WO2022028166A1 - 一种资源分配方法及装置、通信设备 - Google Patents

一种资源分配方法及装置、通信设备 Download PDF

Info

Publication number
WO2022028166A1
WO2022028166A1 PCT/CN2021/104027 CN2021104027W WO2022028166A1 WO 2022028166 A1 WO2022028166 A1 WO 2022028166A1 CN 2021104027 W CN2021104027 W CN 2021104027W WO 2022028166 A1 WO2022028166 A1 WO 2022028166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cce aggregation
aggregation level
dci format
spectral efficiency
pdcch
Prior art date
Application number
PCT/CN2021/104027
Other languages
English (en)
French (fr)
Inventor
庾小峰
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022028166A1 publication Critical patent/WO2022028166A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a resource allocation method and device, and communication equipment.
  • 5G New Radio (5G NR) communication technology defines three scenarios: Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (uRLLC), Massive Machine Type of Communication (mMTC), all three scenarios put forward higher requirements for NR system capacity.
  • eMBB Enhanced Mobile Broadband
  • uRLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type of Communication
  • the NR system Similar to Long Term Evolution (LTE), the NR system still uses the Physical Downlink Control Channel (PDCCH) to carry the Downlink Control Information (DCI), which is composed of a set of physical resources. particle composition. Compared with the LTE system, the NR system has a larger system bandwidth (up to 400MHz). If the PDCCH still occupies the entire bandwidth, it will cause a serious waste of resources and increase the complexity of blind detection of User Equipment (UE). .
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the minimum resource unit that can be allocated to the PDCCH and the number of resource units are defined as integer multiples (1, 2, 4, 8, 16) of the control channel element (CCE), which are called CCE aggregation levels.
  • CCE control channel element
  • Table 1 that is, the CCE aggregation level is used to measure the performance of the PDCCH: when the length of the PDCCH code stream is determined, the higher the CCE aggregation level, the better the performance of the PDCCH, and the lower the requirements for channel conditions.
  • the more resources occupied by the control channel the fewer users scheduled in a single slot; the lower the CCE aggregation level, the worse the performance of the PDCCH, which will increase the probability of missed detection.
  • the transmission will also have errors, reducing the throughput performance of the UE.
  • PDCCH bearer information is divided into public control information and dedicated control information according to different scopes, and the corresponding physical resource area is also divided into public search space and dedicated search space.
  • the NR protocol gives clear restrictions on the assignable aggregation degree levels on these two types of search spaces, the number of searches under each aggregation level, and the total number of searches: see Tables 2, 3, 4, and Table 2 is the CCE aggregation level supported by the NR system and the number of candidate sets (that is, the number of searches) supported by each aggregation level.
  • Table 3 shows the Type0-PDCCH CSS, Type0A-PDCCH CSS, Type2 of the common search space (Common Search Space, CSS).
  • Table 4 shows the maximum number of candidate sets that can be searched by the UE in a single time slot (ie, the total number of searches), and Table 5 shows the number of candidate sets that the UE can search in a single time slot. The maximum number of CCEs that can be searched in the slot.
  • Table 5 The maximum number of CCEs supported by the UE in a time slot
  • the embodiments of the present application provide a resource allocation method, apparatus, and communication device, which are used to solve the problem of unreasonable resource allocation of PDCCH, so as to meet the performance requirements of the 5G NR system for system capacity.
  • an embodiment of the present application provides a resource allocation method, including:
  • the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the determining the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level includes:
  • the corresponding spectral efficiency of each DCI format under the at least one CCE aggregation level is determined.
  • the at least one CCE aggregation level is a CCE aggregation level for which the number of searches is configured to be non-zero among the CCE aggregation levels supported by the NR system.
  • each of the DCI formats is DCI format 0_0, or, DCI format 0_1, or, DCI format 1_0, or, DCI format 1_1.
  • the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH, including :
  • mapping table determining, according to the mapping table, at least one spectral efficiency corresponding to the DCI format of the first DCI under the at least one CCE aggregation level
  • mapping table determine the CCE aggregation level corresponding to the DCI format of the first DCI and the second spectral efficiency; and use the corresponding CCE aggregation level as the CCE aggregation level of the PDCCH.
  • an embodiment of the present application provides a communication device, including: a memory, a transceiver, and a processor:
  • the memory for storing computer programs
  • the transceiver configured to send and receive data under the control of the processor
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the processor when the processor is used to determine the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level, the processor is specifically used for:
  • the corresponding spectral efficiency of each DCI format under the at least one CCE aggregation level is determined.
  • the at least one CCE aggregation level is a CCE aggregation level for which the number of searches is configured to be non-zero among the CCE aggregation levels supported by the NR system.
  • each of the DCI formats is DCI format 0_0, or, DCI format 0_1, or, DCI format 1_0, or, DCI format 1_1.
  • the processor is configured to determine the PDCCH from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • CCE aggregation grade specifically for:
  • mapping table determining, according to the mapping table, at least one spectral efficiency corresponding to the DCI format of the first DCI under the at least one CCE aggregation level
  • mapping table determine the CCE aggregation level corresponding to the DCI format of the first DCI and the second spectral efficiency; and use the corresponding CCE aggregation level as the CCE aggregation level of the PDCCH.
  • an embodiment of the present application provides a resource allocation device, including:
  • a first determining unit configured to determine the corresponding spectral efficiency of each downlink control information DCI format under at least one control channel unit CCE aggregation level, and generate a mapping table of the DCI format, the spectral efficiency and the CCE aggregation level;
  • the second determining unit is configured to determine the CCE aggregation level of the PDCCH from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • a computer-readable storage medium stores computer instructions, which, when the computer instructions are executed on a computer, cause the computer to execute the first aspect and any possible embodiment. method described in.
  • a computer program product containing instructions, which, when the computer program product is run on a computer, causes the computer to execute a resource allocation method described in the foregoing various possible implementation manners.
  • the embodiments of the present application provide a resource allocation method, determine the spectral efficiency corresponding to each downlink control information DCI format at least one control channel unit CCE aggregation level, and generate the DCI format, spectral efficiency and A mapping table of CCE aggregation levels; the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the CCE aggregation level is dynamically determined according to the DCI format, so that the PDCCH resources are allocated reasonably, the number of users that can be allocated in a single time slot is increased, and the capacity performance of the system is effectively improved.
  • FIG. 1 is an application scenario diagram provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of generating a DCI format, spectral efficiency and CCE aggregation level mapping table provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of determining the spectral efficiency corresponding to current scheduling information according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of determining a currently scheduled CCE aggregation level according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a resource allocation apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Scheme 1 Determine the UE-level CCE aggregation level based on downlink measurement, and divide the channel quality information (Channel quality indicator, CQI) fed back by the UE into several intervals according to the simulation results obtained by the preset algorithm, and each interval corresponds to a CCE aggregation level , when the PDCCH resource is allocated, the CCE aggregation level is directly determined according to the interval corresponding to the CQI of the current stage.
  • CQI Channel quality indicator
  • Scheme 2 On the basis of scheme 1, map CQI into spectral efficiency (SE), and smooth the SE mapped after each CQI report, and quantify the smoothed result into several levels, each level Corresponding to a CCE aggregation level, the CCE aggregation level is determined according to the spectral efficiency obtained by the CQI mapping at the current stage during PDCCH resource allocation.
  • SE spectral efficiency
  • Scheme 3 On the basis of schemes 1 and 2, the physical uplink control channel (PUCCH) and physical downlink shared channel (PUSCH) activation detection results are introduced, and the detection results are used for smoothing processing.
  • the SE After the SE is corrected, for example, if the PUCCH or PUSCH detection result is active, the SE will be corrected upward (that is, the CCE aggregation level where the current CQI is located), otherwise the SE will be corrected downward (that is, the CCE aggregation level where the current CQI is located).
  • the result is quantized into several levels, each level corresponds to a CCE aggregation level, and the CCE aggregation level is determined by mapping the CQI of the current stage and correcting the SE obtained during PDCCH resource allocation.
  • the length of DCI in the NR system is variable, and there are many factors that affect the length of DCI (for example, DCI format, parameter configuration, etc.).
  • DCI streams of different lengths are carried on the same number of CCEs, and their corresponding code rates or spectral efficiency will be completely different, and the corresponding demodulation performance requirements are also different. If the code rate is too low, the demodulation performance requirements are low, which will cause waste of CCE, so that the number of users scheduled on a single time slot is relatively small, which reduces the network system capacity; if the code rate is too high, the demodulation performance requirements are high, which will cause The bit error rate of PDCCH is high, which increases the network packet loss rate and increases the network delay.
  • the core of the existing three technical solutions is how to determine the CCE aggregation level at the UE level. After the CCE aggregation level at the UE level is determined, the determined CCE aggregation level is directly used when the PDCCH is scheduled, without considering the pending CCE aggregation level. Influence of DCI bit length carried by PDCCH on system performance. Therefore, when allocating PDCCH resources in the prior art, the appropriate CCE aggregation level cannot be dynamically matched according to the DCI bit length.
  • an embodiment of the present application provides a resource allocation method, which determines the corresponding spectral efficiency of each downlink control information DCI format under at least one control channel unit CCE aggregation level, and generates the DCI format, spectral efficiency A mapping table with CCE aggregation levels; the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the CCE aggregation level is dynamically determined according to the DCI format, so that the PDCCH resources are allocated reasonably, the number of users that can be allocated in a single time slot is increased, and the capacity performance of the system is effectively improved.
  • FIG. 1 is an application scenario to which the technical solutions of the embodiments of the present application can be applied.
  • the application scenario shown in FIG. 1 includes a terminal device 10 and a network side device 11, wherein the terminal device 10 can be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook etc.
  • the network side device 11 may be an access network device, a core network device, etc., and the access network device may be a commonly used base station, for example, an evolved base station (evolved Node Base station, eNB), or a network side in a 5G system Equipment such as next generation Node Base station (gNB) or equipment such as Transmission and Reception Point.
  • eNB evolved Node Base station
  • gNB next generation Node Base station
  • the network side device 11 When the network side device 11 detects the configuration or change of the PDCCH parameters of the physical downlink control channel, it determines the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level, and generates the DCI format, spectral efficiency Mapping table with CCE aggregation level.
  • the network side device 11 receives the spectral efficiency SE reported by the terminal device 10 through CQI mapping, and corrects the spectral efficiency. format, and determine the CCE aggregation level of the PDCCH from the mapping table.
  • the CCE aggregation level is dynamically determined according to the DCI format, so that the PDCCH resources are allocated reasonably, the number of users that can be allocated in a single time slot is increased, and the capacity performance of the system is effectively improved.
  • FIG. 2 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application. The process of the resource allocation method in FIG. 2 is described as follows:
  • Step 201 Determine the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level, and generate a mapping table of DCI format, spectral efficiency and CCE aggregation level.
  • the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level can be determined when the PDCCH parameters are configured or changed.
  • the at least one CCE aggregation level is a CCE aggregation level in which the number of searches is configured to be non-zero among the CCE aggregation levels supported by the NR system. For example, aggregate levels 1, 2, 4, 8, 16.
  • the at least CCE aggregation level may be any CCE aggregation level whose search times configuration is not zero, or may be a set of all CCE aggregation levels whose search times configuration is not zero. limited.
  • the communication device completes the PDCCH parameter configuration for it.
  • the DCI format may be one or more of DCI format 0_0, DCI format 0_1, DCI format 1_0, and DCI format 1_1.
  • DCI format 0_0 and DCI format 0_1 are used to schedule Physical Uplink Shared Channel (PUSCH) resources;
  • DCI format 1_0 and DCI format 1_1 are used to schedule Physical Downlink Shared Channel (PDSCH) resource.
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the determining the spectral efficiency corresponding to each downlink control information DCI format under at least one control channel element CCE aggregation level includes: determining, according to the configuration parameter of the PDCCH, the Bit length; according to the bit length, determine the corresponding spectral efficiency of each DCI format under the at least one CCE aggregation level.
  • the process of determining the bit length of each DCI format may be: according to the UE-level parameter configuration carried in the PDCCH configuration information, determine whether each field in the DCI exists and its corresponding length. , the sum of the lengths of each field is the bit length of the DCI.
  • DCI format 1_0 includes: Frequency Domain Resource Assignment (FDRA), Time Domain Resource Assignment (TDRA), Virtual Resource Block (Virtual Resource Assignment).
  • FDRA Frequency Domain Resource Assignment
  • TDRA Time Domain Resource Assignment
  • VRB Virtual Resource Block
  • Physical Resource Block Physical Resource Block
  • PRB Physical Resource Block
  • HARQ Hybrid Automatic Repeat reQuest
  • the length of the frequency domain resource allocation indication is related to the size of the downlink (Band Width Part, BWP), the length of the time domain resource allocation indication is 4 bits, the length of the VRB to PRB mapping is 1 bit, and the length of the modulation and coding strategy is 5 bits. Bit, the length of the HARQ redundancy version is 2 bits, and the length of the System Information Indicator is 1 bit.
  • the communication device When determining the bit length of the DCI format 1_0, the communication device first determines the length of the frequency domain resource allocation indication according to the BWP size in the UE-level configuration parameter of the PDCCH, and then sequentially determines whether other fields in the DCI format 1_0 exist, and the length of each field, The bit length of DCI format 1_0 can be obtained by adding the bit length of each field.
  • the communication device may, at the moment of initial user access, handover in, re-establishment in, BWP handover, change of related parameters, etc., calculate the location of each DCI format in the DCI. corresponding spectral efficiency under the at least one CCE aggregation level.
  • the communication device determines the bit length of each DCI format according to the configuration parameter of the PDCCH, and determines, according to the bit length, the at least one CCE aggregation level of each DCI format After the corresponding spectral efficiency is determined, a mapping table of DCI format, spectral efficiency and CCE aggregation level can be generated.
  • the communication device respectively calculates the data carried at aggregation levels 1, 2, 4, and 8 for each of the DCI formats.
  • the spectral efficiency under 16, and stored in DCI_Format x_x_SE_For_CCELevel x according to the DCI format, CCE aggregation level, the DCI_Format x_x_SE_For_CCELevel x is used to store the spectral efficiency of each DCI format under each order of aggregation levels.
  • FIG. 3 is a schematic flowchart of generating a mapping table of DCI format, spectral efficiency and CCE aggregation level according to an embodiment of the present application. The purpose of this process is to set the current configuration The spectral efficiency corresponding to each DCI format under different aggregation levels is calculated below, and the following is a related description of the process.
  • Step 301 Detect whether PDCCH parameters are configured or changed.
  • Step 302 DCI Format screening.
  • DCI formats 0_0, DCI format 0_1, DCI format 1_0, and DCI format 1_1 are screened out from the DCI formats supported by the NR system.
  • Step 303 CCE aggregation level filtering.
  • step 302 screen out the CCE aggregation levels whose search times are configured to be non-0;
  • Step 304 DCI bit length is determined.
  • Step 305 Spectral efficiency calculation.
  • steps 301-304 traverse each DCI format and CCE aggregation level one by one, calculate the spectral efficiency under the CCE aggregation level of all non-zero search times, and store them according to the DCI format and CCE aggregation level In a two-dimensional table DCI_Format x_x_SE_For_CCELevel x, for subsequent determination of the CCE aggregation level corresponding to each PDCCH scheduling.
  • Step 202 Determine the CCE aggregation level of the PDCCH from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the first spectral efficiency is obtained by mapping and correcting the CQI reported by the current UE (for example, when performing a call service).
  • the CCE aggregation level of the PDCCH can be understood as the number of CCE resources allocated by the communication device to the user terminal UE currently accessing the network.
  • the first DCI may be understood as scheduling information delivered by the communication device to the UE.
  • the CCE aggregation level of the PDCCH is determined from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH, comprising: determining, according to the mapping table, at least one spectral efficiency corresponding to the DCI format of the first DCI under the at least one CCE aggregation level; and determining, from the at least one spectral efficiency, a spectral efficiency related to the current channel a second spectral efficiency with the smallest spectral efficiency difference and less than the first spectral efficiency; from the mapping table, determining a CCE aggregation level corresponding to the DCI format of the first DCI and the second spectral efficiency; The corresponding CCE aggregation level is used as the CCE aggregation level of the PDCCH.
  • the communication device determines that the current scheduling message is a UE-level dedicated scheduling message; determines the DCI format in the scheduling information, and the spectral efficiencies SE_1, SE_2, SE_4, SE_8, SE_16; determine the spectral efficiency SE_X obtained after the CQI mapping and correction reported by the current UE; compare SE_X with SE_1, SE_2, SE_4, SE_8, SE_16 respectively, and find the spectral efficiency SE_i that is closest but smaller than SE_X; The DCI format, spectral efficiency SE_i and the table DCI_Format x_x_SE_For_CCELevel x, determine the aggregation level corresponding to the spectral efficiency SE_i as the CCE aggregation level of this PDCCH scheduling.
  • SE_1 Spectral efficiency corresponding to aggregation level 1 when the DCI format has been determined
  • SE_2 Spectral efficiency corresponding to aggregation level 2 when the DCI format has been determined
  • SE_4 Spectral efficiency corresponding to aggregation level 4 when the DCI format has been determined
  • SE_8 Spectral efficiency corresponding to aggregation level 8 when the DCI format has been determined
  • SE_16 Spectral efficiency corresponding to aggregation level 16 when the DCI format has been determined
  • SE_i Spectral efficiency when the DCI format has been determined and the aggregation level is uncertain, the value of i may be 1, 2, 4, 8, and 16;
  • SE_X The corrected spectral efficiency, the result obtained by modifying the SE after CQI mapping fed back by the UE based on the current channel measurement (eg, PUCCH or PUSCH detection result), is used to indicate the channel quality of the current channel.
  • FIG. 4 is a schematic flowchart of determining the spectral efficiency corresponding to the current scheduling information. The purpose of this process is to determine when PDCCH scheduling occurs. The spectral efficiency of channel quality is triggered by the PDCCH scheduling message.
  • the specific process is as follows:
  • Step 401 Schedule message type screening.
  • Step 402 Obtain the spectral efficiency of the current DCI format at each aggregation level.
  • the table DCI_Format x_x_SE_For_CCELevel x may be looked up according to the DCI format to obtain the spectral efficiencies SE_1, SE_2, SE_4, SE_8, SE_16 under each aggregation level.
  • Step 403 Compare the corrected spectral efficiency SE_X with SE_1, SE_2, SE_4, SE_8, SE_16 respectively, and find out the spectral efficiency SE_i that is closest to but smaller than SE_X.
  • Step 501 Determine that the current scheduling message is a UE-level dedicated scheduling message.
  • step 501 For the description of step 501, refer to the description of step 401.
  • Step 502 Determine the currently scheduled CCE aggregation level.
  • an embodiment of the present application provides a resource allocation apparatus (for example, the network-side device described above).
  • the apparatus includes:
  • a first determining unit 601 configured to determine the corresponding spectral efficiency of each downlink control information DCI format under at least one control channel unit CCE aggregation level, and generate a mapping table of DCI format, spectral efficiency and CCE aggregation level;
  • the second determining unit 602 is configured to determine the CCE aggregation level of the PDCCH from the mapping table according to the first spectral efficiency of the downlink physical control channel PDCCH and the DCI format of the first DCI carried by the PDCCH.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application provides a communication device (for example, the network-side device described above).
  • the communication device includes at least one processor 701 and a communication device connected to the at least one processor.
  • the memory 702 the specific connection medium between the processor 701 and the memory 702 is not limited in the embodiment of the present application.
  • the connection between the processor 701 and the memory 702 is taken as an example through the bus 700.
  • Bold lines indicate that the connection manners between other components are only for schematic illustration and are not intended to be limiting.
  • the bus 700 can be divided into an address bus, a data bus, a control bus, etc. For convenience, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the communication device in this embodiment of the present application may further include a transceiver 703 .
  • the transceiver 703 is, for example, a network port, and the communication device can receive data or send data through the transceiver 703 .
  • the memory 702 stores instructions that can be executed by at least one processor 701, and at least one processor 701 can execute the steps included in the foregoing method for resource allocation by executing the instructions stored in the memory 702.
  • the processor 701 is the control center of the communication device, and can use various interfaces and lines to connect various parts of the entire device, and by running or executing the instructions stored in the memory 702 and calling the data stored in the memory 702, the communication device's Various functions and processing data for overall monitoring of communication equipment.
  • the processor 701 may include one or more processing units, and the processor 701 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system and application programs, and the like, and the modem processor Mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may also not be integrated into the processor 701 .
  • the processor 701 and the memory 702 may be implemented on the same chip, and in some embodiments, they may be implemented separately on separate chips.
  • the processor 701 may be a general-purpose processor, such as a central processing unit (CPU), a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may be The methods, steps, and logic block diagrams disclosed in the embodiments of the present application are realized or executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the resource allocation method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 702 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules.
  • the memory 702 may include at least one type of storage medium, such as flash memory, hard disk, multimedia card, card-type memory, random access memory (Random Access Memory, RAM), Static Random Access Memory (Static Random Access Memory, SRAM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Memory, Disk , CD-ROM, etc.
  • Memory 702 is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory 702 in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the code corresponding to the resource allocation method described in the foregoing embodiments can be solidified into the chip, so that the chip can execute the steps of the foregoing resource allocation method during operation.
  • Designing and programming is a well-known technology for those skilled in the art, and details are not repeated here.
  • an embodiment of the present application also provides a storage medium, where computer instructions are stored in the storage medium, and when the computer instructions are executed on a computer, the computer executes the steps of the aforementioned resource allocation method.
  • various aspects of the resource allocation method provided by the present application can also be implemented in the form of a program product, which includes program code, and when the program product runs on the main control device, the program code is used to make
  • the smart device executes the steps in the resource allocation method according to various exemplary embodiments of the present application described above in this specification.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例中提供了一种资源分配方法及装置、通信设备,确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。实现了根据DCI格式动态确定CCE聚合等级,进而使得PDCCH资源合理分配,提高了单时隙可分配的用户数,有效提升系统的容量性能。

Description

一种资源分配方法及装置、通信设备
相关申请的交叉引用
本申请要求在2020年08月05日提交中国专利局、申请号为202010776011.4、申请名称为“一种资源分配方法及装置、通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种资源分配方法及装置、通信设备。
背景技术
5G新空口(5G New Radio,5G NR)通信技术定义了三大场景:增强型移动宽带(Enhanced Mobile Broadband,eMBB)、超可靠、低时延通信(Ultra-Reliable and Low Latency Communications,uRLLC)、海量机器类通信(Massive Machine Type of Communication,mMTC),三种场景对于NR系统容量均提出了较高要求。
与长期演进(Long Term Evolution,LTE)相同的是,NR系统仍然采用物理下行控制信道(Physical Downlink Control Channel,PDCCH)来承载下行控制信息(Downlink Control Information,DCI),它是由一组物理资源粒子组成。相对于LTE系统,NR系统的系统带宽较大(最大可以为400MHz),如果PDCCH依然占据整个带宽,会造成资源的严重浪费,使得用户设备(User Equipment,UE)盲检的复杂度也增大。
因此,NR系统中将PDCCH可分配的最小资源单位以及资源单位数量定义为控制信道单元(Control channel element,CCE)的整数倍(1、2、4、8、16),称之为CCE聚合等级(请参见表1),即用CCE聚合等级大小来衡量PDCCH的性能:在PDCCH码流长度确定的情况下,CCE聚合等级越高, PDCCH的性能越好,对信道条件的要求就越低,但是占用控制信道的资源越多,单时隙调度的用户数越少;CCE聚合等级越低,PDCCH的性能越差,会导致漏检概率增加,一旦控制信息发生漏检,则该次业务数据的传输也就发生错误,降低UE了的吞吐量性能。
表1 NR系统支持的CCE聚合等级及对应的CCE个数
Aggregation Level Number of CCEs
1 1
2 2
4 4
8 8
16 16
与LTE相同的是,NR系统中根据作用域的不同,将PDCCH承载信息分为公共控制信息和专用控制信息,相应的物理资源区域也分为公共搜索空间和专用搜索空间。对于这两类搜索空间上可分配的聚合度等级、以及每种聚合等级下的搜索次数、总的搜索次数,NR协议都给出了明确的限制:请参见表2、3、4,表2是NR系统支持的CCE聚合等级及每种聚合等级支持的候选集个数(即搜索次数),表3是公共搜索空间(Common Search Space,CSS)的Type0-PDCCH CSS、Type0A-PDCCH CSS、Type2-PDCCH CSS上的聚合等级及每种聚合等级对应的候选集个数、表4是UE在单个时隙最大可搜索的候选集个数(即总的搜素次数)、表5是UE在单个时隙最大可搜索的CCE总数。
表2 NR系统不同聚合等级支持的候选集配置
CCE Aggregation Level Number of Candidates
1 0,1,2,3,4,5,6,8
2 0,1,2,3,4,5,6,8
4 0,1,2,3,4,5,6,8
8 0,1,2,3,4,5,6,8
16 0,1,2,3,4,5,6,8
表3 CSS上的聚合等级及对应候选集个数限制
CCE Aggregation Level Number of Candidates
4 4
8 2
16 1
表4 时隙内UE支持的最大候选集个数
Figure PCTCN2021104027-appb-000001
表5 时隙内UE支持的最大CCE个数
Figure PCTCN2021104027-appb-000002
结合上述分析可知,合理高效的分配PDCCH资源,增加单时隙调度的用户数,是提升NR系统容量及其性能的关键。因此,如何合理地PDCCH资源分配是目前亟需解决的问题。
发明内容
本申请实施例提供了一种资源分配方法及装置、通信设备,用以解决PDCCH的资源分配不合理的问题,以满足5G NR系统对系统容量的性能要求。
本申请实施例提供的具体技术方案如下:
第一方面,本申请实施例提供了一种资源分配方法,包括:
确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
在一种可能的设计中,所述确定每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,包括:
根据所述PDCCH的配置参数,确定每种DCI格式的比特长度;
根据所述比特长度,确定所述每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
在一种可能的设计中,所述至少一个CCE聚合等级为所述NR系统支持的CCE聚合等级中搜索次数被配置为非零的CCE聚合等级。
在一种可能的设计中,所述每种DCI格式为DCI format 0_0,或,DCI format 0_1,或,DCI format 1_0,或,DCI format 1_1。
在一种可能的设计中,所述根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级,包括:
根据所述映射表,确定所述第一DCI的DCI格式在所述至少一个CCE聚合等级下对应的至少一个频谱效率;
从所述至少一个频谱效率中,确定出与所述当前信道的频谱效率差值最小且小于所述第一频谱效率的第二频谱效率;
从所述映射表中,确定出与所述第一DCI的DCI格式以及所述第二频谱效率对应的CCE聚合等级;将所述对应的CCE聚合等级作为所述PDCCH的CCE聚合等级。
第二方面,本申请实施例提供了一种通信设备,包括:存储器,收发机,处理器:
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等 级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
在一种可能的设计中,所述处理器在用于确定每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率时,具体用于:
根据所述PDCCH的配置参数,确定所述每种DCI格式的比特长度;
根据所述比特长度,确定所述每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
在一种可能的设计中,所述至少一个CCE聚合等级为所述NR系统支持的CCE聚合等级中搜索次数被配置为非零的CCE聚合等级。
在一种可能的设计中,所述每种DCI格式为DCI format 0_0,或,DCI format 0_1,或,DCI format 1_0,或,DCI format 1_1。
在一种可能的设计中,所述处理器在用于根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级,具体用于:
根据所述映射表,确定所述第一DCI的DCI格式在所述至少一个CCE聚合等级下对应的至少一个频谱效率;
从所述至少一个频谱效率中,确定出与所述当前信道的频谱效率差值最小且小于所述第一频谱效率的第二频谱效率;
从所述映射表中,确定出与所述第一DCI的DCI格式以及所述第二频谱效率对应的CCE聚合等级;将所述对应的CCE聚合等级作为所述PDCCH的CCE聚合等级。
第三方面,本申请实施例提供一种资源分配装置,包括:
第一确定单元,用于确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
第二确定单元,用于根据下行物理控制信道PDCCH的第一频谱效率、所 述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如第一方面及任一可能的实施例中所述的方法。
第五方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行上述各种可能的实现方式中所描述的一种资源分配方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
基于上述技术方案,本申请实施例中提供了一种资源分配方法,确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。实现了根据DCI格式动态确定CCE聚合等级,进而使得PDCCH资源合理分配,提高了单时隙可分配的用户数,有效提升系统的容量性能。
附图说明
图1为本申请实施例提供的应用场景图;
图2为本申请实施例提供的一种资源分配方法的流程示意图;
图3为本申请实施例提供的生成DCI格式、频谱效率和CCE聚合等级映射表的流程示意图;
图4为本申请实施例确定当前调度信息对应的频谱效率的流程示意图;
图5为本申请实施例确定当前调度的CCE聚合等级的流程示意图;
图6为本申请实施例提供的一种资源分配装置的结构示意图;
图7为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的说明书和权利要求书及上述附图中的术语“第一”和“第二”是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的保护。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请中的“多个”可以表示至少两个,例如可以是两个、三个或者更多个,本申请实施例不做限制。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,在不做特别说明的情况下,一般表示前后关联对象是一种“或”的关系。
下面简单的介绍下与本申请解决的技术问题相关的技术。
为了解决前述的技术问题,相关技术中提出了以下几种PDCCH资源的分配策略:
方案1:基于下行测量确定UE级的CCE聚合等级,按照预设算法得到的仿真结果,将UE反馈的信道质量信息(Channel quality indicator,CQI)分成几个区间,每个区间对应一个CCE聚合等级,PDCCH资源分配时直接根据当前阶段的CQI对应的区间,确定CCE聚合等级。
方案2:在方案1的基础上将CQI映射成频谱效率(Spectral efficiency,SE),并对每次CQI上报后映射的SE做平滑处理,将平滑后的结果量化到几个等级,每个等级对应一个CCE聚合等级,PDCCH资源分配时根据当前阶段的CQI映射得到的频谱效率,确定CCE聚合等级。
方案3:在方案1、2的基础上,引入了物理上行控制信道(Physical uplink control channel,PUCCH)、物理下行共享信道(Physical uplink shared channel,PUSCH)激活检测结果,使用该检测结果对平滑处理后的SE进行修正,例如,PUCCH或PUSCH检测结果为激活则向上修正SE(即下调当前CQI所在的CCE聚合等级),否则向下修正SE(即上调当前CQI所在的CCE聚合等级),将修正后的结果量化到几个等级,每个等级对应一个CCE聚合等级,PDCCH资源分配时通过对当前阶段的CQI映射并修正得到的SE,确定CCE聚合等级。
NR系统中DCI的长度可变,存在多种影响DCI长度的因素(例如,DCI格式、参数配置等),不同长度的DCI码流承载在相同数量的CCE上,其对应的码率或频谱效率会截然不同,相应的解调性能要求也不同。若码率偏低则解调性能要求低,会造成CCE浪费,从而使得单个时隙上调度的用户数偏少,降低了网络系统容量;若码率偏高则解调性能要求高,会造成PDCCH误码率偏高,抬高网络丢包率、并增加网络时延。而现有的三种技术方案的核心都落在如何确定UE级的CCE聚合等级,确定了UE级的CCE聚合等级后,在PDCCH发生调度时直接使用已确定的CCE聚合等级,并没有考虑待PDCCH承载的DCI比特长度对系统性能的影响。因此,现有技术在分配PDCCH资源时,无法根据DCI比特长度动态匹配合适的CCE聚合等级。
为了解决以上技术问题,本申请实施例中提供了一种资源分配方法,确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。实现了根 据DCI格式动态确定CCE聚合等级,进而使得PDCCH资源合理分配,提高了单时隙可分配的用户数,有效提升系统的容量性能。
为便于理解本申请实施例提供的技术方案,下面对本申请实施例提供的技术方案使用的应用场景做一些简单的介绍,需要说明的是,以下介绍的应用场景仅用于说明本发明实施例而非限定。在具体实施时,可以根据实际需要灵活地应用本申请实施例提供的技术方案。
请参见图1所示,图1为本申请实施例的技术方案能够适用的一种应用场景。在图1所示的应用场景中,包括终端设备10和网络侧设备11,其中,终端设备10可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本等等。网络侧设备11可以为接入网设备、核心网设备等,接入网设备可以是通常所用的基站,例如,演进型基站(evolved Node Base station,eNB),还可以是5G系统中的网络侧设备(例如下一代基站(next generation Node Base station,gNB)或发送和接收点(Transmission and Reception Point)等设备。
在网络侧设备11在检测到物理下行控制信道PDCCH参数配置或变更时,确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表。
网络侧设备11接收到终端设备10上报的由CQI映射得到频谱效率SE,并对该频谱效率进行修正,并在发生PDCCH调度时,根据修正后的SE、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。实现了根据DCI格式动态确定CCE聚合等级,进而使得PDCCH资源合理分配,提高了单时隙可分配的用户数,有效提升系统的容量性能。
为进一步说明本申请实施例提供的技术方案,下面结合附图以及具体实施方式对此进行详细的说明。虽然本申请实施例提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑上不存在必要因果关系的步骤中,这 些步骤的执行顺序不限于本申请实施例提供的执行顺序。所述方法在实际的处理过程中或者装置执行时,可按照实施例或者附图所示的方法顺序执行或者并行执行。
下面结合图2介绍本申请实施例提供的一种资源分配方法的具体实现过程。
请参见图2所示,图2为本申请实施例提供的一种资源分配方法的流程示意图,图2中的资源分配方法的流程描述如下:
步骤201:确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表。
优选的,可以在PDCCH参数配置或变更时,确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率。
应理解,所述至少一个CCE聚合等级为所述NR系统支持的CCE聚合等级中搜索次数被配置为非零的CCE聚合等级。例如,聚合等级1、2、4、8、16。其中,所述至少CCE聚合等级可以是任一个搜索次数配置不为零的CCE聚和等级,也可以是所有搜索次数配置不为零的CCE聚和等级的集合,本申请的实施例不作具体的限定。
应理解,在用户终端接入网络的时候,通信设备就为其完成PDCCH参数配置。
需要说明的是,所述DCI格式可以为DCI format 0_0、DCI format 0_1、DCI format 1_0、DCI format 1_1中的一种或多种。在NR系统中,DCI format 0_0和DCI format 0_1用于调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源;DCI format 1_0和DCI format 1_1用于调度物理下行共享信道(Physical DownlinkShared Channel,PDSCH)资源。
在一种可能的实现方式中,所述确定每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,包括:根据所述PDCCH的配置参数,确定每种DCI格式的比特长度;根据所述比特长度,确定所述 每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
具体的,所示根据所述PDCCH的配置参数,确定每种DCI格式的比特长度的过程可以是:根据PDCCH配置信息中携带的UE级参数配置,确定DCI中各字段是否存在及其对应的长度,各个字段的长度之和即为DCI的比特长度。
需要说明的是,不同DCI格式的字段不同,字段内容不同。
示例性的,以DCI format 1_0为例,DCI format 1_0中包括:频域资源分配指示(Frequency Domain Resource Assignment,FDRA)、时域资源分配指示(Time Domain Resource Assignment,TDRA)、虚拟资源块(Virtual Resource Block,VRB)到物理资源块(Physical Resource Block,PRB)映射是否交织(VRB to PRB mapping)、调制与编码策略(Modulation and Coding Scheme)、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)冗余版本、系统信息指示(System Information Indicator)。其中,频域资源分配指示的长度和下行(Band Width Part,BWP)大小相关、时域资源分配指示的长度为4位、VRB to PRB mapping的长度为1位、调制与编码策略的长度为5位、HARQ冗余版本的长度2位、System Information Indicator的长度为1位。通信设备在确定DCI format 1_0的比特长度时,首先根据PDCCH的UE级配置参数中BWP大小确定频域资源分配指示的长度,再依次确定DCI format 1_0中其他字段是否存在,以及各个字段的长度,每个字段的比特长度相加即可得到DCI format 1_0的比特长度。
可选的,通信设备(例如,前文所述的网络侧设备)可以在用户初始接入、切换入、重建立入、BWP切换、相关参数变更等时刻,计算所述DCI中每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
在一种可能的实施方式中,通信设备根据所述PDCCH的配置参数,确定每种DCI格式的比特长度,并根据所述比特长度,确定所述每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率之后,可以生成DCI格式、频谱效率与CCE聚合等级的映射表。
示例性的,假设搜索次数配置为非零的聚合等级为聚合等级1、2、4、8、16,通信设备针对所述每种DCI格式,分别计算承载在聚合等级1、2、4、8、16下的频谱效率,且按照DCI格式、CCE聚合等级存储在DCI_Format x_x_SE_For_CCELevel x中,所述DCI_Format x_x_SE_For_CCELevel x为用来存储每种DCI格式在每阶聚合等级下的频谱效率的表格。
具体的生成频谱效率和CCE聚合等级映射表的过程可以参见图3,图3为本申请实施例提供的生成DCI格式、频谱效率和CCE聚合等级映射表的流程示意图,此过程目的是在当前配置下计算出每种DCI格式在不同聚合等级下对应的频谱效率,以下是该流程的相关描述。
步骤301:检测PDCCH参数是否配置或变更。
步骤302:DCI Format筛选。
优选的,从NR系统支持的DCI格式中筛选出DCI format 0_0、DCI format 0_1、DCI format 1_0、DCI format 1_1这四种DCI格式。
步骤303:CCE聚合等级过滤。
针对步骤302中筛选出的四种DCI Formats,筛选出搜索次数配置为非0的CCE聚合等级;
步骤304:DCI比特长度确定。
具体的,在用户初始接入、切换入、重建立入、BWP切换、相关参数变更等时刻,根据PDCCH配置信息中携带的BWP,确定DCI中各字段是否存在及其对应的长度,最终确定DCI的比特长度。
步骤305:频谱效率计算。
在执行完步骤301-304之后,针对每种DCI格式和CCE聚合等级一一进行遍历,分别计算承载在所有非零搜索次数的CCE聚合等级下的频谱效率,并且按照DCI格式、CCE聚合等级存储在一张二维表DCI_Format x_x_SE_For_CCELevel x中,以供后续确定每次PDCCH调度对应的CCE聚合等级。
步骤202:根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH 承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
应理解,所述第一频谱效率就是根据当前UE(例如,进行通话业务时)上报的CQI映射并修正得到的。所述PDCCH的CCE聚合等级可以理解为通信设备分配给当前接入网络的用户终端UE的CCE资源数。所述第一DCI可以理解为通信设备向UE下发的调度信息。
在一种可能的实施方式中,所述根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级,包括:根据所述映射表,确定所述第一DCI的DCI格式在所述至少一个CCE聚合等级下对应的至少一个频谱效率;从所述至少一个频谱效率中,确定出与所述当前信道的频谱效率差值最小且小于所述第一频谱效率的第二频谱效率;从所述映射表中,确定出与所述第一DCI的DCI格式以及所述第二频谱效率对应的CCE聚合等级;将所述对应的CCE聚合等级作为所述PDCCH的CCE聚合等级。
示例性的,通信设备在发生PDCCH调度时,确定当前调度消息为UE级专用调度消息;确定调度信息中的DCI格式,以及该DCI格式对应的各聚合等级下的频谱效率SE_1、SE_2、SE_4、SE_8、SE_16;确定当前UE上报的CQI映射并修正后得到的频谱效率SE_X;将SE_X分别和SE_1、SE_2、SE_4、SE_8、SE_16比较大小,找出最接近但小于SE_X的频谱效率SE_i;根据当前的DCI格式、频谱效率SE_i和表DCI_Format x_x_SE_For_CCELevel x,确定出频谱效率SE_i对应的聚合等级作为本次PDCCH调度的CCE聚合等级。
其中,相关变量定义及其含义如下:
SE_1:DCI格式已确定情况下聚合等级1对应的频谱效率;
SE_2:DCI格式已确定情况下聚合等级2对应的频谱效率;
SE_4:DCI格式已确定情况下聚合等级4对应的频谱效率;
SE_8:DCI格式已确定情况下聚合等级8对应的频谱效率;
SE_16:DCI格式已确定情况下聚合等级16对应的频谱效率;
SE_i:DCI格式已确定、聚合等级不确定时的频谱效率,i取值可能为1、2、4、8、16;
SE_X:修正后的频谱效率,基于当前信道测量(例如,PUCCH或PUSCH检测结果)对UE反馈的CQI映射后的SE进行修正得到的结果,用于指示当前信道的信道质量。
上述可能的实施方式中确定当前调度的频谱效率的具体过程可以参见图4,图4为确定当前调度信息对应的频谱效率的流程示意图,此过程的目的是在发生PDCCH调度时确定出最匹配当前信道质量的频谱效率,由PDCCH调度消息触发,具体过程如下:
步骤401:调度消息类型筛选。
应理解,本申请提供的技术方案适用于解决系统的容量性能,因此,优选的,适用于UE级专用调度消息。因此,在发生PDCCH调度,优先选择UE级专用调度消息。
步骤402:获取当前DCI格式在各聚合等级下的频谱效率。
在一种可能的实施方式中,根据步骤401确定当前调度消息的DCI格式之后,可以按照DCI格式查表DCI_Format x_x_SE_For_CCELevel x,获取各聚合等级下的频谱效率SE_1、SE_2、SE_4、SE_8、SE_16。
步骤403:将修正后的频谱效率SE_X分别和SE_1、SE_2、SE_4、SE_8、SE_16比较大小,找出最接近但小于SE_X的频谱效率SE_i。
在确定出最适合当前信道条件的频谱效率SE_i之后,就需要确定PDCCH调度CCE聚合等级,此过程同样由PDCCH调度消息触发,请参见图5,图5为本申请实施例提供的确定当前调度的CCE聚合等级的流程示意图;该过程的描述如下:
步骤501:确定当前调度消息为UE级专用调度消息。
针对步骤501的描述参见对步骤401的描述。
步骤502:确定当前调度的CCE聚合等级。
在一种可能的实施方式中,按照DCI格式、频谱效率SE_i反查表 DCI_Format x_x_SE_For_CCELevel x,找出与频谱效率SE_i对应的CCE聚合等级作为本次PDCCH调度的CCE聚合等级。
基于同一发明构思,本申请实施例提供一种资源分配装置(例如,前文所述的网络侧设备),请参见图6所示,该装置包括:
第一确定单元601,用于确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
第二确定单元602,用于根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于同一发明构思,本申请实施例提供一种通信设备(例如前文所述的网络侧设备),请参见图7所示,该通信设备包括至少一个处理器701,以及与至少一个处理器连接的存储器702,本申请实施例中不限定处理器701与存储器702之间的具体连接介质,图7中是以处理器701和存储器702之间通过总线700连接为例,总线700在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线700可以分为地址总线、数据总线、控制总线等,为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中的通信设备还可以包括收发机703,该收发机703例如是网口,通信设备可以通过该收发机703接收数据或者发送数据。
在本申请实施例中,存储器702存储有可被至少一个处理器701执行的指令,至少一个处理器701通过执行存储器702存储的指令,可以执行前述 的一种资源分配方法中所包括的步骤。
其中,处理器701是通信设备的控制中心,可以利用各种接口和线路连接整个设备的各个部分,通过运行或执行存储在存储器702内的指令以及调用存储在存储器702内的数据,通信设备的各种功能和处理数据,从而对通信设备进行整体监控。可选的,处理器701可包括一个或多个处理单元,处理器701可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器701中。在一些实施例中,处理器701和存储器702可以在同一芯片上实现,在一些实施例中,它们也可以在独立的芯片上分别实现。
处理器701可以是通用处理器,例如中央处理器(CPU)、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的资源分配方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器702作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器702可以包括至少一种类型的存储介质,例如可以包括闪存、硬盘、多媒体卡、卡型存储器、随机访问存储器(Random Access Memory,RAM)、静态随机访问存储器(Static Random Access Memory,SRAM)、可编程只读存储器(Programmable Read Only Memory,PROM)、只读存储器(Read Only Memory,ROM)、带电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性存储器、磁盘、光盘等等。存储器702是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器702还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
通过对处理器701进行设计编程,可以将前述实施例中介绍的资源分配方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的资源分配方法的步骤,如何对处理器701进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
基于同一发明构思,本申请实施例还提供一种存储介质,该存储介质存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如前述的资源分配方法的步骤。
在一些可能的实施方式中,本申请提供的资源分配方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在主控设备上运行时,程序代码用于使智能设备执行本说明书上述描述的根据本申请各种示例性实施方式的资源分配方法中的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种资源分配方法,其特征在于,包括:
    确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
    根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
  2. 如权利要求1所述的方法,其特征在于,所述确定每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,包括:
    根据所述PDCCH的配置参数,确定所述每种DCI格式的比特长度;
    根据所述比特长度,确定所述每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
  3. 如权利要求1所述的方法,其特征在于,所述至少一个CCE聚合等级为所述NR系统支持的CCE聚合等级中搜索次数被配置为非零的CCE聚合等级。
  4. 如权利要求1所述的方法,其特征在于,所述每种DCI格式为DCI format 0_0,或,DCI format 0_1,或,DCI format 1_0,或,DCI format 1_1。
  5. 如权利要求1所述的方法,其特征在于,所述根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级,包括:
    根据所述映射表,确定所述第一DCI的DCI格式在所述至少一个CCE聚合等级下对应的至少一个频谱效率;
    从所述至少一个频谱效率中,确定出与所述当前信道的频谱效率差值最小且小于所述第一频谱效率的第二频谱效率;
    从所述映射表中,确定出与所述第一DCI的DCI格式以及所述第二频谱效率对应的CCE聚合等级;将所述对应的CCE聚合等级作为所述PDCCH的CCE聚合等级。
  6. 一种通信设备,其特征在于,包括存储器,收发机,处理器:
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
    根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
  7. 如权利要求6所述的通信设备,其特征在于,所述处理器在用于确定每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率时,具体用于:
    根据所述PDCCH的配置参数,确定所述每种DCI格式的比特长度;
    根据所述比特长度,确定所述每种DCI格式在所述至少一个CCE聚合等级下对应的频谱效率。
  8. 如权利要求6所述的通信设备,其特征在于,所述至少一个CCE聚合等级为所述NR系统支持的CCE聚合等级中搜索次数被配置为非零的CCE聚合等级。
  9. 如权利要求6所述的通信设备,其特征在于,所述每种DCI格式为DCI format 0_0,或,DCI format 0_1,或,DCI format 1_0,或,DCI format 1_1。
  10. 如权利要求6所述的通信设备,其特征在于,所述处理器在用于根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级,具体用于:
    根据所述映射表,确定所述第一DCI的DCI格式在所述至少一个CCE聚合等级下对应的至少一个频谱效率;
    从所述至少一个频谱效率中,确定出与所述当前信道的频谱效率差值最小且小于所述第一频谱效率的第二频谱效率;
    从所述映射表中,确定出与所述第一DCI的DCI格式以及所述第二频谱 效率对应的CCE聚合等级;将所述对应的CCE聚合等级作为所述PDCCH的CCE聚合等级。
  11. 一种资源分配装置,其特征在于,包括:
    第一确定单元,用于确定出每种下行控制信息DCI格式在至少一个控制信道单元CCE聚合等级下对应的频谱效率,并生成DCI格式、频谱效率与CCE聚合等级的映射表;
    第二确定单元,用于根据下行物理控制信道PDCCH的第一频谱效率、所述PDCCH承载的第一DCI的DCI格式,从所述映射表中确定所述PDCCH的CCE聚合等级。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-5中任一项所述的方法。
PCT/CN2021/104027 2020-08-05 2021-07-01 一种资源分配方法及装置、通信设备 WO2022028166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010776011.4 2020-08-05
CN202010776011.4A CN114071472A (zh) 2020-08-05 2020-08-05 一种资源分配方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2022028166A1 true WO2022028166A1 (zh) 2022-02-10

Family

ID=80116919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104027 WO2022028166A1 (zh) 2020-08-05 2021-07-01 一种资源分配方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN114071472A (zh)
WO (1) WO2022028166A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155469A (zh) * 2023-04-19 2023-05-23 三维通信股份有限公司 基站下行控制信道资源调度优化方法、装置和计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821470A (zh) * 2012-08-08 2012-12-12 大唐移动通信设备有限公司 一种物理下行控制信道资源分配方法及装置
US20130188577A1 (en) * 2012-01-19 2013-07-25 Samsung Electronics Co. Ltd. Reference signal design and association for physical downlink control channels
CN104125645A (zh) * 2014-07-18 2014-10-29 大唐移动通信设备有限公司 一种控制信道单元聚合等级确定方法及装置
CN109510694A (zh) * 2017-09-14 2019-03-22 中国移动通信有限公司研究院 一种控制信道单元资源的配置方法及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188577A1 (en) * 2012-01-19 2013-07-25 Samsung Electronics Co. Ltd. Reference signal design and association for physical downlink control channels
CN102821470A (zh) * 2012-08-08 2012-12-12 大唐移动通信设备有限公司 一种物理下行控制信道资源分配方法及装置
CN104125645A (zh) * 2014-07-18 2014-10-29 大唐移动通信设备有限公司 一种控制信道单元聚合等级确定方法及装置
CN109510694A (zh) * 2017-09-14 2019-03-22 中国移动通信有限公司研究院 一种控制信道单元资源的配置方法及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections on Search Space Design", 3GPP DRAFT; R1-1800443 CORRECTIONS ON SEARCH SPACE DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384870 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155469A (zh) * 2023-04-19 2023-05-23 三维通信股份有限公司 基站下行控制信道资源调度优化方法、装置和计算机设备
CN116155469B (zh) * 2023-04-19 2023-09-12 三维通信股份有限公司 基站下行控制信道资源调度优化方法、装置和计算机设备

Also Published As

Publication number Publication date
CN114071472A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2021027753A1 (zh) 信息确定方法、装置和存储介质
WO2020134382A1 (zh) 处理上行控制信息的方法及设备
WO2022206095A1 (zh) 一种边链路通信终端设备协作信息指示方法和设备
WO2019154185A1 (zh) 下行控制信息dci的传输方法、装置及网络设备
US20220167313A1 (en) Method and apparatus for transmitting control information, electronic device, and storage medium
US11039448B2 (en) Resource scheduling method and apparatus
WO2019120303A1 (zh) 通信方法和装置
CN105578608A (zh) 一种下行控制信息的发送、接收方法和设备
US10887066B2 (en) Method, device, and system for determining transmission information
WO2011038649A1 (zh) 一种下行调度信息的配置方法及装置
JP2021517757A (ja) 物理ダウンリンク制御チャネルのブラインド検出のための方法及び端末機器
WO2013139041A1 (en) Device-to-device resource allocation method and apparatus
JP6139686B2 (ja) ダウンリンク制御情報を送信するための方法、ネットワーク側装置、およびユーザ機器
CN110166168B (zh) 确定传输块大小的方法、装置以及系统
JP7181195B2 (ja) リソース指示方法および装置、ならびにアップリンク制御信号伝送方法および装置
WO2022048199A1 (zh) 频谱共享下的nr pdcch资源分配方法及装置
WO2019214745A1 (zh) 调制编码及cqi上报方法、装置、设备及存储介质
JP6980170B2 (ja) ダウンリンクリソースの集合を決定するための方法とデバイス、およびリソース位置情報を送信するための方法とデバイス
CN103580834A (zh) ePDCCH发送、接收方法及装置、基站、用户设备
WO2022028166A1 (zh) 一种资源分配方法及装置、通信设备
WO2019214524A1 (zh) 一种进行资源分配的方法和装置
WO2021032038A1 (zh) 反馈信道的映射方法、装置、设备及存储介质
WO2021023015A1 (zh) 资源指示方法、装置、服务节点和存储介质
CN111869151A (zh) 资源分配策略信令
WO2018137188A1 (zh) 一种用于覆盖增强的资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852466

Country of ref document: EP

Kind code of ref document: A1