WO2022028573A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2022028573A1
WO2022028573A1 PCT/CN2021/111202 CN2021111202W WO2022028573A1 WO 2022028573 A1 WO2022028573 A1 WO 2022028573A1 CN 2021111202 W CN2021111202 W CN 2021111202W WO 2022028573 A1 WO2022028573 A1 WO 2022028573A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
transmission time
uplink
uplink transmission
terminal device
Prior art date
Application number
PCT/CN2021/111202
Other languages
English (en)
French (fr)
Inventor
张萌
郭志恒
刘烨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022028573A1 publication Critical patent/WO2022028573A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of network technologies, and in particular, to a communication method and related equipment.
  • SAR radio frequency energy radiation of mobile phone type user equipment
  • PC3 power class 3
  • 3GPP believes that no additional solutions are required to meet the SAR requirements specified by various countries.
  • the efficiency of the network device in scheduling the PC2 UE is affected, resulting in low transmission efficiency.
  • Embodiments of the present application provide a communication method and related equipment, which can improve uplink transmission efficiency.
  • an embodiment of the present application provides a communication method, including: a terminal device determining a first uplink transmission time ratio X on a time division duplex TDD frequency band; determining a second uplink transmission time ratio X according to the first uplink transmission time ratio X.
  • the uplink transmission time ratio Y, the second uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal equipment on the supplementary uplink SUL frequency band; send a first message to the network device, the first message is used to indicate the second uplink transmission time Time ratio Y, where the terminal device is configured to transmit uplink data using the TDD frequency band and the SUL frequency band.
  • the terminal device reports the maximum uplink transmission time ratio on the SUL frequency band to the network device, and the network device can accurately determine the ability of the terminal device to meet the SAR requirements according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling and the efficiency of uplink transmission.
  • the terminal device receives a system message from the network device, and the system message includes the uplink and downlink time slot allocation on the TDD frequency band; according to the uplink and downlink time slot allocation, the first uplink transmission time ratio X is determined . Determine the maximum uplink transmission time ratio on the TDD frequency band through system messages, so as to accurately determine the ability of the terminal equipment to meet the SAR requirements.
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the TDD frequency band.
  • the efficiency of the uplink scheduling is improved.
  • the terminal device transmits uplink data in the TDD frequency band according to the first uplink transmission time ratio X, and transmits uplink data in the SUL frequency band according to the second uplink transmission time ratio Y.
  • the uplink data is transmitted according to the ability to meet the SAR requirements the strongest, and the efficiency of uplink transmission is improved.
  • the first message when Y ⁇ 0, is also used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device sends the first uplink data according to (X+Y) on the TDD frequency band.
  • Uplink data By indicating the value of the transmission time ratio Y of the second row, the capability of the terminal device on the SUL frequency band and the TDD frequency band is determined, and the accuracy of network scheduling is improved.
  • an embodiment of the present application provides a communication method. Including: the network device receives the first message from the terminal device, the first message is used to indicate the second uplink transmission time ratio Y, and the second uplink transmission time ratio Y is the maximum uplink transmission time of the terminal device on the supplementary uplink SUL frequency band ratio; the network device schedules the terminal device to transmit uplink data on the time division duplex TDD frequency band and the SUL frequency band according to the second uplink transmission time ratio Y.
  • the network device can accurately determine the ability of the terminal device to meet the SAR requirements according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling and the efficiency of uplink transmission.
  • the network device sends a system message to the terminal device, where the system message includes the uplink and downlink time slot allocation on the TDD frequency band, and the uplink and downlink time slot allocation is used to determine the first uplink transmission on the TDD frequency band Time ratio X, and the first uplink transmission time ratio X is used to determine the second uplink transmission time ratio Y.
  • the system message includes the uplink and downlink time slot allocation on the TDD frequency band
  • the uplink and downlink time slot allocation is used to determine the first uplink transmission on the TDD frequency band
  • Time ratio X Time ratio
  • the first uplink transmission time ratio X is used to determine the second uplink transmission time ratio Y.
  • the network device determines, according to the first message, that the terminal device preferentially satisfies the uplink scheduling on the TDD frequency band. By implicitly indicating that the uplink scheduling on the TDD frequency band is preferentially satisfied, the efficiency of the uplink scheduling is improved.
  • the network device schedules the terminal device to transmit uplink data in the TDD frequency band according to the first uplink transmission time ratio X, and to transmit uplink data in the SUL frequency band according to the second uplink transmission time ratio Y.
  • the uplink data is transmitted according to the ability to meet the SAR requirements the strongest, and the efficiency of uplink transmission is improved.
  • the first message is used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device sends the second uplink data according to (X+Y) on the TDD frequency band upstream data.
  • the transmission time ratio Y of the second row By indicating the value of the transmission time ratio Y of the second row, the capability of the terminal equipment on the SUL frequency band and the TDD frequency band is determined, and the scheduling accuracy is improved.
  • an embodiment of the present application provides a communication method, including: a terminal device determining a first uplink transmission time ratio X, where the first uplink transmission time ratio X is the maximum uplink transmission time of the terminal device on the time division duplex TDD frequency band Transmission time ratio; the terminal device sends a first message to the network device, where the first message is used to indicate the first uplink transmission time ratio X, where the terminal device is configured to transmit uplink data using the TDD frequency band and the SUL frequency band.
  • the terminal device reports the maximum uplink transmission time ratio on the TDD frequency band to the network device, and the network device can accurately determine the ability of the terminal device to meet the SAR requirements according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling and the efficiency of uplink transmission.
  • the first message is also used to instruct the terminal device to preferentially satisfy the uplink scheduling on the SUL frequency band.
  • the efficiency of the uplink scheduling is improved.
  • the terminal device transmits uplink data in the TDD frequency band according to the first uplink transmission time ratio X, and transmits uplink data in the SUL frequency band according to the second uplink transmission time ratio Y.
  • the efficiency of uplink transmission is improved by transmitting uplink data according to the ability to best meet the SAR requirements.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 29dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X /2. Enable the non-standard 29dBm UE to report the ability to meet the SAS requirements to the network device, and improve the efficiency of uplink scheduling.
  • an embodiment of the present application provides a communication method, including: a network device receives a first message from a terminal device, the first message indicates a first uplink transmission time ratio X, and the first uplink transmission time ratio X is The maximum uplink transmission time proportion of the terminal equipment on the time division duplex TDD frequency band; according to the first uplink transmission time proportion X, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the supplementary uplink SUL frequency band.
  • the network device can accurately determine the ability of the terminal device to meet the SAR requirements according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling.
  • the network device determines, according to the first message, that the terminal device preferentially satisfies the uplink scheduling on the SUL frequency band. By implicitly indicating that the uplink scheduling on the SUL frequency band is preferentially satisfied, the efficiency of the uplink scheduling is improved.
  • the network device schedules the terminal device to transmit uplink data in the TDD frequency band according to the first uplink transmission time ratio X, and to transmit uplink data in the SUL frequency band according to the second uplink transmission time ratio Y.
  • the efficiency of uplink transmission is improved by transmitting uplink data according to the ability to best meet the SAR requirements.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 29dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X /2. Enable the non-standard 29dBm UE to report the ability to meet the SAS requirements to the network device, and improve the efficiency of uplink scheduling.
  • an embodiment of the present application provides a communication apparatus.
  • the communication apparatus is configured to implement the methods and functions performed by the terminal equipment in the first aspect and the third aspect, and is implemented by hardware/software.
  • the hardware/software include modules corresponding to the above functions.
  • an embodiment of the present application provides a communication apparatus.
  • the communication apparatus is configured to implement the methods and functions performed by the network equipment in the second aspect and the fourth aspect, and is implemented by hardware/software.
  • the hardware/software include modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device.
  • the communication device is applied to a terminal device.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the communication device includes: a processor, a memory, and a communication bus, wherein , the communication bus is used to implement connection and communication between the processor and the memory, and the processor executes the program stored in the memory to implement the steps of the first aspect and the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device is applied to a network device.
  • the communication device may be a network device or a chip in the network device.
  • the communication device includes: a processor, a memory, and a communication bus, wherein , the communication bus is used to realize the connection and communication between the processor and the memory, and the processor executes the program stored in the memory to realize the steps of the second aspect and the fourth aspect.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the computer executes the methods of the above aspects.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the above aspects.
  • an embodiment of the present application provides a chip, including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the method of any one of the foregoing aspects.
  • an embodiment of the present application provides another chip, including: an input interface, an output interface, a processor, and optionally, a memory, and the input interface, the output interface, the processor, and the memory are connected internally through an internal connection.
  • the paths are connected, and the processor is configured to execute code in the memory, and when the code is executed, the processor is configured to execute the method in any of the above aspects.
  • an embodiment of the present application provides a communication system, where the communication system includes at least one terminal device and at least one network device, where the terminal device is configured to perform the steps in the first aspect and the third aspect, and the network Apparatus for performing the steps of the second and fourth aspects above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device proposed by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device proposed by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 and terminal devices 101 to 106 . It should be understood that more or less network devices or terminal devices may be included in the communication system 100 to which the methods of the embodiments of the present application may be applied.
  • the network device or the terminal device may be hardware, software divided by functions, or a combination of the above two.
  • the network device and the terminal device can communicate through other devices or network elements.
  • the network device 110 can send downlink data to the terminal devices 101 to 106 .
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110 .
  • Terminal devices 101 to 106 may be cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, personal digital assistants (PDAs) and/or for wireless Any other suitable device that communicates over the communication system 100, and the like.
  • PDAs personal digital assistants
  • the terminal equipment involved in this application may include high-power UEs (for example, UEs supporting a maximum transmit power of 26dBm or 29dBm or higher).
  • the network device 110 may be an LTE and/or NR network device, and may specifically be a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next generation mobile communication base station (Next generation Node B, gNB) ), a base station in a future mobile communication system or an access node in a Wi-Fi system.
  • the communication system 100 may adopt a public land mobile network (PLMN), a device-to-device (D2D) network, a machine-to-machine (M2M) network, an internet of things (internet of things) , IoT) or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • SUL frequency band combination (Band Combination, BC): In the new radio interface (new radio, NR) as the second uplink of the UE serving cell, compared with the traditional uplink, there is no coupled downlink reception on the SUL frequency band.
  • the SUL band combination may include time division duplexing (TDD) bands and SUL bands.
  • TDD time division duplexing
  • the network device can configure the SUL frequency band combination for the UE to realize that the UE in the same cell uses two uplink carriers of different frequency bands to transmit in turn. All SUL related band combinations are defined in 38.101-1 and 38.101-3.
  • Uplink carrier aggregation Unlike SUL, network equipment needs to use a carrier aggregation protocol stack to configure uplink carrier aggregation. If the UE supports the corresponding frequency band combination for uplink carrier aggregation, the network device can add a secondary cell to the UE configuration and activate the corresponding uplink, so that the uplink of the secondary cell and the uplink of the primary cell form an uplink carrier aggregation.
  • LTE and NR dual connectivity belongs to a non-standalone (non-standalone) networking architecture.
  • the UE can simultaneously accept the uplink scheduling of the network equipment on two different frequency bands of LTE and NR.
  • the UE Different from the two independent (standalone) networking architectures of SUL and UL CA, for EN-DC, the UE also accepts scheduling in the LTE (4G) frequency band, while for SUL and UL CA, the UE can only operate in NR (5G). ) band accepts scheduling.
  • PC3 UE is a mobile phone type terminal device that supports a maximum transmit power of 23dBm.
  • PC2 UE is a mobile phone type terminal device that supports a maximum transmit power of 26dBm.
  • PC2UE can also be called high power UE (high power user equipment, HPUE).
  • 3GPP For NR UEs working on a single frequency band, 3GPP currently requires PC2 UE to report its maximum supported uplink transmission time ratio. Since the transmit power of PC2 is twice that of PC3UE, if the maximum uplink transmission time ratio scheduled by network equipment is less than 50 %, the UE can meet the average transmit power not more than 23dBm without any additional scheme, that is, meet the SAR requirement. Therefore, 3GPP requires the PC2 UE to report a value range of 50%-100% of the maximum supported uplink transmission time ratio. It can be understood that the greater the proportion of uplink transmission time reported by the UE, the stronger the UE's ability to control the transmit power, and the smaller the restriction on the scheduling of uplink transmission by the network device.
  • 3GPP stipulates that if the proportion of uplink transmission time actually scheduled by the network equipment exceeds the ability reported by the UE to meet the SAR requirements, the UE is allowed to generate uplink losses, which reflects the restriction on the scheduling of the network equipment.
  • SUL technology plays an important role in the evolution of 5G.
  • the characteristic of the SUL technology is that the network device configures multiple uplink carriers for the UE at the same time, but at the same time schedules the UE to transmit on only one uplink carrier on the multiple uplink carriers, and there is no simultaneous transmission. Therefore, when considering the SAR scheme of the PC2 UE working on the SUL frequency band combination, there are many differences from the existing uplink SAR scheme of the UL CA or EN-DC frequency band combination.
  • 3GPP specifies the signaling for PC2 high-power UE transmit power capability reporting:
  • 3GPP specifies the capability reporting of PC2 high-power UE SAR solution:
  • the ratio (60%-100%) of the UE's maximum supported uplink transmission time to the total transmission time resources is reported through the maxUplinkDutyCycle-PC2-FR1 per band signaling.
  • the duty cycle (dutycycle) under different TDD ratios on the LTE network side is reported through the maxUplinkDutyCycle-interBandENDC-TDD-PC2-r16 signaling.
  • the combination (dutycycleFDD, dutycycleTDD) is reported.
  • the key difference between the SUL band combination and the CA and EN-DC band combinations is that the SUL band and the TDD band are sent in turn instead of concurrently. Because there is no standardized SAR solution in 3GPP to ensure that the network equipment knows the ability of the PC2 UE to meet the SAR regulations in the SUL frequency band combination, that is, the UE cannot report the maximum uplink transmission time ratio of each uplink frequency band it supports, which affects the network equipment. The uplink scheduling of the UE results in low transmission efficiency. In addition, the maximum uplink transmission time ratio supported in the existing reporting method is 100%, and the network device cannot distinguish the UE capability of supporting a maximum transmit power of more than 26dBm. For example, if the UE can support 29dBm, it cannot further indicate a stronger capability. In order to solve the above technical problems, the embodiments of the present application provide the following solutions.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the steps in this embodiment of the present application include at least:
  • a network device sends a system message to a terminal device, where the system message includes an uplink and downlink time slot configuration on the TDD frequency band.
  • the terminal device determines the first uplink transmission time ratio X on the time division duplex TDD frequency band according to the uplink and downlink time slot configuration.
  • the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the TDD frequency band. For example, if the ratio of uplink and downlink time slots is 2:3, the first uplink transmission time ratio X may be 40%.
  • the first uplink transmission time ratio X represents the ratio of the maximum uplink transmission time supported on the TDD frequency band within a specific period to all time domain resources on the premise of meeting the SAR requirements.
  • the specific period may be a period greater than 1 millisecond, which is usually the frame length of one radio frame, for example, 10 milliseconds.
  • the terminal device determines a second uplink transmission time ratio Y according to the first uplink transmission time ratio X, where the second uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal device on the supplementary uplink SUL frequency band The percentage of transfer time.
  • the second uplink transmission time ratio Y represents the ratio of the maximum uplink transmission time supported on the SUL frequency band within a specific period to all time domain resources under the premise of meeting the SAR requirements.
  • the terminal device transmits uplink data according to the first uplink transmission time ratio X (maximum value) on the TDD frequency band, and transmits uplink data according to the second uplink transmission time ratio Y (maximum value) on the SUL frequency band.
  • the total cumulative transmit power does not exceed the preset threshold, so as to meet the SAR regulation that the accumulated radiation energy to the human body by the terminal equipment within a certain period of time cannot exceed the specified maximum value.
  • the first uplink transmission time ratio X or the second uplink transmission time ratio Y is the ability to meet the SAR requirements.
  • the terminal device can control its own transmit power according to the power accumulation algorithm and power backoff strategy that it can use, so as to meet the requirements of accumulative power within a certain period of time.
  • the transmit power does not exceed the requirement of a preset threshold.
  • the power accumulation algorithm and the power backoff strategy are not specified in the 3GPP standard, allowing flexibility in the design of the terminal equipment.
  • Y ⁇ (1-X)
  • the value of Y may also be less than 0.
  • Y ⁇ 0 it means that the terminal device cannot send the first uplink data on the SUL frequency band, and cannot send the second uplink data on the TDD frequency band according to the maximum uplink transmission time ratio X.
  • the terminal device may send the second uplink data on the TDD frequency band according to the proportion of uplink transmission time not exceeding (X+Y).
  • the terminal device cannot send the first uplink data on the SUL frequency band, but can send it on the TDD frequency band according to the proportion of uplink transmission time 0.3 (not more than 0.4) The second uplink data.
  • the terminal device sends a first message to the network device, where the first message is used to indicate the second uplink transmission time ratio Y, where the terminal device is configured to use the TDD frequency band and the SUL frequency band transmit upstream data.
  • the terminal device may send the first message to the network device on the SUL frequency band.
  • the network device may determine that the second uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal device on the SUL frequency band.
  • the network device may, according to the first message, schedule the terminal device to transmit the uplink data on the TDD frequency band according to the proportion of uplink transmission time not exceeding X, and schedule the terminal equipment to transmit the uplink data on the TDD frequency band according to the proportion of uplink transmission time not exceeding X, and on the SUL frequency band according to not more than X.
  • the uplink transmission time of Y accounts for the transmission of the uplink data.
  • the network device may schedule the terminal device to transmit uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and to transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y, that is, schedule the terminal device according to the The strongest ability to transmit upstream data.
  • the terminal device may transmit the uplink data on the TDD frequency band according to the proportion of uplink transmission time not exceeding X, and transmit the uplink data on the SUL frequency band according to the proportion of uplink transmission time not exceeding Y. It should be noted that the terminal device transmits uplink data to the network device in turn on the TDD frequency band and the SUL frequency band, that is, it does not transmit the uplink data to the network device at the same time.
  • the actual transmission time ratio of the network device scheduling terminal equipment on the TDD frequency band exceeds the first uplink transmission time ratio X, or the actual transmission time ratio on the SUL frequency band exceeds the second uplink transmission time ratio Y , which can allow terminal equipment to lose uplink data.
  • the first message may also be used to schedule the transmit power and uplink data of the terminal device. For example, if the terminal equipment does not meet the SAR requirements, the terminal equipment can be scheduled to reduce transmit power or reduce uplink data.
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the TDD frequency band. If the network device receives the first message of the terminal device on the SUL frequency band, the first message indicates the maximum uplink transmission time ratio on the SUL frequency band, which is equivalent to an implicit indication that the uplink scheduling on the TDD frequency band is prioritized, and then the Uplink scheduling on the SUL band.
  • the first message is also used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device can follow (X+Y) on the TDD frequency band. Send the second uplink data.
  • the first message may be radio resource configuration (radio resources configuration, RRC) signaling.
  • RRC radio resources configuration
  • the terminal device reports the maximum uplink transmission time ratio on the SUL frequency band to the network device, and the network device can accurately determine the ability of the terminal device to meet the SAR requirement according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the steps in this embodiment of the present application include at least:
  • the terminal device determines a first uplink transmission time ratio X, where the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the time division duplex TDD frequency band.
  • the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the TDD frequency band.
  • the first uplink transmission time ratio X represents the ratio of the maximum uplink transmission time supported on the TDD frequency band within a specific period to all time domain resources on the premise of meeting the SAR requirements.
  • the specific period may be a period greater than 1 millisecond, which is usually the frame length of one radio frame, for example, 10 milliseconds.
  • the terminal device sends a first message to the network device, where the first message is used to indicate the first uplink transmission time ratio X, where the terminal device is configured to use the TDD frequency band and the SUL frequency band transmit upstream data.
  • the network device may determine the second uplink transmission time ratio Y according to the first uplink transmission time ratio X.
  • the second uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal device on the SUL frequency band.
  • the second uplink transmission time ratio Y represents the ratio of the maximum uplink transmission time supported on the SUL frequency band within a specific period to all uplink time domain resources under the premise of meeting the SAR requirements.
  • the terminal equipment transmits uplink data according to the first uplink transmission time ratio X (maximum value) on the TDD frequency band, and transmits uplink data according to the second uplink transmission time ratio Y (maximum value) on the SUL frequency band.
  • the total cumulative transmit power does not exceed the preset threshold, so as to meet the SAR regulation that the accumulated radiation energy to the human body by the terminal equipment within a certain period of time cannot exceed the specified maximum value.
  • the first uplink transmission time ratio X or the second uplink transmission time ratio Y is the ability to meet the SAR requirements.
  • the terminal equipment can transmit uplink data in the TDD frequency band according to the uplink transmission time ratio not exceeding 0.8, which can meet the SAR requirements.
  • the terminal device may send the first message to the network device on the TDD frequency band.
  • the network device may determine that the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the TDD frequency band.
  • the actual transmission time ratio of the network device scheduling terminal equipment on the TDD frequency band exceeds the first uplink transmission time ratio X, or the actual transmission time ratio on the SUL frequency band exceeds the second uplink transmission time ratio Y , which can allow terminal equipment to lose uplink data.
  • the first message may also be used to schedule transmit power and uplink data of the terminal device. For example, if the terminal equipment does not meet the SAR requirements, the terminal equipment can be scheduled to reduce transmit power or reduce uplink data.
  • the first message may also be used to instruct the terminal device to preferentially satisfy the uplink scheduling on the SUL frequency band. If the network device receives the first message of the terminal device on the TDD frequency band, the first message indicates the maximum uplink transmission time ratio on the TDD frequency band, which is equivalent to an implicit indication that the uplink scheduling on the SUL frequency band is prioritized, and then the Uplink scheduling on TDD frequency bands.
  • the first message may also be used to indicate the first uplink transmission time ratio X and the second uplink transmission time ratio Y.
  • the terminal equipment simultaneously reports the maximum uplink transmission time proportion on the TDD frequency band and the maximum uplink transmission time proportion on the SUL frequency band.
  • the first message may be RRC signaling.
  • the network device schedules the terminal device to transmit uplink data on the TDD frequency band and the supplementary uplink SUL frequency band according to the first uplink transmission time ratio X.
  • the network device may, according to the first message, schedule the terminal device to transmit the uplink data on the TDD frequency band according to the proportion of uplink transmission time not exceeding X, and on the SUL frequency band according to the proportion of uplink transmission time not exceeding Y.
  • the uplink data is transmitted.
  • the network device can schedule the terminal device to transmit uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and to transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y, that is, schedule the terminal device according to the The strongest ability to meet SAR requirements to transmit upstream data.
  • the terminal device reports the maximum uplink transmission time ratio on the TDD frequency band to the network device, and the network device can accurately determine the ability of the terminal device to meet the SAR requirement according to the maximum uplink transmission time ratio. Therefore, under the capability of meeting the SAR requirements, the terminal equipment is scheduled to transmit uplink data on the TDD frequency band and the SUL frequency band, thereby improving the efficiency of uplink scheduling.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device, or a chip or a processing system in the terminal device, and the device may be used to implement any method and function related to the terminal device in any of the foregoing embodiments.
  • the device may include a processing module 401, a sending module 402 and Receive module 403 .
  • the sending module 402 and the receiving module 403 correspond to the radio frequency circuit and the baseband circuit included in the terminal device.
  • the detailed description of each module is as follows.
  • the processing module 401 is configured to determine the first uplink transmission time ratio X on the time division duplex TDD frequency band; according to the first uplink transmission time ratio X, determine the second uplink transmission time ratio Y, the second uplink transmission time ratio
  • the uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal equipment on the supplementary uplink SUL frequency band;
  • a sending module 402 configured to send a first message to a network device, where the first message is used to indicate the second uplink transmission time ratio Y, wherein the terminal device is configured to use the TDD frequency band and the The SUL frequency band transmits uplink data.
  • the receiving module 403 is configured to receive a system message from the network device, where the system message includes an uplink and downlink time slot configuration on the TDD frequency band; the processing module 401 is configured to receive a system message according to the The time slot ratio is determined, and the first uplink transmission time ratio X is determined.
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the TDD frequency band.
  • the sending module 402 is further configured to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y. the above data.
  • the first message is used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device is in the TDD frequency band according to (X+ Y) Send the second uplink data.
  • a processing module 401 configured to determine a first uplink transmission time ratio X, where the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the time division duplex TDD frequency band;
  • a sending module 402 configured to send a first message to a network device, where the first message is used to indicate the first uplink transmission time ratio X, wherein the terminal device is configured to use the TDD frequency band and the The SUL frequency band transmits uplink data.
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the SUL frequency band.
  • the sending module 402 is further configured to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y data.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 29dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X/2.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 2 and FIG. 3 , and execute the methods and functions performed by the terminal device in the foregoing embodiments.
  • FIG. 5 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication device may be a network device, or a chip or a processing system in the network device, and the device may be used to implement any method and function related to the network device in any of the foregoing embodiments.
  • the device may include a receiving module 501, a processing module 502 and Sending module 503 .
  • the receiving module 501 and the sending module 503 correspond to the radio frequency circuit and the baseband circuit included in the network device.
  • the detailed description of each module is as follows.
  • the receiving module 501 is configured to receive a first message from a terminal device, where the first message is used to indicate a second uplink transmission time ratio Y, and the second uplink transmission time ratio Y is the terminal device in the supplementary uplink The maximum percentage of uplink transmission time on the SUL frequency band;
  • the processing module 502 is configured to schedule the terminal device to transmit uplink data on the time division duplex TDD frequency band and the SUL frequency band according to the second uplink transmission time ratio Y.
  • the sending module 503 is configured to send a system message to the terminal device, where the system message includes an uplink and downlink time slot allocation on the TDD frequency band, and the uplink and downlink time slot allocation is used to determine the The first uplink transmission time ratio X on the TDD frequency band is used to determine the second uplink transmission time ratio Y.
  • the processing module 502 is further configured to determine, according to the first message, that the terminal device preferentially satisfies the uplink scheduling on the TDD frequency band.
  • the processing module 502 is further configured to schedule the terminal device to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and schedule the terminal equipment to transmit the uplink data on the SUL frequency band according to the first uplink transmission time ratio X.
  • Two uplink transmission time ratio Y transmits the uplink data.
  • the first message is used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device is in the TDD frequency band according to (X+ Y) Send the second uplink data.
  • the receiving module 501 is configured to receive a first message from a terminal device, where the first message indicates the first uplink transmission time ratio X, and the first uplink transmission time ratio X is the time division dual of the terminal device.
  • the processing module 502 is configured to schedule the terminal device to transmit uplink data on the TDD frequency band and the supplementary uplink SUL frequency band according to the first uplink transmission time ratio X.
  • the processing module 502 is further configured to determine, according to the first message, that the terminal device preferentially satisfies the uplink scheduling on the SUL frequency band.
  • the processing module 502 is further configured to schedule the terminal device to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and schedule the terminal equipment to transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio X.
  • the transmission time ratio Y transmits the uplink data.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 29dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X/2.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 2 and FIG. 3 , and execute the methods and functions performed by the network device in the foregoing embodiments.
  • FIG. 6 is a schematic structural diagram of a terminal device proposed by an embodiment of the present application.
  • the terminal device may include: at least one processor 601 , at least one communication interface 602 , at least one memory 603 and at least one communication bus 604 .
  • the processor 601 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication bus 604 may be a peripheral component interconnection standard PCI bus or an extended industry standard structure EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the communication bus 604 is used to implement the connection communication between these components.
  • the communication interface 602 of the device in the embodiment of the present application is used to communicate signaling or data with other node devices.
  • the memory 603 may include volatile memory, such as nonvolatile dynamic random access memory (NVRAM), phase change random access memory (PRAM), magnetoresistive random access memory (magetoresistive) RAM, MRAM), etc., and may also include non-volatile memory, such as at least one magnetic disk storage device, electronically erasable programmable read-only memory (EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory, semiconductor devices, such as solid state disk (SSD), etc.
  • the memory 603 can optionally also be at least one storage device located away from the aforementioned processor 601 .
  • memory 603 may also store a set of program codes.
  • the processor 601 can also execute programs stored in the memory 603 .
  • the second uplink transmission time ratio Y is determined, and the second uplink transmission time ratio Y is the maximum uplink transmission time ratio of the terminal equipment on the supplementary uplink SUL frequency band ;
  • processor 601 is further configured to perform the following operation steps:
  • system message includes an uplink and downlink time slot configuration on the TDD frequency band
  • the first uplink transmission time ratio X is determined according to the uplink and downlink time slot configuration.
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the TDD frequency band.
  • processor 601 is further configured to perform the following operation steps:
  • the uplink data is transmitted on the TDD frequency band according to the first uplink transmission time ratio X, and the uplink data is transmitted on the SUL frequency band according to the second uplink transmission time ratio Y.
  • the first message is used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device is in the TDD frequency band according to (X+ Y) Send the second uplink data.
  • the first uplink transmission time ratio X is the maximum uplink transmission time ratio of the terminal device on the time division duplex TDD frequency band
  • the first message is further used to instruct the terminal device to preferentially satisfy the uplink scheduling on the SUL frequency band.
  • processor 601 is further configured to perform the following operation steps:
  • the uplink data is transmitted on the TDD frequency band according to the first uplink transmission time ratio X, and the uplink data is transmitted on the SUL frequency band according to the second uplink transmission time ratio Y.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 29dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X/2.
  • processor may also cooperate with the memory and the communication interface to perform the operations of the terminal device in the above application embodiments.
  • FIG. 7 is a schematic structural diagram of a network device proposed by an embodiment of the present application.
  • the network device may include: at least one processor 701 , at least one communication interface 702 , at least one memory 703 and at least one communication bus 704 .
  • the processor 701 may be various types of processors mentioned above.
  • the communication bus 704 may be a peripheral component interconnection standard PCI bus or an extended industry standard structure EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the communication bus 704 is used to implement the connection communication between these components.
  • the communication interface 702 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 703 may be the various types of memory mentioned above. Optionally, the memory 703 may also be at least one storage device located away from the aforementioned processor 701 .
  • a set of program codes are stored in the memory 703 , and the processor 701 executes the programs in the memory 703 .
  • the first message is used to indicate the second uplink transmission time ratio Y, and the second uplink transmission time ratio Y is the maximum uplink of the terminal device on the supplementary uplink SUL frequency band The proportion of transmission time;
  • the terminal device is scheduled to transmit uplink data on the time division duplex TDD frequency band and the SUL frequency band.
  • processor 701 is further configured to perform the following operation steps:
  • the system message includes the uplink and downlink time slot allocation on the TDD frequency band, and the uplink and downlink time slot allocation is used to determine the first uplink transmission on the TDD frequency band Time ratio X, the first uplink transmission time ratio X is used to determine the second uplink transmission time ratio Y.
  • processor 701 is further configured to perform the following operation steps:
  • the terminal device preferentially satisfies the uplink scheduling on the TDD frequency band.
  • processor 701 is further configured to perform the following operation steps:
  • Scheduling the terminal device to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and to transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y data.
  • the first message is used to indicate that the terminal device cannot send the first uplink data on the SUL frequency band, and the terminal device is in the TDD frequency band according to (X+ Y) Send the second uplink data.
  • the first message indicates the first uplink transmission time ratio X, and the first uplink transmission time ratio X is the maximum value of the terminal device on the time division duplex TDD frequency band The proportion of uplink transmission time;
  • the terminal device is scheduled to transmit uplink data on the TDD frequency band and the supplementary uplink SUL frequency band.
  • processor 701 is further configured to perform the following operation steps:
  • the terminal device preferentially satisfies the uplink scheduling on the SUL frequency band.
  • processor 701 is further configured to perform the following operation steps:
  • the terminal device is scheduled to transmit the uplink data on the TDD frequency band according to the first uplink transmission time ratio X, and to transmit the uplink data on the SUL frequency band according to the second uplink transmission time ratio Y.
  • the first message is also used to indicate that the maximum transmit power of the terminal device is 27dBm, and the actual maximum uplink transmission time ratio supported on the TDD frequency band is X/2.
  • processor may also cooperate with the memory and the communication interface to execute the operations of the network device in the above-mentioned embodiments of the application.
  • An embodiment of the present application further provides a chip system, where the chip system includes a processor, configured to support a terminal device or a network device to implement the functions involved in any of the foregoing embodiments, such as generating or processing the functions involved in the foregoing method.
  • the chip system may further include a memory, where the memory is used for necessary program instructions and data of the terminal device or the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present application further provides a processor, which is coupled to a memory and configured to execute any method and function involving a terminal device or a network device in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when running on a computer, enables the computer to execute any method and function related to a terminal device or a network device in any of the foregoing embodiments.
  • An embodiment of the present application further provides an apparatus for executing any method and function involving a terminal device or a network device in any of the foregoing embodiments.
  • An embodiment of the present application further provides a wireless communication system, where the system includes at least one terminal device and at least one network device involved in any of the foregoing embodiments.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及相关设备。该方法包括:终端设备确定在时分双工TDD频段上的第一上行传输时间占比X;根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。采用本申请实施例,可以提高网络调度的效率,提高传输效率。

Description

一种通信方法及相关设备
本申请要求于2020年8月7日提交中国专利局、申请号为202010789870.7、申请名称为“一种通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及网络技术领域,尤其涉及一种通信方法及相关设备。
背景技术
各个国家的法规组织都对手机类型的用户设备(user equipment,UE)的射频能量辐射对人体的影响有着非常严格的要求,通常使用(specific absorption rate,SAR)来规定。SAR规定在一定时间内UE积累的对人体辐射能量不能超过规定的最大值。由于SAR的广泛使用,第三代合作伙伴计划(The 3rd generation partnership project,3GPP)对UE满足SAR法规有标准化的解决方案。对于功率类型(power class3,PC3)的UE,即最大允许发射23dBm功率的UE,3GPP认为不需要额外的方案就能满足各国规定的SAR要求。因此,在研究PC2的UE(最大允许发射26dBm功率的UE)的SAR方案时,在一定时间内平均发射功率小于等于23dBm一直作为所标准化方案的目标假设。
由于网络设备无法确定PC2 UE在补充上行(supplemental uplink,SUL)频段组合上满足SAR要求的能力,影响网络设备调度PC2的UE的效率,导致传输效率低。
发明内容
本申请实施例提供一种通信方法及相关设备,能够提高上行传输效率。
第一方面,本申请实施例提供了一种通信方法,包括:终端设备确定在时分双工TDD频段上的第一上行传输时间占比X;根据第一上行传输时间占比X,确定第二上行传输时间占比Y,第二上行传输时间占比Y为终端设备在补充上行SUL频段上的最大上行传输时间占比;向网络设备发送第一消息,第一消息用于指示第二上行传输时间占比Y,其中,终端设备被配置为使用TDD频段和SUL频段传输上行数据。终端设备通过向网络设备上报在SUL频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率,提高了上行传输效率。
在一种可能的设计中,终端设备接收来自网络设备的系统消息,系统消息包括在TDD频段上的上下行时隙配比;根据上下行时隙配比,确定第一上行传输时间占比X。通过系统消息确定在TDD频段上的最大上行传输时间占比,以便准确的确定终端设备满足SAR要求的能力。
在另一种可能的设计中,第一消息还用于指示终端设备优先满足在TDD频段上的上行调度。通过隐式指示优先满足在TDD频段上的上行调度,提高上行调度的效率。
在另一种可能的设计中,终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据。按照最强满足SAR要求的能力传输上行数据,提高上行传输的效率。
在另一种可能的设计中,当0<=X<=1时,Y<=(1-X)。通过确定在SUL频段上的最大上 行传输时间占比,提高上行调度的效率。
在另一种可能的设计中,当Y<0时,第一消息还用于指示终端设备无法在SUL频段上发送第一上行数据,且终端设备在TDD频段上按照(X+Y)发送第二上行数据。通过指示第二行传输时间占比Y的值,确定终端设备在SUL频段和TDD频段上的能力,提高网络调度的准确性。
第二方面,本申请实施例提供了一种通信方法。包括:网络设备接收来自终端设备的第一消息,第一消息用于指示第二上行传输时间占比Y,第二上行传输时间占比Y为终端设备在补充上行SUL频段上的最大上行传输时间占比;网络设备根据第二上行传输时间占比Y,调度终端设备在时分双工TDD频段和SUL频段上传输上行数据。网络设备通过接收终端设备上报的在SUL频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率,提高了上行传输效率。
在一种可能的设计中,网络设备向终端设备发送系统消息,系统消息包括在TDD频段上的上下行时隙配比,上下行时隙配比用于确定在TDD频段上的第一上行传输时间占比X,第一上行传输时间占比X用于确定第二上行传输时间占比Y。通过系统消息确定在TDD频段上的最大上行传输时间占比,以便准确的确定终端设备满足SAR要求的能力。
在另一种可能的设计中,网络设备根据第一消息,确定终端设备优先满足在TDD频段上的上行调度。通过隐式指示优先满足在TDD频段上的上行调度,提高上行调度的效率。
在另一种可能的设计中,网络设备调度终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据。按照最强满足SAR要求的能力传输上行数据,提高上行传输的效率。
在另一种可能的设计中,当0<=X<=1时,Y<=(1-X)。通过确定在SUL频段上的最大上行传输时间占比,提高上行调度的效率。
在另一种可能的设计中,当Y<0时,第一消息用于指示终端设备无法在SUL频段上发送第一上行数据,且终端设备在TDD频段上按照(X+Y)发送第二上行数据。通过指示第二行传输时间占比Y的值,确定终端设备在SUL频段和TDD频段上的能力,提高调度的准确性。
第三方面,本申请实施例提供了一种通信方法,包括:终端设备确定第一上行传输时间占比X,第一上行传输时间占比X为终端设备在时分双工TDD频段上的最大上行传输时间占比;终端设备向网络设备发送第一消息,第一消息用于指示第一上行传输时间占比X,其中,终端设备被配置为使用TDD频段和SUL频段传输上行数据。终端设备通过向网络设备上报在TDD频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率,提高了上行传输效率。
在另一种可能的设计中,第一消息还用于指示终端设备优先满足在SUL频段上的上行调度。通过隐式指示优先满足在SUL频段上的上行调度,提高上行调度的效率。
在另一种可能的设计中,终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据。通过按照最强满足SAR要求的能力传输上行数据,提高上行传输的效率。
在另一种可能的设计中,当0<=X<=1时,0<=Y<=(1-X)。通过确定在SUL频段上的最大上行传输时间占比,提高上行调度的效率。
在另一种可能的设计中,当1<X<=2时,第一消息还用于指示终端设备的最大发射功率为29dBm,且支持在TDD频段上的实际最大上行传输时间占比为X/2。使能非标29dBm UE向网络设备上报满足SAS要求的能力,提高上行调度的效率。
第四方面,本申请实施例提供了一种通信方法,包括:网络设备接收来自终端设备的第一消息,第一消息指示第一上行传输时间占比X,第一上行传输时间占比X为终端设备在时分双工TDD频段上的最大上行传输时间占比;根据第一上行传输时间占比X,调度终端设备在TDD频段和补充上行SUL频段上传输上行数据。网络设备通过接收终端设备上报的在TDD频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率。
在一种可能的设计中,网络设备根据第一消息,确定终端设备优先满足在SUL频段上的上行调度。通过隐式指示优先满足在SUL频段上的上行调度,提高上行调度的效率。
在另一种可能的设计中,网络设备调度终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据。通过按照最强满足SAR要求的能力传输上行数据,提高上行传输的效率。
在另一种可能的设计中,当0<=X<=1时,0<=Y<=(1-X)。通过确定在SUL频段上的最大上行传输时间占比,提高上行调度的效率。
在另一种可能的设计中,当1<X<=2时,第一消息还用于指示终端设备的最大发射功率为29dBm,且支持在TDD频段上的实际最大上行传输时间占比为X/2。使能非标29dBm UE向网络设备上报满足SAS要求的能力,提高上行调度的效率。
第五方面,本申请实施例提供了一种通信装置,该通信装置被配置为实现上述第一方面和第三方面中终端设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第六方面,本申请实施例提供了一种通信装置,该通信装置被配置为实现上述第二方面和第四方面中网络设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第七方面,本申请实施例提供了一种通信装置,通信装置应用于终端设备中,该通信装置可以为终端设备或终端设备中的芯片,通信装置包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第一方面和第三方面的步骤。
第八方面,本申请实施例提供了一种通信装置,通信装置应用于网络设备中,该通信装置可以为网络设备或网络设备中的芯片,通信装置包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第二方面和第四方面的步骤。
第九方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第十方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第十一方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的通信设备执行上述任一方面的方法。
第十二方面,本申请实施例提供了另一种芯片,包括:输入接口、输出接口、处理器, 可选的,还包括存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述任一方面中的方法。
第十三方面,本申请实施例提供了一种通信系统,该通信系统包括至少一个终端设备和至少一个网络设备,该终端设备用于执行上述第一方面和第三方面中的步骤,该网络设备用于执行上述第二方面和第四方面中的步骤。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的另一种通信方法的流程示意图;
图4是本申请实施例提供的一种通信装置的结构示意图;
图5是本申请实施例提供的另一种通信装置的结构示意图;
图6是本申请实施例提出的一种终端设备的结构示意图;
图7是本申请实施例提出的一种网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
如图1所示,图1是本申请实施例提供的一种通信系统100的架构示意图。该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以通过其他设备或网元通信。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据。终端设备101~终端设备106可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、掌上电脑(personal digital assistant,PDA)和/或用于在无线通信系统100上通信的任意其它适合设备等等。当然,本申请所涉及的终端设备可以包括高功率UE(例如支持最大发射功率26dBm或29dBm或更高功率的UE)。网络设备110可以是LTE和/或NR的网络设备,具体的可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(Next generation Node B,gNB),未来移动通信系统中的基站或Wi-Fi系统中的接入节点。通信系统100可以采用公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或者其他网络。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
在本申请所涉及的网络技术领域中,可以包括以下几种频段组合:
SUL频段组合(band combination,BC):在新空口(new radio,NR)中作为UE服务小区的第二个上行,与传统上行相比,在SUL频段上没有耦合的下行接收。SUL频段组合可以 包括时分双工(time division duplexing,TDD)频段和SUL频段。网络设备可以通过为UE配置SUL频段组合来实现同一个小区中UE使用两个不同频段的上行载波轮流发送。在38.101-1和38.101-3中定义了所有SUL相关的频段组合。
上行载波聚合(uplink carrier aggregation,UL CA):与SUL不同,网络设备配置上行载波聚合需要使用载波聚合的协议栈。若UE支持上行载波聚合相应的频段组合,网络设备可以为UE配置添加辅小区,并激活相应的上行,使得辅小区的上行和主小区的上行组成一个上行的载波聚合。
LTE和NR双连接(LTE-NR dual connectivity,EN-DC):属于非独立(non-standalone)组网架构。UE在EN-DC配置下,可以在LTE和NR的两个不同频段上同时接受网络设备的上行调度。与SUL和UL CA两种独立(standalone)组网架构不同的是,对于EN-DC,UE在LTE(4G)频段上也接受调度,而对于SUL和UL CA,UE均只能在NR(5G)频段接受调度。
3GPP规定了两种类型的UE:PC3UE和PC2 UE。其中,PC3UE为支持最大发射功率23dBm的手机类型终端设备。PC2 UE为支持最大发射功率26dBm的手机类型终端设备。PC2UE也可以称为高功率UE(high power user equipment,HPUE)。
对于工作在单频段上的NR UE,目前3GPP要求PC2 UE上报其最大支持的上行传输时间占比,由于PC2的发射功率为PC3UE的两倍,如果网络设备调度的最大上行传输时间占比小于50%,该UE无需任何额外方案即可满足平均发射功率不超过23dBm,也即满足SAR要求。因此,3GPP要求PC2 UE上报支持的最大上行传输时间占比的取值范围为50%-100%。可以理解,UE上报其所支持的上行传输时间占比越大,该UE对发射功率的控制能力越强,对网络设备调度上行传输的限制也越小。同时3GPP规定,如果网络设备实际调度的上行传输时间占比超过UE所上报的满足SAR要求的能力,则允许UE产生上行损失,侧面反映了对网络设备的调度进行了限制。
SUL技术在5G演进中扮演着重要地位,通过为UE添加低频点的纯上行载波,配合C频段(C band)的下行大带宽,补充了5G上行覆盖的不足,大大提升了上行覆盖和容量,也为运营商灵活的部署5G提供了最直接的帮助。SUL技术的特点是,网络设备同时配置UE多个上行载波,但同时只调度UE在多个上行载波上的一个上行载波上进行传输,不存在同时发送的情况。因此在考虑工作在SUL频段组合上的PC2 UE的SAR方案时,与已有的UL CA或EN-DC的频段组合的上行SAR方案有很多不同之处。
3GPP规定了PC2高功率UE的发射功率能力上报的信令:
对于单频段PC2 UE,通过ue-PowerClass per band信令上报。对于EN-DC组合PC2 UE,powerClass per BC信令和powerClass per BC信令上报。对于NR CA组合PC2 UE,通过powerClass per BC信令上报。
3GPP规定了PC2高功率UE SAR方案能力上报:
对于单band SAR能力,通过maxUplinkDutyCycle-PC2-FR1 per band信令上报UE最大支持上行传输时间占总传输时间资源的比例(60%-100%)。对于EN-DC、UL CA组合SAR能力,在TDD+TDD频段组合下,通过maxUplinkDutyCycle-interBandENDC-TDD-PC2-r16信令上报LTE网络侧不同TDD配比下的占空比(dutycycle)。在FDD+TDD频段组合下,上报组合(dutycycleFDD,dutycycleTDD)。
SUL频段组合与CA和EN-DC两种频段组合方式的关键区别在于:在SUL频段和TDD频段上轮流发送而非并发。由于3GPP中没有标准化的SAR方案保证网络设备获知SUL频 段组合中PC2 UE满足SAR法规的能力,也即UE无法上报自身所支持的各个上行频段上的最大上行传输时间占比的能力,影响网络设备对UE的上行调度,导致传输效率低。另外,现有上报方法中支持的最大上行传输时间占比为100%,网络设备无法区别支持最大发射功率超过26dBm以上的UE能力,例如若UE可以支持29dBm,无法进一步指示更强能力。为了解决上述技术问题,本申请实施例提供了如下解决方案。
如图2所示,图2是本申请实施例提供的一种通信方法的流程示意图。本申请实施例中的步骤至少包括:
S201,网络设备向终端设备发送系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比。
S202,终端设备根据所述上下行时隙配比,确定在时分双工TDD频段上的第一上行传输时间占比X。
其中,第一上行传输时间占比X为终端设备在TDD频段上的最大上行传输时间占比。例如,如果上下行时隙配比为2:3,则第一上行传输时间占比X可以为40%。第一上行传输时间占比X表示在满足SAR要求的前提下,在一个特定周期内在TDD频段上支持的最大上行传输时间占全部时域资源的比例。其中,特定周期可以为大于1毫秒的周期,通常是一个无线帧的帧长度,例如10毫秒。
S203,终端设备根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比。
其中,第二上行传输时间占比Y表示在满足SAR要求的前提下,在一个特定周期内在SUL频段上支持的最大上行传输时间占全部时域资源的比例。
需要说明的是,终端设备在TDD频段上按照第一上行传输时间占比X(最大值)来传输上行数据、和在SUL频段上按照第二上行传输时间占比Y(最大值)来传输上行数据,总的累计发射功率不超过预设阈值,这样才能满足SAR规定的在一定时间内终端设备积累的对人体辐射能量不能超过规定的最大值。其中,第一上行传输时间占比X或第二上行传输时间占比Y均为满足SAR要求的能力。
为了满足SAR法规的要求,在网络设备配置终端设备的最大发射功率时,终端设备可以根据自身能够使用的功率累计算法和功率回退策略进行自身发射功率的控制,从而达到满足在一定时间内累计发射功率不超过预设阈值的要求。其中,功率累计算法和功率回退策略在3GPP标准中不做规定,允许终端设备设计上的灵活性。
可选的,当0<=X<=1时,Y<=(1-X),Y的取值也可以小于0。特别的,当Y=(1-X)时,表示终端设备的能力最强,网络设备可以调度终端设备的任何上行资源。当Y<0时,表示所述终端设备无法在所述SUL频段上发送第一上行数据,并且也无法在TDD频段上按照最大上行传输时间占比X发送第二上行数据。此时,终端设备可以在TDD频段上按照不超过(X+Y)的上行传输时间占比发送第二上行数据。例如,当X=0.5,Y=-0.1时,也即Y<0,终端设备无法在SUL频段上发送第一上行数据,可以在TDD频段上按照上行传输时间占比0.3(不超过0.4)发送第二上行数据。
S204,终端设备向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,终端设备可以在SUL频段上向网络设备发送第一消息。网络设备在SUL频段 上接收到第一消息之后,可以确定第二上行传输时间占比Y为终端设备在行SUL频段上的最大上行传输时间占比。
可选的,网络设备接收到第一消息之后,可以根据第一消息,调度终端设备在TDD频段上按照不超过X的上行传输时间占比传输所述上行数据,和在SUL频段上按照不超过Y的上行传输时间占比传输所述上行数据。特别的,网络设备可以调度终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据,也即调度终端设备按照最强能力来传输上行数据。
可选的,终端设备可以在TDD频段上按照不超过X的上行传输时间占比传输所述上行数据,和在SUL频段上按照不超过Y的上行传输时间占比传输所述上行数据。应注意,终端设备在TDD频段和SUL频段上轮流向网络设备发送上行数据,也即不是同时向网络设备发送上行数据。
可选的,如果网络设备调度终端设备在TDD频段上的实际传输时间占比超过第一上行传输时间占比X,或者在SUL频段上的实际传输时间占比超过第二上行传输时间占比Y,可以允许终端设备损失上行数据。
可选的,第一消息还可以用于调度终端设备的发射功率和上行数据。例如,如果终端设备不满足SAR要求,可以调度终端设备减小发射功率或减少上行数据。
可选的,所述第一消息还用于指示所述终端设备优先满足在所述TDD频段上的上行调度。如果网络设备在SUL频段上接收到终端设备的第一消息,该第一消息指示在SUL频段上的最大上行传输时间占比,相当于隐式指示优先满足在TDD频段上的上行调度,其次满足在SUL频段上的上行调度。
可选的,当Y<0时,第一消息还用于指示终端设备无法在所述SUL频段上发送第一上行数据,并且所述终端设备可以在所述TDD频段上按照(X+Y)发送第二上行数据。
其中,第一消息可以为无线资源配置(radio resources configuration,RRC)信令。
在本申请实施例中,终端设备通过向网络设备上报在SUL频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率。
如图3所示,图3是本申请实施例提供的另一种通信方法的流程示意图。本申请实施例中的步骤至少包括:
S301,终端设备确定第一上行传输时间占比X,所述第一上行传输时间占比X为所述终端设备在时分双工TDD频段上的最大上行传输时间占比。
其中,第一上行传输时间占比X为终端设备在TDD频段上的最大上行传输时间占比。第一上行传输时间占比X表示在满足SAR要求的前提下,在一个特定周期内在TDD频段上支持的最大上行传输时间占全部时域资源的比例。其中,特定周期可以为大于1毫秒的周期,通常是一个无线帧的帧长度,例如10毫秒。
S302,终端设备向网络设备发送第一消息,所述第一消息用于指示所述第一上行传输时间占比X,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,网络设备可以根据第一上行传输时间占比X,确定第二上行传输时间占比Y。其中,第二上行传输时间占比Y为终端设备在SUL频段上的最大上行传输时间占比。第二上行传输时间占比Y表示在满足SAR要求的前提下,在一个特定周期内在SUL频段上支持的 最大上行传输时间占全部上行时域资源的比例。
需要说明的是,终端设备在TDD频段上按照第一上行传输时间占比X(最大值)来传输上行数据、和在SUL频段上按照第二上行传输时间占比Y(最大值)来传输上行数据,总的累计发射功率不超过预设阈值,这样才能满足SAR规定的在一定时间内终端设备积累的对人体辐射能量不能超过规定的最大值。其中,第一上行传输时间占比X或第二上行传输时间占比Y均为满足SAR要求的能力。
可选的,当0<=X<=1时,0<=Y<=(1-X)。特别的,当1<X<=2时,表示终端设备的最大发射功率为29dBm。第一消息还用于指示终端设备的最大发射功率为29dBm,且支持在所述TDD频段上的实际最大上行传输时间占比为X/2。例如,当终端设备向网络设备上报的X为1.6时,也即1<X<=2,表示终端设备支持的最大发射功率不是26dBm,而是29dBm。同时,该终端设备可以在TDD频段按照不超过0.8的上行传输时间占比来传输上行数据,这样能够满足SAR要求。
可选的,终端设备可以在TDD频段上向网络设备发送第一消息。网络设备在TDD频段上接收到第一消息之后,可以确定第一上行传输时间占比X为终端设备在行TDD频段上的最大上行传输时间占比。
可选的,如果网络设备调度终端设备在TDD频段上的实际传输时间占比超过第一上行传输时间占比X,或者在SUL频段上的实际传输时间占比超过第二上行传输时间占比Y,可以允许终端设备损失上行数据。
可选的,所述第一消息还可以用于调度终端设备的发射功率和上行数据。例如,如果终端设备不满足SAR要求,可以调度终端设备减小发射功率或减少上行数据。
可选的,所述第一消息还可以用于指示所述终端设备优先满足在所述SUL频段上的上行调度。如果网络设备在TDD频段上接收到终端设备的第一消息,该第一消息指示在TDD频段上的最大上行传输时间占比,相当于隐式指示优先满足在SUL频段上的上行调度,其次满足在TDD频段上的上行调度。
可选的,第一消息还可以用于指示第一上行传输时间占比X和第二上行传输时间占比Y。终端设备同时上报在TDD频段上的最大上行传输时间占比和在SUL频段上的最大上行传输时间占比。
其中,第一消息可以为RRC信令。
S303,网络设备根据所述第一上行传输时间占比X,调度所述终端设备在所述TDD频段和补充上行SUL频段上传输上行数据。
可选的,网络设备可以根据第一消息,调度终端设备在TDD频段上按照不超过X的上行传输时间占比传输所述上行数据,和在SUL频段上按照不超过Y的上行传输时间占比传输所述上行数据。
特别的,网络设备可以调度终端设备在TDD频段上按照第一上行传输时间占比X传输上行数据,和在SUL频段上按照第二上行传输时间占比Y传输上行数据,也即调度终端设备按照最强的满足SAR要求的能力来传输上行数据。
在本申请实施例中,终端设备通过向网络设备上报在TDD频段上的最大上行传输时间占比,网络设备可以根据最大上行传输时间占比,准确地确定终端设备满足SAR要求的能力。从而在满足SAR要求的能力下,调度终端设备在TDD频段和SUL频段上传输上行数据,提高上行调度的效率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
如图4所示,图4是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以为终端设备、或终端设备中的芯片或处理系统,该装置可以用于实现前述任意实施例中涉及终端设备的任意方法和功能,该装置可以包括处理模块401、发送模块402和接收模块403。可选的,发送模块402和接收模块403对应终端设备包括的射频电路和基带电路。其中,各个模块的详细描述如下。
在一个实施例中,
处理模块401,用于确定在时分双工TDD频段上的第一上行传输时间占比X;根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
发送模块402,用于向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,接收模块403,用于接收来自所述网络设备的系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比;处理模块401,用于根据所述上下行时隙配比,确定所述第一上行传输时间占比X。
可选的,所述第一消息还用于指示所述终端设备优先满足在所述TDD频段上的上行调度。
发送模块402,还用于在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,Y<=(1-X)。
可选的,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
在另一个实施例中:
处理模块401,用于确定第一上行传输时间占比X,所述第一上行传输时间占比X为所述终端设备在时分双工TDD频段上的最大上行传输时间占比;
发送模块402,用于向网络设备发送第一消息,所述第一消息用于指示所述第一上行传输时间占比X,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,所述第一消息还用于指示所述终端设备优先满足在所述SUL频段上的上行调度。
发送模块402,还用于在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,0<=Y<=(1-X)。
可选的,当1<X<=2时,所述第一消息还用于指示所述终端设备的最大发射功率为29dBm,且支持在所述TDD频段上的实际最大上行传输时间占比为X/2。
需要说明的是,各个模块的实现还可以对应参图2和图3所示的方法实施例的相应描述,执行上述实施例中终端设备所执行的方法和功能。
如图5所示,图5是本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以为网络设备、或网络设备中的芯片或处理系统,该装置可以用于实现前述任意实施例中涉及网络设备的任意方法和功能,该装置可以包括接收模块501、处理模块502和发送模块503。 可选的,接收模块501和发送模块503对应网络设备包括的射频电路和基带电路。其中,各个模块的详细描述如下。
在一个实施例中:
接收模块501,用于接收来自终端设备的第一消息,所述第一消息用于指示第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
处理模块502,用于根据所述第二上行传输时间占比Y,调度所述终端设备在时分双工TDD频段和所述SUL频段上传输上行数据。
可选的,发送模块503,用于向所述终端设备发送系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比,所述上下行时隙配比用于确定在所述TDD频段上的第一上行传输时间占比X,所述第一上行传输时间占比X用于确定所述第二上行传输时间占比Y。
可选的,处理模块502,还用于根据所述第一消息,确定所述终端设备优先满足在所述TDD频段上的上行调度。
可选的,处理模块502,还用于调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,Y<=(1-X)。
可选的,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
在另一个实施例中:
接收模块501,用于接收来自终端设备的第一消息,所述第一消息指示所述第一上行传输时间占比X,所述第一上行传输时间占比X为所述终端设备在时分双工TDD频段上的最大上行传输时间占比;
处理模块502,用于根据所述第一上行传输时间占比X,调度所述终端设备在所述TDD频段和补充上行SUL频段上传输上行数据。
可选的,处理模块502,还用于根据所述第一消息,确定所述终端设备优先满足在所述SUL频段上的上行调度。
可选的,处理模块502,还用于调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,0<=Y<=(1-X)。
可选的,当1<X<=2时,所述第一消息还用于指示所述终端设备的最大发射功率为29dBm,且支持在所述TDD频段上的实际最大上行传输时间占比为X/2。
需要说明的是,各个模块的实现还可以对应参图2和图3所示的方法实施例的相应描述,执行上述实施例中网络设备所执行的方法和功能。
如图6所示,图6是本申请实施例提出的一种终端设备的结构示意图。该终端设备可以包括:至少一个处理器601,至少一个通信接口602,至少一个存储器603和至少一个通信总线604。
其中,处理器601可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。 所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线604可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线604用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口602用于与其他节点设备进行信令或数据的通信。存储器603可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器603可选的还可以是至少一个位于远离前述处理器601的存储装置。存储器603中可选的还可以存储一组程序代码。处理器601可选的还可以执行存储器603中所存储的程序。
在一个实施例中:
确定在时分双工TDD频段上的第一上行传输时间占比X;
根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,处理器601还用于执行如下操作步骤:
接收来自所述网络设备的系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比;
根据所述上下行时隙配比,确定所述第一上行传输时间占比X。
可选的,所述第一消息还用于指示所述终端设备优先满足在所述TDD频段上的上行调度。
可选的,处理器601还用于执行如下操作步骤:
在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,Y<=(1-X)。
可选的,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
在另一个实施例中:
确定第一上行传输时间占比X,所述第一上行传输时间占比X为所述终端设备在时分双工TDD频段上的最大上行传输时间占比;
向网络设备发送第一消息,所述第一消息用于指示所述第一上行传输时间占比X,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
可选的,所述第一消息还用于指示所述终端设备优先满足在所述SUL频段上的上行调度。
可选的,处理器601还用于执行如下操作步骤:
在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,0<=Y<=(1-X)。
可选的,当1<X<=2时,所述第一消息还用于指示所述终端设备的最大发射功率为29dBm,且支持在所述TDD频段上的实际最大上行传输时间占比为X/2。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中终端设备的操作。
如图7所示,图7是本申请实施例提出的一种网络设备的结构示意图。该网络设备可以包括:至少一个处理器701,至少一个通信接口702,至少一个存储器703和至少一个通信总线704。
其中,处理器701可以是前文提及的各种类型的处理器。通信总线704可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线704用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口702用于与其他节点设备进行信令或数据的通信。存储器703可以是前文提及的各种类型的存储器。存储器703可选的还可以是至少一个位于远离前述处理器701的存储装置。存储器703中存储一组程序代码,且处理器701执行存储器703中程序。
在一个实施例中:
接收来自终端设备的第一消息,所述第一消息用于指示第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
根据所述第二上行传输时间占比Y,调度所述终端设备在时分双工TDD频段和所述SUL频段上传输上行数据。
可选的,处理器701还用于执行如下操作步骤:
向所述终端设备发送系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比,所述上下行时隙配比用于确定在所述TDD频段上的第一上行传输时间占比X,所述第一上行传输时间占比X用于确定所述第二上行传输时间占比Y。
可选的,处理器701还用于执行如下操作步骤:
根据所述第一消息,确定所述终端设备优先满足在所述TDD频段上的上行调度。
可选的,处理器701还用于执行如下操作步骤:
调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,Y<=(1-X)。
可选的,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
在另一个实施例中:
接收来自终端设备的第一消息,所述第一消息指示所述第一上行传输时间占比X,所述第一上行传输时间占比X为所述终端设备在时分双工TDD频段上的最大上行传输时间占比;
根据所述第一上行传输时间占比X,调度所述终端设备在所述TDD频段和补充上行SUL频段上传输上行数据。
可选的,处理器701还用于执行如下操作步骤:
根据所述第一消息,确定所述终端设备优先满足在所述SUL频段上的上行调度。
可选的,处理器701还用于执行如下操作步骤:
调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照第二上行传输时间占比Y传输所述上行数据。
可选的,当0<=X<=1时,0<=Y<=(1-X)。
可选的,当1<X<=2时,所述第一消息还用于指示所述终端设备的最大发射功率为27dBm,且支持在所述TDD频段上的实际最大上行传输时间占比为X/2。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中网络设备的操作。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或网络设备以实现上述任一实施例中所涉及的功能,例如生成或处理上述方法中所涉及的第一上行传输时间占比X和第二上行传输时间占比Y。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于终端设备或网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及终端设备或网络设备的任意方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及终端设备或网络设备的任意方法和功能。
本申请实施例还提供了一种装置,用于执行上述各实施例中任一实施例中涉及终端设备或网络设备的任意方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述任一实施例中涉及的至少一个终端设备和至少一个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定在时分双工TDD频段上的第一上行传输时间占比X;
    所述终端设备根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
    所述终端设备向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备接收来自所述网络设备的系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比;
    所述终端设备根据所述上下行时隙配比,确定所述第一上行传输时间占比X。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一消息还用于指示所述终端设备优先满足在所述TDD频段上的上行调度。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
  5. 如权利要求1-4任一项所述的方法,其特征在于,当0<=X<=1时,Y<=(1-X)。
  6. 如权利要求5所述的方法,其特征在于,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
  7. 一种通信方法,其特征在于,包括:
    网络设备接收来自终端设备的第一消息,所述第一消息用于指示第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
    所述网络设备根据所述第二上行传输时间占比Y,调度所述终端设备在时分双工TDD频段和所述SUL频段上传输上行数据。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比,所述上下行时隙配比用于确定在所述TDD频段上的第一上行传输时间占比X,所述第一上行传输时间占比X用于确定所述第二上行传输时间占比Y。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一消息,确定所述终端设备优先满足在所述TDD频段上的上行 调度。
  10. 如权利要求7-9任一项所述的方法,其特征在于,所述网络设备根据所述第二上行传输时间占比Y,调度所述终端设备在所述TDD频段和所述SUL频段上传输上行数据包括:
    所述网络设备调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
  11. 如权利要求7-10任一项所述的方法,其特征在于,当0<=X<=1时,Y<=(1-X)。
  12. 如权利要求11所述的方法,其特征在于,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
  13. 一种通信装置,其特征在于,包括:
    处理模块,用于确定在时分双工TDD频段上的第一上行传输时间占比X;根据所述第一上行传输时间占比X,确定第二上行传输时间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
    发送模块,用于向网络设备发送第一消息,所述第一消息用于指示所述第二上行传输时间占比Y,其中,所述终端设备被配置为使用所述TDD频段和所述SUL频段传输上行数据。
  14. 如权利要求13所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自所述网络设备的系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比;
    所述处理模块,还用于根据所述上下行时隙配比,确定所述第一上行传输时间占比X。
  15. 如权利要求13或14所述的装置,其特征在于,所述第一消息还用于指示所述终端设备优先满足在所述TDD频段上的上行调度。
  16. 如权利要求13-15任一项所述的装置,其特征在于,
    所述发送模块,还用于在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
  17. 如权利要求13-16任一项所述的装置,其特征在于,当0<=X<=1时,Y<=(1-X)。
  18. 如权利要求17所述的装置,其特征在于,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
  19. 一种通信装置,其特征在于,包括:
    接收模块,用于接收来自终端设备的第一消息,所述第一消息用于指示第二上行传输时 间占比Y,所述第二上行传输时间占比Y为所述终端设备在补充上行SUL频段上的最大上行传输时间占比;
    处理模块,用于根据所述第二上行传输时间占比Y,调度所述终端设备在时分双工TDD频段和所述SUL频段上传输上行数据。
  20. 如权利要求19所述的装置,其特征在于,
    发送模块,用于向所述终端设备发送系统消息,所述系统消息包括在所述TDD频段上的上下行时隙配比,所述上下行时隙配比用于确定在所述TDD频段上的第一上行传输时间占比X,所述第一上行传输时间占比X用于确定所述第二上行传输时间占比Y。
  21. 如权利要求19或20所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息,确定所述终端设备优先满足在所述TDD频段上的上行调度。
  22. 如权利要求19-21任一项所述的装置,其特征在于,
    所述处理模块,还用于调度所述终端设备在所述TDD频段上按照所述第一上行传输时间占比X传输所述上行数据,和在所述SUL频段上按照所述第二上行传输时间占比Y传输所述上行数据。
  23. 如权利要求19-22任一项所述的装置,其特征在于,当0<=X<=1时,Y<=(1-X)。
  24. 如权利要求23所述的装置,其特征在于,当Y<0时,所述第一消息用于指示所述终端设备无法在所述SUL频段上发送第一上行数据,且所述终端设备在所述TDD频段上按照(X+Y)发送第二上行数据。
  25. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和通信总线,所述通信总线用于实现所述处理器和所述存储器之间连接通信,所述处理器执行所述存储器中存储的程序用于实现如权利要求1-6任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和通信总线,所述通信总线用于实现所述处理器和所述存储器之间连接通信,所述处理器执行所述存储器中存储的程序用于实现如权利要求7-12任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使得所述装置执行权利要求1至12中任一项所述的方法。
  28. 一种芯片,其特征在于,所述芯片包括处理电路和输入输出接口,所述输入输出接口与所述处理电路之间通过内部连接通路相连,所述处理电路用于执行权利要求1至12中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至12中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至12中任一项所述的方法。
  31. 一种通信系统,其特征在于,所述通信系统包括终端设备和网络设备,所述终端设备用于执行权利要求1-6任一项所述的方法,所述网络设备用于执行权利要求7-12任一项所述的方法。
PCT/CN2021/111202 2020-08-07 2021-08-06 一种通信方法及相关设备 WO2022028573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010789870.7A CN114071742A (zh) 2020-08-07 2020-08-07 一种通信方法及相关设备
CN202010789870.7 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022028573A1 true WO2022028573A1 (zh) 2022-02-10

Family

ID=80117081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111202 WO2022028573A1 (zh) 2020-08-07 2021-08-06 一种通信方法及相关设备

Country Status (2)

Country Link
CN (1) CN114071742A (zh)
WO (1) WO2022028573A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351054A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 信息传输方法、装置、网络设备及终端
WO2020032866A1 (en) * 2018-08-10 2020-02-13 Telefonaktiebolaget L M Ericsson (Publ) Power headroom report (phr) reporting determination
CN110831210A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 一种资源分配方法、终端、网络设备和计算机存储介质
CN112584374A (zh) * 2019-09-27 2021-03-30 维沃移动通信有限公司 能力参数确定方法、上行调度方法、终端和网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351054A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 信息传输方法、装置、网络设备及终端
CN110831210A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 一种资源分配方法、终端、网络设备和计算机存储介质
WO2020032866A1 (en) * 2018-08-10 2020-02-13 Telefonaktiebolaget L M Ericsson (Publ) Power headroom report (phr) reporting determination
CN112584374A (zh) * 2019-09-27 2021-03-30 维沃移动通信有限公司 能力参数确定方法、上行调度方法、终端和网络侧设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "New WID: Power Class 2 UE for NR inter-band CA and SUL band combinations with 2 bands UL", 3GPP TSG-RAN WG4 MEETING #95-E, R4-2006930, 5 June 2020 (2020-06-05), XP051883939 *
CMCC: "WF on SAR solution for SUL PC2 UE", TSG-RAN WORKING GROUP 4 (RADIO) MEETING #91, R4-1907657, 17 May 2019 (2019-05-17), XP051741278 *
HUAWEI ET AL.: "Discussion on the SAR solutions for SUL band combinations", 3GPP TSG RAN4 MEETING #97E, R4-2015286, 13 November 2020 (2020-11-13), XP051944295 *
OPPO: "Discussion on SUL HPUE SAR", 3GPP TSG-RAN WG4 MEETING #96E, R4-2010773, 28 August 2020 (2020-08-28), XP051913659 *

Also Published As

Publication number Publication date
CN114071742A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
US20200127692A1 (en) Wireless communication method and device
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
US20220006599A1 (en) Method and device for managing band width part
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
US12114263B2 (en) Method and device for discontinuous reception
CN113518416B (zh) 上报功率回退信息的方法及装置、终端设备、网络设备
US12120693B2 (en) Method and device for receiving information and sending information
CN110710269B (zh) 通信方法、通信装置和系统
US11729819B2 (en) Method and device for determining contention window
WO2020210964A1 (zh) 无线通信方法、终端设备和网络设备
WO2021081838A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
CN112740763A (zh) 无线通信方法、终端设备和网络设备
US12063660B2 (en) Method and device for adjusting PDCCH monitoring period
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021081918A1 (zh) 无线通信方法、终端设备和网络设备
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
CN115486146A (zh) 上报功率回退信息的方法及装置、网络设备、终端设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2021142700A1 (zh) 一种测量方法及装置、终端设备
EP3972351A1 (en) Power control method, terminal device and network device
WO2022028573A1 (zh) 一种通信方法及相关设备
WO2021195928A1 (zh) 上报功率回退信息的方法及装置、终端设备、网络设备
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854455

Country of ref document: EP

Kind code of ref document: A1