WO2022028408A1 - 一种无线通信的方法及装置 - Google Patents

一种无线通信的方法及装置 Download PDF

Info

Publication number
WO2022028408A1
WO2022028408A1 PCT/CN2021/110260 CN2021110260W WO2022028408A1 WO 2022028408 A1 WO2022028408 A1 WO 2022028408A1 CN 2021110260 W CN2021110260 W CN 2021110260W WO 2022028408 A1 WO2022028408 A1 WO 2022028408A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
shift value
communication
communication device
index
Prior art date
Application number
PCT/CN2021/110260
Other languages
English (en)
French (fr)
Inventor
徐晨蕾
周建伟
罗禾佳
蒋镇军
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21854266.0A priority Critical patent/EP4188027A4/en
Publication of WO2022028408A1 publication Critical patent/WO2022028408A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method and apparatus for random access procedures.
  • the fifth generation (5th Generation, 5G) system and its future evolution network need to meet different service requirements, and also need to provide a wider range of services.
  • NTN non-terrestrial network
  • satellite communication has huge advantages. It has long communication distance, large coverage area, and wide communication frequency bandwidth, which can provide users with communication services at any time and any place. Therefore, satellite communication is an inevitable trend of 5G communication, especially in terms of international and domestic communication, emergency and disaster relief, etc. It has unique advantages.
  • the normal communication process between the terminal device and the network device requires the terminal device and the network device to complete the establishment of a wireless link through random access.
  • the random access process enables users to access the network through competition, but due to limited access resources, this process will inevitably cause collisions between users accessing the system at the same time, thereby reducing the system throughput and increasing the number of users accessing the system. delay, affecting system performance and access experience.
  • the number of users within the single-beam coverage of the system is quite different from the number of users served by the terrestrial communication system. If the provisions of the terrestrial communication protocol are used, the access resources cannot meet the requirements of the non-terrestrial communication system. For example, in a satellite communication system, there are problems such as an increase in the collision probability of user-initiated random access and an increase in access delay.
  • the embodiment of the present application provides a method for wireless communication, which can meet the requirements of random access of different communication systems.
  • a first aspect provides a method for wireless communication, comprising: a first communication device determining a first number N, the first number being the total number of preamble sequences to be generated, and the first number N being at least two types of preambles One of the total number of sequences, where N is a positive integer; the first communication device generates N preamble sequences according to the first number N and the first cyclic shift value; the first communication device sends the first preamble sequence , the first preamble sequence is one of the N preamble sequences, and the first preamble sequence is used for random access.
  • the first communication device generates N preamble sequences according to the determined first number N and the first cyclic shift value, where the first number N is one of at least two total numbers of preamble sequences, and One of the N preamble sequences is selected for random access.
  • the solution of the present application provides a variety of available first numbers N for the first communication device to select, so that the communication system can determine the total number of preamble sequences that need to be generated in the random access process according to its own system characteristics, thereby improving the random access of the communication system.
  • Ability In particular, under the satellite communication system, the number of terminal devices in the satellite service area is large.
  • the terminal devices perform random access with a fixed total number of preamble sequences, the probability of random access failure and the communication access delay will be greatly increased. According to The method provided by the present application can deal with the above scenarios more effectively, reduce the probability of random access collision and reduce the access delay.
  • the method further includes: the first communication apparatus may receive a first index sent by the network device; the first communication apparatus determines the second cyclic shift value according to the first index and the first mapping relationship , the first mapping relationship is used to indicate a one-to-one correspondence between the first index and the second cyclic shift value; the first device determines the first cyclic shift value according to the first coefficient and the second cyclic shift value Circular shift value.
  • the multiple cyclic shift values are cyclic shift values under the second positioning accuracy or used by the terrestrial network.
  • the first coefficient is used to indicate the ratio of the granularity of the cyclic shift value used under the first positioning accuracy to the granularity of the cyclic shift value used under the second positioning accuracy, and the first positioning accuracy is the first positioning accuracy.
  • the current positioning accuracy of a communication device, and the second cyclic shift value is a cyclic shift value used at the second positioning accuracy.
  • the first coefficient is used to indicate the ratio of the granularity of the cyclic shift value used under the first positioning accuracy to the granularity of the cyclic shift value used under the terrestrial network, and the first positioning accuracy is the first communication
  • the current positioning accuracy of the device, and the second cyclic shift value is the cyclic shift value used under the terrestrial network.
  • the first communication apparatus may determine the first number N according to the first coefficient and the second number, where the second number is the total number of preamble sequences used in the second precision.
  • the first communication device determines the first cyclic shift value by means of the first coefficient and the second cyclic shift value, and performs random access according to the first cyclic shift value and the first number, so that the use of a Signaling obtains two parameters (that is, the cyclic shift value and the total number of preamble sequences), which reduces the signaling overhead.
  • network devices such as satellites
  • the probability of collision in the random access process reduces the access delay and improves the random access capability of the system.
  • the first cyclic shift value may be determined by the first communication apparatus according to a cyclic shift mapping table, where the mapping table is a correspondence between an index value and a cyclic shift value, wherein the The cyclic shift value corresponding to each index value in the mapping table is less than or equal to the second cyclic shift value corresponding to the same index in the first mapping relationship, and the second cyclic shift value is the cyclic shift value in the first mapping relationship .
  • the first coefficient is specified by a communication protocol, or the first coefficient is indicated by the network device.
  • the network device may send the first coefficient through a system message or RRC signaling.
  • the first coefficient indicated by the second communication device may be that the first communication device receives second indication information sent by the second communication device, where the second indication information is used to indicate the first coefficient.
  • the second indication information includes a second index
  • the first communication device determines the first coefficient according to the second index and a coefficient mapping table, where the coefficient mapping table is one-to-one between a plurality of index values and a plurality of coefficients Correspondence.
  • the method further includes: receiving, by the first communication apparatus, a first index sent by a network device; and the first communication apparatus according to the first index, the first parameter and the second mapping relationship determining a first cyclic shift value, the second mapping relationship is used to indicate a corresponding relationship between the first index and a first cyclic shift value group, where the first cyclic shift value group includes at least two cyclic shift values,
  • the first parameter is used to determine the first cyclic shift value from the at least two cyclic shift values, and the first parameter is used to indicate the positioning accuracy currently used by the first communication device or the currently pending positioning accuracy. connected system.
  • the second mapping relationship may record cyclic shift values corresponding to multiple precisions.
  • the cyclic shift value group corresponds to the cyclic shift values under the plurality of positioning precisions, that is, the cyclic shift value group is a set of cyclic shift values under different precisions.
  • the second mapping relationship may also record cyclic shift values used in multiple access systems, for example, the multiple access systems may include a satellite communication system and a terrestrial network communication system.
  • the cyclic shift value group may include two cyclic shift values, and the two cyclic shift values correspond to two different positioning accuracies.
  • the first The parameter is the positioning accuracy of the satellite communication system
  • each mapping table records the cyclic shift values used under the two positioning accuracy respectively.
  • the two positioning accuracies may be the positioning accuracy corresponding to the terrestrial network communication system and the positioning accuracy corresponding to the satellite communication system.
  • the determining, by the first communication apparatus, the first number N includes: the first communication apparatus receiving, by the first communication apparatus, first indication information sent by the network device, where the first indication information is used to indicate the The first number N.
  • the first indication information includes broadcast information or unicast information.
  • the first number is greater than or equal to a second number
  • the second number is the total number of preamble sequences generated when the first communication device communicates with the terrestrial network
  • the first number A cyclic shift value is less than or equal to a second cyclic shift value
  • the second cyclic shift value is a cyclic shift value used for generating a preamble sequence when the first communication device communicates with the terrestrial network.
  • the N is one of 64, 128, 256 or 512.
  • the method before the first communication apparatus generates N preamble sequences according to the first number N and the first cyclic shift value, the method further includes: the first communication apparatus determines The first cyclic shift value satisfies the requirement of the current positioning accuracy of the first communication device on the cyclic shift value.
  • the first communication device may determine whether the first cyclic shift value specified by the network device meets the requirements according to its own positioning accuracy, and in the case that the first cyclic shift value meets the positioning accuracy of the first communication device, the The first communication apparatus generates a preamble sequence using the first cyclic shift value.
  • the first communication device determines a third cyclic shift value and the total number of third preamble sequences according to its own positioning accuracy, and determines the third cyclic shift value and the total number of third preamble sequences according to the positioning accuracy of the first communication device, The shift value and the third total number of preamble sequences generate a preamble sequence, wherein the third cyclic shift value is greater than the first cyclic shift value.
  • the first preamble sequence is used for the first communication device to perform random access on a first time-domain resource, where the first time-frequency resource is shifted from the first cyclic shift or the first time-frequency resource corresponds to the current positioning accuracy of the first communication device; or the first time-frequency resource corresponds to the system to be accessed by the first communication device; or the first time-frequency resource corresponds to the system to be accessed by the first communication device; A time-frequency resource corresponds to the first number.
  • the first communication apparatus may determine the first time domain resource according to the indication information of the network device.
  • the first number is determined according to the historical positioning accuracy of the access terminal equipment of the network equipment to be accessed by the first communication apparatus; and/or the first cyclic shift value It is determined according to the location accuracy of the historical access terminal equipment of the network equipment to be accessed by the first communication apparatus.
  • the first communication device is equipped with a global navigation and positioning system and/or a multi-satellite assisted positioning system.
  • a method for wireless communication comprising: a second communication device determining a first number N, where the first number is the total number of preamble sequences to be generated, and the first number N is at least two types of preambles One of the total number of sequences, N is a positive integer; the second communication device determines a first cyclic shift value, and the first cyclic shift value is used by the first communication device to generate N preamble sequences; the second communication device The communication device detects, according to the first number N and the first cyclic shift value, a first preamble sequence sent by the first communication device performing random access; the first preamble sequence is the N preamble sequences one of the.
  • the method further includes: the second communication apparatus sends a first index, where the first index is used to indicate a second cyclic shift value, the first index and the second The cyclic shift value satisfies the first mapping relationship.
  • the second cyclic shift value is the cyclic shift value used under the second positioning accuracy or the cyclic shift value used under the terrestrial network.
  • the method further includes: the second communication device sending a first coefficient to the first communication device, the first coefficient being used by the first communication device according to the second communication device A cyclic shift value determines the first cyclic shift value.
  • the first coefficient is used to indicate the ratio of the granularity of the cyclic shift value used under the first positioning accuracy to the granularity of the cyclic shift value used under the second positioning accuracy, and the first positioning accuracy is the first positioning accuracy.
  • the current positioning accuracy of a communication device, and the second cyclic shift value is a cyclic shift value used at the second positioning accuracy.
  • the first coefficient is used to indicate the ratio of the granularity of the cyclic shift value used under the first positioning accuracy to the granularity of the cyclic shift value used under the terrestrial network, and the first positioning accuracy is the first communication
  • the current positioning accuracy of the device, and the second cyclic shift value is the cyclic shift value used under the terrestrial network.
  • the first coefficient may be specified by a communication protocol.
  • the second communication apparatus may send the first coefficient through a system message or RRC signaling.
  • the method further includes: the second communication device sending a first index to the first communication device, where the first index is used to indicate a first cyclic shift value group, the The first index and the first cyclic shift value group satisfy a second mapping relationship, the first cyclic shift value group includes at least two cyclic shift values, and the at least two cyclic shift values include the first cyclic shift value A shift value, where the first cyclic shift value corresponds to a first parameter, where the first parameter is used to indicate positioning accuracy or a system to be accessed.
  • the second communication apparatus sends first indication information to the first communication apparatus, where the first indication information is used to indicate the first number N.
  • the first indication information includes broadcast information or unicast information.
  • the first number is greater than or equal to a second number
  • the second number is the total number of preamble sequences generated when the first communication device communicates with the terrestrial network
  • the first number A cyclic shift value is less than or equal to a second cyclic shift value
  • the second cyclic shift value is a cyclic shift value used for generating a preamble sequence when the first communication device communicates with the terrestrial network.
  • the N is one of 64, 128, 256 or 512.
  • the method further includes: allocating, by the second communication device, a first time domain resource, where the first time domain resource is used for random access by the first communication device, wherein the first time-frequency resource corresponds to the first cyclic shift value; or the first time-frequency resource corresponds to the current positioning accuracy of the first communication device; or the first time-frequency resource corresponds to the first time-frequency resource A system to be accessed by a communication device corresponds to; or the first time-frequency resource corresponds to the first quantity.
  • the second communication apparatus may indicate the first time domain resource to the first communication apparatus.
  • the second communication apparatus may configure the first time domain resource according to the distribution of the location accuracy of the historical access terminal equipment of the network equipment to be accessed by the first communication apparatus.
  • the first number is determined according to the historical positioning accuracy of the access terminal equipment of the network equipment to be accessed by the first communication apparatus; and/or the first cyclic shift value It is determined according to the location accuracy of the historical access terminal equipment of the network equipment to be accessed by the first communication apparatus.
  • the second communication apparatus may configure the bits occupied by the random access response index RAPID to match the total number of the first preamble sequences.
  • a communication device comprising: a processing unit configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, and the first number N is at least two types of preamble sequences One of the total numbers, where N is a positive integer; the processing unit is further configured to generate N preamble sequences according to the first number N and the first cyclic shift value; the transceiver unit is configured to send the first preamble sequence, The first preamble sequence is one of the N preamble sequences, and the first preamble sequence is used for random access.
  • the transceiver unit is further configured to receive a first index sent by the network device; the processing unit is further configured to determine a second cyclic shift value according to the first index and the first mapping relationship, and the The first mapping relationship is used to indicate a one-to-one correspondence between the first index and the second cyclic shift value; and the processing unit is further configured to determine the The first cyclic shift value.
  • the second cyclic shift value is the cyclic shift value used under the second positioning accuracy or the cyclic shift value used under the terrestrial network.
  • the first coefficient is used to indicate the ratio of the cyclic shift value used under the first positioning accuracy to the granularity of the cyclic shift value used under the second positioning accuracy or the terrestrial network
  • the first positioning accuracy is the the current positioning accuracy of the first communication device
  • the second cyclic shift value is a cyclic shift value used under the second positioning accuracy or a terrestrial network.
  • the first coefficient is specified by a communication protocol, or the first coefficient is indicated by the processing unit.
  • the transceiver unit is further configured to receive the first index sent by the network device; the processing unit is further configured to determine the first cycle according to the first index, the first parameter and the second mapping relationship a shift value, where the second mapping relationship is used to indicate a correspondence between a first index and a first cyclic shift value group, where the first cyclic shift value group includes at least two cyclic shift values, and the first cyclic shift value group includes at least two cyclic shift values.
  • the parameter is used to determine the first cyclic shift value from the at least two cyclic shift values, and the first parameter is used to indicate the positioning accuracy currently used by the processing unit or the system to be accessed currently.
  • the processing unit determining the first number N includes: the transceiver unit receives first indication information sent by a network device; the processing unit determines the first number according to the first indication information N.
  • the first number is greater than or equal to a second number
  • the second number is the total number of preamble sequences generated when the first communication device communicates with the terrestrial network
  • the first number A cyclic shift value is less than or equal to a second cyclic shift value
  • the second cyclic shift value is a cyclic shift value used for generating a preamble sequence when the first communication device communicates with the terrestrial network.
  • the N is one of 64, 128, 256 or 512.
  • the method before the processing unit generates N preamble sequences according to the first number N and the first cyclic shift value, the method further includes: the processing unit determines a first cyclic shift The bit value satisfies the requirement of the current positioning accuracy of the processing unit for the cyclic shift value.
  • the first preamble sequence is used for the communication device to perform random access on a first time-domain resource, where the first time-frequency resource corresponds to the first cyclic shift value; Or the first time-frequency resource corresponds to the current positioning accuracy of the first communication device; or the first time-frequency resource corresponds to a system to be accessed by the first communication device; or the first time-frequency resource corresponds to The resources correspond to the first quantity.
  • the first number is determined according to the historical positioning accuracy of the terminal device of the network device to be accessed by the processing unit; and/or the first cyclic shift value is determined according to The location accuracy of the historical access terminal device of the network device to be accessed by the first processing unit is determined.
  • a communication device comprising: a processing unit configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, and the first number N is at least two types of preamble sequences One of the total numbers, N is a positive integer; the processing unit is further configured to determine a first cyclic shift value, and the first cyclic shift value is used by the first communication device to generate N preamble sequences; the transceiver unit, using receiving the first preamble sequence sent by the first communication device, the first preamble sequence is one of the N preamble sequences; the first number N and the first cyclic shift value are used for the The communication device detects the first preamble sequence.
  • the transceiver unit is further configured to send a first index, where the first index is used to indicate a second cyclic shift value, and the first index and the second cyclic shift value satisfy The first mapping relationship.
  • the transceiver unit is further configured to indicate a first coefficient to the first communication device, where the first coefficient is used to determine the first cyclic shift value according to the second cyclic shift value bit value.
  • the transceiver unit is further configured to send a first index to the first communication device, where the first index is used to indicate a first cyclic shift value group,
  • the first index and the first cyclic shift value group satisfy a second mapping relationship
  • the first cyclic shift value group includes at least two cyclic shift values
  • the at least two cyclic shift values include the first cyclic shift value.
  • a cyclic shift value, the first cyclic shift value corresponds to a first parameter, and the first parameter is used to indicate the positioning accuracy or the system to be accessed.
  • the transceiver unit is further configured to send first indication information to the first communication apparatus, where the first indication information is used to indicate the first number N.
  • the first number is greater than or equal to a second number
  • the second number is the total number of preamble sequences generated when the first communication device communicates with the terrestrial network
  • the first number A cyclic shift value is less than or equal to a second cyclic shift value
  • the second cyclic shift value is a cyclic shift value used for generating a preamble sequence when the first communication device communicates with the terrestrial network.
  • the N is one of 64, 128, 256 or 512.
  • the processing unit is further configured to determine a first time-domain resource, where the first time-domain resource is used for random access by the first communication device, wherein the first time-frequency resource corresponds to the first cyclic shift value; or the first time-frequency resource corresponds to the current positioning accuracy of the first communication device; or the first time-frequency resource is to be accessed by the first communication device or the first time-frequency resource corresponds to the first quantity.
  • the first number is determined according to the historical positioning accuracy of the access terminal equipment of the network equipment to be accessed by the first communication apparatus; and/or the first cyclic shift value It is determined according to the location accuracy of the historical access terminal equipment of the network equipment to be accessed by the first communication apparatus.
  • a method for wireless communication comprising: a first communication device determining a first area, where the first area is an area where the first communication device is located, and the first area is one of multiple areas The first communication device determines the first access resource corresponding to the first area where the first communication device is currently located; the first communication device uses the first access resource to initiate random access .
  • the first communication device selects a corresponding access resource according to its own positioning information, and initiates a contention-based random access process according to the access resource, so that collisions in the random access process can be effectively avoided. occurs, which increases the average time of random access within the service range of the network device and improves user experience.
  • the multiple areas include at least one near-beam switching area, and the first communication device located in the near-beam switching area can complete random access within a first time period, and the first time period is the first communication device. The time when a random access is initiated and the access is completed.
  • the method further includes: receiving, by the first communication apparatus, first indication information sent by a network device, where the first indication information is used to indicate a relationship between multiple areas and multiple access resources corresponding relationship.
  • the multiple access resources include dedicated access resources, and the dedicated resources correspond to an adjacent beam switching area.
  • the adjacent beam switching area may correspond to the multiple access resources.
  • the first communication apparatus determining the first area includes: the first communication apparatus determining the first area according to the coverage area of the first beam and the coverage area of the second beam, wherein , the first beam is a beam covering the current position of the first communication device, and the second beam is a beam covering the current position of the first communication device in the next time period.
  • the first communication device is equipped with a global navigation and positioning system and/or a multi-satellite assisted positioning system for determining the first position of the first communication device.
  • the first communication device may determine the first area according to a first distance and a second distance, where the first distance is the distance between the first position and the first beam position, and the second distance is the first distance. The distance of one location from the second beam location.
  • the beam position may be the beam center position or the beam focus position.
  • the beam position is the center position of the circular beam; in the case of an elliptical beam, the beam position is the focus position of the elliptical beam. .
  • the first communication apparatus receives the threshold sent by the network device, and determines the first area according to the relationship between the threshold and the first distance and the second distance.
  • the access resource is the total number of time-frequency resources PO and/or preamble sequences of the physical random access channel.
  • a method for wireless communication including: a network device performs random access with a first communication apparatus using a first access resource.
  • the first communication apparatus may initiate random access by using the first access resource, and correspondingly, the network device communicates with the first communication apparatus according to the first access resource.
  • the second communication device may be preconfigured
  • the method further includes: sending, by the network device, first indication information, where the first indication information is used to indicate a correspondence between multiple areas and multiple access resources.
  • the network device can reconfigure the access resources.
  • the network device configures each of the multiple access resources as multiple access resources.
  • one of the multiple access resources is the total number of preamble sequences
  • the network device may configure a specific number of preamble sequences in the total number of preamble sequences as dedicated access resources for the adjacent beam switching area, and the specific number may be
  • the second communication device estimates it according to the historical access records of the terminal devices within the coverage of the beam.
  • the network device may identify the access request of the adjacent beam switching area according to the access resource, and optimize the access mode of the adjacent beam switching area by using a dedicated backoff algorithm and backoff index.
  • the network equipment optimizes the access resources to tilt the access resources to the adjacent beam switching area, thereby reducing the average access time of all devices to be accessed within the beam coverage, ensuring that the devices to be accessed ( The first communication device) has an approximate access delay.
  • the network device sends beam information of the first beam and the second beam, where the beam information is used by the first communication apparatus to determine a first area, where the first area is the first area In an area where a communication device is located, the first beam is a beam covering the current position of the first communication device, and the second beam is a beam covering the current position of the first communication device in the next time period.
  • the access resource is the total number of time-frequency resources PO and/or preamble sequences of the physical random access channel.
  • a communication device comprising: a processing unit configured to determine a first area, where the first area is an area where the first communication device is located, and the first area is one of multiple areas One; the processing unit is further configured to determine the first access resource corresponding to the first area where the first communication device is currently located; the transceiver unit is configured to use the first access resource to perform random access.
  • the transceiver unit receives first indication information sent by a network device, where the first indication information is used to indicate a correspondence between multiple areas and multiple access resources.
  • the processing unit is configured to determine the first area according to the coverage area of the first beam and the coverage area of the second beam, where the first beam covers the first communication device The beam at the current position, and the second beam is the beam covering the current position of the first communication device in the next time period.
  • the access resource is the total number of time-frequency resources PO and/or preamble sequences of the physical random access channel.
  • a communication apparatus comprising: a processing unit configured to determine a first access resource, where the first access resource is used for random access between the first communication apparatus and the network device.
  • the communication apparatus further includes: a transceiving unit, configured to send first indication information, where the first indication information is used to indicate a correspondence between multiple areas and multiple access resources.
  • the transceiver unit is further configured to send beam information of the first beam and the second beam, where the beam information is used by the first communication device to determine a first area, where the first area is The area where the first communication device is located, the first beam is a beam covering the current position of the first communication device, and the second beam is a beam covering the current position of the first communication device in the next time period.
  • the access resource is the total number of time-frequency resources PO and/or preamble sequences of the physical random access channel.
  • a communication apparatus including each module or unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication apparatus including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication apparatus including each module or unit for performing the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • a twelfth aspect provides a communication apparatus, including various modules or units for performing the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • a thirteenth aspect provides a communication device, comprising a processor, which is coupled to a memory and can be used to execute instructions in the memory, so as to implement the above-mentioned first aspect and possible implementations thereof or the fifth aspect and possible implementations thereof method in method.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device comprising a processor coupled to a memory and operable to perform the method of the first aspect and possible implementations thereof or the sixth aspect and possible implementations thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a satellite.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a fifteenth aspect provides a communication device, comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the first aspect, the second aspect, the fifth aspect or the sixth aspect, and any one of the above aspects Methods of possible implementations are implemented.
  • the above communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a sixteenth aspect provides a processing apparatus including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to perform the first, second, fifth or sixth aspects, and the above-mentioned aspects method in any possible implementation of .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • the relevant data interaction process such as sending indication information, may be a process of outputting indication information from the processor, and receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processor in the sixteenth aspect above may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, and the memory may be integrated in the processor or located outside the processor and exist independently.
  • a seventeenth aspect provides a computer program product, the computer program product comprising: a computer program (also referred to as code, or instructions) that, when the computer program is executed, causes a computer to execute the first aspect , the second aspect, the fifth aspect or the sixth aspect, and a method in any possible implementation manner of the above aspects.
  • a computer program also referred to as code, or instructions
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction), when it is run on a computer, causing the computer to execute the above-mentioned first
  • a computer program also referred to as code, or instruction
  • a nineteenth aspect provides a communication system including the aforementioned satellite and terminal equipment.
  • FIG. 1 is a schematic diagram of an example of a communication system to which the wireless communication method of the present application is applied.
  • FIG. 2 is a schematic diagram of another example of a communication system to which the wireless communication method of the present application is applied.
  • FIG. 3 is a schematic flowchart of an example of the wireless communication method of the present application.
  • FIG. 4 is a schematic flowchart of another example of the wireless communication method of the present application.
  • FIG. 5 is a schematic flowchart of an example of determining a cyclic shift value in the wireless communication method of the present application.
  • FIG. 6 is a schematic flowchart of another example of determining a cyclic shift value in the wireless communication method of the present application.
  • FIG. 7 is a schematic flowchart of still another example of the wireless communication method of the present application.
  • FIG. 8 is a schematic flowchart of still another example of the wireless communication method of the present application.
  • FIG. 9 is a schematic diagram of a preamble sequence index and a synchronization position in the wireless communication method of the present application.
  • FIG. 10 is a schematic flowchart of still another example of the wireless communication method of the present application.
  • FIG. 11 is a schematic diagram of a possible beam area division of the present application.
  • FIG. 12 is a schematic diagram of the location of the first communication device in the communication system of the present application.
  • FIG. 13 is a schematic diagram of an example of the beam area division of the present application.
  • FIG. 14 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 15 is another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 16 is still another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 17 is still another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an architecture of a communication system applicable to an embodiment of the present application.
  • the communication system may include at least one second communication apparatus, such as the network device shown in FIG. 1 ; the communication system may also include at least one first communication apparatus, for example, two second communication apparatuses are shown in FIG. 1 .
  • the second communication device can communicate with the first communication device over a wireless link.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new wireless
  • D2D device-to-device
  • machine communication system vehicle networking communication system
  • NTN non-terrestrial network satellite communication system or future communication system
  • the embodiments of the present application are not limited.
  • the second communication apparatus in the wireless communication system may be any device having a wireless transceiver function.
  • the equipment includes but is not limited to: evolved node B (evolved nodeB, eNB or eNodeB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), base band unit (base band unit, BBU), wireless fidelity (wireless fidelity, WIFI)
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system can also be 5G,
  • NR the gNB in the system, or the transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, it can also be
  • a network node such as a baseband unit (BBU), a distributed unit (distributed unit, DU), or the second communication device may also refer to a chip with a communication function, etc., or may also be a satellite and a device-to-device (Device-to-Device) -Device, D2D), vehicle-to-everything (V2X), machine-to-machine (M2M) communication equipment that undertakes the base station function, and so on.
  • a satellite communication system and a network device ie, a second communication device
  • the network device in the satellite communication system may include satellites.
  • the first communication apparatus is a device that communicates with a network device, and the first communication apparatus may be a terminal device, a chip, or the like having a communication function.
  • the terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User Agent or User Device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a satellite phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (pad), or a computer with a wireless transceiver function.
  • SIP session initiation protocol
  • the embodiments of the present application do not limit application scenarios.
  • the terminal device may also refer to a chip having a communication function, etc., which is not limited in this embodiment of the present application.
  • a terminal device ie, a first communication device
  • Figure 2 shows a schematic diagram of the transparent forwarding mode.
  • the satellite forwards the uplink signal to the ground station by means of forwarding, and the communication distance between the user and the ground station includes the service link and the feeder link.
  • an optional technical solution is to use a protocol stack compatible with 3GPP LTE/NR.
  • the terminal device may be an ordinary mobile terminal or a dedicated terminal, etc., and the transmission process also follows the LTE/NR protocol.
  • the communication system shown in Figures 1 and 2 has a long communication distance, a large coverage area, and a wide communication frequency band, which can provide more flexible communication services for terminal equipment in time and space.
  • Random access is divided into contention-based random access and non-contention-based random access.
  • the contention-based random access has the risk of user collision, and is mainly used in service scenarios such as initial access, recovery of a wireless link failure state, and uplink data transmission in an uplink out-of-synchronization state.
  • the contention-based random access will be referred to as random access in the following description without causing ambiguity.
  • FIG. 3 shows a schematic flowchart of a random access process 100 in this embodiment of the present application.
  • a method 100 for establishing a wireless link between a network side and a terminal based on a contention-based random access procedure includes:
  • the first communication apparatus sends a random preamble sequence first message (Message, Msg) Msg1 to the network device.
  • Message, Msg random preamble sequence first message
  • the terminal device selects the time-frequency resource (PRACH occasion, PO) of the physical random access channel (PRACH) to transmit the preamble sequence (ie Msg1), and the network device detects the message sent by the terminal device.
  • Preamble sequence obtain the preamble sequence identifier (random access preamble identity, RAPID) corresponding to the preamble sequence sent by the terminal device and the beam sent in the downlink, and estimate the transmission delay of the terminal device.
  • RAPID random access preamble identity
  • RAPID is a kind of preamble sequence index.
  • the 5G NR system supports beamforming by default, and the random access process in this mode is a beam-based access process.
  • the terminal device needs to receive and detect the system information block (SSB) index with the strongest signal and determine the downlink beam, and according to the SSB index and PRACH time-frequency resources indicated by the system message (synchronization signal block, SIB) The corresponding relationship of , obtain the available PRACH time-frequency resource and preamble sequence set.
  • SSB system information block
  • SIB system message
  • the access resource for sending the Msg1 is randomly selected from the preamble sequence set.
  • the network device determines the beam used for subsequent downlink transmission according to the corresponding relationship between the PRACH time-frequency resource and the SSB index.
  • the second communication apparatus sends a second message Msg2.
  • the network device (that is, the second communication device) sends a random access response (random access response, RAR) message (that is, Msg2) on a physical downlink shared channel (physical downlink shared channel, PDSCH), and the RAR includes the timing advance of the terminal device ( timing advance, TA) value, random access preamble identity (RAPID), temporary cell radio network temporary identifier (TC-RNTI) and initial uplink resource grant, where the TA value
  • RAR random access response
  • TA random access response
  • RAPID random access preamble identity
  • TC-RNTI temporary cell radio network temporary identifier
  • initial uplink resource grant is used for scheduling the uplink resources of the terminal device.
  • the network device transmits the Msg2 on the downlink transmission beam determined in S110.
  • the first communication apparatus sends a third message Msg3.
  • the terminal device receives the RAR message sent by the network device, and sends Msg3 according to the scheduling of the initial uplink resources carried by the RAR, where the Msg3 carries the identification information of the terminal device.
  • the second communication apparatus sends a fourth message Msg4.
  • the network device will send a contention resolution message (ie Msg4) to the terminal device through the PDSCH.
  • the network device transmits the Msg4 using the downlink transmission beam determined in S110.
  • the terminal device receives the contention resolution message and starts the contention resolution process. The contention and conflict caused when multiple terminal equipments try to access network equipment using the same random access resource and the same preamble sequence can be solved.
  • an achievable technical solution is to use a contention-based random access method.
  • this method there are a total of 64 different preamble sequences to support multiple terminal devices to the network.
  • the device initiates a random access request.
  • the total number of preamble sequences for random access is fixed, which cannot be better applied to different communication systems. Requirements for random access of terminal equipment.
  • FIG. 1 a schematic diagram of an architecture of a communication system applicable to an embodiment of the present application is shown.
  • one beam of a satellite may correspond to one cell, or multiple adjacent beams may correspond to one cell.
  • the coverage area is large, and correspondingly, there may be more terminal devices within the beam coverage.
  • the increase of terminal devices makes the system prone to resource shortages, resulting in a decrease in the random access capability of the system.
  • the technical solution of the present application is described in detail by taking a satellite communication system as an example.
  • the maximum terminal density that can be supported by random access resources can be expressed by the following relationship:
  • Maximum terminal density maximum supported RACH attempts / (coverage ⁇ RACH attempts per terminal)
  • RACH random access channel
  • the time-domain density in Table 1 has reached that all subframes in the time-domain are used for RACH resources, the frequency-domain density is a configurable maximum value, and the number of preamble sequences that can be used in each time-frequency resource is 64.
  • FIG. 4 shows a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • the method 200 provides a total number of preamble sequences that can be selected for different communication systems, so that when a terminal device initiates random access, it can be selected according to the performance of the system. A suitable total number to improve the performance of the random access procedure of the communication system.
  • the method 200 includes:
  • Terminal device #1 determines a first number N, where the first number is the total number of preamble sequences to be generated, the first number N is one of at least two numbers, and N is a positive integer;
  • the first number N is the total number of preamble sequences generated when the terminal device #1 and the network device perform a random access procedure in the communication system.
  • the first number N may be specified in the communication protocol.
  • terminal device #1 determines the first number, it should be understood that terminal device #1 uses N specified in the communication protocol as the total number of preamble sequences to be generated.
  • the first number N may also be indicated by a network device.
  • terminal device #1 may receive first indication information sent by the network device, where the first indication information is used to indicate the first number N.
  • the network device may indicate the first quantity to the terminal device #1 through a system message (SIB or master information block (MIB)) or radio resource control (radio resource control, RRC) signaling, etc.
  • SIB system message
  • MIB master information block
  • RRC radio resource control
  • System messages or RRC signaling can be sent in the form of broadcast or unicast.
  • the terminal device #1 receives the first indication information sent by the network device before the terminal device #1 determines the first quantity.
  • a mapping table of the total number of preamble sequences is pre-stored in the first communication device, and the network device may send first information to the first communication device, where the first information is used for the index value of the first number N.
  • Terminal device #1 an example of the first communication device determines the total number N of preamble sequences based on the index value.
  • the mapping table of the total number of preamble sequences may be in the form shown in Table 3.
  • an indication signaling indicating the total number of preamble sequences may be added to the RACH configuration information of the system message SIB1.
  • the PreambleNumConfig signaling is added to the RACH configuration information (RACH-ConfigGeneric), and the corresponding type of the signaling is INTEGER(0..3).
  • the at least two numbers may be at least two of 32, 64, 128, 256 or 512.
  • the first number is greater than or equal to a second number
  • the second number is the total number of preamble sequences generated when the first communication device communicates with the terrestrial network.
  • the ground network may be a base station in a 5G NR system, the second number is 64, and the first number may be one of 64, 128, 256 or 512.
  • the first cyclic shift value is less than or equal to a second cyclic shift value
  • the second cyclic shift value is a cyclic shift value used for generating a preamble sequence when the first communication apparatus communicates with the terrestrial network.
  • the ground network may be a base station in a 5G NR system
  • the second cyclic shift may be one of the cyclic shift values shown in Table 4, and Table 4 shows the first index and the second cyclic shift value. corresponding relationship.
  • the first number is greater than or equal to the second number, and the first cyclic shift value is less than or equal to the second cyclic shift value.
  • the first number N is one of 64, 128, 256 or 512.
  • the first number is determined according to the location accuracy of the historical access terminal equipment of the network equipment to be accessed by the first communication apparatus.
  • the network device may determine the first number. For example, the network device may estimate the first quantity applicable to the service area of the network device according to the location accuracy of the terminal device accessed in the past. For another example, the network device can also estimate the terminal device load in the service area of the network device according to the access frequency of the terminal devices accessed in the past, and give the corresponding first quantity. The first number that comes out is relatively larger. It should be understood that the positioning accuracy of the terminal device may be confirmed according to the difference in the positioning mode of the terminal device, and the positioning mode of the terminal device may be global navigation satellite system (GNSS) positioning or multi-satellite assisted positioning.
  • GNSS global navigation satellite system
  • the terminal device #1 generates N preamble sequences according to the first number N and the first cyclic shift value
  • an achievable technical solution for terminal equipment #1 to generate a preamble sequence during the random access process is to generate a preamble sequence according to the ZC sequence, and the specific process is as follows:
  • the ZC sequence is defined as:
  • N ZC is the length of the ZC sequence.
  • the sequence generated by the cyclic shift of the ZC sequence of a single root sequence number has stronger orthogonality than the sequence generated by the cyclic shift of the ZC sequence of multiple root sequence numbers.
  • An optional solution for generating the preamble sequence is to preferentially use the ZC sequence of a single root sequence number and its cyclic shift to generate the preamble sequence.
  • the ZC sequences of a single root sequence number obtained by different cyclic shift values may be referred to as different preamble sequences.
  • one implementation of generating the 64 available preamble sequences is to use the ZC sequence of a single root sequence number to generate by cyclic shift.
  • ZC sequences with multiple root sequence numbers are used to generate it.
  • N CS is the cyclic shift value, indicating the step size of the cyclic shift, Represents rounding down, mod represents the remainder, C v represents the cyclic shift amount, and n represents the nth symbol.
  • the first cyclic shift value is the step size of the cyclic shift used by terminal device #1 to generate N preamble sequences using the ZC sequence.
  • An optional technical solution for obtaining the first cyclic shift value is to determine according to the mapping table of the cyclic shift of the random access preamble sequence given in the communication protocol.
  • terminal device #1 may receive indication information #1 sent by the network device, where indication information #1 is used to indicate to terminal device #1 the index number corresponding to the first cyclic shift value used to generate the preamble sequence.
  • the indication information #1 may be the system message SIB1, for example, the network device indicates the index number to the terminal device #1 in the RACH configuration message of the SIB1.
  • the size of the first cyclic shift value is positively correlated with the terrestrial cell radius, and the size of the cell radius reflects the delay spread and arrival time uncertainty of the asynchronous terminal without uplink synchronization.
  • An optional solution is to divide a group of cyclic shift values according to the size of the cell radius, and write them into a first mapping relationship, where the first mapping relationship is the difference between multiple index values and multiple second cyclic shift values.
  • the second cyclic shift value is the step size of the cyclic shift when the total number of preamble sequences is 64.
  • the relationship between the cyclic shift value N CS and the cell radius r is as follows:
  • r is the cell radius in kilometers
  • ⁇ ds is the maximum delay spread in microseconds
  • TSEQ is the duration of the preamble symbol in microseconds
  • ng is the addition of the receiver pulse-shaping filter The number of protection samples.
  • the first communication device can acquire the ephemeris information of the communication satellite by being equipped with GNSS.
  • the terminal can obtain the precise transmission distance from itself to the satellite through the positioning information, and reduce the uncertainty of the arrival time of the asynchronous terminal without uplink synchronization. It can be understood that the reduction of the uncertainty of the arrival time can make the cyclic shift value of the ZC sequence used in generating the preamble sequence smaller. Therefore, when using the same number of ZC root sequences as terrestrial cells in the satellite communication system, the satellite communication system can generate more available preamble sequences.
  • N CS 15
  • the present application mainly solves the problem of easy collision and large delay caused by access failure when terminal equipment initiates random access without increasing the overhead of the ZC root sequence in the satellite communication scenario.
  • the cyclic shift value of the cyclic shift mapping table specified in the protocol is divided into an unrestricted set cyclic shift value that does not consider the influence of Doppler frequency offset, and a restricted set A that considers the influence of Doppler frequency offset. , the cyclic shift value of B.
  • the Doppler frequency offset of the terminal equipped with GNSS is very small, and only the cyclic shift value of the unrestricted set needs to be designed.
  • the first cyclic shift value is determined by the network device according to the location accuracy of the historical access terminal device of the network device to be accessed by the first communication apparatus.
  • the first cyclic shift value may be indicated by a network device.
  • the terminal device determines the first cyclic shift value according to a pre-stored cyclic shift value mapping table and an index value indicated by the network device.
  • the terminal device may calculate the first cyclic shift value according to the first coefficient indicated by the network device and a pre-stored cyclic shift value mapping table.
  • the first cyclic shift value may be determined in the following manner:
  • the method 200 may further include a method for determining a cyclic shift value as shown in FIG. 5 .
  • FIG. 5 shows a possible method for determining a cyclic shift value according to an embodiment of the present application, and the method includes:
  • the first communication apparatus receives the first index sent by the network device
  • the first index is an index value corresponding to one of the first mapping relationships
  • the first mapping relationship is a corresponding relationship between a plurality of index values and a plurality of second cyclic shift values
  • the second cyclic shift The bit value is the step size of the cyclic shift when the total number of preamble sequences is 64.
  • the terminal device #1 an example of the first communication apparatus stores the first mapping relationship in advance, and the first mapping relationship may be as shown in Table 4.
  • the first communication device determines a second cyclic shift value according to the first index and the first mapping relationship, where the first mapping relationship is used to indicate the corresponding relationship between the first index and the second cyclic shift value;
  • the terminal device #1 determines the second cyclic shift value according to the first index and the first mapping relationship.
  • the second cyclic shift value is used by the terminal device to determine a first cyclic shift value, and the first cyclic shift value matches the positioning accuracy of the terminal device #1.
  • the first device determines the first cyclic shift value according to the first coefficient and the second cyclic shift value.
  • the first coefficient is used to indicate the ratio of the cyclic shift value used under the first positioning accuracy to the cyclic shift value used under the second positioning accuracy, the first positioning accuracy is the current positioning accuracy of the first communication device, and the first positioning accuracy is the current positioning accuracy of the first communication device.
  • the second cyclic shift value is the cyclic shift value used at this second positioning accuracy.
  • the first positioning accuracy is the current positioning accuracy of the first communication device.
  • the current positioning accuracy of the terminal device #1 is the positioning accuracy when the terminal device #1 is connected to the satellite communication system.
  • the second cyclic shift value is the cyclic shift value used at the second positioning accuracy or terrestrial network.
  • the terrestrial network can be a 5G NR system, and the cyclic shift value used in the terrestrial network can be determined according to the cell radius of the cellular network.
  • the positioning accuracy of the system (that is, the uncertainty of the arrival time of asynchronous terminal equipment that has not completed uplink synchronization) is jointly determined by the positioning accuracy of the terminal equipment and the positioning accuracy of the satellites.
  • terminal device #1 may receive the first coefficient indicated by the network device.
  • the network device may indicate the first coefficient through a system message or the like.
  • a third mapping table may be pre-designed in the terminal device #1 and the network device, where the third mapping table represents the corresponding relationship between the index and the coefficient, and the coefficient is used to determine the current cyclic shift value of the terminal device and the preamble to be generated.
  • the total number of sequences the network device may indicate the index value to the terminal device #1 through a system message, and the terminal device #1 determines the coefficient according to the index value.
  • Table 5 shows the corresponding relationship between index values and coefficients, such as the coefficient mapping table shown in Table 5.
  • a piece of signaling for indicating the coefficient may be added to the RACH configuration information of the system message SIB1.
  • the zeroCorrelationZoneDivideConfig signaling is added to the RACH configuration information (RACH-ConfigGeneric), and the corresponding type of the signaling is INTEGER(0..3).
  • the first coefficient may be specified by a communication protocol.
  • the first cyclic shift value is determined according to the second cyclic shift value N CS2 and the first coefficient a determined in step S2212, and the first cyclic shift value N CS1 can be determined for terminal device #1 according to the following relationship:
  • N CS1 N CS2 ⁇ first coefficient a
  • terminal device #1 may also determine the first cyclic shift value according to the following relation:
  • N CS1 N CS2 /first coefficient a'
  • the coefficients are the reciprocals of the coefficients shown in Table 5.
  • the network device can use the same way as 5G NR to indicate the index number of the cyclic shift value, and terminal device #1 can simultaneously obtain the cyclic shift value used in the satellite communication system according to the indication signaling of the first coefficient. Shift value and total number of available preambles.
  • This method only uses one signaling to obtain two indication parameters, which reduces signaling overhead, and the configuration method has certain flexibility. It should be understood that the above examples are only illustrative, and do not limit the embodiments of the present application. For example, the method may also be applied to communication systems in other scenarios.
  • the method 200 may further include a method for determining a cyclic shift value as shown in FIG. 6 .
  • FIG. 6 shows a possible method for determining a cyclic shift value according to an embodiment of the present application.
  • the method 200 includes:
  • the first communication apparatus receives the first index sent by the network device
  • the first index is an index value corresponding to one of the second mapping relationships. It should also be understood that the terminal device #1 (an example of the first communication device) stores the second mapping relationship in advance.
  • the first communication apparatus determines a first cyclic shift value according to the first index, the first parameter and the second mapping relationship.
  • the second mapping relationship is used to indicate the corresponding relationship between the first index and the first cyclic shift value group, where the first cyclic shift value group includes at least two cyclic shift values, and the first parameter is used to select from the at least two cyclic shift values.
  • the first cyclic shift value is determined in the cyclic shift value, and the first parameter is used to indicate the positioning accuracy currently used by the first communication device or the system to be accessed currently.
  • the cyclic shift value group is composed of different cyclic shift values, and the different cyclic shift values correspond to different parameters.
  • the first parameter determines the first cyclic shift value.
  • each mapping table records cyclic shift values respectively used under multiple positioning precisions.
  • the cyclic shift value group may include two cyclic shifts, and the two cyclic shifts correspond to two different positioning accuracies.
  • the first parameter is The positioning accuracy of the satellite communication system
  • each mapping table records the cyclic shift values respectively used under the two positioning accuracy.
  • each mapping table records cyclic shift values respectively used in multiple access systems. Specifically, as shown in Table 6, a possible case where the cyclic shift value group includes two cyclic shift values.
  • Table 6 is an introduction based on the NTN system corresponding to a preamble sequence with a length of 839 and a subcarrier spacing of 1.25 kHz.
  • terminal device #1 determines the first cyclic shift value to 13 according to the received first index value (eg, index 5), second mapping relationship (eg, Table 6) and the first parameter (the access system is the NTN system).
  • first index value eg, index 5
  • second mapping relationship eg, Table 6
  • the access system is the NTN system.
  • N CS values corresponding to different indexes in the NTN system in Table 6 may have different values.
  • the terminal device #1 determines the first cyclic shift value according to the fourth mapping relationship and the index value indicated by the network device.
  • the fourth mapping relationship is a mapping relationship between the first index and the first cyclic shift value.
  • the size of the first cyclic shift value in the fourth mapping relationship can be determined according to the second cyclic shift value.
  • the first cyclic shift value Less than or equal to the second cyclic shift, the first cyclic shift corresponds to the first system, and the second cyclic shift corresponds to the second system.
  • the first system may refer to a satellite communication system or an NTN system
  • the second system refers to a 5G NR system.
  • the total number of preamble sequences corresponding to the second system is 64.
  • the fourth mapping relationship can be designed by scaling down the unrestricted cyclic shift value specified in the second system, and expanding the total number of preamble sequences according to a corresponding ratio.
  • the first cyclic shift value in the fourth mapping relationship can be designed according to the following formula:
  • N CS1 is the first cyclic shift value
  • N CS2 is the second cyclic shift value
  • the fourth mapping relationship may be as shown in Table 5.
  • the preamble sequence index RAPID indicated by RAR is expanded from the original 6 bits to 7 bits. More generally, if it is agreed that the maximum value of the total number of available preamble sequences N max ⁇ 64 ⁇ 2 m , and m is the smallest positive integer satisfying the inequality, then the preamble sequence index RAPID should be extended from 6 bits to (6+m) bits.
  • M is one of 2, 4, and 8, and correspondingly, the total number of available preamble sequences under the NTN system is 128, 256, and 512.
  • terminal device #1 When terminal device #1 pre-stores the fourth mapping relationship, terminal device #1 confirms from the frequency sweep information or system message (SIB or MIB) that it is accessing satellite communication (or NTN system), and from the RACH configuration message of SIB1 Receive zeroCorrelationZoneConfig signaling (used to indicate the first index), and then determine the first cyclic shift value according to the fourth mapping relationship.
  • SIB or MIB frequency sweep information or system message
  • RACH configuration message of SIB1 Receive zeroCorrelationZoneConfig signaling used to indicate the first index
  • Table 7 shows the specific relationship between N CS2 and N CS1 and the cell radius and positioning accuracy, the number n of preamble sequences that can be generated by a ZC sequence of a single root sequence number, and the number of ZC root sequences used. According to Table 7, when the cyclic shift value is reduced, the number of preamble sequences that can be generated by the corresponding ZC sequence with a single root sequence number increases. Based on this, the total number of available preamble sequences can be increased without increasing the number of ZC root sequences. .
  • the corresponding positioning accuracy of N CS1 in the satellite communication system can cover from 0.07 to 28.82 kilometers.
  • the ephemeris accuracy is generally between meters and 100 meters; the positioning accuracy of a GNSS terminal is meter-level in open areas. In dense urban areas, the positioning accuracy is at the 100-meter level; in general, the positioning accuracy of a multi-satellite positioning terminal is at the kilometer level.
  • the N CS1 designed in Table 7 can better meet the needs of different precision ephemeris and terminals.
  • the value of the cyclic shift in the mapping table may be less than or equal to N CS2 under the same index.
  • the step of determining the first cyclic shift value by terminal device #1 according to the fifth mapping relationship is similar to that in mode 3.
  • the detailed process thereof is omitted, and only the fifth mapping relationship is used.
  • the design process of the corresponding mapping table is introduced.
  • cyclic shift mapping table (fifth mapping relationship) may be as shown in Table 8.
  • Table 9 shows the specific relationship between N CS2 and N CS1 and the cell radius and positioning accuracy, the number n of preamble sequences that can be generated by a ZC sequence with a single root sequence number, and the number of ZC root sequences used under the fifth mapping relationship. According to Table 9, when the cyclic shift value is reduced, the number of preamble sequences that can be generated by the corresponding ZC sequence with a single root sequence number increases. Based on this, the total number of available preamble sequences can be increased without increasing the number of ZC root sequences. .
  • the number of ZC root sequences corresponding to the first cyclic shift value N CS1 and the second cyclic shift value N CS2 under the same index value remains unchanged, and the total number of preamble sequences that can be used by the satellite communication system is agreed,
  • the maximum value of N CS1 in the fifth mapping relationship is calculated according to N CS2 corresponding to each index.
  • the number n of the preamble sequences that can be generated by each sequence can be determined according to the length of N CS2 and the ZC sequence, and the number n of the preamble sequences that can be generated by each ZC sequence and the number n of the preamble sequences to be generated
  • the total number of preamble sequences 64 determines the required number of ZC sequences.
  • each ZC sequence is determined according to the total number of preamble sequences to be generated (that is, the first number N) and the number of ZC root sequences.
  • the number of preamble sequences that can be generated, and the cyclic shift value is determined according to the preamble sequence number and the length of the ZC sequence.
  • N CS1 may be incremented step by step in the form of an arithmetic difference sequence.
  • the total number of available preamble sequences can be increased without increasing the number of ZC root sequences used; at the same time, the N CS1 corresponding to each index of the mapping table designed in this mode is greater than or equal to that in mode 3.
  • the cyclic shift value of appropriately expands the positioning accuracy range of each N CS1 , so the network device may be able to select and indicate a smaller cyclic shift value and reduce the number of ZC root sequences used.
  • the terminal device #1 determines the first cyclic shift value according to the sixth mapping relationship and the index value indicated by the network device.
  • the sixth mapping relationship is a corresponding relationship between an index value and a cyclic shift value, and the sixth mapping relationship may be pre-configured in the communication system.
  • the first cyclic shift value corresponding to each index value is less than or equal to the second cyclic shift value corresponding to the index
  • the corresponding relationship of the second cyclic shift value index can be as shown in Table 4 shown.
  • the method for designing the first cyclic shift value in the sixth mapping relationship may be the methods shown in Mode 3 and Mode 4, and detailed descriptions thereof are omitted here to avoid redundant description. It should also be understood that the above are only illustrative examples, and do not limit the embodiments of the present application.
  • the cyclic shift value is obtained by searching the dedicated mapping table for the communication system by indicating the index number of the cyclic shift value, and the total number of available preamble sequences is obtained according to the indication signaling.
  • This cyclic shift indication method has good compatibility, and the network device can flexibly configure the total number of available preamble sequences according to actual scene requirements.
  • the terminal device #1 sends a first preamble sequence, where the first preamble sequence is one of N preamble sequences, and the first preamble sequence is used for random access.
  • terminal device #1 generates N preamble sequences according to the total number N of preamble sequences and the first cyclic shift value, and randomly selects one for random access.
  • terminal device #1 when terminal device #1 uses the first coefficient a to determine the first cyclic shift value, correspondingly, terminal device #1 can pass the total number of preamble sequences of the following relationship: N:
  • terminal device #1 when terminal device #1 uses the first coefficient a' to determine the first cyclic shift value, correspondingly, terminal device #1 can pass the preamble sequence of the following relational expression: Total N:
  • the random access performed by the first communication apparatus using one preamble sequence among the N preamble sequences includes: the first communication apparatus uses one preamble sequence among the N preamble sequences to perform random access on the first time domain resource .
  • the first time domain resource is allocated by the network device, for example, the network device may indicate the allocation situation of the PRACH time domain resource through a system message (SIB) or RRC signaling.
  • the first time-frequency resource corresponds to a first cyclic shift value.
  • the first time-frequency resource corresponds to the current positioning accuracy of the first communication device.
  • the first time-frequency resource corresponds to a system to be accessed by the first communication device.
  • the first time-frequency resource corresponds to the first quantity.
  • the terminal device sends #1 to initiate random access using the first preamble sequence, and accordingly, the network device detects the first preamble sequence according to the first number N and the first cyclic shift value, and communicates with the terminal device. random access procedure.
  • the random access process may be as shown in method 100 .
  • the method 200 further includes: :
  • the first communication device determines that the first cyclic shift value satisfies the requirement of the current positioning accuracy of the first communication device for the cyclic shift value.
  • the positioning accuracy is jointly determined by the positioning accuracy of the terminal equipment and the satellite.
  • the positioning accuracy includes ephemeris accuracy, terminal positioning accuracy, etc., so the network equipment cannot directly determine the total positioning accuracy.
  • the cyclic shift value is related to the positioning accuracy.
  • the terminal device can determine whether the cyclic shift value satisfies the accuracy conditions of the terminal device according to the cyclic shift value indicated by the network device and its own positioning accuracy. Obtain a cyclic shift value that satisfies the self-accuracy condition for random access.
  • the terminal device #1 uses the cyclic shift value indicated by the network device to perform random access when it is determined that the first cyclic shift indicated by the network device satisfies its own condition. In the case that the first cyclic shift does not meet its own precision, the terminal device #1 can obtain the cyclic shift value and the total number of preamble sequences that meet the precision requirements by scaling the first cyclic shift value and the total number of preamble sequences, Then complete the random access.
  • the terminal device #1 can judge whether the first cyclic shift satisfies its own positioning accuracy according to the form shown in Equation 3. Specifically, the terminal device can know its own positioning accuracy, and the terminal device can estimate the positioning accuracy corresponding to the first cyclic shift value according to Formula 3 and the first cyclic shift value, and according to the positioning accuracy corresponding to the first cyclic shift value The relationship between the accuracy and the positioning accuracy of the terminal device itself is judged.
  • the execution subject of the embodiments of the present application may also be a chip or a chip system with a communication function.
  • FIG. 7 and FIG. 8 show a method for performing random access by a terminal device when the first cyclic shift does not meet the positioning accuracy requirement of the terminal device.
  • terminal devices with different positioning accuracy are prone to collisions and large delays caused by access failures when they initiate random access.
  • FIG. 7 shows a schematic flowchart of a possible communication method 300 according to an embodiment of the present application.
  • the above method can also be used in the process of initial indication of network equipment and auxiliary confirmation of terminal equipment as shown in method 300 in FIG. 7 . .
  • the method 300 may include the steps of determining the total number of preamble sequences and the cyclic shift value given by the method 200, and detailed descriptions thereof are omitted here to avoid redundant description.
  • FIG. 7 shows a schematic interaction diagram of a random access method 300 according to an embodiment of the present application.
  • the method 300 shown in FIG. 7 can be applied to the system shown in FIG. 1 , and the method 300 includes:
  • the network device indicates the first cyclic shift value N CS or/and the total number of first preamble sequences to the terminal device (ie, the first communication apparatus).
  • the network device and the terminal device may agree on the total number of first preamble sequences.
  • the network device configures the total number of preamble sequences for the terminal device by means of signaling indication.
  • the total number of preamble sequences and the cyclic shift value in the method 300 can be given according to the manner shown in FIG.
  • the network device determines the first cyclic shift value according to a first positioning accuracy, where the first positioning accuracy is the positioning accuracy indicated by the network device.
  • the network device can determine the first positioning accuracy according to the first factor and the reachability accuracy of the terminal device equipped with GNSS in the coverage area, wherein the first factor can be the system ephemeris accuracy and service area characteristics, and this application does not Not limited to this.
  • the attainable accuracy is the positioning accuracy of the terminal device (ie, the second positioning accuracy).
  • the network device determines that the system ephemeris accuracy is 100 meters, most GNSS terminal devices in the current coverage area have a positioning error of about 200 meters, and the network device and the terminal device as a whole have a positioning error of 300 meters.
  • the relational formula with the positioning accuracy (ie, formula 3) determines that the first N CS value that needs to be indicated for the terminal is not less than 10, for example, the indicated first N CS value is 10.
  • the network device calculates the cyclic shift value corresponding to the positioning error according to Formula 3 and the 300-meter positioning error.
  • the network device 110 may send the first cyclic displacement value or/and the number of the first preamble sequence to the terminal device in the form of broadcast or unicast.
  • the network device may indicate the first N CS or/and the number of the first preamble sequence to the terminal device through RRC signaling or a system message SIB.
  • the network device indicates the first PO and the second PO to the terminal device.
  • the time domain resource PO of the physical random access channel is allocated by the network device.
  • the time domain resource PO of the PRACH includes a first PO and a second PO, the first PO corresponds to the first terminal device, the second PO corresponds to the second terminal device, and the first terminal device is the positioning accuracy in the satellite service area High terminal equipment, the second terminal equipment is a terminal equipment with low positioning accuracy in the satellite service area.
  • the above examples are only illustrative, and the present application is not limited thereto.
  • the network device may use RRC signaling or system message SIB to indicate the PO grouping situation to the terminal device.
  • This PO grouping situation represents the first PO and the second PO.
  • the terminal device determines the third cyclic shift value and the total number of third preamble sequences according to the second positioning accuracy.
  • the second positioning accuracy is determined by the terminal device according to the difference of its own positioning mode
  • the positioning mode of the terminal device may include a global navigation and positioning system GNSS positioning mode and a multi-satellite assisted positioning mode.
  • the terminal device determines whether the first N CS meets the accuracy requirement of the terminal device according to the second positioning accuracy.
  • the terminal device determines that the first N CS meets the accuracy requirement, it uses the first N CS to perform random access. It should be understood that when the first cyclic shift value meets the precision requirement of the terminal device, the execution steps thereof may be similar to those in the method 200, and detailed descriptions thereof are omitted here in order to avoid redundant descriptions.
  • the terminal device determines that the first N CS meets the accuracy requirement, and uses the first N CS to perform random access
  • the first N CS may be determined as the third N CS
  • the total number of the first preamble sequences may be determined. is the total number of third preamble sequences.
  • the terminal device determining the first N CS as the third N CS may be to re-determine a third N CS , where the value of the third N CS is the same as the value of the first N CS . Determining the total number of first preamble sequences as the total number of third preamble sequences can be understood in the same manner as determining the first N CS as the third N CS , and detailed descriptions thereof are omitted here to avoid redundant description.
  • the terminal device when the terminal device determines that the first cyclic shift value does not meet the precision requirement, it generates a third N CS according to the first N CS , and uses the third N CS as the cyclic shift value of the preamble sequence generated by the terminal device.
  • the generation of the third N CS by the terminal device according to the first N CS may be that the terminal device expands the size of the first N CS to m times the original size. It should be understood that the size of the first N CS is enlarged to m times the original size, and the total number of third preamble sequences corresponding to the terminal device can be reduced to m times the total number of first preamble sequences. By correspondingly reducing the total number of available preamble sequences, the terminal equipment can avoid re-planning the preamble sequences and avoid common preamble interference between beams.
  • m takes a value of 2.
  • the positioning error of terminal device #1 is 200 meters, and the positioning error of terminal device #2 (an example of the second terminal device) is 1 km.
  • the terminal device sends the first message Msg1 to the network device according to the first PO or the second PO.
  • the network device receives the Msg1 sent by the terminal device.
  • the first message is a third preamble sequence
  • the third preamble sequence is determined by the terminal device according to the third N CS and the total number of third preamble sequences.
  • the terminal device can obtain the available PRACH time domain resources and the preamble sequence set according to the third N CS and the total number of the third preamble sequences, and when the terminal device initiates random access, it randomly selects the access for sending the Msg1 from the set. resource.
  • the terminal device may also generate a preamble sequence set according to the third N CS and the third total number of preamble sequences.
  • the terminal device determines that the first cyclic shift value meets the accuracy requirement (that is, the terminal device is the first terminal device), it generates a preamble sequence corresponding to the first N CS according to the third N CS , and the terminal device randomly selects PO# 0 (an example of the first PO) and a preamble sequence #0 (an example of the preamble sequence corresponding to the first N CS ) are accessed.
  • the terminal device determines that the first cyclic shift value does not meet the accuracy requirement (that is, the terminal device is the second terminal device)
  • the terminal device generates a third preamble sequence according to the third N CS , and the terminal device randomly selects PO#1 (the second terminal device).
  • An example of the second PO) and the preamble #1 (an example of the third preamble) are accessed.
  • S350 Detect the third preamble sequence according to the second N CS value corresponding to the first PO or the second PO and the total number of third preamble sequences.
  • the network device can detect the preamble sequence according to the third N CS value corresponding to the first PO or the second PO and the total number of the third preamble sequences, obtain the preamble sequence index RAPID and the beam for downlink transmission, and estimate the first PO or the third preamble sequence.
  • the network device sends a random access response RAR.
  • the RAR includes a timing advance TA value and a preamble sequence index RAPID.
  • the terminal device After receiving the RAR, the terminal device completes the random access process according to the RAR message. It should be understood that, here, the terminal device may execute a method similar to the prior art, and in order to avoid redundant description, the detailed description thereof is omitted.
  • FIG. 7 shows steps or operations of the information processing method, but these steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of the respective operations in FIG. 7 .
  • FIG. 8 shows a schematic interaction diagram of another possible random access method 400 according to an embodiment of the present application.
  • the method 400 shown in FIG. 8 can be applied to the system shown in FIG. 1 , and the method 400 includes:
  • the network device indicates the first cyclic shift value size N CS or/and the total number of first preamble sequences to the terminal device (ie, the first communication apparatus).
  • the terminal device determines the third cyclic shift value and the total number of third preamble sequences according to the second positioning accuracy.
  • steps S410 and S420 performed by the method 400 may be the same as the steps S320 and S330 of the method 300, and detailed descriptions thereof are omitted here in order to avoid redundant description.
  • the terminal device sends the first message Msg1 to the network device.
  • the first message is a third preamble sequence
  • the third preamble sequence is determined by the terminal device according to the third N CS and the total number of third preamble sequences.
  • the terminal device can obtain the available PRACH time domain resources and the set of preamble sequences according to the third N CS and the total number of the third preamble sequences.
  • the terminal device initiates random access, it randomly selects the access used for sending the Msg1 from the set. resource.
  • the terminal device may also generate a preamble sequence set according to the third N CS and the third total number of preamble sequences.
  • the network device detects the preamble sequence according to the first cyclic shift size and the total number of the first preamble sequence.
  • first cyclic shift size and the total number of first preamble sequences are configured by the network device, and the network device does not distinguish the positioning accuracy of the terminal device when detecting the preamble sequence.
  • the network device sends a random access response RAR message to the terminal device, where the RAR information includes a first TA value and a first RAPID.
  • the first TA value is the transmission delay of the terminal device estimated by the network device.
  • the terminal device determines the second TA value according to the first TA value and the first RAPID.
  • the terminal device may determine the second TA according to its own positioning accuracy.
  • the terminal device may obtain all bits of the first RAPID in the RAR message, compare it with the third RAPID, and obtain the first TA value in the RAR message as the second TA according to the comparison result.
  • the third RAPID is the index of the third preamble sequence sent by the terminal device to the network device.
  • the terminal device may also obtain all the bits of the first RAPID in the RAR message, compare the selected preamble sequence index with the corresponding bits of the first RAPID, and calculate the second TA according to the comparison result.
  • the terminal device obtains all the bits of the first RAPID in the RAR message, and uses the upper 6 bits to match the The selected leader sequence index is compared.
  • the second TA is determined by the following relational expression:
  • the second TA the first TA + the first N CS ⁇ the value of the least significant bit of the first RAPID
  • FIG. 9 shows a schematic diagram of a preamble sequence index and a synchronization position of a terminal device in an embodiment of the present application.
  • the RAPID distribution of the preamble sequence of the general terminal equipment ie preamble sequence RAPID distribution #1
  • RAPID distribution #1 the same as the detection window on the network side.
  • These terminals can take all the bits of the preamble sequence index RAPID of the RAR and the selected preamble sequence index. Compare and directly obtain the TA value; the window length of the preamble sequence of the low-end terminal (that is, the preamble sequence RAPID distribution #2) is twice the detection window of the network side, and the preamble sequence index RAPID is correspondingly reduced by 1 bit.
  • the upper 6 bits of the preamble index RAPID are compared with the preamble index, and the actual TA value is calculated by the relational expression.
  • FIG. 10 shows an interactive schematic diagram of still another communication method according to an embodiment of the present application.
  • the method 500 shown in FIG. 10 can solve the loss of access requests caused by beam switching and improve the average access time of terminal equipment in the satellite service area.
  • the method 500 includes:
  • the first communication device determines a first area, where the first area is an area where the first communication device is located, and the first area is one of a plurality of areas;
  • the multiple areas may be areas with different random access time restrictions within the coverage of the satellite beam.
  • the plurality of areas may include an immediate beam switching area and a non-beam switching area.
  • the plurality of areas may include an edge area, a near-beam switching area, and a non-beam switching area.
  • FIG. 11 shows a schematic diagram of a possible beam area division 600 according to an embodiment of the present application.
  • the range covered by the satellite beam at time T0 in FIG. 11 is shown as 610.
  • the switching time (T1-T2) of the beams 610 and 620 is the shortest time of the random access duration of the terminal equipment.
  • Area A is recorded as the edge area, because the access time is at least (T1-T0), and the terminal equipment located in this area cannot successfully access the current beam at one time through competitive random access. These terminal equipment chooses direct or back-off access.
  • area B is recorded as the immediate beam switching area, and the terminals located in this area need to complete the competitive random access within a limited time to access the network, otherwise the access request will be lost, resulting in a larger access delay;
  • Area C is denoted as a non-beam switching area, and terminals located in this area have sufficient access time, and terminals can initiate contention-based random access according to normal procedures.
  • the first communication device determines the first area according to the coverage area of the first beam and the coverage area of the second beam, wherein the first beam is a beam covering the current position of the first communication device, the The second beam is a beam covering the current position of the first communication device in the next period.
  • the terminal device may determine the area where the terminal device is located according to the coverage area of the first beam and the second beam.
  • FIG. 12 is a schematic diagram showing the location of the first communication apparatus in this embodiment of the present application. It should be understood that the method for determining the area where the terminal device is located may be applied to the method 500 shown in FIG. 10 .
  • determining the first region in the method 500 includes:
  • the terminal device selects a beam (referred to as beam 1) to be initially accessed by measuring the beam energy;
  • the terminal device obtains the satellite ephemeris information and the subsequent beam index number (referred to as beam 2) through the broadcast message;
  • the terminal device obtains its own position information by means of GNSS or multi-satellite assisted positioning;
  • the terminal device may obtain the beam index number and its own position information in advance, that is, steps S512 and S513 may be performed before the step of determining the first area in the method 500 .
  • the terminal calculates the distance D1 from itself to the center of beam 1 and the distance D2 from the center of beam 2 according to the positioning and ephemeris information.
  • D1 and D2 are the sum of the distances to the two focal points of the beam
  • the terminal device determines the area where the terminal device is located according to the threshold indicated by the network device;
  • R ⁇ [L1,+ ⁇ ) indicates that the terminal equipment is located in the edge area
  • R ⁇ [L2, L1) indicates that the terminal equipment is located in the adjacent beam switching area; otherwise, it indicates that the terminal equipment is located in the non-beam switching area.
  • the thresholds L1 and L2 may be indicated by the network device through system information (SIB) or RRC signaling. It should also be understood that the network device may determine the thresholds L1 and L2 according to system characteristics such as beam size and beam distribution, as well as actual load conditions.
  • the center coordinate of circular beam 1 is O1(0,0)
  • the center coordinate of circular beam 2 is O2(-16000,0)
  • the beam radius is 10km
  • R D1/D2 calculated at any position within the range of beam 1.
  • FIG. 13 shows a schematic diagram of a possible beam area division according to an embodiment of the present application.
  • the first communication device determines the first access resource corresponding to the first area where the first communication device is currently located;
  • the access resource may be the time-frequency resource PO of the physical random access channel.
  • the access resource may also be the total number of preamble sequences.
  • the access resource may be the total number of time-frequency resources PO and preamble sequences of the physical random access channel.
  • the multiple access resources are the division of the access resources by the network device, and the network device can determine the parameters of the dedicated access resources in the beam switching area according to factors such as the proportion of different areas, system load, and user distribution, and Indicate relevant parameters of beam switching area access resources to the terminal.
  • an optional dividing manner performed by the network device is to divide the partial contention-based random access preamble sequence into a dedicated preamble sequence for the beam switching area.
  • another optional division method performed by the network device is to divide a part of all available PRACH time-frequency resources into PRACH time-frequency resources dedicated to the beam switching area.
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate the correspondence between multiple areas and multiple access resources.
  • the beam switching area may correspond to a dedicated preamble sequence, or the beam switching area may correspond to a dedicated preamble sequence and a non-dedicated preamble sequence.
  • the beam switching area may correspond to dedicated PRACH time-frequency resources, or the beam switching area may correspond to dedicated PRACH time-frequency resources and non-beam switching area PRACH time-frequency resources.
  • the network device adds a new signaling in the RACH configuration message of SIB1, indicating the number of random access preamble sequences in the beam switching area.
  • the HandoverCB-PreamblesPerSSB signaling is added to the RACH configuration information (RACH-ConfigGommon), and the corresponding type of the signaling is INTEGER(0..63).
  • the network device adds a new piece of signaling in the RACH configuration message of SIB1 to indicate the quantity of dedicated PRACH time-frequency resources in the beam switching area.
  • a new piece of signaling in the RACH configuration message of SIB1 to indicate the quantity of dedicated PRACH time-frequency resources in the beam switching area.
  • RACH-ConfigGommon the RACH configuration information
  • the corresponding type of signaling is ENUMERATED ⁇ oDot0, oDot1, oDot2, oDot3, oDot4 ⁇ , where oDot1, oDot2...represents 0.1, 0.2...represented by decimals proportional division.
  • the first communication apparatus performs random access by using the first access resource.
  • the terminal equipment in the beam switching area can perform random access according to the access resources configured by the network equipment.
  • the first access resource used by the terminal device may be a dedicated preamble sequence and a non-dedicated preamble sequence, or a dedicated preamble sequence.
  • the terminal located in the adjacent beam switching area has a higher access priority due to the access time limit.
  • the network side considers the allocation of access resources to the adjacent beam switching area according to the actual situation, so that the average access time of all terminals in the beam Shorter and similar access experience.
  • the method 500 shown in FIG. 10 optimizes the configuration of access resources by providing a method in which access resources are divided, the terminal selects corresponding access resources according to positioning information, and initiates a contention-based random access procedure.
  • the network side considers that the allocation of access resources is inclined to the adjacent beam switching area, so that the average access time of all terminals in the beam is shorter and the access experience is similar.
  • the GNSS terminal can use a simple method to determine the area where it is located, and select the corresponding access resources; the network side can also identify the access request of the handover area through the access resources, and can apply a dedicated back-off Algorithms and back-off indications further optimize the handover zone access method.
  • the execution subject of the embodiments of the present application may also be a chip or a chip system with a communication function.
  • FIG. 14 is a schematic block diagram of a communication apparatus 700 provided by an embodiment of the present application.
  • the apparatus 700 includes a transceiver unit 710 and a processing unit 720 .
  • the transceiver unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • Transceiver unit 710 may also be referred to as a communication interface or a communication unit.
  • the apparatus 700 may further include a storage unit, where the storage unit may be used to store instructions or/or data, and the processing unit 720 may read the instructions or/or data in the storage unit.
  • the storage unit may be used to store instructions or/or data
  • the processing unit 720 may read the instructions or/or data in the storage unit.
  • the apparatus 700 may be configured to perform the actions performed by the first communication apparatus in the above method embodiments.
  • the apparatus 700 may be a terminal device or a component or chip configured in the terminal device, and the transceiver unit 710 is configured to perform
  • the processing unit 720 is configured to perform the operations related to the processing on the side of the first communication device in the above method embodiments.
  • the processing unit 720 is configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, the first number N is one of at least two total numbers of preamble sequences, and N is a positive integer; The processing unit 720 is further configured to generate N preamble sequences according to the first number N and the first cyclic shift value; the transceiver unit 710 is configured to send a first preamble sequence, where the first preamble sequence is one of the N preamble sequences. One, the first preamble sequence is used for random access. The transceiver unit 710 is further configured to receive the first index sent by the network device; the transceiver unit 710 is further configured to receive the first indication information sent by the network device.
  • the apparatus 700 may be configured to perform the actions performed by the second communication apparatus (eg, network device) in the above method embodiments.
  • the apparatus 700 may be a network device, a satellite, or a component that can be configured on a satellite.
  • the unit 710 is configured to perform the operations related to the transmission and reception of the satellite side (ie the network device) in the above method embodiments
  • the processing unit 720 is configured to perform the operations related to the processing of the satellite side (ie the network device) in the above method embodiments.
  • the transceiver unit 710 is configured to send the first index; the transceiver unit 710 is further configured to send the first coefficient to the first communication device.
  • the processing unit 720 is configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, the first number N is one of the total numbers of at least two types of preamble sequences, and N is a positive integer; the processing unit 720 also uses for determining a first cyclic shift value, the first cyclic shift value is used for the first communication device to generate N preamble sequences; the processing unit 720 is further configured to perform detection according to the first number N and the first cyclic shift value The first preamble sequence sent by the second communication apparatus for random access.
  • an embodiment of the present application further provides a communication apparatus 800 .
  • the communication device 800 includes a processor 810 coupled with a memory 820 for storing computer programs or instructions or and/or data, and the processor 810 for executing the computer programs or instructions and/or data stored in the memory 820 , so that the methods in the above method embodiments are executed.
  • the communication apparatus 800 includes one or more processors 810 .
  • the communication apparatus 800 may further include a memory 820 .
  • the communication device 800 may include one or more memories 820 .
  • the memory 820 may be integrated with the processor 810, or provided separately.
  • the wireless communication apparatus 800 may further include a transceiver 830, and the transceiver 830 is used for signal reception and/or transmission.
  • the processor 810 is used to control the transceiver 830 to receive and/or transmit signals.
  • the communication apparatus 800 is used to implement the operations performed by the satellite or the ground station in the satellite system in the above method embodiments.
  • the processor 810 is configured to implement the processing-related operations performed by the satellite in the above method embodiments
  • the transceiver 830 is configured to implement the satellite-based transceiving-related operations performed in the above method embodiments.
  • the transceiver 830 may be used to send the first index; the transceiver 830 may also be used to send the first coefficient to the first communication device.
  • the processor 810 is configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, the first number N is one of at least two total numbers of preamble sequences, and N is a positive integer; the processor 810 It is also used to determine a first cyclic shift value, and the first cyclic shift value is used for the first communication device to generate N preamble sequences; the processor 810 is also used to determine the first cyclic shift value according to the first number N and the first cyclic shift value The first preamble sequence sent by the first communication apparatus performing random access is detected.
  • the communication apparatus 800 is used to implement the operations performed by the terminal device (ie, the first communication apparatus) in the above method embodiments.
  • the processor 810 is configured to implement the processing-related operations performed by the terminal device in the above method embodiments
  • the transceiver 830 is configured to implement the transceiving-related operations performed by the terminal device in the above method embodiments.
  • the processor 810 is configured to determine a first number N, where the first number is the total number of preamble sequences to be generated, the first number N is one of at least two total numbers of preamble sequences, and N is a positive integer; The processor 810 is further configured to generate N preamble sequences according to the first number N and the first cyclic shift value; the transceiver 830 is configured to send a first preamble sequence, where the first preamble sequence is one of the N preamble sequences. One, the first preamble sequence is used for random access. The transceiver 830 is further configured to receive the first index sent by the network device; the transceiver 830 is further configured to receive the first indication information sent by the network device.
  • FIG. 16 shows a simplified schematic structural diagram of the first communication apparatus.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit 910 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 910 is configured to perform a receiving operation of a terminal device.
  • the processing unit 920 is configured to perform processing actions on the terminal device side.
  • FIG. 16 is only an example and not a limitation, and the above-mentioned terminal device (an example of a first communication apparatus) including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 16 .
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter, and the input circuit and output
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application further provides a communication device 1000, where the communication device 1000 may be a satellite or a chip.
  • the communication apparatus 1000 can be used to perform the operations performed by the satellite in the above method embodiments.
  • Fig. 17 shows a simplified schematic diagram of the structure of a base station.
  • the base station includes 1010 parts and 1020 parts.
  • the 1010 part is mainly used for transmitting and receiving the radio frequency signal and the conversion of the radio frequency signal and the baseband signal; the 1020 part is mainly used for the baseband processing and controlling the base station.
  • the 1010 part may generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 1020 part is usually the control center of the base station, which may be generally referred to as a processing unit, and is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1010 which may also be called a transceiver or a transceiver, etc., includes an antenna and a radio frequency circuit, where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used for implementing the receiving function in part 1010 may be regarded as a receiving unit
  • the device used for implementing the sending function may be regarded as a sending unit, that is, part 1010 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • Section 1020 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the base station. If there are multiple boards, each board can be interconnected to enhance the processing capability.
  • one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the transceiving unit of part 1010 is used to perform the steps related to transceiving performed by the satellite in the embodiment; the part 1020 is used to perform the steps related to the processing performed by the satellite.
  • FIG. 17 is only an example and not a limitation, and the above-mentioned network device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 17 .
  • the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface; the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter, and the input circuit and output
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the satellite in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the satellite in the above method embodiments.
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the satellite and the terminal device in the above embodiment.
  • the communication system includes: the satellite and the terminal device in the above embodiment.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system of the operating system layer may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program in which the codes of the methods provided by the embodiments of the present application are recorded can be executed to execute the methods according to the embodiments of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a satellite, or a functional module in the terminal device or satellite that can call a program and execute the program.
  • inventions of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture as used herein may encompass a computer program accessible from any computer-readable device, carrier or media.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs), etc. ), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, stick or key drives, etc.).
  • Various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法和装置,该方法包括:第一通信装置确定第一数量N,所述第一数量是待生成的前导序列的总数,该第一数量N是至少两种前导序列总数中的一种,N为正整数,第一通信装置根据该第一数量N和第一循环移位值,生成N个前导序列,第一通信装置使用所述N个前导序列中的一个前导序列进行随机接入,使得不同通信系统中的第一通信装置可以根据自身系统特性确定随机接入过程需要生成的前导序列的总数,从而能够提高通信系统随机接入的能力。在卫星通信系统下,根据确定的第一数量发起随机接入可以降低随机接入失败的概率、减小通信接入时延。

Description

一种无线通信的方法及装置
本申请要求于2020年08月06日提交中国国家知识产权局、申请号为202010784243.4、发明名称为“一种无线通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及随机接入过程的通信方法和装置。
背景技术
第五代(5th Generation,5G)系统及其未来的演进网络需要满足不同的业务需求,还需要提供更广的业务范围。而海洋,森林等一些地面通信网络不能覆盖的地区可以引入非地面通信网络(non-terrestrial network,NTN)系统提供通信服务,例如可以引入卫星通信系统。相比于地面通信网络,卫星通信具有巨大优势,其通信距离远、覆盖面积大、通信频带宽,可以为用户提供任何时间、任何地点的通信服务。因此,卫星通信是5G通信的必然趋势,特别是在国际国内通信、应急救灾等方面具有独特优势。
目前,卫星通信与地面通信在通信协议上有较大的区别,为满足非地面通信网络系统的通信需求,在5G通信中,需要重新设计非地面通信过程,使得它能在和现有的地面通信融合,同时不对终端设备引入较多成本和复杂度,终端设备在通信时,只要根据相应的需求选择合适的基站进行通信。
终端设备与网络设备进行正常的通信过程,例如进行数据交互操作,需要终端设备和网络设备通过随机接入结束建立无线链路。随机接入过程使得用户能够通过竞争方式接入网络,但是由于接入资源有限,该过程会不可避免地引起同时接入的用户之间的碰撞,从而降低系统吞吐量、增加用户接入系统时延,影响系统性能和接入体验。
在非地面通信系统中,系统的单波束覆盖范围内用户数量与地面通信系统服务的用户数量差别较大,若使用地面通信协议的规定,接入资源不能满足非地面通信系统的要求。例如,在卫星通信系统中,存在用户发起随机接入碰撞概率增加以及接入时延增大等问题。
针对非地面通信网络系统存在的接入资源不能满足非地面通信系统的要求、接入碰撞概率大,接入时延长问题,提出了一种提高通信系统的随机接入能力的方法,降低卫星通信系统的接入碰撞概率、提高接入成功概率。
发明内容
本申请实施例提供一种无线通信的方法,可以满足不同通信系统随机接入的需求。
第一方面,提供了一种无线通信的方法,包括:第一通信装置确定第一数量N,所述第一数量是待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;所述第一通信装置根据所述第一数量N和第一循环移位值,生成N个前导 序列;所述第一通信装置发送第一前导序列,所述第一前导序列为所述N个前导序列中的一个,所述第一前导序列用于进行随机接入。
根据本申请提供的方案,第一通信装置根据所确定的第一数量N和第一循环移位值生成N个前导序列,该第一数量N为至少两种前导序列总数中的一种,并选择所述N个前导序列中的一个前导序列进行随机接入。本申请的方案提供多种可用的第一数量N供第一通信装置选择,从而使得通信系统可以根据自身系统特性确定随机接入过程需要生成的前导序列的总数,从而能够提高通信系统随机接入的能力。特别是,在卫星通信系统下,卫星服务区域内的终端设备数量多,如果终端设备以固定的前导序列总数进行随机接入,将大大增加随机接入失败的概率和通信接入时延,根据本申请提供的方法,能够更加有效的应对上述场景,降低随机接入碰撞概率和降低接入时延。
在一些可能的实现方式中,所述方法还包括:该第一通信装置可以接收网络设备发送的第一索引;该第一通信装置根据第一索引和第一映射关系确定第二循环移位值,该第一映射关系用于指示第一索引与第二循环移位值之间的一一对应关系;该第一装置根据第一系数和所述第二循环移位值,确定所述第一循环移位值。
可选地,该多个循环移位值为第二定位精度下或地面网络使用的循环移位值。
可选地,所述第一系数用于指示第一定位精度下使用的循环移位值与第二定位精度下使用的循环移位值的粒度的比例,所述第一定位精度是所述第一通信装置当前的定位精度,所述第二循环移位值是在所述第二定位精度使用的循环移位值。
可选地,所述第一系数用于指示第一定位精度下使用的循环移位值与地面网络下使用的循环移位值的粒度的比例,所述第一定位精度是所述第一通信装置当前的定位精度,所述第二循环移位值是在所述地面网络下使用的循环移位值。
可选地,该第一通信装置可以根据该第一系数和与第二数量确定所述第一数量N,其中,所述第二数量为第二精度下使用的前导序列总数。
第一通信装置通过第一系数和第二循环移位值的方式确定第一循环移位值,并根据该第一循环移位值和该第一数量进行随机接入,从而,能够实现使用一条信令获取两个参数(即循环移位值和前导序列总数),减小了信令开销,通过该配置方法可以使网络设备(如卫星)能够灵活的为终端设备配置参数,减小了终端在随机接入过程中发生碰撞的概率,降低了接入时延,提升系统随机接入能力。
在一些可能的实现方式中,该第一循环移位值可以为该第一通信装置根据循环移位的映射表确定的,该映射表为索引值与循环移位值的对应关系,其中,该映射表中每个索引值对应的循环移位值小于或等于第一映射关系中相同索引对应的第二循环移位值,该第二循环移位值为第一映射关系中的循环移位值。
在一些可能的实现方式中,所述第一系数由通信协议规定,或者所述第一系数由所述网络设备指示。
可选地,网络设备可以通过系统消息或者RRC信令发送该第一系数。
可选地,所述第一系数由所述第二通信设备指示可以为,该第一通信设备接收所述第二通信设备发送的第二指示信息,该第二指示信息用于指示该第一系数。具体地,第二指示信息包含第二索引,该第一通信装置根据该第二索引和系数映射表确定该第一系数,该系数映射表为多个索引值与多个系数之间的一一对应关系。
在一些可能的实现方式中,所述方法还包括:所述第一通信装置接收网络设备发送的第一索引;所述第一通信装置根据所述第一索引、第一参数和第二映射关系确定第一循环移位值,所述第二映射关系用于指示第一索引与第一循环移位值组的对应关系,所述第一循环移位值组包括至少两个循环移位值,所述第一参数用于从所述至少两个循环移位值中确定所述第一循环移位值,所述第一参数用于指示所述第一通信装置当前使用的定位精度或当前待接入的系统。
可选地,该第二映射关系可以记录多个精度对应的循环移位值。该循环移位值组对应该多个定位精度下的循环移位值,即该循环移位值组为不同精度下的循环移位值的集合。
可选地,所述第二映射关系还可以记录多种接入系统中分别使用的循环移位值,例如,该多种接入系统可以包括卫星通信系统和地面网络通信系统。
可选地,该循环移位值组可以包括两个循环移位值,该两个循环移位值对应两种不同的定位精度,当该第一通信装置处于卫星通信系统中时,该第一参数为卫星通信系统的定位精度,每个映射表记录有两种定位精度下分别使用的循环移位值。具体的,该两种定位精度可以为地面网络通信系统对应的定位精度和卫星通信系统对应的定位精度。
在一些可能的实现方式中,所述第一通信装置确定第一数量N包括:所述第一通信装置接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数量N。
可选地,所述第一指示信息包括广播信息或者单播信息。
在一些可能的实现方式中,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
在一些可能的实现方式中,所述N为64,128,256或512中的一种。
在一些可能的实现方式中,在所述第一通信装置根据所述第一数量N和第一循环移位值,生成N个前导序列之前,所述方法还包括:所述第一通信装置确定第一循环移位值满足所述第一通信装置当前的定位精度对循环移位值的要求。
应理解,第一通信装置可以根据自身定位精度确定所述网络设备指定的第一循环移位值是否满足要求,在该第一循环移位值满足第一通信装置的定位精度的情况下,该第一通信装置使用该第一循环移位值生成前导序列。在该第一循环移位值不满足第一通信装置的定位精度的情况下,该第一通信装置根据自身定位精度确定第三循环移位值以及第三前导序列总数,并根据该第三循环移位值和该第三前导序列总数生成前导序列,其中,该第三循环移位值大于该第一循环移位值。
在一些可能的实现方式中,所述第一前导序列用于所述第一通信装置在第一时域资源上进行随机接入,其中所述第一时频资源与所述第一循环移位值对应;或者所述第一时频资源与所述第一通信装置当前的定位精度对应;或者所述第一时频资源与所述第一通信装置待接入的系统对应;或者所述第一时频资源与所述第一数量对应。
可选地,该第一通信装置可以根据网络设备的指示信息确定该第一时域资源。
在一些可能的实现方式中,所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或所述第一循环移位值是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
可选地,第一通信装置装备有全球导航定位系统和/或多星辅助定位系统。
第二方面,提供了一种无线通信的方法,包括:第二通信装置确定第一数量N,所述第一数量为待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;所述第二通信装置确定第一循环移位值,所述第一循环移位值用于第一通信装置生成N个前导序列;所述第二通信装置根据所述第一数量N、所述第一循环移位值检测进行随机接入的所述第一通信装置发送的第一前导序列;所述第一前导序列为所述N个前导序列中的一个。
在一些可能的实现方式中,所述方法还包括:所述第二通信装置发送第一索引,所述第一索引用于指示第二循环移位值,所述第一索引和所述第二循环移位值满足第一映射关系。
可选地,该第二循环移位值为第二定位精度下使用的循环移位值或地面网络下使用的循环移位值。
在一些可能的实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第一系数,所述第一系数用于所述第一通信装置根据所述第二循环移位值确定所述第一循环移位值。
可选地,所述第一系数用于指示第一定位精度下使用的循环移位值与第二定位精度下使用的循环移位值的粒度的比例,所述第一定位精度是所述第一通信装置当前的定位精度,所述第二循环移位值是在所述第二定位精度使用的循环移位值。
可选地,所述第一系数用于指示第一定位精度下使用的循环移位值与地面网络下使用的循环移位值的粒度的比例,所述第一定位精度是所述第一通信装置当前的定位精度,所述第二循环移位值是在所述地面网络下使用的循环移位值。
可选地,该第一系数可以由通信协议规定。
可选地,第二通信装置可以通过系统消息或者RRC信令发送该第一系数。
在一些可能的实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第一索引,所述第一索引用于指示第一循环移位值组,所述第一索引和所述第一循环移位值组满足第二映射关系,所述第一循环移位值组包括至少两个循环移位值,所述至少两个循环移位值包括第一循环移位值,所述第一循环移位值与第一参数对应,所述第一参数用于指示定位精度或待接入的系统。
在一些可能的实现方式中,所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述第一数量N。
可选地,所述第一指示信息包括广播信息或者单播信息。
在一些可能的实现方式中,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
在一些可能的实现方式中,所述N为64,128,256或512中的一种。
在一些可能的实现方式中,所述方法还包括:所述第二通信装置分配第一时域资源,所述第一时域资源用于所述第一通信装置进行随机接入,其中,所述第一时频资源与所述第一循环移位值对应;或者所述第一时频资源与所述第一通信装置当前的定位精度对应; 或者所述第一时频资源与所述第一通信装置待接入的系统对应;或者所述第一时频资源与所述第一数量对应。
可选地,该第二通信装置可以向该第一通信装置指示该第一时域资源。
可选地,该第二通信装置可以根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度的分布,配置该第一时域资源。
在一些可能的实现方式中,所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或所述第一循环移位值是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
在一些可能的实现方式中,第二通信装置可以配置随机接入响应索引RAPID所占比特位与第一前导序列总数相匹配。
第三方面,提供了一种通信装置,包括:处理单元,用于确定第一数量N,所述第一数量是待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;所述处理单元还用于根据所述第一数量N和第一循环移位值,生成N个前导序列;收发单元,用于发送第一前导序列,所述第一前导序列为所述N个前导序列中的一个,所述第一前导序列用于进行随机接入。
在一些可能的实现方式中,所述收发单元还用于接收网络设备发送的第一索引;所述处理单元还用于根据第一索引和第一映射关系确定第二循环移位值,所述第一映射关系用于指示第一索引与第二循环移位值之间的一一对应关系;以及所述处理单元还用于根据第一系数和所述第二循环移位值,确定所述第一循环移位值。
应理解,该第二循环移位值为第二定位精度下使用的循环移位值或地面网络下使用的循环移位值。
应理解,所述第一系数用于指示第一定位精度下使用的循环移位值与第二定位精度或者地面网络下使用的循环移位值的粒度的比例,所述第一定位精度是所述第一通信装置当前的定位精度,所述第二循环移位值是在所述第二定位精度或地面网络下使用的循环移位值。
在一些可能的实现方式中,所述第一系数由通信协议规定,或者所述第一系数由所述处理单元指示。
在一些可能的实现方式中,所述收发单元还用于接收网络设备发送的第一索引;所述处理单元还用于根据所述第一索引、第一参数和第二映射关系确定第一循环移位值,所述第二映射关系用于指示第一索引与第一循环移位值组的对应关系,所述第一循环移位值组包括至少两个循环移位值,所述第一参数用于从所述至少两个循环移位值中确定所述第一循环移位值,所述第一参数用于指示所述处理单元当前使用的定位精度或当前待接入的系统。
在一些可能的实现方式中,所述处理单元确定第一数量N包括:所述收发单元接收网络设备发送的第一指示信息;所述处理单元根据所述第一指示信息确定所述第一数量N。
在一些可能的实现方式中,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
在一些可能的实现方式中,所述N为64,128,256或512中的一种。
在一些可能的实现方式中,在所述处理单元根据所述第一数量N和第一循环移位值,生成N个前导序列之前,所述方法还包括:所述处理单元确定第一循环移位值满足所述处理单元当前的定位精度对循环移位值的要求。
在一些可能的实现方式中,所述第一前导序列用于所述通信装置在第一时域资源进行随机接入,其中所述第一时频资源与所述第一循环移位值对应;或者所述第一时频资源与所述第一通信装置当前的定位精度对应;或者所述第一时频资源与所述第一通信装置待接入的系统对应;或者所述第一时频资源与所述第一数量对应。
在一些可能的实现方式中,所述第一数量是根据所述处理单元待接入的网络设备的历史接入终端设备的定位精度确定的;和/或所述第一循环移位值是根据所述第处理单元待接入的网络设备的历史接入终端设备的定位精度确定的。
第四方面,提供了一种通信装置,包括:处理单元,用于确定第一数量N,所述第一数量为待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;所述处理单元还用于确定第一循环移位值,所述第一循环移位值用于第一通信装置生成N个前导序列;收发单元,用于接收所述第一通信装置发送的第一前导序列,该第一前导序列为所述N个前导序列中的一个;所述第一数量N和所述第一循环移位值用于所述通信装置检测所述第一前导序列。
在一些可能的实现方式中,所述收发单元还用于发送第一索引,所述第一索引用于指示第二循环移位值,所述第一索引和所述第二循环移位值满足第一映射关系。
在一些可能的实现方式中,所述收发单元还用于向所述第一通信装置指示第一系数,所述第一系数用于根据所述第二循环移位值确定所述第一循环移位值。
在一些可能的实现方式中在一些可能的实现方式中,所述收发单元还用于向所述第一通信装置发送第一索引,所述第一索引用于指示第一循环移位值组,所述第一索引和所述第一循环移位值组满足第二映射关系,所述第一循环移位值组包括至少两个循环移位值,所述至少两个循环移位值包括第一循环移位值,所述第一循环移位值与第一参数对应,所述第一参数用于指示定位精度或待接入的系统。
在一些可能的实现方式中,所述收发单元还用于向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述第一数量N。
在一些可能的实现方式中,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
在一些可能的实现方式中,所述N为64,128,256或512中的一种。
在一些可能的实现方式中,述处理单元还用于确定第一时域资源,所述第一时域资源用于所述第一通信装置进行随机接入,其中,所述第一时频资源与所述第一循环移位值对应;或者所述第一时频资源与所述第一通信装置当前的定位精度对应;或者所述第一时频资源与所述第一通信装置待接入的系统对应;或者所述第一时频资源与所述第一数量对应。
在一些可能的实现方式中,所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或所述第一循环移位值是根据所述第一通信 装置待接入的网络设备的历史接入终端设备的定位精度确定的。
第五方面,提供一种无线通信的方法,包括:第一通信装置确定第一区域,所述第一区域为所述第一通信装置所处于的区域,所述第一区域为多个区域中的一个;所述第一通信装置确定所述第一通信装置当前处于的第一区域所对应的第一接入资源;所述第一通信装置使用所述第一接入资源,发起随机接入。
根据本申请提供的方案,第一通信装置根据自身的定位信息选择相应的接入资源,并根据该接入资源发起基于竞争的随机接入过程,从而可以有效避免随机接入过程中的碰撞的发生,提升了网络设备服务范围内随机接入的平均时间,提升用户体验。
可选地,该多个区域中至少包括一个临波束切换区,位于该临波束切换区的第一通信装置可以在第一时间段内完成随机接入,该第一时间段为第一通信装置发起一次随机接入即完成接入的时间。
在一些可能的实现方式中,所述方法还包括:所述第一通信装置接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个区域与多个接入资源之间的对应关系。
可选地,该多个接入资源包括专用接入资源,该专用资源与临波束切换区相对应。
可选地,临波束切换区可以对应该多个接入资源。
在一些可能的实现方式中,所述第一通信装置确定第一区域,包括:所述第一通信装置根据第一波束的覆盖区域和第二波束的覆盖区域,确定所述第一区域,其中,所述第一波束是覆盖所述第一通信装置当前位置的波束,所述第二波束是下一个时段覆盖所述第一通信装置当前位置的波束。
可选地,第一通信装置装备有全球导航定位系统和/或多星辅助定位系统,该全球导航定位系统和/或多星辅助定位系统用于确定第一通信装置的第一位置。
可选地,第一通信装置可以根据第一距离和第二距离确定该第一区域,其中,该第一距离为该第一位置与该第一波束位置的距离,该第二距离为该第一位置与第二波束位置的距离。应理解,波束位置可以为波束中心位置或波束焦点位置,例如,在圆波束的情况下,该波束位置为圆波束的圆心位置;在椭圆波束的情况下,该波束位置为椭圆波束的焦点位置。
可选地,第一通信装置接收该网络设备发送的阈值,根据该阈值与该第一距离和该第二距离的关系确定该第一区域。
在一些可能的实现方式中,所述接入资源为物理随机接入信道的时频资源PO和/或前导序列总数。
第六方面,提供一种无线通信的方法,包括:网络设备使用第一接入资源与第一通信装置进行随机接入。
应理解,该第一通信装置可以使用该第一接入资源发起随机接入,相应的,该网络设备根据该第一接入资源与第一通信装置进行通信。
根据本申请提供的方案,第二通信设备可以预先配置
在一些可能的实现方式中,所述方法还包括:所述网络设备发送第一指示信息,所述第一指示信息用于指示多个区域与多个接入资源之间的对应关系。
应理解,该网络设备可以重新配置接入资源。
可选地,网络设备将多种接入资源中的每种接入资源配置为多个接入资源。例如,该 多种接入资源中的一种接入资源为前导序列总数,网络设备可以配置该前导序列总数中特定数量的前导序列作为临波束切换区的专用接入资源,该特定数量可以为第二通信设备根据波束覆盖范围内终端设备的历史接入记录估计的。
可选地,网络设备可以根据该接入资源识别临波束切换区的接入请求,使用专用的退避算法和退避指标优化临波束切换区的接入方式。
根据本申请提供的方案,网络设备通过优化接入资源,使接入资源向临波束切换区倾斜,从而可以降低波束覆盖范围内所有待接入装置的平均接入时间,保证待接入装置(第一通信装置)有接近的接入时延。
在一些可能的实现方式中,所述网络设备发送第一波束和第二波束的波束信息,所述波束信息用于所述第一通信装置确定第一区域,所述第一区域为所述第一通信装置所处于的区域,所述第一波束是覆盖所述第一通信装置当前位置的波束,所述第二波束是下一个时段覆盖所述第一通信装置当前位置的波束。
在一些可能的实现方式中,所述接入资源为物理随机接入信道的时频资源PO和/或前导序列总数。
第七方面,提供一种通信装置,包括:处理单元,用于确定第一区域,所述第一区域为所述第一通信装置所处于的区域,所述第一区域为多个区域中的一个;所述处理单元还用于确定所述第一通信装置当前处于的第一区域所对应的第一接入资源;收发单元,用于使用所述第一接入资源,进行随机接入。
在一些可能的实现方式中,所述收发单元接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个区域与多个接入资源之间的对应关系。
在一些可能的实现方式中,所述处理单元用于根据第一波束的覆盖区域和第二波束的覆盖区域确定所述第一区域,其中,所述第一波束是覆盖所述第一通信装置当前位置的波束,所述第二波束是下一个时段覆盖所述第一通信装置当前位置的波束。
在一些可能的实现方式中,所述接入资源为物理随机接入信道的时频资源PO和/或前导序列总数。
第八方面,提供一种通信装置,包括:处理单元,用于确定第一接入资源,所述第一接入资源用于第一通信装置与所述网络设备进行随机接入。
在一些可能的实现方式中,所述通信装置还包括:收发单元,用于发送第一指示信息,所述第一指示信息用于指示多个区域与多个接入资源之间的对应关系。
在一些可能的实现方式中,所述收发单元还用于发送第一波束和第二波束的波束信息,所述波束信息用于所述第一通信装置确定第一区域,所述第一区域为所述第一通信装置所处于的区域,所述第一波束是覆盖所述第一通信装置当前位置的波束,所述第二波束是下一个时段覆盖所述第一通信装置当前位置的波束。
在一些可能的实现方式中,所述接入资源为物理随机接入信道的时频资源PO和/或前导序列总数。
第九方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元。
第十一方面,提供了一种通信装置,包括用于执行第五方面或第五方面中任一种可能实现方式中的方法的各个模块或单元。
第十二方面,提供了一种通信装置,包括用于执行第六方面或第六方面中任一种可能实现方式中的方法的各个模块或单元。
第十三方面,提供了一种通信装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其可能实现方式或第五方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在一种实现方式中,该通信设备为终端设备。当该通信设备为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信设备为芯片或芯片系统。当该通信设备为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十四方面,提供了一种通信设备,包括处理器,所述处理器与存储器耦合,可用于执行第一方面及其可能实现方式或第六方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信设备为卫星。当该通信设备为卫星时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信设备为芯片或芯片系统。当该通信设备为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十五方面,提供了一种通信装置,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述第一方面、第二方面、第五方面或第六方面,以及上述各方面的任一种可能实现方式中的方法被实现。
在具体实现过程中,上述通信装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十六方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行所述第一方面、第二方面、第五方面或第六方面,以及上述各方面的任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设 置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十六方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行所述第一方面、第二方面、第五方面或第六方面,以及上述各方面的任一种可能实现方式中的方法。
第十八方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述所述第一方面、第二方面、第五方面或第六方面,以及上述各方面的任一种可能实现方式中的方法。
第十九方面,提供了一种通信系统,包括前述的卫星和终端设备。
附图说明
图1是适用本申请的无线通信方法的通信系统的一例的示意图。
图2是适用本申请的无线通信方法的通信系统的另一例的示意图。
图3是本申请的无线通信方法的一例的示意性流程图。
图4是本申请的无线通信方法的另一例的示意性流程图。
图5是本申请的无线通信方法中确定循环移位值的一例的示意性流程图。
图6是本申请的无线通信方法中确定循环移位值的另一例的示意性流程图。
图7是本申请的无线通信方法的再一例的示意性流程图。
图8是本申请的无线通信方法的再一例的示意性流程图。
图9是本申请的无线通信方法中前导序列索引与同步位置的示意图。
图10是本申请的无线通信方法的再一例的示意性流程图。
图11是本申请的一种可能的波束区域划分的示意图。
图12是本申请的通信系统中第一通信装置的位置的示意图。
图13是本申请的波束区域划分的一例的示意图。
图14是本申请实施例的通信装置的示意性框图。
图15是本申请实施例的通信装置的另一示意性框图。
图16是本申请实施例的通信装置的再一示意性框图。
图17是本申请实施例的通信装置的再一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1示出了适用于本申请实施例的通信系统的一种架构的示意图。如图1所示,该通信系统可以包括至少一个第二通信装置,例如图1所示的网络设备;该通信系统还可以包括至少一个第一通信装置,例如图1中示出了两个第一通信装置终端设备#1和终端设备#2。第二通信装置(卫星)与第一通信装置可通过无线链路通信。
本申请实施例的技术方案可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、设备对设备(device-to-device,D2D)通信系统、机器通信系统、车联网通信系统、非地面通信网络(non-terrestrial network,NTN)卫星通信系统或者未来的通信系统等,本申请实施例并不限定。
应理解,该无线通信系统中的第二通信装置可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved nodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),分布式单元(distributed unit,DU),或者,第二通信装置还可以指具备通信功能的芯片等,或者,还可以为卫星以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等等。为便于描述,以卫星通信系统以及以网络设备(即第二通信装置)为例,详细介绍本申请的技术方案,其中,卫星通信系统中网络设备可以包括卫星。
还应理解,第一通信装置是与网络设备进行通信的设备,该第一通信装置可以为具有通信功能的终端设备、芯片等。该终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、卫星电话、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、平板电脑(pad)、带无线收发功能的电脑、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的 无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等等。本申请的实施例对应用场景不做限定。终端设备还可以指具备通信功能的芯片等,本申请实施例对此并不限定。为便于描述,以终端设备(即第一通信装置)为例详细介绍本申请的技术方案。
图2示出了透明转发模式的示意图,如图2所示,卫星通过转发的方式将上行信号转发给地面站,用户与地面站之间的通信距离包括的服务链路和馈电链路。卫星将用户信号透传到地面站实现广域覆盖的通信场景,一种可选的技术方案是采用与3GPP LTE/NR兼容的协议栈。终端设备可以为普通的移动终端或专用终端等,传输过程也遵循LTE/NR协议。
如图1和图2所示的通信系统,其通信距离远、覆盖面积大、通信频带宽,可以在时间和空间为终端设备提供更为灵活的通信服务。在图1和图2所示的通信系统中,终端设备与网络设备建立无线链路并进行数据交互需要通过随机接入完成上行接入。随机接入分为基于竞争的随机接入和基于非竞争的随机接入。其中,基于竞争的随机接入存在用户碰撞的风险,主要应用于初始接入、无线链接失败状态的恢复、上行失步状态时需要发送上行数据等业务场景。为了便于描述,在不引起歧义的情况下,下面描述中将基于竞争的随机接入称作随机接入。
如图3示出了本申请实施例中随机接入过程100的示意性流程图。如图3所示,基于竞争的随机接入过程建立网络侧和终端之间的无线链路的方法100,包括:
S110,第一通信装置向网络设备发送随机前导序列第一消息(Message,Msg)Msg1。
终端设备(第一通信装置的一例)选择物理随机接入信道(physical random access channel,PRACH)的时频资源(PRACH occasion,PO)传输前导序列(即Msg1),网络设备通过检测终端设备发送的前导序列,获取该终端设备发送的前导序列对应的前导序列标识(random access preamble identity,RAPID)和下行发送的波束,并估计该终端设备的传输时延。其中,RAPID为前导序列索引的一种。
应理解,5G NR系统默认支持波束赋形,该模式下的随机接入过程是基于波束的接入过程。下行同步时,终端设备需要接收、检测信号最强的同步信号块(system information block,SSB)索引并确定下行波束,并根据系统消息(synchronization signal block,SIB)指示的SSB索引与PRACH时频资源的对应关系,获取可用的PRACH时频资源和前导序列集合。
还应理解,终端设备发起随机接入时,从前导序列集合中随机选择用于发送Msg1的接入资源。网络设备接收到终端发送的Msg1后,根据PRACH时频资源和SSB索引的对应关系,确定后续下行传输使用的波束。
S120,第二通信装置发送第二消息Msg2。
网络设备(即第二通信装置)在物理下行共享信道(physical downlink shared channel,PDSCH)下发随机接入响应(random access response,RAR)消息(即Msg2),该RAR包括终端设备的定时提前(timing advance,TA)值、随机接入前导索引(random access preamble identity,RAPID)、临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)和初始上行资源准许,其中,该TA值用于该终端设备调 整上行数据的发送定时,该TA值与S110中网络设备估计的该终端设备的传输时延相对应,该初始上行资源准许用于调度该终端设备的上行资源。
应理解,网络设备在S110确定的下行发送波束上传输该Msg2。
S130,第一通信装置发送第三消息Msg3。
终端设备接收网络设备发送RAR消息,并根据RAR携带的初始上行资源的调度发送Msg3,该Msg3携带该终端设备的标识信息。
S140,第二通信装置发送第四消息Msg4。
网络设备通过PDSCH将向终端设备发送竞争解决消息(即Msg4)。网络设备使用S110中确定的下行发送波束传输该Msg4。终端设备接收到该竞争解决消息,开启竞争解决过程。可以解决多个终端终端设备试图使用同一个随机接入资源和相同前导序列接入网络设备时导致的竞争和冲突。
在终端设备与网络设备建立无线链路的过程,一种可实现的技术方案是采用基于竞争的随机接入方式,该方式下,一共有64个不同的前导序列以支持多个终端设备向网络设备发起随机接入请求。该方式中,随机接入的前导序列总数固定,不能更好的适用不同的通信系统中,基于此,本申请给出供不同通信系统选择的不同前导序列总数,以满足不同通信系统中多个终端设备的随机接入的需求。
可以理解,在上述64个前导序列供多个终端设备发起随机接入的方案中,终端设备随机接入发生碰撞的概率随单小区覆盖范围内终端设备数量的增多变大,导致终端设备随机接入的时延增大。
例如图1所示适用于本申请实施例的通信系统的一种架构的示意图,如非地面通信网络NTN系统,卫星的一个波束可以对应一个小区,或者多个相邻的波束对应一个小区,小区覆盖的区域范围大,对应的,波束覆盖范围内可能存在更多的终端设备。终端设备的增多使得系统易产生资源不足的情况,导致系统随机接入能力下降。为便于描述,以卫星通信系统为例详细介绍本申请的技术方案。
下面给出一个具体例子量化说明随机接入资源配置与卫星通信系统的用户数量的关系。
随机接入资源最大可支持的终端密度可用以下关系式来表示:
最大终端密度=最大支持的RACH尝试数/(覆盖范围×每个终端的RACH尝试数)
其中,假设某覆盖区域(卫星小区或者卫星波束)内的随机接入通道(random access channel,RACH)资源独立配置,使用839和139两种长度的前导序列,综合考虑在低频段(frequency range 1,FR1)和高频段(frequency range 2,FR2)、对称和非对称频谱情况下的最大资源配置,在满足1%的用户碰撞概率,该覆盖区域的最大可支持的RACH尝试数如表1所示:
表1
Figure PCTCN2021110260-appb-000001
表1中的时域密度已达到了时域所有子帧全部用于RACH资源,频域密度为可配置的最大值,每个时频资源内可使用的前导序列数量为64。
此外,终端设备平均RACH尝试数的合理假设为0.001667次/秒/终端设备(即每个终端设备每10分钟进行1次RACH尝试),覆盖区域的面积设为3GPP定义的最小和最大直径的波束。最大可支持的终端密度如表2所示,可以发现当波束直径较大时,最大可支持的终端密度远远不能达到系统需求,表2给出了RACH尝试为0.001667次/秒/终端时的最大可支持终端密度。
表2
Figure PCTCN2021110260-appb-000002
根据表1和表2给出的关系可知,卫星通信系统沿用NR随机接入流程时,终端设备通过竞争方式接入网络,而由于同时发起随机接入的终端设备之间会发生随机接入的碰撞,造成系统吞吐量降低、终端设备接入系统时延增加,系统性能和接入体验变差。
图4示出了本申请实施例提供的通信方法200的示意性流程图,该方法200为不同通信系统提供可选择的前导序列总数,使得终端设备发起随机接入时,能够按照系统的性能选择合适的总数,以提高该通信系统随机接入过程的性能。如图4所示,该方法200包括:
S210,终端设备#1(即第一通信装置的一例)确定第一数量N,该第一数量是待生成的前导序列的总数,该第一数量N是至少两种数量中的一种,N为正整数;
需要说明的是,该第一数量N是通信系统中,终端设备#1与网络设备进行随机接入过程时生成的前导序列的总数。
可选地,该第一数量N可以是通信协议中规定的,终端设备#1确定该第一数量应理解为,终端设备#1使用通信协议中规定的N作为待生成的前导序列的总数。
可选地,该第一数量N还可以是网络设备指示的,例如,终端设备#1可以接收网络设备发送的第一指示信息,该第一指示信息用于指示该第一数量N。应理解,网络设备可以通过系统消息(SIB或者主消息块(master information block,MIB))或者无线资源控制协议(radio resource control,RRC)信令等向终端设备#1指示该第一数量,该系统消息或者RRC信令可以为广播或者单播的形式发送。还应理解,该终端设备#1接收该网络设备发送的第一指示信息在该终端设备#1确定第一数量之前。
可选地,第一通信设备中预存有前导序列总数映射表,网络设备可以向第一通信设备发送第一信息,该第一信息用于第一数量N的索引值。终端设备#1(第一通信设备的一例)根 据该索引值确定前导序列的总数N。可选地,前导序列总数映射表可以为表3所示的形式。
表3
索引 前导序列总数
0 64
1 128
2 256
3 512
可选地,可以在系统消息SIB1的RACH配置信息中增加一条前导序列总数的指示信令。例如,在RACH配置信息(RACH-ConfigGeneric)中增加PreambleNumConfig信令,该信令对应类型为INTEGER(0..3)。
可选地,该至少两种数量可以为32,64,128,256或512中的至少两种。
可选地,该第一数量大于或等于第二数量,该第二数量是该第一通信装置与地面网络通信时生成的前导序列的总数。
可选地,地面网络可以是5G NR系统中的基站,该第二数量为64,该第一数量可以为64,128,256或512中的一种。
可选地,该第一循环移位值小于或等于第二循环移位值,该第二循环移位值是该第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
可选地,地面网络可以是5G NR系统中的基站,该第二循环移位可以是表4示出循环移位值中的一个,表4示出了第一索引与第二循环移位值的对应关系。
表4
索引值 第二循环移位值 索引值 第二循环移位值
0 0 8 46
1 13 9 59
2 15 10 76
3 18 11 93
4 22 12 119
5 26 13 167
6 32 14 279
7 38 15 419
可选地,该第一数量大于或等于第二数量,且该第一循环移位值小于或等于第二循环移位值。
可选地,该第一数量N为64,128,256或512中的一种。
可选地,该第一数量是根据该第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
可选地,网络设备可以确定第一数量。例如,网络设备可以根据历史接入的终端设备的定位精度预估适用于该网络设备服务区的第一数量,终端设备的定位精度越高,网络设备预估可达的第一数量越大。再例如,网络设备还可以根据历史接入的终端设备的接入频率预估该网络设备服务区的终端设备负载量,给出相应的第一数量,终端设备的负载量越 大,网络设备给出的第一数量相对更大。应理解,终端设备的定位精度可以根据终端设备的定位方式的差异进行确认,终端设备的定位方式可以为全球导航定位系统(global navigation satellite system,GNSS)定位或者多星辅助定位。
S220,该终端设备#1根据该第一数量N和第一循环移位值,生成N个前导序列;
需要说明的是,在随机接入过程中终端设备#1生成前导序列的一种可实现的技术方案为根据ZC序列生成前导序列,具体过程如下:
ZC序列定义为:
Figure PCTCN2021110260-appb-000003
其中,u是ZC序列的根序号,N ZC是ZC序列的长度。
根据ZC序列的性质,单一根序号的ZC序列经循环移位生成的序列其正交性强于多个根序号的ZC序列经循环移位产生的序列。在生成前导序列的一种可选的方案为优先使用单一根序号的ZC序列及其循环移位生成前导序列。应当理解,单一根序号的ZC序列经不同循环移位值得到的序列可称为不同的前导序列。例如,一种生成64个可用前导序列的实现方案为使用单一根序号的ZC序列通过循环移位生成。再例如,在单一根序号的ZC序列无法通过循环移位生成64个前导序列的情况下,使用多个根序号的ZC序列生成。
在多普勒频偏的影响可忽略的情况下,循环移位后的ZC序列的定义如下:
Figure PCTCN2021110260-appb-000004
其中,N CS为循环移位值,表示循环移位的步长大小,
Figure PCTCN2021110260-appb-000005
表示向下取整,mod表示取余数,C v表示循环移位量,n表示第n个符号。
应理解,第一循环移位值为终端设备#1使用ZC序列生成N个前导序列所使用的循环移位的步长。获取第一循环移位值的一种可选的技术方案为根据通信协议中给出的随机接入前导序列的循环移位的映射表确定。例如,终端设备#1可以接收网络设备发送的指示信息#1,该指示信息#1用于向终端设备#1指示生成前导序列使用的第一循环移位值对应的索引号。应理解,该指示信息#1可以为系统消息SIB1,如网络设备在SIB1的RACH配置消息中,向终端设备#1指示该索引号。
还应理解,第一循环移位值的大小与地面小区半径呈正相关,而小区半径的大小反映了未进行上行同步的异步终端的时延扩展和到达时间的不确定性。一种可选的方案为按照小区半径大小划分出一组的循环移位值,并写入第一映射关系中,该第一映射关系为多个索引值与多个第二循环移位值的对应关系,该第二循环移位值为前导序列总数为64的情况下循环移位的步长。该循环移位值N CS与小区半径r的关系如下:
Figure PCTCN2021110260-appb-000006
其中,r是以公里为单位的小区半径,τ ds是以微秒为单位最大时延扩展,T SEQ是以微秒为单位的前导符号持续时间,n g是由接收机脉冲成型滤波器附加的保护采样个数。
需要说明的是,卫星通信系统中,第一通信设备(终端设备)可以通过装备GNSS能 够获取通信卫星的星历信息。终端就能通过定位信息获取自身到卫星的精确传输距离,减小未进行上行同步的异步终端的到达时间的不确定性。可以理解,到达时间不确定性的减小可以使得生成前导序列时所用的ZC序列的循环移位值变小。因此,在卫星通信系统中使用与地面小区相同的ZC根序列数量时,卫星通信系统可以生成更多的可用前导序列。
例如,在5G NR系统中,当循环移位值N CS=15时,需要2种根序号的ZC序列产生64个前导序列。在卫星通信系统的场景下,基于终端设备能够获取自身定位精度使得上行到达时间的不确定性小,N CS=8可以区分不同终端。此时2种根序号的ZC序列能够产生128个可用前导序列。
对网络设备而言,上述增加前导序列的方法中,不增加使用的ZC根序列数,几乎不会增加前导序列的检测复杂度;此外,该方式不会增加波束之间的共前导干扰、不影响ZC序列的规划。基于此,本申请主要解决在卫星通信场景下,如何在不增加ZC根序列的开销情况下,解决终端设备发起随机接入时容易发生碰撞、接入失败导致时延大的问题。
需要说明的是,协议规定的循环移位映射表的循环移位值,分为不考虑多普勒频偏影响的非限制集循环移位值,以及考虑多普勒频偏影响的限制集A、B的循环移位值。装备GNSS的终端受到的多普勒频偏影响很小,只需要设计其中的非限制集循环移位值。
可选地,该第一循环移位值是网络设备根据该第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
可选地,本申请实施例中第一循环移位值可以通过网络设备指示,例如,终端设备根据预存的循环移位值映射表与网络设备指示的索引值确定第一循环移位值。再例如,终端设备可以根据网络设备指示的第一系数以及预存的循环移位值映射表计算该第一循环移位值。
具体地,本申请实施例中第一循环移位值可以通过如下方式确定的:
方式1:
在终端设备生成N个前导序列之前,该方法200还可以包括如图5所示的确定循环移位值的方法。图5示出了本申请实施例的一种可能的确定循环移位值的方法,该方法包括:
S2211,第一通信装置接收网络设备发送的第一索引;
应理解,该第一索引为第一映射关系中的一个映射关系对应的索引值,该第一映射关系为多个索引值与多个第二循环移位值的对应关系,该第二循环移位值为前导序列总数为64的情况下循环移位的步长。还应理解,终端设备#1(第一通信装置的一例)预先存储该第一映射关系,该第一映射关系可以如表4所示。
S2212,第一通信装置根据第一索引和第一映射关系确定第二循环移位值,该第一映射关系用于指示第一索引与第二循环移位值之间的对应关系;
应理解,终端设备#1根据该第一索引和该第一映射关系确定第二循环移位值。该第二循环移位值用于该终端设备确定第一循环移位值,该第一循环移位值与该终端设备#1的定位精度相匹配。
S2213,第一装置根据第一系数和所述第二循环移位值,确定该第一循环移位值。
该第一系数用于指示第一定位精度下使用的循环移位值与第二定位精度下使用的循环移位值的比例,该第一定位精度是第一通信装置当前的定位精度,该第二循环移位值是在该第二定位精度使用的循环移位值。
应理解,该第一定位精度是第一通信装置当前的定位精度。例如,在终端设备#1待接入卫星通信系统的情况下,该终端设备#1当前的定位精度为终端设备#1接入卫星通信系统下的定位精度。还应理解,第二循环移位值是在第二定位精度或地面网络下使用的循环移位值。例如,该地面网络可以为5G NR系统,该地面网络下使用的循环移位值可以根据蜂窝网络小区半径确定。
需要说明的是,卫星通信系统中,系统的定位精度(即未完成上行同步的异步终端设备的到达时间不确定性)由终端设备的定位精度和卫星的定位精度共同决定。
可选地,终端设备#1可以接收网络设备指示的第一系数。例如,网络设备可以通过系统消息等指示该第一系数。再例如,终端设备#1和网络设备中可以预先设计第三映射表,该第三映射表表示索引与系数的对应关系,该系数用于确定终端设备当前的循环移位值和要生成的前导序列的总数,网络设备可以系统消息向该终端设备#1指示该索引值,终端设备#1根据该索引值确定该系数。表5示出了索引值与系数的对应关系,如表5所示的系数映射表。
表5
索引值 系数
0 1
1 1/2
2 1/4
3 1/8
具体地,可以在系统消息SIB1的RACH配置信息中增加一条用于指示系数的信令。例如,在RACH配置信息(RACH-ConfigGeneric)中增加zeroCorrelationZoneDivideConfig信令,该信令对应类型为INTEGER(0..3)。
可选地,第一系数可以由通信协议规定。
根据步骤S2212确定的第二循环移位值N CS2和第一系数a确定第一循环移位值,可以为终端设备#1根据如下关系式确定第一循环移位值N CS1
N CS1=N CS2×第一系数a
可选地,终端设备#1还可以根据如下关系式确定第一循环移位值:
N CS1=N CS2/第一系数a'
需要说明的是,a与a'互为倒数,当终端设备#1以N CS1=N CS2/第一系数a'的形式计算第一循环移位值时,相应的,第三映射表中的系数为表5示出的系数的倒数。
通过该方式进行随机接入,网络设备可以使用与5G NR相同的方式指示循环移位值的索引号,终端设备#1可以根据该第一系数的指示信令同时获取卫星通信系统中使用的循环移位值和可用的前导序列总数。这种方法仅使用一条信令获取了两个指示参数,减小了信令开销,并且配置方法具有一定的灵活性。应理解,上述举例仅为示例性说明,并未对本申请实施例进行限定,例如,该方法还可以应用于其他场景下的通信系统中。
方式2:
在终端设备生成N个前导序列之前,方法200还可以包括如图6所示的确定循环移位值的方法。图6示出了本申请实施例的一种可能的确定循环移位值的方法,该方法200包括:
S2221,第一通信装置接收网络设备发送的第一索引;
应理解,该第一索引为第二映射关系中的一个映射关系对应的索引值。还应理解,终端设备#1(第一通信装置的一例)预先存储该第二映射关系。
S2222,第一通信装置根据所述第一索引、第一参数和第二映射关系确定第一循环移位值。
该第二映射关系用于指示第一索引与第一循环移位值组的对应关系,该第一循环移位值组包括至少两个循环移位值,该第一参数用于从至少两个循环移位值中确定该第一循环移位值,该第一参数用于指示第一通信装置当前使用的定位精度或当前待接入的系统。
应理解,该循环移位值组由不同循环移位值构成,该不同的循环移位值对应不同的参数,终端设备#1(即第一通信装置的一例)根据接收的第一索引值与第一参数确定第一循环移位值。
可选地,每个映射表记录有多种定位精度下分别使用的循环移位值。
可选地,该循环移位值组可以包括两个循环移位,该两个循环移位对应两种不同的定位精度,当该第一通信装置处于卫星通信系统中时,该第一参数为卫星通信系统的定位精度,每个映射表记录有两种定位精度下分别使用的循环移位值。
可选地,每个映射表记录有多种接入系统中分别使用的循环移位值。具体地,如表6示出了循环移位值组包括两个循环移位值的一种可能的情况。
表6,以NTN系统对应长度为839、子载波间隔为1.25kHz的前导序列进行的介绍。
具体地,终端设备#1根据接收的第一索引值(如索引5)第二映射关系(如表6)与第一参数(接入系统为NTN系统)确定第一循环移位值为13。
应理解,上述仅为示意性举例,并不对本申请实施例进行限定,例如,表6中NTN系统中不同索引对应的N CS值可以有不同的值。
表6
Figure PCTCN2021110260-appb-000007
Figure PCTCN2021110260-appb-000008
方式3:
终端设备#1根据第四映射关系以及网络设备指示的索引值确定第一循环移位值。
该第四映射关系为第一索引与第一循环移位值的映射关系,该第四映射关系中第一循环移位值的大小可以根据第二循环移位值确定,该第一循环移位小于或等于该第二循环移位,该第一循环移位对应第一系统,该第二循环移位对应第二系统。应理解,该第一系统可以指卫星通信系统或NTN系统,该第二系统指5G NR系统。还应理解,该第二系统对应的前导序列总数为64。
需要说明的是,该第四映射关系的设计方式可以为将第二系统中规定的非限制循环移位值按比例缩小,并按相应的比例扩大前导序列总数。
具体地,可以根据如下公式设计第四映射关系中第一循环移位值:
Figure PCTCN2021110260-appb-000009
其中,M为大于1的整数,N CS1为第一循环移位值,N CS2为第二循环移位值,
Figure PCTCN2021110260-appb-000010
表示向下取整。
该第四映射关系可以如表5所示。
表6中,索引值为0时,NTN系统对应的第一循环移位由于定位精度过于宽松,在实际中应较少使用;索引值为2时,第一索引值取最小有效循环移位值N CS=8,此处,需要说明的是,在索引值为2的情况下,根据上述设计方式得到的循环移位值为一个无效的循环移位值,为了使映射表中能存在更多的有效循环移位值,在根据上述设计方式得到的映射表中不存在N CS=8时,将将索引值2对应的循环移位值设置为8。应理解,最小有效循环移位值的大小可以根据循环移位值与小区半径的关系计算得出。
需要说明的是,在表6所示的映射关系中,可以约定前导序列总数从原先的64扩大为128,此时RAR指示的前导序列索引RAPID从原先的6比特扩展到7比特。更一般地,如果约定可使用的前导序列总数的最大值N max≤64×2 m,m是满足不等式的最小正整数,那么前导序列索引RAPID应从6比特扩展到(6+m)比特。
可选地,M为2,4,8中的一个,相应地NTN系统下可使用的前导序列总数为128、256、512。
当终端设备#1预存第四映射关系时,终端设备#1从扫频信息或者系统消息(SIB或者MIB)中确认接入的是卫星通信(或NTN系统),并从SIB1的RACH配置消息中接收zeroCorrelationZoneConfig信令(用于指示第一索引),进而根据第四映射关系确定第一循环移位值。
表7示出了N CS2和N CS1与小区半径和定位精度、单一根序号的ZC序列可生成的前导序列数n、使用的ZC根序列数的具体关系。根据表7可知,循环移位值缩小时,相应的单一根序号的ZC序列可生成的前导序列数增加,基于此,能够在不增加ZC根序列数的情况下,增加可使用的前导序列总数。
表7
Figure PCTCN2021110260-appb-000011
表7中,卫星通信系统中N CS1对应能够覆盖从0.07~28.82公里的定位精度。一般来说,考虑星历来源、卫星轨道高度、卫星形状和星历预报时长等因素,星历精度一般在米~百米级之间;装备GNSS终端的定位精度在空旷区域为米级,在密集城市区域为百米级;一般多星定位终端的定位精度为千米级,表7中设计的N CS1能够较好地满足不同精度的星历和终端的需求。
应理解,上述仅为示意性举例,并不对本申请实施例进行限定,例如该映射表中循环移位的数值可以是小于或等于相同索引下的N CS2
方式4:
需要说明的是,方式4下,终端设备#1根据第五映射关系确定第一循环移位值的步骤与方式3类似,此处,为避免赘述,省略其详细过程,仅对第五映射关系对应的映射表 的设计过程进行介绍。
可选地,一种可能的循环移位映射表(第五映射关系)的形式可以如表8所示。
表8
索引 N CS 索引 N CS
0 0 8 26
1 6 9 32
2 8 10 38
3 9 11 52
4 11 12 64
5 13 13 83
6 16 14 139
7 19 15 209
表9示出了第五映射关系下N CS2和N CS1与小区半径和定位精度、单一根序号的ZC序列可生成的前导序列数n、使用的ZC根序列数的具体关系。根据表9可知,循环移位值缩小时,相应的单一根序号的ZC序列可生成的前导序列数增加,基于此,能够在不增加ZC根序列数的情况下,增加可使用的前导序列总数。
表9
Figure PCTCN2021110260-appb-000012
Figure PCTCN2021110260-appb-000013
第五映射关系中,同一索引值下第一循环移位值N CS1可以与第二循环移位值N CS2对应的使用ZC根序列数不变,并约定卫星通信系统可使用的前导序列总数,根据每个索引对应的N CS2计算第五映射关系中N CS1的最大值。例如,第五映射关系的设计过程,可以为根据N CS2以及ZC序列的长度确定每个序列可产生的前导序列的数量n,根据每个ZC序列可产生的前导序列的数量n以及待生成的前导序列总数64确定所需的ZC序列数,在不增加网络设备的检测复杂度的情况下,根据待生成的前导序列总数(即第一数量N)以及ZC根序列数,确定每个ZC序列可生成的前导序列数,并根据该前导序数和ZC序列长度确定循环移位值。
可选地,在连续几个索引值对应使用的ZC根序列数相同的情况下,N CS1可以按等差序列的形式步进递增。
应理解,表8中,索引值为0时,NTN系统对应的第一循环移位由于定位精度过于宽松,在实际中应较少使用;索引值为2时,第一索引值取最小有效循环移位值N CS=8并且该值没有重复,这样设计令映射表中能存在更多的有效循环移位值。
方式4中,能够在不增加使用的ZC根序列数的情况下,增加可使用的前导序列总数;同时,使用该方式下设计的映射表的每个索引对应的N CS1大于或等于方式3下的循环移位值,适当扩大了每个N CS1的定位精度范围,因此,网络设备可以能够选择和指示较小的循环移位值、减少使用的ZC根序列数。
方式5:
终端设备#1根据第六映射关系以及网络设备指示的索引值确定第一循环移位值。
需要说明的是,该第六映射关系为索引值与循环移位值的对应关系,该第六映射关系可以是通信系统中预先配置的。
第六映射关系中,每个索引值对应的第一循环移位值小于或等于该索引对应的第二循 环移位值,应理解,该第二循环移位值索引的对应关系可以如表4所示。具体地,第六映射关系中第一循环移位值的设计方法可以如方式3和方式4中所示的方法,此处,为避免赘述,省略其详细描述。还应理解,上述仅为示意性举例,并不对本申请实施例进行限定。
方式5中,通过指示循环移位值的索引号、查找通信系统专用映射表获取循环移位值,并根据指示信令获取可用的前导序列总数。这种循环移位指示方法具有较好的兼容性,且网络设备可以根据实际场景需求灵活地配置可用的前导序列总数。
S230,该终端设备#1发送第一前导序列,第一前导序列为N个前导序列中的一个,第一前导序列用于进行随机接入。
应理解,终端设备#1根据该前导序列总数N和第一循环移位值生成N个前导序列,并随机选择一个进行随机接入。
可选地,在图5所示的方法中,在终端设备#1使用第一系数a确定第一循环移位值的情况下,相应的,终端设备#1可以通过如下关系式的前导序列总数N:
前导序列总数N=64/第一系数a
可选地,在图5所示的方法中,在终端设备#1使用第一系数a'确定第一循环移位值的情况下,相应的,终端设备#1可以通过如下关系式的前导序列总数N:
前导序列总数N=64×第一系数a'
还应理解,第一通信装置使用N个前导序列中的一个前导序列进行随机接入,包括:第一通信装置使用N个前导序列中的一个前导序列,在第一时域资源进行随机接入。还应理解,该第一时域资源是网络设备分配的,例如,网络设备可以通过系统消息(SIB)或者RRC信令指示PRACH时域资源的分配情况。
可选地,该第一时频资源与第一循环移位值对应。
可选地,该第一时频资源与第一通信装置当前的定位精度对应。
可选地,该第一时频资源与第一通信装置待接入的系统对应。
可选地,该第一时频资源与第一数量对应。
需要说明的是,终端设备发送#1使用第一前导序列发起随机接入,相应地,网络设备根据第一数量N以及第一循环移位值检测该第一前导序列,并与该终端设备进行随机接入过程。可选地,该随机接入过程可以如方法100所示。
还应理解,图4示出的通信方法200的一种可能的实现形式为,在第一通信装置根据第一数量N和第一循环移位值,生成N个前导序列之前,方法200还包括:
S231,第一通信装置确定第一循环移位值满足第一通信装置当前的定位精度对循环移位值的要求。
需要说明的是,卫星通信系统中,定位精度由终端设备和卫星的定位精度共同决定,其中定位精度包括星历精度、终端定位精度等,因此网络设备无法直接确定总的定位精度。在卫星通信系统的情况下,循环移位值与定位精度相关,终端设备可以根据网络设备指示的循环移位值以及自身的定位精度确定循环移位值是否满足终端设备的精度条件,根据判断结果获取满足自身精度条件的循环移位值进行随机接入。
应理解,终端设备#1在确定网络设备指示的第一循环移位满足自身条件的情况下,使用网络设备指示的循环移位值进行随机接入。在第一循环移位不满足自身精度的情况下,终端设备#1可以通过对第一循环移位值以及前导序列总数进行放缩的形式获取满足精度 要求的循环移位值和前导序列总数,进而完成随机接入。
还应理解,终端设备#1可以根据公式3所示的形式判断该第一循环移位是否满足自身定位精度。具体地,终端设备可以获知自身定位精度,终端设备可以根据公式3以及第一循环移位值预估该第一循环移位值对应的定位精度,并根据该第一循环移位值对应的定位精度与终端设备自身的定位精度的关系进行判断。
需要说明的是,上述举例仅为示意性说明,并不对本申请实施例进行限定,例如,本申请实施例的执行主体还可以为具有通信功能的芯片或芯片系统。
如图7和图8示出了第一循环移位不满足终端设备定位精度要求的情况下,终端设备进行随机接入的方法。根据图7或图8所示的方法,可以有效解决卫星通信场景下,不同定位精度下的终端设备发起随机接入时容易发生碰撞、接入失败导致时延大的问题。
图7示出了本申请实施例的一种可能的通信方法300的示意性流程图,上述方法还可以用于如图7中方法300所示的网络设备初步指示、终端设备辅助确认的流程中。
应理解,该方法300可以包括方法200给出的确定前导序列总数和循环移位值的步骤,这里,为避免赘述,省略其详细描述。
图7示出了本申请实施例的随机接入的方法300的示意性交互图,如图7所示的方法300可以应用于图1所示的系统,该方法300包括:
S310,网络设备向终端设备(即第一通信装置)指示第一循环移位值N CS或/和第一前导序列总数。
可选地,网络设备与终端设备可以约定第一前导序列总数。
可选地,网络设备通过信令指示的方式为终端设备配置前导序列总数。
作为示例而非限定,在本申请实施例中,该方法300中前导序列总数与循环移位值可以根据图7所示的方式给出,此处,为避免赘述,省略其详细描述。
可选地,网络设备根据第一定位精度确定该第一循环移位值,该第一定位精度为网络设备指示的定位精度。应理解,网络设备可以根据第一因素以及覆盖区域内装备GNSS的终端设备的可达精度确定该第一定位精度,其中,该第一因素可以为系统星历精度、服务区域特征,本申请并不限于此。该可达精度为终端设备的定位精度(即第二定位精度)。
例如,网络设备确定系统星历精度为100米,当前覆盖区域的大多数GNSS终端设备存在约200米的定位误差,网络设备与终端设备整体存在300米的定位误差,网络设备根据循环移位值与定位精度的关系式(即公式3)确定需要为终端指示的第一N CS值不小于10,例如,指示的第一N CS为10。具体地,网络设备根据公式3以及该300米定位误差计算该定位误差对应的循环移位值大小。
可选地,网络设备110可以通过广播或单播的形式向终端设备发送该第一循环位移值或/和第一前导序列数量。
可选地,网络设备可以通过RRC信令或系统消息SIB向终端设备指示该第一N CS或/和第一前导序列数量。
S320,网络设备向终端设备指示第一PO和第二PO。
应理解,物理随机接入信道的时域资源PO由网络设备进行分配。该PRACH的时域资源PO包括第一PO和第二PO,该第一PO与第一终端设备对应,该第二PO与第二终端设备对应,该第一终端设备为卫星服务区域内定位精度高的终端设备,该第二终端设备 为卫星服务区域内定位精度低的终端设备。
可选地,网络设备可以根据覆盖区域内终端设备的定位精度对PO进行分配。例如,网络设备已知大部分终端设备的定位精度,以及最低端终端设备的定位精度。设某场景网络设备指示的循环移位为N CS=10,可使用的前导序列总数为128,最低端终端设备对应N CS=20。网络设备分配、指示第一PO(如占PO的80%)作为与N CS=10相对应的PO0,第二PO(如占PO的20%)作为与N CS=20相对应的PO1。上述举例仅为示例性说明,本申请并未限定于此。
可选地,网络设备可以使用RRC信令或系统消息SIB向终端设备指示该PO分组情况。该PO分组情况表示第一PO和第二PO。
S330,终端设备根据第二定位精度确定第三循环移位值和第三前导序列总数。
应理解,该第二定位精度是终端设备根据自身定位方式的差异确定的,终端设备的定位方式可以包括全球导航定位系统GNSS定位方式和多星辅助定位方式。
可选地,终端设备根据第二定位精度判断第一N CS是否满足终端设备的精度要求。
可选地,终端设备判断第一N CS满足精度要求时,使用该第一N CS进行随机接入。应理解,当第一循环移位值满足终端设备的精度要求时,其执行步骤可以与方法200中的类似,此处,为避免赘述,省略其详细介绍。
还应理解,当终端设备判断第一N CS满足精度要求,使用该第一N CS进行随机随机接入,可以为,将第一N CS确定为第三N CS,将第一前导序列总数确定为第三前导序列总数。应理解,终端设备将第一N CS确定为第三N CS可以是重新确定一个第三N CS,该第三N CS的值与第一N CS的值相同。将第一前导序列总数确定为第三前导序列总数可以与将第一N CS确定为第三N CS有相同的理解方式,此处,为避免赘述,省略其详细描述。
可选地,终端设备判断第一循环移位值不满足精度要求时,根据第一N CS生成第三N CS,并将第三N CS作为该终端设备生成前导序列的循环移位值。
可选地,终端设备根据第一N CS生成第三N CS可以为,终端设备将第一N CS大小扩大为原来的m倍。应理解,第一N CS大小扩大为原来的m倍,该终端设备对应的第三前导序列总数可以缩小为第一前导序列总数的m倍。终端设备通过相应地减小可使用的前导序列总数,可以避免重新进行前导序列规划和避免波束间共前导干扰。
一种可能的实现中,m取值为2。
例如,网络设备的服务区域内,终端设备#1(第一终端设备的一例)定位误差为200米,终端设备#2(第二终端设备的一例)的定位误差为1千米。网络设备发送指示的第一N CS大小为10。可以理解,终端设备#2发送的前导序列的检测峰值可能超过网络侧指示的N CS=10的检测窗,终端设备#2使用循环移位值(即第三N CS)为20对应的前导序列,并将可使用的前导序列总数变成原来的1/2。还应理解,此处,第三N CS的大小可以由终端设备#2根据定位误差计算。
S340,终端设备根据第一PO或第二PO向网络设备发送第一消息Msg1。相应的,网络设备接收终端设备发送的Msg1。
第一消息为第三前导序列,第三前导序列为终端设备根据第三N CS和第三前导序列总数确定的。具体地,终端设备可以根据第三N CS和第三前导序列总数获取可用的PRACH时域资源和前导序列集合,终端设备发起随机接入时,从集合中随机选择用于发送该Msg1 的接入资源。可选地,终端设备还可以根据第三N CS和第三前导序列总数生成前导序列集合。
可选地,终端设备判断第一循环移位值满足精度要求时(即该终端设备为第一终端设备),根据第三N CS生成第一N CS对应的前导序列,终端设备随机选择PO#0(第一PO的一例)和前导序列#0(第一N CS对应的前导序列中的一例)进行接入。
可选地,终端设备判断第一循环移位值不满足精度要求时(即该终端设备为第二终端设备),根据第三N CS生成第三前导序列,终端设备随机选择PO#1(第二PO的一例)和前导序列#1(第三前导序列的一例)进行接入。
S350,根据第一PO或第二PO对应的第二N CS值和第三前导序列总数检测第三前导序列。
应理解,网络设备可以根据第一PO或第二PO对应的第三N CS值和第三前导序列总数检测前导序列,获取前导序列索引RAPID和下行发送的波束,并估计该第一PO或第二PO对应的终端设备的传输时延。
S360,网络设备发送随机接入响应RAR。
可选地,该RAR中包括定时提前TA值和前导序列索引RAPID。
终端设备接收到该RAR后,根据该RAR消息完成随机接入过程。应理解,此处,终端设备可以执行现有技术类似的方法,为了避免赘述,省略其详细说明。
应理解,图7示出了信息的处理方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图7中的各个操作的变形。
图8示出了本申请实施例的另一种可能的随机接入的方法400的示意性交互图,如图8所示的方法400可以应用于图1所示的系统,该方法400包括:
S410,网络设备向终端设备(即第一通信装置)指示第一循环移位值大小N CS或/和第一前导序列总数。
S420,终端设备根据第二定位精度确定第三循环移位值和第三前导序列总数。
应理解,此处,方法400所执行的步骤S410和S420可以与方法300的步骤S320和S330相同,为了避免赘述,此处省略其详细描述。
S430,终端设备向网路设备发送第一消息Msg1。
第一消息为第三前导序列,第三前导序列为终端设备根据第三N CS和第三前导序列总数确定的。具体地,终端设备可以根据第三N CS和第三前导序列总数获取可用的PRACH时域资源和前导序列集合,终端设备发起随机接入时,从集合中随机选择用于发送该Msg1的接入资源。可选地,终端设备还可以根据第三N CS和第三前导序列总数生成前导序列集合。
S440,网络设备根据第一循环移位大小和第一前导序列总数检测前导序列。
应理解,第一循环移位大小和第一前导序列总数为网络设备配置的,网络设备检测前导序列时不区分终端设备的定位精度。
S450,网络设备向终端设备发送随机接入响应RAR消息,其中,该RAR信息包括第一TA值和第一RAPID。
应理解,该第一TA值是网络设备估计的该终端设备的传输时延。
S460,终端设备根据第一TA值和第一RAPID确定第二TA值。
应理解,终端设备可以根据自身定位精度确定第二TA。
可选地,终端设备可以获取RAR消息中的第一RAPID的全部比特位,并与第三RAPID进行对比,根据对比结果获取RAR消息中的第一TA值作为第二TA。该第三RAPID为终端设备向网络设备发送的第三前导序列的索引。
可选地,终端设备还可以获取RAR消息中第一RAPID的全部比特位,并使用选择的前导序列索引与第一RAPID相应的比特位进行对比,根据对比结果计算第二TA。
例如,在高精度终端使用Ncs和128个前导序列,低精度终端使用2Ncs和64个前导序列的情况下,终端设备获取RAR消息中第一RAPID的全部比特位,并使用高6位比特位与选择的前导序列索引进行对比。
在高6位比特位与选择的前导序列索引相同的情况下,通过如下关系式确定第二TA:
第二TA=第一TA+第一N CS×第一RAPID最低比特位的值
具体地,图9示出了本申请实施例中终端设备前导序列索引与同步位置的示意图。如图9所示,一般终端设备前导序列的RAPID分布(即前导序列RAPID分布#1)与网络侧的检测窗相同,这些终端可以取RAR的前导序列索引RAPID的全部比特与选择的前导序列索引比对,并直接获取TA值;低端终端前导序列的窗口长度(即前导序列RAPID分布#2)是网络侧检测窗的2倍,前导序列索引RAPID相应减少了1比特,这些终端取RAR的前导序列索引RAPID的高6比特与前导序列索引比对,并通过关系式计算实际的TA值。
非同步卫星系统中的卫星绕地高速运动,终端设备(即第一通信装置)会在不同的卫星波束之间频繁切换。如果终端在未完成基于竞争的随机接入过程时经历卫星波束切换,将导致接入请求丢失,从而延长接入时间。图10示出了本申请实施例又一通信方法的交互性示意图。如图10所示方法500可以解决波束切换导致的接入请求丢失,提高卫星服务区域内终端设备平均接入时间,该方法500包括:
S510,第一通信装置确定第一区域,该第一区域为该第一通信装置所处于的区域,该第一区域为多个区域中的一个;
应理解,该多个区域可以为卫星波束覆盖范围内有不同随机接入时间限制的区域。例如,该多个区域可以包括临波束切换区以及非波束切换区。再例如,该多个区域可以包括边缘区域,临波束切换区以及非波束切换区。如图11示出了本申请实施例的一种可能的波束区域划分600的示意图。
图11中卫星波束在T0时刻覆盖的范围如610所示,随着卫星波束与覆盖范围的变化,T1时刻,该波束将覆盖620所示的区域,T2时刻将覆盖如630所述的区域。波束610与620的切换时间(T1-T2)为终端设备随机接入时长的最短时间。区域A记作边缘区,因为接入耗时至少为(T1-T0),位于该区域的终端设备不可能通过竞争随机接入一次性成功接入当前波束,这些终端设备选择直接或者退避接入下一波束;区域B记作临波束切换区,位于该区域的终端需要在有限时间内完成竞争随机接入来接入网络,否则会导致接入请求丢失,产生更大的接入时延;区域C记作非波束切换区,位于该区域的终端的接入时间较充足,终端可以按正常流程发起基于竞争的随机接入。
可选地,该第一通信装置根据第一波束的覆盖区域和第二波束的覆盖区域,确定所述第一区域,其中,该第一波束是覆盖该第一通信装置当前位置的波束,该第二波束是下一 时段覆盖第一通信装置当前位置的波束。
具体地,终端设备可以根据第一波束和第二波束覆盖区域确定该终端设备所处于的区域,如图12示出了本申请实施例第一通信装置的位置的示意图。应理解,该确定终端设备所处区域的方法可以应用于如图10所示的方法500中。
例如,该方法500中确定第一区域,包括:
S511,该终端设备通过测量波束能量,选定即将进行初始接入的波束(记为波束1);
S512,该终端设备通过广播消息,获取卫星星历信息以及后续到来的波束索引号(记为波束2);
S513,该终端设备利用GNSS或者多星辅助定位等方式获取自身位置信息;
需要说明的是,终端设备可以预先获取波束索引号以及自身位置信息,即可以在所述方法500中确定第一区域的步骤之前执行步骤S512与S513。
S514,终端根据定位和星历信息,计算自身到波束1中心的距离D1,到波束2中心的距离D2。
可选地,当卫星波束为椭圆波束时,D1、D2为到波束的两个焦点的距离之和;
S515,终端设备根据网络设备指示的阈值确定该终端设备所处的区域;
可选地,终端设备可以计算R=D1/D2,根据R与两级阈值L1、L2的大小关系确定所处的区域。具体地,R∈[L1,+∞)表示该终端设备位于边缘区;R∈[L2,L1)表示该终端设备位于临波束切换区;其它情况,表示该终端设备位于非波束切换区。应理解,阈值L1、L2可以为网络设备通过系统信息(SIB)或者RRC信令指示的。还应理解,网络设备可根据波束尺寸和波束分布情况等系统特征、以及实际负载情况来确定阈值L1、L2。
例如,圆波束1中心坐标O1(0,0),圆波束2中心坐标O2(-16000,0),波束半径为10km;波束1范围内任一位置计算的R=D1/D2。如图13所示,其中,网络设备指示的阈值为L1=1.2,L2=0.6。图13示出了本申请实施例一种可能的波束区域划分示意图。
S520,第一通信装置确定该第一通信装置当前处于的第一区域所对应的第一接入资源;
可选地,该接入资源可以为物理随机接入信道的时频资源PO。
可选地,该接入资源还可以为前导序列总数。
可选地,该接入资源可以为物理随机接入信道的时频资源PO和前导序列总数。
需要说明的是,该多个接入资源为网络设备对接入资源的划分,网络设备可以根据不同区域占比、系统负载、用户分布等因素,确定波束切换区专用接入资源的参数,并向终端指示波束切换区接入资源的相关参数。例如,网络设备执行的一种可选的划分方式为将部分基于竞争的随机接入前导序列划分为波束切换区专用前导序列。再例如,网络设备执行的另一种可选的划分方式为将所有可用的PRACH时频资源中的一部分,划分为波束切换区专用PRACH时频资源。
可选地,该终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示多个区域与多个接入资源之间的对应关系。例如,该波束切换区域可以对应专用前导序列,或者,该波束切换区域可以对应专用前导序列和非专用前导序列。在例如,该波束切换区可以对应专用PRACH时频资源,或者,该波束切换区可以对应专用PRACH时频资源和非波束切换区PRACH时频资源。
可选地,网络设备在SIB1的RACH配置消息中的新增一条信令,指示波束切换区的 随机接入前导序列的数量。例如,在RACH配置信息(RACH-ConfigGommon)中增加HandoverCB-PreamblesPerSSB信令,该信令对应类型为INTEGER(0..63)。
可选地,网络设备在SIB1的RACH配置消息中的新增一条信令,指示波束切换区专用PRACH时频资源的数量。例如,在RACH配置信息(RACH-ConfigGommon)中增加HandoverRO信令,该信令对应类型为ENUMERATED{oDot0,oDot1,oDot2,oDot3,oDot4},其中,oDot1,oDot2…表示0.1,0.2…用小数表示比例划分。
S530,第一通信装置使用第一接入资源,进行随机接入。
应理解,处于波束切换区的终端设备可以根据网络设备配置的接入资源进行随机接入。例如,该终端设备使用的第一接入资源可以为专用前导序列和非专用前导序列,或者专用前导序列。
位于临波束切换区的终端因接入时间限制有较高的接入优先级,网络侧根据实际情况考虑将接入资源的分配向临波束切换区倾斜,使得波束内所有终端的平均接入时间较短且有相近的接入体验。
图10所示的方法500通过给出一种划分接入资源,终端根据定位信息选择相应接入资源、发起基于竞争的随机接入过程的方法,优化了接入资源的配置。网络侧根据实际情况考虑将接入资源的分配向临波束切换区倾斜,使得波束内所有终端的平均接入时间较短且有相近的接入体验。此外,GNSS终端根据网络侧指示信息,可以用简单的方法确定自身所处区域,并选择相应的接入资源;网络侧通过接入资源还可以鉴别切换区的接入请求,可应用专用的退避算法和退避指示进一步优化切换区接入方式。
还应理解,上述举例仅为示意性说明,并不对本申请实施例进行限定,例如,本申请实施例的执行主体还可以为具有通信功能的芯片或芯片系统。
图14是本申请实施例提供的通信装置700的示意性框图。该装置700包括收发单元710和处理单元720。收发单元710可以与外部进行通信,处理单元720用于进行数据处理。收发单元710还可以称为通信接口或通信单元。
可选地,该装置700还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元720可以读取存储单元中的指令或者和/或数据。
该装置700可以用于执行上文方法实施例中第一通信装置所执行的动作,这时,该装置700可以为终端设备或者配置于终端设备的部件或者芯片等与,收发单元710用于执行上文方法实施例中第一通信装置侧的收发相关的操作,处理单元720用于执行上文方法实施例中第一通信装置侧的处理相关的操作。
举例来说,处理单元720用于确定第一数量N,该第一数量是待生成的前导序列的总数,该第一数量N是至少两种前导序列总数中的一种,N为正整数;处理单元720还用于根据该第一数量N和第一循环移位值,生成N个前导序列;收发单元710,用于发送第一前导序列,该第一前导序列为N个前导序列中的一个,所述第一前导序列用于进行随机接入。收发单元710还用于接收网络设备发送的第一索引;收发单元710还用于接收网络设备发送的第一指示信息。
或者,该装置700可以用于执行上文方法实施例中第二通信装置(例如网络设备)所执行的动作,这时,该装置700可以为网络设备、卫星或者可配置于卫星的部件,收发单元710用于执行上文方法实施例中卫星侧(即网络设备)的收发相关的操作,处理单元 720用于执行上文方法实施例中卫星侧(即网络设备)的处理相关的操作。
举例来说,收发单元710用于发送第一索引;收发单元710还用于向第一通信装置发送第一系数。处理单元720用于确定第一数量N,该第一数量为待生成的前导序列的总数,第一数量N是至少两种前导序列总数中的一种,N为正整数;处理单元720还用于确定第一循环移位值,该第一循环移位值用于第一通信装置生成N个前导序列;处理单元720还用于根据该第一数量N和该第一循环移位值检测进行随机接入的第二通信装置发送的第一前导序列。
如图15所示,本申请实施例还提供一种通信装置800。该通信装置800包括处理器810,处理器810与存储器820耦合,存储器820用于存储计算机程序或指令或者和/或数据,处理器810用于执行存储器820存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置800包括的处理器810为一个或多个。
可选地,如图15所示,该通信装置800还可以包括存储器820。
可选地,该通信装置800包括的存储器820可以为一个或多个。
可选地,该存储器820可以与该处理器810集成在一起,或者分离设置。
可选地,如图15所示,该无线通信装置800还可以包括收发器830,收发器830用于信号的接收和/或发送。例如,处理器810用于控制收发器830进行信号的接收和/或发送。
作为一种方案,该通信装置800用于实现上文方法实施例中由卫星或者卫星系统中地面站执行的操作。
例如,处理器810用于实现上文方法实施例中由卫星执行的处理相关的操作,收发器830用于实现上文方法实施例中由卫星执行的收发相关的操作。
举例来说,收发器830可以用于发送第一索引;收发器830还用于向第一通信装置发送第一系数。处理器810用于确定第一数量N,所述第一数量为待生成的前导序列的总数,该第一数量N是至少两种前导序列总数中的一种,N为正整数;处理器810还用于确定第一循环移位值,该第一循环移位值用于第一通信装置生成N个前导序列;处理器810还用于根据该第一数量N和该第一循环移位值检测进行随机接入的第一通信装置发送的第一前导序列。作为另一种方案,该通信装置800用于实现上文方法实施例中由终端设备(即第一通信装置)执行的操作。
例如,处理器810用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器830用于实现上文方法实施例中由终端设备执行的收发相关的操作。
举例来说,处理器810用于确定第一数量N,该第一数量是待生成的前导序列的总数,该第一数量N是至少两种前导序列总数中的一种,N为正整数;处理器810还用于根据该第一数量N和第一循环移位值,生成N个前导序列;收发器830,用于发送第一前导序列,该第一前导序列为N个前导序列中的一个,该第一前导序列用于进行随机接入。收发器830还用于接收网络设备发送的第一索引;收发器830还用于接收网络设备发送的第一指示信息。本申请实施例还提供一种通信装置900,该通信装置900可以是终端设备也可以是芯片。该通信装置900可以用于执行上述方法实施例中由第一通信装置所执行的操作。当该通信装置900为终端设备时,图16示出了一种简化的第一通信装置的结构示意图。 便于理解和图示方便,图16中,终端设备以手机作为例子。如图16所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图16所示,终端设备包括收发单元910和处理单元920。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元910用于执行终端设备的接收操作。处理单元920用于执行终端设备侧的处理动作。
应理解,图16仅为示例而非限定,上述包括收发单元和处理单元的终端设备(第一通信装置的一例)可以不依赖于图16所示的结构。
当该通信装置900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种通信装置1000,该通信装置1000可以是卫星也可以是芯片。该通信装置1000可以用于执行上述方法实施例中由卫星所执行的操作。
当该通信装置1000为卫星时,例如为卫星基站。图17示出了一种简化的基站结构示意图。基站包括1010部分与1020部分。1010部分主要用于射频信号的收发以及射频信 号与基带信号的转换;1020部分主要用于基带处理,对基站进行控制等。1010部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1020部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1010部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1010部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1010部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1020部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1010部分的收发单元用于执行实施例中由卫星执行的收发相关的步骤;1020部分用于执行由卫星执行的处理相关的步骤。
应理解,图17仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图17所示的结构。
当该通信装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由卫星执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由卫星执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的卫星与终端设备。
作为一个示例,该通信系统包括:上文实施例中的卫星与终端设备。
上述提供的任一种无线通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、 iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或卫星,或者,是终端设备或卫星中能够调用程序并执行程序的功能模块。
本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信装置确定第一数量N,所述第一数量是待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;
    所述第一通信装置根据所述第一数量N和第一循环移位值,生成N个前导序列;
    所述第一通信装置发送第一前导序列,所述第一前导序列为所述N个前导序列中的一个,所述第一前导序列用于进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收网络设备发送的第一索引;所述第一通信装置根据第一索引和第一映射关系确定第二循环移位值,所述第一映射关系用于指示第一索引与第二循环移位值之间的对应关系;所述第一装置根据第一系数和所述第二循环移位值,确定所述第一循环移位值。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一系数由通信协议规定;或者
    所述第一系数由所述网络设备指示。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收网络设备发送的第一索引;所述第一通信装置根据所述第一索引、第一参数和第二映射关系确定第一循环移位值,所述第二映射关系用于指示第一索引与第一循环移位值组的对应关系,所述第一循环移位值组包括至少两个循环移位值,所述第一参数用于从所述至少两个循环移位值中确定所述第一循环移位值,所述第一参数用于指示所述第一通信装置当前使用的定位精度或当前待接入的系统。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收所述网络设备发送的第一指示信息;
    所述第一通信装置确定第一数量N,包括:
    所述第一通信装置根据所述第一指示信息确定所述第一数量N。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或
    所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于所述N为64,128,256或512中的一种。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述第一通信装置根据所述第一数量N和第一循环移位值,生成N个前导序列之前,所述方法还包括:
    所述第一通信装置确定第一循环移位值满足所述第一通信装置当前的定位精度对循环移位值的要求。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一前导序列用于 所述第一通信装置在第一时域资源上进行随机接入,其中
    所述第一时频资源与所述第一循环移位值对应;或者
    所述第一时频资源与所述第一通信装置当前的定位精度对应;或者
    所述第一时频资源与所述第一通信装置待接入的系统对应;或者
    所述第一时频资源与所述第一数量对应。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或
    所述第一循环移位值是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
  11. 一种无线通信的方法,其特征在于,包括:
    第二通信装置确定第一数量N,所述第一数量为待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;
    所述第二通信装置确定第一循环移位值,所述第一循环移位值用于第一通信装置生成N个前导序列;
    所述第二通信装置根据所述第一数量N、所述第一循环移位值检测进行随机接入的所述第一通信装置发送的第一前导序列;所述第一前导序列为所述N个前导序列中的一个。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送第一索引,所述第一索引用于指示第二循环移位值,所述第一索引和所述第二循环移位值满足第一映射关系。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一系数,所述第一系数用于根据所述第二循环移位值确定所述第一循环移位值。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一索引,所述第一索引用于指示第一循环移位值组,所述第一索引和所述第一循环移位值组满足第二映射关系,所述第一循环移位值组包括至少两个循环移位值,所述至少两个循环移位值包括第一循环移位值,所述第一循环移位值与第一参数对应,所述第一参数用于指示定位精度或待接入的系统。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于确定所述第一数量N。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,
    所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或
    所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于所述N为64,128,256或512中的一种。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置分配第一时域资源,所述第一时域资源用于所述第一通信装置进行随机接入,其中,
    所述第一时频资源与所述第一循环移位值对应;或者
    所述第一时频资源与所述第一通信装置当前的定位精度对应;或者
    所述第一时频资源与所述第一通信装置待接入的系统对应;或者
    所述第一时频资源与所述第一数量对应。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,
    所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或
    所述第一循环移位值是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一数量N,所述第一数量是待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;
    所述处理单元还用于根据所述第一数量N和第一循环移位值,生成N个前导序列;
    收发单元,用于发送第一前导序列,所述第一前导序列为所述N个前导序列中的一个,所述第一前导序列用于进行随机接入。
  21. 根据权利要求20所述的装置,其特征在于,所述收发单元还用于接收网络设备发送的第一索引;
    所述处理单元还用于根据第一索引和第一映射关系确定第二循环移位值,所述第一映射关系用于指示第一索引与第二循环移位值之间的一一对应关系;以及
    所述处理单元还用于根据第一系数和所述第二循环移位值,确定所述第一循环移位值。
  22. 根据权利要求21所述的装置,其特征在于,所述第一系数由通信协议规定;或者
    所述第一系数由所述处理单元指示。
  23. 根据权利要求20所述的装置,其特征在于,所述收发单元还用于接收网络设备发送的第一索引;
    所述处理单元还用于根据所述第一索引、第一参数和第二映射关系确定第一循环移位值,所述第二映射关系用于指示第一索引与第一循环移位值组的对应关系,所述第一循环移位值组包括至少两个循环移位值,所述第一参数用于从所述至少两个循环移位值中确定所述第一循环移位值,所述第一参数用于指示所述处理单元当前使用的定位精度或当前待接入的系统。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述收发单元还用于接收网络设备发送的第一指示信息;所述处理单元根据所述第一指示信息确定所述第一数量N。
  25. 根据权利要求20至24中任一项所述的装置,其特征在于,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总数,和/或
    所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通 信装置与地面网络通信时用于生成前导序列的循环移位值。
  26. 根据权利要求20至25中任一项所述的装置,其特征在于所述N为64,128,256或512中的一种。
  27. 根据权利要求20至26中任一项所述的装置,其特征在于,在所述处理单元根据所述第一数量N和第一循环移位值,生成N个前导序列之前,所述处理单元还用于确定第一循环移位值满足所述处理单元当前的定位精度对循环移位值的要求。
  28. 根据权利要求20至27中任一项所述的装置,其特征在于,所述第一前导序列用于所述通信装置在第一时域资源进行随机接入,其中
    所述第一时频资源与所述第一循环移位值对应;或者
    所述第一时频资源与所述第一通信装置当前的定位精度对应;或者
    所述第一时频资源与所述第一通信装置待接入的系统对应;或者
    所述第一时频资源与所述第一数量对应。
  29. 根据权利要求20至28中任一项所述的装置,其特征在于,所述第一数量是根据所述处理单元待接入的网络设备的历史接入终端设备的定位精度确定的;和/或
    所述第一循环移位值是根据所述第处理单元待接入的网络设备的历史接入终端设备的定位精度确定的。
  30. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一数量N,所述第一数量为待生成的前导序列的总数,所述第一数量N是至少两种前导序列总数中的一种,N为正整数;
    所述处理单元还用于确定第一循环移位值,所述第一循环移位值用于第一通信装置生成N个前导序列;
    收发单元,用于接收所述第一通信装置发送的第一前导序列,所述第一前导序列为所述N个前导序列中的一个;
    所述第一数量N和所述第一循环移位值用于所述通信装置检测所述第一前导序列。
  31. 根据权利要求30所述的装置,其特征在于,所述收发单元还用于发送第一索引,所述第一索引用于指示第二循环移位值,所述第一索引和所述第二循环移位值满足第一映射关系。
  32. 根据权利要求31所述的装置,其特征在于,所述收发单元还用于向所述第一通信装置发送第一系数,所述第一系数用于根据所述第二循环移位值确定所述第一循环移位值。
  33. 根据权利要求30所述的装置,其特征在于,所述收发单元还用于向所述第一通信装置发送第一索引,所述第一索引用于指示第一循环移位值组,所述第一索引和所述第一循环移位值组满足第二映射关系,所述第一循环移位值组包括至少两个循环移位值,所述至少两个循环移位值包括第一循环移位值,所述第一循环移位值与第一参数对应,所述第一参数用于指示定位精度或待接入的系统。
  34. 根据权利要求31至33中任一项所述的装置,其特征在于,所述收发单元还用于向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述第一数量N。
  35. 根据权利要求30至34中任一项所述的装置,其特征在于,所述第一数量大于或等于第二数量,所述第二数量是所述第一通信装置与地面网络通信时生成的前导序列的总 数,和/或
    所述第一循环移位值小于或等于第二循环移位值,所述第二循环移位值是所述第一通信装置与地面网络通信时用于生成前导序列的循环移位值。
  36. 根据权利要求30至35中任一项所述的装置,其特征在于所述N为64,128,256或512中的一种。
  37. 根据权利要求30至36中任一项所述的装置,其特征在于,所述处理单元还用于分配第一时域资源,所述第一时域资源用于所述第一通信装置进行随机接入,其中,
    所述第一时频资源与所述第一循环移位值对应;或者
    所述第一时频资源与所述第一通信装置当前的定位精度对应;或者
    所述第一时频资源与所述第一通信装置待接入的系统对应;或者
    所述第一时频资源与所述第一数量对应。
  38. 根据权利要求30至37中任一项所述的装置,其特征在于,所述第一数量是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的;和/或
    所述第一循环移位值是根据所述第一通信装置待接入的网络设备的历史接入终端设备的定位精度确定的。
  39. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至10中任一项所述的方法被执行,或
    权利要求11至19中任一项所述的方法被执行。
  40. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令被执行时,使得
    权利要求1至10中任一项所述的方法被执行,或
    权利要求11至19中任一项所述的方法被执行。
  41. 一种芯片系统,其特征在于,包括:通信接口和处理电路,所述通信接口用于获取待处理的数据,所述处理电路用于按照权利要求1至10中任意一项所述的方法处理所述待处理的数据。
  42. 一种芯片系统,其特征在于,包括:通信接口和处理电路,所述处理单路用于按照权利要求11至19中任意一项所述的方法确定指示信息,所述通信接口用于发送所述指示信息。
  43. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得权利要求1至10中任一项所述的方法被执行,或者,使得权利要求11至19任一项所述的方法被执行。
  44. 一种计算机程序,当其在计算机上运行时,使得权利要求1至10中任一项所述的方法被执行,或者,使得权利要求11至19任一项所述的方法被执行。
  45. 一种通信系统,包括权利要求20至29任一项所述的通信装置和权利要求30至38任一项所述的通信装置。
PCT/CN2021/110260 2020-08-06 2021-08-03 一种无线通信的方法及装置 WO2022028408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21854266.0A EP4188027A4 (en) 2020-08-06 2021-08-03 WIRELESS COMMUNICATION METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010784243.4 2020-08-06
CN202010784243.4A CN114071784A (zh) 2020-08-06 2020-08-06 一种无线通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2022028408A1 true WO2022028408A1 (zh) 2022-02-10

Family

ID=80119984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110260 WO2022028408A1 (zh) 2020-08-06 2021-08-03 一种无线通信的方法及装置

Country Status (3)

Country Link
EP (1) EP4188027A4 (zh)
CN (1) CN114071784A (zh)
WO (1) WO2022028408A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136701A (zh) * 2022-05-24 2022-09-30 北京小米移动软件有限公司 波束确定方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873714A (zh) * 2009-04-27 2010-10-27 中兴通讯股份有限公司 一种物理随机接入信道循环移位限制的配置方法和系统
CN108809597A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 前导序列循环移位量确定方法及其集合配置方法与装置
CN109076598A (zh) * 2016-04-28 2018-12-21 富士通株式会社 Ra-rnti的确定装置、rar的传输装置、方法以及通信系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284350A1 (en) * 2007-06-07 2010-11-11 Nokia Corporation Apparatus, method and computer program product providing flexible preamble sequence allocation
EP3753362B1 (en) * 2018-02-14 2024-01-03 InterDigital Patent Holdings, Inc. Random access in a non-terrestrial network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873714A (zh) * 2009-04-27 2010-10-27 中兴通讯股份有限公司 一种物理随机接入信道循环移位限制的配置方法和系统
CN109076598A (zh) * 2016-04-28 2018-12-21 富士通株式会社 Ra-rnti的确定装置、rar的传输装置、方法以及通信系统
CN108809597A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 前导序列循环移位量确定方法及其集合配置方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4188027A4 *

Also Published As

Publication number Publication date
CN114071784A (zh) 2022-02-18
EP4188027A4 (en) 2024-01-17
EP4188027A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US11968718B2 (en) Random access preamble selection
WO2016127392A1 (en) Methods and devices for random access
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
CN111837446B (zh) 随机接入的方法和通信设备
RU2758784C1 (ru) Пользовательское устройство
US20170201974A1 (en) Random access method and device in mobile communication system
CN110300455B (zh) 随机接入资源指示、随机接入方法、基站、终端及装置
EP4084553A1 (en) Information transmission method, terminal device and network device
WO2022028408A1 (zh) 一种无线通信的方法及装置
WO2021035559A1 (en) Methods and apparatus for reducing overhead in a random access procedure
WO2022067519A1 (zh) 随机接入方法和终端设备
CN109792785B (zh) 用于竞争随机接入的方法、网络设备和终端设备
US20240023095A1 (en) Method for transmitting data channel, terminal device and network device
WO2023071843A1 (zh) 资源映射方法与装置、终端和网络设备
US20220150987A1 (en) Method and apparatus for random access in wireless communication system
WO2019178728A1 (zh) 一种随机接入方法及装置
WO2018229555A2 (en) Beam refinement and collision avoidance
EP3619991B1 (en) A communications device, method and copmputer program for transmission of a message in response to a random access response comprising multiple grants
WO2023020542A1 (zh) 随机接入的方法和装置
WO2023138624A1 (zh) 通信方法与装置、终端设备
WO2023065367A1 (zh) 无线通信的方法、终端设备和网络设备
JP2020505837A (ja) 無線通信ネットワークにおける制御プレーンレイテンシ低減
WO2024031587A1 (zh) 通信方法、终端设备和网络设备
WO2024036538A1 (zh) 重复传输方法、终端设备和网络设备
US20240163777A1 (en) Network slicing-based random access method and apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021854266

Country of ref document: EP

Effective date: 20230222