WO2022155807A1 - Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments - Google Patents

Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments Download PDF

Info

Publication number
WO2022155807A1
WO2022155807A1 PCT/CN2021/072839 CN2021072839W WO2022155807A1 WO 2022155807 A1 WO2022155807 A1 WO 2022155807A1 CN 2021072839 W CN2021072839 W CN 2021072839W WO 2022155807 A1 WO2022155807 A1 WO 2022155807A1
Authority
WO
WIPO (PCT)
Prior art keywords
fdd
redcap
communication
information
slot pattern
Prior art date
Application number
PCT/CN2021/072839
Other languages
French (fr)
Inventor
Jing LEI
Chao Wei
Weimin DUAN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/072839 priority Critical patent/WO2022155807A1/en
Priority to TW110147589A priority patent/TW202232911A/en
Priority to PCT/CN2022/072947 priority patent/WO2022156741A1/en
Publication of WO2022155807A1 publication Critical patent/WO2022155807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for providing configuration and signaling support for half-duplex frequency division duplex (HD-FDD) operation of reduced-capability user equipments (RedCap UEs) .
  • HD-FDD half-duplex frequency division duplex
  • RedCap UEs reduced-capability user equipments
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
  • NR which may also be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a reduced-capability user equipment (RedCap UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • HD-FDD half-duplex frequency division duplex
  • a method of wireless communication performed by a RedCap UE includes transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a RedCap UE, cause the RedCap UE to: transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • an apparatus for wireless communication includes means for transmitting, to a base station, capability information indicating reduced capabilities of the apparatus associated with conducting HD-FDD communication; means for receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • a method of wireless communication performed by a base station includes receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • an apparatus for wireless communication includes means for receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; means for transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example associated with providing configuration and signaling support for half-duplex frequency division duplex (HD-FDD) operation of reduced-capability user equipments (RedCap UEs) , in accordance with various aspects of the present disclosure.
  • HD-FDD half-duplex frequency division duplex
  • RedCap UEs reduced-capability user equipments
  • Fig. 4-5 are diagrams illustrating example processes associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure.
  • Figs. 6-7 are diagrams illustrating example apparatuses associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts)
  • pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, directly or indirectly, via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • a respective output symbol stream e.g., for OFDM
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a channel quality indicator (CQI) parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • Antennas may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) and transmitted to base station 110.
  • control information e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI
  • Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM
  • a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a reduced-capability user equipment (RedCap UE) (e.g., UE 120) includes means for transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; means for receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and/or means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • HD-FDD half-duplex frequency division duplex
  • the means for the RedCap UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
  • the RedCap UE includes means for receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  • GC-DCI group-common downlink control information
  • the RedCap UE includes means for receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  • a base station includes means for receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; means for transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; or means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • HD-FDD half-duplex frequency division duplex
  • the means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a base station may conduct data communications with a plurality of UEs in a network such as an LTE network and/or a 5G/NR network.
  • the data communications may include downlink communications from the base station to the plurality of UEs and uplink communications from the plurality of UEs to the base station.
  • the plurality of UEs may include regular UEs and/or RedCap UEs.
  • a RedCap UE may include reduced capabilities with respect to capabilities included in a regular UE. For instance, a RedCap UE may include fewer transmit antennas and/or fewer receive antennas with respect to a regular UE.
  • a RedCap UE may also have less stringent latency and throughput (e.g., bit rate) requirements with respect to a regular UE.
  • a RedCap UE may be designed for efficient power consumption.
  • Examples of a RedCap UE may include a video surveillance device, an industrial device such as a pressure sensor, humidity sensor, or the like and/or a wearable device such as a smart watch, a smart wrist band, or the like.
  • Examples of a regular UE may include a cellular phone (e.g., a smart phone) , a laptop computer, a tablet, or the like.
  • the plurality of UEs may operate in a full-duplex frequency division duplex (FD-FDD) mode for conducting FD-FDD communication, which may involve concurrently transmitting and receiving data.
  • FD-FDD frequency division duplex
  • a UE from among the plurality of UEs, may concurrently transmit uplink communications via an uplink carrier and receive downlink communications via a downlink carrier.
  • the UE may observe a threshold amount of insertion loss.
  • the UE may observe a threshold amount of cross-link interference between the uplink carrier and the downlink carrier, utilized for concurrently communicating (e.g., transmitting and/or receiving) data, thereby resulting in the threshold amount of insertion loss.
  • the UE may consume a threshold amount of power. Consuming the threshold amount of power for every transmission and every reception may be impracticable for a RedCap UE because the RedCap UE may be designed for efficient power consumption and may benefit from techniques that curtail power consumption. As a result, the RedCap UE may not be capable of adequately operating in the FD-FDD mode.
  • the BS may not have accounted for reduced capabilities of a RedCap UE. For instance, the BS may not have taken into account that the RedCap UE may consume a higher quantity of BS resources as compared to a regular UE. In an example, because a RedCap UE may include fewer receive antennas, the BS may have to repeat transmissions of downlink communications to enable adequate reception of the downlink communications by the RedCap UE. Without taking into account the reduced capabilities, the BS may configure the parameters to apply equally to regular UEs and to RedCap UEs. In other words, the BS may handle data communication with a RedCap UE in a similar way as the BS handles data communication with a regular UE.
  • the BS may fail to repeat transmissions of downlink communications to enable adequate reception of the downlink communications by the RedCap UE. Consequently, data communication between the base station and the RedCap UE may experience an interruption or a stoppage.
  • a BS may configure operation of the RedCap UEs in the HD-FDD mode to conduct HD-FDD communication with the BS.
  • a RedCap UE may transmit uplink communications via an uplink carrier or may receive downlink communications via a downlink carrier.
  • cross-link interference between the uplink carrier and the downlink carrier may be avoided, and power consumption by the RedCap UE may be reduced.
  • the RedCap UE may avoid including a duplexer utilized while operating in an FD-FDD mode, thereby reducing a cost associated with designing the RedCap UE.
  • the BS may configure parameters associated with the HD-FDD operation based at least in part on reduced capabilities of the RedCap UE, thereby enabling the BS to handle data communications with the RedCap UE differently than the BS may handle data communications with a regular UE.
  • the BS may adequately repeat transmissions of downlink communications to enable the RedCap UE to adequately receive the downlink communications, and data communication between the BS and the RedCap UE may continue uninterrupted.
  • Such configuration and signaling support may enable the BS to adequately communicate with RedCap UEs conducting HD-FDD communication and with regular UEs conducting FD-FDD communication.
  • a RedCap UE may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication, the indication of the reduced capabilities indicating replacement of a duplexer by a switch and a filter, receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least part on the configuration information.
  • the configuration information may be mapped to system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
  • SI system information
  • RRC radio resource control
  • MAC CE medium access control control element
  • DG dynamic grant
  • Fig. 3 is a diagram illustrating an example 300 associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure.
  • Fig. 3 shows a UE 120 and a BS 110 conducting data communications in an LTE network or a 5G/NR network.
  • the UE 120 may be a RedCap UE and may have reduced capabilities as compared to a regular UE.
  • the data communications may include downlink communications from the BS 110 to the UE 120 and may include uplink communications from the UE 120 to the BS 110.
  • the BS 110 may transmit, and the UE 120 may receive, configuration information prior to initiation of, at a beginning of, and/or during the data communications.
  • the configuration information may include an indication of, for example, one or more configuration parameters for the UE 120 to use to configure the UE 120 for the data communication.
  • the UE 120 may receive the configuration information via system information broadcasted by the BS 110 for UEs.
  • the UE 120 may receive the configuration information from a device other than BS 110 (e.g., from another base station) .
  • the UE 120 may receive the configuration information via, for example, a control channel (e.g., a physical downlink control channel (PDCCH) ) between the UE 120 and the BS 110.
  • the configuration information may be communicated via RRC signaling, MAC signaling (e.g., MAC CE) , downlink control information (DCI) signaling, or a combination thereof (e.g., RRC configuration of a set of values for a parameter and DCI indication of a selected value of the parameter) .
  • the UE 120 may transmit, and the BS 110 may receive, capability information indicating reduced capabilities of the UE 120.
  • the capability information may indicate that a design of the UE 120 does not include a duplexer and/or that the duplexer has been replaced by a switch and a filter, that the UE 120 includes, for example, fewer receive antennas as compared to a regular UE, that the UE 120 is subject to less stringent latency and throughput (e.g., bit rate) requirements with respect to the regular UE, and/or that the UE 120 is designed for efficient power consumption.
  • the BS 110 may transmit, and the UE 120 may receive, HD-FDD configuration information associated with configuring the UE 120 to operate in an HD-FDD mode to conduct half-duplex communication with the BS 110.
  • the UE 120 may be configured to, at a given time, transmit uplink communications via an uplink carrier or to receive downlink communications via a downlink carrier (also referred to as HD-FDD communication) .
  • the UE 120 may configure the UE 120 to operate in the HD-FDD mode to conduct HD-FDD communication.
  • the UE 120 may communicate data (e.g., by transmitting data or receiving data) based at least in part on the HD-FDD configuration information.
  • the HD-FDD configuration information may include and/or indicate information associated with operating in the HD-FDD mode.
  • the HD-FDD configuration information may indicate HD-FDD parameters to be used by the UE 120 to conduct the HD-FDD communication.
  • the HD-FDD configuration information may indicate index information associated with one or more carriers to be utilized by the UE 120 to conduct the HD-FDD communication.
  • the index information may include, for example, a downlink carrier index associated with a downlink carrier configured to carry the downlink communications from the BS 110 to the UE 120.
  • the index information may indicate that the downlink carrier is to be utilized by the UE 120 to receive downlink communications from the BS 110.
  • the index information may also include, for example, an uplink carrier index associated with an uplink carrier configured to carry uplink communications from the UE 120 to the BS 110.
  • the index information may indicate that the uplink carrier is to be utilized by the UE 120 to transmit uplink communications to the BS 110.
  • the uplink carrier and/or the downlink carrier may be semi-statically configured such that the uplink carrier and/or the downlink carrier remain available for utilization by the UE 120 for a particular quantity of slots or for a particular quantity of frames. In other words, availability of the semi-statically configured carriers may not change from one slot to another or from one frame to another.
  • the index information may be included in a common information element (e.g., HD-FDD-UL-DL-ConfigurationCommon) received via a system information (SI) communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the UE 120.
  • the index information may be included in a dedicated information element (e.g., HD-FDD-UL-DL-ConfigDedicated) received via a dedicated RRC message, a MAC CE communication, or a DG communication.
  • the UE 120 may receive the dedicated information element at a different time (e.g., individually) with respect to a time when the UE 120 may receive the common information element.
  • the UE 120 may receive the dedicated information element at substantially the same time (e.g., jointly) as the common information element.
  • the index information may be dedicated to apply to the UE 120.
  • the UE 120 may utilize the uplink carrier associated with the indicated uplink carrier index to transmit uplink communications to the BS 110 during the HD-FDD communication.
  • the UE 120 may utilize the downlink carrier associated with the indicated downlink carrier index to receive downlink communications from the BS 110 during the HD-FDD communication.
  • the HD-FDD configuration information may include slot pattern information associated with the HD-FDD communication.
  • the slot pattern information may indicate, for example, one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a particular set of consecutive slots or a particular set of consecutive symbols that are configured for the one or more carriers.
  • the slot pattern information may include a first slot pattern including one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a first set of consecutive slots or a first set of consecutive symbols that are configured on the downlink carrier.
  • the slot pattern information may include a second slot pattern including one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a second set of consecutive slots or a second set of consecutive symbols that are configured on the uplink carrier.
  • the slot pattern information may also include a third slot pattern indicating one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a third set of consecutive slots or a third set of consecutive symbols that are configured on the uplink carrier, the downlink carrier, and/or as a guard .
  • the particular set of consecutive slots and/or the particular set of consecutive symbols may be flexible resources configured for utilization by the UE 120 during the HD-FDD communication.
  • the common information element and/or the dedicated information element may include a pattern information element (e.g., HD-FDD-UL-DL-Pattern) to indicate the slot pattern information and/or the flexible resources.
  • the configuration of the flexible resources may be associated with cell-specific (e.g., specific to the BS 110) HD-FDD communication.
  • the configuration of the flexible resources may be UE-specific (e.g., specific to the UE 120) HD-FDD communication.
  • the slot pattern information may include periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern.
  • a periodicity from among the first periodicity, the second periodicity, and/or the third periodicity, may indicate transmission periods and a pattern associated with an occurrence of the transmission periods when the UE 120 may be enabled to utilize the flexible uplink resources to transmit uplink communications to the BS 110.
  • the periodicity may indicate reception periods and a pattern associated with an occurrence of the reception periods when the UE 120 may be enabled to utilize the flexible downlink resources to receive downlink communications from the BS 110. Based at least in part on the periodicity information, the UE 120 may utilize the flexible resources to conduct the HD-FDD communication in accordance with the periodicity information.
  • the slot pattern information may include reference numerology information, which may indicate a utilized subcarrier spacing type from among a plurality of available subcarrier spacing types.
  • the reference numerology information may indicate a first reference numerology (e.g., a first subcarrier spacing type) utilized in association with the first slot pattern, a second reference numerology (e.g., a second subcarrier spacing type) utilized in association with the second slot pattern, and/or a third reference numerology (e.g., a third subcarrier spacing type) utilized in association with the third slot pattern.
  • the UE 120 may utilize a reference numerology to conduct the HD-FDD communication in accordance with the reference numerology information.
  • the slot pattern information may include ordering information indicating an ordering of the first slot pattern, the second slot pattern, and/or the third slot pattern in a time domain.
  • the ordering information may indicate an order in which one or more of the first slot pattern, the second slot pattern, or the third slot pattern are ordered in the time domain for utilization by the UE 120.
  • the ordering information may indicate a permutation of the first slot pattern, the second slot pattern, and/or the third slot pattern in the time domain.
  • the slot patterns may be permutated in time following an order, such as 1, 3, 2, 1, 3, 2; 3, 1, 2, 1, 3, 2, among other examples (e.g., where 1 represents the first slot pattern, 2 represents the second slot pattern, and 3 represents the third slot pattern) .
  • the UE 120 may utilize one or more of the slot patterns to conduct the HD-FDD communication in accordance with the ordering information.
  • the slot pattern information may include monitoring information associated with the UE 120 monitoring PDCCH occasions associated with one or more of the slot patterns.
  • the monitoring information may indicate first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions with the second slot pattern, and/or third PDCCH monitoring occasions associated with the third slot pattern.
  • the UE 120 may monitor PDCCH occasions associated with one or more of the slot patterns during the HD-FDD communication in accordance with the monitoring information.
  • the slot pattern information may indicate bandwidth part (BWP) configuration information associated with bandwidth parts configured for utilization in association with one or more of the slot patterns.
  • BWP configuration information may indicate a first BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the second slot pattern, and/or a third BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the third slot pattern.
  • the UE 120 may utilize the configured uplink BWPs and/or downlink BWPs to conduct the HD-FDD communication in accordance with the BWP configuration information.
  • the slot pattern information may be included in the common information element received via the SI communication or the MAC CE communication that is broadcasted or multicasted to a group of UEs, including the UE 120.
  • the slot pattern information may be included in the dedicated information element received via the dedicated RRC message, the MAC CE, or the DG communication.
  • the dedicated information element may be received individually or jointly with the common information element including the slot pattern information.
  • a group of RedCap UEs may share a particular downlink carrier.
  • the group of RedCap UEs may dynamically receive GC-DCI via the particular downlink carrier.
  • the GC-DCI may indicate respective slot patterns, associated with the slot pattern information, to be respectively utilized by the RedCap UEs included in the group for conducting the HD-FDD communication.
  • the GC-DCI may also indicate respective effective time durations associated with utilization of the respective slot patterns by the RedCap UEs included in the group.
  • the GC-DCI may indicate a respective uplink carrier index and/or a respective downlink carrier index to be respectively utilized by the RedCap UEs included in the group for conducting the HD-FDD communication.
  • the dynamically indicated respective uplink carrier index and/or respective downlink carrier index may temporarily or semi-persistently override a flexible configuration of uplink carriers and/or downlink carriers.
  • the HD-FDD configuration information may indicate a guard period associated with the UE 120 switching from utilizing the downlink carrier to utilizing the uplink carrier or associated with switching from utilizing the uplink carrier to utilizing the downlink carrier.
  • the guard period may be associated with a time window for delay spread components belonging to a previous symbol to arrive before a start of a next symbol.
  • the HD-FDD communication may be Type-A HD-FDD communication, and a duration of the guard period may be a symbol-level guard period. In other words, a duration of the guard period may be associated with a duration of one or more symbols.
  • a duration of the guard period may be longer than a maximum delay associated with the HD-FDD communication.
  • a minimum duration of the guard period (e.g., a duration of two symbols) may be associated with a subcarrier spacing associated with the uplink carrier and/or the downlink carrier utilized for the HD-FDD communication.
  • a minimum duration of the guard period (e.g., a duration of two symbols) may be associated with a subcarrier spacing associated with an active uplink BWP, and/or an active downlink BWP, being actively utilized by the UE 120 for the HD-FDD communication.
  • the subcarrier spacing may be specified in a specification, and the UE 120 may determine the subcarrier spacing based at least in part on such specification.
  • the guard period may be associated with utilization of the flexible resources (e.g., slots and/or symbols) associated with a slot pattern, associated with the slot pattern information, configured for the HD-FDD communication.
  • the UE 120 may not receive the HD-FDD configuration information, including the uplink carrier index and/or the downlink carrier index. Further, the UE 120 may not be configured to monitor dynamic slot format indication (SFI) , which may be signaled via the GC-DCI. In this case, the UE 120 may rely on the UE-specific DCI for link direction determination.
  • SFI dynamic slot format indication
  • the UE 120 may be capable of operating in the FD-FDD mode to conduct FD-FDD communication with the BS 110.
  • the UE 120 may be configured to switch to operating in the HD-FDD mode to conduct HD-FDD communication with the BS 110.
  • the UE 120 may switch from operating in the FD-FDD mode to operating in the HD-FDD mode when the UE 120 has to communicate less than a threshold amount of data with the BS 110.
  • the BS 110 may support UEs operating in the HD-FDD mode and UEs operating in the FD-FDD mode. In this case, the BS 110 may configure HD-FDD power control parameters for UEs operating in the HD-FDD mode and FD-FDD power control parameters for UEs operating in the FD-FDD mode. In some aspects, the HD-FDD power control parameters may be utilized by the UE 120 to transmit uplink communications to the BS 110 during the HD-FDD communication.
  • the uplink communications may include communications transmitted via a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) .
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink share channel
  • SRS sounding reference signal
  • the HD-FDD power control parameters may be based at least in part on uplink transmission characteristics native to the UE 120 while conducting the HD-FDD communication.
  • Such transmission characteristics may include a reduced insertion loss, an improved power efficiency, a reduced peak transmission power, and/or an improved reference sensitivity.
  • the transmission characteristics may be indicated by a measure of degradation (e.g., a noise figure) imparted to a signal-to-noise (SNR) ratio by reception circuitry and/or transmission circuitry of the UE 120.
  • a measure of degradation e.g., a noise figure
  • SNR signal-to-noise
  • the UE 120 may have improved transmission characteristics while conducting the HD-FDD communication based at least in part on the reception circuitry and/or the transmission circuitry included in the UE 120 imparting a reduced degradation to the SNR as compared to a UE (a RedCap UE or a regular UE) conducting FD-FDD communication.
  • the reception circuitry and/or the transmission circuitry included in the UE 120 may introduce a reduced amount of noise to the SNR as compared to the UE conducting FD-FDD communication.
  • the BS 110 may transmit, and the UE 120 may receive, HD-FDD power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, and/or a scaling factor or an offset for a reference signal power in pathloss estimation.
  • the HD-FDD power control parameters may also include an enhanced granularity, range, and/or power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  • the UE 120 may determine a transmission power for transmitting uplink communications to the BS 110 based at least in part on a formula, specified in a specification, that involves the HD-FDD power control parameters.
  • the HD-FDD power control parameters may assist in controlling the transmission power utilized by the UE 120, thereby reducing a power consumption associated with transmitting uplink communications.
  • the HD-FDD configuration information may include measurement and reporting parameters associated with the UE 120 performing, while conducting the HD-FDD communication, a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, and/or a cellular positioning and beam management procedure (BM procedure) .
  • the RRM procedure may be associated with the UE 120 performing RRM measurements associated with a cell selection procedure, a cell re-selection procedure, and/or a handover procedure.
  • the RLM procedure may be associated with the UE 120 monitoring a downlink carrier (e.g., a PDCCH) to assist in determining a measure of a quality associated with downlink communications received via the downlink carrier.
  • a downlink carrier e.g., a PDCCH
  • the BM procedure may be associated with the UE 120 determining, based at least in part on a location of the UE 120 within a cell associated with the BS 110, a transmission beam for transmitting uplink communications and/or a reception beam for receiving downlink communications, the transmission beam enabling adequate reception of the uplink communications by the BS 110 and/or the reception beam enabling adequate reception of the downlink communications by the UE 120.
  • the measurement and reporting parameters may be based at least in part on the reduced capabilities of the UE 120 to operate in the HD-FDD mode. For instance, based at least in part on avoiding the cross-link interference, the UE 120 may have an improved reference sensitivity level. Based at least in part on the improved reference sensitivity level, the measurement and reporting parameters may include a particular level of accuracy associated with the UE 120 performing the RRM procedure, the RLM procedure, and/or the BM procedure. Further, based at least in part on the particular level of accuracy, the measurement and reporting parameters may include an extended periodicity, associated with a frequency with which the UE 120 is to perform the RRM procedure, the RLM procedure, and/or the BM procedure.
  • the measurement and reporting parameters may be based at least in part on a slot pattern configuration (e.g., as described above) . In some aspects, the measurement and reporting parameters may be based at least in part on a BWP configuration. In some aspects, the measurement and reporting parameters may indicate a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with the UE 120 performing the RRM procedure, the RLM procedure, and/or the BM procedure.
  • the measurement objects may indicate parameters to be measured and reported by the UE 120
  • the reporting configurations may indicate a configuration associated with measuring and reporting the parameters
  • the quantity configurations may indicate a quantity of parameters to be measured and reported
  • the measurement a gap configurations may indicate a duration and/or a periodicity associated with measuring and reporting the parameters.
  • the UE 120 and/or the BS 110 may process a handover for the UE to continue the HD-FDD communication with, for example, a neighboring BS associated with a neighboring cell.
  • the BS 110 may indicate whether the neighboring BS supports UEs operating in the HD-FDD mode.
  • the UE 120 may avoid unnecessarily performing the RRM procedure, the RLM procedure, and/or the BM procedure in connection with the neighboring BS.
  • RedCap UE By utilizing the parameters for half-duplex operation of RedCap UEs, discussed herein, cross-link interference between the uplink carrier and the downlink carrier may be avoided, and power consumption by the RedCap UE may be reduced. Additionally, the RedCap UE may avoid including a duplexer utilized while operating in an FD-FDD mode, thereby reducing a cost associated with designing the RedCap UE. Further, while communicating with a RedCap UE, the BS may adequately repeat transmissions of downlink communications to enable the RedCap UE to adequately receive the downlink communications, and data communication between the BS and the RedCap UE may continue uninterrupted.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a reduced-capability user equipment, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the reduced-capability user equipment (e.g., reduced-capability user equipment 120) performs operations associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs.
  • the reduced-capability user equipment e.g., reduced-capability user equipment 120
  • process 400 may include transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication (block 410) .
  • the RedCap UE e.g., using transmission component 604, depicted in Fig. 6
  • process 400 may include receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information (block 420) .
  • the RedCap UE e.g., using reception component 602, depicted in Fig. 6
  • process 400 may include communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information (block 430) .
  • the RedCap UE e.g., using transmission component 604 and/or reception component 602, depicted in Fig. 6
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating, a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
  • the one or more carriers are semi-statically configured for the HD-FDD communication.
  • the index information is included in a common information element received via a SI communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  • the index information is included in a dedicated information element received via a dedicated RRC message, a MAC CE, or a DG communication, the dedicated information element being received individually or jointly with a common information element including the index information.
  • the HD-FDD configuration information includes slot pattern information comprising one or more of a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier, a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
  • the slot pattern information comprises one or more of periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern, referencing numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern, ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain, monitoring information indicating first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern, or BWP configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs associated with the second slot pattern
  • the slot pattern information is included in a common information element received via a SI communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  • the slot pattern information is included in a dedicated information element received via a dedicated RRC message, a MAC CE, or a DG communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
  • process 400 includes receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  • process 400 includes receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  • the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
  • the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
  • the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
  • the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
  • the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a PRACH, a PUCCH, a PUSCH, and/or a SRS during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
  • the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  • the HD-FDD configuration information includes measurement and reporting parameters associated with a RRM procedure, a RLM procedure, or a BM procedure to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
  • BWP bandwidth part
  • the HD-FDD configuration information includes measurement and reporting parameters associated with a RRM procedure, a RLM procedure, or a BM procedure to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
  • the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
  • the HD-FDD configuration information is received via SI, a RRC message, a MAC CE, or a DG communication.
  • the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the base station (e.g., BS 110) performs operations associated with providing configuration and signaling support HD-FDD operation of RedCap UEs.
  • the base station e.g., BS 110
  • process 500 may include receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication (block 510) .
  • the base station e.g., using reception component 702, depicted in Fig. 7
  • RedCap UE reduced-capability user equipment
  • process 500 may include transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information (block 520) .
  • the base station e.g., using transmission component 704, depicted in Fig. 7
  • process 500 may include communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information (block 530) .
  • the base station e.g., using transmission component 704 and/or reception component 702, depicted in Fig. 7
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a block diagram of an example apparatus 600 for wireless communication.
  • the apparatus 600 may be a RedCap UE (e.g., UE 120) , or a RedCap UE may include the apparatus 600.
  • the apparatus 600 includes a reception component 602 and a transmission component 604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 600 may communicate with another apparatus 606 (such as a UE, a base station, or another wireless communication device) using the reception component 602 and the transmission component 604.
  • the apparatus 600 may include one or more of a determination component 608, among other examples.
  • the apparatus 600 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 600 may be configured to perform one or more processes described herein, such as process 400 of Fig. 4.
  • the apparatus 600 and/or one or more components shown in Fig. 6 may include one or more components of the RedCap UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 6 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 606.
  • the reception component 602 may provide received communications to one or more other components of the apparatus 600.
  • the reception component 602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 606.
  • the reception component 602 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the RedCap UE described above in connection with Fig. 2.
  • the transmission component 604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 606.
  • one or more other components of the apparatus 606 may generate communications and may provide the generated communications to the transmission component 604 for transmission to the apparatus 606.
  • the transmission component 604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 606.
  • the transmission component 604 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the RedCap UE described above in connection with Fig. 2. In some aspects, the transmission component 604 may be co-located with the reception component 602 in a transceiver.
  • the transmission component 604 may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication.
  • the reception component 602 may receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information.
  • the reception component 602 and/or the transmission component 604 may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • the reception component 602 may receive GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  • the reception component 602 may receive GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  • the determination component 608 may determine, for example, information to be included in the capability information transmitted to the base station. Further, the determination component 608 may determine information received in the HD-FDD configuration information. Furthermore, the determination component 608 may determine the data to be communicated while conducting the HD-FDD communication.
  • Fig. 6 The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
  • Fig. 7 is a block diagram of an example apparatus 700 for wireless communication.
  • the apparatus 700 may be a base station (e.g., BS 110) , or a base station may include the apparatus 700.
  • the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704.
  • the apparatus 700 may include one or more of a determination component 708, among other examples.
  • the apparatus 700 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5.
  • the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706.
  • the reception component 702 may provide received communications to one or more other components of the apparatus 700.
  • the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706.
  • the reception component 702 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706.
  • one or more other components of the apparatus 706 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706.
  • the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706.
  • the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 704 may be co-located with the reception component 702 in a transceiver.
  • the reception component 702 may receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication.
  • the transmission component 704 may transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information.
  • the reception component 702 and/or the transmission component 704 may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • the determination component 708 may determine, for example, information included in the capability information received by the base station. Further, the determination component 708 may determine information to be transmitted in the HD- FDD configuration information. Furthermore, the determination component 708 may determine the data to be communicated while conducting the HD-FDD communication.
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
  • a method of wireless communication performed by a reduced-capability user equipment comprising: transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • HD-FDD half-duplex frequency division duplex
  • the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating, a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
  • Aspect 3 The method of any of aspects 1-2, wherein the one or more carriers are semi-statically configured for the HD-FDD communication.
  • Aspect 4 The method of any of aspects 1-3, wherein the index information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  • SI system information
  • MAC CE medium access control control element
  • Aspect 5 The method of any of aspects 1-4, wherein the index information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the index information.
  • RRC radio resource control
  • MAC CE medium access control control element
  • DG dynamic grant
  • the HD-FDD configuration information includes slot pattern information comprising one or more of: a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier, a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
  • the slot pattern information comprises one or more of: periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern; referencing numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern; ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain; monitoring information indicating first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern; or bandwidth part (BWP) configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs associated with the second slot pattern,
  • BWP bandwidth part
  • Aspect 8 The method of any of aspects 1-7, wherein the slot pattern information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  • SI system information
  • MAC CE medium access control control element
  • Aspect 9 The method of any of aspects 1-8, wherein the slot pattern information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a MAC CE, or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
  • RRC radio resource control
  • MAC CE MAC CE
  • DG dynamic grant
  • Aspect 10 The method of any of aspects 1-9, further comprising: receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  • GC-DCI group-common downlink control information
  • Aspect 11 The method of any of aspects 1-10, further comprising: receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  • GC-DCI group-common downlink control information
  • Aspect 12 The method of any of aspects 1-11, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
  • Aspect 13 The method of any of aspects 1-12, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
  • Aspect 14 The method of any of aspects 1-13, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
  • Aspect 15 The method of any of aspects 1-14, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
  • the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink share channel
  • SRS sounding reference signal
  • Aspect 17 The method of any of aspects 1-16, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  • the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  • the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
  • RRM radio resource management
  • RLM radio link monitoring
  • BM procedure cellular positioning and beam management procedure
  • the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
  • RRM radio resource management
  • RLM radio link monitoring
  • BM procedure cellular positioning and beam management procedure
  • Aspect 20 The method of any of aspects 1-19, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
  • Aspect 21 The method of any of aspects 1-20, wherein the HD-FDD configuration information is received via system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
  • SI system information
  • RRC radio resource control
  • MAC CE medium access control control element
  • DG dynamic grant
  • Aspect 22 The method of any of aspects 1-21, wherein the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
  • Aspect 23 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 1-22.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 1-22.
  • Aspect 25 An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 1-22.
  • Aspect 26 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 1-22.
  • Aspect 27 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 1-22.
  • a method of wireless communication performed by a base station comprising receiving, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  • RedCap UE reduced-capability user equipment
  • HD-FDD half-duplex frequency division duplex
  • Aspect 29 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of aspect 28.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of aspect 28.
  • Aspect 31 An apparatus for wireless communication, comprising at least one means for performing the method of aspect 28.
  • Aspect 32 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of aspect 28.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of aspect 28.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a reduced-capability user equipment (RedCap UE) may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication. The RedCap UE may receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information. The RedCap UE may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information. Numerous other aspects are described.

Description

CONFIGURATION AND SIGNALING SUPPORT FOR HALF-DUPLEX FREQUENCY DIVISION DUPLEX OPERATION OF REDUCED-CAPABILITY USER EQUIPMENTS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for providing configuration and signaling support for half-duplex frequency division duplex (HD-FDD) operation of reduced-capability user equipments (RedCap UEs) .
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user  equipment to communicate on a municipal, national, regional, and even global level. NR, which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a reduced-capability user equipment (RedCap UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, a method of wireless communication performed by a RedCap UE includes transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a RedCap UE, cause the RedCap UE to: transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, an apparatus for wireless communication includes means for transmitting, to a base station, capability information indicating reduced capabilities of the apparatus associated with conducting HD-FDD communication; means for receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, a method of wireless communication performed by a base station includes receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and  communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
In some aspects, an apparatus for wireless communication includes means for receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication; means for transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example associated with providing configuration and signaling support for half-duplex frequency division duplex (HD-FDD) operation of reduced-capability user equipments (RedCap UEs) , in accordance with various aspects of the present disclosure.
Fig. 4-5 are diagrams illustrating example processes associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure.
Figs. 6-7 are diagrams illustrating example apparatuses associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of  the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, directly or indirectly, via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate  on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, or the like. A frequency may also be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the  received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a channel quality indicator (CQI) parameter, among other examples. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
Antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) and transmitted to base station 110. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of  the UE 120. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or  interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a reduced-capability user equipment (RedCap UE) (e.g., UE 120) includes means for transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; means for receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and/or means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information. The means for the RedCap UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
In some aspects, the RedCap UE includes means for receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
In some aspects, the RedCap UE includes means for receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
In some aspects, a base station (BS 110) includes means for receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; means for transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability  information; or means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information. The means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
A base station may conduct data communications with a plurality of UEs in a network such as an LTE network and/or a 5G/NR network. The data communications may include downlink communications from the base station to the plurality of UEs and uplink communications from the plurality of UEs to the base station. The plurality of UEs may include regular UEs and/or RedCap UEs. A RedCap UE may include reduced capabilities with respect to capabilities included in a regular UE. For instance, a RedCap UE may include fewer transmit antennas and/or fewer receive antennas with respect to a regular UE. A RedCap UE may also have less stringent latency and throughput (e.g., bit rate) requirements with respect to a regular UE. Further, a RedCap UE may be designed for efficient power consumption. Examples of a RedCap UE may include a video surveillance device, an industrial device such as a pressure sensor, humidity sensor, or the like and/or a wearable device such as a smart watch, a smart wrist band, or the like. Examples of a regular UE may include a cellular phone (e.g., a smart phone) , a laptop computer, a tablet, or the like.
The plurality of UEs may operate in a full-duplex frequency division duplex (FD-FDD) mode for conducting FD-FDD communication, which may involve concurrently transmitting and receiving data. For instance, a UE, from among the plurality of UEs, may concurrently transmit uplink communications via an uplink carrier and receive downlink communications via a downlink carrier.
While conducting FD-FDD communication, the UE may observe a threshold amount of insertion loss. In an example, the UE may observe a threshold amount of cross-link interference between the uplink carrier and the downlink carrier, utilized for concurrently communicating (e.g., transmitting and/or receiving) data, thereby resulting in the threshold amount of insertion loss. To communicate data in the presence of the threshold amount of insertion loss, the UE may consume a threshold amount of power. Consuming the threshold amount of power for every transmission and every reception may be impracticable for a RedCap UE because the RedCap UE may be designed for efficient power consumption and may benefit from techniques that curtail power consumption. As a result, the RedCap UE may not be capable of adequately operating in the FD-FDD mode.
Also, when configuring parameters for operation in the FD-FDD mode, the BS may not have accounted for reduced capabilities of a RedCap UE. For instance, the BS may not have taken into account that the RedCap UE may consume a higher quantity of BS resources as compared to a regular UE. In an example, because a RedCap UE may include fewer receive antennas, the BS may have to repeat transmissions of downlink communications to enable adequate reception of the downlink communications by the RedCap UE. Without taking into account the reduced capabilities, the BS may configure the parameters to apply equally to regular UEs and to RedCap UEs. In other words, the BS may handle data communication with a RedCap UE in a similar way as the BS handles data communication with a regular UE. As a result, while communicating with a RedCap UE, the BS may fail to repeat transmissions of downlink communications to enable adequate reception of the downlink communications by the RedCap UE. Consequently, data communication between the base station and the RedCap UE may experience an interruption or a stoppage.
Various aspects of techniques and apparatuses described herein may provide configuration and signaling support for HD-FDD operation of RedCap UEs. In some aspects, a BS may configure operation of the RedCap UEs in the HD-FDD mode to conduct HD-FDD communication with the BS. In the HD-FDD mode, at a given time, a RedCap UE may transmit uplink communications via an uplink carrier or may receive downlink communications via a downlink carrier. As a result, cross-link interference between the uplink carrier and the downlink carrier may be avoided, and power consumption by the RedCap UE may be reduced. Additionally, the RedCap UE may avoid including a duplexer utilized while operating in an FD-FDD mode, thereby  reducing a cost associated with designing the RedCap UE. Further, the BS may configure parameters associated with the HD-FDD operation based at least in part on reduced capabilities of the RedCap UE, thereby enabling the BS to handle data communications with the RedCap UE differently than the BS may handle data communications with a regular UE. As a result, while communicating with a RedCap UE, the BS may adequately repeat transmissions of downlink communications to enable the RedCap UE to adequately receive the downlink communications, and data communication between the BS and the RedCap UE may continue uninterrupted. Such configuration and signaling support may enable the BS to adequately communicate with RedCap UEs conducting HD-FDD communication and with regular UEs conducting FD-FDD communication.
In some aspects, a RedCap UE may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting HD-FDD communication, the indication of the reduced capabilities indicating replacement of a duplexer by a switch and a filter, receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least part on the configuration information. In some aspects, the configuration information may be mapped to system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
Fig. 3 is a diagram illustrating an example 300 associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs, in accordance with various aspects of the present disclosure. Fig. 3 shows a UE 120 and a BS 110 conducting data communications in an LTE network or a 5G/NR network. In some aspects, the UE 120 may be a RedCap UE and may have reduced capabilities as compared to a regular UE. The data communications may include downlink communications from the BS 110 to the UE 120 and may include uplink communications from the UE 120 to the BS 110.
As shown by reference number 310, the BS 110 may transmit, and the UE 120 may receive, configuration information prior to initiation of, at a beginning of, and/or during the data communications. In some aspects, the configuration information may include an indication of, for example, one or more configuration parameters for the UE 120 to use to configure the UE 120 for the data communication. In some aspects, the  UE 120 may receive the configuration information via system information broadcasted by the BS 110 for UEs. In some aspects, the UE 120 may receive the configuration information from a device other than BS 110 (e.g., from another base station) . In some aspects, the UE 120 may receive the configuration information via, for example, a control channel (e.g., a physical downlink control channel (PDCCH) ) between the UE 120 and the BS 110. The configuration information may be communicated via RRC signaling, MAC signaling (e.g., MAC CE) , downlink control information (DCI) signaling, or a combination thereof (e.g., RRC configuration of a set of values for a parameter and DCI indication of a selected value of the parameter) .
As shown by reference number 320, the UE 120 may transmit, and the BS 110 may receive, capability information indicating reduced capabilities of the UE 120. In some aspects, the capability information may indicate that a design of the UE 120 does not include a duplexer and/or that the duplexer has been replaced by a switch and a filter, that the UE 120 includes, for example, fewer receive antennas as compared to a regular UE, that the UE 120 is subject to less stringent latency and throughput (e.g., bit rate) requirements with respect to the regular UE, and/or that the UE 120 is designed for efficient power consumption.
As shown by reference number 330, based at least in part on receiving the capability information, the BS 110 may transmit, and the UE 120 may receive, HD-FDD configuration information associated with configuring the UE 120 to operate in an HD-FDD mode to conduct half-duplex communication with the BS 110. In the HD-FDD mode, the UE 120 may be configured to, at a given time, transmit uplink communications via an uplink carrier or to receive downlink communications via a downlink carrier (also referred to as HD-FDD communication) . As shown by reference number 340, based at least in part on the HD-FDD configuration information, the UE 120 may configure the UE 120 to operate in the HD-FDD mode to conduct HD-FDD communication. As shown by reference number 350, the UE 120 may communicate data (e.g., by transmitting data or receiving data) based at least in part on the HD-FDD configuration information.
In some aspects, the HD-FDD configuration information may include and/or indicate information associated with operating in the HD-FDD mode. For instance, the HD-FDD configuration information may indicate HD-FDD parameters to be used by the UE 120 to conduct the HD-FDD communication. In some aspects, the HD-FDD configuration information may indicate index information associated with one or more  carriers to be utilized by the UE 120 to conduct the HD-FDD communication. The index information may include, for example, a downlink carrier index associated with a downlink carrier configured to carry the downlink communications from the BS 110 to the UE 120. In some aspects, the index information may indicate that the downlink carrier is to be utilized by the UE 120 to receive downlink communications from the BS 110. The index information may also include, for example, an uplink carrier index associated with an uplink carrier configured to carry uplink communications from the UE 120 to the BS 110. In some aspects, the index information may indicate that the uplink carrier is to be utilized by the UE 120 to transmit uplink communications to the BS 110. In some aspects, the uplink carrier and/or the downlink carrier may be semi-statically configured such that the uplink carrier and/or the downlink carrier remain available for utilization by the UE 120 for a particular quantity of slots or for a particular quantity of frames. In other words, availability of the semi-statically configured carriers may not change from one slot to another or from one frame to another.
In some aspects, the index information may be included in a common information element (e.g., HD-FDD-UL-DL-ConfigurationCommon) received via a system information (SI) communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the UE 120. In some aspects, the index information may be included in a dedicated information element (e.g., HD-FDD-UL-DL-ConfigDedicated) received via a dedicated RRC message, a MAC CE communication, or a DG communication. In some aspects, the UE 120 may receive the dedicated information element at a different time (e.g., individually) with respect to a time when the UE 120 may receive the common information element. In some aspects, the UE 120 may receive the dedicated information element at substantially the same time (e.g., jointly) as the common information element. When received via the dedicated RRC message, the index information may be dedicated to apply to the UE 120. Based at least in part on receiving the index information, the UE 120 may utilize the uplink carrier associated with the indicated uplink carrier index to transmit uplink communications to the BS 110 during the HD-FDD communication. Similarly, based at least in part on receiving the index information, the UE 120 may utilize the downlink carrier associated with the indicated downlink carrier index to receive downlink communications from the BS 110 during the HD-FDD communication.
In some aspects, the HD-FDD configuration information may include slot pattern information associated with the HD-FDD communication. The slot pattern information may indicate, for example, one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a particular set of consecutive slots or a particular set of consecutive symbols that are configured for the one or more carriers. For instance, the slot pattern information may include a first slot pattern including one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a first set of consecutive slots or a first set of consecutive symbols that are configured on the downlink carrier. Similarly, the slot pattern information may include a second slot pattern including one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a second set of consecutive slots or a second set of consecutive symbols that are configured on the uplink carrier. The slot pattern information may also include a third slot pattern indicating one or more types of slot patterns indicating one or more joint time-and-frequency-resource mappings for a third set of consecutive slots or a third set of consecutive symbols that are configured on the uplink carrier, the downlink carrier, and/or as a guard .
In some aspects, the particular set of consecutive slots and/or the particular set of consecutive symbols may be flexible resources configured for utilization by the UE 120 during the HD-FDD communication. In some aspects, the common information element and/or the dedicated information element may include a pattern information element (e.g., HD-FDD-UL-DL-Pattern) to indicate the slot pattern information and/or the flexible resources. When included within the common information element, the configuration of the flexible resources may be associated with cell-specific (e.g., specific to the BS 110) HD-FDD communication. When included within the dedicated information element, the configuration of the flexible resources may be UE-specific (e.g., specific to the UE 120) HD-FDD communication.
In some aspects, the slot pattern information may include periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern. A periodicity, from among the first periodicity, the second periodicity, and/or the third periodicity, may indicate transmission periods and a pattern associated with an occurrence of the transmission periods when the UE 120 may be enabled to utilize the flexible uplink resources to transmit uplink communications to the  BS 110. Further, the periodicity may indicate reception periods and a pattern associated with an occurrence of the reception periods when the UE 120 may be enabled to utilize the flexible downlink resources to receive downlink communications from the BS 110. Based at least in part on the periodicity information, the UE 120 may utilize the flexible resources to conduct the HD-FDD communication in accordance with the periodicity information.
In some aspects, the slot pattern information may include reference numerology information, which may indicate a utilized subcarrier spacing type from among a plurality of available subcarrier spacing types. For instance, the reference numerology information may indicate a first reference numerology (e.g., a first subcarrier spacing type) utilized in association with the first slot pattern, a second reference numerology (e.g., a second subcarrier spacing type) utilized in association with the second slot pattern, and/or a third reference numerology (e.g., a third subcarrier spacing type) utilized in association with the third slot pattern. Based at least in part on the reference numerology information, the UE 120 may utilize a reference numerology to conduct the HD-FDD communication in accordance with the reference numerology information.
In some aspects, the slot pattern information may include ordering information indicating an ordering of the first slot pattern, the second slot pattern, and/or the third slot pattern in a time domain. The ordering information may indicate an order in which one or more of the first slot pattern, the second slot pattern, or the third slot pattern are ordered in the time domain for utilization by the UE 120. The ordering information may indicate a permutation of the first slot pattern, the second slot pattern, and/or the third slot pattern in the time domain. For example, the slot patterns may be permutated in time following an order, such as 1, 3, 2, 1, 3, 2; 3, 1, 2, 1, 3, 2, among other examples (e.g., where 1 represents the first slot pattern, 2 represents the second slot pattern, and 3 represents the third slot pattern) . Based at least in part on the ordering information, the UE 120 may utilize one or more of the slot patterns to conduct the HD-FDD communication in accordance with the ordering information.
In some aspects, the slot pattern information may include monitoring information associated with the UE 120 monitoring PDCCH occasions associated with one or more of the slot patterns. For instance, the monitoring information may indicate first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions with the second slot pattern, and/or third PDCCH monitoring  occasions associated with the third slot pattern. Based at least in part on the monitoring information, the UE 120 may monitor PDCCH occasions associated with one or more of the slot patterns during the HD-FDD communication in accordance with the monitoring information.
In some aspects, the slot pattern information may indicate bandwidth part (BWP) configuration information associated with bandwidth parts configured for utilization in association with one or more of the slot patterns. For instance, the BWP configuration information may indicate a first BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the second slot pattern, and/or a third BWP configuration of uplink BWPs and downlink BWPs configured for utilization in association with the third slot pattern. Based at least in part on the BWP configuration information, the UE 120 may utilize the configured uplink BWPs and/or downlink BWPs to conduct the HD-FDD communication in accordance with the BWP configuration information.
In some aspects, the slot pattern information may be included in the common information element received via the SI communication or the MAC CE communication that is broadcasted or multicasted to a group of UEs, including the UE 120. In some aspects, the slot pattern information may be included in the dedicated information element received via the dedicated RRC message, the MAC CE, or the DG communication. In some aspects, the dedicated information element may be received individually or jointly with the common information element including the slot pattern information.
In some aspects, a group of RedCap UEs, including the UE 120, may share a particular downlink carrier. In this case, the group of RedCap UEs may dynamically receive GC-DCI via the particular downlink carrier. The GC-DCI may indicate respective slot patterns, associated with the slot pattern information, to be respectively utilized by the RedCap UEs included in the group for conducting the HD-FDD communication. In some aspects, the GC-DCI may also indicate respective effective time durations associated with utilization of the respective slot patterns by the RedCap UEs included in the group. Further, the GC-DCI may indicate a respective uplink carrier index and/or a respective downlink carrier index to be respectively utilized by the RedCap UEs included in the group for conducting the HD-FDD communication. In some aspects, the dynamically indicated respective uplink carrier index and/or  respective downlink carrier index may temporarily or semi-persistently override a flexible configuration of uplink carriers and/or downlink carriers.
In some aspects, the HD-FDD configuration information may indicate a guard period associated with the UE 120 switching from utilizing the downlink carrier to utilizing the uplink carrier or associated with switching from utilizing the uplink carrier to utilizing the downlink carrier. The guard period may be associated with a time window for delay spread components belonging to a previous symbol to arrive before a start of a next symbol. In some aspects, the HD-FDD communication may be Type-A HD-FDD communication, and a duration of the guard period may be a symbol-level guard period. In other words, a duration of the guard period may be associated with a duration of one or more symbols.
In some aspects, a duration of the guard period may be longer than a maximum delay associated with the HD-FDD communication. In some aspects, a minimum duration of the guard period (e.g., a duration of two symbols) may be associated with a subcarrier spacing associated with the uplink carrier and/or the downlink carrier utilized for the HD-FDD communication. In some aspects, a minimum duration of the guard period (e.g., a duration of two symbols) may be associated with a subcarrier spacing associated with an active uplink BWP, and/or an active downlink BWP, being actively utilized by the UE 120 for the HD-FDD communication. The subcarrier spacing may be specified in a specification, and the UE 120 may determine the subcarrier spacing based at least in part on such specification. In some aspects, the guard period may be associated with utilization of the flexible resources (e.g., slots and/or symbols) associated with a slot pattern, associated with the slot pattern information, configured for the HD-FDD communication.
In some aspects, the UE 120 may not receive the HD-FDD configuration information, including the uplink carrier index and/or the downlink carrier index. Further, the UE 120 may not be configured to monitor dynamic slot format indication (SFI) , which may be signaled via the GC-DCI. In this case, the UE 120 may rely on the UE-specific DCI for link direction determination.
In some aspects, the UE 120 may be capable of operating in the FD-FDD mode to conduct FD-FDD communication with the BS 110. In this case, the UE 120 may be configured to switch to operating in the HD-FDD mode to conduct HD-FDD communication with the BS 110. In some aspects, the UE 120 may switch from  operating in the FD-FDD mode to operating in the HD-FDD mode when the UE 120 has to communicate less than a threshold amount of data with the BS 110.
In some aspects, the BS 110 may support UEs operating in the HD-FDD mode and UEs operating in the FD-FDD mode. In this case, the BS 110 may configure HD-FDD power control parameters for UEs operating in the HD-FDD mode and FD-FDD power control parameters for UEs operating in the FD-FDD mode. In some aspects, the HD-FDD power control parameters may be utilized by the UE 120 to transmit uplink communications to the BS 110 during the HD-FDD communication. The uplink communications may include communications transmitted via a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) .
The HD-FDD power control parameters may be based at least in part on uplink transmission characteristics native to the UE 120 while conducting the HD-FDD communication. Such transmission characteristics may include a reduced insertion loss, an improved power efficiency, a reduced peak transmission power, and/or an improved reference sensitivity. In some aspects, the transmission characteristics may be indicated by a measure of degradation (e.g., a noise figure) imparted to a signal-to-noise (SNR) ratio by reception circuitry and/or transmission circuitry of the UE 120. In some aspects, the UE 120 may have improved transmission characteristics while conducting the HD-FDD communication based at least in part on the reception circuitry and/or the transmission circuitry included in the UE 120 imparting a reduced degradation to the SNR as compared to a UE (a RedCap UE or a regular UE) conducting FD-FDD communication. In some aspects, based at least in part on avoiding cross-link interference, the reception circuitry and/or the transmission circuitry included in the UE 120 may introduce a reduced amount of noise to the SNR as compared to the UE conducting FD-FDD communication.
In some aspects, the BS 110 may transmit, and the UE 120 may receive, HD-FDD power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, and/or a scaling factor or an offset for a reference signal power in pathloss estimation. The HD-FDD power control parameters may also include an enhanced granularity, range, and/or power control adjustment state associated with a transmit power control command and transmit power ramp-up. The UE 120 may determine a transmission power for transmitting uplink communications to the BS 110 based at least in part on a formula, specified in a specification, that involves  the HD-FDD power control parameters. In some aspects, the HD-FDD power control parameters may assist in controlling the transmission power utilized by the UE 120, thereby reducing a power consumption associated with transmitting uplink communications.
In some aspects, the HD-FDD configuration information may include measurement and reporting parameters associated with the UE 120 performing, while conducting the HD-FDD communication, a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, and/or a cellular positioning and beam management procedure (BM procedure) . The RRM procedure may be associated with the UE 120 performing RRM measurements associated with a cell selection procedure, a cell re-selection procedure, and/or a handover procedure. The RLM procedure may be associated with the UE 120 monitoring a downlink carrier (e.g., a PDCCH) to assist in determining a measure of a quality associated with downlink communications received via the downlink carrier. The BM procedure may be associated with the UE 120 determining, based at least in part on a location of the UE 120 within a cell associated with the BS 110, a transmission beam for transmitting uplink communications and/or a reception beam for receiving downlink communications, the transmission beam enabling adequate reception of the uplink communications by the BS 110 and/or the reception beam enabling adequate reception of the downlink communications by the UE 120.
In some aspects, the measurement and reporting parameters may be based at least in part on the reduced capabilities of the UE 120 to operate in the HD-FDD mode. For instance, based at least in part on avoiding the cross-link interference, the UE 120 may have an improved reference sensitivity level. Based at least in part on the improved reference sensitivity level, the measurement and reporting parameters may include a particular level of accuracy associated with the UE 120 performing the RRM procedure, the RLM procedure, and/or the BM procedure. Further, based at least in part on the particular level of accuracy, the measurement and reporting parameters may include an extended periodicity, associated with a frequency with which the UE 120 is to perform the RRM procedure, the RLM procedure, and/or the BM procedure. In some aspects, the measurement and reporting parameters may be based at least in part on a slot pattern configuration (e.g., as described above) . In some aspects, the measurement and reporting parameters may be based at least in part on a BWP configuration. In some aspects, the measurement and reporting parameters may indicate a list of  measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with the UE 120 performing the RRM procedure, the RLM procedure, and/or the BM procedure. The measurement objects may indicate parameters to be measured and reported by the UE 120, the reporting configurations may indicate a configuration associated with measuring and reporting the parameters, the quantity configurations may indicate a quantity of parameters to be measured and reported, and the measurement a gap configurations may indicate a duration and/or a periodicity associated with measuring and reporting the parameters.
In some aspects, the UE 120 and/or the BS 110 may process a handover for the UE to continue the HD-FDD communication with, for example, a neighboring BS associated with a neighboring cell. In this case, the BS 110 may indicate whether the neighboring BS supports UEs operating in the HD-FDD mode. When the BS 110 indicates that the neighboring BS does not support the UEs operating in the HD-FDD mode, the UE 120 may avoid unnecessarily performing the RRM procedure, the RLM procedure, and/or the BM procedure in connection with the neighboring BS.
By utilizing the parameters for half-duplex operation of RedCap UEs, discussed herein, cross-link interference between the uplink carrier and the downlink carrier may be avoided, and power consumption by the RedCap UE may be reduced. Additionally, the RedCap UE may avoid including a duplexer utilized while operating in an FD-FDD mode, thereby reducing a cost associated with designing the RedCap UE. Further, while communicating with a RedCap UE, the BS may adequately repeat transmissions of downlink communications to enable the RedCap UE to adequately receive the downlink communications, and data communication between the BS and the RedCap UE may continue uninterrupted.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a reduced-capability user equipment, in accordance with various aspects of the present disclosure. Example process 400 is an example where the reduced-capability user equipment (e.g., reduced-capability user equipment 120) performs operations associated with providing configuration and signaling support for HD-FDD operation of RedCap UEs.
As shown in Fig. 4, in some aspects, process 400 may include transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication (block 410) . For example, the RedCap UE (e.g., using transmission component 604, depicted in Fig. 6) may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information (block 420) . For example, the RedCap UE (e.g., using reception component 602, depicted in Fig. 6) may receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information (block 430) . For example, the RedCap UE (e.g., using transmission component 604 and/or reception component 602, depicted in Fig. 6) may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating, a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to  carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
In a second aspect, alone or in combination with the first aspect, the one or more carriers are semi-statically configured for the HD-FDD communication.
In a third aspect, alone or in combination with one or more of the first and second aspects, the index information is included in a common information element received via a SI communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the index information is included in a dedicated information element received via a dedicated RRC message, a MAC CE, or a DG communication, the dedicated information element being received individually or jointly with a common information element including the index information.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the HD-FDD configuration information includes slot pattern information comprising one or more of a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier, a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the slot pattern information comprises one or more of periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern, referencing numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern, ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain, monitoring information indicating first PDCCH monitoring occasions associated with the first slot  pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern, or BWP configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs associated with the second slot pattern, or a third BWP configuration of uplink BWPs and downlink BWPs associated with the third slot pattern.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the slot pattern information is included in a common information element received via a SI communication or a MAC CE communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the slot pattern information is included in a dedicated information element received via a dedicated RRC message, a MAC CE, or a DG communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 400 includes receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 400 includes receiving GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink  carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a PRACH, a PUCCH, a PUSCH, and/or a SRS during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the HD-FDD configuration information includes measurement and reporting parameters associated with a RRM procedure, a RLM procedure, or a BM procedure to be performed by the RedCap UE during the HD-FDD  communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, the HD-FDD configuration information includes measurement and reporting parameters associated with a RRM procedure, a RLM procedure, or a BM procedure to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, the HD-FDD configuration information is received via SI, a RRC message, a MAC CE, or a DG communication.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 500 is an example where the base station (e.g., BS 110) performs operations associated with providing configuration and signaling support HD-FDD operation of RedCap UEs.
As shown in Fig. 5, in some aspects, process 500 may include receiving, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE  associated with conducting half-duplex frequency division duplex (HD-FDD) communication (block 510) . For example, the base station (e.g., using reception component 702, depicted in Fig. 7) may receive, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information (block 520) . For example, the base station (e.g., using transmission component 704, depicted in Fig. 7) may transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information (block 530) . For example, the base station (e.g., using transmission component 704 and/or reception component 702, depicted in Fig. 7) may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a block diagram of an example apparatus 600 for wireless communication. The apparatus 600 may be a RedCap UE (e.g., UE 120) , or a RedCap UE may include the apparatus 600. In some aspects, the apparatus 600 includes a reception component 602 and a transmission component 604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 600 may communicate with another  apparatus 606 (such as a UE, a base station, or another wireless communication device) using the reception component 602 and the transmission component 604. As further shown, the apparatus 600 may include one or more of a determination component 608, among other examples.
In some aspects, the apparatus 600 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 600 may be configured to perform one or more processes described herein, such as process 400 of Fig. 4. In some aspects, the apparatus 600 and/or one or more components shown in Fig. 6 may include one or more components of the RedCap UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 6 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 606. The reception component 602 may provide received communications to one or more other components of the apparatus 600. In some aspects, the reception component 602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 606. In some aspects, the reception component 602 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the RedCap UE described above in connection with Fig. 2.
The transmission component 604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 606. In some aspects, one or more other components of the apparatus 606 may generate communications and may provide the generated communications to the transmission component 604 for transmission to the apparatus 606. In some aspects,  the transmission component 604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 606. In some aspects, the transmission component 604 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the RedCap UE described above in connection with Fig. 2. In some aspects, the transmission component 604 may be co-located with the reception component 602 in a transceiver.
The transmission component 604 may transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication. The reception component 602 may receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information. The reception component 602 and/or the transmission component 604 may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
The reception component 602 may receive GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
The reception component 602 may receive GC-DCI via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
The determination component 608 may determine, for example, information to be included in the capability information transmitted to the base station. Further, the determination component 608 may determine information received in the HD-FDD configuration information. Furthermore, the determination component 608 may determine the data to be communicated while conducting the HD-FDD communication.
The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components,  different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
Fig. 7 is a block diagram of an example apparatus 700 for wireless communication. The apparatus 700 may be a base station (e.g., BS 110) , or a base station may include the apparatus 700. In some aspects, the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704. As further shown, the apparatus 700 may include one or more of a determination component 708, among other examples.
In some aspects, the apparatus 700 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5. In some aspects, the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706. The reception component 702 may provide received communications to one or more other components of the apparatus 700. In some aspects, the reception component 702 may perform signal processing on the received communications (such  as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706. In some aspects, the reception component 702 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706. In some aspects, one or more other components of the apparatus 706 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706. In some aspects, the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706. In some aspects, the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 704 may be co-located with the reception component 702 in a transceiver.
The reception component 702 may receive, from a RedCap UE, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication. The transmission component 704 may transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information. The reception component 702 and/or the transmission component 704 may communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
The determination component 708 may determine, for example, information included in the capability information received by the base station. Further, the determination component 708 may determine information to be transmitted in the HD- FDD configuration information. Furthermore, the determination component 708 may determine the data to be communicated while conducting the HD-FDD communication.
The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
The following provides an overview of some aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a reduced-capability user equipment (RedCap UE) , comprising: transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
Aspect 2: The method of aspect 1, wherein the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating, a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
Aspect 3: The method of any of aspects 1-2, wherein the one or more carriers are semi-statically configured for the HD-FDD communication.
Aspect 4: The method of any of aspects 1-3, wherein the index information is included in a common information element received via a system information (SI)  communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
Aspect 5: The method of any of aspects 1-4, wherein the index information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the index information.
Aspect 6: The method of any of aspects 1-5, wherein the HD-FDD configuration information includes slot pattern information comprising one or more of: a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier, a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
Aspect 7: The method of any of aspects 1-6, wherein the slot pattern information comprises one or more of: periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern; referencing numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern; ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain; monitoring information indicating first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern; or bandwidth part (BWP) configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and  downlink BWPs associated with the second slot pattern, or a third BWP configuration of uplink BWPs and downlink BWPs associated with the third slot pattern.
Aspect 8: The method of any of aspects 1-7, wherein the slot pattern information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
Aspect 9: The method of any of aspects 1-8, wherein the slot pattern information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a MAC CE, or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
Aspect 10: The method of any of aspects 1-9, further comprising: receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
Aspect 11: The method of any of aspects 1-10, further comprising: receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
Aspect 12: The method of any of aspects 1-11, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
Aspect 13: The method of any of aspects 1-12, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
Aspect 14: The method of any of aspects 1-13, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
Aspect 15: The method of any of aspects 1-14, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
Aspect 16: The method of any of aspects 1-15, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
Aspect 17: The method of any of aspects 1-16, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
Aspect 18: The method of any of aspects 1-17, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
Aspect 19: The method of any of aspects 1-18, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
Aspect 20: The method of any of aspects 1-19, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
Aspect 21: The method of any of aspects 1-20, wherein the HD-FDD configuration information is received via system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
Aspect 22: The method of any of aspects 1-21, wherein the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
Aspect 23: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 1-22.
Aspect 24: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 1-22.
Aspect 25: An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 1-22.
Aspect 26: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 1-22.
Aspect 27: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more  instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 1-22.
Aspect 28: A method of wireless communication performed by a base station, comprising receiving, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication; transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
Aspect 29: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of aspect 28.
Aspect 30: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of aspect 28.
Aspect 31: An apparatus for wireless communication, comprising at least one means for performing the method of aspect 28.
Aspect 32: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of aspect 28.
Aspect 33: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of aspect 28.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program  code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set”  and “group” are intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (50)

  1. A reduced-capability user equipment (RedCap UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  2. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating,
    a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and
    an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
  3. The RedCap UE of claim 2, wherein the one or more carriers are semi-statically configured for the HD-FDD communication.
  4. The RedCap UE of claim 2, wherein the index information is included in a common information element received via a system information (SI) communication or  a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  5. The RedCap UE of claim 2, wherein the index information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the index information.
  6. The RedCap UE of claim 2, wherein the HD-FDD configuration information includes slot pattern information comprising one or more of:
    a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier,
    a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or
    a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
  7. The RedCap UE of claim 6, wherein the slot pattern information comprises one or more of:
    periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern;
    reference numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern;
    ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain;
    monitoring information indicating first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern; or
    bandwidth part (BWP) configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs associated with the second slot pattern, or a third BWP configuration of uplink BWPs and downlink BWPs associated with the third slot pattern.
  8. The RedCap UE of claim 6, wherein the slot pattern information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  9. The RedCap UE of claim 6, wherein the slot pattern information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a MAC CE, or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
  10. The RedCap UE of claim 1, wherein the one or more processors are further configured to:
    receive group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  11. The RedCap UE of claim 1, wherein the one or more processors are further configured to:
    receive group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be utilized  by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  12. The RedCap UE of claim 1, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
  13. The RedCap UE of claim 1, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
  14. The RedCap UE of claim 1, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
  15. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
  16. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
  17. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  18. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
  19. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
  20. The RedCap UE of claim 1, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
  21. The RedCap UE of claim 1, wherein the HD-FDD configuration information is received via system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
  22. The RedCap UE of claim 1, wherein the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
  23. A method of wireless communication performed by a reduced-capability user equipment (RedCap UE) , comprising:
    transmitting, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  24. The method of claim 23, wherein the HD-FDD configuration information includes index information associated with one or more carriers to be utilized for the HD-FDD communication, the index information indicating,
    a downlink carrier index associated with a downlink carrier from among the one or more carriers, the downlink carrier configured to carry a downlink transmission from the base station to the RedCap UE during the HD-FDD communication, and
    an uplink carrier index associated with an uplink carrier from among the one or more carriers, the uplink carrier configured to carry an uplink transmission from the RedCap UE to the base station during the HD-FDD communication.
  25. The method of claim 24, wherein the one or more carriers are semi-statically configured for the HD-FDD communication.
  26. The method of claim 24, wherein the index information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  27. The method of claim 24, wherein the index information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the index information.
  28. The method of claim 24, wherein the HD-FDD configuration information includes slot pattern information comprising one or more of:
    a first slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a first set of consecutive slots or symbols that are configured on the downlink carrier,
    a second slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a second set of consecutive slots or symbols that are configured on the uplink carrier, or
    a third slot pattern including one or more types of slot patterns indicating one or more time-and-frequency-resource mappings for a third set of consecutive slots or symbols that are configured on at least one of the uplink carrier, the downlink carrier, or as a guard period.
  29. The method of claim 28, wherein the slot pattern information comprises one or more of:
    periodicity information indicating a first periodicity associated with the first slot pattern, a second periodicity associated with the second slot pattern, or a third periodicity associated with the third slot pattern;
    referencing numerology information indicating a first reference numerology associated with the first slot pattern, a second reference numerology associated with the second slot pattern, or a third reference numerology associated with the third slot pattern;
    ordering information indicating a permutation of the first slot pattern, the second slot pattern, or the third slot pattern in time domain;
    monitoring information indicating first PDCCH monitoring occasions associated with the first slot pattern, second PDCCH monitoring occasions associated with the second slot pattern, or third PDCCH monitoring occasions associated with the third slot pattern; or
    bandwidth part (BWP) configuration information indicating a first BWP configuration of uplink BWPs and downlink BWPs associated with the first slot pattern, a second BWP configuration of uplink BWPs and downlink BWPs associated with the second slot pattern, or a third BWP configuration of uplink BWPs and downlink BWPs associated with the third slot pattern.
  30. The method of claim 28, wherein the slot pattern information is included in a common information element received via a system information (SI) communication or a medium access control control element (MAC CE) communication that is broadcasted or multicasted to a group of UEs, including the RedCap UE.
  31. The method of claim 28, wherein the slot pattern information is included in a dedicated information element received via a dedicated radio resource control (RRC) message, a MAC CE, or a dynamic grant (DG) communication, the dedicated information element being received individually or jointly with a common information element including the slot pattern information.
  32. The method of claim 23, further comprising:
    receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating respective uplink carrier indices and downlink carrier indices to be utilized by the RedCap UEs.
  33. The method of claim 23, further comprising:
    receiving group-common downlink control information (GC-DCI) via a downlink carrier shared by a group of RedCap UEs, including the RedCap UE, the GC-DCI indicating a respective slot pattern, from among a plurality of slot patterns, to be  utilized by the RedCap UE for the HD-FDD communication and an effective time duration associated with utilization of the respective slot pattern.
  34. The method of claim 23, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier.
  35. The method of claim 23, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, a duration of the guard period being related to a subcarrier spacing associated with an active uplink BWP, or an active downlink BWP, being actively utilized for the HD-FDD communication.
  36. The method of claim 23, wherein the HD-FDD configuration information indicates a guard period associated with switching from utilizing a downlink carrier to utilizing an uplink carrier, or a guard period associated with switching from utilizing an uplink carrier to utilizing a downlink carrier, the guard period being associated with utilization of flexible slots or flexible symbols associated with a slot pattern configured for the HD-FDD communication.
  37. The method of claim 23, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE to transmit uplink communications during the HD-FDD communication.
  38. The method of claim 23, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE for transmission of a physical random access channel (PRACH) , a physical uplink control channel (PUCCH) , a physical uplink share channel (PUSCH) , and/or a sounding reference signal (SRS) during the HD-FDD communication, the power control parameters being based at least in part on a reduced insertion loss, an improved power efficiency, an improved UE receive sensitivity, or a reduced peak transmission power associated with the RedCap UE while conducting the HD-FDD communication.
  39. The method of claim 23, wherein the HD-FDD configuration information includes power control parameters to be utilized by the RedCap UE during the HD-FDD communication, the power control parameters including an offset for a received target power, an offset for a UE-configured maximum output power, a scaling factor or an offset for a reference signal power in pathloss estimation, or an enhanced granularity, range and power control adjustment state associated with a transmit power control command and transmit power ramp-up.
  40. The method of claim 23, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters being based at least in part on a slot pattern configuration, a bandwidth part (BWP) configuration, a reduced insertion loss, an improved power efficiency, or an improved UE receive sensitivity associated with the RedCap UE while conducting the HD-FDD communication.
  41. The method of claim 23, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with a radio resource management (RRM) procedure, a radio link monitoring (RLM) procedure, or a cellular positioning and beam management procedure (BM procedure) to be performed by the RedCap UE during the HD-FDD communication, the measurement and reporting parameters indicating a list of measurement objects, reporting configurations, measurement identities, quantity configurations, or measurement gap configurations associated with performing the RRM procedure, the RLM procedure, or the BM procedure.
  42. The method of claim 23, wherein the HD-FDD configuration information includes measurement and reporting parameters associated with RRM measurements to be performed by the RedCap UE in connection with a cell selection procedure, a cell re-selection procedure, or a handover procedure.
  43. The method of claim 23, wherein the HD-FDD configuration information is received via system information (SI) , a radio resource control (RRC) message, a medium access control control element (MAC CE) , or a dynamic grant (DG) communication.
  44. The method of claim 23, wherein the capability information indicates replacement of a duplexer of the RedCap UE by a switch and a filter.
  45. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a reduced-capability user equipment (RedCap UE) , cause the RedCap UE to:
    transmit, to a base station, capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    receive, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  46. An apparatus for wireless communication, comprising:
    means for transmitting, to a base station, capability information indicating reduced capabilities of the apparatus associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    means for receiving, from the base station, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  47. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  48. A method of wireless communication performed by a base station, comprising:
    receiving, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  49. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    receive, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    transmit, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD  configuration information being based at least in part on the capability information; and
    communicate, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
  50. An apparatus for wireless communication, comprising:
    means for receiving, from a reduced-capability user equipment (RedCap UE) , capability information indicating reduced capabilities of the RedCap UE associated with conducting half-duplex frequency division duplex (HD-FDD) communication;
    means for transmitting, to the RedCap UE, HD-FDD configuration information for conducting the HD-FDD communication with the base station, the HD-FDD configuration information being based at least in part on the capability information; and
    means for communicating, by transmitting data or receiving data during the HD-FDD communication, based at least in part on the HD-FDD configuration information.
PCT/CN2021/072839 2021-01-20 2021-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments WO2022155807A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/072839 WO2022155807A1 (en) 2021-01-20 2021-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
TW110147589A TW202232911A (en) 2021-01-20 2021-12-17 Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
PCT/CN2022/072947 WO2022156741A1 (en) 2021-01-20 2022-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of user equipments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072839 WO2022155807A1 (en) 2021-01-20 2021-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments

Publications (1)

Publication Number Publication Date
WO2022155807A1 true WO2022155807A1 (en) 2022-07-28

Family

ID=82548479

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/072839 WO2022155807A1 (en) 2021-01-20 2021-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
PCT/CN2022/072947 WO2022156741A1 (en) 2021-01-20 2022-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of user equipments

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072947 WO2022156741A1 (en) 2021-01-20 2022-01-20 Configuration and signaling support for half-duplex frequency division duplex operation of user equipments

Country Status (2)

Country Link
TW (1) TW202232911A (en)
WO (2) WO2022155807A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149978A1 (en) * 2019-01-16 2020-07-23 Qualcomm Incorporated Initial control resource set for ues having different bandwidth capabilities
CN111901835A (en) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 Information processing method, device, equipment and storage medium
CN111934836A (en) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 Data transmission method, device, equipment and storage medium
CN112039640A (en) * 2020-08-07 2020-12-04 中兴通讯股份有限公司 Codebook determination method, device, equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10341081B2 (en) * 2016-07-22 2019-07-02 Apple Inc. User equipment that autonomously selects between full and half duplex operations
CN112106395B (en) * 2020-04-21 2023-09-26 北京小米移动软件有限公司 Method and device for reporting user equipment capability and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149978A1 (en) * 2019-01-16 2020-07-23 Qualcomm Incorporated Initial control resource set for ues having different bandwidth capabilities
CN111901835A (en) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 Information processing method, device, equipment and storage medium
CN111934836A (en) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 Data transmission method, device, equipment and storage medium
CN112039640A (en) * 2020-08-07 2020-12-04 中兴通讯股份有限公司 Codebook determination method, device, equipment and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM: "Discussion on potential UE complexity reduction features", 3GPP DRAFT; R1-2006644, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915423 *
ERICSSON: "Potential UE complexity reduction features for Redcap", 3GPP DRAFT; R1-2003289, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885083 *

Also Published As

Publication number Publication date
TW202232911A (en) 2022-08-16
WO2022156741A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2022067866A1 (en) Precoding matrix indication for physical uplink shared channel repetitions
US20230108805A1 (en) Techniques for directional signal strength indication and beam-specific measurement threshold
US11910217B2 (en) Demodulation reference signal based self-interference measurement
US11871422B2 (en) Frequency allocation for channel state information reference signals
US11791886B2 (en) Allocation of resources for beam management operations
US11831576B2 (en) Frequency division multiplexed reference signals for multiple beams
US11558221B2 (en) Sounding reference signal resource indicator group indication
WO2022047773A1 (en) Mapping reference signal resources to virtual panels
EP4268408A1 (en) Dynamic determination of available slots for transmission of sounding reference signal (srs) information
WO2022155807A1 (en) Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
US11838937B2 (en) Computation delay for aperiodic channel state information beam switching latency
US11936579B2 (en) Beam refinement procedure
WO2022133706A1 (en) Dynamic determination of available slots for transmission of sounding reference signal (srs) information
US20240031086A1 (en) Resource signal reception capability for multiple component carriers
WO2022205087A1 (en) Beam switching gap based on user equipment capability
US11665683B2 (en) User equipment reporting for full duplex multi-beam selection
US20220224473A1 (en) Cross-slot channel estimation of uplink reference signals
US20220248444A1 (en) Transmission configuration indicator state types for sounding reference signal as source reference signal
WO2022067867A1 (en) Time gaps between physical uplink shared channel repetitions
WO2022041101A1 (en) Cross-link interference measurement using sounding reference signal resources
WO2022133707A1 (en) Dynamic reconfiguration associated with transmitting sounding reference signal (srs) information
WO2022165744A1 (en) Signaling synchronization signal block transmission power of a non-serving cell
WO2022217524A1 (en) Signaling user equipment antenna group preferences and antenna group correlation
WO2022151304A1 (en) Criteria for reporting channel status information
WO2022094515A1 (en) Techniques for tracking reference signal with concentrated power per tone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920211

Country of ref document: EP

Kind code of ref document: A1