WO2022028489A1 - 数据传输方法、装置、设备和存储介质 - Google Patents

数据传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022028489A1
WO2022028489A1 PCT/CN2021/110622 CN2021110622W WO2022028489A1 WO 2022028489 A1 WO2022028489 A1 WO 2022028489A1 CN 2021110622 W CN2021110622 W CN 2021110622W WO 2022028489 A1 WO2022028489 A1 WO 2022028489A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
symbols
uplink
slot format
downlink
Prior art date
Application number
PCT/CN2021/110622
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21852746.3A priority Critical patent/EP4195559A1/en
Priority to US18/019,882 priority patent/US20230292293A1/en
Publication of WO2022028489A1 publication Critical patent/WO2022028489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present application relates to the field of communication technologies, for example, to a data transmission method, apparatus, device, and storage medium.
  • the New Radio (NR) system Compared with the previous communication system, the New Radio (NR) system has higher configuration flexibility and wider bandwidth range. Accordingly, higher requirements are placed on the capabilities of the terminal, so that the terminal needs to spend more money. higher cost than before.
  • NR New Radio
  • low-configuration terminal device types are defined for such scenarios, such as smaller bandwidth, fewer antennas, Half Duplex Frequency Division Duplexing (HD-FDD), relaxation of terminal processing time, relaxation of Terminal processing capability, etc., thereby reducing the production cost and complexity of the terminal.
  • HD-FDD Half Duplex Frequency Division Duplexing
  • NR supports flexible slot formats, that is, symbols in a slot can be configured as downlink symbols, uplink symbols or flexible symbols.
  • the half-duplex operation can be realized by first obtaining the time slot format, and then determining whether to receive data on the downlink frequency band or switch to the uplink frequency band to receive data according to the time slot format.
  • the time slot format determination method currently used by NR is not completely suitable for HD-FDD.
  • the data transmission method, device, device and storage medium provided by the present application solve the problem that the time slot format supported by NR is not suitable for HD-FDD terminals.
  • an embodiment of the present application provides a data transmission method, and the method is applied to a first node, including:
  • a slot format is determined based on the signaling; wherein the slot format is used for data transmission.
  • an embodiment of the present application provides a data transmission method, where the method is applied to a second node, including:
  • the signaling is sent to the first node, wherein the signaling is used to instruct the first node to determine a time slot format, and the time slot format is used for data transmission.
  • an embodiment of the present application provides a data transmission apparatus, the apparatus is configured on a first node, and includes:
  • a receiving module configured to receive the signaling sent by the second node
  • the determining module is configured to determine a slot format based on the signaling, wherein the slot format is used for data transmission.
  • an embodiment of the present application provides a data transmission device, the device is configured on a second node, and includes:
  • a configuration module configured to configure signaling
  • the sending module is configured to send the signaling to the first node, wherein the signaling is used to instruct the first node to determine a time slot format, and the time slot format is used for data transmission.
  • an embodiment of the present application provides a device, including:
  • processors one or more processors
  • memory for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method according to any one of the embodiments of this application.
  • an embodiment of the present application provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, the method according to any one of the embodiments of the present application is implemented.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a time slot format provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • 15 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • 16 is a schematic diagram of another time slot format provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution, Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile communication technology
  • a radio access network may include different communication nodes in different systems.
  • the wireless network system includes a base station and a plurality of user equipments.
  • the base station performs wireless communication with multiple user equipments respectively.
  • the base station may be a device that can communicate with a user terminal.
  • a base station can be any device with wireless transceiver functions, including but not limited to: base station NodeB, Evolved NodeB (eNodeB), base station in 5G communication system, base station in future communication system, wireless fidelity (Wireless NodeB) Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in Fidelity, WiFi) systems.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small cell, a transmission reference point (transmission reference point, TRP), etc., which are not limited in the embodiments of the present application.
  • CRAN cloud radio access network
  • TRP transmission reference point
  • the user terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed In the air (eg in airplanes, balloons, satellites, etc.).
  • the user terminal may be a mobile phone (mobile phone), a tablet computer (portable android device, Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a user terminal may also sometimes be referred to as a terminal, an access terminal, a User Equipment (UE) unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE proxy or UE device etc.
  • UE User Equipment
  • the New Radio (NR) system has higher configuration flexibility and wider bandwidth range. Accordingly, higher requirements are placed on the capabilities of the terminal, so that the terminal needs to spend more money. higher cost than before.
  • low-configuration terminal device types are defined for such scenarios, such as smaller bandwidth, fewer antennas, half-duplex FDD (Half Duplex FDD, HD-FDD), relaxation of terminal processing time, relaxation of terminal processing capabilities, etc. , thereby reducing the production cost and complexity of the terminal.
  • Such terminals may be referred to as low profile NR terminals, or NR reduced capability (NR RedCap) user terminals.
  • NR supports flexible slot formats, that is, symbols in a slot can be configured as downlink symbols, uplink symbols or flexible symbols.
  • half-duplex operation can be realized by first obtaining the time slot format, and then determining whether to receive data on the downlink frequency band or switch to the uplink frequency band to receive data according to the time slot format.
  • the time slot format determination method currently used by NR is mainly designed for time division duplex (Time-division Duplex, TDD) system design, which is not completely suitable for RedCap HD-FDD UE.
  • TDD Time-division Duplex
  • the semi-static cell-based configuration slot format is configured through the higher layer signaling tdd-UL-DL-ConfigurationCommon, which provides:
  • the reference subcarrier spacing corresponding to the parameter referenceSubcarrierSpacing
  • the first mode provides: time slot configuration period msec, corresponding parameter dl-UL-TransmissionPeriodicity;
  • the UE determines the slot format of each slot in the first slot group according to the first mode, and determines the slot format of each slot in the second slot group according to the second mode.
  • the second mode provides:
  • Time slot configuration period msec corresponding to the parameter dl-UL-TransmissionPeriodicity
  • the semi-static terminal-based configuration slot format is configured through the higher layer signaling tdd-UL-DL-ConfigurationDedicated and only works on flexible subframes configured based on the cell.
  • This higher layer signaling provides:
  • the parameter nrofDownlinkSymbols provides the number of downlink symbols in the time slot, the downlink symbol is located at the beginning of the time slot, and the parameter nrofUplinkSymbols provides the number of uplink symbols in the time slot, where the uplink symbol is located at the end of the time slot.
  • the parameter nrofDownlinkSymbols is not provided, there are no downlink symbols in the time slot, and if the parameter nrofUplinkSymbols is not provided, there are no uplink symbols in the time slot.
  • the remaining symbols in the slot are flexible symbols.
  • Dynamic configuration refers to the downlink control information indication carried by the downlink control information (Downlink Control Information, DCI) format2-0, specifically the combination index slotFormatCombinationId indicated in the downlink control information, and the combination table is searched according to the combination index, wherein the combination table is a high-level signaling configured.
  • DCI Downlink Control Information
  • the slot format index combination slotFormats can be obtained through the combination index, and then the format of each slot can be obtained by looking up the table according to the slot format index.
  • the slot formats defined in the NR standard are shown in the table below.
  • this embodiment provides a data transmission method, and the method is applied to the first node.
  • the data transmission method provided by this embodiment mainly includes steps S11 , S12 and S13 .
  • the signaling includes first signaling and/or second signaling.
  • the time slot format includes:
  • a second slot format determined based on the second signaling.
  • the first signaling includes: a first slot format index, wherein the first slot format index is an index in a first slot format table, or the first slot format index
  • the slot format index is the index in the first slot format combination.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set The corresponding number of time slots.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set the corresponding slot index.
  • the first signaling includes: first time slot configuration information; wherein, the first time slot configuration information indicates the time slot configuration of H time slots, and H is a positive value greater than or equal to 1 Integer.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to number of time slots.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to slot index.
  • the first time slot configuration information includes one or more of the following parameters:
  • the first signaling includes one or more of the following: a first period, and second time slot configuration information.
  • the second timeslot configuration information includes one or more of the following: a timeslot index set, and timeslot attributes corresponding to one or more timeslots in the timeslot index set.
  • the second time slot configuration information includes one or more of the following: a time slot attribute set, and a time slot index corresponding to one or more time slot attributes in the time slot attribute set.
  • the second signaling includes: a slot format combination index, wherein the slot format combination consists of a first slot index, and the first slot format index is the first slot The index in the format table, or the first slot format index is the index in the first slot format combination.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the maximum number of flexible symbols is N, where G1, G2, and N are positive values greater than zero. Integer.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the number of flexible symbols is fixed to N, where G3, G4, and N are positive integers greater than zero.
  • the method further includes: determining symbols for uplink and downlink conversion.
  • the uplink and downlink conversion interval corresponding to the first node is R symbols, determine the location for the uplink and downlink conversion. symbol, including one of the following:
  • the symbols used for uplink and downlink conversion are determined to be R uplink symbols after the downlink symbols.
  • the uplink and downlink conversion occurs on flexible symbols
  • the uplink and downlink conversion interval corresponding to the first node is R symbols
  • the number of flexible symbols is X
  • the symbols used for uplink and downlink conversion are flexible symbols and Y uplink symbols after the flexible symbols;
  • the preset length is M time slots, and M is a positive integer greater than or equal to 1.
  • the method further includes: the first node generates symbols for uplink and downlink conversion based on at least one of the following manners:
  • the first node does not perform downlink reception for R1 symbols before the uplink symbol
  • the first node does not perform downlink reception for R2 symbols after the uplink symbol
  • the first node does not perform uplink transmission for R3 uplink symbols after the downlink symbol;
  • the first node does not perform uplink transmission for R4 uplink symbols before the downlink symbol;
  • the first node does not perform uplink and downlink transmission on all flexible symbols between uplink and downlink symbols;
  • the first node does not perform downlink reception on all flexible symbols and Y1 downlink symbols before the uplink symbol;
  • the first node does not perform downlink reception on all flexible symbols and Y2 downlink symbols after the uplink symbol;
  • the first node does not perform uplink transmission on all flexible symbols and Y3 uplink symbols after the downlink symbol;
  • the first node does not perform uplink transmission on all flexible symbols and Y4 uplink symbols before the downlink symbol;
  • R1, R2, R3, R4, Y1, Y2, Y3, Y4 are positive integers greater than zero.
  • this embodiment provides a data transmission method, and the method is applied to the second node.
  • the data transmission method provided by this embodiment mainly includes steps S21 and S22.
  • the signaling includes first signaling and/or second signaling.
  • the time slot format includes:
  • a second slot format determined based on the second signaling.
  • the first signaling includes: a first slot format index, wherein the first slot format index is an index in a first slot format table, or the first slot format index
  • the slot format index is the index in the first slot format combination.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set The corresponding number of time slots.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set the corresponding slot index.
  • the first signaling includes: first time slot configuration information; wherein, the first time slot configuration information indicates the time slot configuration of H time slots, and H is a positive value greater than or equal to 1 Integer.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to number of time slots.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to slot index.
  • the first time slot configuration information includes one or more of the following parameters:
  • the first signaling includes one or more of the following: a first period, and second time slot configuration information.
  • the second time slot configuration information includes one or more of the following: a first period, a time slot index set, and time slot attributes corresponding to one or more time slots in the time slot index set.
  • the second time slot configuration information includes one or more of the following: a first period, a time slot attribute set, and a time slot index corresponding to one or more time slot attributes in the time slot attribute set .
  • the second signaling includes: a slot format combination index, wherein the slot format combination consists of a first slot index, and the first slot format index is the first slot The index in the format table, or the first slot format index is the index in the first slot format combination.
  • the time slot formats included in the first time slot format table satisfy one or more of the following conditions: at most one uplink and downlink conversion; in the first preset time slot format, if the downlink symbol The number of flexible symbols is greater than G1, or the number of uplink symbols is greater than G2, and the maximum number of flexible symbols is N, where G1, G2, and N are positive integers greater than zero.
  • the time slot formats included in the first time slot format table satisfy one or more of the following conditions: at most one uplink and downlink conversion; in the first preset time slot format, if the downlink symbol is greater than G3, or the number of uplink symbols is greater than G4, and the number of flexible symbols is fixed to N, where G3, G4, and N are positive integers greater than zero.
  • the first signaling is signaling based on a semi-static configuration of the first node
  • the second signaling is signaling indicated in the downlink control information.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal performs up-down and down-link at least according to the first time slot format. line transmission;
  • the first signaling includes: a first slot format index
  • the first signaling is high-level signaling based on terminal configuration
  • the first slot format index is a corresponding index in the first slot format table; the optional value range of the first slot format index is ⁇ 0, . . . , Qmax ⁇ .
  • the UE determines the first time slot format according to the index 5, then the terminal at least according to the first The time slot format is used for uplink and downlink transmission.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least according to the determined first time slot format Perform uplink and downlink transmission.
  • the first signaling includes at least one of the following:
  • the number of time slots corresponding to one or more format indices in the first slot format index set.
  • the first period takes time slot or radio frame as the basic unit
  • the first slot format index is the corresponding index in the first slot format table; the range of optional values is ⁇ 0,...,Qmax ⁇
  • the first signaling is high-level signaling based on terminal configuration.
  • the first signaling includes: the first cycle is 10 time slots; index 1, index 5, index 8, index 7, index 6, index 5, index 12, index 0, index 15, index 20; then the UE
  • the first time slot format is determined according to the first signaling; as shown in FIG. 4 ; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the number of time slots included in the first cycle is 10; index 1, index 5, index 8, index 7, index 6, index 5, index 12, index 0, index 15; then the UE according to The first signaling determines the first time slot format; as shown in FIG. 5 ; wherein, the time slot format in the last time slot in the first cycle is fixed as one of full downlink, full uplink, and full flexibility.
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first cycle is 10 time slots; index 1, index 2, index 5, index 12, index 15, wherein the number of time slots corresponding to index 1 is 2, and the time slot corresponding to index 2
  • the number of slots is 3, the number of time slots corresponding to index 5 is 1, the number of time slots corresponding to index 12 is 2, and the number of time slots corresponding to index 15 is 2.
  • the UE determines the first time slot format according to the first signaling; as shown in FIG. 6 ; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least according to the determined first time slot format Perform uplink and downlink transmission.
  • the first signaling includes at least one of the following:
  • the slot indices corresponding to one or more slot format indices in the first slot format index set are provided.
  • the first period takes time slot or radio frame as the basic unit;
  • the first time slot format index is the corresponding index in the first time slot format table;
  • the range of optional values is ⁇ 0,...,Qmax ⁇ .
  • the first signaling is high-level signaling based on terminal configuration.
  • the first signaling includes: the first period is 10 time slots; slot format index 1, corresponding slot indices 1, 3, 4; slot format index 2, corresponding slot indices 2, 5, 6; slot format 20, corresponding slot indices 7, 8, 9, and 10.
  • the UE determines the first time slot format according to the first signaling; as shown in FIG. 7 ; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first cycle is 10 time slots; the time slot format index is 15, the corresponding time slot indices are 1, 7, and 9; the time slot format index is 20, and the corresponding time slot indices are 2, 3, 4,5.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 8; wherein the time slot formats corresponding to time slot 6 and time slot 8 that are not indicated in the first cycle are fixed as full downlink, full uplink, One of the full flexibility, the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots; the time slot format index is 15, and the corresponding time slot index indicates 1000001010; the time slot format index is 20, and the time slot index indicates 0111100000.
  • the UE determines the first slot format according to the first signaling; the slot index is given in the form of a bitmap, and each bit corresponds to each index in the first period.
  • the time slot formats corresponding to time slot 6 and time slot 8 that are not indicated in the first cycle are fixed as one of full downlink, full uplink, and full flexibility, and the terminal is at least based on the first time slot. format for uplink and downlink transmission.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least determines the first time slot format according to the determined first signaling.
  • the slot format is used for uplink and downlink transmission.
  • the first signaling includes at least one of the following: a first time slot configuration.
  • the first time slot configuration is based on H time slots, where H is a positive integer greater than or equal to 1.
  • the first slot configuration includes at least one of the following parameters:
  • the first signaling includes: the first time slot configuration 1, specifically: the start symbol of the downlink transmission is symbol 0, and the length is 5.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 10; wherein the first 5 symbols on each time slot are the symbols where the downlink transmission is located, and the other The symbol is the symbol where the flexible transmission is located, and the terminal performs uplink and downlink transmission at least according to the first slot format.
  • the first signaling includes: the first time slot configuration 2, specifically: the starting symbol of the uplink transmission is symbol 10 and the length is 4.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 11; the last 4 symbols on each time slot are the symbols where the uplink transmission is located, and the other symbols
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first time slot configuration 3, specifically: the start symbol of the flexible transmission is symbol 4 and the length is 8.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 12; the 8 symbols starting from symbol 4 on each time slot are flexible transmission, flexible The symbols before transmission are downlink transmission, the symbols after flexible transmission are uplink transmission, and the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first time slot configuration 4, specifically: the downlink transmission length is 5.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 13; the first 5 symbols on each time slot are the symbols where the downlink transmission is located, and the other symbols
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first time slot configuration 5, specifically: the uplink transmission length is 4.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 14; the last 4 symbols on each time slot are the symbols where the uplink transmission is located, and the other symbols
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first time slot configuration 6, specifically: the length of the downlink transmission is 4, and the length of the uplink transmission is 2.
  • the time slot configuration is based on one time slot, then the UE determines the first time slot format according to the first signaling; as shown in Figure 15; the first four symbols are downlink transmission, the last two are uplink transmission, and the other symbols are The symbol where the flexible transmission is located, and the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the UE determines the first time slot format according to the first signaling; as shown in Figure 16; the first five symbols are downlink transmission, the last one is uplink transmission, and the other symbols are the symbols where the flexible transmission is located.
  • the slot format is used for uplink and downlink transmission.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least determines the first time slot format according to the determined first signaling.
  • the slot format is used for uplink and downlink transmission.
  • the first signaling includes at least one of the following:
  • the number of timeslots corresponding to one or more timeslot configurations in the first timeslot configuration set is not limited.
  • the first period takes a time slot or a radio frame as a basic unit; the first signaling is high-level signaling based on terminal configuration.
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4, the first time slot configuration Configuration 5, first slot configuration 6, first slot configuration 7, first slot configuration 8, first slot configuration 9, first slot configuration 10.
  • the UE determines the first time slot format according to the first signaling; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4, the first time slot configuration Configuration 5; the number of time slots corresponding to the first time slot configuration is 2, the number of time slots corresponding to the first time slot configuration 2 is 3, the number of time slots corresponding to the first time slot configuration 3 is 1, and the number of time slots corresponding to the first time slot configuration 3 is 1.
  • the number of time slots corresponding to slot configuration 4 is 2, and the number of time slots corresponding to first time slot configuration 5 is 2.
  • the UE determines the first time slot format according to the first signaling; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4; the first time slot configuration
  • the number of configuration persistent time slots is 2, the number of time slots corresponding to the first time slot configuration 2 is 3, the number of time slots corresponding to the first time slot configuration 3 is 1, and the number of time slots corresponding to the first time slot configuration 4 is 1
  • the number is 2.
  • the UE determines the first uplink and downlink configuration according to the first signaling; the terminal performs uplink and downlink transmission at least according to the first time slot format, wherein the first signaling does not include the time slot configuration of the last two time slots in the first cycle, then The time slot configuration of the two time slots is fixed as downlink transmission, or uplink transmission, or flexible transmission.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least determines the first time slot format according to the determined first signaling.
  • the slot format is used for uplink and downlink transmission.
  • the first signaling includes at least one of the following:
  • the first signaling is high-level signaling based on terminal configuration.
  • the first period takes time slot or radio frame as the basic unit
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4; the first time slot configuration Slot indices 1, 2, and 3 corresponding to configuration 1; slot indices 4 corresponding to first slot configuration 2; slot indices 6, 7, and 8 corresponding to first slot configuration 3; and slot indices 6, 7, and 8 corresponding to first slot configuration 4
  • the UE determines the first time slot format according to the first signaling; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4; the first time slot configuration
  • the slot index corresponding to configuration 1 indicates 1110000000; the slot index corresponding to the first slot configuration 2 indicates 0001000000; the slot index corresponding to the first slot configuration 3 indicates 0000011100; the slot index corresponding to the first slot configuration 4 indicates 0000000011.
  • the UE determines the first time slot format according to the first signaling; wherein the time slot index is indicated by a bitmap, 1 means that the time slot adopts the time slot configuration, and 0 means that the time slot is not used, and vice versa .
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots, the first time slot configuration 1, the first time slot configuration 2, the first time slot configuration 3, the first time slot configuration 4; the first time slot configuration
  • the UE determines the first time slot format according to the first signaling; wherein the time slot index is indicated by a bitmap, 1 means that the time slot adopts the time slot configuration, and 0 means that the time slot is not used, and vice versa . If the first signaling does not include the time slot configuration of the time slot index 3, then the time slot configuration of the time slot is fixed to be all downlink, all uplink, or all flexible.
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the terminal receives the first signaling, determines the first time slot format according to the first signaling, and the terminal at least determines the first time slot format according to the determined first signaling.
  • the slot format is used for uplink and downlink transmission.
  • the first signaling includes at least one of the following:
  • the second time slot configuration indicates a time slot configuration of H time slots, where H is a positive integer greater than or equal to 1.
  • the second time slot configuration includes: a time slot index set, and time slot attributes corresponding to one or more time slots in the time slot index set.
  • the time slot attribute includes ⁇ all downlink, all uplink, configurable ⁇ .
  • the first period takes time slot or radio frame as the basic unit
  • the time slot attribute needs to be determined by at least one of the following parameters: the number of downlink symbols, the number of uplink symbols, and the number of flexible symbols.
  • the first signaling includes: the first period is 10 time slots;
  • the second time slot configuration specifically:
  • the UE determines the first time slot format according to the first signaling; wherein the first signaling does not include the time slot attributes of the time slot indices 3, 4, 5, 6, 7, 9, and 10 in the first cycle, then these time slots
  • the slot attribute of the slot is fixed to be all downlink, all uplink, or all flexible.
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the terminal determines the first time slot format according to the first signaling, and the terminal performs uplink and downlink transmission at least according to the determined first time slot format .
  • the first signaling includes at least one of the following: a first period and a second time slot configuration.
  • the second time slot configuration indicates the time slot configuration of H time slots, wherein H is a positive integer greater than or equal to 1;
  • the first period takes time slot or radio frame as the basic unit
  • the second slot configuration includes: a slot attribute set, and slot indices corresponding to one or more slot attributes in the slot attribute set.
  • the time slot attribute includes ⁇ all downlink, all uplink, configurable ⁇ .
  • the time slot attribute needs to be determined by at least one of the following parameters: the number of downlink symbols, the number of uplink symbols, and the number of flexible symbols.
  • the first signaling includes: the first period is 10 time slots,
  • Second time slot configuration specifically:
  • the UE determines the first time slot format according to the first signaling; the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots,
  • Second time slot configuration specifically:
  • the UE determines the first time slot format according to the first signaling; wherein the first signaling does not include the time slot attributes with the time slot indices 4, 5, and 6 in the first cycle, then the time slot attributes of these time slots are fixed as All down, or all up, or all flexible.
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the first signaling includes: the first period is 10 time slots,
  • Second time slot configuration specifically:
  • the UE determines the first time slot format according to the first signaling; wherein the first signaling does not include the time slot attributes with the time slot indices 4, 5, and 6 in the first cycle, then the time slot attributes of these time slots are fixed as All down, or all up, or all flexible.
  • the terminal performs uplink and downlink transmission at least according to the first time slot format.
  • the half-duplex terminal receives the second signaling, determines the second time slot format according to the second signaling, and the terminal performs uplink and downlink transmission at least according to the determined second time slot format.
  • the second signaling includes at least: a slot format combination index.
  • the time slot format combination index is an index in a combination table configured by higher layer signaling.
  • determining the second time slot format according to the second signaling includes: obtaining a specific time slot combination according to the time slot combination index, and obtaining the second time slot format according to the time slot format index in the time slot combination, wherein the first time slot format index is the index in the first slot format table.
  • the UE receives the second signaling, where the second signaling at least includes: a slot format combination index of 3.
  • the time slot format combination content is shown in Table 2.
  • Table 2 A time slot format combination content table
  • the terminal obtains the time slot combination as 2 2 1 1 2 2 11, and then obtains the second time slot format according to the first time slot format table, and performs uplink and downlink transmission according to the second time slot format.
  • the half-duplex terminal receives the first signaling and the second signaling, determines the first time slot format and the second time slot format according to the first signaling and the second signaling, and the terminal at least determines The first time slot format and the second time slot format are used for uplink and downlink transmission.
  • the first signaling is terminal-based semi-static signaling; the second signaling is dynamic signaling carried in downlink control information.
  • the half-duplex terminal receives the first signaling and the second signaling, determines the first time slot format and the second time slot format according to the first signaling and the second signaling, and the terminal at least determines The first time slot format and the second time slot format are used for uplink and downlink transmission.
  • the first signaling is terminal-based semi-static signaling; the second signaling is dynamic signaling carried in downlink control information;
  • the transmission direction of the flexible symbols in the first slot format is determined according to the second slot format.
  • the half-duplex terminal receives the first signaling and the second signaling, determines the first time slot format and the second time slot format according to the first signaling and the second signaling, and the terminal at least determines The first time slot format and the second time slot format are used for uplink and downlink transmission.
  • the first signaling is terminal-based semi-static signaling; the second signaling is dynamic signaling carried in downlink control information;
  • performing the uplink and downlink transmission by the terminal at least according to the determined first time slot format and the second time slot format includes: determining the transmission direction of the flexible symbols in the first time slot format according to the second time slot format.
  • the half-duplex terminal receives the first signaling and the second signaling, determines the first time slot format and the second time slot format according to the first signaling and the second signaling, and the terminal at least determines The first time slot format and the second time slot format are used for uplink and downlink transmission.
  • the terminal performing uplink and downlink transmission according to at least the determined first time slot format and the second time slot format includes: determining the uplink and downlink transmission of predefined time slots according to the first time slot format, and determining other time slots according to the second time slot format.
  • the uplink and downlink transmission of the slot, wherein the predefined time slot is the time slot agreed in advance by the base station and the terminal, or the time slot where the first signaling is located, or the time slot where the second signaling is located.
  • the difference between the first slot format table and the second slot format table is at least one of the following:
  • the first time slot format table does not support a time slot format with two uplink and downlink conversions in one time slot, but the second time slot format table needs to support it;
  • the first slot format table does not need to consider the slot format coexisting with LTE, but the second slot format table needs to be considered;
  • the second slot format table is the slot format table used by the existing NR system
  • the first time slot format table does not support a time slot format in which there are two uplink and downlink conversions in one time slot, that is, the first time slot format table does not support the eight time slot formats shown in Table 3.
  • the first slot format table does not need to consider the slot formats coexisting with LTE, that is, the first slot format table does not support the three slot formats shown in Table 4.
  • a time slot format suitable for the uplink and downlink conversion interval of the terminal needs to be added in the first time slot format table; specifically, in the time slot formats for downlink symbols, flexible symbols and uplink symbols:
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the first preset time slot format if the number of downlink symbols is greater than G1, or the number of uplink symbols is greater than G2, the maximum number of flexible symbols is N, where G1, G2 and N are positive values greater than zero. Integer.
  • the first preset time slot format is a time slot format composed of downlink symbols, flexible symbols and uplink symbols.
  • the format table of the first time slot only contains all downlink symbols, all uplink symbols, all flexible symbols, downlink symbols and flexible symbols, flexible symbols and uplink symbols, and corresponding downlink symbols, flexible symbols and uplink symbols
  • One or more of the time slot formats of the symbol indices 3 to 7, 16 to 18 correspond to the slot formats of downlink symbols and flexible symbols, indices 8 to 15 correspond to the slot formats of flexible symbols and uplink symbols, and indices 19 to 47 correspond to the downlink symbols and flexible symbols and the slot format composed of uplink symbols;
  • the maximum value of the number of flexible symbols is N, specifically: taking Table 7 or Table 8 as an example, indexes 19 to 47 correspond to one time
  • the time slot format for uplink and downlink conversion in which the number of downlink symbols corresponding to indices 28 to 33 and 43 to 44 is greater than 3.
  • the number of flexible symbols ranges from 1 to 4, that is, the number of flexible symbols
  • the maximum value is 4;
  • the maximum value of the number of flexible symbols is N, specifically: taking Table 7 or Table 8 as an example, indexes 19 to 47 correspond to one time
  • the number of flexible symbols ranges from 1 to 4, that is, the number of flexible symbols
  • the maximum value is 4;
  • the above embodiment takes the first time slot format table as an example for description, and of course, it can also be in the form of a combination of the first time slot formats.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the first preset time slot format if the number of downlink symbols is greater than G3, or the number of uplink symbols is greater than G4, the number of flexible symbols is fixed at N, where G3, G4 and N are positive integers greater than zero.
  • the first preset time slot format refers to a time slot format composed of downlink symbols, flexible symbols and uplink symbols.
  • the format table of the first time slot only contains all downlink symbols, all uplink symbols, all flexible symbols, downlink symbols and flexible symbols, flexible symbols and uplink symbols, and corresponding downlink symbols, flexible symbols and uplink symbols
  • One or more of the time slot formats of the symbol indices 3 to 7, 16 to 18 correspond to the slot formats of downlink symbols and flexible symbols, indices 8 to 15 correspond to the slot formats of flexible symbols and uplink symbols, and indices 19 to 32 correspond to the downlink symbols and flexible symbols and the slot format composed of uplink symbols;
  • the number of flexible symbols is equal to N, specifically: taking Table 9 or Table 10 as an example, indexes 19 to 32 correspond to one uplink and downlink conversion
  • the number of downlink symbols corresponding to indices 28 to 29 is greater than 3.
  • the number of flexible symbols is 4, that is, the number of flexible symbols is equal to 4;
  • the number of flexible symbols is equal to N, specifically: take Table 9 or Table 10 as an example, indexes 19 to 32 correspond to one uplink and downlink conversion
  • the number of uplink symbols corresponding to indices 30 to 32 is greater than 3.
  • the number of flexible symbols is 4, that is, the number of flexible symbols is equal to 4;
  • the above embodiment takes the first time slot format table as an example for description, and of course, it can also be in the form of a combination of the first time slot formats.
  • the first time slot format table is composed of a second time slot format table and an extension table, wherein the extension table is: a time slot format suitable for the uplink and downlink conversion interval of the terminal; one or more of the slot formats.
  • Table 11 An example is given in Table 11, in which the conversion of uplink and downlink into 5 flexible symbols in Table 5 and Table 6 is taken as an example: Specifically: Indexes 0 to 55 and 255 are the time slot formats in the second time slot format table, Indexes 56 to 60 are extended tables.
  • the terminal performing the uplink and downlink transmission at least according to the time slot format further includes: the terminal determining the symbol where the uplink and downlink conversion is located.
  • the symbols used for the uplink and downlink conversion are:
  • Mode 1 R downlink symbols before the uplink symbol
  • Mode 2 R uplink symbols follow the downlink symbols.
  • uplink and downlink conversion occurs on flexible symbols
  • the uplink and downlink conversion interval corresponding to the half-duplex terminal is R symbols
  • the number of flexible symbols is X
  • Mode 1 The flexible symbol and the first Y downstream symbols of the flexible symbol are used for uplink and downlink conversion, or
  • Mode 3 The number of uplink symbols within the preset length is greater than the number of downlink symbols, and mode 2 is adopted; otherwise, mode 1 is adopted, wherein the preset length is M time slots, and M is a positive integer greater than zero.
  • the terminal performing uplink and downlink transmission at least according to the time slot format further includes: the terminal generating a symbol for uplink and downlink conversion based on at least one of the following manners:
  • the terminal does not perform downlink reception in the R1 symbols before the uplink symbol;
  • the terminal does not perform uplink transmission for R3 uplink symbols after the downlink symbol;
  • the terminal does not perform uplink and downlink transmission on all flexible symbols between uplink and downlink symbols;
  • the terminal does not perform downlink reception on all flexible symbols and Y1 downlink symbols before the uplink symbol;
  • the terminal does not perform uplink transmission on all flexible symbols and Y3 uplink symbols after the downlink symbol;
  • R1, R3, Y1, Y3 are positive integers greater than zero.
  • the terminal performs uplink and downlink transmission at least according to the time slot format, and further includes: the terminal generates symbols for uplink and downlink conversion based on at least one of the following manners.
  • the terminal does not perform downlink reception in the R1 symbols before the uplink symbol;
  • the terminal does not perform downlink reception for R2 symbols after the uplink symbol
  • the terminal does not perform uplink transmission for R3 uplink symbols after the downlink symbol;
  • the terminal does not perform uplink transmission for R4 uplink symbols before the downlink symbol;
  • the terminal does not perform uplink and downlink transmission on all flexible symbols between uplink and downlink symbols;
  • the terminal does not perform downlink reception on all flexible symbols and Y1 downlink symbols before the uplink symbol;
  • the terminal does not perform downlink reception on all flexible symbols and Y2 downlink symbols after the uplink symbol;
  • the terminal does not perform uplink transmission on all flexible symbols and Y3 uplink symbols after the downlink symbol;
  • the terminal does not perform uplink transmission on all flexible symbols and Y4 uplink symbols before the downlink symbol;
  • R1, R2, R3, R4, Y1, Y2, Y3, Y4 are positive integers greater than zero.
  • this embodiment provides a data transmission apparatus, and the apparatus is configured on a first node.
  • the data transmission apparatus provided in this embodiment mainly includes a receiving module 171 and a determining module 172 .
  • a receiving module 171 configured to receive the signaling sent by the second node
  • the determining module 172 is configured to determine a time slot format based on the higher layer signaling, wherein the time slot format is used for data transmission.
  • the signaling includes first signaling and/or second signaling.
  • the time slot format includes:
  • a second slot format determined based on the second signaling.
  • the first signaling includes: a first slot format index, wherein the first slot format index is an index in a first slot format table, or the first slot format index
  • the slot format index is the index in the first slot format combination.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set The corresponding number of time slots.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set the corresponding slot index.
  • the first signaling includes: first time slot configuration information; wherein, the first time slot configuration information indicates the time slot configuration of H time slots, and H is a positive value greater than or equal to 1 Integer.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to number of time slots.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to slot index.
  • the first time slot configuration information includes one or more of the following parameters:
  • the first signaling includes one or more of the following: a first period, and second time slot configuration information.
  • the second slot configuration information includes one or more of the following: a slot index set, and slot attributes corresponding to one or more slot indices in the slot index set.
  • the second time slot configuration information includes one or more of the following: a time slot attribute set, and a time slot index corresponding to one or more time slot attributes in the time slot attribute set.
  • the second signaling includes: a slot format combination index, wherein the slot format combination consists of a first slot index, and the first slot format index is the first slot The index in the format table, or the first slot format index is the index in the first slot format combination.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the maximum number of flexible symbols is N, where G1, G2, and N are positive integers greater than zero.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the number of flexible symbols is fixed to N, where G3, G4, and N are positive integers greater than zero.
  • the method further includes: determining symbols for uplink and downlink conversion.
  • the uplink and downlink conversion interval corresponding to the first node is R symbols, determine the location for the uplink and downlink conversion. symbol, including one of the following:
  • the symbols used for uplink and downlink conversion are determined to be R uplink symbols after the downlink symbols.
  • the uplink and downlink conversion occurs on flexible symbols
  • the uplink and downlink conversion interval corresponding to the first node is R symbols
  • the number of flexible symbols is X
  • R is less than or equal to X
  • determining the symbol used for uplink and downlink conversion includes: determining that the symbol used for uplink and downlink conversion is a flexible symbol; or,
  • the symbols used for uplink and downlink conversion are flexible symbols and Y uplink symbols after the flexible symbols;
  • the preset length is M time slots, and M is a positive integer greater than or equal to 1.
  • the first node performs data transmission based on the time slot format, and further includes: the first node generates symbols for uplink and downlink conversion based on at least one of the following manners.
  • the first node does not perform downlink reception for R1 symbols before the uplink symbol
  • the first node does not perform downlink reception for R2 symbols after the uplink symbol
  • the first node does not perform uplink transmission for R3 uplink symbols after the downlink symbol;
  • the first node does not perform uplink transmission for R4 uplink symbols before the downlink symbol;
  • the first node does not perform uplink and downlink transmission on all flexible symbols between uplink and downlink symbols;
  • the first node does not perform downlink reception on all flexible symbols and Y1 downlink symbols before the uplink symbol;
  • the first node does not perform downlink reception on all flexible symbols and Y2 downlink symbols after the uplink symbol;
  • the first node does not perform uplink transmission on all flexible symbols and Y3 uplink symbols after the downlink symbol;
  • the first node does not perform uplink transmission on all flexible symbols and Y4 uplink symbols before the downlink symbol;
  • R1, R2, R3, R4, Y1, Y2, Y3, Y4 are positive integers greater than zero.
  • this embodiment provides a data transmission apparatus, and the apparatus is configured on a second node.
  • the data transmission apparatus provided in this embodiment mainly includes a configuration module 181 and a sending module 182 .
  • the sending module 182 is configured to send the signaling to the first node, where the signaling is used to instruct the first node to determine a time slot format, and the time slot format is used for data transmission.
  • the signaling includes first signaling and/or second signaling.
  • the time slot format includes:
  • a second slot format determined based on the second signaling.
  • the first signaling includes: a first slot format index, wherein the first slot format index is an index in a first slot format table, or the first slot format index
  • the slot format index is the index in the first slot format combination.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set The corresponding number of time slots.
  • the first signaling includes one or more of the following: a first slot format index set, a first period, and one or more slot format indices in the first slot format index set the corresponding slot index.
  • the first signaling includes: first time slot configuration information; wherein, the first time slot configuration information indicates the time slot configuration of H time slots, and H is a positive value greater than or equal to 1 Integer.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to number of time slots.
  • the first signaling includes one or more of the following: a first time slot configuration information set, a first period, and one or more time slot configurations in the first time slot configuration information set correspond to slot index.
  • the first time slot configuration information includes one or more of the following parameters:
  • the first signaling includes one or more of the following: a first period, and second time slot configuration information.
  • the second slot configuration information includes one or more of the following: a slot index set, and slot attributes corresponding to one or more slot indices in the slot index set.
  • the second time slot configuration information includes one or more of the following: a time slot attribute set, and a time slot index corresponding to one or more time slot attributes in the time slot attribute set.
  • the second signaling includes: a slot format combination index, wherein the slot format combination consists of a first slot index, and the first slot format index is the first slot Index in the format table.
  • the time slot format included in the first time slot format table satisfies one or more of the following conditions: at most one uplink and downlink conversion; in the time slot format of one uplink and downlink conversion, the number of flexible symbols
  • the maximum value of is N, where G1, G2, and N are positive integers greater than zero.
  • the slot formats included in the first slot format table or the first slot format combination satisfy one or more of the following conditions:
  • the number of flexible symbols is fixed to N, where G3, G4, and N are positive integers greater than zero.
  • the data transmission device provided in this embodiment can execute the data transmission method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the data transmission method provided by any embodiment of the present invention can execute the data transmission method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the included units and modules are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • FIG. 19 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 191 , a memory 192 , an input device 193 , an output device 194 and Communication device 195; the number of processors 191 in the device can be one or more, and one processor 191 is taken as an example in FIG.
  • the connection via bus is taken as an example in FIG. 19 .
  • the memory 192 can be used to store software programs, computer-executable programs, and modules.
  • the processor 191 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 192, that is, implements any method provided by the embodiments of the present application.
  • the memory 192 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 192 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some instances, memory 192 may further include memory located remotely from processor 191, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 193 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 194 may include a display device such as a display screen.
  • the communication device 195 may include a receiver and a transmitter.
  • the communication device 195 is configured to transmit and receive information according to the control of the processor 191 .
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a data transmission method when executed by a computer processor, and the The method is applied to the first node, including:
  • a slot format is determined based on the signaling; wherein the slot format is used for data transmission.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the data transmission methods provided in any of the embodiments of the present application. related operations.
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a data transmission method when executed by a computer processor, and the The method is applied to the second node, including:
  • the signaling is sent to the first node, wherein the higher layer signaling is used to instruct the first node to determine a time slot format, and the time slot format is used for data transmission.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the data transmission methods provided in any of the embodiments of the present application. related operations.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and certainly can also be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a floppy disk of a computer, a read-only memory (Read-Only Memory, ROM), Random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute various implementations of the present application method described in the example.
  • a computer device which may be a personal computer, server, or network device, etc.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Industry Subversive Alliance (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Industry Subversive Alliance
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology such as, but not limited to, read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). (Digital Video Disc, DVD) or compact disc (Compact Disc, CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、装置、设备和存储介质,数据传输方法包括:接收第二节点发送的信令;基于所述信令确定时隙格式;其中,所述时隙格式用于数据传输。

Description

数据传输方法、装置、设备和存储介质
本申请要求在2020年08月06日提交中国专利局、申请号为202010785756.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种数据传输方法、装置、设备和存储介质。
背景技术
相比于以往的通信系统,新空口(New Radio,NR)系统具有较高的配置灵活性和更大的带宽范围,相应地,对终端的能力也提出了更高的要求,使得终端需要花费相较以往更高的成本。
然而,在NR系统所支持的各种场景中,并不是所有场景都要求如此高的终端能力,例如,智能可穿戴设备,工业传感器等。因此,针对这类场景定义低配置的终端设备类型,例如更小的带宽,更少的天线数量,半双工频分双工(Half Duplex Frequency Division Duplexing,HD-FDD),放松终端处理时间,放松终端处理能力等,从而降低了终端的生产成本和复杂度。
NR支持灵活的时隙格式,即一个时隙中的符号可配置成下行符号,上行符号或灵活符号。对于HD-FDD终端,可以通过先获得时隙格式,再根据时隙格式确定是在下行频带上接收数据,还是切换到上行频带接收数据的方式实现半双工操作。但是目前NR使用的时隙格式确定方法不完全适合HD-FDD。
发明内容
本申请提供的数据传输方法、装置、设备和存储介质,以解决NR支持的时隙格式不适合HD-FDD终端的问题。
第一方面,本申请实施例提供一种数据传输方法,所述方法应用于第一节点,包括:
接收第二节点发送的信令;
基于所述信令确定时隙格式;其中,所述时隙格式用于数据传输。
第二方面,本申请实施例提供一种数据传输方法,所述方法应用于第二节点,包括:
配置信令;
将所述信令发送至第一节点,其中,所述信令用于指示第一节点确定时隙格式,所述时隙格式用于数据传输。
第三方面,本申请实施例提供一种数据传输装置,所述装置配置于第一节点,包括:
接收模块,被配置为接收第二节点发送的信令;
确定模块,被配置为基于所述信令确定时隙格式;其中,所述时隙格式用于数据传输。
第四方面,本申请实施例提供一种数据传输装置,所述装置配置于第二节点,包括:
配置模块,被配置为配置信令;
发送模块,被配置为将所述信令发送至第一节点,其中,所述信令用于指示第一节点确定时隙格式,所述时隙格式用于数据传输。
第五方面,本申请实施例提供一种设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例提供的任一项所述的方法。
第六方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例提供的任一项所述的方法。
附图说明
图1是本申请实施例提供的一种数据传输方法的流程图;
图2是本申请实施例提供的一种数据传输方法的流程图;
图3是本申请实施例提供的一种时隙格式的示意图;
图4是本申请实施例提供的另一种时隙格式的示意图;
图5是本申请实施例提供的另一种时隙格式的示意图;
图6是本申请实施例提供的另一种时隙格式的示意图;
图7是本申请实施例提供的另一种时隙格式的示意图;
图8是本申请实施例提供的另一种时隙格式的示意图;
图9是本申请实施例提供的另一种时隙格式的示意图;
图10是本申请实施例提供的另一种时隙格式的示意图;
图11是本申请实施例提供的另一种时隙格式的示意图;
图12是本申请实施例提供的另一种时隙格式的示意图;
图13是本申请实施例提供的另一种时隙格式的示意图;
图14是本申请实施例提供的另一种时隙格式的示意图;
图15是本申请实施例提供的另一种时隙格式的示意图;
图16是本申请实施例提供的另一种时隙格式的示意图;
图17是本申请实施例提供的一种数据传输装置的结构示意图;
图18是本申请实施例提供的一种数据传输装置的结构示意图;
图19是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信技术(5th Generation,5G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的通信节点。该无线网络系统包括基站和多个用户设备。基站 分别与多个用户设备之间进行无线通信。
首先,需要说明的是,本申请实施例中,基站可以是能和用户终端进行通信的设备。基站可以是任意一种具有无线收发功能的设备,包括但不限于:基站NodeB、演进型基站(Evolved NodeB,eNodeB)、5G通信系统中的基站、未来通信系统中的基站、无线保真(Wireless Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。
本申请实施例中,用户终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户终端可以是手机(mobile phone)、平板电脑(portable android device,Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户终端有时也可以称为终端、接入终端、用户设备(User Equipment,UE)单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
相比于以往的通信系统,新空口(New Radio,NR)系统具有较高的配置灵活性和更大的带宽范围,相应地,对终端的能力也提出了更高的要求,使得终端需要花费相较以往更高的成本。然而,在NR系统所支持的各种场景中,并不是所有场景都要求如此高的终端能力,例如,智能可穿戴设备,工业传感器等。因此,针对这类场景定义低配置的终端设备类型,例如更小的带宽,更少的天线数量,半双工FDD(Half Duplex FDD,HD-FDD),放松终端处理时间,放松终端处理能力等,从而降低了终端的生产成本和复杂度。这类终端可以称为低配置NR终端,或者NR减少能力(NR reduced capability,NR RedCap)用户终端。
NR支持灵活的时隙格式,即一个时隙中的符号可配置成下行符号,上行符号或灵活符号。对于NR RedCap HD-FDD UE,可以通过先获得时隙格式,再根据时隙格式确定是在下行频带上接收数据,还是切换到上行频带接收数据的方式实现半双工操作。但是目前NR使用的时隙格式确定方法主要是针对时分双工 (Time-division Duplex,TDD)系统设计,不完全适合RedCap HD-FDD UE。
首先对NR时隙格式的配置方法进行简单介绍。具体包含以下配置:
1、半静态基于小区的配置
半静态基于小区配置时隙格式是通过高层信令tdd-UL-DL-ConfigurationCommon配置的,该高层信令提供:
参考的子载波间隔,对应参数referenceSubcarrierSpacing
第一模式;
其中,第一模式提供:时隙配置周期msec,对应参数dl-UL-TransmissionPeriodicity;
只有下行符号的时隙个数,对应参数nrofDownlinkSlots;
下行符号符号个数,对应参数nrofDownlinkSymbols;
只有上行符号的时隙个数,对应参数nrofUplinkSlots;
上行符号的符号个数,对应参数nrofUplinkSymbols;
如果还提供了第二模式,那么UE根据第一模式确定第一时隙组内每个时隙的时隙格式,根据第二模式确定第二时隙组内每个时隙的时隙格式。其中第二模式提供:
时隙配置周期msec,对应参数dl-UL-TransmissionPeriodicity;
只有下行符号的时隙个数,对应参数nrofDownlinkSlots;
下行符号的符号个数,对应参数nrofDownlinkSymbols;
只有上行符号的时隙个数,对应参数nrofUplinkSlots;
上行符号的符号个数,对应参数nrofUplinkSymbols;
2)半静态基于终端的配置
半静态基于终端配置时隙格式是通过高层信令tdd-UL-DL-ConfigurationDedicated配置的且只对基于小区的配置的灵活子帧有作用。该高层信令提供:
一组时隙配置,对应参数slotSpecificConfigurationsToAddModList;
对于这组时隙配置中的每一个时隙配置:
时隙索引,对应参数slotIndex;
一组符号,对应参数symbols;其中,
如果symbols=allDownlink,那么该时隙内的所有符号都是下行;
如果symbols=allUplink,那么该时隙内所有符号都是上行;
如果symbols=explicit,那么参数nrofDownlinkSymbols提供时隙内下行符号的个数,下行符号位于时隙的起始,参数nrofUplinkSymbols提供时隙内上行符号的个数,其中上行符号位于时隙的结束。
如果没有提供参数nrofDownlinkSymbols,那么该时隙内没有下行符号,如果没有提供参数nrofUplinkSymbols,那么时隙内没有上行符号。时隙内的剩余符号为灵活符号。
以上两种配置方式只适用于NR TDD系统。
3)动态配置
动态配置是指由下行控制信息(Downlink Control Information,DCI)format2-0携带的下行控制信息指示,具体为下行控制信息中指示组合索引slotFormatCombinationId,根据组合索引查找组合表,其中组合表是高层信令配置的。
Figure PCTCN2021110622-appb-000001
通过组合索引可以得到时隙格式索引组合slotFormats,再根据时隙格式索引查表得到各个时隙的格式。NR标准中定义的时隙格式如下表所示。
表1正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000002
Figure PCTCN2021110622-appb-000003
Figure PCTCN2021110622-appb-000004
Figure PCTCN2021110622-appb-000005
在一个实施例中,本实施例提供一种数据传输方法,所述方法应用于第一节点,如图1所示,本实施例提供的数据传输方法主要包括步骤S11、S12、S13。
S11、接收第二节点发送的信令。
S12、基于所述信令确定时隙格式;其中,所述时隙格式用于数据传输。
在一个示例性的实施方式中,所述信令包括第一信令和/或第二信令。
在一个示例性的实施方式中,所述时隙格式,包括:
基于所述第一信令确定的第一时隙格式;和/或,
基于所述第二信令确定的第二时隙格式。
在一个示例性的实施方式中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
在一个示例性的实施方式中,所述第一信令包括:第一时隙配置信息;其中,第一时隙配置信息指示H个时隙的时隙配置,H是大于或等于1的正整数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
在一个示例性的实施方式中,所述第一时隙配置信息包括如下参数中的一个或多个:
下行传输的起始符号和长度;
上行传输的起始符号和长度;
灵活传输的起始符号和长度;
下行传输的符号长度,其中,下行传输的起始位置固定为每个时隙开始;
上行传输的符号长度,其中,上行传输的结束位置固定为每个时隙结束;
全下行的时隙个数;
全上行的时隙个数;
时隙索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一周期,第二时隙配置信息。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个: 时隙索引集合,时隙索引集合中一个或多个时隙对应的时隙属性。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
在一个示例性的实施方式中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙索引组成,所述第一时隙格式索引是第一时隙格式表中的索引,或第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一时隙格式表或第一时隙格式组合包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G1,或者上行符号的个数大于G2,灵活符号的个数的最大值为N,其中,G1,G2,N为大于零的正整数。
在一个示例性的实施方式中,所述第一时隙格式表或第一时隙格式组合包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G3,或者上行符号的个数大于G4,灵活符号的个数固定为N,其中G3,G4,N为大于零的正整数。
在一个示例性的实施方式中,基于所述信令确定时隙格式之后,还包括:确定用于上下行转换的符号。
在一个示例性的实施方式中,所述上下行转换出现在下行符号和上行符号之间,且第一节点对应的上下行转换间隔为R个符号的情况下,确定用于上下行转换所在的符号,包括如下方式之一:
确定用于上下行转换的符号为上行符号之前R个下行符号;
确定用于上下行转换的符号为下行符号之后R个上行符号。
在一个示例性的实施方式中,所述上下行转换出现在灵活符号上,且第一节点对应的上下行转换间隔为R个符号,灵活符号的个数为X,
R小于或等于X的情况下,确定用于上下行转换的符号,包括:
确定用于上下行转换的符号为灵活符号;或者,
R大于X的情况下,确定用于上下行转换的符号,包括如下方式之一:
确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号;
确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号;
预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号用作上下行转换;
预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号用作上下行转换;
其中,预设长度为M个时隙,M为大于或等于1的正整数。
在一个示例性的实施方式中,在基于所述信令确定时隙格式之后,还包括:第一节点基于以下方式至少之一生成用于上下行转换的符号:
第一节点在上行符号之前的R1个符号不进行下行接收;
第一节点在上行符号之后的R2个符号不进行下行接收;
第一节点在下行符号之后R3个上行符号不进行上行发送;
第一节点在下行符号之前R4个上行符号不进行上行发送;
第一节点在上下行符号之间的所有灵活符号上不进行上下行传输;
第一节点在上行符号之前所有灵活符号和Y1个下行符号上不进行下行接收;
第一节点在上行符号之后所有灵活符号和Y2个下行符号上不进行下行接收;
第一节点在下行符号之后所有灵活符号和Y3个上行符号上不进行上行发送;
第一节点在下行符号之前所有灵活符号和Y4个上行符号上不进行上行发送;
其中,R1,R2,R3,R4,Y1,Y2,Y3,Y4为大于零的正整数。
在一个实施例中,本实施例提供一种数据传输方法,所述方法应用于第二节点,如图2所示,本实施例提供的数据传输方法主要包括步骤S21、S22。
S21、配置信令。
S22、将所述信令发送至第一节点,其中,所述信令用于指示第一节点确定时隙格式,所述时隙格式用于进行数据传输。
在一个示例性的实施方式中,所述信令包括第一信令和/或第二信令。
在一个示例性的实施方式中,所述时隙格式,包括:
基于所述第一信令确定的第一时隙格式;和/或,
基于所述第二信令确定的第二时隙格式。
在一个示例性的实施方式中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
在一个示例性的实施方式中,所述第一信令包括:第一时隙配置信息;其中,第一时隙配置信息指示H个时隙的时隙配置,H是大于或等于1的正整数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
在一个示例性的实施方式中,所述第一时隙配置信息包括如下参数中的一个或多个:
下行传输的起始符号和长度;
上行传输的起始符号和长度;
灵活传输的起始符号和长度;
下行传输的符号长度,其中,下行传输的起始位置固定为每个时隙开始;
上行传输的符号长度,其中,上行传输的结束位置固定为每个时隙结束;
全下行的时隙个数;
全上行的时隙个数;
时隙索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一周期,第二时隙配置信息。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个: 第一周期,时隙索引集合,时隙索引集合中一个或多个时隙对应的时隙属性。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:第一周期,时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
在一个示例性的实施方式中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙索引组成,所述第一时隙格式索引是第一时隙格式表中的索引,或者所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,其中,所述第一时隙格式表包含的时隙格式满足如下一个或多个条件:至多一次上下行转换;第一预设时隙格式中,如果下行符号的个数大于G1,或者上行符号的个数大于G2,灵活符号的个数的最大值为N,其中G1,G2,N为大于零的正整数。
在一个示例性的实施方式中,其中,所述第一时隙格式表包含的时隙格式满足如下一个或多个条件:至多一次上下行转换;第一预设时隙格式中,如果下行符号的个数大于G3,或者上行符号的个数大于G4,灵活符号的个数固定为N,其中G3,G4,N为大于零的正整数。
在一个示例性的实施方式中,其中,所述第一信令为基于第一节点的半静态配置的信令,所述第二信令为下行控制信息中指示的信令。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,终端至少根据第一时隙格式进行上下行传输;
其中,第一信令包括:第一时隙格式索引;
其中,第一信令为基于终端配置的高层信令;
其中,第一时隙格式索引为第一时隙格式表中对应的索引;第一时隙格式索引的可选值的范围为{0,...,Qmax}。
例如:如图3所示,假设UE被基站提供第一信令,且第一信令指示的第一索引为索引5,那么UE按照索引5确定第一时隙格式,那么终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,终端至少根据确定的第一时隙格式进行上下行传输。
其中,第一信令包含以下至少之一:
第一周期;
第一时隙格式索引集合;
第一时隙格式索引集合中一个或多个格式索引对应的时隙个数。
其中,第一周期以时隙或无线帧为基本单位;
其中,第一时隙格式索引为第一时隙格式表中对应的索引;可选值的范围为{0,...,Qmax}
其中,第一信令为基于终端配置的高层信令。
例如:假设第一信令包含:第一周期为10个时隙;索引1,索引5,索引8,索引7,索引6,索引5,索引12,索引0,索引15,索引20;那么UE按照第一信令确定第一时隙格式;如图4所示;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期包含的时隙个数10;索引1,索引5,索引8,索引7,索引6,索引5,索引12,索引0,索引15;那么UE按照第一信令确定第一时隙格式;如图5所示;其中,第一周期内最后一个时隙内的时隙格式为固定为全下行,全上行,全灵活中的一种。终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙;索引1,索引2,索引5,索引12,索引15,其中,索引1对应的时隙个数2,索引2对应的时隙个数3,索引5对应的时隙个数1,索引12对应的时隙个数2,索引15对应的时隙个数2。
那么UE按照第一信令确定第一时隙格式;如图6所示;终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,终端至少根据确定的第一时隙格式进行上下行传输。
其中,第一信令包含以下至少之一:
第一周期;
第一时隙格式索引集合;
第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
其中,第一周期以时隙或无线帧为基本单位;第一时隙格式索引为第一时 隙格式表中对应的索引;可选值的范围为{0,...,Qmax}。第一信令为基于终端配置的高层信令。
例如:假设第一信令包含:第一周期为10个时隙;时隙格式索引1,对应的时隙索引1,3,4;时隙格式索引2,对应的时隙索引2,5,6;时隙格式20,对应的时隙索引7,8,9,10。
那么UE按照第一信令确定第一时隙格式;如图7所示;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙;时隙格式索引15,对应的时隙索引1,7,9;时隙格式索引20,对应的时隙索引2,3,4,5。
那么UE按照第一信令确定第一时隙格式;如图8所示;其中第一周期内没有被指示的时隙6和时隙8对应的时隙格式为固定为全下行,全上行,全灵活中的一种,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙;时隙格式索引15,对应的时隙索引指示1000001010;时隙格式索引20,时隙索引指示0111100000。
那么UE按照第一信令确定第一时隙格式;其中时隙索引以位图的形式给出,每位对应第一周期内的每个索引。如图9所示;其中第一周期内没有被指示的时隙6和时隙8对应的时隙格式为固定为全下行,全上行,全灵活中的一种,终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,所述终端至少根据确定的第一时隙格式进行上下行传输。
其中,第一信令包含以下至少之一:第一时隙配置。
其中,第一时隙配置基于H个时隙,其中H为大于或等于1的正整数。
第一时隙配置包含以下参数至少之一:
下行传输的起始符号和长度;
上行传输的起始符号和长度;
灵活传输的起始符号和长度;
下行传输的符号长度,其中下行传输的起始位置固定为每个时隙开始;
上行传输的符号长度,其中上行传输的结束位置固定为每个时隙结束;
全下行的时隙个数;
全上行的时隙个数;
时隙索引。
例如:假设第一信令包含:第一时隙配置1,具体为:下行传输的起始符号为符号0,长度为5。
其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图10所示;其中每个时隙上前5个符号为下行传输所在的符号,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置2,具体为:上行传输的起始符号为符号10,长度为4。
其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图11所示;每个时隙上后4个符号为上行传输所在的符号,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置3,具体为:灵活传输的起始符号为符号4,长度为8。
其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图12所示;每个时隙上从符号4开始的8个符号为灵活传输,灵活传输前的符号为下行传输,灵活传输后的符号为上行传输,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置4,具体为:下行传输长度为5。
其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图13所示;每个时隙上前5个符号为下行传输所在的符号,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置5,具体为:上行传输长度为4。
其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图14所示;每个时隙上后4个符号为上行传输所在的符号,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置6,具体为:下行传输长度为4,上行传输长度为2。其中,假设时隙配置基于1个时隙,那么UE按照第一信令确定第一时隙格式;如图15所示;前4个符号为下行传输,后2个为上行传输,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一时隙配置7,具体为,H=5,下行子帧个数2,上行子帧个数2,下行符号个数5,上行符号个数1。
那么UE按照第一信令确定第一时隙格式;如图16所示;前5个符号为下行传输,后1个为上行传输,其他符号为灵活传输所在的符号,终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,所述终端至少根据确定的第一时隙格式进行上下行传输。
其中第一信令包含以下至少之一:
第一周期;
第一时隙配置集合;
第一时隙配置集合中一个或多个时隙配置对应的时隙个数。
其中,第一周期以时隙或无线帧为基本单位;第一信令为基于终端配置的高层信令。
例如:假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4,第一时隙配置5,第一时隙配置6,第一时隙配置7,第一时隙配置8,第一时隙配置9,第一时隙配置10。
那么UE按照第一信令确定第一时隙格式;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4,第一时隙配置5;第一时隙配置对应的时隙个数为2,第一时隙配置2对应的时隙个数为3,第一时隙配置3对应的时隙个数为1,第一时隙配置4对应的时隙个数为2,第一时隙配置5对应的时隙个数为2。
那么UE按照第一信令确定第一时隙格式;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4;第一时隙配置持续时隙个数为2,第一时隙配置2对应的时隙个数为3,第一时隙配置3对应的时隙个数为1,第一时隙配置4对应的时隙个数为2。
那么UE按照第一信令确定第一上下行配置;终端至少根据第一时隙格式进行上下行传输,其中第一信令中没有包含第一周期内最后2个时隙的时隙配置,那么这2个时隙的时隙配置固定为下行传输,或上行传输,或灵活传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,所述终端至少根据确定的第一时隙格式进行上下行传输。
其中第一信令包含以下至少之一:
第一周期;
第一时隙配置集合;
第一时隙配置集合中一个或多个时隙配置对应的时隙索引。
其中,第一信令为基于终端配置的高层信令。
其中,第一周期以时隙或无线帧为基本单位;
例如;假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4;第一时隙配置1对应的时隙索引1,2,3;第一时隙配置2对应的时隙索引4;第一时隙配置3对应的时隙索引6,7,8;第一时隙配置4对应的时隙索引9,10。
那么UE按照第一信令确定第一时隙格式;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4;第一时隙配置1对应的时隙索引指示1110000000;第一时隙配置2对应的时隙索引指示0001000000;第一时隙配置3对应的时隙索引指示0000011100;第一时隙配置4对应的时隙索引指示0000000011。
那么UE按照第一信令确定第一时隙格式;其中时隙索引通过位图的方式指示,为1表示该时隙采用所述时隙配置,为0表示该时隙不采用,反之亦然。终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,第一时隙配置1,第一时隙配置2,第一时隙配置3,第一时隙配置4;第一时隙配置1对应的时隙索引指示1100000000;第一时隙配置2对应的时隙索引指示0001000000;第一时隙配置3对应的时隙索引指示0000011100;第一时隙配置4对应的时隙索引指示0000000011。
那么UE按照第一信令确定第一时隙格式;其中时隙索引通过位图的方式指示,为1表示该时隙采用所述时隙配置,为0表示该时隙不采用,反之亦然。第一信令中没有包含时隙索引3的时隙配置,那么该时隙的时隙配置固定为全 下行,或全上行,或全灵活。终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端接收第一信令,按照第一信令确定第一时隙格式,所述终端至少根据确定的第一时隙格式进行上下行传输。
其中第一信令包含以下至少之一:
第一周期
第二时隙配置。
其中,第二时隙配置指示H个时隙的时隙配置,其中H为大于或等于1的正整数。
其中,第二时隙配置包含:时隙索引集合,时隙索引集合中一个或多个时隙对应的时隙属性。
其中时隙属性包含{全下行,全上行,可配置}。
其中,第一周期以时隙或无线帧为基本单位;
其中,当时隙属性为可配置时,还需要通过以下参数至少之一确定时隙属性:下行符号个数,上行符号个数,灵活符号个数。
例如:假设第一信令包含:第一周期为10个时隙;
第二时隙配置,具体为
时隙索引1:全下行,
时隙索引2:全下行,
时隙索引8:全下行;
那么UE按照第一信令确定第一时隙格式;其中第一信令中没有包含第一周期内时隙索引3,4,5,6,7,9,10的时隙属性,那么这些时隙的时隙属性固定为全下行,或全上行,或全灵活。终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端如果被基站提供第一信令,所述终端按照第一信令确定第一时隙格式,所述终端至少根据确定的第一时隙格式进行上下行传输。
其中第一信令包含以下至少之一:第一周期,第二时隙配置。
其中第二时隙配置指示H个时隙的时隙配置,其中H为大于或等于1的正 整数;
其中,第一周期以时隙或无线帧为基本单位;
第二时隙配置包含:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
其中时隙属性包含{全下行,全上行,可配置}。
其中当时隙属性为可配置时,还需要通过以下参数至少之一确定时隙属性:下行符号个数,上行符号个数,灵活符号个数。
例如:假设第一信令包含:第一周期为10个时隙,
第二时隙配置,具体为:
全下行,时隙索引1,2,3,
可配置,时隙索引4,5,6,
全下行,时隙索引7,8,9,10,
那么UE按照第一信令确定第一时隙格式;终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,
第二时隙配置,具体为:
全下行,时隙索引1,2,3,
全下行,时隙索引7,8,9,10,
那么UE按照第一信令确定第一时隙格式;其中第一信令中没有包含第一周期内时隙索引为4,5,6的时隙属性,那么这些时隙的时隙属性固定为全下行,或全上行,或全灵活。终端至少根据第一时隙格式进行上下行传输。
例如:假设第一信令包含:第一周期为10个时隙,
第二时隙配置,具体为:
全下行,时隙索引指示1110000000,
全下行,时隙索引指示0000001111。
那么UE按照第一信令确定第一时隙格式;其中第一信令中没有包含第一周期内时隙索引为4,5,6的时隙属性,那么这些时隙的时隙属性固定为全下行,或全上行,或全灵活。终端至少根据第一时隙格式进行上下行传输。
在一个实施例中,半双工终端接收第二信令,根据第二信令确定第二时隙格式,所述终端至少根据确定的第二时隙格式进行上下行传输。
其中第二信令至少包含:时隙格式组合索引。
其中时隙格式组合索引为高层信令配置的组合表中的索引。
其中根据第二信令确定第二时隙格式包含:根据时隙组合索引得到具体的时隙组合,根据时隙组合中的时隙格式索引得到第二时隙格式,其中第一时隙格式索引为第一时隙格式表中的索引。
例如:UE接收第二信令,其中第二信令至少包含:时隙格式组合索引3。
其中时隙格式组合内容如表2所示。
表2一种时隙格式组合内容表
组合索引 组合内容
0 1 5 6 8 26 37 7 255
1 1 9 16 8 26 37 1 1
2 1 1 1 1 1 1 1 1
3 2 2 1 1 2 2 1 1
4 3 3 3 3 3 3 3 3
...... ......
那么终端得到时隙组合为2 2 1 1 2 2 1 1,再根据第一时隙格式表得到第二时隙格式,根据第二时隙格式进行上下行传输。
在一个实施例中,半双工终端接收第一信令和第二信令,根据第一信令和第二信令确定第一时隙格式和第二时隙格式,所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输。
其中第一信令为基于终端的半静态信令;第二信令为下行控制信息中携带的动态信令。
在一个实施例中,半双工终端接收第一信令和第二信令,根据第一信令和第二信令确定第一时隙格式和第二时隙格式,所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输。
其中第一信令为基于终端的半静态信令;第二信令为下行控制信息中携带的动态信令;
根据第二时隙格式确定第一时隙格式中的灵活符号的传输方向。
在一个实施例中,半双工终端接收第一信令和第二信令,根据第一信令和第二信令确定第一时隙格式和第二时隙格式,所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输。
其中第一信令为基于终端的半静态信令;第二信令为下行控制信息中携带的动态信令;
其中所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输包含:根据第二时隙格式确定第一时隙格式中的灵活符号的传输方向。
在一个实施例中,半双工终端接收第一信令和第二信令,根据第一信令和第二信令确定第一时隙格式和第二时隙格式,所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输。
其中所述终端至少根据确定的第一时隙格式和第二时隙格式进行上下行传输包含:根据第一时隙格式确定预定义时隙的上下行传输,根据第二时隙格式确定其他时隙的上下行传输,其中预定义的时隙为基站和终端提前约定好的时隙,或者第一信令所在的时隙,或者第二信令所在的时隙。
在一个实施例中,第一时隙格式表和第二时隙格式表的区别为以下至少之一:
第一时隙格式表中不支持一个时隙中存在两次上下行转换的时隙格式,而第二时隙格式表需要支持;
第一时隙格式表中不需要考虑和LTE共存的时隙格式,而第二时隙格式表需要考虑;
第一时隙格式表中需要增加适合所述终端上下行转换间隔的时隙格式;
其中,第二时隙格式表为现有NR系统使用的时隙格式表;
例如:第一时隙格式表中不支持一个时隙中存在两次上下行转换的时隙格式,也就是第一时隙格式表中不支持表3所示的8种时隙格式。
表3
46 D D D D D F U D D D D D F U
47 D D F U U U U D D F U U U U
48 D F U U U U U D F U U U U U
49 D D D D F F U D D D D F F U
50 D D F F U U U D D F F U U U
51 D F F U U U U D F F U U U U
52 D F F F F F U D F F F F F U
53 D D F F F F U D D F F F F U
例如:第一时隙格式表中不需要考虑和LTE共存的时隙格式,也就是第一时隙格式表中不支持表4所示的3种时隙格式。
表4
43 D D D D D D D D D F F F F U
44 D D D D D D F F F F F F U U
45 D D D D D D F F U U U U U U
例如:第一时隙格式表中需要增加适合所述终端上下行转换间隔的时隙格式;具体为对于下行符号、灵活符号和上行符号的时隙格式中:
1、当时隙内下行符号个数大于G1时,其中以G1=3为例,增加表5时隙格式中的一组或多组。
表5
  D D D D D D D D D F F F F U
  D D D D D D D D F F F F U U
  D D D D D D D D F F F F F U
  D D D D D D D F F F F F U U
  D D D D D D D F F F F F F U
  D D D D D D F F F F F F U U
  D D D D D D F F F F F F F U
  D D D D D F F F F F F F U U
  D D D D D F F F F F F F F U
  D D D D F F F F F F F F U U
2、时隙内上行符号个数大于G2,以G2=3为例,增加表6时隙格式中的一组或多组。
表6
  D F F F F U U U U U U U U U
  D D F F F F U U U U U U U U
  D D D F F F F U U U U U U U
  D F F F F F U U U U U U U U
  D D F F F F F U U U U U U U
  D D D F F F F F U U U U U U
  D F F F F F F U U U U U U U
  D D F F F F F F U U U U U U
  D D D F F F F F F U U U U U
  D F F F F F F F U U U U U U
  D D F F F F F F F U U U U U
  D D D F F F F F F F U U U U
在一个实施例中,第一时隙格式表或第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G1,或者上行符号的个数大于G2,灵活符号的个数的最大值为N,其中,G1,G2和N为大于零的正整数。其中第一预设时隙格式为下行符号、灵活符号和上行符号组成的时隙格式。
以N=4,G1和G2=3为例:具体如表7或表8所示;具体为:
至多一次上下行转换,具体为第一时隙格式表中只包含全下行符号,全上行符号,全灵活符号,下行符号和灵活符号,灵活符号和上行符号,下行符号、灵活符号和上行符号对应的时隙格式中的一种或多种,以表7或表8为例,其中,索引0对应全下行符号的时隙格式,索引1对应全上行符号的时隙格式,索引2对应全灵活符号的时隙格式,索引3~7,16~18对应下行符号和灵活符号的时隙格式,索引8~15对应灵活符号和上行符号的时隙格式,索引19~47对应下行符号、灵活符号和上行符号组成的时隙格式;
在包含一次上下行转换的时隙格式且时隙内下行符号个数大于G1,灵活符号的个数的最大值为N,具体为:以表7或表8为例,索引19~47对应一次上下行转换的时隙格式,其中索引28~33,43~44对应的下行符号个数大于3,在这些时隙格式中,灵活符号的个数从1到4,也就是灵活符号的个数的最大值为4;
在包含一次上下行转换的时隙格式且时隙内上行符号个数大于G1,灵活符号的个数的最大值为N,具体为:以表7或表8为例,索引19~47对应一次上下行转换的时隙格式,其中索引34~42,45~47对应的上行符号个数大于3,在这些时隙格式中,灵活符号的个数从1到4,也就是灵活符号的个数的最大值为4;
以上索引和时隙格式的对应关系只是一个示例,不排除其他对应关系,但只要满足以上本申请保护的确定具体时隙格式条件的都属于本申请的保护范围内。
以上实施例以第一时隙格式表为例说明,当然也可以为第一时隙格式组合的形式。
表7正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000006
Figure PCTCN2021110622-appb-000007
Figure PCTCN2021110622-appb-000008
或者
表8正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000009
Figure PCTCN2021110622-appb-000010
Figure PCTCN2021110622-appb-000011
在一个实施例中,第一时隙格式表或第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G3,或者上行符号的个数大于G4,灵活符号的个数满足固定为N,其中G3,G4和N为大于零的正整数。 其中第一预设时隙格式指下行符号、灵活符号和上行符号组成的时隙格式。
以N=4,G3和G4=3为例:具体如表9或表10所示。
至多一次上下行转换,具体为第一时隙格式表中只包含全下行符号,全上行符号,全灵活符号,下行符号和灵活符号,灵活符号和上行符号,下行符号、灵活符号和上行符号对应的时隙格式中的一种或多种,以表9或表10为例,其中,索引0对应全下行符号的时隙格式,索引1对应全上行符号的时隙格式,索引2对应全灵活符号的时隙格式,索引3~7,16~18对应下行符号和灵活符号的时隙格式,索引8~15对应灵活符号和上行符号的时隙格式,索引19~32对应下行符号、灵活符号和上行符号组成的时隙格式;
在包含一次上下行转换的时隙格式且时隙内下行符号个数大于G3,灵活符号的个数等于N,具体为:以表9或表10为例,索引19~32对应一次上下行转换的时隙格式,其中索引28~29对应的下行符号个数大于3,在这些时隙格式中,灵活符号的个数为4,也就是灵活符号的个数等于4;
在包含一次上下行转换的时隙格式且时隙内上行符号个数大于G4,灵活符号的个数等于N,具体为:以表9或表10为例,索引19~32对应一次上下行转换的时隙格式,其中索引30~32对应的上行符号个数大于3,在这些时隙格式中,灵活符号的个数为4,也就是灵活符号的个数等于4;
以上索引和时隙格式的对应关系只是一个示例,不排除其他对应关系,但只要满足以上本申请保护的确定具体时隙格式条件的都属于本申请的保护范围内。
以上实施例以第一时隙格式表为例说明,当然也可以为第一时隙格式组合的形式。
表9正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000012
Figure PCTCN2021110622-appb-000013
Figure PCTCN2021110622-appb-000014
或者
表10正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000015
Figure PCTCN2021110622-appb-000016
Figure PCTCN2021110622-appb-000017
在一个实施例中,第一时隙格式表为第二时隙格式表和扩展表组成,其中扩展表为:适合所述终端上下行转换间隔的时隙格式;具体为表5和表6中的时隙格式中的一个或多个。表11给出1个例子,其中以选择表5和表6中,上下行转换为5个灵活符号为例:具体为:索引0~55和255为第二时隙格式表中时隙格式,索引56~60为扩展表。
表11正常循环前缀下的时隙格式
Figure PCTCN2021110622-appb-000018
Figure PCTCN2021110622-appb-000019
Figure PCTCN2021110622-appb-000020
Figure PCTCN2021110622-appb-000021
在一个实施例中,所述终端至少根据所述时隙格式进行上下行传输还包含:终端确定上下行转换所在的符号。
更进一步的,如果上下行转换出现在下行符号和上行符号之间,假设半双工终端对应的上下行转换间隔为R个符号,那么用于上下行转换的符号为:
方式一:上行符号之前R个下行符号,或者
方式二:下行符号之后R个上行符号。
更进一步的,如果上下行转换出现在灵活符号上,假设半双工终端对应的上下行转换间隔为R个符号,灵活符号的个数为X,那么用于上下行转换的符号为:
如果R<=X,灵活符号用作上下行转换;
如果R>X,存在如下3种方式。
方式一:灵活符号和灵活符号前Y个下行符号用作上下行转换,或者
方式二:灵活符号和灵活符号后Y个上行符号用作上下行转换,或者
方式三:预设长度内上行符号个数大于下行符号个数,采用方式二,否则,采用方式一,其中预设长度为M个时隙,M为大于零的正整数。
在一个实施例中,所述终端至少根据所述时隙格式进行上下行传输还包括: 所述终端基于以下方式至少之一生成用于上下行转换的符号:
终端在上行符号之前的R1个符号不进行下行接收;
终端在下行符号之后R3个上行符号不进行上行发送;
终端在上下行符号之间的所有灵活符号上不进行上下行传输;
终端在上行符号之前所有灵活符号和Y1个下行符号上不进行下行接收;
终端在下行符号之后所有灵活符号和Y3个上行符号上不进行上行发送;
其中,R1,R3,Y1,Y3为大于零的正整数。
在一个实施例中,所述终端至少根据所述时隙格式进行上下行传输,还包括:所述终端基于以下方式至少之一生成用于上下行转换的符号。
终端在上行符号之前的R1个符号不进行下行接收;
终端在上行符号之后的R2个符号不进行下行接收;
终端在下行符号之后R3个上行符号不进行上行发送;
终端在下行符号之前R4个上行符号不进行上行发送;
终端在上下行符号之间的所有灵活符号上不进行上下行传输;
终端在上行符号之前所有灵活符号和Y1个下行符号上不进行下行接收;
终端在上行符号之后所有灵活符号和Y2个下行符号上不进行下行接收;
终端在下行符号之后所有灵活符号和Y3个上行符号上不进行上行发送;
终端在下行符号之前所有灵活符号和Y4个上行符号上不进行上行发送;
其中,R1,R2,R3,R4,Y1,Y2,Y3,Y4为大于零的正整数。
在一个实施例中,本实施例提供一种数据传输装置,所述装置配置于第一节点,如图17所示,本实施例提供的数据传输装置主要包括接收模块171、确定模块172。
接收模块171,被配置为接收第二节点发送的信令;
确定模块172,被配置为基于所述高层信令确定时隙格式;其中,所述时隙格式用于数据传输。
在一个示例性的实施方式中,所述信令包括第一信令和/或第二信令。
在一个示例性的实施方式中,所述时隙格式,包括:
基于所述第一信令确定的第一时隙格式;和/或,
基于所述第二信令确定的第二时隙格式。
在一个示例性的实施方式中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
在一个示例性的实施方式中,所述第一信令包括:第一时隙配置信息;其中,第一时隙配置信息指示H个时隙的时隙配置,H是大于或等于1的正整数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
在一个示例性的实施方式中,所述第一时隙配置信息包括如下参数中的一个或多个:
下行传输的起始符号和长度;
上行传输的起始符号和长度;
灵活传输的起始符号和长度;
下行传输的符号长度,其中,下行传输的起始位置固定为每个时隙开始;
上行传输的符号长度,其中,上行传输的结束位置固定为每个时隙结束;
全下行的时隙个数;
全上行的时隙个数;
时隙索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一周期,第二时隙配置信息。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:时隙索引集合,时隙索引集合中一个或多个时隙索引对应的时隙属性。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
在一个示例性的实施方式中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙索引组成,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一时隙格式表或第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G1,或者上行符号的个数大于G2,灵活符号的个数的最大值为N,其中G1,G2,N为大于零的正整数。
在一个示例性的实施方式中,所述第一时隙格式表或第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G3,或者上行符号的个数大于G4,那么灵活符号的个数固定为N,其中G3,G4,N为大于零的正整数。
在一个示例性的实施方式中,在基于所述信令确定时隙格式之后,还包括:确定用于上下行转换的符号。
在一个示例性的实施方式中,所述上下行转换出现在下行符号和上行符号之间,且第一节点对应的上下行转换间隔为R个符号的情况下,确定用于上下行转换所在的符号,包括如下方式之一:
确定用于上下行转换的符号为上行符号之前R个下行符号;
确定用于上下行转换的符号为下行符号之后R个上行符号。
在一个示例性的实施方式中,所述上下行转换出现在灵活符号上,且第一节点对应的上下行转换间隔为R个符号,灵活符号的个数为X,
R小于或等于X,确定用于上下行转换的符号,包括:确定用于上下行转换的符号为灵活符号;或者,
R大于X的情况下,确定用于上下行转换的符号,包括如下方式之一:
确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号;
确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号;
预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号用作上下行转换;
预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号用作上下行转换;
其中预设长度为M个时隙,M为大于或等于1的正整数。
在一个示例性的实施方式中,第一节点基于所述时隙格式进行数据传输,还包括:第一节点基于以下方式至少之一生成用于上下行转换的符号。
第一节点在上行符号之前的R1个符号不进行下行接收;
第一节点在上行符号之后的R2个符号不进行下行接收;
第一节点在下行符号之后R3个上行符号不进行上行发送;
第一节点在下行符号之前R4个上行符号不进行上行发送;
第一节点在上下行符号之间的所有灵活符号上不进行上下行传输;
第一节点在上行符号之前所有灵活符号和Y1个下行符号上不进行下行接收;
第一节点在上行符号之后所有灵活符号和Y2个下行符号上不进行下行接收;
第一节点在下行符号之后所有灵活符号和Y3个上行符号上不进行上行发送;
第一节点在下行符号之前所有灵活符号和Y4个上行符号上不进行上行发送;
其中,R1,R2,R3,R4,Y1,Y2,Y3,Y4为大于零的正整数。
在一个实施例中,本实施例提供一种数据传输装置,所述装置配置于第二节点,如图18所示,本实施例提供的数据传输装置主要包括配置模块181和发送模块182。
配置模块181,被配置为配置信令;
发送模块182,被配置为将所述信令发送至第一节点,其中,所述信令用于指示第一节点确定时隙格式,所述时隙格式用于数据传输。
在一个示例性的实施方式中,所述信令包括第一信令和/或第二信令。
在一个示例性的实施方式中,所述时隙格式,包括:
基于所述第一信令确定的第一时隙格式;和/或,
基于所述第二信令确定的第二时隙格式。
在一个示例性的实施方式中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
在一个示例性的实施方式中,所述第一信令包括:第一时隙配置信息;其中,第一时隙配置信息指示H个时隙的时隙配置,H是大于或等于1的正整数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
在一个示例性的实施方式中,所述第一时隙配置信息包括如下参数中的一个或多个:
下行传输的起始符号和长度;
上行传输的起始符号和长度;
灵活传输的起始符号和长度;
下行传输的符号长度,其中,下行传输的起始位置固定为每个时隙开始;
上行传输的符号长度,其中,上行传输的结束位置固定为每个时隙结束;
全下行的时隙个数;
全上行的时隙个数;
时隙索引。
在一个示例性的实施方式中,所述第一信令包括如下一个或多个:第一周期,第二时隙配置信息。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:时隙索引集合,时隙索引集合中一个或多个时隙索引对应的时隙属性。
在一个示例性的实施方式中,所述第二时隙配置信息包括如下一个或多个:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
在一个示例性的实施方式中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙索引组成,所述第一时隙格式索引是第一时隙格式表中的索引。
在一个示例性的实施方式中,所述第一时隙格式表包含的时隙格式满足如下一个或多个条件:至多一次上下行转换;一次上下行转换的时隙格式中,灵活符号个数的最大值为N,其中G1,G2,N为大于零的正整数。
在一个示例性的实施方式中,所述第一时隙格式表或第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
至多一次上下行转换;
第一预设时隙格式中,如果下行符号的个数大于G3,或者上行符号的个数大于G4,那么灵活符号的个数固定为N,其中G3,G4,N为大于零的正整数。
本实施例中提供的数据传输装置可执行本发明任意实施例所提供的数据传输方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明任意实施例所提供的数据传输方法。
值得注意的是,上述数据传输装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请实施例还提供一种设备,图19是本申请实施例提供的一种设备的结构示意图,如图19所示,该设备包括处理器191、存储器192、输入装置193、输出装置194和通信装置195;设备中处理器191的数量可以是一个或多个,图19中以一个处理器191为例;设备中的处理器191、存储器192、输入装置193和输出装置194可以通过总线或其他方式连接,图19中以通过总线连接为例。
存储器192作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块。处理器191通过运行存储在存储器192中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器192可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器192可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器192可进一步包括相对于处理器191远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置193可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置194可包括显示屏等显示设备。
通信装置195可以包括接收器和发送器。通信装置195设置为根据处理器191的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,所述方法应用于第一节点,包括:
接收第二节点发送的信令;
基于所述信令确定时隙格式;其中,所述时隙格式用于数据传输。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的数据传输方法中的相关操作。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,所述方法应用于第二节点,包括:
配置信令;
将所述信令发送至第一节点,其中,所述高层信令用于指示第一节点确定时隙格式,所述时隙格式用于数据传输。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例 所提供的数据传输方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Industry Subversive Alliance,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或紧凑磁盘(Compact Disc,CD)光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (39)

  1. 一种数据传输方法,所述方法应用于第一节点,包括:
    接收第二节点发送的信令;
    基于所述信令确定时隙格式,其中,所述时隙格式用于数据传输。
  2. 根据权利要求1所述的方法,其中,所述信令包括以下至少之一:第一信令、或第二信令。
  3. 根据权利要求2所述的方法,其中,所述时隙格式,包括以下至少之一:
    基于所述第一信令确定的第一时隙格式;或,
    基于所述第二信令确定的第二时隙格式。
  4. 根据权利要求2所述的方法,其中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或,所述第一时隙格式索引是第一时隙格式组合中的索引。
  5. 根据权利要求2所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
  6. 根据权利要求2所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
  7. 根据权利要求2所述的方法,其中,所述第一信令包括:第一时隙配置信息;其中,所述第一时隙配置信息指示H个时隙的时隙配置,所述H是大于或等于1的正整数。
  8. 根据权利要求2所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
  9. 根据权利要求2所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
  10. 根据权利要求7所述的方法,其中,所述第一时隙配置信息包括如下参数中的一个或多个:
    下行传输的起始符号和长度;
    上行传输的起始符号和长度;
    灵活传输的起始符号和长度;
    下行传输的符号长度,其中,所述下行传输的起始位置固定为每个时隙开始;
    上行传输的符号长度,其中,所述上行传输的结束位置固定为每个时隙结束;
    全下行的时隙个数;
    全上行的时隙个数;
    时隙索引。
  11. 根据权利要求2所述的方法,其中,所述第一信令包括如下一个或多个:第一周期,第二时隙配置信息。
  12. 根据权利要求11所述的方法,其中,所述第二时隙配置信息包括如下一个或多个:时隙索引集合,时隙索引集合中一个或多个时隙索引对应的时隙属性。
  13. 根据权利要求11所述的方法,其中,所述第二时隙配置信息包括如下一个或多个:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
  14. 根据权利要求2所述的方法,其中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙格式索引组成,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
  15. 根据权利要求4或14所述的方法,其中,所述第一时隙格式表或所述第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
    至多一次上下行转换;
    第一预设时隙格式中,在下行符号的个数大于G1,或者上行符号的个数大于G2的情况下,灵活符号的个数的最大值为N,其中,G1,G2,以及N为大于零的正整数。
  16. 根据权利要求4或14所述的方法,其中,所述第一时隙格式表或所述第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
    至多一次上下行转换;
    第一预设时隙格式中,在下行符号的个数大于G3,或者上行符号的个数大于G4的情况下,灵活符号的个数固定为N,其中,G3,G4,以及N为大于零的正整数。
  17. 根据权利要求1所述的方法,其中,在所述基于所述信令确定时隙格式之后,还包括:
    确定用于上下行转换的符号。
  18. 根据权利要求17所述的方法,其中,所述上下行转换出现在下行符号和上行符号之间,且在所述第一节点对应的上下行转换间隔为R个符号的情况下,所述确定用于上下行转换的符号,包括如下方式之一:
    确定用于所述上下行转换的符号为上行符号之前R个下行符号;
    确定用于所述上下行转换的符号为下行符号之后R个上行符号。
  19. 根据权利要求17所述的方法,其中,所述上下行转换出现在灵活符号上,且所述第一节点对应的上下行转换间隔为R个符号,灵活符号的个数为X,
    在R小于或等于X的情况下,所述确定用于上下行转换的符号,包括:确定用于上下行转换的符号为灵活符号;或者,
    在R大于X的情况下,所述确定用于上下行转换的符号,包括如下方式之一:
    确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号;
    确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号;
    在预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号后Y个上行符号;
    在预设长度内上行符号个数大于下行符号个数的情况下,确定用于上下行转换的符号为灵活符号和灵活符号前Y个下行符号;
    其中,所述预设长度为M个时隙,所述M为大于或等于1的正整数。
  20. 一种数据传输方法,所述方法应用于第二节点,包括:
    配置信令;
    将所述信令发送至第一节点,其中,所述信令用于指示所述第一节点确定时隙格式,所述时隙格式用于数据传输。
  21. 根据权利要求20所述的方法,其中,所述信令包括以下至少之一:第一信令、或第二信令。
  22. 根据权利要求21所述的方法,其中,所述时隙格式,包括以下至少之一:
    基于所述第一信令确定的第一时隙格式;或,
    基于所述第二信令确定的第二时隙格式。
  23. 根据权利要求21所述的方法,其中,所述第一信令包括:第一时隙格式索引,其中,所述第一时隙格式索引是第一时隙格式表中的索引,或,所述第一时隙格式索引是第一时隙格式组合中的索引。
  24. 根据权利要求21所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙个数。
  25. 根据权利要求21所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙格式索引集合,第一周期,第一时隙格式索引集合中一个或多个时隙格式索引对应的时隙索引。
  26. 根据权利要求21所述的方法,其中,所述第一信令包括:第一时隙配置信息;其中,所述第一时隙配置信息指示H个时隙的时隙配置,所述H是大于或等于1的正整数。
  27. 根据权利要求21所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙个数。
  28. 根据权利要求21所述的方法,其中,所述第一信令包括如下一个或多个:第一时隙配置信息集合,第一周期,第一时隙配置信息集合中一个或多个时隙配置对应的时隙索引。
  29. 根据权利要求26所述的方法,其中,所述第一时隙配置信息包括如下参数中的一个或多个:
    下行传输的起始符号和长度;
    上行传输的起始符号和长度;
    灵活传输的起始符号和长度;
    下行传输的符号长度,其中,所述下行传输的起始位置固定为每个时隙开始;
    上行传输的符号长度,其中,所述上行传输的结束位置固定为每个时隙结束;
    全下行的时隙个数;
    全上行的时隙个数;
    时隙索引。
  30. 根据权利要求21所述的方法,其中,所述第一信令包括如下一个或多个: 第一周期,第二时隙配置信息。
  31. 根据权利要求30所述的方法,其中,所述第二时隙配置信息包括如下一个或多个:时隙索引集合,时隙索引集合中一个或多个时隙索引对应的时隙属性。
  32. 根据权利要求30所述的方法,其中,所述第二时隙配置信息包括如下一个或多个:时隙属性集合,时隙属性集合中一个或多个时隙属性对应的时隙索引。
  33. 根据权利要求31所述的方法,其中,所述第二信令包括:时隙格式组合索引,其中,时隙格式组合由第一时隙格式索引组成,所述第一时隙格式索引是第一时隙格式表中的索引,或所述第一时隙格式索引是第一时隙格式组合中的索引。
  34. 根据权利要求23或33所述的方法,其中,所述第一时隙格式表或所述第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
    至多一次上下行转换;
    第一预设时隙格式中,在下行符号的个数大于G1,或者上行符号的个数大于G2的情况下,灵活符号的个数的最大值为N,其中,G1,G2,以及N为大于零的正整数。
  35. 根据权利要求23或33所述的方法,其中,所述第一时隙格式表或所述第一时隙格式组合中包含的时隙格式满足如下一个或多个条件:
    至多一次上下行转换;
    第一预设时隙格式中,在下行符号的个数大于G3,或者上行符号的个数大于G4的情况下,灵活符号的个数固定为N,其中,G3,G4,以及N为大于零的正整数。
  36. 一种数据传输装置,所述装置配置于第一节点,包括:
    接收模块,被配置为接收第二节点发送的信令;
    确定模块,被配置为基于所述信令确定时隙格式,其中,所述时隙格式用于数据传输。
  37. 一种数据传输装置,所述装置配置于第二节点,包括:
    配置模块,被配置为配置信令;
    发送模块,被配置为将所述信令发送至第一节点,其中,所述信令用于指示第一节点确定时隙格式,所述时隙格式用于数据传输。
  38. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现任一项方法。
  39. 一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现任一项方法。
PCT/CN2021/110622 2020-08-06 2021-08-04 数据传输方法、装置、设备和存储介质 WO2022028489A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21852746.3A EP4195559A1 (en) 2020-08-06 2021-08-04 Data transmission method and apparatus, and device and storage medium
US18/019,882 US20230292293A1 (en) 2020-08-06 2021-08-04 Data transmission method and apparatus, and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010785756.7A CN111934836A (zh) 2020-08-06 2020-08-06 数据传输方法、装置、设备和存储介质
CN202010785756.7 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028489A1 true WO2022028489A1 (zh) 2022-02-10

Family

ID=73306889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110622 WO2022028489A1 (zh) 2020-08-06 2021-08-04 数据传输方法、装置、设备和存储介质

Country Status (4)

Country Link
US (1) US20230292293A1 (zh)
EP (1) EP4195559A1 (zh)
CN (1) CN111934836A (zh)
WO (1) WO2022028489A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934836A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质
WO2022155807A1 (en) * 2021-01-20 2022-07-28 Qualcomm Incorporated Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
CN116418462A (zh) * 2021-12-29 2023-07-11 维沃移动通信有限公司 处理时间确定方法、装置、终端和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156014A (zh) * 2018-08-15 2019-01-04 北京小米移动软件有限公司 时隙格式指示方法、装置、设备、系统及存储介质
CN110519031A (zh) * 2017-11-17 2019-11-29 华为技术有限公司 信息传输方法及设备
CN111034105A (zh) * 2017-08-18 2020-04-17 高通股份有限公司 解决针对无线系统的时隙格式冲突
WO2020089855A1 (en) * 2018-11-02 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Operation of wireless device and network node in unlicensed spectrum
CN111130727A (zh) * 2018-10-31 2020-05-08 深圳市海思半导体有限公司 一种数据传输方法及终端设备
CN111934836A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034105A (zh) * 2017-08-18 2020-04-17 高通股份有限公司 解决针对无线系统的时隙格式冲突
CN110519031A (zh) * 2017-11-17 2019-11-29 华为技术有限公司 信息传输方法及设备
CN109156014A (zh) * 2018-08-15 2019-01-04 北京小米移动软件有限公司 时隙格式指示方法、装置、设备、系统及存储介质
CN111130727A (zh) * 2018-10-31 2020-05-08 深圳市海思半导体有限公司 一种数据传输方法及终端设备
WO2020089855A1 (en) * 2018-11-02 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Operation of wireless device and network node in unlicensed spectrum
CN111934836A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DL signals and channels for NR-U", 3GPP DRAFT; R1-1910945 DL SIGNALS AND CHANNELS FOR NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20190814 - 20190820, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789725 *

Also Published As

Publication number Publication date
EP4195559A1 (en) 2023-06-14
US20230292293A1 (en) 2023-09-14
CN111934836A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022028489A1 (zh) 数据传输方法、装置、设备和存储介质
US11012188B2 (en) Electronic device and communication method for non-orthogonal-resource based multiple access
WO2018126472A1 (zh) 信息搜索方法、信息发送方法、装置及系统
WO2022028616A1 (zh) 码本确定方法、装置、设备和存储介质
JP7319363B2 (ja) データ伝送方法及び通信装置
US20230038936A1 (en) Control information transmission method
WO2021031939A1 (zh) 一种数据传输方法及装置
US20210218525A1 (en) Communication method and communications apparatus
CN108365936B (zh) 一种通信方法,装置及系统
CN110351032B (zh) 资源配置方法及装置
TWI768449B (zh) 資訊發送方法、接收方法、使用者設備及電腦可讀存儲介質
CN111988848A (zh) 时隙格式指示的方法和通信装置
JP2023520545A (ja) ランダムアクセス方法、装置、およびシステム
US11996944B2 (en) Communication method and apparatus for communication of a control channel and data channel
WO2022078270A1 (zh) 信息确定方法、装置、设备和存储介质
WO2022033568A1 (zh) 信息指示方法、装置、设备和存储介质
US10827515B2 (en) Sequence-based signal processing method and apparatus
WO2021030991A1 (zh) 一种上行传输资源的确定方法及装置
CN112740813B (zh) 一种通信方法及装置
CN112399564B (zh) 一种侧行链路通信方法及装置
CN112088507B (zh) 一种信息传输方法和通信设备以及网络设备
WO2020029300A1 (zh) 一种tdd系统中的资源分配方法和设备
WO2020029229A1 (en) Method and apparatus for indicating slot format information
JP2023547491A (ja) Ppduアップリンク帯域幅指示方法および関連装置
EP4021102A1 (en) Method, apparatus and system for receiving and sending control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852746

Country of ref document: EP

Effective date: 20230306