communication device earlier than the transmission timing of the uplink signal to the third wireless communication device and the reception timing of the uplink signal from the second wireless communication device is earlier than the transmission timing of the uplink signal. A second control signal for adjusting the transmission timing of the uplink signal of the second wireless communication device is generated so as to be later than the timing, and the second control signal is transmitted to the second wireless communication device. A wireless communication system characterized by
PCT/JP2020/030132 2020-08-06 2020-08-06 Wireless communication device, wireless communication method, and wireless communication system WO2022029951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030132 WO2022029951A1 (en) 2020-08-06 2020-08-06 Wireless communication device, wireless communication method, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030132 WO2022029951A1 (en) 2020-08-06 2020-08-06 Wireless communication device, wireless communication method, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2022029951A1 true WO2022029951A1 (en) 2022-02-10

Family

ID=80117820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030132 WO2022029951A1 (en) 2020-08-06 2020-08-06 Wireless communication device, wireless communication method, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2022029951A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035947A1 (en) * 2018-08-17 2020-02-20 株式会社Nttドコモ Radio communication device and radio communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035947A1 (en) * 2018-08-17 2020-02-20 株式会社Nttドコモ Radio communication device and radio communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (AT&T): "Summary of Mechanisms for resource multiplexing among backhaul and access links", 3GPP DRAFT; R1-2004281, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 25 May 2020 (2020-05-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890541 *
MODERATOR (ZTE): "FL summary #1 on IAB case-1 timing", 3GPP DRAFT; R1-2004666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 25 May 2020 (2020-05-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890558 *

Similar Documents

Publication Publication Date Title
US11229026B2 (en) Carrier switching method, base station, and user equipment
EP3979549B1 (en) Timing advance group for new radio
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
KR102631553B1 (en) Method and apparatus for handling beam failure recovery in a wireless communication system
JP6371398B2 (en) Method, apparatus, and computer program
EP2903196B1 (en) Transmission method, device, ue, and base station of harq-ack
US20220015090A1 (en) Uplink information sending method and apparatus, base station, and user equipment
CN112804035B (en) Delay control feedback in time division duplex carrier using common bursts
AU2016391189A1 (en) Method and apparatus for communication based on short transmission time intervals in wireless communication system
RU2709170C2 (en) One-segment formats pucch
KR20160021288A (en) Methods of ul tdm for inter-enodeb carrier aggregation
US20130064146A1 (en) Direct connection communication between terminals and method for directly transmitting and receiving data between terminals for a terminal relay
WO2016047728A1 (en) User terminal, wireless communication system, and wireless communication method
WO2013159304A1 (en) Switching between downlink and uplink
US11659482B2 (en) Method of signalling in an integrated access and backhaul network
US10218489B2 (en) Wireless backhaul configuration
US11800515B2 (en) Signaling for channel access procedure type selection in new radio network with unlicensed spectrum
KR20220047603A (en) Timing synchronization method and device
WO2015109824A1 (en) Synchronous transmission method for channel switching and station device
WO2022029951A1 (en) Wireless communication device, wireless communication method, and wireless communication system
JP7444469B2 (en) Method by user equipment and base station
WO2018006634A1 (en) Channel training method and apparatus
TW202306415A (en) Wireless communication method, user equipment, and base station
JP6849633B2 (en) Methods, equipment, and computer programs
WO2023221106A1 (en) Methods and apparatuses for uplink transmission in a full duplex system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP