WO2022027615A1 - 一种基于河流水质自动监测系统的信号处理电路及处理方法 - Google Patents

一种基于河流水质自动监测系统的信号处理电路及处理方法 Download PDF

Info

Publication number
WO2022027615A1
WO2022027615A1 PCT/CN2020/107882 CN2020107882W WO2022027615A1 WO 2022027615 A1 WO2022027615 A1 WO 2022027615A1 CN 2020107882 W CN2020107882 W CN 2020107882W WO 2022027615 A1 WO2022027615 A1 WO 2022027615A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal
pin
capacitor
amplifier
Prior art date
Application number
PCT/CN2020/107882
Other languages
English (en)
French (fr)
Inventor
于义勇
孙林
余志刚
Original Assignee
海德星科技南京有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海德星科技南京有限公司 filed Critical 海德星科技南京有限公司
Publication of WO2022027615A1 publication Critical patent/WO2022027615A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the invention relates to the field of automatic water quality monitoring systems, and discloses a signal processing circuit and a processing method based on the automatic monitoring system for river water quality.
  • the water environment refers to the environment in which the water quality of lakes, rivers, and oceans is located, and changes in the water environment will have a serious impact on the water quality. Determine whether the water environment is polluted by testing the physical and chemical properties of water quality.
  • the water environment is an inseparable part of the ecosystem and depends on the survival and development of human beings. However, with the advancement of human technology, the water environment is increasingly polluted.
  • a signal processing circuit and processing method based on an automatic monitoring system for river water quality are provided to solve the above problems.
  • the water quality detection unit is used to detect the hydrogen ion concentration index, conductivity index, dissolved oxygen index and water flow velocity index of river water quality;
  • the signal conditioning unit is used to adjust various detection signals of water quality, so as to make the transmission of detection signals more stable;
  • the transfer control unit is used to compare the water quality at this time.
  • the water quality detection signal is directly transmitted to the control unit;
  • the water flow speed comparison is performed;
  • the water flow speed exceeds the working threshold , the water flow speed detection signal is directly transmitted to the signal buffer unit;
  • the wireless transmission unit performs wireless transmission of the detection signal, and transmits the upper and lower layers respectively, the upper layer signal is transmitted to the control unit, and the lower layer signal is transmitted to the signal buffer unit;
  • the signal buffer unit is used to buffer and save the water flow velocity detection signal, and at the same time, the detection indicators of different water flow velocity at different times are transmitted to the Internet of Things cloud system;
  • the control unit receives the water quality detection signal and analyzes the signal, so as to transmit the signal to the control terminal, and at the same time use the time-base sequence to send irregular work instructions to the sensor;
  • the signal conditioning unit includes: an I/V conversion module, a signal amplification module, and a filter output module.
  • the I/V conversion module includes: resistor R1, resistor R2, resistor R3, resistor R4, transistor Q1, amplifier U1A, resistor R5, resistor R6, resistor R7, capacitor C1, diode D1, diode D2 , amplifier U2A, resistor R11, resistor R8, resistor R9, resistor R10, capacitor C2, transistor Q2, voltage regulator D3, reference voltage regulator U3, reference voltage regulator U4;
  • One end of the resistor R2 is connected to one end of the resistor R3 and a signal is input, the emitter of the transistor Q1 is connected to the other end of the resistor R2 and one end of the resistor R1 at the same time, the amplifier U1A No. 2
  • the pin is connected to the other end of the resistor R1
  • the No. 1 pin of the amplifier U1A is connected to the base of the transistor Q1
  • 3 pin of the amplifier U1A is connected to one end of the resistor R5, so One end of the resistor R7 is connected to the other end of the resistor R5 and one end of the resistor R6 at the same time, the other end of the resistor R7 is grounded, the collector of the transistor Q1 is connected to one end of the resistor R4, the One end of the capacitor C1 is connected to the other end of the resistor R3 and the cathode of the diode D2 at the same time, the other end of the capacitor C1 is connected to the anode of the diode D2 and grounded, and the anode of the diode D1 is connected to the anode of the diode D2 at the same time.
  • the cathode of the diode D2 is connected to the No. 3 pin of the amplifier U2A
  • the No. 1 pin of the amplifier U2A is connected to one end of the capacitor C2 and the base of the transistor Q2 at the same time
  • the No. 2 pin of the amplifier U2A The pin is connected and grounded with the other end of the capacitor C2 and the emitter of the transistor Q2 at the same time
  • the No. 4 pin of the amplifier U2A is connected to the No. 4 pin of the amplifier U1A and the other side of the resistor R6 at the same time.
  • One end, one end of the resistor R8 is connected with the No. 3 pin of the reference voltage regulator U3, and the No. 8 pin of the amplifier U2A is connected with the No.
  • the reference voltage regulator U4 is connected to the other end of the resistor R11 and the positive electrode of the voltage regulator tube D3 at the same time, the reference voltage regulator The No. 3 pin of the voltage source U4 is connected to and grounded simultaneously with the negative electrode of the voltage regulator D3 and the No. 1 pin of the reference voltage regulator U3, and the collector of the transistor Q2 outputs a signal.
  • the signal amplification module includes: resistor R13, resistor R14, resistor R15, resistor R12, resistor R16, resistor R18, resistor R17, adjustable resistor RV1, amplifier U5A, amplifier U6A, amplifier U7A, capacitor C3 ;
  • the No. 2 pin of the amplifier U5A is connected to one end of the resistor R13 and one end of the resistor R12 at the same time, and the No. 3 pin of the amplifier U5A is simultaneously connected to one end of the resistor R14 and the resistor R15
  • the other end of the resistor R13 is connected to the signal
  • the other end of the resistor R14 is input with the reference voltage
  • the other end of the resistor R15 is grounded
  • the No. 1 of the amplifier U5A is connected to the other end of the resistor R12 at the same time. It is connected with one end of the resistor R16, the No.
  • the filtering output module includes: capacitor C9, capacitor C8, resistor R19, capacitor C5, capacitor C4, diode D7, diode D6, operational amplifier U8A, diode D4, diode D5, capacitor C7, capacitor C6, Capacitor C10, Capacitor C11, Diode D9, Diode D8, Operational Amplifier U8B;
  • the No. 3 pin of the operational amplifier U8A is connected to one end of the capacitor C8 and one end of the resistor R19 at the same time, and the No. 2 pin of the operational amplifier U8A is simultaneously connected to the anode of the diode D7 and the The anode of the diode D6 is connected, the No. 4 pin of the operational amplifier U8A is connected to one end of the capacitor C4 and input voltage, the No.
  • 8 pin of the operational amplifier U8A is connected to one end of the capacitor C5 and the input signal, The other end of the capacitor C4 is grounded, the other end of the capacitor C5 is grounded, the other end of the resistor R19 is connected to one end of the capacitor C9 and inputs a signal, the other end of the capacitor C8 is grounded, and the diode D7 is connected to the ground.
  • the negative electrode is grounded, the negative electrode of the diode D7 is connected to the other end of the capacitor C9, the No. 1 pin of the operational amplifier U8A is connected to the positive electrode of the diode D4, and the negative electrode of the diode D4 is connected to the capacitor C7 at the same time.
  • One end is connected to the positive pole of the diode D5, the No.
  • the models of the reference voltage regulator source U3 and the reference voltage regulator source U4 are both TL431.
  • the wireless transmission unit when the detection signal data of each time period is collected for transmission, the collected signal is simultaneously transmitted to the control unit and the signal buffer unit, and two separate transmission channels are used for transmission, thereby do not interfere with each other.
  • a processing method based on a signal processing circuit of an automatic river water quality monitoring system characterized in that the water quality detection unit uses a sensor arranged in the river to detect signals, and a flow sensor in the water also detects the water flow speed at this time, so as to detect Signal processing; the specific steps are as follows:
  • each monitoring base station will monitor the water quality of the river for a certain distance.
  • Each sub-detection node is equipped with a water quality indicator sensor and a flow sensor.
  • the detection signal is transmitted to the transit through
  • the control unit performs data comparison, so as to transmit the wireless transmission unit to the control unit according to the difference of the data comparison, so as to issue the next instruction;
  • Step 2 the flow sensor on each sub-detection node will detect the water flow speed at this time, and the water flow speed detection signal will be transmitted to the transfer control unit for data comparison.
  • the comparison signal will be wirelessly
  • the lower transport layer in the transmission unit is transmitted to the signal buffer unit, and the upper transport layer is transmitted to the control unit;
  • Step 3 firstly identify and match the data transmitted to the signal buffer unit, and then perform data matching by converting the analog signal of the recorder into a digital signal.
  • the matching is eliminated. , so as to directly transmit the old data information, when there is a new data signal, it will be stored in the signal buffer unit, and the data at this time will be transmitted to the Internet of Things cloud system through the wireless transmission unit;
  • Step 4 At the same time, the water flow velocity signal transmitted to the control unit through the upper transmission layer is converted into the signal by the control unit, and the processing is transmitted to the control terminal at the same time.
  • Step 5 when calculating the water flow velocity of the river, the period between the rising edges of two consecutive pulses output by the flow sensor is measured, and then the frequency is obtained, and then the water flow velocity and volume are calculated, so that the relay control unit judges this Whether the flow rate at the time affects the signal transmission, the specific steps are as follows: Step 5. When the flow rate is greater than the working range at this time, a flow rate detection calculation will be performed directly. When the average value of the sum of the two detection signal calculations is greater than the working range, the data of the maximum flow rate will be transmitted through the wireless transmission unit. Perform upper and lower layered transmission;
  • Step 6 When the first flow velocity detection calculation is smaller than the working range at this time, it means that the river flow velocity is in a normal working state at this time, and the flow velocity data collected at this time is directly transmitted to the signal buffer unit through the lower transmission layer of the wireless transmission unit.
  • the present invention detects the water quality of the river, due to the different weather conditions and the speed of the water flow, noise will be generated, so as to increase the interference to the water quality detection signal transmission and reduce the detection accuracy, so that the signal conversion is performed first in the signal processing module.
  • the signal amplification module is used to perform primary and secondary amplification of the signal
  • the follower is used for signal buffering, isolation, and improving the bearing capacity.
  • the clutter in the signal can be eliminated by filtering the output module, which can effectively improve detection.
  • the stability and accuracy of the signal at the same time, when the multiple detection data all meet the working standards, the subsequent detection frequencies will be scrambled, and the same frequency and time detection will not be performed, which can greatly improve the detection accuracy.
  • Fig. 1 is the working flow chart of the present invention.
  • FIG. 2 is a schematic diagram of a signal conditioning unit of the present invention.
  • FIG. 3 is a circuit diagram of an I/V conversion module of the present invention.
  • FIG. 4 is a circuit diagram of a signal amplifying module of the present invention.
  • FIG. 5 is a circuit diagram of a filter output module of the present invention.
  • FIG. 6 is a schematic diagram of the water quality monitoring of the present invention.
  • a signal processing circuit and processing method based on an automatic monitoring system for river water quality includes: a water quality detection unit, a signal conditioning unit, a relay control unit, a wireless transmission unit, a signal buffer unit, and control unit.
  • the signal conditioning unit includes: an I/V conversion module, a signal amplification module, and a filter output module.
  • the I/V conversion module includes: resistor R1, resistor R2, resistor R3, resistor R4, transistor Q1, amplifier U1A, resistor R5, resistor R6, resistor R7, capacitor C1, diode D1, diode D2, amplifier U2A, resistor R11, resistor R8, resistor R9, resistor R10, capacitor C2, transistor Q2, voltage regulator D3, reference voltage regulator U3, reference voltage regulator U4.
  • the signal amplification module includes: resistor R13, resistor R14, resistor R15, resistor R12, resistor R16, resistor R18, resistor R17, adjustable resistor RV1, amplifier U5A, amplifier U6A, amplifier U7A, capacitor C3.
  • the filter output module includes: capacitor C9, capacitor C8, resistor R19, capacitor C5, capacitor C4, diode D7, diode D6, operational amplifier U8A, diode D4, diode D5, capacitor C7, capacitor C6, capacitor C10 , capacitor C11, diode D9, diode D8, operational amplifier U8B.
  • one end of the resistor R2 is connected to one end of the resistor R3 and a signal is input, and the emitter of the transistor Q1 is connected to the other end of the resistor R2 and one end of the resistor R1 at the same time,
  • the No. 2 pin of the amplifier U1A is connected to the other end of the resistor R1
  • the No. 1 pin of the amplifier U1A is connected to the base of the transistor Q1
  • 3 pin of the amplifier U1A is connected to the One end of the resistor R5 is connected, one end of the resistor R7 is connected to the other end of the resistor R5 and one end of the resistor R6 at the same time, the other end of the resistor R7 is grounded, and the collector of the transistor Q1 is connected to the resistor.
  • One end of R4 is connected, one end of the capacitor C1 is connected to the other end of the resistor R3 and the cathode of the diode D2 at the same time, the other end of the capacitor C1 is connected to the anode of the diode D2 and grounded, and the diode The anode of D1 is simultaneously connected to the cathode of the diode D2 and the No.
  • the No. 1 pin of the amplifier U2A is simultaneously connected to one end of the capacitor C2 and the base of the transistor Q2
  • the No. 2 pin of the amplifier U2A is simultaneously connected to the other end of the capacitor C2 and the emitter of the transistor Q2 and grounded
  • the No. 4 pin of the amplifier U2A is simultaneously connected to the No. 4 pin of the amplifier U1A.
  • the other end of the resistance R6, one end of the resistance R8 is connected with the No. 3 pin of the reference voltage regulator U3, and the No. 8 pin of the amplifier U2A is connected with the No. 8 pin of the amplifier U1A at the same time.
  • One end of the resistance R11 is connected with the No.
  • the No. 1 pin of the reference voltage regulator U4 and input working voltage and the No. 1 pin of the reference voltage regulator U3 is simultaneously connected with one end of the resistance R9, the resistance One end of R10 is connected to the No. 3 pin of the reference voltage regulator U3, and the No. 2 pin of the reference voltage regulator U3 is simultaneously connected to the other end of the resistor R8 and the other end of the resistor R9 and is grounded , the other end of the resistor R10 is connected to the other end of the resistor R4 and input voltage, the No. 2 pin of the reference voltage regulator U4 is connected to the other end of the resistor R11 and the voltage regulator tube D3 at the same time.
  • the positive pole is connected, and the No. 3 pin of the reference voltage regulator U4 is connected to the negative pole of the regulator tube D3 and the No. 1 pin of the reference voltage regulator U3 and is grounded at the same time, and the collector of the transistor Q2 outputs a signal.
  • pin No. 2 of the amplifier U5A is connected to one end of the resistor R13 and one end of the resistor R12 at the same time, and pin No. 3 of the amplifier U5A is simultaneously connected to one end of the resistor R14 It is connected to one end of the resistor R15, the other end of the resistor R13 inputs a signal, the other end of the resistor R14 inputs a reference voltage, the other end of the resistor R15 is grounded, and No. 1 of the amplifier U5A is simultaneously connected to the The other end of the resistor R12 is connected to one end of the resistor R16, the No.
  • the No. 8 pin of the amplifier U6A is connected to one end of the capacitor C3 and the input voltage, the other end of the capacitor C3 is connected, the No. 4 pin of the amplifier U6A is grounded, and the No. 3 pin of the amplifier U7A is connected to the ground.
  • the pin is connected to the other end of the resistor R17, and the No. 1 pin of the amplifier U7A is connected to the No. 2 pin and outputs.
  • the No. 3 pin of the operational amplifier U8A is simultaneously connected to one end of the capacitor C8 and one end of the resistor R19, and the No. 2 pin of the operational amplifier U8A is simultaneously connected to the diode D7
  • the anode of the operational amplifier U8A is connected to the anode of the diode D6
  • the No. 4 pin of the operational amplifier U8A is connected to one end of the capacitor C4 and input voltage
  • 4 pin of the operational amplifier U8B is connected to one end of the capacitor C11 and input voltage, the other end of the capacitor C10 is grounded, the other end of the capacitor C11 is grounded, and the cathode of the diode D8 is connected to the capacitor.
  • the other end of C7 is connected and outputs a signal.
  • the present invention has an abnormal processing mode.
  • the water quality detection signal and the water speed detection signal are stabilized by the signal processing unit, and are transmitted to the transfer control unit at the same time.
  • the water quality detection signal is compared inside the transfer control unit.
  • the water quality detection signal is directly transmitted to the control unit through the upper transmission layer in the wireless transmission unit; when the water quality meets the working standard, the water speed detection input will be transferred.
  • the control unit is used to compare the water flow speed; when the water flow speed exceeds the working threshold, the water flow speed detection signal is directly transmitted to the signal buffer unit.
  • the water quality detection signal and the water speed detection signal are transmitted to the control unit.
  • the unit will detect time frequency for irregular detection frequency.
  • the control unit when the detected water quality signal and the water flow speed signal both meet the working index in multiple detections, the control unit will send out a detection sequence sequence, and when the water quality detection unit performs a detection every ten minutes , when the water quality and water speed of the five tests meet the standards, the control unit will immediately perform one to five times of water quality and water speed tests when the fifth test is completed, so as to ensure that during the test interval, if sewage is injected, Timely detection can be carried out to ensure the accuracy of water quality detection.
  • the detected water quality signal will be processed by the signal processing unit.
  • the signal will be converted into a voltage signal through the I/V module to convert the current signal into a voltage signal, and the voltage will be input to the reference voltage through the resistor R10.
  • source U3 so that the reference voltage stabilizer source U3 outputs a stable voltage to the non-inverting input terminal of the amplifier U1A, in which the resistor R6 and the resistor R7 are divided into voltage inputs, and the resistor R5 is matched, and the output terminal of the amplifier U1A is connected to the base of the transistor Q1.
  • the detection signal is input through the resistor R3, and is protected by the input capacitor C1, diode D1 and diode D2 to prevent the working voltage from being too large and the conduction signal is chaotic, and input to the amplifier U2A at the same time.
  • the non-inverting terminal is used for conversion, and finally the output value is output to the transistor Q2 through the output terminal of the amplifier U2A, and the capacitor C2 performs filtering, so as to output to the signal amplification module through the collector of the transistor Q2;
  • the input signal is first-stage amplified by amplifier U5A, it is then amplified by amplifier U6A for second-stage amplification.
  • the second-stage amplification can be modulated by adjustable resistor RV1, and finally the output voltage is obtained through amplifier U7A as a follower.
  • the input signal voltage is amplified, the output voltage, the input voltage and the output voltage waveform are obtained, the data is recorded, the amplification factor is calculated by transmitting to the control unit, and the data is cached;
  • the input signal is protected and input through the resistor R13, and the reference voltage is input through the resistor R14 and the resistor R15 to form a voltage dividing path, so that the input signal signal is amplified by one to five times; at the same time, the amplifier U5A not only amplifies the signal, but also can convert the circuit on the circuit.
  • Some of the noise signals of the input signal are filtered out, thereby reducing the further amplification of the noise by the post-stage circuit, so that the input signal voltage is increased, and then output; thus the signal is input to the second-stage op-amp circuit through the resistor R16 for amplification.
  • the input impedance and common-mode rejection performance of the amplifier circuit must be used to reduce the output noise.
  • the signal is input to the amplifier U7A through the resistor R17, where the amplifier U7A is used as a follower, which buffers, isolates and improves the bearing capacity of the follower; the input impedance of the common collector circuit is high, and the output impedance is low, so It can perform the impedance matching function of the circuit, and can make a better amplifier circuit; when the input impedance is high, it is equivalent to the open circuit of the previous stage; when the output impedance is low, the latter circuit is equivalent to a voltage source, and the output The voltage is not affected by the circuit impedance; the first-stage circuit is equivalent to the open-circuit voltage output, not after the horizontal isolation effect due to the influence of the impedance, so do not affect each other before and after the circuit does not affect each other
  • the signal is output to the filter output module through the amplifier circuit, and the fourth-order Butterworth filter circuit is formed by the operational amplifier U8A and the operational amplifier U8B.
  • the signal is input to the operational amplifier U8A through the peak voltage absorption branch formed by the capacitor C9 and the resistor R19. Perform primary filtering, and at the same time, the signal is output to the operational amplifier U8B through the diode D4 for secondary filtering, and finally the operational amplifier U8B is used to output the signal.
  • the signal is transmitted to the control unit and the signal buffer unit through the wireless transmission unit. transformation and data storage.

Abstract

一种涉及水质自动监测系统领域,公开了一种基于河流水质自动监测系统的信号处理电路及处理方法,包括:水质检测单元、信号调理单元、中转控制单元、无线传输单元、信号缓存单元、以及控制单元;其中,信号调理单元,包括:I/V转换模块、信号放大模块、以及滤波输出模块;本系统在河流上会设有多个子检测节点,每个子检测节点设有水质指标传感器和流量传感器,检测信号利用信号处理模块中先进行信号转换,同时利用信号放大模块进行信号一次放大和二次放大,同时利用跟随器进行信号缓冲,隔离,提高承载能力的作用,最后通过滤波输出模块可以消除信号中的杂波,从而可以有效的提高检测信号的稳定性与准确性。

Description

一种基于河流水质自动监测系统的信号处理电路及处理方法 技术领域
本发明涉及水质自动监测系统领域,公开了一种基于河流水质自动监测系统的信号处理电路及处理方法。
背景技术
水是生命的源泉,人类的生存发展每时每刻都离不开水。我国地表水资源总量位列世界第六,但由于我国人口总数庞大,人均水资源量只达到世界平均水平的;加之我国水资源分布严重不均,生活污水、工业废水排放总量巨大,水环境问题长期困扰着国家环保部门。
水环境是指湖泊、河流、海洋等水质所处环境,水环境的变化将会对水质产生严重的影响。通过对水质的物理性质和化学性质的检测来判断水环境是否受到污染。水环境是生态系统不可分割的一部分,是人类生存和发展的依靠,然而随着人类科技的进步,水环境受到的污染日益严重。
水质自动监测技术在我国迅速发展,经过十几年的建设,国家环境管理部门已经实现了对全国大江大河水质的自动实时监测与监控; 各地方省市除建设了对辖区水体水质的自动监测系统,还有针对性地建设了用于水环境生态补偿、监控重点流域水环境污染治理达标以及饮用水源地水质的自动监测站。
现有技术中的水质自动监测系统,在进行河流水质检测时,由于天气的情况和水流速度大小的不同,从而会产生噪声,从而对水质检测信号传输增大干扰和降低检测准确性,同时在进行检测信号传输时,由于传输信号频率的不同,传输信号会进行干扰,从而导致传输速率下降。
技术问题
提供一种基于河流水质自动监测系统的信号处理电路及处理方法,以解决上述问题。
技术解决方案
水质检测单元,用于进行河流水质的氢离子浓度指数、电导率指数、溶氧度指数、水流速度指数的检测;
信号调理单元,用于进行水质各项检测信号的调节,从而使检测信号传输更加稳定;
中转控制单元,用于进行此时水质质量的比较,当水质质量不符合工作标准时,进行水质检测信号直接传输至控制单元;当水质质量符合工作标准时,进行水流速度比较;当水流速度超出工作阈值,则进行水流速度检测信号直接传输至信号缓存单元;
无线传输单元,进行检测信号进行无线传输,且分别进行上下层的传输,上层信号传输至控制单元,下层信号传输至信号缓存单元;
信号缓存单元,进行水流流速检测信号的缓冲保存,同时对不同时间,不同水流流速的检测指标传输至物联网云系统;
控制单元,进行接收水质检测信号,并进行信号分析,从而将信号传送至控制终端,同时利用时基序列对传感器进行发送不定时工作指令;
其中,信号调理单元,包括:I/V转换模块、信号放大模块、以及滤波输出模块。
在一个实施例中,所述I/V转换模块包括:电阻R1、电阻R2、电阻R3、电阻R4、三极管Q1、放大器U1A、电阻R5、电阻R6、电阻R7、电容C1、二极管D1、二极管D2、放大器U2A、电阻R11、电阻R8、电阻R9、电阻R10、电容C2、三极管Q2、稳压管D3、基准稳压源U3、基准稳压源U4;
所述电阻R2的一端与所述电阻R3的一端连接且输入信号,所述三极管Q1的发射极同时与所述电阻R2的另一端和所述电阻R1的一端连接,所述放大器U1A的2号引脚与所述电阻R1的另一端连接,所述放大器U1A的1号引脚与所述三极管Q1的基极连接,所述放大器U1A的3号引脚与所述电阻R5的一端连接,所述电阻R7的一端同时与所述电阻R5的另一端和所述电阻R6的一端连接,所述电阻R7的另一端接地,所述三极管Q1的集电极与所述电阻R4的一端连接,所述电容C1的一端同时与所述电阻R3的另一端和所述二极管D2的负极连接,所述电容C1的另一端与所述二极管D2的正极连接且接地,所述二极管D1的正极同时与所述二极管D2的负极和所述放大器U2A的3号引脚连接,所述放大器U2A的1号引脚同时与所述电容C2的一端和所述三极管Q2的基极连接,所述放大器U2A的2号引脚同时与所述电容C2的另一端和所述三极管Q2的发射极连接且接地,所述放大器U2A的4号引脚同时与所述放大器U1A的4号引脚、所述电阻R6的另一端、所述电阻R8的一端和所述基准稳压源U3的3号引脚连接,所述放大器U2A的8号引脚同时与所述放大器U1A的8号引脚、所述电阻R11的一端和所述基准稳压源U4的1号引脚连接且输入工作电压,所述基准稳压源U3的1号引脚同时与所述电阻R9的一端、所述电阻R10的一端和所述基准稳压源U3的3号引脚连接,所述基准稳压源U3的2号引脚同时与所述电阻R8的另一端和所述电阻R9的另一端连接且接地,所述电阻R10的另一端与所述电阻R4的另一端连接且输入电压,所述基准稳压源U4的2号引脚同时与所述电阻R11的另一端和所述稳压管D3的正极连接,所述基准稳压源U4的3号引脚同时与稳压管D3的负极和所述基准稳压源U3的1号引脚连接且接地,所述三极管Q2的集电极输出信号。
在一个实施例中,所述信号放大模块包括:电阻R13、电阻R14、电阻R15、电阻R12、电阻R16、电阻R18、电阻R17、可调电阻RV1、放大器U5A、放大器U6A、放大器U7A、电容C3;
其中,所述放大器U5A的2号引脚同时与所述电阻R13的一端和所述电阻R12的一端连接,所述放大器U5A的3号引脚同时与所述电阻R14的一端和所述电阻R15的一端连接,所述电阻R13的另一端输入信号,所述电阻R14的另一端输入基准电压,所述电阻R15的另一端接地,所述放大器U5A的1号同时与所述电阻R12的另一端和所述电阻R16的一端连接,所述放大器U6A的2号引脚同时与所述电阻R16的另一端和所述可调电阻RV1的一端连接,所述放大器U6A的3号引脚与所述电阻R18的一端连接,所述电阻R18的另一端接地,所述放大器U6A的1号引脚同时与所述电阻R17的一端和所述可调电阻RV1的控制端、另一端连接,所述放大器U6A的8号引脚与所述电容C3的一端连接且输入电压,所述电容C3的另一端连接,所述放大器U6A的4号引脚接地,所述放大器U7A的3号引脚与所述电阻R17的另一端连接,所述放大器U7A的1号引脚与2号引脚连接且输出。
在一个实施例中,所述滤波输出模块包括:电容C9、电容C8、电阻R19、电容C5、电容C4、二极管D7、二极管D6、运算放大器U8A、二极管D4、二极管D5、电容C7、电容C6、电容C10、电容C11、二极管D9、二极管D8、运算放大器U8B;
其中,所述运算放大器U8A的3号引脚同时与所述电容C8的一端和所述电阻R19的一端连接,所述运算放大器U8A的2号引脚同时与所述二极管D7的正极和所述二极管D6的正极连接,所述运算放大器U8A的4号引脚与所述电容C4的一端连接且输入电压,所述运算放大器U8A的8号引脚与所述电容C5的一端连接且输入信号,所述电容C4的另一端接地,所述电容C5的另一端接地,所述电阻R19的另一端与所述电容C9的一端且输入信号,所述电容C8的另一端接地,所述二极管D7的负极接地,所述二极管D7的负极与所述电容C9的另一端连接,所述运算放大器U8A的1号引脚与所述二极管D4的正极连接,所述二极管D4的负极同时与所述电容C7的一端和所述二极管D5的正极连接,所述运算放大器U8B的5号引脚同时与所述电容C6的一端和所述二极管D5的负极连接,所述运算放大器U8B的6号引脚同时与所述二极管D9的正极和所述二极管D8的正极连接,所述二极管D9的负极接地,所述运算放大器U8B的8号引脚有所述电容C10的一端连接且输入电压,所述运算放大器U8B的4号引脚与所述电容C11的一端连接且输入电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述二极管D8的负极与所述电容C7的另一端连接且输出信号。
在一个实施例中,所述基准稳压源U3和基准稳压源U4的型号均为TL431。
在一个实施例中,所述无线传输单元中,当采集各个时间段的检测信号数据进行传输时,采集信号进行同时传输至控制单元和信号缓存单元,且采用两个单独的传输频道传输,从而相互不进行干扰。
一种基于河流水质自动监测系统的信号处理电路的处理方法,其特征在于,水质检测单元利用设置在河流中的传感器进行检测信号,同时水中的流量传感器也进行检测此时水流速度,从而进行检测信号的处理;具体步骤如下:
步骤1、首先每个监测基站会监测一段距离的河流水质情况,同时每一段的河流上会设有多个子检测节点,每个子检测节点设有水质指标传感器和流量传感器,检测信号通过传输至中转控制单元进行数据比较,从而根据数据比较的不同,进行用无线传输单元进行传输至控制单元,从而进行下一步指令的发出;
步骤2、在进行水质检测时,每个子检测节点上的流量传感器会进行此时水流速度的检测,水流速度检测信号通过传输至中转控制单元进行数据比较,当水流速度过大时比较信号通过无线传输单元中的下传输层进行传输至信号缓存单元,且上传输层传送至控制单元;
步骤3、对传送至信号缓存单元中的数据首先进行识别匹配,通过将书记模拟信号转换成数字信号,从而进行数据匹配,当数据库中的数据与此时接收的数据新匹配,则进行匹配消除,从而直接进行传输旧的数据信息,当有新的数据信号,则进行存储至信号缓存单元,且将此时的数据通过无线传输单元,传送至物联网云系统;
步骤4、同时通过上传输层传输至控制单元的水流流速信号通过控制单元进行信号转换,处理同时传输至控制终端,工作人员通过对此时流速的大小,从而做出信号处理工作。
在一个实施例中,在计算河流水流速度时,是测量流量传感器上输出的两个连续脉冲上升沿之间的周期,进而得出频率,然后计算水流速度和体积,从而中转控制单元进行判断此时的流速是否影响信号传输,具体步骤如下:      步骤5、当此时流速大于工作范围时,会直接在进行一次流速检测计算,当两次检测信号计算之和的平均值大于工作范围时,从而计最大流速的数据进行传输,通过无线传输单元进行上下分层传输;
步骤6、当此时第一次流速检测计算小于工作范围,则表明此时河流流速处于正常工作状态,此时采集的流速数据则直接通过无线传输单元的下传输层传输至信号缓存单元。
有益效果
本发明在进行河流水质检测时,由于天气的情况和水流速度大小的不同,从而会产生噪声,从而对水质检测信号传输增大干扰和降低检测准确性,从而利用信号处理模块中先进行信号转换,同时利用信号放大模块进行信号一次放大和二次放大,同时利用跟随器进行信号缓冲,隔离,提高承载能力的作用,最后通过滤波输出模块可以消除信号中的杂波,从而可以有效的提高检测信号的稳定性与准确性;同时在对多次检测数据均符合工作标准时,会进行后几次检测频率的打乱,不在进行同一频率时间检测,从而可以大大提高检测的准确性。
附图说明
图1是本发明的工作流程图。
图2是本发明的信号调理单元示意图。
图3是本发明的I/V转换模块电路图。
图4是本发明的信号放大模块电路图。
图5是本发明的滤波输出模块电路图。
图6是本发明的水质监测示意图。
本发明的实施方式
如图1所示,在该实施例中,一种基于河流水质自动监测系统的信号处理电路及处理方法,包括:水质检测单元、信号调理单元、中转控制单元、无线传输单元、信号缓存单元、以及控制单元。
如图2所示,信号调理单元,包括:I/V转换模块、信号放大模块、以及滤波输出模块。
如图3所示,I/V转换模块包括:电阻R1、电阻R2、电阻R3、电阻R4、三极管Q1、放大器U1A、电阻R5、电阻R6、电阻R7、电容C1、二极管D1、二极管D2、放大器U2A、电阻R11、电阻R8、电阻R9、电阻R10、电容C2、三极管Q2、稳压管D3、基准稳压源U3、基准稳压源U4。
如图4所示,信号放大模块包括:电阻R13、电阻R14、电阻R15、电阻R12、电阻R16、电阻R18、电阻R17、可调电阻RV1、放大器U5A、放大器U6A、放大器U7A、电容C3。
如图5所示,滤波输出模块包括:电容C9、电容C8、电阻R19、电容C5、电容C4、二极管D7、二极管D6、运算放大器U8A、二极管D4、二极管D5、电容C7、电容C6、电容C10、电容C11、二极管D9、二极管D8、运算放大器U8B。
在进一步的实施例中,所述电阻R2的一端与所述电阻R3的一端连接且输入信号,所述三极管Q1的发射极同时与所述电阻R2的另一端和所述电阻R1的一端连接,所述放大器U1A的2号引脚与所述电阻R1的另一端连接,所述放大器U1A的1号引脚与所述三极管Q1的基极连接,所述放大器U1A的3号引脚与所述电阻R5的一端连接,所述电阻R7的一端同时与所述电阻R5的另一端和所述电阻R6的一端连接,所述电阻R7的另一端接地,所述三极管Q1的集电极与所述电阻R4的一端连接,所述电容C1的一端同时与所述电阻R3的另一端和所述二极管D2的负极连接,所述电容C1的另一端与所述二极管D2的正极连接且接地,所述二极管D1的正极同时与所述二极管D2的负极和所述放大器U2A的3号引脚连接,所述放大器U2A的1号引脚同时与所述电容C2的一端和所述三极管Q2的基极连接,所述放大器U2A的2号引脚同时与所述电容C2的另一端和所述三极管Q2的发射极连接且接地,所述放大器U2A的4号引脚同时与所述放大器U1A的4号引脚、所述电阻R6的另一端、所述电阻R8的一端和所述基准稳压源U3的3号引脚连接,所述放大器U2A的8号引脚同时与所述放大器U1A的8号引脚、所述电阻R11的一端和所述基准稳压源U4的1号引脚连接且输入工作电压,所述基准稳压源U3的1号引脚同时与所述电阻R9的一端、所述电阻R10的一端和所述基准稳压源U3的3号引脚连接,所述基准稳压源U3的2号引脚同时与所述电阻R8的另一端和所述电阻R9的另一端连接且接地,所述电阻R10的另一端与所述电阻R4的另一端连接且输入电压,所述基准稳压源U4的2号引脚同时与所述电阻R11的另一端和所述稳压管D3的正极连接,所述基准稳压源U4的3号引脚同时与稳压管D3的负极和所述基准稳压源U3的1号引脚连接且接地,所述三极管Q2的集电极输出信号。
在进一步的实施例中,所述放大器U5A的2号引脚同时与所述电阻R13的一端和所述电阻R12的一端连接,所述放大器U5A的3号引脚同时与所述电阻R14的一端和所述电阻R15的一端连接,所述电阻R13的另一端输入信号,所述电阻R14的另一端输入基准电压,所述电阻R15的另一端接地,所述放大器U5A的1号同时与所述电阻R12的另一端和所述电阻R16的一端连接,所述放大器U6A的2号引脚同时与所述电阻R16的另一端和所述可调电阻RV1的一端连接,所述放大器U6A的3号引脚与所述电阻R18的一端连接,所述电阻R18的另一端接地,所述放大器U6A的1号引脚同时与所述电阻R17的一端和所述可调电阻RV1的控制端、另一端连接,所述放大器U6A的8号引脚与所述电容C3的一端连接且输入电压,所述电容C3的另一端连接,所述放大器U6A的4号引脚接地,所述放大器U7A的3号引脚与所述电阻R17的另一端连接,所述放大器U7A的1号引脚与2号引脚连接且输出。
在进一步的实施例中,所述运算放大器U8A的3号引脚同时与所述电容C8的一端和所述电阻R19的一端连接,所述运算放大器U8A的2号引脚同时与所述二极管D7的正极和所述二极管D6的正极连接,所述运算放大器U8A的4号引脚与所述电容C4的一端连接且输入电压,所述运算放大器U8A的8号引脚与所述电容C5的一端连接且输入信号,所述电容C4的另一端接地,所述电容C5的另一端接地,所述电阻R19的另一端与所述电容C9的一端且输入信号,所述电容C8的另一端接地,所述二极管D7的负极接地,所述二极管D7的负极与所述电容C9的另一端连接,所述运算放大器U8A的1号引脚与所述二极管D4的正极连接,所述二极管D4的负极同时与所述电容C7的一端和所述二极管D5的正极连接,所述运算放大器U8B的5号引脚同时与所述电容C6的一端和所述二极管D5的负极连接,所述运算放大器U8B的6号引脚同时与所述二极管D9的正极和所述二极管D8的正极连接,所述二极管D9的负极接地,所述运算放大器U8B的8号引脚有所述电容C10的一端连接且输入电压,所述运算放大器U8B的4号引脚与所述电容C11的一端连接且输入电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述二极管D8的负极与所述电容C7的另一端连接且输出信号。
在进一步的实施例中,本发明存在异常处理模式,当进行水流质量检测和水流速度检测时,水质检测信号和水速检测信号通过信号处理单元进行信号稳定,同时传输至中转控制单元,此时水质检测信号通过中转控制单元内部进行比较,当水质质量不符合标准时,水质检测信号通过无线传输单元中的上传输层直接传输至控制单元;当水质质量符合工作标准时,会进行水速检测输入中转控制单元,从而进行水流速度比较;当水流速度超出工作阈值,则进行水流速度检测信号直接传输至信号缓存单元,当水流速度符合工作阈值,水质检测信号和水速检测信号传输至控制单元,控制单元会检测时间频率进行不规则检测频率。
在更进一步的实施例中,当检测的水质信号与水流速度信号在多次检测中,均都符合工作指标时,控制单元会进行发出检测时序序列,当水质检测单元每十分钟进行一次检测时,当五次检测的水质质量和水流速度均符合标准时,控制单元会在第五次检测完成时,立即进行一至五次水质和水速检测,从而可以保证在检测间隔中,如有污水注入,可以进行及时检测,从而保证水质检测的准确性。
工作原理:当此时水流速度过大,此时检测的水质信号会通过信号处理单元进行信号处理,首先信号通过I/V装模块进行电流信号转换为电压信号,电压通过电阻R10输入基准稳压源U3,从而基准稳压源U3输出稳定电压至放大器U1A的同相输入端,其中电阻R6与电阻R7进行分压输入,电阻R5进行把配合,同时放大器U1A的输出端与三极管Q1的基极连接,从而进行缓存电压,从而增大输出能力,检测信号通过电阻R3输入,同时通过输入电容器C1和二极管D1和二极管D2进行保护,防止工作电压过大,导通信号混乱,同时输入至放大器U2A的同相端,从而进行转换,最后通过放大器U2A的输出端进行输出值至三极管Q2,电容C2进行滤波,从而通过三极管Q2的集电极进行输出至信号放大模块;
输入信号经过放大器U5A进行一级放大后,再经过放大器U6A进行二级放大,同时可以通过可调电阻RV1进行二级放大倍数的调制,最后经过放大器U7A作为跟随器得到输出电压,接通电源后,输入信号电压放大后得到输出电压,输入电压和输出电压波形,记录数据,通过传输至控制单元计算得出放大倍数、且进行数据缓存;
输入信号通过电阻R13进行保护输入,基准电压通过电阻R14与电阻R15组成分压之路进行输入,从而输入信号信号进行放大一倍至五倍;同时放大器U5A不仅放大了信号,同时能够将电路上的一些噪声信号滤掉,从而减少了后级电路对噪声的进一步放大,从而使输入信号电压、增大,然后输出;从而信号经过电阻R16输入至二级运放电路进行放大,为了提高前置放大器电路的输入阻抗和共模抑制性能,减少输出噪声,必须采用同相放大电路构成为了尽可能保证不失真的放大,以保证充分发挥每级的线性放大性能并满足带宽要求,从而保证不失真,即达到高保真放大质量;最后信号通过电阻R17输入放大器U7A,这里放大器U7A作为跟随器使用,跟随器的缓冲,隔离,提高承载能力的作用;共集电极电路输入阻抗高,输出阻抗低,因此它能在电路阻抗匹配功能的发挥,可以做一个更好的放大电路;当输入阻抗很高,相当于前级电路是开放的;当输出阻抗低,后级电路等效为一个电压源,输出电压不受电路阻抗的影响;第一级电路相当于开路电压输出,而不是由当然阻抗的影响有水平隔震效果后,所以不要相互影响的前,后级电路互不影响;
同时信号通过放大电路输出至滤波输出模块,通过运算放大器U8A和运算放大器U8B组成四阶巴特沃斯滤波电路,信号通过电容C9与电阻R19组成的尖峰电压吸收支路进行输入运算放大器U8A、此时进行一次滤波,同时信号通过二极管D4导通输出至运算放大器U8B,从而进行二次滤波,最后通过运算放大器U8B进行输出信号,同时信号通过无线传输单元传输至控制单元和信号缓存单元,从而进行信号的转换与数据存储。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (8)

  1. 一种基于河流水质自动监测系统的信号处理电路,其特征在于,包括:
    水质检测单元,用于进行河流水质的氢离子浓度指数、电导率指数、溶氧度指数、水流速度指数的检测;
    信号调理单元,用于进行水质各项检测信号的调节,从而使检测信号传输更加稳定;
    中转控制单元,用于进行此时水质质量的比较,当水质质量不符合工作标准时,进行水质检测信号直接传输至控制单元;当水质质量符合工作标准时,进行水流速度比较;当水流速度超出工作阈值,则进行水流速度检测信号直接传输至信号缓存单元;
    无线传输单元,进行检测信号进行无线传输,且分别进行上下层的传输,上层信号传输至控制单元,下层信号传输至信号缓存单元;
    信号缓存单元,进行水流流速检测信号的缓冲保存,同时对不同时间,不同水流流速的检测指标传输至物联网云系统;
    控制单元,进行接收水质检测信号,并进行信号分析,从而将信号传送至控制终端,同时利用时基序列对传感器进行发送不定时工作指令;
    其中,信号调理单元,包括:I/V转换模块、信号放大模块、以及滤波输出模块。
  2. 根据权利要求1所述的一种基于河流水质自动监测系统的信号处理电路,其特征在于,所述I/V转换模块包括:电阻R1、电阻R2、电阻R3、电阻R4、三极管Q1、放大器U1A、电阻R5、电阻R6、电阻R7、电容C1、二极管D1、二极管D2、放大器U2A、电阻R11、电阻R8、电阻R9、电阻R10、电容C2、三极管Q2、稳压管D3、基准稳压源U3、基准稳压源U4;
    所述电阻R2的一端与所述电阻R3的一端连接且输入信号,所述三极管Q1的发射极同时与所述电阻R2的另一端和所述电阻R1的一端连接,所述放大器U1A的2号引脚与所述电阻R1的另一端连接,所述放大器U1A的1号引脚与所述三极管Q1的基极连接,所述放大器U1A的3号引脚与所述电阻R5的一端连接,所述电阻R7的一端同时与所述电阻R5的另一端和所述电阻R6的一端连接,所述电阻R7的另一端接地,所述三极管Q1的集电极与所述电阻R4的一端连接,所述电容C1的一端同时与所述电阻R3的另一端和所述二极管D2的负极连接,所述电容C1的另一端与所述二极管D2的正极连接且接地,所述二极管D1的正极同时与所述二极管D2的负极和所述放大器U2A的3号引脚连接,所述放大器U2A的1号引脚同时与所述电容C2的一端和所述三极管Q2的基极连接,所述放大器U2A的2号引脚同时与所述电容C2的另一端和所述三极管Q2的发射极连接且接地,所述放大器U2A的4号引脚同时与所述放大器U1A的4号引脚、所述电阻R6的另一端、所述电阻R8的一端和所述基准稳压源U3的3号引脚连接,所述放大器U2A的8号引脚同时与所述放大器U1A的8号引脚、所述电阻R11的一端和所述基准稳压源U4的1号引脚连接且输入工作电压,所述基准稳压源U3的1号引脚同时与所述电阻R9的一端、所述电阻R10的一端和所述基准稳压源U3的3号引脚连接,所述基准稳压源U3的2号引脚同时与所述电阻R8的另一端和所述电阻R9的另一端连接且接地,所述电阻R10的另一端与所述电阻R4的另一端连接且输入电压,所述基准稳压源U4的2号引脚同时与所述电阻R11的另一端和所述稳压管D3的正极连接,所述基准稳压源U4的3号引脚同时与稳压管D3的负极和所述基准稳压源U3的1号引脚连接且接地,所述三极管Q2的集电极输出信号。
  3. 根据权利要求1所述的一种基于河流水质自动监测系统的信号处理电路,其特征在于,所述信号放大模块包括:电阻R13、电阻R14、电阻R15、电阻R12、电阻R16、电阻R18、电阻R17、可调电阻RV1、放大器U5A、放大器U6A、放大器U7A、电容C3;
    其中,所述放大器U5A的2号引脚同时与所述电阻R13的一端和所述电阻R12的一端连接,所述放大器U5A的3号引脚同时与所述电阻R14的一端和所述电阻R15的一端连接,所述电阻R13的另一端输入信号,所述电阻R14的另一端输入基准电压,所述电阻R15的另一端接地,所述放大器U5A的1号同时与所述电阻R12的另一端和所述电阻R16的一端连接,所述放大器U6A的2号引脚同时与所述电阻R16的另一端和所述可调电阻RV1的一端连接,所述放大器U6A的3号引脚与所述电阻R18的一端连接,所述电阻R18的另一端接地,所述放大器U6A的1号引脚同时与所述电阻R17的一端和所述可调电阻RV1的控制端、另一端连接,所述放大器U6A的8号引脚与所述电容C3的一端连接且输入电压,所述电容C3的另一端连接,所述放大器U6A的4号引脚接地,所述放大器U7A的3号引脚与所述电阻R17的另一端连接,所述放大器U7A的1号引脚与2号引脚连接且输出。
  4. 根据权利要求1所述的一种基于河流水质自动监测系统的信号处理电路,其特征在于,所述滤波输出模块包括:电容C9、电容C8、电阻R19、电容C5、电容C4、二极管D7、二极管D6、运算放大器U8A、二极管D4、二极管D5、电容C7、电容C6、电容C10、电容C11、二极管D9、二极管D8、运算放大器U8B;
    其中,所述运算放大器U8A的3号引脚同时与所述电容C8的一端和所述电阻R19的一端连接,所述运算放大器U8A的2号引脚同时与所述二极管D7的正极和所述二极管D6的正极连接,所述运算放大器U8A的4号引脚与所述电容C4的一端连接且输入电压,所述运算放大器U8A的8号引脚与所述电容C5的一端连接且输入信号,所述电容C4的另一端接地,所述电容C5的另一端接地,所述电阻R19的另一端与所述电容C9的一端且输入信号,所述电容C8的另一端接地,所述二极管D7的负极接地,所述二极管D7的负极与所述电容C9的另一端连接,所述运算放大器U8A的1号引脚与所述二极管D4的正极连接,所述二极管D4的负极同时与所述电容C7的一端和所述二极管D5的正极连接,所述运算放大器U8B的5号引脚同时与所述电容C6的一端和所述二极管D5的负极连接,所述运算放大器U8B的6号引脚同时与所述二极管D9的正极和所述二极管D8的正极连接,所述二极管D9的负极接地,所述运算放大器U8B的8号引脚有所述电容C10的一端连接且输入电压,所述运算放大器U8B的4号引脚与所述电容C11的一端连接且输入电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述二极管D8的负极与所述电容C7的另一端连接且输出信号。
  5. 根据权利要求2所述的一种基于河流水质自动监测系统的信号处理电路,其特征在于,所述基准稳压源U3和基准稳压源U4的型号均为TL431。
  6. 根据权利要求1所述的一种基于河流水质自动监测系统的信号处理电路,其特征在于,所述无线传输单元中,当采集各个时间段的检测信号数据进行传输时,采集信号进行同时传输至控制单元和信号缓存单元,且采用两个单独的传输频道传输,从而相互不进行干扰。
  7. 一种权利要求2至6任一项所述的基于河流水质自动监测系统的信号处理电路的处理方法,其特征在于,水质检测单元利用设置在河流中的传感器进行检测信号,同时水中的流量传感器也进行检测此时水流速度,从而进行检测信号的处理;具体步骤如下:
    步骤1、首先每个监测基站会监测一段距离的河流水质情况,同时每一段的河流上会设有多个子检测节点,每个子检测节点设有水质指标传感器和流量传感器,检测信号通过传输至中转控制单元进行数据比较,从而根据数据比较的不同,进行用无线传输单元进行传输至控制单元,从而进行下一步指令的发出;
    步骤2、在进行水质检测时,每个子检测节点上的流量传感器会进行此时水流速度的检测,水流速度检测信号通过传输至中转控制单元进行数据比较,当水流速度过大时比较信号通过无线传输单元中的下传输层进行传输至信号缓存单元,且上传输层传送至控制单元;
    步骤3、对传送至信号缓存单元中的数据首先进行识别匹配,通过将书记模拟信号转换成数字信号,从而进行数据匹配,当数据库中的数据与此时接收的数据新匹配,则进行匹配消除,从而直接进行传输旧的数据信息,当有新的数据信号,则进行存储至信号缓存单元,且将此时的数据通过无线传输单元,传送至物联网云系统;
    步骤4、同时通过上传输层传输至控制单元的水流流速信号通过控制单元进行信号转换,处理同时传输至控制终端,工作人员通过对此时流速的大小,从而做出信号处理工作。
  8. 根据权利要求7所述的一种基于河流水质自动监测系统的信号处理电路的处理方法,其特征在于,在计算河流水流速度时,是测量流量传感器上输出的两个连续脉冲上升沿之间的周期,进而得出频率,然后计算水流速度和体积,从而中转控制单元进行判断此时的流速是否影响信号传输,具体步骤如下:      步骤5、当此时流速大于工作范围时,会直接在进行一次流速检测计算,当两次检测信号计算之和的平均值大于工作范围时,从而计最大流速的数据进行传输,通过无线传输单元进行上下分层传输;
    步骤6、当此时第一次流速检测计算小于工作范围,则表明此时河流流速处于正常工作状态,此时采集的流速数据则直接通过无线传输单元的下传输层传输至信号缓存单元。
PCT/CN2020/107882 2020-08-05 2020-08-07 一种基于河流水质自动监测系统的信号处理电路及处理方法 WO2022027615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010778020.7A CN112255379B (zh) 2020-08-05 2020-08-05 一种基于河流水质自动监测系统的信号处理电路及处理方法
CN202010778020.7 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022027615A1 true WO2022027615A1 (zh) 2022-02-10

Family

ID=74224552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107882 WO2022027615A1 (zh) 2020-08-05 2020-08-07 一种基于河流水质自动监测系统的信号处理电路及处理方法

Country Status (2)

Country Link
CN (1) CN112255379B (zh)
WO (1) WO2022027615A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022101095U1 (de) 2022-02-25 2022-03-16 Shazia ALI Intelligentes integriertes Überwachungssystem zur Messung der Wasserqualität auf der Basis von IoT-Sensoren
CN114942310A (zh) * 2022-04-11 2022-08-26 湛江幼儿师范专科学校(岭南师范学院基础教育学院) 一种用于水质监测的无人船及水质监测系统
CN115372574A (zh) * 2022-08-17 2022-11-22 重庆亿森动力环境科技有限公司 基于物联网的水质监测系统
CN116902612A (zh) * 2023-09-12 2023-10-20 常州金源机械设备有限公司 一种能均匀布料的智能型物料步进系统及其控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315913A (ja) * 2006-05-25 2007-12-06 Fis Inc 水質計
US20110115640A1 (en) * 2009-11-19 2011-05-19 National Taiwan University Automated remote water quality monitoring system with wireless communication capabilities and the method thereof
CN104459072A (zh) * 2014-12-12 2015-03-25 中国地质大学(武汉) 一种基于wsn的多参数水质监测节点装置
CN204666613U (zh) * 2014-12-04 2015-09-23 宁波中瑞生物科技有限公司 一种水质检测仪
CN105699300A (zh) * 2014-11-26 2016-06-22 西安奥赛福科技有限公司 一种便携式水质分析仪
CN106053539A (zh) * 2016-06-17 2016-10-26 天津市龙网科技发展有限公司 Ph水质分析仪系统及其控制方法
CN107084967A (zh) * 2017-06-15 2017-08-22 福州普贝斯智能科技有限公司 一种水中溶解氧测量仪
CN108279293A (zh) * 2018-04-25 2018-07-13 四川巴斯德环境检测技术有限责任公司 一种基于多传感器的水质实时监测系统
CN108958118A (zh) * 2018-07-20 2018-12-07 成都市环境保护科学研究院 一种多参数水质监测系统及方法
CN208239436U (zh) * 2018-06-12 2018-12-14 桂林电子科技大学 一种水质氨氮检测系统
CN109099973A (zh) * 2018-09-21 2018-12-28 浙江工商大学 一种基于物联网的环境监测系统
CN111323554A (zh) * 2020-03-15 2020-06-23 黎明职业大学 基于物联网的水产养殖场水质监测系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202948011U (zh) * 2012-11-06 2013-05-22 深圳市绿恩环保技术有限公司 水质检测装置及其信号处理电路
KR101429989B1 (ko) * 2013-08-08 2014-08-14 한국수자원공사 측정잡음 필터링 및 측정주기 가변제어 방법과 이를 이용한 상수관망 감시를 위한 다항목 수질계측 시스템
CN104460782A (zh) * 2013-09-14 2015-03-25 陕西亚泰电器科技有限公司 基于msc1210单片机的水产养殖水质参数监控系统
CN106911311A (zh) * 2017-01-18 2017-06-30 广西师范学院 用于水质监测的信号放大电路
CN209231024U (zh) * 2019-05-22 2019-08-09 南京市仪器仪表工业供销有限公司 一种水质在线监测采样预处理装置
CN110208479B (zh) * 2019-06-21 2021-05-25 安徽莱茵河科创服务有限公司 一种用于水质检测数据的数据管理系统
CN110618245A (zh) * 2019-09-30 2019-12-27 河南沃海水务有限公司 水质数据预处理电路

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315913A (ja) * 2006-05-25 2007-12-06 Fis Inc 水質計
US20110115640A1 (en) * 2009-11-19 2011-05-19 National Taiwan University Automated remote water quality monitoring system with wireless communication capabilities and the method thereof
CN105699300A (zh) * 2014-11-26 2016-06-22 西安奥赛福科技有限公司 一种便携式水质分析仪
CN204666613U (zh) * 2014-12-04 2015-09-23 宁波中瑞生物科技有限公司 一种水质检测仪
CN104459072A (zh) * 2014-12-12 2015-03-25 中国地质大学(武汉) 一种基于wsn的多参数水质监测节点装置
CN106053539A (zh) * 2016-06-17 2016-10-26 天津市龙网科技发展有限公司 Ph水质分析仪系统及其控制方法
CN107084967A (zh) * 2017-06-15 2017-08-22 福州普贝斯智能科技有限公司 一种水中溶解氧测量仪
CN108279293A (zh) * 2018-04-25 2018-07-13 四川巴斯德环境检测技术有限责任公司 一种基于多传感器的水质实时监测系统
CN208239436U (zh) * 2018-06-12 2018-12-14 桂林电子科技大学 一种水质氨氮检测系统
CN108958118A (zh) * 2018-07-20 2018-12-07 成都市环境保护科学研究院 一种多参数水质监测系统及方法
CN109099973A (zh) * 2018-09-21 2018-12-28 浙江工商大学 一种基于物联网的环境监测系统
CN111323554A (zh) * 2020-03-15 2020-06-23 黎明职业大学 基于物联网的水产养殖场水质监测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022101095U1 (de) 2022-02-25 2022-03-16 Shazia ALI Intelligentes integriertes Überwachungssystem zur Messung der Wasserqualität auf der Basis von IoT-Sensoren
CN114942310A (zh) * 2022-04-11 2022-08-26 湛江幼儿师范专科学校(岭南师范学院基础教育学院) 一种用于水质监测的无人船及水质监测系统
CN115372574A (zh) * 2022-08-17 2022-11-22 重庆亿森动力环境科技有限公司 基于物联网的水质监测系统
CN116902612A (zh) * 2023-09-12 2023-10-20 常州金源机械设备有限公司 一种能均匀布料的智能型物料步进系统及其控制方法
CN116902612B (zh) * 2023-09-12 2024-01-16 常州金源机械设备有限公司 一种能均匀布料的智能型物料步进系统及其控制方法

Also Published As

Publication number Publication date
CN112255379B (zh) 2021-08-10
CN112255379A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022027615A1 (zh) 一种基于河流水质自动监测系统的信号处理电路及处理方法
CN206311143U (zh) 一种天然气管网在线监测系统
CN104391098B (zh) 一种基于dcs的水质监测设备
CN105206063B (zh) 一种基于gmi传感器的交通信息监测采集装置与检测方法
CN107449884A (zh) 一种基于无线传感器网络的污水监测系统
CN105758904A (zh) 一种多参数水质监测系统、方法以及应用
CN108072846A (zh) 一种锂电池绝缘电阻在线检测装置
CN112377817A (zh) 一种市政管网爆管监测系统及方法
CN107490769B (zh) 一种燃料电池水分布可视化在线检测系统
CN112459203A (zh) 一种智慧检查井
CN104535736B (zh) 水库水质在线监测系统
CN105203163A (zh) 基于物联网技术的温湿度数据监测系统
CN205175954U (zh) 一种水质多参数在线监测装置
CN204302267U (zh) 基于多传感器的城市空气质量监测系统
CN114200077B (zh) 一种应用于网格化空气质量监测系统的云平台智能辅助校准算法
CN113920710A (zh) 地铁乘客信息电子核检系统
CN211014194U (zh) 一种空气负氧离子检测及组网装置
CN106645327A (zh) 一种基于球载的大气边界层no2垂直探测系统
CN107561215A (zh) 一种网格化微型空气质量监测子站
CN112782468A (zh) 一种列车运行能耗计量方法
CN205788722U (zh) 一种基于gprs网络的远程监控装置
CN219890267U (zh) 一种板式换热器安全管理装置
CN206832763U (zh) 一种环境监测装置
CN205943044U (zh) 一种饮用水安全监测预警系统
CN208190886U (zh) 一种新型丽音音响

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948826

Country of ref document: EP

Kind code of ref document: A1